]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - kernel/perf_counter.c
perf_counter: output objects
[mirror_ubuntu-eoan-kernel.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7b732a75
PZ
7 *
8 * For licensing details see kernel-base/COPYING
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
04289bb9 15#include <linux/file.h>
0793a61d
TG
16#include <linux/poll.h>
17#include <linux/sysfs.h>
18#include <linux/ptrace.h>
19#include <linux/percpu.h>
b9cacc7b
PZ
20#include <linux/vmstat.h>
21#include <linux/hardirq.h>
22#include <linux/rculist.h>
0793a61d
TG
23#include <linux/uaccess.h>
24#include <linux/syscalls.h>
25#include <linux/anon_inodes.h>
aa9c4c0f 26#include <linux/kernel_stat.h>
0793a61d
TG
27#include <linux/perf_counter.h>
28
4e193bd4
TB
29#include <asm/irq_regs.h>
30
0793a61d
TG
31/*
32 * Each CPU has a list of per CPU counters:
33 */
34DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
35
088e2852 36int perf_max_counters __read_mostly = 1;
0793a61d
TG
37static int perf_reserved_percpu __read_mostly;
38static int perf_overcommit __read_mostly = 1;
39
40/*
41 * Mutex for (sysadmin-configurable) counter reservations:
42 */
43static DEFINE_MUTEX(perf_resource_mutex);
44
45/*
46 * Architecture provided APIs - weak aliases:
47 */
5c92d124 48extern __weak const struct hw_perf_counter_ops *
621a01ea 49hw_perf_counter_init(struct perf_counter *counter)
0793a61d 50{
ff6f0541 51 return NULL;
0793a61d
TG
52}
53
01b2838c 54u64 __weak hw_perf_save_disable(void) { return 0; }
01ea1cca 55void __weak hw_perf_restore(u64 ctrl) { barrier(); }
01d0287f 56void __weak hw_perf_counter_setup(int cpu) { barrier(); }
3cbed429
PM
57int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
58 struct perf_cpu_context *cpuctx,
59 struct perf_counter_context *ctx, int cpu)
60{
61 return 0;
62}
0793a61d 63
4eb96fcf
PM
64void __weak perf_counter_print_debug(void) { }
65
04289bb9
IM
66static void
67list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
68{
69 struct perf_counter *group_leader = counter->group_leader;
70
71 /*
72 * Depending on whether it is a standalone or sibling counter,
73 * add it straight to the context's counter list, or to the group
74 * leader's sibling list:
75 */
76 if (counter->group_leader == counter)
77 list_add_tail(&counter->list_entry, &ctx->counter_list);
5c148194 78 else {
04289bb9 79 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
5c148194
PZ
80 group_leader->nr_siblings++;
81 }
592903cd
PZ
82
83 list_add_rcu(&counter->event_entry, &ctx->event_list);
04289bb9
IM
84}
85
86static void
87list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
88{
89 struct perf_counter *sibling, *tmp;
90
91 list_del_init(&counter->list_entry);
592903cd 92 list_del_rcu(&counter->event_entry);
04289bb9 93
5c148194
PZ
94 if (counter->group_leader != counter)
95 counter->group_leader->nr_siblings--;
96
04289bb9
IM
97 /*
98 * If this was a group counter with sibling counters then
99 * upgrade the siblings to singleton counters by adding them
100 * to the context list directly:
101 */
102 list_for_each_entry_safe(sibling, tmp,
103 &counter->sibling_list, list_entry) {
104
75564232 105 list_move_tail(&sibling->list_entry, &ctx->counter_list);
04289bb9
IM
106 sibling->group_leader = sibling;
107 }
108}
109
3b6f9e5c
PM
110static void
111counter_sched_out(struct perf_counter *counter,
112 struct perf_cpu_context *cpuctx,
113 struct perf_counter_context *ctx)
114{
115 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
116 return;
117
118 counter->state = PERF_COUNTER_STATE_INACTIVE;
119 counter->hw_ops->disable(counter);
120 counter->oncpu = -1;
121
122 if (!is_software_counter(counter))
123 cpuctx->active_oncpu--;
124 ctx->nr_active--;
125 if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
126 cpuctx->exclusive = 0;
127}
128
d859e29f
PM
129static void
130group_sched_out(struct perf_counter *group_counter,
131 struct perf_cpu_context *cpuctx,
132 struct perf_counter_context *ctx)
133{
134 struct perf_counter *counter;
135
136 if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
137 return;
138
139 counter_sched_out(group_counter, cpuctx, ctx);
140
141 /*
142 * Schedule out siblings (if any):
143 */
144 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
145 counter_sched_out(counter, cpuctx, ctx);
146
147 if (group_counter->hw_event.exclusive)
148 cpuctx->exclusive = 0;
149}
150
0793a61d
TG
151/*
152 * Cross CPU call to remove a performance counter
153 *
154 * We disable the counter on the hardware level first. After that we
155 * remove it from the context list.
156 */
04289bb9 157static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
158{
159 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
160 struct perf_counter *counter = info;
161 struct perf_counter_context *ctx = counter->ctx;
9b51f66d 162 unsigned long flags;
5c92d124 163 u64 perf_flags;
0793a61d
TG
164
165 /*
166 * If this is a task context, we need to check whether it is
167 * the current task context of this cpu. If not it has been
168 * scheduled out before the smp call arrived.
169 */
170 if (ctx->task && cpuctx->task_ctx != ctx)
171 return;
172
aa9c4c0f
IM
173 curr_rq_lock_irq_save(&flags);
174 spin_lock(&ctx->lock);
0793a61d 175
3b6f9e5c
PM
176 counter_sched_out(counter, cpuctx, ctx);
177
178 counter->task = NULL;
0793a61d
TG
179 ctx->nr_counters--;
180
181 /*
182 * Protect the list operation against NMI by disabling the
183 * counters on a global level. NOP for non NMI based counters.
184 */
01b2838c 185 perf_flags = hw_perf_save_disable();
04289bb9 186 list_del_counter(counter, ctx);
01b2838c 187 hw_perf_restore(perf_flags);
0793a61d
TG
188
189 if (!ctx->task) {
190 /*
191 * Allow more per task counters with respect to the
192 * reservation:
193 */
194 cpuctx->max_pertask =
195 min(perf_max_counters - ctx->nr_counters,
196 perf_max_counters - perf_reserved_percpu);
197 }
198
aa9c4c0f
IM
199 spin_unlock(&ctx->lock);
200 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
201}
202
203
204/*
205 * Remove the counter from a task's (or a CPU's) list of counters.
206 *
d859e29f 207 * Must be called with counter->mutex and ctx->mutex held.
0793a61d
TG
208 *
209 * CPU counters are removed with a smp call. For task counters we only
210 * call when the task is on a CPU.
211 */
04289bb9 212static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
213{
214 struct perf_counter_context *ctx = counter->ctx;
215 struct task_struct *task = ctx->task;
216
217 if (!task) {
218 /*
219 * Per cpu counters are removed via an smp call and
220 * the removal is always sucessful.
221 */
222 smp_call_function_single(counter->cpu,
04289bb9 223 __perf_counter_remove_from_context,
0793a61d
TG
224 counter, 1);
225 return;
226 }
227
228retry:
04289bb9 229 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
230 counter);
231
232 spin_lock_irq(&ctx->lock);
233 /*
234 * If the context is active we need to retry the smp call.
235 */
04289bb9 236 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
237 spin_unlock_irq(&ctx->lock);
238 goto retry;
239 }
240
241 /*
242 * The lock prevents that this context is scheduled in so we
04289bb9 243 * can remove the counter safely, if the call above did not
0793a61d
TG
244 * succeed.
245 */
04289bb9 246 if (!list_empty(&counter->list_entry)) {
0793a61d 247 ctx->nr_counters--;
04289bb9 248 list_del_counter(counter, ctx);
0793a61d
TG
249 counter->task = NULL;
250 }
251 spin_unlock_irq(&ctx->lock);
252}
253
d859e29f
PM
254/*
255 * Cross CPU call to disable a performance counter
256 */
257static void __perf_counter_disable(void *info)
258{
259 struct perf_counter *counter = info;
260 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
261 struct perf_counter_context *ctx = counter->ctx;
262 unsigned long flags;
263
264 /*
265 * If this is a per-task counter, need to check whether this
266 * counter's task is the current task on this cpu.
267 */
268 if (ctx->task && cpuctx->task_ctx != ctx)
269 return;
270
271 curr_rq_lock_irq_save(&flags);
272 spin_lock(&ctx->lock);
273
274 /*
275 * If the counter is on, turn it off.
276 * If it is in error state, leave it in error state.
277 */
278 if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
279 if (counter == counter->group_leader)
280 group_sched_out(counter, cpuctx, ctx);
281 else
282 counter_sched_out(counter, cpuctx, ctx);
283 counter->state = PERF_COUNTER_STATE_OFF;
284 }
285
286 spin_unlock(&ctx->lock);
287 curr_rq_unlock_irq_restore(&flags);
288}
289
290/*
291 * Disable a counter.
292 */
293static void perf_counter_disable(struct perf_counter *counter)
294{
295 struct perf_counter_context *ctx = counter->ctx;
296 struct task_struct *task = ctx->task;
297
298 if (!task) {
299 /*
300 * Disable the counter on the cpu that it's on
301 */
302 smp_call_function_single(counter->cpu, __perf_counter_disable,
303 counter, 1);
304 return;
305 }
306
307 retry:
308 task_oncpu_function_call(task, __perf_counter_disable, counter);
309
310 spin_lock_irq(&ctx->lock);
311 /*
312 * If the counter is still active, we need to retry the cross-call.
313 */
314 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
315 spin_unlock_irq(&ctx->lock);
316 goto retry;
317 }
318
319 /*
320 * Since we have the lock this context can't be scheduled
321 * in, so we can change the state safely.
322 */
323 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
324 counter->state = PERF_COUNTER_STATE_OFF;
325
326 spin_unlock_irq(&ctx->lock);
327}
328
329/*
330 * Disable a counter and all its children.
331 */
332static void perf_counter_disable_family(struct perf_counter *counter)
333{
334 struct perf_counter *child;
335
336 perf_counter_disable(counter);
337
338 /*
339 * Lock the mutex to protect the list of children
340 */
341 mutex_lock(&counter->mutex);
342 list_for_each_entry(child, &counter->child_list, child_list)
343 perf_counter_disable(child);
344 mutex_unlock(&counter->mutex);
345}
346
235c7fc7
IM
347static int
348counter_sched_in(struct perf_counter *counter,
349 struct perf_cpu_context *cpuctx,
350 struct perf_counter_context *ctx,
351 int cpu)
352{
3b6f9e5c 353 if (counter->state <= PERF_COUNTER_STATE_OFF)
235c7fc7
IM
354 return 0;
355
356 counter->state = PERF_COUNTER_STATE_ACTIVE;
357 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
358 /*
359 * The new state must be visible before we turn it on in the hardware:
360 */
361 smp_wmb();
362
363 if (counter->hw_ops->enable(counter)) {
364 counter->state = PERF_COUNTER_STATE_INACTIVE;
365 counter->oncpu = -1;
366 return -EAGAIN;
367 }
368
3b6f9e5c
PM
369 if (!is_software_counter(counter))
370 cpuctx->active_oncpu++;
235c7fc7
IM
371 ctx->nr_active++;
372
3b6f9e5c
PM
373 if (counter->hw_event.exclusive)
374 cpuctx->exclusive = 1;
375
235c7fc7
IM
376 return 0;
377}
378
3b6f9e5c
PM
379/*
380 * Return 1 for a group consisting entirely of software counters,
381 * 0 if the group contains any hardware counters.
382 */
383static int is_software_only_group(struct perf_counter *leader)
384{
385 struct perf_counter *counter;
386
387 if (!is_software_counter(leader))
388 return 0;
5c148194 389
3b6f9e5c
PM
390 list_for_each_entry(counter, &leader->sibling_list, list_entry)
391 if (!is_software_counter(counter))
392 return 0;
5c148194 393
3b6f9e5c
PM
394 return 1;
395}
396
397/*
398 * Work out whether we can put this counter group on the CPU now.
399 */
400static int group_can_go_on(struct perf_counter *counter,
401 struct perf_cpu_context *cpuctx,
402 int can_add_hw)
403{
404 /*
405 * Groups consisting entirely of software counters can always go on.
406 */
407 if (is_software_only_group(counter))
408 return 1;
409 /*
410 * If an exclusive group is already on, no other hardware
411 * counters can go on.
412 */
413 if (cpuctx->exclusive)
414 return 0;
415 /*
416 * If this group is exclusive and there are already
417 * counters on the CPU, it can't go on.
418 */
419 if (counter->hw_event.exclusive && cpuctx->active_oncpu)
420 return 0;
421 /*
422 * Otherwise, try to add it if all previous groups were able
423 * to go on.
424 */
425 return can_add_hw;
426}
427
0793a61d 428/*
235c7fc7 429 * Cross CPU call to install and enable a performance counter
0793a61d
TG
430 */
431static void __perf_install_in_context(void *info)
432{
433 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
434 struct perf_counter *counter = info;
435 struct perf_counter_context *ctx = counter->ctx;
d859e29f 436 struct perf_counter *leader = counter->group_leader;
0793a61d 437 int cpu = smp_processor_id();
9b51f66d 438 unsigned long flags;
5c92d124 439 u64 perf_flags;
3b6f9e5c 440 int err;
0793a61d
TG
441
442 /*
443 * If this is a task context, we need to check whether it is
444 * the current task context of this cpu. If not it has been
445 * scheduled out before the smp call arrived.
446 */
447 if (ctx->task && cpuctx->task_ctx != ctx)
448 return;
449
aa9c4c0f
IM
450 curr_rq_lock_irq_save(&flags);
451 spin_lock(&ctx->lock);
0793a61d
TG
452
453 /*
454 * Protect the list operation against NMI by disabling the
455 * counters on a global level. NOP for non NMI based counters.
456 */
01b2838c 457 perf_flags = hw_perf_save_disable();
0793a61d 458
235c7fc7 459 list_add_counter(counter, ctx);
0793a61d 460 ctx->nr_counters++;
c07c99b6 461 counter->prev_state = PERF_COUNTER_STATE_OFF;
0793a61d 462
d859e29f
PM
463 /*
464 * Don't put the counter on if it is disabled or if
465 * it is in a group and the group isn't on.
466 */
467 if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
468 (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
469 goto unlock;
470
3b6f9e5c
PM
471 /*
472 * An exclusive counter can't go on if there are already active
473 * hardware counters, and no hardware counter can go on if there
474 * is already an exclusive counter on.
475 */
d859e29f 476 if (!group_can_go_on(counter, cpuctx, 1))
3b6f9e5c
PM
477 err = -EEXIST;
478 else
479 err = counter_sched_in(counter, cpuctx, ctx, cpu);
480
d859e29f
PM
481 if (err) {
482 /*
483 * This counter couldn't go on. If it is in a group
484 * then we have to pull the whole group off.
485 * If the counter group is pinned then put it in error state.
486 */
487 if (leader != counter)
488 group_sched_out(leader, cpuctx, ctx);
489 if (leader->hw_event.pinned)
490 leader->state = PERF_COUNTER_STATE_ERROR;
491 }
0793a61d 492
3b6f9e5c 493 if (!err && !ctx->task && cpuctx->max_pertask)
0793a61d
TG
494 cpuctx->max_pertask--;
495
d859e29f 496 unlock:
235c7fc7
IM
497 hw_perf_restore(perf_flags);
498
aa9c4c0f
IM
499 spin_unlock(&ctx->lock);
500 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
501}
502
503/*
504 * Attach a performance counter to a context
505 *
506 * First we add the counter to the list with the hardware enable bit
507 * in counter->hw_config cleared.
508 *
509 * If the counter is attached to a task which is on a CPU we use a smp
510 * call to enable it in the task context. The task might have been
511 * scheduled away, but we check this in the smp call again.
d859e29f
PM
512 *
513 * Must be called with ctx->mutex held.
0793a61d
TG
514 */
515static void
516perf_install_in_context(struct perf_counter_context *ctx,
517 struct perf_counter *counter,
518 int cpu)
519{
520 struct task_struct *task = ctx->task;
521
0793a61d
TG
522 if (!task) {
523 /*
524 * Per cpu counters are installed via an smp call and
525 * the install is always sucessful.
526 */
527 smp_call_function_single(cpu, __perf_install_in_context,
528 counter, 1);
529 return;
530 }
531
532 counter->task = task;
533retry:
534 task_oncpu_function_call(task, __perf_install_in_context,
535 counter);
536
537 spin_lock_irq(&ctx->lock);
538 /*
0793a61d
TG
539 * we need to retry the smp call.
540 */
d859e29f 541 if (ctx->is_active && list_empty(&counter->list_entry)) {
0793a61d
TG
542 spin_unlock_irq(&ctx->lock);
543 goto retry;
544 }
545
546 /*
547 * The lock prevents that this context is scheduled in so we
548 * can add the counter safely, if it the call above did not
549 * succeed.
550 */
04289bb9
IM
551 if (list_empty(&counter->list_entry)) {
552 list_add_counter(counter, ctx);
0793a61d
TG
553 ctx->nr_counters++;
554 }
555 spin_unlock_irq(&ctx->lock);
556}
557
d859e29f
PM
558/*
559 * Cross CPU call to enable a performance counter
560 */
561static void __perf_counter_enable(void *info)
04289bb9 562{
d859e29f
PM
563 struct perf_counter *counter = info;
564 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
565 struct perf_counter_context *ctx = counter->ctx;
566 struct perf_counter *leader = counter->group_leader;
567 unsigned long flags;
568 int err;
04289bb9 569
d859e29f
PM
570 /*
571 * If this is a per-task counter, need to check whether this
572 * counter's task is the current task on this cpu.
573 */
574 if (ctx->task && cpuctx->task_ctx != ctx)
3cbed429
PM
575 return;
576
d859e29f
PM
577 curr_rq_lock_irq_save(&flags);
578 spin_lock(&ctx->lock);
579
c07c99b6 580 counter->prev_state = counter->state;
d859e29f
PM
581 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
582 goto unlock;
583 counter->state = PERF_COUNTER_STATE_INACTIVE;
04289bb9
IM
584
585 /*
d859e29f
PM
586 * If the counter is in a group and isn't the group leader,
587 * then don't put it on unless the group is on.
04289bb9 588 */
d859e29f
PM
589 if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
590 goto unlock;
3b6f9e5c 591
d859e29f
PM
592 if (!group_can_go_on(counter, cpuctx, 1))
593 err = -EEXIST;
594 else
595 err = counter_sched_in(counter, cpuctx, ctx,
596 smp_processor_id());
597
598 if (err) {
599 /*
600 * If this counter can't go on and it's part of a
601 * group, then the whole group has to come off.
602 */
603 if (leader != counter)
604 group_sched_out(leader, cpuctx, ctx);
605 if (leader->hw_event.pinned)
606 leader->state = PERF_COUNTER_STATE_ERROR;
607 }
608
609 unlock:
610 spin_unlock(&ctx->lock);
611 curr_rq_unlock_irq_restore(&flags);
612}
613
614/*
615 * Enable a counter.
616 */
617static void perf_counter_enable(struct perf_counter *counter)
618{
619 struct perf_counter_context *ctx = counter->ctx;
620 struct task_struct *task = ctx->task;
621
622 if (!task) {
623 /*
624 * Enable the counter on the cpu that it's on
625 */
626 smp_call_function_single(counter->cpu, __perf_counter_enable,
627 counter, 1);
628 return;
629 }
630
631 spin_lock_irq(&ctx->lock);
632 if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
633 goto out;
634
635 /*
636 * If the counter is in error state, clear that first.
637 * That way, if we see the counter in error state below, we
638 * know that it has gone back into error state, as distinct
639 * from the task having been scheduled away before the
640 * cross-call arrived.
641 */
642 if (counter->state == PERF_COUNTER_STATE_ERROR)
643 counter->state = PERF_COUNTER_STATE_OFF;
644
645 retry:
646 spin_unlock_irq(&ctx->lock);
647 task_oncpu_function_call(task, __perf_counter_enable, counter);
648
649 spin_lock_irq(&ctx->lock);
650
651 /*
652 * If the context is active and the counter is still off,
653 * we need to retry the cross-call.
654 */
655 if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
656 goto retry;
657
658 /*
659 * Since we have the lock this context can't be scheduled
660 * in, so we can change the state safely.
661 */
662 if (counter->state == PERF_COUNTER_STATE_OFF)
663 counter->state = PERF_COUNTER_STATE_INACTIVE;
664 out:
665 spin_unlock_irq(&ctx->lock);
666}
667
668/*
669 * Enable a counter and all its children.
670 */
671static void perf_counter_enable_family(struct perf_counter *counter)
672{
673 struct perf_counter *child;
674
675 perf_counter_enable(counter);
676
677 /*
678 * Lock the mutex to protect the list of children
679 */
680 mutex_lock(&counter->mutex);
681 list_for_each_entry(child, &counter->child_list, child_list)
682 perf_counter_enable(child);
683 mutex_unlock(&counter->mutex);
04289bb9
IM
684}
685
235c7fc7
IM
686void __perf_counter_sched_out(struct perf_counter_context *ctx,
687 struct perf_cpu_context *cpuctx)
688{
689 struct perf_counter *counter;
3cbed429 690 u64 flags;
235c7fc7 691
d859e29f
PM
692 spin_lock(&ctx->lock);
693 ctx->is_active = 0;
235c7fc7 694 if (likely(!ctx->nr_counters))
d859e29f 695 goto out;
235c7fc7 696
3cbed429 697 flags = hw_perf_save_disable();
235c7fc7
IM
698 if (ctx->nr_active) {
699 list_for_each_entry(counter, &ctx->counter_list, list_entry)
700 group_sched_out(counter, cpuctx, ctx);
701 }
3cbed429 702 hw_perf_restore(flags);
d859e29f 703 out:
235c7fc7
IM
704 spin_unlock(&ctx->lock);
705}
706
0793a61d
TG
707/*
708 * Called from scheduler to remove the counters of the current task,
709 * with interrupts disabled.
710 *
711 * We stop each counter and update the counter value in counter->count.
712 *
7671581f 713 * This does not protect us against NMI, but disable()
0793a61d
TG
714 * sets the disabled bit in the control field of counter _before_
715 * accessing the counter control register. If a NMI hits, then it will
716 * not restart the counter.
717 */
718void perf_counter_task_sched_out(struct task_struct *task, int cpu)
719{
720 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
721 struct perf_counter_context *ctx = &task->perf_counter_ctx;
4a0deca6 722 struct pt_regs *regs;
0793a61d
TG
723
724 if (likely(!cpuctx->task_ctx))
725 return;
726
4a0deca6
PZ
727 regs = task_pt_regs(task);
728 perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
235c7fc7
IM
729 __perf_counter_sched_out(ctx, cpuctx);
730
0793a61d
TG
731 cpuctx->task_ctx = NULL;
732}
733
235c7fc7 734static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
04289bb9 735{
235c7fc7 736 __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
04289bb9
IM
737}
738
7995888f 739static int
04289bb9
IM
740group_sched_in(struct perf_counter *group_counter,
741 struct perf_cpu_context *cpuctx,
742 struct perf_counter_context *ctx,
743 int cpu)
744{
95cdd2e7 745 struct perf_counter *counter, *partial_group;
3cbed429
PM
746 int ret;
747
748 if (group_counter->state == PERF_COUNTER_STATE_OFF)
749 return 0;
750
751 ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
752 if (ret)
753 return ret < 0 ? ret : 0;
04289bb9 754
c07c99b6 755 group_counter->prev_state = group_counter->state;
95cdd2e7
IM
756 if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
757 return -EAGAIN;
04289bb9
IM
758
759 /*
760 * Schedule in siblings as one group (if any):
761 */
7995888f 762 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
c07c99b6 763 counter->prev_state = counter->state;
95cdd2e7
IM
764 if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
765 partial_group = counter;
766 goto group_error;
767 }
95cdd2e7
IM
768 }
769
3cbed429 770 return 0;
95cdd2e7
IM
771
772group_error:
773 /*
774 * Groups can be scheduled in as one unit only, so undo any
775 * partial group before returning:
776 */
777 list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
778 if (counter == partial_group)
779 break;
780 counter_sched_out(counter, cpuctx, ctx);
7995888f 781 }
95cdd2e7 782 counter_sched_out(group_counter, cpuctx, ctx);
7995888f 783
95cdd2e7 784 return -EAGAIN;
04289bb9
IM
785}
786
235c7fc7
IM
787static void
788__perf_counter_sched_in(struct perf_counter_context *ctx,
789 struct perf_cpu_context *cpuctx, int cpu)
0793a61d 790{
0793a61d 791 struct perf_counter *counter;
3cbed429 792 u64 flags;
dd0e6ba2 793 int can_add_hw = 1;
0793a61d 794
d859e29f
PM
795 spin_lock(&ctx->lock);
796 ctx->is_active = 1;
0793a61d 797 if (likely(!ctx->nr_counters))
d859e29f 798 goto out;
0793a61d 799
3cbed429 800 flags = hw_perf_save_disable();
3b6f9e5c
PM
801
802 /*
803 * First go through the list and put on any pinned groups
804 * in order to give them the best chance of going on.
805 */
806 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
807 if (counter->state <= PERF_COUNTER_STATE_OFF ||
808 !counter->hw_event.pinned)
809 continue;
810 if (counter->cpu != -1 && counter->cpu != cpu)
811 continue;
812
813 if (group_can_go_on(counter, cpuctx, 1))
814 group_sched_in(counter, cpuctx, ctx, cpu);
815
816 /*
817 * If this pinned group hasn't been scheduled,
818 * put it in error state.
819 */
820 if (counter->state == PERF_COUNTER_STATE_INACTIVE)
821 counter->state = PERF_COUNTER_STATE_ERROR;
822 }
823
04289bb9 824 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c
PM
825 /*
826 * Ignore counters in OFF or ERROR state, and
827 * ignore pinned counters since we did them already.
828 */
829 if (counter->state <= PERF_COUNTER_STATE_OFF ||
830 counter->hw_event.pinned)
831 continue;
832
04289bb9
IM
833 /*
834 * Listen to the 'cpu' scheduling filter constraint
835 * of counters:
836 */
0793a61d
TG
837 if (counter->cpu != -1 && counter->cpu != cpu)
838 continue;
839
3b6f9e5c 840 if (group_can_go_on(counter, cpuctx, can_add_hw)) {
dd0e6ba2
PM
841 if (group_sched_in(counter, cpuctx, ctx, cpu))
842 can_add_hw = 0;
3b6f9e5c 843 }
0793a61d 844 }
3cbed429 845 hw_perf_restore(flags);
d859e29f 846 out:
0793a61d 847 spin_unlock(&ctx->lock);
235c7fc7
IM
848}
849
850/*
851 * Called from scheduler to add the counters of the current task
852 * with interrupts disabled.
853 *
854 * We restore the counter value and then enable it.
855 *
856 * This does not protect us against NMI, but enable()
857 * sets the enabled bit in the control field of counter _before_
858 * accessing the counter control register. If a NMI hits, then it will
859 * keep the counter running.
860 */
861void perf_counter_task_sched_in(struct task_struct *task, int cpu)
862{
863 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
864 struct perf_counter_context *ctx = &task->perf_counter_ctx;
04289bb9 865
235c7fc7 866 __perf_counter_sched_in(ctx, cpuctx, cpu);
0793a61d
TG
867 cpuctx->task_ctx = ctx;
868}
869
235c7fc7
IM
870static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
871{
872 struct perf_counter_context *ctx = &cpuctx->ctx;
873
874 __perf_counter_sched_in(ctx, cpuctx, cpu);
875}
876
1d1c7ddb
IM
877int perf_counter_task_disable(void)
878{
879 struct task_struct *curr = current;
880 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
881 struct perf_counter *counter;
aa9c4c0f 882 unsigned long flags;
1d1c7ddb
IM
883 u64 perf_flags;
884 int cpu;
885
886 if (likely(!ctx->nr_counters))
887 return 0;
888
aa9c4c0f 889 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
890 cpu = smp_processor_id();
891
aa9c4c0f
IM
892 /* force the update of the task clock: */
893 __task_delta_exec(curr, 1);
894
1d1c7ddb
IM
895 perf_counter_task_sched_out(curr, cpu);
896
897 spin_lock(&ctx->lock);
898
899 /*
900 * Disable all the counters:
901 */
902 perf_flags = hw_perf_save_disable();
903
3b6f9e5c
PM
904 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
905 if (counter->state != PERF_COUNTER_STATE_ERROR)
906 counter->state = PERF_COUNTER_STATE_OFF;
907 }
9b51f66d 908
1d1c7ddb
IM
909 hw_perf_restore(perf_flags);
910
911 spin_unlock(&ctx->lock);
912
aa9c4c0f 913 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
914
915 return 0;
916}
917
918int perf_counter_task_enable(void)
919{
920 struct task_struct *curr = current;
921 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
922 struct perf_counter *counter;
aa9c4c0f 923 unsigned long flags;
1d1c7ddb
IM
924 u64 perf_flags;
925 int cpu;
926
927 if (likely(!ctx->nr_counters))
928 return 0;
929
aa9c4c0f 930 curr_rq_lock_irq_save(&flags);
1d1c7ddb
IM
931 cpu = smp_processor_id();
932
aa9c4c0f
IM
933 /* force the update of the task clock: */
934 __task_delta_exec(curr, 1);
935
235c7fc7
IM
936 perf_counter_task_sched_out(curr, cpu);
937
1d1c7ddb
IM
938 spin_lock(&ctx->lock);
939
940 /*
941 * Disable all the counters:
942 */
943 perf_flags = hw_perf_save_disable();
944
945 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
3b6f9e5c 946 if (counter->state > PERF_COUNTER_STATE_OFF)
1d1c7ddb 947 continue;
6a930700 948 counter->state = PERF_COUNTER_STATE_INACTIVE;
aa9c4c0f 949 counter->hw_event.disabled = 0;
1d1c7ddb
IM
950 }
951 hw_perf_restore(perf_flags);
952
953 spin_unlock(&ctx->lock);
954
955 perf_counter_task_sched_in(curr, cpu);
956
aa9c4c0f 957 curr_rq_unlock_irq_restore(&flags);
1d1c7ddb
IM
958
959 return 0;
960}
961
235c7fc7
IM
962/*
963 * Round-robin a context's counters:
964 */
965static void rotate_ctx(struct perf_counter_context *ctx)
0793a61d 966{
0793a61d 967 struct perf_counter *counter;
5c92d124 968 u64 perf_flags;
0793a61d 969
235c7fc7 970 if (!ctx->nr_counters)
0793a61d
TG
971 return;
972
0793a61d 973 spin_lock(&ctx->lock);
0793a61d 974 /*
04289bb9 975 * Rotate the first entry last (works just fine for group counters too):
0793a61d 976 */
01b2838c 977 perf_flags = hw_perf_save_disable();
04289bb9 978 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
75564232 979 list_move_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
980 break;
981 }
01b2838c 982 hw_perf_restore(perf_flags);
0793a61d
TG
983
984 spin_unlock(&ctx->lock);
235c7fc7
IM
985}
986
987void perf_counter_task_tick(struct task_struct *curr, int cpu)
988{
989 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
990 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
991 const int rotate_percpu = 0;
992
993 if (rotate_percpu)
994 perf_counter_cpu_sched_out(cpuctx);
995 perf_counter_task_sched_out(curr, cpu);
0793a61d 996
235c7fc7
IM
997 if (rotate_percpu)
998 rotate_ctx(&cpuctx->ctx);
999 rotate_ctx(ctx);
1000
1001 if (rotate_percpu)
1002 perf_counter_cpu_sched_in(cpuctx, cpu);
0793a61d
TG
1003 perf_counter_task_sched_in(curr, cpu);
1004}
1005
0793a61d
TG
1006/*
1007 * Cross CPU call to read the hardware counter
1008 */
7671581f 1009static void __read(void *info)
0793a61d 1010{
621a01ea 1011 struct perf_counter *counter = info;
aa9c4c0f 1012 unsigned long flags;
621a01ea 1013
aa9c4c0f 1014 curr_rq_lock_irq_save(&flags);
7671581f 1015 counter->hw_ops->read(counter);
aa9c4c0f 1016 curr_rq_unlock_irq_restore(&flags);
0793a61d
TG
1017}
1018
04289bb9 1019static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
1020{
1021 /*
1022 * If counter is enabled and currently active on a CPU, update the
1023 * value in the counter structure:
1024 */
6a930700 1025 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d 1026 smp_call_function_single(counter->oncpu,
7671581f 1027 __read, counter, 1);
0793a61d
TG
1028 }
1029
ee06094f 1030 return atomic64_read(&counter->count);
0793a61d
TG
1031}
1032
0793a61d
TG
1033static void put_context(struct perf_counter_context *ctx)
1034{
1035 if (ctx->task)
1036 put_task_struct(ctx->task);
1037}
1038
1039static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
1040{
1041 struct perf_cpu_context *cpuctx;
1042 struct perf_counter_context *ctx;
1043 struct task_struct *task;
1044
1045 /*
1046 * If cpu is not a wildcard then this is a percpu counter:
1047 */
1048 if (cpu != -1) {
1049 /* Must be root to operate on a CPU counter: */
1050 if (!capable(CAP_SYS_ADMIN))
1051 return ERR_PTR(-EACCES);
1052
1053 if (cpu < 0 || cpu > num_possible_cpus())
1054 return ERR_PTR(-EINVAL);
1055
1056 /*
1057 * We could be clever and allow to attach a counter to an
1058 * offline CPU and activate it when the CPU comes up, but
1059 * that's for later.
1060 */
1061 if (!cpu_isset(cpu, cpu_online_map))
1062 return ERR_PTR(-ENODEV);
1063
1064 cpuctx = &per_cpu(perf_cpu_context, cpu);
1065 ctx = &cpuctx->ctx;
1066
0793a61d
TG
1067 return ctx;
1068 }
1069
1070 rcu_read_lock();
1071 if (!pid)
1072 task = current;
1073 else
1074 task = find_task_by_vpid(pid);
1075 if (task)
1076 get_task_struct(task);
1077 rcu_read_unlock();
1078
1079 if (!task)
1080 return ERR_PTR(-ESRCH);
1081
1082 ctx = &task->perf_counter_ctx;
1083 ctx->task = task;
1084
1085 /* Reuse ptrace permission checks for now. */
1086 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
1087 put_context(ctx);
1088 return ERR_PTR(-EACCES);
1089 }
1090
1091 return ctx;
1092}
1093
592903cd
PZ
1094static void free_counter_rcu(struct rcu_head *head)
1095{
1096 struct perf_counter *counter;
1097
1098 counter = container_of(head, struct perf_counter, rcu_head);
1099 kfree(counter);
1100}
1101
f1600952
PZ
1102static void free_counter(struct perf_counter *counter)
1103{
e077df4f
PZ
1104 if (counter->destroy)
1105 counter->destroy(counter);
1106
f1600952
PZ
1107 call_rcu(&counter->rcu_head, free_counter_rcu);
1108}
1109
0793a61d
TG
1110/*
1111 * Called when the last reference to the file is gone.
1112 */
1113static int perf_release(struct inode *inode, struct file *file)
1114{
1115 struct perf_counter *counter = file->private_data;
1116 struct perf_counter_context *ctx = counter->ctx;
1117
1118 file->private_data = NULL;
1119
d859e29f 1120 mutex_lock(&ctx->mutex);
0793a61d
TG
1121 mutex_lock(&counter->mutex);
1122
04289bb9 1123 perf_counter_remove_from_context(counter);
0793a61d
TG
1124
1125 mutex_unlock(&counter->mutex);
d859e29f 1126 mutex_unlock(&ctx->mutex);
0793a61d 1127
f1600952 1128 free_counter(counter);
5af75917 1129 put_context(ctx);
0793a61d
TG
1130
1131 return 0;
1132}
1133
1134/*
1135 * Read the performance counter - simple non blocking version for now
1136 */
1137static ssize_t
1138perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
1139{
1140 u64 cntval;
1141
7b732a75 1142 if (count < sizeof(cntval))
0793a61d
TG
1143 return -EINVAL;
1144
3b6f9e5c
PM
1145 /*
1146 * Return end-of-file for a read on a counter that is in
1147 * error state (i.e. because it was pinned but it couldn't be
1148 * scheduled on to the CPU at some point).
1149 */
1150 if (counter->state == PERF_COUNTER_STATE_ERROR)
1151 return 0;
1152
0793a61d 1153 mutex_lock(&counter->mutex);
04289bb9 1154 cntval = perf_counter_read(counter);
0793a61d
TG
1155 mutex_unlock(&counter->mutex);
1156
1157 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
1158}
1159
0793a61d
TG
1160static ssize_t
1161perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1162{
1163 struct perf_counter *counter = file->private_data;
1164
7b732a75 1165 return perf_read_hw(counter, buf, count);
0793a61d
TG
1166}
1167
1168static unsigned int perf_poll(struct file *file, poll_table *wait)
1169{
1170 struct perf_counter *counter = file->private_data;
c7138f37
PZ
1171 struct perf_mmap_data *data;
1172 unsigned int events;
1173
1174 rcu_read_lock();
1175 data = rcu_dereference(counter->data);
1176 if (data)
1177 events = atomic_xchg(&data->wakeup, 0);
1178 else
1179 events = POLL_HUP;
1180 rcu_read_unlock();
0793a61d
TG
1181
1182 poll_wait(file, &counter->waitq, wait);
1183
0793a61d
TG
1184 return events;
1185}
1186
d859e29f
PM
1187static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1188{
1189 struct perf_counter *counter = file->private_data;
1190 int err = 0;
1191
1192 switch (cmd) {
1193 case PERF_COUNTER_IOC_ENABLE:
1194 perf_counter_enable_family(counter);
1195 break;
1196 case PERF_COUNTER_IOC_DISABLE:
1197 perf_counter_disable_family(counter);
1198 break;
1199 default:
1200 err = -ENOTTY;
1201 }
1202 return err;
1203}
1204
7b732a75
PZ
1205static void __perf_counter_update_userpage(struct perf_counter *counter,
1206 struct perf_mmap_data *data)
37d81828 1207{
7b732a75 1208 struct perf_counter_mmap_page *userpg = data->user_page;
37d81828 1209
7b732a75
PZ
1210 /*
1211 * Disable preemption so as to not let the corresponding user-space
1212 * spin too long if we get preempted.
1213 */
1214 preempt_disable();
37d81828
PM
1215 ++userpg->lock;
1216 smp_wmb();
1217 userpg->index = counter->hw.idx;
1218 userpg->offset = atomic64_read(&counter->count);
1219 if (counter->state == PERF_COUNTER_STATE_ACTIVE)
1220 userpg->offset -= atomic64_read(&counter->hw.prev_count);
7b732a75
PZ
1221
1222 userpg->data_head = atomic_read(&data->head);
37d81828
PM
1223 smp_wmb();
1224 ++userpg->lock;
7b732a75
PZ
1225 preempt_enable();
1226}
1227
1228void perf_counter_update_userpage(struct perf_counter *counter)
1229{
1230 struct perf_mmap_data *data;
1231
1232 rcu_read_lock();
1233 data = rcu_dereference(counter->data);
1234 if (data)
1235 __perf_counter_update_userpage(counter, data);
1236 rcu_read_unlock();
37d81828
PM
1237}
1238
1239static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1240{
1241 struct perf_counter *counter = vma->vm_file->private_data;
7b732a75
PZ
1242 struct perf_mmap_data *data;
1243 int ret = VM_FAULT_SIGBUS;
1244
1245 rcu_read_lock();
1246 data = rcu_dereference(counter->data);
1247 if (!data)
1248 goto unlock;
1249
1250 if (vmf->pgoff == 0) {
1251 vmf->page = virt_to_page(data->user_page);
1252 } else {
1253 int nr = vmf->pgoff - 1;
37d81828 1254
7b732a75
PZ
1255 if ((unsigned)nr > data->nr_pages)
1256 goto unlock;
37d81828 1257
7b732a75
PZ
1258 vmf->page = virt_to_page(data->data_pages[nr]);
1259 }
37d81828 1260 get_page(vmf->page);
7b732a75
PZ
1261 ret = 0;
1262unlock:
1263 rcu_read_unlock();
1264
1265 return ret;
1266}
1267
1268static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
1269{
1270 struct perf_mmap_data *data;
1271 unsigned long size;
1272 int i;
1273
1274 WARN_ON(atomic_read(&counter->mmap_count));
1275
1276 size = sizeof(struct perf_mmap_data);
1277 size += nr_pages * sizeof(void *);
1278
1279 data = kzalloc(size, GFP_KERNEL);
1280 if (!data)
1281 goto fail;
1282
1283 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
1284 if (!data->user_page)
1285 goto fail_user_page;
1286
1287 for (i = 0; i < nr_pages; i++) {
1288 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
1289 if (!data->data_pages[i])
1290 goto fail_data_pages;
1291 }
1292
1293 data->nr_pages = nr_pages;
1294
1295 rcu_assign_pointer(counter->data, data);
1296
37d81828 1297 return 0;
7b732a75
PZ
1298
1299fail_data_pages:
1300 for (i--; i >= 0; i--)
1301 free_page((unsigned long)data->data_pages[i]);
1302
1303 free_page((unsigned long)data->user_page);
1304
1305fail_user_page:
1306 kfree(data);
1307
1308fail:
1309 return -ENOMEM;
1310}
1311
1312static void __perf_mmap_data_free(struct rcu_head *rcu_head)
1313{
1314 struct perf_mmap_data *data = container_of(rcu_head,
1315 struct perf_mmap_data, rcu_head);
1316 int i;
1317
1318 free_page((unsigned long)data->user_page);
1319 for (i = 0; i < data->nr_pages; i++)
1320 free_page((unsigned long)data->data_pages[i]);
1321 kfree(data);
1322}
1323
1324static void perf_mmap_data_free(struct perf_counter *counter)
1325{
1326 struct perf_mmap_data *data = counter->data;
1327
1328 WARN_ON(atomic_read(&counter->mmap_count));
1329
1330 rcu_assign_pointer(counter->data, NULL);
1331 call_rcu(&data->rcu_head, __perf_mmap_data_free);
1332}
1333
1334static void perf_mmap_open(struct vm_area_struct *vma)
1335{
1336 struct perf_counter *counter = vma->vm_file->private_data;
1337
1338 atomic_inc(&counter->mmap_count);
1339}
1340
1341static void perf_mmap_close(struct vm_area_struct *vma)
1342{
1343 struct perf_counter *counter = vma->vm_file->private_data;
1344
1345 if (atomic_dec_and_mutex_lock(&counter->mmap_count,
1346 &counter->mmap_mutex)) {
1347 perf_mmap_data_free(counter);
1348 mutex_unlock(&counter->mmap_mutex);
1349 }
37d81828
PM
1350}
1351
1352static struct vm_operations_struct perf_mmap_vmops = {
7b732a75
PZ
1353 .open = perf_mmap_open,
1354 .close = perf_mmap_close,
37d81828
PM
1355 .fault = perf_mmap_fault,
1356};
1357
1358static int perf_mmap(struct file *file, struct vm_area_struct *vma)
1359{
1360 struct perf_counter *counter = file->private_data;
7b732a75
PZ
1361 unsigned long vma_size;
1362 unsigned long nr_pages;
1363 unsigned long locked, lock_limit;
1364 int ret = 0;
37d81828
PM
1365
1366 if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
1367 return -EINVAL;
7b732a75
PZ
1368
1369 vma_size = vma->vm_end - vma->vm_start;
1370 nr_pages = (vma_size / PAGE_SIZE) - 1;
1371
1372 if (nr_pages == 0 || !is_power_of_2(nr_pages))
37d81828
PM
1373 return -EINVAL;
1374
7b732a75 1375 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
1376 return -EINVAL;
1377
7b732a75
PZ
1378 if (vma->vm_pgoff != 0)
1379 return -EINVAL;
37d81828 1380
7b732a75
PZ
1381 locked = vma_size >> PAGE_SHIFT;
1382 locked += vma->vm_mm->locked_vm;
1383
1384 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
1385 lock_limit >>= PAGE_SHIFT;
1386
1387 if ((locked > lock_limit) && !capable(CAP_IPC_LOCK))
1388 return -EPERM;
1389
1390 mutex_lock(&counter->mmap_mutex);
1391 if (atomic_inc_not_zero(&counter->mmap_count))
1392 goto out;
1393
1394 WARN_ON(counter->data);
1395 ret = perf_mmap_data_alloc(counter, nr_pages);
1396 if (!ret)
1397 atomic_set(&counter->mmap_count, 1);
1398out:
1399 mutex_unlock(&counter->mmap_mutex);
37d81828
PM
1400
1401 vma->vm_flags &= ~VM_MAYWRITE;
1402 vma->vm_flags |= VM_RESERVED;
1403 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
1404
1405 return ret;
37d81828
PM
1406}
1407
0793a61d
TG
1408static const struct file_operations perf_fops = {
1409 .release = perf_release,
1410 .read = perf_read,
1411 .poll = perf_poll,
d859e29f
PM
1412 .unlocked_ioctl = perf_ioctl,
1413 .compat_ioctl = perf_ioctl,
37d81828 1414 .mmap = perf_mmap,
0793a61d
TG
1415};
1416
0322cd6e
PZ
1417/*
1418 * Output
1419 */
1420
b9cacc7b
PZ
1421struct perf_output_handle {
1422 struct perf_counter *counter;
1423 struct perf_mmap_data *data;
1424 unsigned int offset;
1425 int wakeup;
1426};
1427
1428static int perf_output_begin(struct perf_output_handle *handle,
1429 struct perf_counter *counter, unsigned int size)
0322cd6e 1430{
7b732a75 1431 struct perf_mmap_data *data;
b9cacc7b 1432 unsigned int offset, head;
0322cd6e 1433
7b732a75 1434 rcu_read_lock();
7b732a75
PZ
1435 data = rcu_dereference(counter->data);
1436 if (!data)
1437 goto out;
1438
1439 if (!data->nr_pages)
1440 goto out;
1441
7b732a75
PZ
1442 do {
1443 offset = head = atomic_read(&data->head);
c7138f37 1444 head += size;
7b732a75
PZ
1445 } while (atomic_cmpxchg(&data->head, offset, head) != offset);
1446
b9cacc7b
PZ
1447 handle->counter = counter;
1448 handle->data = data;
1449 handle->offset = offset;
1450 handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
0322cd6e 1451
b9cacc7b 1452 return 0;
7b732a75 1453
b9cacc7b
PZ
1454out:
1455 rcu_read_unlock();
7b732a75 1456
b9cacc7b
PZ
1457 return -ENOSPC;
1458}
7b732a75 1459
b9cacc7b
PZ
1460static void perf_output_copy(struct perf_output_handle *handle,
1461 void *buf, unsigned int len)
1462{
1463 unsigned int pages_mask;
1464 unsigned int offset;
1465 unsigned int size;
1466 void **pages;
1467
1468 offset = handle->offset;
1469 pages_mask = handle->data->nr_pages - 1;
1470 pages = handle->data->data_pages;
1471
1472 do {
1473 unsigned int page_offset;
1474 int nr;
1475
1476 nr = (offset >> PAGE_SHIFT) & pages_mask;
1477 page_offset = offset & (PAGE_SIZE - 1);
1478 size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
1479
1480 memcpy(pages[nr] + page_offset, buf, size);
1481
1482 len -= size;
1483 buf += size;
1484 offset += size;
1485 } while (len);
1486
1487 handle->offset = offset;
1488}
1489
5c148194
PZ
1490#define perf_output_put(handle, x) \
1491 perf_output_copy((handle), &(x), sizeof(x))
1492
b9cacc7b
PZ
1493static void perf_output_end(struct perf_output_handle *handle, int nmi)
1494{
1495 if (handle->wakeup) {
1496 (void)atomic_xchg(&handle->data->wakeup, POLL_IN);
1497 __perf_counter_update_userpage(handle->counter, handle->data);
7b732a75 1498 if (nmi) {
b9cacc7b 1499 handle->counter->wakeup_pending = 1;
7b732a75
PZ
1500 set_perf_counter_pending();
1501 } else
b9cacc7b 1502 wake_up(&handle->counter->waitq);
0322cd6e 1503 }
7b732a75 1504 rcu_read_unlock();
b9cacc7b
PZ
1505}
1506
1507static int perf_output_write(struct perf_counter *counter, int nmi,
1508 void *buf, ssize_t size)
1509{
1510 struct perf_output_handle handle;
1511 int ret;
7b732a75 1512
b9cacc7b
PZ
1513 ret = perf_output_begin(&handle, counter, size);
1514 if (ret)
1515 goto out;
1516
1517 perf_output_copy(&handle, buf, size);
1518 perf_output_end(&handle, nmi);
1519
1520out:
7b732a75
PZ
1521 return ret;
1522}
1523
1524static void perf_output_simple(struct perf_counter *counter,
1525 int nmi, struct pt_regs *regs)
1526{
5c148194
PZ
1527 struct {
1528 struct perf_event_header header;
1529 u64 ip;
1530 } event;
7b732a75 1531
5c148194
PZ
1532 event.header.type = PERF_EVENT_IP;
1533 event.header.size = sizeof(event);
1534 event.ip = instruction_pointer(regs);
7b732a75 1535
5c148194 1536 perf_output_write(counter, nmi, &event, sizeof(event));
0322cd6e
PZ
1537}
1538
7b732a75 1539static void perf_output_group(struct perf_counter *counter, int nmi)
0322cd6e 1540{
5c148194
PZ
1541 struct perf_output_handle handle;
1542 struct perf_event_header header;
0322cd6e 1543 struct perf_counter *leader, *sub;
5c148194
PZ
1544 unsigned int size;
1545 struct {
1546 u64 event;
1547 u64 counter;
1548 } entry;
1549 int ret;
1550
1551 size = sizeof(header) + counter->nr_siblings * sizeof(entry);
1552
1553 ret = perf_output_begin(&handle, counter, size);
1554 if (ret)
1555 return;
1556
1557 header.type = PERF_EVENT_GROUP;
1558 header.size = size;
1559
1560 perf_output_put(&handle, header);
0322cd6e
PZ
1561
1562 leader = counter->group_leader;
1563 list_for_each_entry(sub, &leader->sibling_list, list_entry) {
1564 if (sub != counter)
1565 sub->hw_ops->read(sub);
7b732a75
PZ
1566
1567 entry.event = sub->hw_event.config;
1568 entry.counter = atomic64_read(&sub->count);
1569
5c148194 1570 perf_output_put(&handle, entry);
0322cd6e 1571 }
5c148194
PZ
1572
1573 perf_output_end(&handle, nmi);
0322cd6e
PZ
1574}
1575
1576void perf_counter_output(struct perf_counter *counter,
1577 int nmi, struct pt_regs *regs)
1578{
1579 switch (counter->hw_event.record_type) {
1580 case PERF_RECORD_SIMPLE:
1581 return;
1582
1583 case PERF_RECORD_IRQ:
7b732a75 1584 perf_output_simple(counter, nmi, regs);
0322cd6e
PZ
1585 break;
1586
1587 case PERF_RECORD_GROUP:
7b732a75 1588 perf_output_group(counter, nmi);
0322cd6e
PZ
1589 break;
1590 }
0322cd6e
PZ
1591}
1592
15dbf27c
PZ
1593/*
1594 * Generic software counter infrastructure
1595 */
1596
1597static void perf_swcounter_update(struct perf_counter *counter)
1598{
1599 struct hw_perf_counter *hwc = &counter->hw;
1600 u64 prev, now;
1601 s64 delta;
1602
1603again:
1604 prev = atomic64_read(&hwc->prev_count);
1605 now = atomic64_read(&hwc->count);
1606 if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
1607 goto again;
1608
1609 delta = now - prev;
1610
1611 atomic64_add(delta, &counter->count);
1612 atomic64_sub(delta, &hwc->period_left);
1613}
1614
1615static void perf_swcounter_set_period(struct perf_counter *counter)
1616{
1617 struct hw_perf_counter *hwc = &counter->hw;
1618 s64 left = atomic64_read(&hwc->period_left);
1619 s64 period = hwc->irq_period;
1620
1621 if (unlikely(left <= -period)) {
1622 left = period;
1623 atomic64_set(&hwc->period_left, left);
1624 }
1625
1626 if (unlikely(left <= 0)) {
1627 left += period;
1628 atomic64_add(period, &hwc->period_left);
1629 }
1630
1631 atomic64_set(&hwc->prev_count, -left);
1632 atomic64_set(&hwc->count, -left);
1633}
1634
d6d020e9
PZ
1635static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
1636{
1637 struct perf_counter *counter;
1638 struct pt_regs *regs;
1639
1640 counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
1641 counter->hw_ops->read(counter);
1642
1643 regs = get_irq_regs();
1644 /*
1645 * In case we exclude kernel IPs or are somehow not in interrupt
1646 * context, provide the next best thing, the user IP.
1647 */
1648 if ((counter->hw_event.exclude_kernel || !regs) &&
1649 !counter->hw_event.exclude_user)
1650 regs = task_pt_regs(current);
1651
1652 if (regs)
0322cd6e 1653 perf_counter_output(counter, 0, regs);
d6d020e9
PZ
1654
1655 hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
1656
1657 return HRTIMER_RESTART;
1658}
1659
1660static void perf_swcounter_overflow(struct perf_counter *counter,
1661 int nmi, struct pt_regs *regs)
1662{
b8e83514
PZ
1663 perf_swcounter_update(counter);
1664 perf_swcounter_set_period(counter);
0322cd6e 1665 perf_counter_output(counter, nmi, regs);
d6d020e9
PZ
1666}
1667
15dbf27c 1668static int perf_swcounter_match(struct perf_counter *counter,
b8e83514
PZ
1669 enum perf_event_types type,
1670 u32 event, struct pt_regs *regs)
15dbf27c
PZ
1671{
1672 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
1673 return 0;
1674
f4a2deb4 1675 if (perf_event_raw(&counter->hw_event))
b8e83514
PZ
1676 return 0;
1677
f4a2deb4 1678 if (perf_event_type(&counter->hw_event) != type)
15dbf27c
PZ
1679 return 0;
1680
f4a2deb4 1681 if (perf_event_id(&counter->hw_event) != event)
15dbf27c
PZ
1682 return 0;
1683
1684 if (counter->hw_event.exclude_user && user_mode(regs))
1685 return 0;
1686
1687 if (counter->hw_event.exclude_kernel && !user_mode(regs))
1688 return 0;
1689
1690 return 1;
1691}
1692
d6d020e9
PZ
1693static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
1694 int nmi, struct pt_regs *regs)
1695{
1696 int neg = atomic64_add_negative(nr, &counter->hw.count);
1697 if (counter->hw.irq_period && !neg)
1698 perf_swcounter_overflow(counter, nmi, regs);
1699}
1700
15dbf27c 1701static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
b8e83514
PZ
1702 enum perf_event_types type, u32 event,
1703 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1704{
1705 struct perf_counter *counter;
15dbf27c 1706
01ef09d9 1707 if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
15dbf27c
PZ
1708 return;
1709
592903cd
PZ
1710 rcu_read_lock();
1711 list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
b8e83514 1712 if (perf_swcounter_match(counter, type, event, regs))
d6d020e9 1713 perf_swcounter_add(counter, nr, nmi, regs);
15dbf27c 1714 }
592903cd 1715 rcu_read_unlock();
15dbf27c
PZ
1716}
1717
96f6d444
PZ
1718static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
1719{
1720 if (in_nmi())
1721 return &cpuctx->recursion[3];
1722
1723 if (in_irq())
1724 return &cpuctx->recursion[2];
1725
1726 if (in_softirq())
1727 return &cpuctx->recursion[1];
1728
1729 return &cpuctx->recursion[0];
1730}
1731
b8e83514
PZ
1732static void __perf_swcounter_event(enum perf_event_types type, u32 event,
1733 u64 nr, int nmi, struct pt_regs *regs)
15dbf27c
PZ
1734{
1735 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
96f6d444
PZ
1736 int *recursion = perf_swcounter_recursion_context(cpuctx);
1737
1738 if (*recursion)
1739 goto out;
1740
1741 (*recursion)++;
1742 barrier();
15dbf27c 1743
b8e83514
PZ
1744 perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
1745 if (cpuctx->task_ctx) {
1746 perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
1747 nr, nmi, regs);
1748 }
15dbf27c 1749
96f6d444
PZ
1750 barrier();
1751 (*recursion)--;
1752
1753out:
15dbf27c
PZ
1754 put_cpu_var(perf_cpu_context);
1755}
1756
b8e83514
PZ
1757void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
1758{
1759 __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
1760}
1761
15dbf27c
PZ
1762static void perf_swcounter_read(struct perf_counter *counter)
1763{
1764 perf_swcounter_update(counter);
1765}
1766
1767static int perf_swcounter_enable(struct perf_counter *counter)
1768{
1769 perf_swcounter_set_period(counter);
1770 return 0;
1771}
1772
1773static void perf_swcounter_disable(struct perf_counter *counter)
1774{
1775 perf_swcounter_update(counter);
1776}
1777
ac17dc8e
PZ
1778static const struct hw_perf_counter_ops perf_ops_generic = {
1779 .enable = perf_swcounter_enable,
1780 .disable = perf_swcounter_disable,
1781 .read = perf_swcounter_read,
1782};
1783
15dbf27c
PZ
1784/*
1785 * Software counter: cpu wall time clock
1786 */
1787
9abf8a08
PM
1788static void cpu_clock_perf_counter_update(struct perf_counter *counter)
1789{
1790 int cpu = raw_smp_processor_id();
1791 s64 prev;
1792 u64 now;
1793
1794 now = cpu_clock(cpu);
1795 prev = atomic64_read(&counter->hw.prev_count);
1796 atomic64_set(&counter->hw.prev_count, now);
1797 atomic64_add(now - prev, &counter->count);
1798}
1799
d6d020e9
PZ
1800static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
1801{
1802 struct hw_perf_counter *hwc = &counter->hw;
1803 int cpu = raw_smp_processor_id();
1804
1805 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
039fc91e
PZ
1806 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1807 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1808 if (hwc->irq_period) {
d6d020e9
PZ
1809 __hrtimer_start_range_ns(&hwc->hrtimer,
1810 ns_to_ktime(hwc->irq_period), 0,
1811 HRTIMER_MODE_REL, 0);
1812 }
1813
1814 return 0;
1815}
1816
5c92d124
IM
1817static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
1818{
d6d020e9 1819 hrtimer_cancel(&counter->hw.hrtimer);
9abf8a08 1820 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1821}
1822
1823static void cpu_clock_perf_counter_read(struct perf_counter *counter)
1824{
9abf8a08 1825 cpu_clock_perf_counter_update(counter);
5c92d124
IM
1826}
1827
1828static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
7671581f
IM
1829 .enable = cpu_clock_perf_counter_enable,
1830 .disable = cpu_clock_perf_counter_disable,
1831 .read = cpu_clock_perf_counter_read,
5c92d124
IM
1832};
1833
15dbf27c
PZ
1834/*
1835 * Software counter: task time clock
1836 */
1837
aa9c4c0f
IM
1838/*
1839 * Called from within the scheduler:
1840 */
1841static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update)
bae43c99 1842{
aa9c4c0f
IM
1843 struct task_struct *curr = counter->task;
1844 u64 delta;
1845
aa9c4c0f
IM
1846 delta = __task_delta_exec(curr, update);
1847
1848 return curr->se.sum_exec_runtime + delta;
1849}
1850
1851static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
1852{
1853 u64 prev;
8cb391e8
IM
1854 s64 delta;
1855
1856 prev = atomic64_read(&counter->hw.prev_count);
8cb391e8
IM
1857
1858 atomic64_set(&counter->hw.prev_count, now);
1859
1860 delta = now - prev;
8cb391e8
IM
1861
1862 atomic64_add(delta, &counter->count);
bae43c99
IM
1863}
1864
95cdd2e7 1865static int task_clock_perf_counter_enable(struct perf_counter *counter)
8cb391e8 1866{
d6d020e9
PZ
1867 struct hw_perf_counter *hwc = &counter->hw;
1868
1869 atomic64_set(&hwc->prev_count, task_clock_perf_counter_val(counter, 0));
039fc91e
PZ
1870 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1871 hwc->hrtimer.function = perf_swcounter_hrtimer;
d6d020e9 1872 if (hwc->irq_period) {
d6d020e9
PZ
1873 __hrtimer_start_range_ns(&hwc->hrtimer,
1874 ns_to_ktime(hwc->irq_period), 0,
1875 HRTIMER_MODE_REL, 0);
1876 }
95cdd2e7
IM
1877
1878 return 0;
8cb391e8
IM
1879}
1880
1881static void task_clock_perf_counter_disable(struct perf_counter *counter)
bae43c99 1882{
d6d020e9
PZ
1883 hrtimer_cancel(&counter->hw.hrtimer);
1884 task_clock_perf_counter_update(counter,
1885 task_clock_perf_counter_val(counter, 0));
1886}
aa9c4c0f 1887
d6d020e9
PZ
1888static void task_clock_perf_counter_read(struct perf_counter *counter)
1889{
1890 task_clock_perf_counter_update(counter,
1891 task_clock_perf_counter_val(counter, 1));
bae43c99
IM
1892}
1893
1894static const struct hw_perf_counter_ops perf_ops_task_clock = {
7671581f
IM
1895 .enable = task_clock_perf_counter_enable,
1896 .disable = task_clock_perf_counter_disable,
1897 .read = task_clock_perf_counter_read,
bae43c99
IM
1898};
1899
15dbf27c
PZ
1900/*
1901 * Software counter: cpu migrations
1902 */
1903
23a185ca 1904static inline u64 get_cpu_migrations(struct perf_counter *counter)
6c594c21 1905{
23a185ca
PM
1906 struct task_struct *curr = counter->ctx->task;
1907
1908 if (curr)
1909 return curr->se.nr_migrations;
1910 return cpu_nr_migrations(smp_processor_id());
6c594c21
IM
1911}
1912
1913static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
1914{
1915 u64 prev, now;
1916 s64 delta;
1917
1918 prev = atomic64_read(&counter->hw.prev_count);
23a185ca 1919 now = get_cpu_migrations(counter);
6c594c21
IM
1920
1921 atomic64_set(&counter->hw.prev_count, now);
1922
1923 delta = now - prev;
6c594c21
IM
1924
1925 atomic64_add(delta, &counter->count);
1926}
1927
1928static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
1929{
1930 cpu_migrations_perf_counter_update(counter);
1931}
1932
95cdd2e7 1933static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
6c594c21 1934{
c07c99b6
PM
1935 if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
1936 atomic64_set(&counter->hw.prev_count,
1937 get_cpu_migrations(counter));
95cdd2e7 1938 return 0;
6c594c21
IM
1939}
1940
1941static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
1942{
1943 cpu_migrations_perf_counter_update(counter);
1944}
1945
1946static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
7671581f
IM
1947 .enable = cpu_migrations_perf_counter_enable,
1948 .disable = cpu_migrations_perf_counter_disable,
1949 .read = cpu_migrations_perf_counter_read,
6c594c21
IM
1950};
1951
e077df4f
PZ
1952#ifdef CONFIG_EVENT_PROFILE
1953void perf_tpcounter_event(int event_id)
1954{
b8e83514
PZ
1955 struct pt_regs *regs = get_irq_regs();
1956
1957 if (!regs)
1958 regs = task_pt_regs(current);
1959
1960 __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
e077df4f
PZ
1961}
1962
1963extern int ftrace_profile_enable(int);
1964extern void ftrace_profile_disable(int);
1965
1966static void tp_perf_counter_destroy(struct perf_counter *counter)
1967{
f4a2deb4 1968 ftrace_profile_disable(perf_event_id(&counter->hw_event));
e077df4f
PZ
1969}
1970
1971static const struct hw_perf_counter_ops *
1972tp_perf_counter_init(struct perf_counter *counter)
1973{
f4a2deb4 1974 int event_id = perf_event_id(&counter->hw_event);
e077df4f
PZ
1975 int ret;
1976
1977 ret = ftrace_profile_enable(event_id);
1978 if (ret)
1979 return NULL;
1980
1981 counter->destroy = tp_perf_counter_destroy;
b8e83514 1982 counter->hw.irq_period = counter->hw_event.irq_period;
e077df4f
PZ
1983
1984 return &perf_ops_generic;
1985}
1986#else
1987static const struct hw_perf_counter_ops *
1988tp_perf_counter_init(struct perf_counter *counter)
1989{
1990 return NULL;
1991}
1992#endif
1993
5c92d124
IM
1994static const struct hw_perf_counter_ops *
1995sw_perf_counter_init(struct perf_counter *counter)
1996{
15dbf27c 1997 struct perf_counter_hw_event *hw_event = &counter->hw_event;
5c92d124 1998 const struct hw_perf_counter_ops *hw_ops = NULL;
15dbf27c 1999 struct hw_perf_counter *hwc = &counter->hw;
5c92d124 2000
0475f9ea
PM
2001 /*
2002 * Software counters (currently) can't in general distinguish
2003 * between user, kernel and hypervisor events.
2004 * However, context switches and cpu migrations are considered
2005 * to be kernel events, and page faults are never hypervisor
2006 * events.
2007 */
f4a2deb4 2008 switch (perf_event_id(&counter->hw_event)) {
5c92d124 2009 case PERF_COUNT_CPU_CLOCK:
d6d020e9
PZ
2010 hw_ops = &perf_ops_cpu_clock;
2011
2012 if (hw_event->irq_period && hw_event->irq_period < 10000)
2013 hw_event->irq_period = 10000;
5c92d124 2014 break;
bae43c99 2015 case PERF_COUNT_TASK_CLOCK:
23a185ca
PM
2016 /*
2017 * If the user instantiates this as a per-cpu counter,
2018 * use the cpu_clock counter instead.
2019 */
2020 if (counter->ctx->task)
2021 hw_ops = &perf_ops_task_clock;
2022 else
2023 hw_ops = &perf_ops_cpu_clock;
d6d020e9
PZ
2024
2025 if (hw_event->irq_period && hw_event->irq_period < 10000)
2026 hw_event->irq_period = 10000;
bae43c99 2027 break;
e06c61a8 2028 case PERF_COUNT_PAGE_FAULTS:
ac17dc8e
PZ
2029 case PERF_COUNT_PAGE_FAULTS_MIN:
2030 case PERF_COUNT_PAGE_FAULTS_MAJ:
5d6a27d8 2031 case PERF_COUNT_CONTEXT_SWITCHES:
4a0deca6 2032 hw_ops = &perf_ops_generic;
5d6a27d8 2033 break;
6c594c21 2034 case PERF_COUNT_CPU_MIGRATIONS:
0475f9ea
PM
2035 if (!counter->hw_event.exclude_kernel)
2036 hw_ops = &perf_ops_cpu_migrations;
6c594c21 2037 break;
5c92d124 2038 }
15dbf27c
PZ
2039
2040 if (hw_ops)
2041 hwc->irq_period = hw_event->irq_period;
2042
5c92d124
IM
2043 return hw_ops;
2044}
2045
0793a61d
TG
2046/*
2047 * Allocate and initialize a counter structure
2048 */
2049static struct perf_counter *
04289bb9
IM
2050perf_counter_alloc(struct perf_counter_hw_event *hw_event,
2051 int cpu,
23a185ca 2052 struct perf_counter_context *ctx,
9b51f66d
IM
2053 struct perf_counter *group_leader,
2054 gfp_t gfpflags)
0793a61d 2055{
5c92d124 2056 const struct hw_perf_counter_ops *hw_ops;
621a01ea 2057 struct perf_counter *counter;
0793a61d 2058
9b51f66d 2059 counter = kzalloc(sizeof(*counter), gfpflags);
0793a61d
TG
2060 if (!counter)
2061 return NULL;
2062
04289bb9
IM
2063 /*
2064 * Single counters are their own group leaders, with an
2065 * empty sibling list:
2066 */
2067 if (!group_leader)
2068 group_leader = counter;
2069
0793a61d 2070 mutex_init(&counter->mutex);
04289bb9 2071 INIT_LIST_HEAD(&counter->list_entry);
592903cd 2072 INIT_LIST_HEAD(&counter->event_entry);
04289bb9 2073 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
2074 init_waitqueue_head(&counter->waitq);
2075
7b732a75
PZ
2076 mutex_init(&counter->mmap_mutex);
2077
d859e29f
PM
2078 INIT_LIST_HEAD(&counter->child_list);
2079
9f66a381
IM
2080 counter->cpu = cpu;
2081 counter->hw_event = *hw_event;
2082 counter->wakeup_pending = 0;
04289bb9 2083 counter->group_leader = group_leader;
621a01ea 2084 counter->hw_ops = NULL;
23a185ca 2085 counter->ctx = ctx;
621a01ea 2086
235c7fc7 2087 counter->state = PERF_COUNTER_STATE_INACTIVE;
a86ed508
IM
2088 if (hw_event->disabled)
2089 counter->state = PERF_COUNTER_STATE_OFF;
2090
5c92d124 2091 hw_ops = NULL;
b8e83514 2092
f4a2deb4 2093 if (perf_event_raw(hw_event)) {
b8e83514 2094 hw_ops = hw_perf_counter_init(counter);
f4a2deb4
PZ
2095 goto done;
2096 }
2097
2098 switch (perf_event_type(hw_event)) {
b8e83514 2099 case PERF_TYPE_HARDWARE:
5c92d124 2100 hw_ops = hw_perf_counter_init(counter);
b8e83514
PZ
2101 break;
2102
2103 case PERF_TYPE_SOFTWARE:
2104 hw_ops = sw_perf_counter_init(counter);
2105 break;
2106
2107 case PERF_TYPE_TRACEPOINT:
2108 hw_ops = tp_perf_counter_init(counter);
2109 break;
2110 }
5c92d124 2111
621a01ea
IM
2112 if (!hw_ops) {
2113 kfree(counter);
2114 return NULL;
2115 }
f4a2deb4 2116done:
621a01ea 2117 counter->hw_ops = hw_ops;
0793a61d
TG
2118
2119 return counter;
2120}
2121
2122/**
2743a5b0 2123 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
9f66a381
IM
2124 *
2125 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 2126 * @pid: target pid
9f66a381
IM
2127 * @cpu: target cpu
2128 * @group_fd: group leader counter fd
0793a61d 2129 */
2743a5b0 2130SYSCALL_DEFINE5(perf_counter_open,
f3dfd265 2131 const struct perf_counter_hw_event __user *, hw_event_uptr,
2743a5b0 2132 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 2133{
04289bb9 2134 struct perf_counter *counter, *group_leader;
9f66a381 2135 struct perf_counter_hw_event hw_event;
04289bb9 2136 struct perf_counter_context *ctx;
9b51f66d 2137 struct file *counter_file = NULL;
04289bb9
IM
2138 struct file *group_file = NULL;
2139 int fput_needed = 0;
9b51f66d 2140 int fput_needed2 = 0;
0793a61d
TG
2141 int ret;
2142
2743a5b0
PM
2143 /* for future expandability... */
2144 if (flags)
2145 return -EINVAL;
2146
9f66a381 2147 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
2148 return -EFAULT;
2149
04289bb9 2150 /*
ccff286d
IM
2151 * Get the target context (task or percpu):
2152 */
2153 ctx = find_get_context(pid, cpu);
2154 if (IS_ERR(ctx))
2155 return PTR_ERR(ctx);
2156
2157 /*
2158 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
2159 */
2160 group_leader = NULL;
2161 if (group_fd != -1) {
2162 ret = -EINVAL;
2163 group_file = fget_light(group_fd, &fput_needed);
2164 if (!group_file)
ccff286d 2165 goto err_put_context;
04289bb9 2166 if (group_file->f_op != &perf_fops)
ccff286d 2167 goto err_put_context;
04289bb9
IM
2168
2169 group_leader = group_file->private_data;
2170 /*
ccff286d
IM
2171 * Do not allow a recursive hierarchy (this new sibling
2172 * becoming part of another group-sibling):
2173 */
2174 if (group_leader->group_leader != group_leader)
2175 goto err_put_context;
2176 /*
2177 * Do not allow to attach to a group in a different
2178 * task or CPU context:
04289bb9 2179 */
ccff286d
IM
2180 if (group_leader->ctx != ctx)
2181 goto err_put_context;
3b6f9e5c
PM
2182 /*
2183 * Only a group leader can be exclusive or pinned
2184 */
2185 if (hw_event.exclusive || hw_event.pinned)
2186 goto err_put_context;
04289bb9
IM
2187 }
2188
5c92d124 2189 ret = -EINVAL;
23a185ca
PM
2190 counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
2191 GFP_KERNEL);
0793a61d
TG
2192 if (!counter)
2193 goto err_put_context;
2194
0793a61d
TG
2195 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
2196 if (ret < 0)
9b51f66d
IM
2197 goto err_free_put_context;
2198
2199 counter_file = fget_light(ret, &fput_needed2);
2200 if (!counter_file)
2201 goto err_free_put_context;
2202
2203 counter->filp = counter_file;
d859e29f 2204 mutex_lock(&ctx->mutex);
9b51f66d 2205 perf_install_in_context(ctx, counter, cpu);
d859e29f 2206 mutex_unlock(&ctx->mutex);
9b51f66d
IM
2207
2208 fput_light(counter_file, fput_needed2);
0793a61d 2209
04289bb9
IM
2210out_fput:
2211 fput_light(group_file, fput_needed);
2212
0793a61d
TG
2213 return ret;
2214
9b51f66d 2215err_free_put_context:
0793a61d
TG
2216 kfree(counter);
2217
2218err_put_context:
2219 put_context(ctx);
2220
04289bb9 2221 goto out_fput;
0793a61d
TG
2222}
2223
9b51f66d
IM
2224/*
2225 * Initialize the perf_counter context in a task_struct:
2226 */
2227static void
2228__perf_counter_init_context(struct perf_counter_context *ctx,
2229 struct task_struct *task)
2230{
2231 memset(ctx, 0, sizeof(*ctx));
2232 spin_lock_init(&ctx->lock);
d859e29f 2233 mutex_init(&ctx->mutex);
9b51f66d 2234 INIT_LIST_HEAD(&ctx->counter_list);
592903cd 2235 INIT_LIST_HEAD(&ctx->event_list);
9b51f66d
IM
2236 ctx->task = task;
2237}
2238
2239/*
2240 * inherit a counter from parent task to child task:
2241 */
d859e29f 2242static struct perf_counter *
9b51f66d
IM
2243inherit_counter(struct perf_counter *parent_counter,
2244 struct task_struct *parent,
2245 struct perf_counter_context *parent_ctx,
2246 struct task_struct *child,
d859e29f 2247 struct perf_counter *group_leader,
9b51f66d
IM
2248 struct perf_counter_context *child_ctx)
2249{
2250 struct perf_counter *child_counter;
2251
d859e29f
PM
2252 /*
2253 * Instead of creating recursive hierarchies of counters,
2254 * we link inherited counters back to the original parent,
2255 * which has a filp for sure, which we use as the reference
2256 * count:
2257 */
2258 if (parent_counter->parent)
2259 parent_counter = parent_counter->parent;
2260
9b51f66d 2261 child_counter = perf_counter_alloc(&parent_counter->hw_event,
23a185ca
PM
2262 parent_counter->cpu, child_ctx,
2263 group_leader, GFP_KERNEL);
9b51f66d 2264 if (!child_counter)
d859e29f 2265 return NULL;
9b51f66d
IM
2266
2267 /*
2268 * Link it up in the child's context:
2269 */
9b51f66d
IM
2270 child_counter->task = child;
2271 list_add_counter(child_counter, child_ctx);
2272 child_ctx->nr_counters++;
2273
2274 child_counter->parent = parent_counter;
9b51f66d
IM
2275 /*
2276 * inherit into child's child as well:
2277 */
2278 child_counter->hw_event.inherit = 1;
2279
2280 /*
2281 * Get a reference to the parent filp - we will fput it
2282 * when the child counter exits. This is safe to do because
2283 * we are in the parent and we know that the filp still
2284 * exists and has a nonzero count:
2285 */
2286 atomic_long_inc(&parent_counter->filp->f_count);
2287
d859e29f
PM
2288 /*
2289 * Link this into the parent counter's child list
2290 */
2291 mutex_lock(&parent_counter->mutex);
2292 list_add_tail(&child_counter->child_list, &parent_counter->child_list);
2293
2294 /*
2295 * Make the child state follow the state of the parent counter,
2296 * not its hw_event.disabled bit. We hold the parent's mutex,
2297 * so we won't race with perf_counter_{en,dis}able_family.
2298 */
2299 if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
2300 child_counter->state = PERF_COUNTER_STATE_INACTIVE;
2301 else
2302 child_counter->state = PERF_COUNTER_STATE_OFF;
2303
2304 mutex_unlock(&parent_counter->mutex);
2305
2306 return child_counter;
2307}
2308
2309static int inherit_group(struct perf_counter *parent_counter,
2310 struct task_struct *parent,
2311 struct perf_counter_context *parent_ctx,
2312 struct task_struct *child,
2313 struct perf_counter_context *child_ctx)
2314{
2315 struct perf_counter *leader;
2316 struct perf_counter *sub;
2317
2318 leader = inherit_counter(parent_counter, parent, parent_ctx,
2319 child, NULL, child_ctx);
2320 if (!leader)
2321 return -ENOMEM;
2322 list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
2323 if (!inherit_counter(sub, parent, parent_ctx,
2324 child, leader, child_ctx))
2325 return -ENOMEM;
2326 }
9b51f66d
IM
2327 return 0;
2328}
2329
d859e29f
PM
2330static void sync_child_counter(struct perf_counter *child_counter,
2331 struct perf_counter *parent_counter)
2332{
2333 u64 parent_val, child_val;
2334
2335 parent_val = atomic64_read(&parent_counter->count);
2336 child_val = atomic64_read(&child_counter->count);
2337
2338 /*
2339 * Add back the child's count to the parent's count:
2340 */
2341 atomic64_add(child_val, &parent_counter->count);
2342
2343 /*
2344 * Remove this counter from the parent's list
2345 */
2346 mutex_lock(&parent_counter->mutex);
2347 list_del_init(&child_counter->child_list);
2348 mutex_unlock(&parent_counter->mutex);
2349
2350 /*
2351 * Release the parent counter, if this was the last
2352 * reference to it.
2353 */
2354 fput(parent_counter->filp);
2355}
2356
9b51f66d
IM
2357static void
2358__perf_counter_exit_task(struct task_struct *child,
2359 struct perf_counter *child_counter,
2360 struct perf_counter_context *child_ctx)
2361{
2362 struct perf_counter *parent_counter;
d859e29f 2363 struct perf_counter *sub, *tmp;
9b51f66d
IM
2364
2365 /*
235c7fc7
IM
2366 * If we do not self-reap then we have to wait for the
2367 * child task to unschedule (it will happen for sure),
2368 * so that its counter is at its final count. (This
2369 * condition triggers rarely - child tasks usually get
2370 * off their CPU before the parent has a chance to
2371 * get this far into the reaping action)
9b51f66d 2372 */
235c7fc7
IM
2373 if (child != current) {
2374 wait_task_inactive(child, 0);
2375 list_del_init(&child_counter->list_entry);
2376 } else {
0cc0c027 2377 struct perf_cpu_context *cpuctx;
235c7fc7
IM
2378 unsigned long flags;
2379 u64 perf_flags;
2380
2381 /*
2382 * Disable and unlink this counter.
2383 *
2384 * Be careful about zapping the list - IRQ/NMI context
2385 * could still be processing it:
2386 */
2387 curr_rq_lock_irq_save(&flags);
2388 perf_flags = hw_perf_save_disable();
0cc0c027
IM
2389
2390 cpuctx = &__get_cpu_var(perf_cpu_context);
2391
d859e29f 2392 group_sched_out(child_counter, cpuctx, child_ctx);
0cc0c027 2393
235c7fc7 2394 list_del_init(&child_counter->list_entry);
0cc0c027 2395
235c7fc7 2396 child_ctx->nr_counters--;
9b51f66d 2397
235c7fc7
IM
2398 hw_perf_restore(perf_flags);
2399 curr_rq_unlock_irq_restore(&flags);
2400 }
9b51f66d
IM
2401
2402 parent_counter = child_counter->parent;
2403 /*
2404 * It can happen that parent exits first, and has counters
2405 * that are still around due to the child reference. These
2406 * counters need to be zapped - but otherwise linger.
2407 */
d859e29f
PM
2408 if (parent_counter) {
2409 sync_child_counter(child_counter, parent_counter);
2410 list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
2411 list_entry) {
4bcf349a 2412 if (sub->parent) {
d859e29f 2413 sync_child_counter(sub, sub->parent);
f1600952 2414 free_counter(sub);
4bcf349a 2415 }
d859e29f 2416 }
f1600952 2417 free_counter(child_counter);
4bcf349a 2418 }
9b51f66d
IM
2419}
2420
2421/*
d859e29f 2422 * When a child task exits, feed back counter values to parent counters.
9b51f66d 2423 *
d859e29f 2424 * Note: we may be running in child context, but the PID is not hashed
9b51f66d
IM
2425 * anymore so new counters will not be added.
2426 */
2427void perf_counter_exit_task(struct task_struct *child)
2428{
2429 struct perf_counter *child_counter, *tmp;
2430 struct perf_counter_context *child_ctx;
2431
2432 child_ctx = &child->perf_counter_ctx;
2433
2434 if (likely(!child_ctx->nr_counters))
2435 return;
2436
2437 list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
2438 list_entry)
2439 __perf_counter_exit_task(child, child_counter, child_ctx);
2440}
2441
2442/*
2443 * Initialize the perf_counter context in task_struct
2444 */
2445void perf_counter_init_task(struct task_struct *child)
2446{
2447 struct perf_counter_context *child_ctx, *parent_ctx;
d859e29f 2448 struct perf_counter *counter;
9b51f66d 2449 struct task_struct *parent = current;
9b51f66d
IM
2450
2451 child_ctx = &child->perf_counter_ctx;
2452 parent_ctx = &parent->perf_counter_ctx;
2453
2454 __perf_counter_init_context(child_ctx, child);
2455
2456 /*
2457 * This is executed from the parent task context, so inherit
2458 * counters that have been marked for cloning:
2459 */
2460
2461 if (likely(!parent_ctx->nr_counters))
2462 return;
2463
2464 /*
2465 * Lock the parent list. No need to lock the child - not PID
2466 * hashed yet and not running, so nobody can access it.
2467 */
d859e29f 2468 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
2469
2470 /*
2471 * We dont have to disable NMIs - we are only looking at
2472 * the list, not manipulating it:
2473 */
2474 list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
d859e29f 2475 if (!counter->hw_event.inherit)
9b51f66d
IM
2476 continue;
2477
d859e29f 2478 if (inherit_group(counter, parent,
9b51f66d
IM
2479 parent_ctx, child, child_ctx))
2480 break;
2481 }
2482
d859e29f 2483 mutex_unlock(&parent_ctx->mutex);
9b51f66d
IM
2484}
2485
04289bb9 2486static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 2487{
04289bb9 2488 struct perf_cpu_context *cpuctx;
0793a61d 2489
04289bb9
IM
2490 cpuctx = &per_cpu(perf_cpu_context, cpu);
2491 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
2492
2493 mutex_lock(&perf_resource_mutex);
04289bb9 2494 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 2495 mutex_unlock(&perf_resource_mutex);
04289bb9 2496
01d0287f 2497 hw_perf_counter_setup(cpu);
0793a61d
TG
2498}
2499
2500#ifdef CONFIG_HOTPLUG_CPU
04289bb9 2501static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
2502{
2503 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
2504 struct perf_counter_context *ctx = &cpuctx->ctx;
2505 struct perf_counter *counter, *tmp;
2506
04289bb9
IM
2507 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
2508 __perf_counter_remove_from_context(counter);
0793a61d 2509}
04289bb9 2510static void perf_counter_exit_cpu(int cpu)
0793a61d 2511{
d859e29f
PM
2512 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
2513 struct perf_counter_context *ctx = &cpuctx->ctx;
2514
2515 mutex_lock(&ctx->mutex);
04289bb9 2516 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
d859e29f 2517 mutex_unlock(&ctx->mutex);
0793a61d
TG
2518}
2519#else
04289bb9 2520static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
2521#endif
2522
2523static int __cpuinit
2524perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
2525{
2526 unsigned int cpu = (long)hcpu;
2527
2528 switch (action) {
2529
2530 case CPU_UP_PREPARE:
2531 case CPU_UP_PREPARE_FROZEN:
04289bb9 2532 perf_counter_init_cpu(cpu);
0793a61d
TG
2533 break;
2534
2535 case CPU_DOWN_PREPARE:
2536 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 2537 perf_counter_exit_cpu(cpu);
0793a61d
TG
2538 break;
2539
2540 default:
2541 break;
2542 }
2543
2544 return NOTIFY_OK;
2545}
2546
2547static struct notifier_block __cpuinitdata perf_cpu_nb = {
2548 .notifier_call = perf_cpu_notify,
2549};
2550
2551static int __init perf_counter_init(void)
2552{
2553 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
2554 (void *)(long)smp_processor_id());
2555 register_cpu_notifier(&perf_cpu_nb);
2556
2557 return 0;
2558}
2559early_initcall(perf_counter_init);
2560
2561static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
2562{
2563 return sprintf(buf, "%d\n", perf_reserved_percpu);
2564}
2565
2566static ssize_t
2567perf_set_reserve_percpu(struct sysdev_class *class,
2568 const char *buf,
2569 size_t count)
2570{
2571 struct perf_cpu_context *cpuctx;
2572 unsigned long val;
2573 int err, cpu, mpt;
2574
2575 err = strict_strtoul(buf, 10, &val);
2576 if (err)
2577 return err;
2578 if (val > perf_max_counters)
2579 return -EINVAL;
2580
2581 mutex_lock(&perf_resource_mutex);
2582 perf_reserved_percpu = val;
2583 for_each_online_cpu(cpu) {
2584 cpuctx = &per_cpu(perf_cpu_context, cpu);
2585 spin_lock_irq(&cpuctx->ctx.lock);
2586 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
2587 perf_max_counters - perf_reserved_percpu);
2588 cpuctx->max_pertask = mpt;
2589 spin_unlock_irq(&cpuctx->ctx.lock);
2590 }
2591 mutex_unlock(&perf_resource_mutex);
2592
2593 return count;
2594}
2595
2596static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
2597{
2598 return sprintf(buf, "%d\n", perf_overcommit);
2599}
2600
2601static ssize_t
2602perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
2603{
2604 unsigned long val;
2605 int err;
2606
2607 err = strict_strtoul(buf, 10, &val);
2608 if (err)
2609 return err;
2610 if (val > 1)
2611 return -EINVAL;
2612
2613 mutex_lock(&perf_resource_mutex);
2614 perf_overcommit = val;
2615 mutex_unlock(&perf_resource_mutex);
2616
2617 return count;
2618}
2619
2620static SYSDEV_CLASS_ATTR(
2621 reserve_percpu,
2622 0644,
2623 perf_show_reserve_percpu,
2624 perf_set_reserve_percpu
2625 );
2626
2627static SYSDEV_CLASS_ATTR(
2628 overcommit,
2629 0644,
2630 perf_show_overcommit,
2631 perf_set_overcommit
2632 );
2633
2634static struct attribute *perfclass_attrs[] = {
2635 &attr_reserve_percpu.attr,
2636 &attr_overcommit.attr,
2637 NULL
2638};
2639
2640static struct attribute_group perfclass_attr_group = {
2641 .attrs = perfclass_attrs,
2642 .name = "perf_counters",
2643};
2644
2645static int __init perf_counter_sysfs_init(void)
2646{
2647 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
2648 &perfclass_attr_group);
2649}
2650device_initcall(perf_counter_sysfs_init);