]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/locking/mutex.c
kernel/locking: Compute 'current' directly
[mirror_ubuntu-artful-kernel.git] / kernel / locking / mutex.c
CommitLineData
6053ee3b 1/*
67a6de49 2 * kernel/locking/mutex.c
6053ee3b
IM
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
0d66bf6d
PZ
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
214e0aed 18 * Also see Documentation/locking/mutex-design.txt.
6053ee3b
IM
19 */
20#include <linux/mutex.h>
1b375dc3 21#include <linux/ww_mutex.h>
6053ee3b 22#include <linux/sched.h>
8bd75c77 23#include <linux/sched/rt.h>
9984de1a 24#include <linux/export.h>
6053ee3b
IM
25#include <linux/spinlock.h>
26#include <linux/interrupt.h>
9a11b49a 27#include <linux/debug_locks.h>
7a215f89 28#include <linux/osq_lock.h>
6053ee3b 29
6053ee3b
IM
30#ifdef CONFIG_DEBUG_MUTEXES
31# include "mutex-debug.h"
6053ee3b
IM
32#else
33# include "mutex.h"
6053ee3b
IM
34#endif
35
ef5d4707
IM
36void
37__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
6053ee3b 38{
3ca0ff57 39 atomic_long_set(&lock->owner, 0);
6053ee3b
IM
40 spin_lock_init(&lock->wait_lock);
41 INIT_LIST_HEAD(&lock->wait_list);
2bd2c92c 42#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4d9d951e 43 osq_lock_init(&lock->osq);
2bd2c92c 44#endif
6053ee3b 45
ef5d4707 46 debug_mutex_init(lock, name, key);
6053ee3b 47}
6053ee3b
IM
48EXPORT_SYMBOL(__mutex_init);
49
3ca0ff57
PZ
50/*
51 * @owner: contains: 'struct task_struct *' to the current lock owner,
52 * NULL means not owned. Since task_struct pointers are aligned at
53 * ARCH_MIN_TASKALIGN (which is at least sizeof(void *)), we have low
54 * bits to store extra state.
55 *
56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
9d659ae1 57 * Bit1 indicates unlock needs to hand the lock to the top-waiter
3ca0ff57
PZ
58 */
59#define MUTEX_FLAG_WAITERS 0x01
9d659ae1 60#define MUTEX_FLAG_HANDOFF 0x02
3ca0ff57
PZ
61
62#define MUTEX_FLAGS 0x03
63
64static inline struct task_struct *__owner_task(unsigned long owner)
65{
66 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
67}
68
69static inline unsigned long __owner_flags(unsigned long owner)
70{
71 return owner & MUTEX_FLAGS;
72}
73
74/*
75 * Actual trylock that will work on any unlocked state.
9d659ae1
PZ
76 *
77 * When setting the owner field, we must preserve the low flag bits.
78 *
79 * Be careful with @handoff, only set that in a wait-loop (where you set
80 * HANDOFF) to avoid recursive lock attempts.
3ca0ff57 81 */
9d659ae1 82static inline bool __mutex_trylock(struct mutex *lock, const bool handoff)
3ca0ff57
PZ
83{
84 unsigned long owner, curr = (unsigned long)current;
85
86 owner = atomic_long_read(&lock->owner);
87 for (;;) { /* must loop, can race against a flag */
9d659ae1
PZ
88 unsigned long old, flags = __owner_flags(owner);
89
90 if (__owner_task(owner)) {
91 if (handoff && unlikely(__owner_task(owner) == current)) {
92 /*
93 * Provide ACQUIRE semantics for the lock-handoff.
94 *
95 * We cannot easily use load-acquire here, since
96 * the actual load is a failed cmpxchg, which
97 * doesn't imply any barriers.
98 *
99 * Also, this is a fairly unlikely scenario, and
100 * this contains the cost.
101 */
102 smp_mb(); /* ACQUIRE */
103 return true;
104 }
3ca0ff57 105
3ca0ff57 106 return false;
9d659ae1
PZ
107 }
108
109 /*
110 * We set the HANDOFF bit, we must make sure it doesn't live
111 * past the point where we acquire it. This would be possible
112 * if we (accidentally) set the bit on an unlocked mutex.
113 */
114 if (handoff)
115 flags &= ~MUTEX_FLAG_HANDOFF;
3ca0ff57 116
9d659ae1 117 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
3ca0ff57
PZ
118 if (old == owner)
119 return true;
120
121 owner = old;
122 }
123}
124
125#ifndef CONFIG_DEBUG_LOCK_ALLOC
126/*
127 * Lockdep annotations are contained to the slow paths for simplicity.
128 * There is nothing that would stop spreading the lockdep annotations outwards
129 * except more code.
130 */
131
132/*
133 * Optimistic trylock that only works in the uncontended case. Make sure to
134 * follow with a __mutex_trylock() before failing.
135 */
136static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
137{
138 unsigned long curr = (unsigned long)current;
139
140 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr))
141 return true;
142
143 return false;
144}
145
146static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
147{
148 unsigned long curr = (unsigned long)current;
149
150 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
151 return true;
152
153 return false;
154}
155#endif
156
157static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
158{
159 atomic_long_or(flag, &lock->owner);
160}
161
162static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
163{
164 atomic_long_andnot(flag, &lock->owner);
165}
166
9d659ae1
PZ
167static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
168{
169 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
170}
171
172/*
173 * Give up ownership to a specific task, when @task = NULL, this is equivalent
174 * to a regular unlock. Clears HANDOFF, preserves WAITERS. Provides RELEASE
175 * semantics like a regular unlock, the __mutex_trylock() provides matching
176 * ACQUIRE semantics for the handoff.
177 */
178static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
179{
180 unsigned long owner = atomic_long_read(&lock->owner);
181
182 for (;;) {
183 unsigned long old, new;
184
185#ifdef CONFIG_DEBUG_MUTEXES
186 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
187#endif
188
189 new = (owner & MUTEX_FLAG_WAITERS);
190 new |= (unsigned long)task;
191
192 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
193 if (old == owner)
194 break;
195
196 owner = old;
197 }
198}
199
e4564f79 200#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
201/*
202 * We split the mutex lock/unlock logic into separate fastpath and
203 * slowpath functions, to reduce the register pressure on the fastpath.
204 * We also put the fastpath first in the kernel image, to make sure the
205 * branch is predicted by the CPU as default-untaken.
206 */
3ca0ff57 207static void __sched __mutex_lock_slowpath(struct mutex *lock);
6053ee3b 208
ef5dc121 209/**
6053ee3b
IM
210 * mutex_lock - acquire the mutex
211 * @lock: the mutex to be acquired
212 *
213 * Lock the mutex exclusively for this task. If the mutex is not
214 * available right now, it will sleep until it can get it.
215 *
216 * The mutex must later on be released by the same task that
217 * acquired it. Recursive locking is not allowed. The task
218 * may not exit without first unlocking the mutex. Also, kernel
139b6fd2 219 * memory where the mutex resides must not be freed with
6053ee3b
IM
220 * the mutex still locked. The mutex must first be initialized
221 * (or statically defined) before it can be locked. memset()-ing
222 * the mutex to 0 is not allowed.
223 *
224 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
225 * checks that will enforce the restrictions and will also do
226 * deadlock debugging. )
227 *
228 * This function is similar to (but not equivalent to) down().
229 */
b09d2501 230void __sched mutex_lock(struct mutex *lock)
6053ee3b 231{
c544bdb1 232 might_sleep();
6053ee3b 233
3ca0ff57
PZ
234 if (!__mutex_trylock_fast(lock))
235 __mutex_lock_slowpath(lock);
236}
6053ee3b 237EXPORT_SYMBOL(mutex_lock);
e4564f79 238#endif
6053ee3b 239
76916515
DB
240static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
241 struct ww_acquire_ctx *ww_ctx)
242{
243#ifdef CONFIG_DEBUG_MUTEXES
244 /*
245 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
246 * but released with a normal mutex_unlock in this call.
247 *
248 * This should never happen, always use ww_mutex_unlock.
249 */
250 DEBUG_LOCKS_WARN_ON(ww->ctx);
251
252 /*
253 * Not quite done after calling ww_acquire_done() ?
254 */
255 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
256
257 if (ww_ctx->contending_lock) {
258 /*
259 * After -EDEADLK you tried to
260 * acquire a different ww_mutex? Bad!
261 */
262 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
263
264 /*
265 * You called ww_mutex_lock after receiving -EDEADLK,
266 * but 'forgot' to unlock everything else first?
267 */
268 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
269 ww_ctx->contending_lock = NULL;
270 }
271
272 /*
273 * Naughty, using a different class will lead to undefined behavior!
274 */
275 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
276#endif
277 ww_ctx->acquired++;
278}
279
280/*
4bd19084 281 * After acquiring lock with fastpath or when we lost out in contested
76916515 282 * slowpath, set ctx and wake up any waiters so they can recheck.
76916515
DB
283 */
284static __always_inline void
285ww_mutex_set_context_fastpath(struct ww_mutex *lock,
286 struct ww_acquire_ctx *ctx)
287{
288 unsigned long flags;
289 struct mutex_waiter *cur;
290
291 ww_mutex_lock_acquired(lock, ctx);
292
293 lock->ctx = ctx;
294
295 /*
296 * The lock->ctx update should be visible on all cores before
297 * the atomic read is done, otherwise contended waiters might be
298 * missed. The contended waiters will either see ww_ctx == NULL
299 * and keep spinning, or it will acquire wait_lock, add itself
300 * to waiter list and sleep.
301 */
302 smp_mb(); /* ^^^ */
303
304 /*
305 * Check if lock is contended, if not there is nobody to wake up
306 */
3ca0ff57 307 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
76916515
DB
308 return;
309
310 /*
311 * Uh oh, we raced in fastpath, wake up everyone in this case,
312 * so they can see the new lock->ctx.
313 */
314 spin_lock_mutex(&lock->base.wait_lock, flags);
315 list_for_each_entry(cur, &lock->base.wait_list, list) {
316 debug_mutex_wake_waiter(&lock->base, cur);
317 wake_up_process(cur->task);
318 }
319 spin_unlock_mutex(&lock->base.wait_lock, flags);
320}
321
4bd19084
DB
322/*
323 * After acquiring lock in the slowpath set ctx and wake up any
324 * waiters so they can recheck.
325 *
326 * Callers must hold the mutex wait_lock.
327 */
328static __always_inline void
329ww_mutex_set_context_slowpath(struct ww_mutex *lock,
330 struct ww_acquire_ctx *ctx)
331{
332 struct mutex_waiter *cur;
333
334 ww_mutex_lock_acquired(lock, ctx);
335 lock->ctx = ctx;
336
337 /*
338 * Give any possible sleeping processes the chance to wake up,
339 * so they can recheck if they have to back off.
340 */
341 list_for_each_entry(cur, &lock->base.wait_list, list) {
342 debug_mutex_wake_waiter(&lock->base, cur);
343 wake_up_process(cur->task);
344 }
345}
76916515 346
41fcb9f2 347#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
41fcb9f2
WL
348/*
349 * Look out! "owner" is an entirely speculative pointer
350 * access and not reliable.
351 */
352static noinline
be1f7bf2 353bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
41fcb9f2 354{
01ac33c1 355 bool ret = true;
be1f7bf2 356
41fcb9f2 357 rcu_read_lock();
3ca0ff57 358 while (__mutex_owner(lock) == owner) {
be1f7bf2
JL
359 /*
360 * Ensure we emit the owner->on_cpu, dereference _after_
01ac33c1
JL
361 * checking lock->owner still matches owner. If that fails,
362 * owner might point to freed memory. If it still matches,
be1f7bf2
JL
363 * the rcu_read_lock() ensures the memory stays valid.
364 */
365 barrier();
366
05ffc951
PX
367 /*
368 * Use vcpu_is_preempted to detect lock holder preemption issue.
369 */
370 if (!owner->on_cpu || need_resched() ||
371 vcpu_is_preempted(task_cpu(owner))) {
be1f7bf2
JL
372 ret = false;
373 break;
374 }
41fcb9f2 375
f2f09a4c 376 cpu_relax();
41fcb9f2
WL
377 }
378 rcu_read_unlock();
379
be1f7bf2 380 return ret;
41fcb9f2 381}
2bd2c92c
WL
382
383/*
384 * Initial check for entering the mutex spinning loop
385 */
386static inline int mutex_can_spin_on_owner(struct mutex *lock)
387{
1e40c2ed 388 struct task_struct *owner;
2bd2c92c
WL
389 int retval = 1;
390
46af29e4
JL
391 if (need_resched())
392 return 0;
393
2bd2c92c 394 rcu_read_lock();
3ca0ff57 395 owner = __mutex_owner(lock);
05ffc951
PX
396
397 /*
398 * As lock holder preemption issue, we both skip spinning if task is not
399 * on cpu or its cpu is preempted
400 */
1e40c2ed 401 if (owner)
05ffc951 402 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
2bd2c92c 403 rcu_read_unlock();
3ca0ff57 404
2bd2c92c 405 /*
3ca0ff57
PZ
406 * If lock->owner is not set, the mutex has been released. Return true
407 * such that we'll trylock in the spin path, which is a faster option
408 * than the blocking slow path.
2bd2c92c
WL
409 */
410 return retval;
411}
76916515 412
76916515
DB
413/*
414 * Optimistic spinning.
415 *
416 * We try to spin for acquisition when we find that the lock owner
417 * is currently running on a (different) CPU and while we don't
418 * need to reschedule. The rationale is that if the lock owner is
419 * running, it is likely to release the lock soon.
420 *
76916515
DB
421 * The mutex spinners are queued up using MCS lock so that only one
422 * spinner can compete for the mutex. However, if mutex spinning isn't
423 * going to happen, there is no point in going through the lock/unlock
424 * overhead.
425 *
426 * Returns true when the lock was taken, otherwise false, indicating
427 * that we need to jump to the slowpath and sleep.
b341afb3
WL
428 *
429 * The waiter flag is set to true if the spinner is a waiter in the wait
430 * queue. The waiter-spinner will spin on the lock directly and concurrently
431 * with the spinner at the head of the OSQ, if present, until the owner is
432 * changed to itself.
76916515
DB
433 */
434static bool mutex_optimistic_spin(struct mutex *lock,
b341afb3
WL
435 struct ww_acquire_ctx *ww_ctx,
436 const bool use_ww_ctx, const bool waiter)
76916515
DB
437{
438 struct task_struct *task = current;
439
b341afb3
WL
440 if (!waiter) {
441 /*
442 * The purpose of the mutex_can_spin_on_owner() function is
443 * to eliminate the overhead of osq_lock() and osq_unlock()
444 * in case spinning isn't possible. As a waiter-spinner
445 * is not going to take OSQ lock anyway, there is no need
446 * to call mutex_can_spin_on_owner().
447 */
448 if (!mutex_can_spin_on_owner(lock))
449 goto fail;
76916515 450
b341afb3
WL
451 /*
452 * In order to avoid a stampede of mutex spinners trying to
453 * acquire the mutex all at once, the spinners need to take a
454 * MCS (queued) lock first before spinning on the owner field.
455 */
456 if (!osq_lock(&lock->osq))
457 goto fail;
458 }
76916515 459
b341afb3 460 for (;;) {
76916515
DB
461 struct task_struct *owner;
462
463 if (use_ww_ctx && ww_ctx->acquired > 0) {
464 struct ww_mutex *ww;
465
466 ww = container_of(lock, struct ww_mutex, base);
467 /*
468 * If ww->ctx is set the contents are undefined, only
469 * by acquiring wait_lock there is a guarantee that
470 * they are not invalid when reading.
471 *
472 * As such, when deadlock detection needs to be
473 * performed the optimistic spinning cannot be done.
474 */
4d3199e4 475 if (READ_ONCE(ww->ctx))
b341afb3 476 goto fail_unlock;
76916515
DB
477 }
478
479 /*
480 * If there's an owner, wait for it to either
481 * release the lock or go to sleep.
482 */
3ca0ff57 483 owner = __mutex_owner(lock);
b341afb3
WL
484 if (owner) {
485 if (waiter && owner == task) {
486 smp_mb(); /* ACQUIRE */
487 break;
488 }
76916515 489
b341afb3
WL
490 if (!mutex_spin_on_owner(lock, owner))
491 goto fail_unlock;
76916515
DB
492 }
493
b341afb3
WL
494 /* Try to acquire the mutex if it is unlocked. */
495 if (__mutex_trylock(lock, waiter))
496 break;
497
76916515
DB
498 /*
499 * The cpu_relax() call is a compiler barrier which forces
500 * everything in this loop to be re-loaded. We don't need
501 * memory barriers as we'll eventually observe the right
502 * values at the cost of a few extra spins.
503 */
f2f09a4c 504 cpu_relax();
76916515
DB
505 }
506
b341afb3
WL
507 if (!waiter)
508 osq_unlock(&lock->osq);
509
510 return true;
511
512
513fail_unlock:
514 if (!waiter)
515 osq_unlock(&lock->osq);
516
517fail:
76916515
DB
518 /*
519 * If we fell out of the spin path because of need_resched(),
520 * reschedule now, before we try-lock the mutex. This avoids getting
521 * scheduled out right after we obtained the mutex.
522 */
6f942a1f
PZ
523 if (need_resched()) {
524 /*
525 * We _should_ have TASK_RUNNING here, but just in case
526 * we do not, make it so, otherwise we might get stuck.
527 */
528 __set_current_state(TASK_RUNNING);
76916515 529 schedule_preempt_disabled();
6f942a1f 530 }
76916515
DB
531
532 return false;
533}
534#else
535static bool mutex_optimistic_spin(struct mutex *lock,
b341afb3
WL
536 struct ww_acquire_ctx *ww_ctx,
537 const bool use_ww_ctx, const bool waiter)
76916515
DB
538{
539 return false;
540}
41fcb9f2
WL
541#endif
542
3ca0ff57 543static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
6053ee3b 544
ef5dc121 545/**
6053ee3b
IM
546 * mutex_unlock - release the mutex
547 * @lock: the mutex to be released
548 *
549 * Unlock a mutex that has been locked by this task previously.
550 *
551 * This function must not be used in interrupt context. Unlocking
552 * of a not locked mutex is not allowed.
553 *
554 * This function is similar to (but not equivalent to) up().
555 */
7ad5b3a5 556void __sched mutex_unlock(struct mutex *lock)
6053ee3b 557{
3ca0ff57
PZ
558#ifndef CONFIG_DEBUG_LOCK_ALLOC
559 if (__mutex_unlock_fast(lock))
560 return;
0d66bf6d 561#endif
3ca0ff57 562 __mutex_unlock_slowpath(lock, _RET_IP_);
6053ee3b 563}
6053ee3b
IM
564EXPORT_SYMBOL(mutex_unlock);
565
040a0a37
ML
566/**
567 * ww_mutex_unlock - release the w/w mutex
568 * @lock: the mutex to be released
569 *
570 * Unlock a mutex that has been locked by this task previously with any of the
571 * ww_mutex_lock* functions (with or without an acquire context). It is
572 * forbidden to release the locks after releasing the acquire context.
573 *
574 * This function must not be used in interrupt context. Unlocking
575 * of a unlocked mutex is not allowed.
576 */
577void __sched ww_mutex_unlock(struct ww_mutex *lock)
578{
579 /*
580 * The unlocking fastpath is the 0->1 transition from 'locked'
581 * into 'unlocked' state:
582 */
583 if (lock->ctx) {
584#ifdef CONFIG_DEBUG_MUTEXES
585 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
586#endif
587 if (lock->ctx->acquired > 0)
588 lock->ctx->acquired--;
589 lock->ctx = NULL;
590 }
591
3ca0ff57 592 mutex_unlock(&lock->base);
040a0a37
ML
593}
594EXPORT_SYMBOL(ww_mutex_unlock);
595
596static inline int __sched
63dc47e9 597__ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
040a0a37
ML
598{
599 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
4d3199e4 600 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
040a0a37
ML
601
602 if (!hold_ctx)
603 return 0;
604
040a0a37
ML
605 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
606 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
607#ifdef CONFIG_DEBUG_MUTEXES
608 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
609 ctx->contending_lock = ww;
610#endif
611 return -EDEADLK;
612 }
613
614 return 0;
615}
616
6053ee3b
IM
617/*
618 * Lock a mutex (possibly interruptible), slowpath:
619 */
040a0a37 620static __always_inline int __sched
e4564f79 621__mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
040a0a37 622 struct lockdep_map *nest_lock, unsigned long ip,
b0267507 623 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
6053ee3b 624{
6053ee3b 625 struct mutex_waiter waiter;
1fb00c6c 626 unsigned long flags;
9d659ae1 627 bool first = false;
a40ca565 628 struct ww_mutex *ww;
040a0a37 629 int ret;
6053ee3b 630
0422e83d 631 if (use_ww_ctx) {
a40ca565 632 ww = container_of(lock, struct ww_mutex, base);
0422e83d
CW
633 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
634 return -EALREADY;
635 }
636
41719b03 637 preempt_disable();
e4c70a66 638 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
c0226027 639
9d659ae1 640 if (__mutex_trylock(lock, false) ||
b341afb3 641 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, false)) {
76916515 642 /* got the lock, yay! */
3ca0ff57 643 lock_acquired(&lock->dep_map, ip);
a40ca565 644 if (use_ww_ctx)
3ca0ff57 645 ww_mutex_set_context_fastpath(ww, ww_ctx);
76916515
DB
646 preempt_enable();
647 return 0;
0d66bf6d 648 }
76916515 649
1fb00c6c 650 spin_lock_mutex(&lock->wait_lock, flags);
1e820c96 651 /*
3ca0ff57 652 * After waiting to acquire the wait_lock, try again.
1e820c96 653 */
9d659ae1 654 if (__mutex_trylock(lock, false))
ec83f425
DB
655 goto skip_wait;
656
9a11b49a 657 debug_mutex_lock_common(lock, &waiter);
d269a8b8 658 debug_mutex_add_waiter(lock, &waiter, current);
6053ee3b
IM
659
660 /* add waiting tasks to the end of the waitqueue (FIFO): */
661 list_add_tail(&waiter.list, &lock->wait_list);
d269a8b8 662 waiter.task = current;
6053ee3b 663
9d659ae1 664 if (__mutex_waiter_is_first(lock, &waiter))
3ca0ff57
PZ
665 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
666
e4564f79 667 lock_contended(&lock->dep_map, ip);
4fe87745 668
d269a8b8 669 set_task_state(current, state);
6053ee3b 670 for (;;) {
5bbd7e64
PZ
671 /*
672 * Once we hold wait_lock, we're serialized against
673 * mutex_unlock() handing the lock off to us, do a trylock
674 * before testing the error conditions to make sure we pick up
675 * the handoff.
676 */
9d659ae1 677 if (__mutex_trylock(lock, first))
5bbd7e64 678 goto acquired;
6053ee3b
IM
679
680 /*
5bbd7e64
PZ
681 * Check for signals and wound conditions while holding
682 * wait_lock. This ensures the lock cancellation is ordered
683 * against mutex_unlock() and wake-ups do not go missing.
6053ee3b 684 */
d269a8b8 685 if (unlikely(signal_pending_state(state, current))) {
040a0a37
ML
686 ret = -EINTR;
687 goto err;
688 }
6053ee3b 689
b0267507 690 if (use_ww_ctx && ww_ctx->acquired > 0) {
63dc47e9 691 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
040a0a37
ML
692 if (ret)
693 goto err;
6053ee3b 694 }
040a0a37 695
1fb00c6c 696 spin_unlock_mutex(&lock->wait_lock, flags);
bd2f5536 697 schedule_preempt_disabled();
9d659ae1
PZ
698
699 if (!first && __mutex_waiter_is_first(lock, &waiter)) {
700 first = true;
701 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
702 }
5bbd7e64 703
d269a8b8 704 set_task_state(current, state);
5bbd7e64
PZ
705 /*
706 * Here we order against unlock; we must either see it change
707 * state back to RUNNING and fall through the next schedule(),
708 * or we must see its unlock and acquire.
709 */
b341afb3
WL
710 if ((first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, true)) ||
711 __mutex_trylock(lock, first))
5bbd7e64
PZ
712 break;
713
714 spin_lock_mutex(&lock->wait_lock, flags);
6053ee3b 715 }
5bbd7e64
PZ
716 spin_lock_mutex(&lock->wait_lock, flags);
717acquired:
d269a8b8 718 __set_task_state(current, TASK_RUNNING);
51587bcf 719
d269a8b8 720 mutex_remove_waiter(lock, &waiter, current);
ec83f425 721 if (likely(list_empty(&lock->wait_list)))
9d659ae1 722 __mutex_clear_flag(lock, MUTEX_FLAGS);
3ca0ff57 723
ec83f425 724 debug_mutex_free_waiter(&waiter);
6053ee3b 725
ec83f425
DB
726skip_wait:
727 /* got the lock - cleanup and rejoice! */
c7e78cff 728 lock_acquired(&lock->dep_map, ip);
6053ee3b 729
a40ca565 730 if (use_ww_ctx)
4bd19084 731 ww_mutex_set_context_slowpath(ww, ww_ctx);
040a0a37 732
1fb00c6c 733 spin_unlock_mutex(&lock->wait_lock, flags);
41719b03 734 preempt_enable();
6053ee3b 735 return 0;
040a0a37
ML
736
737err:
d269a8b8
DB
738 __set_task_state(current, TASK_RUNNING);
739 mutex_remove_waiter(lock, &waiter, current);
040a0a37
ML
740 spin_unlock_mutex(&lock->wait_lock, flags);
741 debug_mutex_free_waiter(&waiter);
742 mutex_release(&lock->dep_map, 1, ip);
743 preempt_enable();
744 return ret;
6053ee3b
IM
745}
746
ef5d4707
IM
747#ifdef CONFIG_DEBUG_LOCK_ALLOC
748void __sched
749mutex_lock_nested(struct mutex *lock, unsigned int subclass)
750{
751 might_sleep();
040a0a37 752 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 753 subclass, NULL, _RET_IP_, NULL, 0);
ef5d4707
IM
754}
755
756EXPORT_SYMBOL_GPL(mutex_lock_nested);
d63a5a74 757
e4c70a66
PZ
758void __sched
759_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
760{
761 might_sleep();
040a0a37 762 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
b0267507 763 0, nest, _RET_IP_, NULL, 0);
e4c70a66 764}
e4c70a66
PZ
765EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
766
ad776537
LH
767int __sched
768mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
769{
770 might_sleep();
040a0a37 771 return __mutex_lock_common(lock, TASK_KILLABLE,
b0267507 772 subclass, NULL, _RET_IP_, NULL, 0);
ad776537
LH
773}
774EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
775
d63a5a74
N
776int __sched
777mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
778{
779 might_sleep();
0d66bf6d 780 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
b0267507 781 subclass, NULL, _RET_IP_, NULL, 0);
d63a5a74 782}
d63a5a74 783EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
040a0a37 784
23010027
DV
785static inline int
786ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
787{
788#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
789 unsigned tmp;
790
791 if (ctx->deadlock_inject_countdown-- == 0) {
792 tmp = ctx->deadlock_inject_interval;
793 if (tmp > UINT_MAX/4)
794 tmp = UINT_MAX;
795 else
796 tmp = tmp*2 + tmp + tmp/2;
797
798 ctx->deadlock_inject_interval = tmp;
799 ctx->deadlock_inject_countdown = tmp;
800 ctx->contending_lock = lock;
801
802 ww_mutex_unlock(lock);
803
804 return -EDEADLK;
805 }
806#endif
807
808 return 0;
809}
040a0a37
ML
810
811int __sched
812__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
813{
23010027
DV
814 int ret;
815
040a0a37 816 might_sleep();
23010027 817 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
b0267507 818 0, &ctx->dep_map, _RET_IP_, ctx, 1);
85f48961 819 if (!ret && ctx->acquired > 1)
23010027
DV
820 return ww_mutex_deadlock_injection(lock, ctx);
821
822 return ret;
040a0a37
ML
823}
824EXPORT_SYMBOL_GPL(__ww_mutex_lock);
825
826int __sched
827__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
828{
23010027
DV
829 int ret;
830
040a0a37 831 might_sleep();
23010027 832 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
b0267507 833 0, &ctx->dep_map, _RET_IP_, ctx, 1);
23010027 834
85f48961 835 if (!ret && ctx->acquired > 1)
23010027
DV
836 return ww_mutex_deadlock_injection(lock, ctx);
837
838 return ret;
040a0a37
ML
839}
840EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
841
ef5d4707
IM
842#endif
843
6053ee3b
IM
844/*
845 * Release the lock, slowpath:
846 */
3ca0ff57 847static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
6053ee3b 848{
9d659ae1 849 struct task_struct *next = NULL;
3ca0ff57 850 unsigned long owner, flags;
194a6b5b 851 DEFINE_WAKE_Q(wake_q);
6053ee3b 852
3ca0ff57
PZ
853 mutex_release(&lock->dep_map, 1, ip);
854
6053ee3b 855 /*
9d659ae1
PZ
856 * Release the lock before (potentially) taking the spinlock such that
857 * other contenders can get on with things ASAP.
858 *
859 * Except when HANDOFF, in that case we must not clear the owner field,
860 * but instead set it to the top waiter.
6053ee3b 861 */
9d659ae1
PZ
862 owner = atomic_long_read(&lock->owner);
863 for (;;) {
864 unsigned long old;
865
866#ifdef CONFIG_DEBUG_MUTEXES
867 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
868#endif
869
870 if (owner & MUTEX_FLAG_HANDOFF)
871 break;
872
873 old = atomic_long_cmpxchg_release(&lock->owner, owner,
874 __owner_flags(owner));
875 if (old == owner) {
876 if (owner & MUTEX_FLAG_WAITERS)
877 break;
878
879 return;
880 }
881
882 owner = old;
883 }
6053ee3b 884
1d8fe7dc 885 spin_lock_mutex(&lock->wait_lock, flags);
1d8fe7dc 886 debug_mutex_unlock(lock);
6053ee3b
IM
887 if (!list_empty(&lock->wait_list)) {
888 /* get the first entry from the wait-list: */
889 struct mutex_waiter *waiter =
9d659ae1
PZ
890 list_first_entry(&lock->wait_list,
891 struct mutex_waiter, list);
892
893 next = waiter->task;
6053ee3b
IM
894
895 debug_mutex_wake_waiter(lock, waiter);
9d659ae1 896 wake_q_add(&wake_q, next);
6053ee3b
IM
897 }
898
9d659ae1
PZ
899 if (owner & MUTEX_FLAG_HANDOFF)
900 __mutex_handoff(lock, next);
901
1fb00c6c 902 spin_unlock_mutex(&lock->wait_lock, flags);
9d659ae1 903
1329ce6f 904 wake_up_q(&wake_q);
6053ee3b
IM
905}
906
e4564f79 907#ifndef CONFIG_DEBUG_LOCK_ALLOC
6053ee3b
IM
908/*
909 * Here come the less common (and hence less performance-critical) APIs:
910 * mutex_lock_interruptible() and mutex_trylock().
911 */
7ad5b3a5 912static noinline int __sched
a41b56ef 913__mutex_lock_killable_slowpath(struct mutex *lock);
ad776537 914
7ad5b3a5 915static noinline int __sched
a41b56ef 916__mutex_lock_interruptible_slowpath(struct mutex *lock);
6053ee3b 917
ef5dc121
RD
918/**
919 * mutex_lock_interruptible - acquire the mutex, interruptible
6053ee3b
IM
920 * @lock: the mutex to be acquired
921 *
922 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
923 * been acquired or sleep until the mutex becomes available. If a
924 * signal arrives while waiting for the lock then this function
925 * returns -EINTR.
926 *
927 * This function is similar to (but not equivalent to) down_interruptible().
928 */
7ad5b3a5 929int __sched mutex_lock_interruptible(struct mutex *lock)
6053ee3b 930{
c544bdb1 931 might_sleep();
3ca0ff57
PZ
932
933 if (__mutex_trylock_fast(lock))
a41b56ef 934 return 0;
3ca0ff57
PZ
935
936 return __mutex_lock_interruptible_slowpath(lock);
6053ee3b
IM
937}
938
939EXPORT_SYMBOL(mutex_lock_interruptible);
940
7ad5b3a5 941int __sched mutex_lock_killable(struct mutex *lock)
ad776537
LH
942{
943 might_sleep();
3ca0ff57
PZ
944
945 if (__mutex_trylock_fast(lock))
a41b56ef 946 return 0;
3ca0ff57
PZ
947
948 return __mutex_lock_killable_slowpath(lock);
ad776537
LH
949}
950EXPORT_SYMBOL(mutex_lock_killable);
951
3ca0ff57
PZ
952static noinline void __sched
953__mutex_lock_slowpath(struct mutex *lock)
e4564f79 954{
040a0a37 955 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
b0267507 956 NULL, _RET_IP_, NULL, 0);
e4564f79
PZ
957}
958
7ad5b3a5 959static noinline int __sched
a41b56ef 960__mutex_lock_killable_slowpath(struct mutex *lock)
ad776537 961{
040a0a37 962 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
b0267507 963 NULL, _RET_IP_, NULL, 0);
ad776537
LH
964}
965
7ad5b3a5 966static noinline int __sched
a41b56ef 967__mutex_lock_interruptible_slowpath(struct mutex *lock)
6053ee3b 968{
040a0a37 969 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
b0267507 970 NULL, _RET_IP_, NULL, 0);
040a0a37
ML
971}
972
973static noinline int __sched
974__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
975{
976 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
b0267507 977 NULL, _RET_IP_, ctx, 1);
6053ee3b 978}
040a0a37
ML
979
980static noinline int __sched
981__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
982 struct ww_acquire_ctx *ctx)
983{
984 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
b0267507 985 NULL, _RET_IP_, ctx, 1);
040a0a37
ML
986}
987
e4564f79 988#endif
6053ee3b 989
ef5dc121
RD
990/**
991 * mutex_trylock - try to acquire the mutex, without waiting
6053ee3b
IM
992 * @lock: the mutex to be acquired
993 *
994 * Try to acquire the mutex atomically. Returns 1 if the mutex
995 * has been acquired successfully, and 0 on contention.
996 *
997 * NOTE: this function follows the spin_trylock() convention, so
ef5dc121 998 * it is negated from the down_trylock() return values! Be careful
6053ee3b
IM
999 * about this when converting semaphore users to mutexes.
1000 *
1001 * This function must not be used in interrupt context. The
1002 * mutex must be released by the same task that acquired it.
1003 */
7ad5b3a5 1004int __sched mutex_trylock(struct mutex *lock)
6053ee3b 1005{
9d659ae1 1006 bool locked = __mutex_trylock(lock, false);
0d66bf6d 1007
3ca0ff57
PZ
1008 if (locked)
1009 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
0d66bf6d 1010
3ca0ff57 1011 return locked;
6053ee3b 1012}
6053ee3b 1013EXPORT_SYMBOL(mutex_trylock);
a511e3f9 1014
040a0a37
ML
1015#ifndef CONFIG_DEBUG_LOCK_ALLOC
1016int __sched
1017__ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1018{
040a0a37
ML
1019 might_sleep();
1020
3ca0ff57 1021 if (__mutex_trylock_fast(&lock->base)) {
040a0a37 1022 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1023 return 0;
1024 }
1025
1026 return __ww_mutex_lock_slowpath(lock, ctx);
040a0a37
ML
1027}
1028EXPORT_SYMBOL(__ww_mutex_lock);
1029
1030int __sched
1031__ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1032{
040a0a37
ML
1033 might_sleep();
1034
3ca0ff57 1035 if (__mutex_trylock_fast(&lock->base)) {
040a0a37 1036 ww_mutex_set_context_fastpath(lock, ctx);
3ca0ff57
PZ
1037 return 0;
1038 }
1039
1040 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
040a0a37
ML
1041}
1042EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
1043
1044#endif
1045
a511e3f9
AM
1046/**
1047 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1048 * @cnt: the atomic which we are to dec
1049 * @lock: the mutex to return holding if we dec to 0
1050 *
1051 * return true and hold lock if we dec to 0, return false otherwise
1052 */
1053int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1054{
1055 /* dec if we can't possibly hit 0 */
1056 if (atomic_add_unless(cnt, -1, 1))
1057 return 0;
1058 /* we might hit 0, so take the lock */
1059 mutex_lock(lock);
1060 if (!atomic_dec_and_test(cnt)) {
1061 /* when we actually did the dec, we didn't hit 0 */
1062 mutex_unlock(lock);
1063 return 0;
1064 }
1065 /* we hit 0, and we hold the lock */
1066 return 1;
1067}
1068EXPORT_SYMBOL(atomic_dec_and_mutex_lock);