]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/locking/rtmutex.c
locking/rtmutex: Decrapify __rt_mutex_init()
[mirror_ubuntu-jammy-kernel.git] / kernel / locking / rtmutex.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
23f78d4a
IM
2/*
3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4 *
5 * started by Ingo Molnar and Thomas Gleixner.
6 *
7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10 * Copyright (C) 2006 Esben Nielsen
d07fe82c 11 *
387b1468 12 * See Documentation/locking/rt-mutex-design.rst for details.
23f78d4a
IM
13 */
14#include <linux/spinlock.h>
9984de1a 15#include <linux/export.h>
174cd4b1 16#include <linux/sched/signal.h>
8bd75c77 17#include <linux/sched/rt.h>
fb00aca4 18#include <linux/sched/deadline.h>
84f001e1 19#include <linux/sched/wake_q.h>
b17b0153 20#include <linux/sched/debug.h>
23f78d4a
IM
21#include <linux/timer.h>
22
23#include "rtmutex_common.h"
24
23f78d4a
IM
25/*
26 * lock->owner state tracking:
27 *
8161239a
LJ
28 * lock->owner holds the task_struct pointer of the owner. Bit 0
29 * is used to keep track of the "lock has waiters" state.
23f78d4a 30 *
8161239a
LJ
31 * owner bit0
32 * NULL 0 lock is free (fast acquire possible)
33 * NULL 1 lock is free and has waiters and the top waiter
34 * is going to take the lock*
35 * taskpointer 0 lock is held (fast release possible)
36 * taskpointer 1 lock is held and has waiters**
23f78d4a
IM
37 *
38 * The fast atomic compare exchange based acquire and release is only
8161239a
LJ
39 * possible when bit 0 of lock->owner is 0.
40 *
41 * (*) It also can be a transitional state when grabbing the lock
42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43 * we need to set the bit0 before looking at the lock, and the owner may be
44 * NULL in this small time, hence this can be a transitional state.
23f78d4a 45 *
8161239a
LJ
46 * (**) There is a small time when bit 0 is set but there are no
47 * waiters. This can happen when grabbing the lock in the slow path.
48 * To prevent a cmpxchg of the owner releasing the lock, we need to
49 * set this bit before looking at the lock.
23f78d4a
IM
50 */
51
bd197234 52static void
8161239a 53rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
23f78d4a 54{
8161239a 55 unsigned long val = (unsigned long)owner;
23f78d4a
IM
56
57 if (rt_mutex_has_waiters(lock))
58 val |= RT_MUTEX_HAS_WAITERS;
59
0050c7b2 60 WRITE_ONCE(lock->owner, (struct task_struct *)val);
23f78d4a
IM
61}
62
63static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64{
65 lock->owner = (struct task_struct *)
66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67}
68
69static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70{
dbb26055
TG
71 unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73 if (rt_mutex_has_waiters(lock))
74 return;
75
76 /*
77 * The rbtree has no waiters enqueued, now make sure that the
78 * lock->owner still has the waiters bit set, otherwise the
79 * following can happen:
80 *
81 * CPU 0 CPU 1 CPU2
82 * l->owner=T1
83 * rt_mutex_lock(l)
84 * lock(l->lock)
85 * l->owner = T1 | HAS_WAITERS;
86 * enqueue(T2)
87 * boost()
88 * unlock(l->lock)
89 * block()
90 *
91 * rt_mutex_lock(l)
92 * lock(l->lock)
93 * l->owner = T1 | HAS_WAITERS;
94 * enqueue(T3)
95 * boost()
96 * unlock(l->lock)
97 * block()
98 * signal(->T2) signal(->T3)
99 * lock(l->lock)
100 * dequeue(T2)
101 * deboost()
102 * unlock(l->lock)
103 * lock(l->lock)
104 * dequeue(T3)
105 * ==> wait list is empty
106 * deboost()
107 * unlock(l->lock)
108 * lock(l->lock)
109 * fixup_rt_mutex_waiters()
110 * if (wait_list_empty(l) {
111 * l->owner = owner
112 * owner = l->owner & ~HAS_WAITERS;
113 * ==> l->owner = T1
114 * }
115 * lock(l->lock)
116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters()
117 * if (wait_list_empty(l) {
118 * owner = l->owner & ~HAS_WAITERS;
119 * cmpxchg(l->owner, T1, NULL)
120 * ===> Success (l->owner = NULL)
121 *
122 * l->owner = owner
123 * ==> l->owner = T1
124 * }
125 *
126 * With the check for the waiter bit in place T3 on CPU2 will not
127 * overwrite. All tasks fiddling with the waiters bit are
128 * serialized by l->lock, so nothing else can modify the waiters
129 * bit. If the bit is set then nothing can change l->owner either
130 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 * happens in the middle of the RMW because the waiters bit is
132 * still set.
133 */
134 owner = READ_ONCE(*p);
135 if (owner & RT_MUTEX_HAS_WAITERS)
136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
23f78d4a
IM
137}
138
bd197234 139/*
cede8841
SAS
140 * We can speed up the acquire/release, if there's no debugging state to be
141 * set up.
bd197234 142 */
cede8841 143#ifndef CONFIG_DEBUG_RT_MUTEXES
700318d1
DB
144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147/*
148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150 * relaxed semantics suffice.
151 */
bd197234
TG
152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153{
154 unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156 do {
157 owner = *p;
700318d1
DB
158 } while (cmpxchg_relaxed(p, owner,
159 owner | RT_MUTEX_HAS_WAITERS) != owner);
bd197234 160}
27e35715
TG
161
162/*
163 * Safe fastpath aware unlock:
164 * 1) Clear the waiters bit
165 * 2) Drop lock->wait_lock
166 * 3) Try to unlock the lock with cmpxchg
167 */
b4abf910
TG
168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 unsigned long flags)
27e35715
TG
170 __releases(lock->wait_lock)
171{
172 struct task_struct *owner = rt_mutex_owner(lock);
173
174 clear_rt_mutex_waiters(lock);
b4abf910 175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
27e35715
TG
176 /*
177 * If a new waiter comes in between the unlock and the cmpxchg
178 * we have two situations:
179 *
180 * unlock(wait_lock);
181 * lock(wait_lock);
182 * cmpxchg(p, owner, 0) == owner
183 * mark_rt_mutex_waiters(lock);
184 * acquire(lock);
185 * or:
186 *
187 * unlock(wait_lock);
188 * lock(wait_lock);
189 * mark_rt_mutex_waiters(lock);
190 *
191 * cmpxchg(p, owner, 0) != owner
192 * enqueue_waiter();
193 * unlock(wait_lock);
194 * lock(wait_lock);
195 * wake waiter();
196 * unlock(wait_lock);
197 * lock(wait_lock);
198 * acquire(lock);
199 */
700318d1 200 return rt_mutex_cmpxchg_release(lock, owner, NULL);
27e35715
TG
201}
202
bd197234 203#else
700318d1
DB
204# define rt_mutex_cmpxchg_acquire(l,c,n) (0)
205# define rt_mutex_cmpxchg_release(l,c,n) (0)
206
bd197234
TG
207static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208{
209 lock->owner = (struct task_struct *)
210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211}
27e35715
TG
212
213/*
214 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215 */
b4abf910
TG
216static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 unsigned long flags)
27e35715
TG
218 __releases(lock->wait_lock)
219{
220 lock->owner = NULL;
b4abf910 221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
27e35715
TG
222 return true;
223}
bd197234
TG
224#endif
225
19830e55
PZ
226/*
227 * Only use with rt_mutex_waiter_{less,equal}()
228 */
229#define task_to_waiter(p) \
230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
fb00aca4
PZ
232static inline int
233rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 struct rt_mutex_waiter *right)
235{
2d3d891d 236 if (left->prio < right->prio)
fb00aca4
PZ
237 return 1;
238
239 /*
2d3d891d
DF
240 * If both waiters have dl_prio(), we check the deadlines of the
241 * associated tasks.
242 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 * then right waiter has a dl_prio() too.
fb00aca4 244 */
2d3d891d 245 if (dl_prio(left->prio))
e0aad5b4 246 return dl_time_before(left->deadline, right->deadline);
fb00aca4
PZ
247
248 return 0;
249}
250
19830e55
PZ
251static inline int
252rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 struct rt_mutex_waiter *right)
254{
255 if (left->prio != right->prio)
256 return 0;
257
258 /*
259 * If both waiters have dl_prio(), we check the deadlines of the
260 * associated tasks.
261 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 * then right waiter has a dl_prio() too.
263 */
264 if (dl_prio(left->prio))
265 return left->deadline == right->deadline;
266
267 return 1;
268}
269
5a798725
PZ
270#define __node_2_waiter(node) \
271 rb_entry((node), struct rt_mutex_waiter, tree_entry)
272
273static inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
274{
275 return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
276}
277
fb00aca4
PZ
278static void
279rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
280{
5a798725 281 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
fb00aca4
PZ
282}
283
284static void
285rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
286{
287 if (RB_EMPTY_NODE(&waiter->tree_entry))
288 return;
289
a23ba907 290 rb_erase_cached(&waiter->tree_entry, &lock->waiters);
fb00aca4
PZ
291 RB_CLEAR_NODE(&waiter->tree_entry);
292}
293
5a798725
PZ
294#define __node_2_pi_waiter(node) \
295 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
296
297static inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
298{
299 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
300}
301
fb00aca4
PZ
302static void
303rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
304{
5a798725 305 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
fb00aca4
PZ
306}
307
308static void
309rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
310{
311 if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
312 return;
313
a23ba907 314 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
fb00aca4
PZ
315 RB_CLEAR_NODE(&waiter->pi_tree_entry);
316}
317
acd58620 318static void rt_mutex_adjust_prio(struct task_struct *p)
c365c292 319{
acd58620 320 struct task_struct *pi_task = NULL;
e96a7705 321
acd58620 322 lockdep_assert_held(&p->pi_lock);
c365c292 323
acd58620
PZ
324 if (task_has_pi_waiters(p))
325 pi_task = task_top_pi_waiter(p)->task;
c365c292 326
acd58620 327 rt_mutex_setprio(p, pi_task);
23f78d4a
IM
328}
329
8930ed80
TG
330/*
331 * Deadlock detection is conditional:
332 *
333 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
334 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
335 *
336 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
337 * conducted independent of the detect argument.
338 *
339 * If the waiter argument is NULL this indicates the deboost path and
340 * deadlock detection is disabled independent of the detect argument
341 * and the config settings.
342 */
343static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344 enum rtmutex_chainwalk chwalk)
345{
f7efc479
TG
346 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEX))
347 return waiter != NULL;
348 return chwalk == RT_MUTEX_FULL_CHAINWALK;
8930ed80
TG
349}
350
23f78d4a
IM
351/*
352 * Max number of times we'll walk the boosting chain:
353 */
354int max_lock_depth = 1024;
355
82084984
TG
356static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
357{
358 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
359}
360
23f78d4a
IM
361/*
362 * Adjust the priority chain. Also used for deadlock detection.
363 * Decreases task's usage by one - may thus free the task.
0c106173 364 *
82084984
TG
365 * @task: the task owning the mutex (owner) for which a chain walk is
366 * probably needed
e6beaa36 367 * @chwalk: do we have to carry out deadlock detection?
82084984
TG
368 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck
369 * things for a task that has just got its priority adjusted, and
370 * is waiting on a mutex)
371 * @next_lock: the mutex on which the owner of @orig_lock was blocked before
372 * we dropped its pi_lock. Is never dereferenced, only used for
373 * comparison to detect lock chain changes.
0c106173 374 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
82084984
TG
375 * its priority to the mutex owner (can be NULL in the case
376 * depicted above or if the top waiter is gone away and we are
377 * actually deboosting the owner)
378 * @top_task: the current top waiter
0c106173 379 *
23f78d4a 380 * Returns 0 or -EDEADLK.
3eb65aea
TG
381 *
382 * Chain walk basics and protection scope
383 *
384 * [R] refcount on task
385 * [P] task->pi_lock held
386 * [L] rtmutex->wait_lock held
387 *
388 * Step Description Protected by
389 * function arguments:
390 * @task [R]
391 * @orig_lock if != NULL @top_task is blocked on it
392 * @next_lock Unprotected. Cannot be
393 * dereferenced. Only used for
394 * comparison.
395 * @orig_waiter if != NULL @top_task is blocked on it
396 * @top_task current, or in case of proxy
397 * locking protected by calling
398 * code
399 * again:
400 * loop_sanity_check();
401 * retry:
402 * [1] lock(task->pi_lock); [R] acquire [P]
403 * [2] waiter = task->pi_blocked_on; [P]
404 * [3] check_exit_conditions_1(); [P]
405 * [4] lock = waiter->lock; [P]
406 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
407 * unlock(task->pi_lock); release [P]
408 * goto retry;
409 * }
410 * [6] check_exit_conditions_2(); [P] + [L]
411 * [7] requeue_lock_waiter(lock, waiter); [P] + [L]
412 * [8] unlock(task->pi_lock); release [P]
413 * put_task_struct(task); release [R]
414 * [9] check_exit_conditions_3(); [L]
415 * [10] task = owner(lock); [L]
416 * get_task_struct(task); [L] acquire [R]
417 * lock(task->pi_lock); [L] acquire [P]
418 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
419 * [12] check_exit_conditions_4(); [P] + [L]
420 * [13] unlock(task->pi_lock); release [P]
421 * unlock(lock->wait_lock); release [L]
422 * goto again;
23f78d4a 423 */
bd197234 424static int rt_mutex_adjust_prio_chain(struct task_struct *task,
8930ed80 425 enum rtmutex_chainwalk chwalk,
bd197234 426 struct rt_mutex *orig_lock,
82084984 427 struct rt_mutex *next_lock,
bd197234
TG
428 struct rt_mutex_waiter *orig_waiter,
429 struct task_struct *top_task)
23f78d4a 430{
23f78d4a 431 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
a57594a1 432 struct rt_mutex_waiter *prerequeue_top_waiter;
8930ed80 433 int ret = 0, depth = 0;
a57594a1 434 struct rt_mutex *lock;
8930ed80 435 bool detect_deadlock;
67792e2c 436 bool requeue = true;
23f78d4a 437
8930ed80 438 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
23f78d4a
IM
439
440 /*
441 * The (de)boosting is a step by step approach with a lot of
442 * pitfalls. We want this to be preemptible and we want hold a
443 * maximum of two locks per step. So we have to check
444 * carefully whether things change under us.
445 */
446 again:
3eb65aea
TG
447 /*
448 * We limit the lock chain length for each invocation.
449 */
23f78d4a
IM
450 if (++depth > max_lock_depth) {
451 static int prev_max;
452
453 /*
454 * Print this only once. If the admin changes the limit,
455 * print a new message when reaching the limit again.
456 */
457 if (prev_max != max_lock_depth) {
458 prev_max = max_lock_depth;
459 printk(KERN_WARNING "Maximum lock depth %d reached "
460 "task: %s (%d)\n", max_lock_depth,
ba25f9dc 461 top_task->comm, task_pid_nr(top_task));
23f78d4a
IM
462 }
463 put_task_struct(task);
464
3d5c9340 465 return -EDEADLK;
23f78d4a 466 }
3eb65aea
TG
467
468 /*
469 * We are fully preemptible here and only hold the refcount on
470 * @task. So everything can have changed under us since the
471 * caller or our own code below (goto retry/again) dropped all
472 * locks.
473 */
23f78d4a
IM
474 retry:
475 /*
3eb65aea 476 * [1] Task cannot go away as we did a get_task() before !
23f78d4a 477 */
b4abf910 478 raw_spin_lock_irq(&task->pi_lock);
23f78d4a 479
3eb65aea
TG
480 /*
481 * [2] Get the waiter on which @task is blocked on.
482 */
23f78d4a 483 waiter = task->pi_blocked_on;
3eb65aea
TG
484
485 /*
486 * [3] check_exit_conditions_1() protected by task->pi_lock.
487 */
488
23f78d4a
IM
489 /*
490 * Check whether the end of the boosting chain has been
491 * reached or the state of the chain has changed while we
492 * dropped the locks.
493 */
8161239a 494 if (!waiter)
23f78d4a
IM
495 goto out_unlock_pi;
496
1a539a87
TG
497 /*
498 * Check the orig_waiter state. After we dropped the locks,
8161239a 499 * the previous owner of the lock might have released the lock.
1a539a87 500 */
8161239a 501 if (orig_waiter && !rt_mutex_owner(orig_lock))
1a539a87
TG
502 goto out_unlock_pi;
503
82084984
TG
504 /*
505 * We dropped all locks after taking a refcount on @task, so
506 * the task might have moved on in the lock chain or even left
507 * the chain completely and blocks now on an unrelated lock or
508 * on @orig_lock.
509 *
510 * We stored the lock on which @task was blocked in @next_lock,
511 * so we can detect the chain change.
512 */
513 if (next_lock != waiter->lock)
514 goto out_unlock_pi;
515
1a539a87
TG
516 /*
517 * Drop out, when the task has no waiters. Note,
518 * top_waiter can be NULL, when we are in the deboosting
519 * mode!
520 */
397335f0
TG
521 if (top_waiter) {
522 if (!task_has_pi_waiters(task))
523 goto out_unlock_pi;
524 /*
525 * If deadlock detection is off, we stop here if we
67792e2c
TG
526 * are not the top pi waiter of the task. If deadlock
527 * detection is enabled we continue, but stop the
528 * requeueing in the chain walk.
397335f0 529 */
67792e2c
TG
530 if (top_waiter != task_top_pi_waiter(task)) {
531 if (!detect_deadlock)
532 goto out_unlock_pi;
533 else
534 requeue = false;
535 }
397335f0 536 }
23f78d4a
IM
537
538 /*
67792e2c
TG
539 * If the waiter priority is the same as the task priority
540 * then there is no further priority adjustment necessary. If
541 * deadlock detection is off, we stop the chain walk. If its
542 * enabled we continue, but stop the requeueing in the chain
543 * walk.
23f78d4a 544 */
19830e55 545 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
67792e2c
TG
546 if (!detect_deadlock)
547 goto out_unlock_pi;
548 else
549 requeue = false;
550 }
23f78d4a 551
3eb65aea
TG
552 /*
553 * [4] Get the next lock
554 */
23f78d4a 555 lock = waiter->lock;
3eb65aea
TG
556 /*
557 * [5] We need to trylock here as we are holding task->pi_lock,
558 * which is the reverse lock order versus the other rtmutex
559 * operations.
560 */
d209d74d 561 if (!raw_spin_trylock(&lock->wait_lock)) {
b4abf910 562 raw_spin_unlock_irq(&task->pi_lock);
23f78d4a
IM
563 cpu_relax();
564 goto retry;
565 }
566
397335f0 567 /*
3eb65aea
TG
568 * [6] check_exit_conditions_2() protected by task->pi_lock and
569 * lock->wait_lock.
570 *
397335f0
TG
571 * Deadlock detection. If the lock is the same as the original
572 * lock which caused us to walk the lock chain or if the
573 * current lock is owned by the task which initiated the chain
574 * walk, we detected a deadlock.
575 */
95e02ca9 576 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
d209d74d 577 raw_spin_unlock(&lock->wait_lock);
3d5c9340 578 ret = -EDEADLK;
23f78d4a
IM
579 goto out_unlock_pi;
580 }
581
67792e2c
TG
582 /*
583 * If we just follow the lock chain for deadlock detection, no
584 * need to do all the requeue operations. To avoid a truckload
585 * of conditionals around the various places below, just do the
586 * minimum chain walk checks.
587 */
588 if (!requeue) {
589 /*
590 * No requeue[7] here. Just release @task [8]
591 */
b4abf910 592 raw_spin_unlock(&task->pi_lock);
67792e2c
TG
593 put_task_struct(task);
594
595 /*
596 * [9] check_exit_conditions_3 protected by lock->wait_lock.
597 * If there is no owner of the lock, end of chain.
598 */
599 if (!rt_mutex_owner(lock)) {
b4abf910 600 raw_spin_unlock_irq(&lock->wait_lock);
67792e2c
TG
601 return 0;
602 }
603
604 /* [10] Grab the next task, i.e. owner of @lock */
7b3c92b8 605 task = get_task_struct(rt_mutex_owner(lock));
b4abf910 606 raw_spin_lock(&task->pi_lock);
67792e2c
TG
607
608 /*
609 * No requeue [11] here. We just do deadlock detection.
610 *
611 * [12] Store whether owner is blocked
612 * itself. Decision is made after dropping the locks
613 */
614 next_lock = task_blocked_on_lock(task);
615 /*
616 * Get the top waiter for the next iteration
617 */
618 top_waiter = rt_mutex_top_waiter(lock);
619
620 /* [13] Drop locks */
b4abf910
TG
621 raw_spin_unlock(&task->pi_lock);
622 raw_spin_unlock_irq(&lock->wait_lock);
67792e2c
TG
623
624 /* If owner is not blocked, end of chain. */
625 if (!next_lock)
626 goto out_put_task;
627 goto again;
628 }
629
a57594a1
TG
630 /*
631 * Store the current top waiter before doing the requeue
632 * operation on @lock. We need it for the boost/deboost
633 * decision below.
634 */
635 prerequeue_top_waiter = rt_mutex_top_waiter(lock);
23f78d4a 636
9f40a51a 637 /* [7] Requeue the waiter in the lock waiter tree. */
fb00aca4 638 rt_mutex_dequeue(lock, waiter);
e0aad5b4
PZ
639
640 /*
641 * Update the waiter prio fields now that we're dequeued.
642 *
643 * These values can have changed through either:
644 *
645 * sys_sched_set_scheduler() / sys_sched_setattr()
646 *
647 * or
648 *
649 * DL CBS enforcement advancing the effective deadline.
650 *
651 * Even though pi_waiters also uses these fields, and that tree is only
652 * updated in [11], we can do this here, since we hold [L], which
653 * serializes all pi_waiters access and rb_erase() does not care about
654 * the values of the node being removed.
655 */
2d3d891d 656 waiter->prio = task->prio;
e0aad5b4
PZ
657 waiter->deadline = task->dl.deadline;
658
fb00aca4 659 rt_mutex_enqueue(lock, waiter);
23f78d4a 660
3eb65aea 661 /* [8] Release the task */
b4abf910 662 raw_spin_unlock(&task->pi_lock);
2ffa5a5c
TG
663 put_task_struct(task);
664
a57594a1 665 /*
3eb65aea
TG
666 * [9] check_exit_conditions_3 protected by lock->wait_lock.
667 *
a57594a1
TG
668 * We must abort the chain walk if there is no lock owner even
669 * in the dead lock detection case, as we have nothing to
670 * follow here. This is the end of the chain we are walking.
671 */
8161239a
LJ
672 if (!rt_mutex_owner(lock)) {
673 /*
3eb65aea
TG
674 * If the requeue [7] above changed the top waiter,
675 * then we need to wake the new top waiter up to try
676 * to get the lock.
8161239a 677 */
a57594a1 678 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
8161239a 679 wake_up_process(rt_mutex_top_waiter(lock)->task);
b4abf910 680 raw_spin_unlock_irq(&lock->wait_lock);
2ffa5a5c 681 return 0;
8161239a 682 }
23f78d4a 683
3eb65aea 684 /* [10] Grab the next task, i.e. the owner of @lock */
7b3c92b8 685 task = get_task_struct(rt_mutex_owner(lock));
b4abf910 686 raw_spin_lock(&task->pi_lock);
23f78d4a 687
3eb65aea 688 /* [11] requeue the pi waiters if necessary */
23f78d4a 689 if (waiter == rt_mutex_top_waiter(lock)) {
a57594a1
TG
690 /*
691 * The waiter became the new top (highest priority)
692 * waiter on the lock. Replace the previous top waiter
9f40a51a 693 * in the owner tasks pi waiters tree with this waiter
a57594a1
TG
694 * and adjust the priority of the owner.
695 */
696 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
fb00aca4 697 rt_mutex_enqueue_pi(task, waiter);
acd58620 698 rt_mutex_adjust_prio(task);
23f78d4a 699
a57594a1
TG
700 } else if (prerequeue_top_waiter == waiter) {
701 /*
702 * The waiter was the top waiter on the lock, but is
e2db7592 703 * no longer the top priority waiter. Replace waiter in
9f40a51a 704 * the owner tasks pi waiters tree with the new top
a57594a1
TG
705 * (highest priority) waiter and adjust the priority
706 * of the owner.
707 * The new top waiter is stored in @waiter so that
708 * @waiter == @top_waiter evaluates to true below and
709 * we continue to deboost the rest of the chain.
710 */
fb00aca4 711 rt_mutex_dequeue_pi(task, waiter);
23f78d4a 712 waiter = rt_mutex_top_waiter(lock);
fb00aca4 713 rt_mutex_enqueue_pi(task, waiter);
acd58620 714 rt_mutex_adjust_prio(task);
a57594a1
TG
715 } else {
716 /*
717 * Nothing changed. No need to do any priority
718 * adjustment.
719 */
23f78d4a
IM
720 }
721
82084984 722 /*
3eb65aea
TG
723 * [12] check_exit_conditions_4() protected by task->pi_lock
724 * and lock->wait_lock. The actual decisions are made after we
725 * dropped the locks.
726 *
82084984
TG
727 * Check whether the task which owns the current lock is pi
728 * blocked itself. If yes we store a pointer to the lock for
729 * the lock chain change detection above. After we dropped
730 * task->pi_lock next_lock cannot be dereferenced anymore.
731 */
732 next_lock = task_blocked_on_lock(task);
a57594a1
TG
733 /*
734 * Store the top waiter of @lock for the end of chain walk
735 * decision below.
736 */
23f78d4a 737 top_waiter = rt_mutex_top_waiter(lock);
3eb65aea
TG
738
739 /* [13] Drop the locks */
b4abf910
TG
740 raw_spin_unlock(&task->pi_lock);
741 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 742
82084984 743 /*
3eb65aea
TG
744 * Make the actual exit decisions [12], based on the stored
745 * values.
746 *
82084984
TG
747 * We reached the end of the lock chain. Stop right here. No
748 * point to go back just to figure that out.
749 */
750 if (!next_lock)
751 goto out_put_task;
752
a57594a1
TG
753 /*
754 * If the current waiter is not the top waiter on the lock,
755 * then we can stop the chain walk here if we are not in full
756 * deadlock detection mode.
757 */
23f78d4a
IM
758 if (!detect_deadlock && waiter != top_waiter)
759 goto out_put_task;
760
761 goto again;
762
763 out_unlock_pi:
b4abf910 764 raw_spin_unlock_irq(&task->pi_lock);
23f78d4a
IM
765 out_put_task:
766 put_task_struct(task);
36c8b586 767
23f78d4a
IM
768 return ret;
769}
770
23f78d4a
IM
771/*
772 * Try to take an rt-mutex
773 *
b4abf910 774 * Must be called with lock->wait_lock held and interrupts disabled
8161239a 775 *
358c331f
TG
776 * @lock: The lock to be acquired.
777 * @task: The task which wants to acquire the lock
9f40a51a 778 * @waiter: The waiter that is queued to the lock's wait tree if the
358c331f 779 * callsite called task_blocked_on_lock(), otherwise NULL
23f78d4a 780 */
8161239a 781static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
358c331f 782 struct rt_mutex_waiter *waiter)
23f78d4a 783{
e0aad5b4
PZ
784 lockdep_assert_held(&lock->wait_lock);
785
23f78d4a 786 /*
358c331f
TG
787 * Before testing whether we can acquire @lock, we set the
788 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
789 * other tasks which try to modify @lock into the slow path
790 * and they serialize on @lock->wait_lock.
23f78d4a 791 *
358c331f
TG
792 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
793 * as explained at the top of this file if and only if:
23f78d4a 794 *
358c331f
TG
795 * - There is a lock owner. The caller must fixup the
796 * transient state if it does a trylock or leaves the lock
797 * function due to a signal or timeout.
798 *
799 * - @task acquires the lock and there are no other
800 * waiters. This is undone in rt_mutex_set_owner(@task) at
801 * the end of this function.
23f78d4a
IM
802 */
803 mark_rt_mutex_waiters(lock);
804
358c331f
TG
805 /*
806 * If @lock has an owner, give up.
807 */
8161239a 808 if (rt_mutex_owner(lock))
23f78d4a
IM
809 return 0;
810
8161239a 811 /*
358c331f 812 * If @waiter != NULL, @task has already enqueued the waiter
9f40a51a 813 * into @lock waiter tree. If @waiter == NULL then this is a
358c331f 814 * trylock attempt.
8161239a 815 */
358c331f
TG
816 if (waiter) {
817 /*
818 * If waiter is not the highest priority waiter of
819 * @lock, give up.
820 */
821 if (waiter != rt_mutex_top_waiter(lock))
822 return 0;
8161239a 823
358c331f
TG
824 /*
825 * We can acquire the lock. Remove the waiter from the
9f40a51a 826 * lock waiters tree.
358c331f
TG
827 */
828 rt_mutex_dequeue(lock, waiter);
8161239a 829
358c331f 830 } else {
8161239a 831 /*
358c331f
TG
832 * If the lock has waiters already we check whether @task is
833 * eligible to take over the lock.
834 *
835 * If there are no other waiters, @task can acquire
836 * the lock. @task->pi_blocked_on is NULL, so it does
837 * not need to be dequeued.
8161239a
LJ
838 */
839 if (rt_mutex_has_waiters(lock)) {
358c331f
TG
840 /*
841 * If @task->prio is greater than or equal to
842 * the top waiter priority (kernel view),
843 * @task lost.
844 */
19830e55
PZ
845 if (!rt_mutex_waiter_less(task_to_waiter(task),
846 rt_mutex_top_waiter(lock)))
358c331f
TG
847 return 0;
848
849 /*
850 * The current top waiter stays enqueued. We
851 * don't have to change anything in the lock
852 * waiters order.
853 */
854 } else {
855 /*
856 * No waiters. Take the lock without the
857 * pi_lock dance.@task->pi_blocked_on is NULL
858 * and we have no waiters to enqueue in @task
9f40a51a 859 * pi waiters tree.
358c331f
TG
860 */
861 goto takeit;
8161239a 862 }
8161239a
LJ
863 }
864
358c331f
TG
865 /*
866 * Clear @task->pi_blocked_on. Requires protection by
867 * @task->pi_lock. Redundant operation for the @waiter == NULL
868 * case, but conditionals are more expensive than a redundant
869 * store.
870 */
b4abf910 871 raw_spin_lock(&task->pi_lock);
358c331f
TG
872 task->pi_blocked_on = NULL;
873 /*
874 * Finish the lock acquisition. @task is the new owner. If
875 * other waiters exist we have to insert the highest priority
9f40a51a 876 * waiter into @task->pi_waiters tree.
358c331f
TG
877 */
878 if (rt_mutex_has_waiters(lock))
879 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
b4abf910 880 raw_spin_unlock(&task->pi_lock);
358c331f
TG
881
882takeit:
358c331f
TG
883 /*
884 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
885 * are still waiters or clears it.
886 */
8161239a 887 rt_mutex_set_owner(lock, task);
23f78d4a 888
23f78d4a
IM
889 return 1;
890}
891
892/*
893 * Task blocks on lock.
894 *
895 * Prepare waiter and propagate pi chain
896 *
b4abf910 897 * This must be called with lock->wait_lock held and interrupts disabled
23f78d4a
IM
898 */
899static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
900 struct rt_mutex_waiter *waiter,
8dac456a 901 struct task_struct *task,
8930ed80 902 enum rtmutex_chainwalk chwalk)
23f78d4a 903{
36c8b586 904 struct task_struct *owner = rt_mutex_owner(lock);
23f78d4a 905 struct rt_mutex_waiter *top_waiter = waiter;
82084984 906 struct rt_mutex *next_lock;
db630637 907 int chain_walk = 0, res;
23f78d4a 908
e0aad5b4
PZ
909 lockdep_assert_held(&lock->wait_lock);
910
397335f0
TG
911 /*
912 * Early deadlock detection. We really don't want the task to
913 * enqueue on itself just to untangle the mess later. It's not
914 * only an optimization. We drop the locks, so another waiter
915 * can come in before the chain walk detects the deadlock. So
916 * the other will detect the deadlock and return -EDEADLOCK,
917 * which is wrong, as the other waiter is not in a deadlock
918 * situation.
919 */
3d5c9340 920 if (owner == task)
397335f0
TG
921 return -EDEADLK;
922
b4abf910 923 raw_spin_lock(&task->pi_lock);
8dac456a 924 waiter->task = task;
23f78d4a 925 waiter->lock = lock;
2d3d891d 926 waiter->prio = task->prio;
e0aad5b4 927 waiter->deadline = task->dl.deadline;
23f78d4a
IM
928
929 /* Get the top priority waiter on the lock */
930 if (rt_mutex_has_waiters(lock))
931 top_waiter = rt_mutex_top_waiter(lock);
fb00aca4 932 rt_mutex_enqueue(lock, waiter);
23f78d4a 933
8dac456a 934 task->pi_blocked_on = waiter;
23f78d4a 935
b4abf910 936 raw_spin_unlock(&task->pi_lock);
23f78d4a 937
8161239a
LJ
938 if (!owner)
939 return 0;
940
b4abf910 941 raw_spin_lock(&owner->pi_lock);
23f78d4a 942 if (waiter == rt_mutex_top_waiter(lock)) {
fb00aca4
PZ
943 rt_mutex_dequeue_pi(owner, top_waiter);
944 rt_mutex_enqueue_pi(owner, waiter);
23f78d4a 945
acd58620 946 rt_mutex_adjust_prio(owner);
db630637
SR
947 if (owner->pi_blocked_on)
948 chain_walk = 1;
8930ed80 949 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
db630637 950 chain_walk = 1;
82084984 951 }
db630637 952
82084984
TG
953 /* Store the lock on which owner is blocked or NULL */
954 next_lock = task_blocked_on_lock(owner);
955
b4abf910 956 raw_spin_unlock(&owner->pi_lock);
82084984
TG
957 /*
958 * Even if full deadlock detection is on, if the owner is not
959 * blocked itself, we can avoid finding this out in the chain
960 * walk.
961 */
962 if (!chain_walk || !next_lock)
23f78d4a
IM
963 return 0;
964
db630637
SR
965 /*
966 * The owner can't disappear while holding a lock,
967 * so the owner struct is protected by wait_lock.
968 * Gets dropped in rt_mutex_adjust_prio_chain()!
969 */
970 get_task_struct(owner);
971
b4abf910 972 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 973
8930ed80 974 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
82084984 975 next_lock, waiter, task);
23f78d4a 976
b4abf910 977 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
978
979 return res;
980}
981
982/*
9f40a51a 983 * Remove the top waiter from the current tasks pi waiter tree and
45ab4eff 984 * queue it up.
23f78d4a 985 *
b4abf910 986 * Called with lock->wait_lock held and interrupts disabled.
23f78d4a 987 */
45ab4eff
DB
988static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
989 struct rt_mutex *lock)
23f78d4a
IM
990{
991 struct rt_mutex_waiter *waiter;
23f78d4a 992
b4abf910 993 raw_spin_lock(&current->pi_lock);
23f78d4a
IM
994
995 waiter = rt_mutex_top_waiter(lock);
23f78d4a
IM
996
997 /*
acd58620
PZ
998 * Remove it from current->pi_waiters and deboost.
999 *
1000 * We must in fact deboost here in order to ensure we call
1001 * rt_mutex_setprio() to update p->pi_top_task before the
1002 * task unblocks.
23f78d4a 1003 */
fb00aca4 1004 rt_mutex_dequeue_pi(current, waiter);
acd58620 1005 rt_mutex_adjust_prio(current);
23f78d4a 1006
27e35715
TG
1007 /*
1008 * As we are waking up the top waiter, and the waiter stays
1009 * queued on the lock until it gets the lock, this lock
1010 * obviously has waiters. Just set the bit here and this has
1011 * the added benefit of forcing all new tasks into the
1012 * slow path making sure no task of lower priority than
1013 * the top waiter can steal this lock.
1014 */
1015 lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
23f78d4a 1016
acd58620
PZ
1017 /*
1018 * We deboosted before waking the top waiter task such that we don't
1019 * run two tasks with the 'same' priority (and ensure the
1020 * p->pi_top_task pointer points to a blocked task). This however can
1021 * lead to priority inversion if we would get preempted after the
1022 * deboost but before waking our donor task, hence the preempt_disable()
1023 * before unlock.
1024 *
1025 * Pairs with preempt_enable() in rt_mutex_postunlock();
1026 */
1027 preempt_disable();
45ab4eff 1028 wake_q_add(wake_q, waiter->task);
acd58620 1029 raw_spin_unlock(&current->pi_lock);
23f78d4a
IM
1030}
1031
1032/*
8161239a 1033 * Remove a waiter from a lock and give up
23f78d4a 1034 *
b4abf910 1035 * Must be called with lock->wait_lock held and interrupts disabled. I must
8161239a 1036 * have just failed to try_to_take_rt_mutex().
23f78d4a 1037 */
bd197234
TG
1038static void remove_waiter(struct rt_mutex *lock,
1039 struct rt_mutex_waiter *waiter)
23f78d4a 1040{
1ca7b860 1041 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
36c8b586 1042 struct task_struct *owner = rt_mutex_owner(lock);
1ca7b860 1043 struct rt_mutex *next_lock;
23f78d4a 1044
e0aad5b4
PZ
1045 lockdep_assert_held(&lock->wait_lock);
1046
b4abf910 1047 raw_spin_lock(&current->pi_lock);
fb00aca4 1048 rt_mutex_dequeue(lock, waiter);
23f78d4a 1049 current->pi_blocked_on = NULL;
b4abf910 1050 raw_spin_unlock(&current->pi_lock);
23f78d4a 1051
1ca7b860
TG
1052 /*
1053 * Only update priority if the waiter was the highest priority
1054 * waiter of the lock and there is an owner to update.
1055 */
1056 if (!owner || !is_top_waiter)
8161239a
LJ
1057 return;
1058
b4abf910 1059 raw_spin_lock(&owner->pi_lock);
23f78d4a 1060
1ca7b860 1061 rt_mutex_dequeue_pi(owner, waiter);
23f78d4a 1062
1ca7b860
TG
1063 if (rt_mutex_has_waiters(lock))
1064 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
23f78d4a 1065
acd58620 1066 rt_mutex_adjust_prio(owner);
23f78d4a 1067
1ca7b860
TG
1068 /* Store the lock on which owner is blocked or NULL */
1069 next_lock = task_blocked_on_lock(owner);
db630637 1070
b4abf910 1071 raw_spin_unlock(&owner->pi_lock);
23f78d4a 1072
1ca7b860
TG
1073 /*
1074 * Don't walk the chain, if the owner task is not blocked
1075 * itself.
1076 */
82084984 1077 if (!next_lock)
23f78d4a
IM
1078 return;
1079
db630637
SR
1080 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1081 get_task_struct(owner);
1082
b4abf910 1083 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1084
8930ed80
TG
1085 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1086 next_lock, NULL, current);
23f78d4a 1087
b4abf910 1088 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1089}
1090
95e02ca9
TG
1091/*
1092 * Recheck the pi chain, in case we got a priority setting
1093 *
1094 * Called from sched_setscheduler
1095 */
1096void rt_mutex_adjust_pi(struct task_struct *task)
1097{
1098 struct rt_mutex_waiter *waiter;
82084984 1099 struct rt_mutex *next_lock;
95e02ca9
TG
1100 unsigned long flags;
1101
1d615482 1102 raw_spin_lock_irqsave(&task->pi_lock, flags);
95e02ca9
TG
1103
1104 waiter = task->pi_blocked_on;
19830e55 1105 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1d615482 1106 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9
TG
1107 return;
1108 }
82084984 1109 next_lock = waiter->lock;
1d615482 1110 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
95e02ca9 1111
db630637
SR
1112 /* gets dropped in rt_mutex_adjust_prio_chain()! */
1113 get_task_struct(task);
82084984 1114
8930ed80
TG
1115 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1116 next_lock, NULL, task);
95e02ca9
TG
1117}
1118
50809358
PZ
1119void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1120{
1121 debug_rt_mutex_init_waiter(waiter);
1122 RB_CLEAR_NODE(&waiter->pi_tree_entry);
1123 RB_CLEAR_NODE(&waiter->tree_entry);
1124 waiter->task = NULL;
1125}
1126
8dac456a
DH
1127/**
1128 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1129 * @lock: the rt_mutex to take
1130 * @state: the state the task should block in (TASK_INTERRUPTIBLE
b4abf910 1131 * or TASK_UNINTERRUPTIBLE)
8dac456a
DH
1132 * @timeout: the pre-initialized and started timer, or NULL for none
1133 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a 1134 *
b4abf910 1135 * Must be called with lock->wait_lock held and interrupts disabled
23f78d4a
IM
1136 */
1137static int __sched
8dac456a
DH
1138__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1139 struct hrtimer_sleeper *timeout,
8161239a 1140 struct rt_mutex_waiter *waiter)
23f78d4a 1141{
23f78d4a
IM
1142 int ret = 0;
1143
23f78d4a
IM
1144 for (;;) {
1145 /* Try to acquire the lock: */
8161239a 1146 if (try_to_take_rt_mutex(lock, current, waiter))
23f78d4a
IM
1147 break;
1148
1149 /*
1150 * TASK_INTERRUPTIBLE checks for signals and
1151 * timeout. Ignored otherwise.
1152 */
4009f4b3 1153 if (likely(state == TASK_INTERRUPTIBLE)) {
23f78d4a
IM
1154 /* Signal pending? */
1155 if (signal_pending(current))
1156 ret = -EINTR;
1157 if (timeout && !timeout->task)
1158 ret = -ETIMEDOUT;
1159 if (ret)
1160 break;
1161 }
1162
b4abf910 1163 raw_spin_unlock_irq(&lock->wait_lock);
23f78d4a 1164
1b0b7c17 1165 schedule();
23f78d4a 1166
b4abf910 1167 raw_spin_lock_irq(&lock->wait_lock);
23f78d4a
IM
1168 set_current_state(state);
1169 }
1170
afffc6c1 1171 __set_current_state(TASK_RUNNING);
8dac456a
DH
1172 return ret;
1173}
1174
3d5c9340
TG
1175static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1176 struct rt_mutex_waiter *w)
1177{
1178 /*
1179 * If the result is not -EDEADLOCK or the caller requested
1180 * deadlock detection, nothing to do here.
1181 */
1182 if (res != -EDEADLOCK || detect_deadlock)
1183 return;
1184
1185 /*
e2db7592 1186 * Yell loudly and stop the task right here.
3d5c9340 1187 */
6d41c675 1188 WARN(1, "rtmutex deadlock detected\n");
3d5c9340
TG
1189 while (1) {
1190 set_current_state(TASK_INTERRUPTIBLE);
1191 schedule();
1192 }
1193}
1194
8dac456a
DH
1195/*
1196 * Slow path lock function:
1197 */
1198static int __sched
1199rt_mutex_slowlock(struct rt_mutex *lock, int state,
1200 struct hrtimer_sleeper *timeout,
8930ed80 1201 enum rtmutex_chainwalk chwalk)
8dac456a
DH
1202{
1203 struct rt_mutex_waiter waiter;
b4abf910 1204 unsigned long flags;
8dac456a
DH
1205 int ret = 0;
1206
50809358 1207 rt_mutex_init_waiter(&waiter);
8dac456a 1208
b4abf910
TG
1209 /*
1210 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1211 * be called in early boot if the cmpxchg() fast path is disabled
1212 * (debug, no architecture support). In this case we will acquire the
1213 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1214 * enable interrupts in that early boot case. So we need to use the
1215 * irqsave/restore variants.
1216 */
1217 raw_spin_lock_irqsave(&lock->wait_lock, flags);
8dac456a
DH
1218
1219 /* Try to acquire the lock again: */
8161239a 1220 if (try_to_take_rt_mutex(lock, current, NULL)) {
b4abf910 1221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
8dac456a
DH
1222 return 0;
1223 }
1224
1225 set_current_state(state);
1226
1227 /* Setup the timer, when timeout != NULL */
ccdd92c1 1228 if (unlikely(timeout))
8dac456a 1229 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
8dac456a 1230
8930ed80 1231 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
8161239a
LJ
1232
1233 if (likely(!ret))
afffc6c1 1234 /* sleep on the mutex */
8161239a 1235 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
8dac456a 1236
3d5c9340 1237 if (unlikely(ret)) {
9d3e2d02 1238 __set_current_state(TASK_RUNNING);
c28d62cf 1239 remove_waiter(lock, &waiter);
8930ed80 1240 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
3d5c9340 1241 }
23f78d4a
IM
1242
1243 /*
1244 * try_to_take_rt_mutex() sets the waiter bit
1245 * unconditionally. We might have to fix that up.
1246 */
1247 fixup_rt_mutex_waiters(lock);
1248
b4abf910 1249 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a
IM
1250
1251 /* Remove pending timer: */
1252 if (unlikely(timeout))
1253 hrtimer_cancel(&timeout->timer);
1254
23f78d4a
IM
1255 debug_rt_mutex_free_waiter(&waiter);
1256
1257 return ret;
1258}
1259
c1e2f0ea
PZ
1260static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1261{
1262 int ret = try_to_take_rt_mutex(lock, current, NULL);
1263
1264 /*
1265 * try_to_take_rt_mutex() sets the lock waiters bit
1266 * unconditionally. Clean this up.
1267 */
1268 fixup_rt_mutex_waiters(lock);
1269
1270 return ret;
1271}
1272
23f78d4a
IM
1273/*
1274 * Slow path try-lock function:
1275 */
88f2b4c1 1276static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
23f78d4a 1277{
b4abf910 1278 unsigned long flags;
88f2b4c1
TG
1279 int ret;
1280
1281 /*
1282 * If the lock already has an owner we fail to get the lock.
1283 * This can be done without taking the @lock->wait_lock as
1284 * it is only being read, and this is a trylock anyway.
1285 */
1286 if (rt_mutex_owner(lock))
1287 return 0;
23f78d4a 1288
88f2b4c1 1289 /*
b4abf910
TG
1290 * The mutex has currently no owner. Lock the wait lock and try to
1291 * acquire the lock. We use irqsave here to support early boot calls.
88f2b4c1 1292 */
b4abf910 1293 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a 1294
c1e2f0ea 1295 ret = __rt_mutex_slowtrylock(lock);
23f78d4a 1296
b4abf910 1297 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a
IM
1298
1299 return ret;
1300}
1301
1302/*
802ab58d 1303 * Slow path to release a rt-mutex.
aa2bfe55
PZ
1304 *
1305 * Return whether the current task needs to call rt_mutex_postunlock().
23f78d4a 1306 */
802ab58d
SAS
1307static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1308 struct wake_q_head *wake_q)
23f78d4a 1309{
b4abf910
TG
1310 unsigned long flags;
1311
1312 /* irqsave required to support early boot calls */
1313 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a
IM
1314
1315 debug_rt_mutex_unlock(lock);
1316
27e35715
TG
1317 /*
1318 * We must be careful here if the fast path is enabled. If we
1319 * have no waiters queued we cannot set owner to NULL here
1320 * because of:
1321 *
1322 * foo->lock->owner = NULL;
1323 * rtmutex_lock(foo->lock); <- fast path
1324 * free = atomic_dec_and_test(foo->refcnt);
1325 * rtmutex_unlock(foo->lock); <- fast path
1326 * if (free)
1327 * kfree(foo);
1328 * raw_spin_unlock(foo->lock->wait_lock);
1329 *
1330 * So for the fastpath enabled kernel:
1331 *
1332 * Nothing can set the waiters bit as long as we hold
1333 * lock->wait_lock. So we do the following sequence:
1334 *
1335 * owner = rt_mutex_owner(lock);
1336 * clear_rt_mutex_waiters(lock);
1337 * raw_spin_unlock(&lock->wait_lock);
1338 * if (cmpxchg(&lock->owner, owner, 0) == owner)
1339 * return;
1340 * goto retry;
1341 *
1342 * The fastpath disabled variant is simple as all access to
1343 * lock->owner is serialized by lock->wait_lock:
1344 *
1345 * lock->owner = NULL;
1346 * raw_spin_unlock(&lock->wait_lock);
1347 */
1348 while (!rt_mutex_has_waiters(lock)) {
1349 /* Drops lock->wait_lock ! */
b4abf910 1350 if (unlock_rt_mutex_safe(lock, flags) == true)
802ab58d 1351 return false;
27e35715 1352 /* Relock the rtmutex and try again */
b4abf910 1353 raw_spin_lock_irqsave(&lock->wait_lock, flags);
23f78d4a
IM
1354 }
1355
27e35715
TG
1356 /*
1357 * The wakeup next waiter path does not suffer from the above
1358 * race. See the comments there.
45ab4eff
DB
1359 *
1360 * Queue the next waiter for wakeup once we release the wait_lock.
27e35715 1361 */
802ab58d 1362 mark_wakeup_next_waiter(wake_q, lock);
b4abf910 1363 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
23f78d4a 1364
aa2bfe55 1365 return true; /* call rt_mutex_postunlock() */
23f78d4a
IM
1366}
1367
1368/*
1369 * debug aware fast / slowpath lock,trylock,unlock
1370 *
1371 * The atomic acquire/release ops are compiled away, when either the
1372 * architecture does not support cmpxchg or when debugging is enabled.
1373 */
1374static inline int
1375rt_mutex_fastlock(struct rt_mutex *lock, int state,
23f78d4a
IM
1376 int (*slowfn)(struct rt_mutex *lock, int state,
1377 struct hrtimer_sleeper *timeout,
8930ed80 1378 enum rtmutex_chainwalk chwalk))
23f78d4a 1379{
fffa954f 1380 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1381 return 0;
fffa954f
PZ
1382
1383 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
23f78d4a
IM
1384}
1385
23f78d4a
IM
1386static inline int
1387rt_mutex_fasttrylock(struct rt_mutex *lock,
9a11b49a 1388 int (*slowfn)(struct rt_mutex *lock))
23f78d4a 1389{
fffa954f 1390 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
23f78d4a 1391 return 1;
fffa954f 1392
9a11b49a 1393 return slowfn(lock);
23f78d4a
IM
1394}
1395
2a1c6029 1396/*
c034f48e 1397 * Performs the wakeup of the top-waiter and re-enables preemption.
2a1c6029 1398 */
aa2bfe55 1399void rt_mutex_postunlock(struct wake_q_head *wake_q)
2a1c6029
XP
1400{
1401 wake_up_q(wake_q);
1402
1403 /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
aa2bfe55 1404 preempt_enable();
2a1c6029
XP
1405}
1406
23f78d4a
IM
1407static inline void
1408rt_mutex_fastunlock(struct rt_mutex *lock,
802ab58d
SAS
1409 bool (*slowfn)(struct rt_mutex *lock,
1410 struct wake_q_head *wqh))
23f78d4a 1411{
194a6b5b 1412 DEFINE_WAKE_Q(wake_q);
802ab58d 1413
fffa954f
PZ
1414 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1415 return;
802ab58d 1416
aa2bfe55
PZ
1417 if (slowfn(lock, &wake_q))
1418 rt_mutex_postunlock(&wake_q);
23f78d4a
IM
1419}
1420
62cedf3e
PR
1421static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1422{
1423 might_sleep();
1424
1425 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1426 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1427}
1428
1429#ifdef CONFIG_DEBUG_LOCK_ALLOC
1430/**
1431 * rt_mutex_lock_nested - lock a rt_mutex
1432 *
1433 * @lock: the rt_mutex to be locked
1434 * @subclass: the lockdep subclass
1435 */
1436void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1437{
1438 __rt_mutex_lock(lock, subclass);
1439}
1440EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
62cedf3e 1441
84818af2
SRV
1442#else /* !CONFIG_DEBUG_LOCK_ALLOC */
1443
23f78d4a
IM
1444/**
1445 * rt_mutex_lock - lock a rt_mutex
1446 *
1447 * @lock: the rt_mutex to be locked
1448 */
1449void __sched rt_mutex_lock(struct rt_mutex *lock)
1450{
62cedf3e 1451 __rt_mutex_lock(lock, 0);
23f78d4a
IM
1452}
1453EXPORT_SYMBOL_GPL(rt_mutex_lock);
62cedf3e 1454#endif
23f78d4a
IM
1455
1456/**
1457 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1458 *
c051b21f 1459 * @lock: the rt_mutex to be locked
23f78d4a
IM
1460 *
1461 * Returns:
c051b21f
TG
1462 * 0 on success
1463 * -EINTR when interrupted by a signal
23f78d4a 1464 */
c051b21f 1465int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
23f78d4a 1466{
f5694788
PZ
1467 int ret;
1468
23f78d4a
IM
1469 might_sleep();
1470
f5694788
PZ
1471 mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1472 ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1473 if (ret)
5facae4f 1474 mutex_release(&lock->dep_map, _RET_IP_);
f5694788
PZ
1475
1476 return ret;
23f78d4a
IM
1477}
1478EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1479
5293c2ef
PZ
1480/*
1481 * Futex variant, must not use fastpath.
1482 */
1483int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1484{
1485 return rt_mutex_slowtrylock(lock);
c051b21f
TG
1486}
1487
c1e2f0ea
PZ
1488int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1489{
1490 return __rt_mutex_slowtrylock(lock);
1491}
1492
23f78d4a
IM
1493/**
1494 * rt_mutex_trylock - try to lock a rt_mutex
1495 *
1496 * @lock: the rt_mutex to be locked
1497 *
6ce47fd9
TG
1498 * This function can only be called in thread context. It's safe to
1499 * call it from atomic regions, but not from hard interrupt or soft
1500 * interrupt context.
1501 *
23f78d4a
IM
1502 * Returns 1 on success and 0 on contention
1503 */
1504int __sched rt_mutex_trylock(struct rt_mutex *lock)
1505{
f5694788
PZ
1506 int ret;
1507
a461d587 1508 if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
6ce47fd9
TG
1509 return 0;
1510
f5694788
PZ
1511 ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1512 if (ret)
1513 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1514
1515 return ret;
23f78d4a
IM
1516}
1517EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1518
1519/**
1520 * rt_mutex_unlock - unlock a rt_mutex
1521 *
1522 * @lock: the rt_mutex to be unlocked
1523 */
1524void __sched rt_mutex_unlock(struct rt_mutex *lock)
1525{
5facae4f 1526 mutex_release(&lock->dep_map, _RET_IP_);
23f78d4a
IM
1527 rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1528}
1529EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1530
802ab58d 1531/**
bf594bf4
AS
1532 * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1533 * do not use the fast-path, can be simple and will not need to retry.
1534 *
1535 * @lock: The rt_mutex to be unlocked
1536 * @wake_q: The wake queue head from which to get the next lock waiter
802ab58d 1537 */
5293c2ef
PZ
1538bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1539 struct wake_q_head *wake_q)
802ab58d 1540{
5293c2ef
PZ
1541 lockdep_assert_held(&lock->wait_lock);
1542
1543 debug_rt_mutex_unlock(lock);
1544
1545 if (!rt_mutex_has_waiters(lock)) {
1546 lock->owner = NULL;
1547 return false; /* done */
1548 }
1549
2a1c6029 1550 /*
def34eaa
MG
1551 * We've already deboosted, mark_wakeup_next_waiter() will
1552 * retain preempt_disabled when we drop the wait_lock, to
1553 * avoid inversion prior to the wakeup. preempt_disable()
1554 * therein pairs with rt_mutex_postunlock().
2a1c6029 1555 */
def34eaa 1556 mark_wakeup_next_waiter(wake_q, lock);
2a1c6029 1557
aa2bfe55 1558 return true; /* call postunlock() */
5293c2ef 1559}
fffa954f 1560
5293c2ef
PZ
1561void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1562{
1563 DEFINE_WAKE_Q(wake_q);
6b0ef92f 1564 unsigned long flags;
aa2bfe55 1565 bool postunlock;
5293c2ef 1566
6b0ef92f 1567 raw_spin_lock_irqsave(&lock->wait_lock, flags);
aa2bfe55 1568 postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
6b0ef92f 1569 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
5293c2ef 1570
aa2bfe55
PZ
1571 if (postunlock)
1572 rt_mutex_postunlock(&wake_q);
802ab58d
SAS
1573}
1574
23f78d4a 1575/**
bf594bf4 1576 * __rt_mutex_init - initialize the rt_mutex
23f78d4a 1577 *
bf594bf4
AS
1578 * @lock: The rt_mutex to be initialized
1579 * @name: The lock name used for debugging
1580 * @key: The lock class key used for debugging
23f78d4a 1581 *
bf594bf4 1582 * Initialize the rt_mutex to unlocked state.
23f78d4a 1583 *
bf594bf4 1584 * Initializing of a locked rt_mutex is not allowed
23f78d4a 1585 */
f5694788
PZ
1586void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1587 struct lock_class_key *key)
23f78d4a 1588{
f5a98866
TG
1589 debug_check_no_locks_freed((void *)lock, sizeof(*lock));
1590 lockdep_init_map(&lock->dep_map, name, key, 0);
23f78d4a 1591
f5a98866 1592 __rt_mutex_basic_init(lock);
23f78d4a
IM
1593}
1594EXPORT_SYMBOL_GPL(__rt_mutex_init);
0cdbee99
IM
1595
1596/**
1597 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1598 * proxy owner
1599 *
84d82ec5 1600 * @lock: the rt_mutex to be locked
0cdbee99
IM
1601 * @proxy_owner:the task to set as owner
1602 *
1603 * No locking. Caller has to do serializing itself
84d82ec5
TG
1604 *
1605 * Special API call for PI-futex support. This initializes the rtmutex and
1606 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1607 * possible at this point because the pi_state which contains the rtmutex
1608 * is not yet visible to other tasks.
0cdbee99
IM
1609 */
1610void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1611 struct task_struct *proxy_owner)
1612{
f5a98866 1613 __rt_mutex_basic_init(lock);
8161239a 1614 rt_mutex_set_owner(lock, proxy_owner);
0cdbee99
IM
1615}
1616
1617/**
1618 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1619 *
84d82ec5 1620 * @lock: the rt_mutex to be locked
0cdbee99
IM
1621 *
1622 * No locking. Caller has to do serializing itself
84d82ec5
TG
1623 *
1624 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1625 * (debugging) state. Concurrent operations on this rt_mutex are not
1626 * possible because it belongs to the pi_state which is about to be freed
1627 * and it is not longer visible to other tasks.
0cdbee99 1628 */
2156ac19 1629void rt_mutex_proxy_unlock(struct rt_mutex *lock)
0cdbee99
IM
1630{
1631 debug_rt_mutex_proxy_unlock(lock);
8161239a 1632 rt_mutex_set_owner(lock, NULL);
0cdbee99
IM
1633}
1634
1a1fb985
TG
1635/**
1636 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1637 * @lock: the rt_mutex to take
1638 * @waiter: the pre-initialized rt_mutex_waiter
1639 * @task: the task to prepare
1640 *
1641 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1642 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1643 *
1644 * NOTE: does _NOT_ remove the @waiter on failure; must either call
1645 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1646 *
1647 * Returns:
1648 * 0 - task blocked on lock
1649 * 1 - acquired the lock for task, caller should wake it up
1650 * <0 - error
1651 *
1652 * Special API call for PI-futex support.
1653 */
56222b21 1654int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
8dac456a 1655 struct rt_mutex_waiter *waiter,
c051b21f 1656 struct task_struct *task)
8dac456a
DH
1657{
1658 int ret;
1659
1a1fb985
TG
1660 lockdep_assert_held(&lock->wait_lock);
1661
56222b21 1662 if (try_to_take_rt_mutex(lock, task, NULL))
8dac456a 1663 return 1;
8dac456a 1664
3d5c9340 1665 /* We enforce deadlock detection for futexes */
8930ed80
TG
1666 ret = task_blocks_on_rt_mutex(lock, waiter, task,
1667 RT_MUTEX_FULL_CHAINWALK);
8dac456a 1668
8161239a 1669 if (ret && !rt_mutex_owner(lock)) {
8dac456a
DH
1670 /*
1671 * Reset the return value. We might have
1672 * returned with -EDEADLK and the owner
1673 * released the lock while we were walking the
1674 * pi chain. Let the waiter sort it out.
1675 */
1676 ret = 0;
1677 }
8161239a 1678
8dac456a
DH
1679 return ret;
1680}
1681
56222b21
PZ
1682/**
1683 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1684 * @lock: the rt_mutex to take
1685 * @waiter: the pre-initialized rt_mutex_waiter
1686 * @task: the task to prepare
1687 *
1a1fb985
TG
1688 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1689 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1690 *
1691 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1692 * on failure.
1693 *
56222b21
PZ
1694 * Returns:
1695 * 0 - task blocked on lock
1696 * 1 - acquired the lock for task, caller should wake it up
1697 * <0 - error
1698 *
1a1fb985 1699 * Special API call for PI-futex support.
56222b21
PZ
1700 */
1701int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1702 struct rt_mutex_waiter *waiter,
1703 struct task_struct *task)
1704{
1705 int ret;
1706
1707 raw_spin_lock_irq(&lock->wait_lock);
1708 ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1a1fb985
TG
1709 if (unlikely(ret))
1710 remove_waiter(lock, waiter);
56222b21
PZ
1711 raw_spin_unlock_irq(&lock->wait_lock);
1712
1713 return ret;
1714}
1715
8dac456a 1716/**
38d589f2 1717 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
8dac456a
DH
1718 * @lock: the rt_mutex we were woken on
1719 * @to: the timeout, null if none. hrtimer should already have
c051b21f 1720 * been started.
8dac456a 1721 * @waiter: the pre-initialized rt_mutex_waiter
8dac456a 1722 *
c034f48e 1723 * Wait for the lock acquisition started on our behalf by
38d589f2
PZ
1724 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1725 * rt_mutex_cleanup_proxy_lock().
8dac456a
DH
1726 *
1727 * Returns:
1728 * 0 - success
c051b21f 1729 * <0 - error, one of -EINTR, -ETIMEDOUT
8dac456a 1730 *
38d589f2 1731 * Special API call for PI-futex support
8dac456a 1732 */
38d589f2 1733int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
8dac456a 1734 struct hrtimer_sleeper *to,
c051b21f 1735 struct rt_mutex_waiter *waiter)
8dac456a
DH
1736{
1737 int ret;
1738
b4abf910 1739 raw_spin_lock_irq(&lock->wait_lock);
afffc6c1 1740 /* sleep on the mutex */
04dc1b2f 1741 set_current_state(TASK_INTERRUPTIBLE);
8161239a 1742 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
04dc1b2f
PZ
1743 /*
1744 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1745 * have to fix that up.
1746 */
1747 fixup_rt_mutex_waiters(lock);
b4abf910 1748 raw_spin_unlock_irq(&lock->wait_lock);
8dac456a 1749
8dac456a
DH
1750 return ret;
1751}
38d589f2
PZ
1752
1753/**
1754 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1755 * @lock: the rt_mutex we were woken on
1756 * @waiter: the pre-initialized rt_mutex_waiter
1757 *
1a1fb985
TG
1758 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1759 * rt_mutex_wait_proxy_lock().
38d589f2
PZ
1760 *
1761 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1762 * in fact still be granted ownership until we're removed. Therefore we can
1763 * find we are in fact the owner and must disregard the
1764 * rt_mutex_wait_proxy_lock() failure.
1765 *
1766 * Returns:
1767 * true - did the cleanup, we done.
1768 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1769 * caller should disregards its return value.
1770 *
1771 * Special API call for PI-futex support
1772 */
1773bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1774 struct rt_mutex_waiter *waiter)
1775{
1776 bool cleanup = false;
1777
1778 raw_spin_lock_irq(&lock->wait_lock);
04dc1b2f
PZ
1779 /*
1780 * Do an unconditional try-lock, this deals with the lock stealing
1781 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1782 * sets a NULL owner.
1783 *
1784 * We're not interested in the return value, because the subsequent
1785 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1786 * we will own the lock and it will have removed the waiter. If we
1787 * failed the trylock, we're still not owner and we need to remove
1788 * ourselves.
1789 */
1790 try_to_take_rt_mutex(lock, current, waiter);
38d589f2
PZ
1791 /*
1792 * Unless we're the owner; we're still enqueued on the wait_list.
1793 * So check if we became owner, if not, take us off the wait_list.
1794 */
1795 if (rt_mutex_owner(lock) != current) {
1796 remove_waiter(lock, waiter);
38d589f2
PZ
1797 cleanup = true;
1798 }
cfafcd11
PZ
1799 /*
1800 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1801 * have to fix that up.
1802 */
1803 fixup_rt_mutex_waiters(lock);
1804
38d589f2
PZ
1805 raw_spin_unlock_irq(&lock->wait_lock);
1806
1807 return cleanup;
1808}
fae37fee
TG
1809
1810#ifdef CONFIG_DEBUG_RT_MUTEXES
1811void rt_mutex_debug_task_free(struct task_struct *task)
1812{
1813 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
1814 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
1815}
1816#endif