]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/locking/qspinlock_paravirt.h
locking/qspinlock: Merge 'struct __qspinlock' into 'struct qspinlock'
[mirror_ubuntu-hirsute-kernel.git] / kernel / locking / qspinlock_paravirt.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
a23db284
WL
2#ifndef _GEN_PV_LOCK_SLOWPATH
3#error "do not include this file"
4#endif
5
6#include <linux/hash.h>
7#include <linux/bootmem.h>
cba77f03 8#include <linux/debug_locks.h>
a23db284
WL
9
10/*
11 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
12 * of spinning them.
13 *
14 * This relies on the architecture to provide two paravirt hypercalls:
15 *
16 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
17 * pv_kick(cpu) -- wakes a suspended vcpu
18 *
19 * Using these we implement __pv_queued_spin_lock_slowpath() and
20 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
21 * native_queued_spin_unlock().
22 */
23
24#define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
25
cd0272fa
WL
26/*
27 * Queue Node Adaptive Spinning
28 *
29 * A queue node vCPU will stop spinning if the vCPU in the previous node is
30 * not running. The one lock stealing attempt allowed at slowpath entry
31 * mitigates the slight slowdown for non-overcommitted guest with this
32 * aggressive wait-early mechanism.
33 *
34 * The status of the previous node will be checked at fixed interval
35 * controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
36 * pound on the cacheline of the previous node too heavily.
37 */
38#define PV_PREV_CHECK_MASK 0xff
39
75d22702
WL
40/*
41 * Queue node uses: vcpu_running & vcpu_halted.
42 * Queue head uses: vcpu_running & vcpu_hashed.
43 */
a23db284
WL
44enum vcpu_state {
45 vcpu_running = 0,
75d22702
WL
46 vcpu_halted, /* Used only in pv_wait_node */
47 vcpu_hashed, /* = pv_hash'ed + vcpu_halted */
a23db284
WL
48};
49
50struct pv_node {
51 struct mcs_spinlock mcs;
52 struct mcs_spinlock __res[3];
53
54 int cpu;
55 u8 state;
56};
57
eaff0e70
WL
58/*
59 * Include queued spinlock statistics code
60 */
61#include "qspinlock_stat.h"
62
1c4941fd 63/*
11752adb
WL
64 * Hybrid PV queued/unfair lock
65 *
1c4941fd
WL
66 * By replacing the regular queued_spin_trylock() with the function below,
67 * it will be called once when a lock waiter enter the PV slowpath before
11752adb
WL
68 * being queued.
69 *
70 * The pending bit is set by the queue head vCPU of the MCS wait queue in
71 * pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
72 * When that bit becomes visible to the incoming waiters, no lock stealing
73 * is allowed. The function will return immediately to make the waiters
74 * enter the MCS wait queue. So lock starvation shouldn't happen as long
75 * as the queued mode vCPUs are actively running to set the pending bit
76 * and hence disabling lock stealing.
77 *
78 * When the pending bit isn't set, the lock waiters will stay in the unfair
79 * mode spinning on the lock unless the MCS wait queue is empty. In this
80 * case, the lock waiters will enter the queued mode slowpath trying to
81 * become the queue head and set the pending bit.
82 *
83 * This hybrid PV queued/unfair lock combines the best attributes of a
84 * queued lock (no lock starvation) and an unfair lock (good performance
85 * on not heavily contended locks).
1c4941fd 86 */
11752adb
WL
87#define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l)
88static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
1c4941fd 89{
11752adb
WL
90 /*
91 * Stay in unfair lock mode as long as queued mode waiters are
92 * present in the MCS wait queue but the pending bit isn't set.
93 */
94 for (;;) {
95 int val = atomic_read(&lock->val);
96
97 if (!(val & _Q_LOCKED_PENDING_MASK) &&
625e88be 98 (cmpxchg_acquire(&lock->locked, 0, _Q_LOCKED_VAL) == 0)) {
11752adb
WL
99 qstat_inc(qstat_pv_lock_stealing, true);
100 return true;
101 }
102 if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
103 break;
104
105 cpu_relax();
64a5e3cb
PZ
106 }
107
108 return false;
1c4941fd
WL
109}
110
111/*
112 * The pending bit is used by the queue head vCPU to indicate that it
113 * is actively spinning on the lock and no lock stealing is allowed.
114 */
115#if _Q_PENDING_BITS == 8
116static __always_inline void set_pending(struct qspinlock *lock)
117{
625e88be 118 WRITE_ONCE(lock->pending, 1);
1c4941fd
WL
119}
120
121static __always_inline void clear_pending(struct qspinlock *lock)
122{
625e88be 123 WRITE_ONCE(lock->pending, 0);
1c4941fd
WL
124}
125
126/*
127 * The pending bit check in pv_queued_spin_steal_lock() isn't a memory
34d54f3d
WL
128 * barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
129 * lock just to be sure that it will get it.
1c4941fd
WL
130 */
131static __always_inline int trylock_clear_pending(struct qspinlock *lock)
132{
625e88be
WD
133 return !READ_ONCE(lock->locked) &&
134 (cmpxchg_acquire(&lock->locked_pending, _Q_PENDING_VAL,
34d54f3d 135 _Q_LOCKED_VAL) == _Q_PENDING_VAL);
1c4941fd
WL
136}
137#else /* _Q_PENDING_BITS == 8 */
138static __always_inline void set_pending(struct qspinlock *lock)
139{
e37837fb 140 atomic_or(_Q_PENDING_VAL, &lock->val);
1c4941fd
WL
141}
142
143static __always_inline void clear_pending(struct qspinlock *lock)
144{
e37837fb 145 atomic_andnot(_Q_PENDING_VAL, &lock->val);
1c4941fd
WL
146}
147
148static __always_inline int trylock_clear_pending(struct qspinlock *lock)
149{
150 int val = atomic_read(&lock->val);
151
152 for (;;) {
153 int old, new;
154
155 if (val & _Q_LOCKED_MASK)
156 break;
157
158 /*
159 * Try to clear pending bit & set locked bit
160 */
161 old = val;
162 new = (val & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
34d54f3d 163 val = atomic_cmpxchg_acquire(&lock->val, old, new);
1c4941fd
WL
164
165 if (val == old)
166 return 1;
167 }
168 return 0;
169}
170#endif /* _Q_PENDING_BITS == 8 */
171
a23db284
WL
172/*
173 * Lock and MCS node addresses hash table for fast lookup
174 *
175 * Hashing is done on a per-cacheline basis to minimize the need to access
176 * more than one cacheline.
177 *
178 * Dynamically allocate a hash table big enough to hold at least 4X the
179 * number of possible cpus in the system. Allocation is done on page
180 * granularity. So the minimum number of hash buckets should be at least
181 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
182 *
183 * Since we should not be holding locks from NMI context (very rare indeed) the
184 * max load factor is 0.75, which is around the point where open addressing
185 * breaks down.
186 *
187 */
188struct pv_hash_entry {
189 struct qspinlock *lock;
190 struct pv_node *node;
191};
192
193#define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
194#define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
195
196static struct pv_hash_entry *pv_lock_hash;
197static unsigned int pv_lock_hash_bits __read_mostly;
198
199/*
200 * Allocate memory for the PV qspinlock hash buckets
201 *
202 * This function should be called from the paravirt spinlock initialization
203 * routine.
204 */
205void __init __pv_init_lock_hash(void)
206{
207 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
208
209 if (pv_hash_size < PV_HE_MIN)
210 pv_hash_size = PV_HE_MIN;
211
212 /*
213 * Allocate space from bootmem which should be page-size aligned
214 * and hence cacheline aligned.
215 */
216 pv_lock_hash = alloc_large_system_hash("PV qspinlock",
217 sizeof(struct pv_hash_entry),
3d375d78
PT
218 pv_hash_size, 0,
219 HASH_EARLY | HASH_ZERO,
a23db284
WL
220 &pv_lock_hash_bits, NULL,
221 pv_hash_size, pv_hash_size);
222}
223
224#define for_each_hash_entry(he, offset, hash) \
225 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
226 offset < (1 << pv_lock_hash_bits); \
227 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
228
229static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
230{
231 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
232 struct pv_hash_entry *he;
45e898b7 233 int hopcnt = 0;
a23db284
WL
234
235 for_each_hash_entry(he, offset, hash) {
45e898b7 236 hopcnt++;
a23db284
WL
237 if (!cmpxchg(&he->lock, NULL, lock)) {
238 WRITE_ONCE(he->node, node);
45e898b7 239 qstat_hop(hopcnt);
a23db284
WL
240 return &he->lock;
241 }
242 }
243 /*
244 * Hard assume there is a free entry for us.
245 *
246 * This is guaranteed by ensuring every blocked lock only ever consumes
247 * a single entry, and since we only have 4 nesting levels per CPU
248 * and allocated 4*nr_possible_cpus(), this must be so.
249 *
250 * The single entry is guaranteed by having the lock owner unhash
251 * before it releases.
252 */
253 BUG();
254}
255
256static struct pv_node *pv_unhash(struct qspinlock *lock)
257{
258 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
259 struct pv_hash_entry *he;
260 struct pv_node *node;
261
262 for_each_hash_entry(he, offset, hash) {
263 if (READ_ONCE(he->lock) == lock) {
264 node = READ_ONCE(he->node);
265 WRITE_ONCE(he->lock, NULL);
266 return node;
267 }
268 }
269 /*
270 * Hard assume we'll find an entry.
271 *
272 * This guarantees a limited lookup time and is itself guaranteed by
273 * having the lock owner do the unhash -- IFF the unlock sees the
274 * SLOW flag, there MUST be a hash entry.
275 */
276 BUG();
277}
278
cd0272fa
WL
279/*
280 * Return true if when it is time to check the previous node which is not
281 * in a running state.
282 */
283static inline bool
284pv_wait_early(struct pv_node *prev, int loop)
285{
cd0272fa
WL
286 if ((loop & PV_PREV_CHECK_MASK) != 0)
287 return false;
288
75437bb3 289 return READ_ONCE(prev->state) != vcpu_running || vcpu_is_preempted(prev->cpu);
cd0272fa
WL
290}
291
a23db284
WL
292/*
293 * Initialize the PV part of the mcs_spinlock node.
294 */
295static void pv_init_node(struct mcs_spinlock *node)
296{
297 struct pv_node *pn = (struct pv_node *)node;
298
299 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
300
301 pn->cpu = smp_processor_id();
302 pn->state = vcpu_running;
303}
304
305/*
306 * Wait for node->locked to become true, halt the vcpu after a short spin.
75d22702
WL
307 * pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
308 * behalf.
a23db284 309 */
cd0272fa 310static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
a23db284
WL
311{
312 struct pv_node *pn = (struct pv_node *)node;
cd0272fa 313 struct pv_node *pp = (struct pv_node *)prev;
a23db284 314 int loop;
cd0272fa 315 bool wait_early;
a23db284 316
08be8f63 317 for (;;) {
cd0272fa 318 for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
a23db284
WL
319 if (READ_ONCE(node->locked))
320 return;
cd0272fa
WL
321 if (pv_wait_early(pp, loop)) {
322 wait_early = true;
323 break;
324 }
a23db284
WL
325 cpu_relax();
326 }
327
328 /*
329 * Order pn->state vs pn->locked thusly:
330 *
331 * [S] pn->state = vcpu_halted [S] next->locked = 1
332 * MB MB
75d22702 333 * [L] pn->locked [RmW] pn->state = vcpu_hashed
a23db284 334 *
75d22702 335 * Matches the cmpxchg() from pv_kick_node().
a23db284 336 */
b92b8b35 337 smp_store_mb(pn->state, vcpu_halted);
a23db284 338
45e898b7
WL
339 if (!READ_ONCE(node->locked)) {
340 qstat_inc(qstat_pv_wait_node, true);
cd0272fa 341 qstat_inc(qstat_pv_wait_early, wait_early);
a23db284 342 pv_wait(&pn->state, vcpu_halted);
45e898b7 343 }
a23db284
WL
344
345 /*
45e898b7 346 * If pv_kick_node() changed us to vcpu_hashed, retain that
1c4941fd
WL
347 * value so that pv_wait_head_or_lock() knows to not also try
348 * to hash this lock.
a23db284 349 */
75d22702 350 cmpxchg(&pn->state, vcpu_halted, vcpu_running);
a23db284
WL
351
352 /*
353 * If the locked flag is still not set after wakeup, it is a
354 * spurious wakeup and the vCPU should wait again. However,
355 * there is a pretty high overhead for CPU halting and kicking.
356 * So it is better to spin for a while in the hope that the
357 * MCS lock will be released soon.
358 */
45e898b7 359 qstat_inc(qstat_pv_spurious_wakeup, !READ_ONCE(node->locked));
a23db284 360 }
75d22702 361
a23db284
WL
362 /*
363 * By now our node->locked should be 1 and our caller will not actually
364 * spin-wait for it. We do however rely on our caller to do a
365 * load-acquire for us.
366 */
367}
368
369/*
75d22702
WL
370 * Called after setting next->locked = 1 when we're the lock owner.
371 *
1c4941fd
WL
372 * Instead of waking the waiters stuck in pv_wait_node() advance their state
373 * such that they're waiting in pv_wait_head_or_lock(), this avoids a
374 * wake/sleep cycle.
a23db284 375 */
75d22702 376static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
a23db284
WL
377{
378 struct pv_node *pn = (struct pv_node *)node;
379
380 /*
75d22702
WL
381 * If the vCPU is indeed halted, advance its state to match that of
382 * pv_wait_node(). If OTOH this fails, the vCPU was running and will
383 * observe its next->locked value and advance itself.
a23db284 384 *
75d22702 385 * Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
34d54f3d
WL
386 *
387 * The write to next->locked in arch_mcs_spin_unlock_contended()
388 * must be ordered before the read of pn->state in the cmpxchg()
389 * below for the code to work correctly. To guarantee full ordering
390 * irrespective of the success or failure of the cmpxchg(),
391 * a relaxed version with explicit barrier is used. The control
392 * dependency will order the reading of pn->state before any
393 * subsequent writes.
75d22702 394 */
34d54f3d
WL
395 smp_mb__before_atomic();
396 if (cmpxchg_relaxed(&pn->state, vcpu_halted, vcpu_hashed)
397 != vcpu_halted)
75d22702
WL
398 return;
399
400 /*
401 * Put the lock into the hash table and set the _Q_SLOW_VAL.
a23db284 402 *
75d22702
WL
403 * As this is the same vCPU that will check the _Q_SLOW_VAL value and
404 * the hash table later on at unlock time, no atomic instruction is
405 * needed.
a23db284 406 */
625e88be 407 WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
75d22702 408 (void)pv_hash(lock, pn);
a23db284
WL
409}
410
411/*
1c4941fd
WL
412 * Wait for l->locked to become clear and acquire the lock;
413 * halt the vcpu after a short spin.
a23db284 414 * __pv_queued_spin_unlock() will wake us.
1c4941fd
WL
415 *
416 * The current value of the lock will be returned for additional processing.
a23db284 417 */
1c4941fd
WL
418static u32
419pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
a23db284
WL
420{
421 struct pv_node *pn = (struct pv_node *)node;
a23db284 422 struct qspinlock **lp = NULL;
45e898b7 423 int waitcnt = 0;
a23db284
WL
424 int loop;
425
75d22702
WL
426 /*
427 * If pv_kick_node() already advanced our state, we don't need to
428 * insert ourselves into the hash table anymore.
429 */
430 if (READ_ONCE(pn->state) == vcpu_hashed)
431 lp = (struct qspinlock **)1;
432
32d62510
WL
433 /*
434 * Tracking # of slowpath locking operations
435 */
436 qstat_inc(qstat_pv_lock_slowpath, true);
437
45e898b7 438 for (;; waitcnt++) {
cd0272fa
WL
439 /*
440 * Set correct vCPU state to be used by queue node wait-early
441 * mechanism.
442 */
443 WRITE_ONCE(pn->state, vcpu_running);
444
1c4941fd
WL
445 /*
446 * Set the pending bit in the active lock spinning loop to
447 * disable lock stealing before attempting to acquire the lock.
448 */
449 set_pending(lock);
a23db284 450 for (loop = SPIN_THRESHOLD; loop; loop--) {
1c4941fd
WL
451 if (trylock_clear_pending(lock))
452 goto gotlock;
a23db284
WL
453 cpu_relax();
454 }
1c4941fd
WL
455 clear_pending(lock);
456
a23db284 457
a23db284
WL
458 if (!lp) { /* ONCE */
459 lp = pv_hash(lock, pn);
75d22702 460
a23db284 461 /*
3b3fdf10
WD
462 * We must hash before setting _Q_SLOW_VAL, such that
463 * when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
464 * we'll be sure to be able to observe our hash entry.
a23db284 465 *
3b3fdf10
WD
466 * [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL
467 * MB RMB
468 * [RmW] l->locked = _Q_SLOW_VAL [L] <unhash>
a23db284 469 *
3b3fdf10 470 * Matches the smp_rmb() in __pv_queued_spin_unlock().
a23db284 471 */
625e88be 472 if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
a23db284 473 /*
1c4941fd
WL
474 * The lock was free and now we own the lock.
475 * Change the lock value back to _Q_LOCKED_VAL
476 * and unhash the table.
a23db284 477 */
625e88be 478 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
a23db284 479 WRITE_ONCE(*lp, NULL);
1c4941fd 480 goto gotlock;
a23db284
WL
481 }
482 }
229ce631 483 WRITE_ONCE(pn->state, vcpu_hashed);
45e898b7
WL
484 qstat_inc(qstat_pv_wait_head, true);
485 qstat_inc(qstat_pv_wait_again, waitcnt);
625e88be 486 pv_wait(&lock->locked, _Q_SLOW_VAL);
a23db284
WL
487
488 /*
08be8f63
WL
489 * Because of lock stealing, the queue head vCPU may not be
490 * able to acquire the lock before it has to wait again.
a23db284
WL
491 */
492 }
493
494 /*
1c4941fd
WL
495 * The cmpxchg() or xchg() call before coming here provides the
496 * acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
497 * here is to indicate to the compiler that the value will always
498 * be nozero to enable better code optimization.
a23db284 499 */
1c4941fd
WL
500gotlock:
501 return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
a23db284
WL
502}
503
504/*
d7804530
WL
505 * PV versions of the unlock fastpath and slowpath functions to be used
506 * instead of queued_spin_unlock().
a23db284 507 */
d7804530
WL
508__visible void
509__pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
a23db284 510{
a23db284 511 struct pv_node *node;
a23db284 512
0b792bf5
PZ
513 if (unlikely(locked != _Q_SLOW_VAL)) {
514 WARN(!debug_locks_silent,
515 "pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
516 (unsigned long)lock, atomic_read(&lock->val));
cba77f03
WL
517 return;
518 }
519
3b3fdf10
WD
520 /*
521 * A failed cmpxchg doesn't provide any memory-ordering guarantees,
522 * so we need a barrier to order the read of the node data in
523 * pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
524 *
1c4941fd 525 * Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
3b3fdf10
WD
526 */
527 smp_rmb();
528
a23db284
WL
529 /*
530 * Since the above failed to release, this must be the SLOW path.
531 * Therefore start by looking up the blocked node and unhashing it.
532 */
533 node = pv_unhash(lock);
534
535 /*
536 * Now that we have a reference to the (likely) blocked pv_node,
537 * release the lock.
538 */
625e88be 539 smp_store_release(&lock->locked, 0);
a23db284
WL
540
541 /*
542 * At this point the memory pointed at by lock can be freed/reused,
543 * however we can still use the pv_node to kick the CPU.
75d22702
WL
544 * The other vCPU may not really be halted, but kicking an active
545 * vCPU is harmless other than the additional latency in completing
546 * the unlock.
a23db284 547 */
45e898b7 548 qstat_inc(qstat_pv_kick_unlock, true);
93edc8bd 549 pv_kick(node->cpu);
a23db284 550}
d7804530 551
a23db284
WL
552/*
553 * Include the architecture specific callee-save thunk of the
554 * __pv_queued_spin_unlock(). This thunk is put together with
d7804530
WL
555 * __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
556 * function close to each other sharing consecutive instruction cachelines.
557 * Alternatively, architecture specific version of __pv_queued_spin_unlock()
558 * can be defined.
a23db284
WL
559 */
560#include <asm/qspinlock_paravirt.h>
561
d7804530
WL
562#ifndef __pv_queued_spin_unlock
563__visible void __pv_queued_spin_unlock(struct qspinlock *lock)
564{
d7804530
WL
565 u8 locked;
566
567 /*
568 * We must not unlock if SLOW, because in that case we must first
569 * unhash. Otherwise it would be possible to have multiple @lock
570 * entries, which would be BAD.
571 */
625e88be 572 locked = cmpxchg_release(&lock->locked, _Q_LOCKED_VAL, 0);
d7804530
WL
573 if (likely(locked == _Q_LOCKED_VAL))
574 return;
575
576 __pv_queued_spin_unlock_slowpath(lock, locked);
577}
578#endif /* __pv_queued_spin_unlock */