]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/perf_counter.c
x86: implement atomic64_t on 32-bit
[mirror_ubuntu-jammy-kernel.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
04289bb9 13#include <linux/file.h>
0793a61d
TG
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
21#include <linux/perf_counter.h>
22
23/*
24 * Each CPU has a list of per CPU counters:
25 */
26DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
27
28int perf_max_counters __read_mostly;
29static int perf_reserved_percpu __read_mostly;
30static int perf_overcommit __read_mostly = 1;
31
32/*
33 * Mutex for (sysadmin-configurable) counter reservations:
34 */
35static DEFINE_MUTEX(perf_resource_mutex);
36
37/*
38 * Architecture provided APIs - weak aliases:
39 */
5c92d124 40extern __weak const struct hw_perf_counter_ops *
621a01ea 41hw_perf_counter_init(struct perf_counter *counter)
0793a61d 42{
621a01ea 43 return ERR_PTR(-EINVAL);
0793a61d
TG
44}
45
01b2838c
IM
46u64 __weak hw_perf_save_disable(void) { return 0; }
47void __weak hw_perf_restore(u64 ctrl) { }
5c92d124 48void __weak hw_perf_counter_setup(void) { }
0793a61d
TG
49
50#if BITS_PER_LONG == 64
51
52/*
53 * Read the cached counter in counter safe against cross CPU / NMI
54 * modifications. 64 bit version - no complications.
55 */
04289bb9 56static inline u64 perf_counter_read_safe(struct perf_counter *counter)
0793a61d
TG
57{
58 return (u64) atomic64_read(&counter->count);
59}
60
5c92d124
IM
61void atomic64_counter_set(struct perf_counter *counter, u64 val)
62{
63 atomic64_set(&counter->count, val);
64}
65
66u64 atomic64_counter_read(struct perf_counter *counter)
67{
68 return atomic64_read(&counter->count);
69}
70
0793a61d
TG
71#else
72
73/*
74 * Read the cached counter in counter safe against cross CPU / NMI
75 * modifications. 32 bit version.
76 */
04289bb9 77static u64 perf_counter_read_safe(struct perf_counter *counter)
0793a61d
TG
78{
79 u32 cntl, cnth;
80
81 local_irq_disable();
82 do {
83 cnth = atomic_read(&counter->count32[1]);
84 cntl = atomic_read(&counter->count32[0]);
85 } while (cnth != atomic_read(&counter->count32[1]));
86
87 local_irq_enable();
88
89 return cntl | ((u64) cnth) << 32;
90}
91
5c92d124
IM
92void atomic64_counter_set(struct perf_counter *counter, u64 val64)
93{
94 u32 *val32 = (void *)&val64;
95
96 atomic_set(counter->count32 + 0, *(val32 + 0));
97 atomic_set(counter->count32 + 1, *(val32 + 1));
98}
99
100u64 atomic64_counter_read(struct perf_counter *counter)
101{
102 return atomic_read(counter->count32 + 0) |
103 (u64) atomic_read(counter->count32 + 1) << 32;
104}
105
0793a61d
TG
106#endif
107
04289bb9
IM
108static void
109list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
110{
111 struct perf_counter *group_leader = counter->group_leader;
112
113 /*
114 * Depending on whether it is a standalone or sibling counter,
115 * add it straight to the context's counter list, or to the group
116 * leader's sibling list:
117 */
118 if (counter->group_leader == counter)
119 list_add_tail(&counter->list_entry, &ctx->counter_list);
120 else
121 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
122}
123
124static void
125list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
126{
127 struct perf_counter *sibling, *tmp;
128
129 list_del_init(&counter->list_entry);
130
04289bb9
IM
131 /*
132 * If this was a group counter with sibling counters then
133 * upgrade the siblings to singleton counters by adding them
134 * to the context list directly:
135 */
136 list_for_each_entry_safe(sibling, tmp,
137 &counter->sibling_list, list_entry) {
138
139 list_del_init(&sibling->list_entry);
140 list_add_tail(&sibling->list_entry, &ctx->counter_list);
141 WARN_ON_ONCE(!sibling->group_leader);
142 WARN_ON_ONCE(sibling->group_leader == sibling);
143 sibling->group_leader = sibling;
144 }
145}
146
0793a61d
TG
147/*
148 * Cross CPU call to remove a performance counter
149 *
150 * We disable the counter on the hardware level first. After that we
151 * remove it from the context list.
152 */
04289bb9 153static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
154{
155 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
156 struct perf_counter *counter = info;
157 struct perf_counter_context *ctx = counter->ctx;
5c92d124 158 u64 perf_flags;
0793a61d
TG
159
160 /*
161 * If this is a task context, we need to check whether it is
162 * the current task context of this cpu. If not it has been
163 * scheduled out before the smp call arrived.
164 */
165 if (ctx->task && cpuctx->task_ctx != ctx)
166 return;
167
168 spin_lock(&ctx->lock);
169
6a930700 170 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
621a01ea 171 counter->hw_ops->hw_perf_counter_disable(counter);
6a930700 172 counter->state = PERF_COUNTER_STATE_INACTIVE;
0793a61d
TG
173 ctx->nr_active--;
174 cpuctx->active_oncpu--;
175 counter->task = NULL;
176 }
177 ctx->nr_counters--;
178
179 /*
180 * Protect the list operation against NMI by disabling the
181 * counters on a global level. NOP for non NMI based counters.
182 */
01b2838c 183 perf_flags = hw_perf_save_disable();
04289bb9 184 list_del_counter(counter, ctx);
01b2838c 185 hw_perf_restore(perf_flags);
0793a61d
TG
186
187 if (!ctx->task) {
188 /*
189 * Allow more per task counters with respect to the
190 * reservation:
191 */
192 cpuctx->max_pertask =
193 min(perf_max_counters - ctx->nr_counters,
194 perf_max_counters - perf_reserved_percpu);
195 }
196
197 spin_unlock(&ctx->lock);
198}
199
200
201/*
202 * Remove the counter from a task's (or a CPU's) list of counters.
203 *
204 * Must be called with counter->mutex held.
205 *
206 * CPU counters are removed with a smp call. For task counters we only
207 * call when the task is on a CPU.
208 */
04289bb9 209static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
210{
211 struct perf_counter_context *ctx = counter->ctx;
212 struct task_struct *task = ctx->task;
213
214 if (!task) {
215 /*
216 * Per cpu counters are removed via an smp call and
217 * the removal is always sucessful.
218 */
219 smp_call_function_single(counter->cpu,
04289bb9 220 __perf_counter_remove_from_context,
0793a61d
TG
221 counter, 1);
222 return;
223 }
224
225retry:
04289bb9 226 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
227 counter);
228
229 spin_lock_irq(&ctx->lock);
230 /*
231 * If the context is active we need to retry the smp call.
232 */
04289bb9 233 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
234 spin_unlock_irq(&ctx->lock);
235 goto retry;
236 }
237
238 /*
239 * The lock prevents that this context is scheduled in so we
04289bb9 240 * can remove the counter safely, if the call above did not
0793a61d
TG
241 * succeed.
242 */
04289bb9 243 if (!list_empty(&counter->list_entry)) {
0793a61d 244 ctx->nr_counters--;
04289bb9 245 list_del_counter(counter, ctx);
0793a61d
TG
246 counter->task = NULL;
247 }
248 spin_unlock_irq(&ctx->lock);
249}
250
251/*
252 * Cross CPU call to install and enable a preformance counter
253 */
254static void __perf_install_in_context(void *info)
255{
256 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
257 struct perf_counter *counter = info;
258 struct perf_counter_context *ctx = counter->ctx;
259 int cpu = smp_processor_id();
5c92d124 260 u64 perf_flags;
0793a61d
TG
261
262 /*
263 * If this is a task context, we need to check whether it is
264 * the current task context of this cpu. If not it has been
265 * scheduled out before the smp call arrived.
266 */
267 if (ctx->task && cpuctx->task_ctx != ctx)
268 return;
269
270 spin_lock(&ctx->lock);
271
272 /*
273 * Protect the list operation against NMI by disabling the
274 * counters on a global level. NOP for non NMI based counters.
275 */
01b2838c 276 perf_flags = hw_perf_save_disable();
04289bb9 277 list_add_counter(counter, ctx);
01b2838c 278 hw_perf_restore(perf_flags);
0793a61d
TG
279
280 ctx->nr_counters++;
281
282 if (cpuctx->active_oncpu < perf_max_counters) {
621a01ea 283 counter->hw_ops->hw_perf_counter_enable(counter);
6a930700 284 counter->state = PERF_COUNTER_STATE_ACTIVE;
0793a61d
TG
285 counter->oncpu = cpu;
286 ctx->nr_active++;
287 cpuctx->active_oncpu++;
288 }
289
290 if (!ctx->task && cpuctx->max_pertask)
291 cpuctx->max_pertask--;
292
293 spin_unlock(&ctx->lock);
294}
295
296/*
297 * Attach a performance counter to a context
298 *
299 * First we add the counter to the list with the hardware enable bit
300 * in counter->hw_config cleared.
301 *
302 * If the counter is attached to a task which is on a CPU we use a smp
303 * call to enable it in the task context. The task might have been
304 * scheduled away, but we check this in the smp call again.
305 */
306static void
307perf_install_in_context(struct perf_counter_context *ctx,
308 struct perf_counter *counter,
309 int cpu)
310{
311 struct task_struct *task = ctx->task;
312
313 counter->ctx = ctx;
314 if (!task) {
315 /*
316 * Per cpu counters are installed via an smp call and
317 * the install is always sucessful.
318 */
319 smp_call_function_single(cpu, __perf_install_in_context,
320 counter, 1);
321 return;
322 }
323
324 counter->task = task;
325retry:
326 task_oncpu_function_call(task, __perf_install_in_context,
327 counter);
328
329 spin_lock_irq(&ctx->lock);
330 /*
0793a61d
TG
331 * we need to retry the smp call.
332 */
04289bb9 333 if (ctx->nr_active && list_empty(&counter->list_entry)) {
0793a61d
TG
334 spin_unlock_irq(&ctx->lock);
335 goto retry;
336 }
337
338 /*
339 * The lock prevents that this context is scheduled in so we
340 * can add the counter safely, if it the call above did not
341 * succeed.
342 */
04289bb9
IM
343 if (list_empty(&counter->list_entry)) {
344 list_add_counter(counter, ctx);
0793a61d
TG
345 ctx->nr_counters++;
346 }
347 spin_unlock_irq(&ctx->lock);
348}
349
04289bb9
IM
350static void
351counter_sched_out(struct perf_counter *counter,
352 struct perf_cpu_context *cpuctx,
353 struct perf_counter_context *ctx)
354{
6a930700 355 if (counter->state != PERF_COUNTER_STATE_ACTIVE)
04289bb9
IM
356 return;
357
621a01ea 358 counter->hw_ops->hw_perf_counter_disable(counter);
6a930700
IM
359 counter->state = PERF_COUNTER_STATE_INACTIVE;
360 counter->oncpu = -1;
04289bb9
IM
361
362 cpuctx->active_oncpu--;
363 ctx->nr_active--;
364}
365
366static void
367group_sched_out(struct perf_counter *group_counter,
368 struct perf_cpu_context *cpuctx,
369 struct perf_counter_context *ctx)
370{
371 struct perf_counter *counter;
372
373 counter_sched_out(group_counter, cpuctx, ctx);
374
375 /*
376 * Schedule out siblings (if any):
377 */
378 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
379 counter_sched_out(counter, cpuctx, ctx);
380}
381
0793a61d
TG
382/*
383 * Called from scheduler to remove the counters of the current task,
384 * with interrupts disabled.
385 *
386 * We stop each counter and update the counter value in counter->count.
387 *
388 * This does not protect us against NMI, but hw_perf_counter_disable()
389 * sets the disabled bit in the control field of counter _before_
390 * accessing the counter control register. If a NMI hits, then it will
391 * not restart the counter.
392 */
393void perf_counter_task_sched_out(struct task_struct *task, int cpu)
394{
395 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
396 struct perf_counter_context *ctx = &task->perf_counter_ctx;
397 struct perf_counter *counter;
398
399 if (likely(!cpuctx->task_ctx))
400 return;
401
402 spin_lock(&ctx->lock);
04289bb9
IM
403 if (ctx->nr_active) {
404 list_for_each_entry(counter, &ctx->counter_list, list_entry)
405 group_sched_out(counter, cpuctx, ctx);
0793a61d
TG
406 }
407 spin_unlock(&ctx->lock);
408 cpuctx->task_ctx = NULL;
409}
410
04289bb9
IM
411static void
412counter_sched_in(struct perf_counter *counter,
413 struct perf_cpu_context *cpuctx,
414 struct perf_counter_context *ctx,
415 int cpu)
416{
6a930700 417 if (counter->state == PERF_COUNTER_STATE_OFF)
1d1c7ddb
IM
418 return;
419
621a01ea 420 counter->hw_ops->hw_perf_counter_enable(counter);
6a930700 421 counter->state = PERF_COUNTER_STATE_ACTIVE;
04289bb9
IM
422 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
423
424 cpuctx->active_oncpu++;
425 ctx->nr_active++;
426}
427
428static void
429group_sched_in(struct perf_counter *group_counter,
430 struct perf_cpu_context *cpuctx,
431 struct perf_counter_context *ctx,
432 int cpu)
433{
434 struct perf_counter *counter;
435
436 counter_sched_in(group_counter, cpuctx, ctx, cpu);
437
438 /*
439 * Schedule in siblings as one group (if any):
440 */
441 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
442 counter_sched_in(counter, cpuctx, ctx, cpu);
443}
444
0793a61d
TG
445/*
446 * Called from scheduler to add the counters of the current task
447 * with interrupts disabled.
448 *
449 * We restore the counter value and then enable it.
450 *
451 * This does not protect us against NMI, but hw_perf_counter_enable()
452 * sets the enabled bit in the control field of counter _before_
453 * accessing the counter control register. If a NMI hits, then it will
454 * keep the counter running.
455 */
456void perf_counter_task_sched_in(struct task_struct *task, int cpu)
457{
458 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
459 struct perf_counter_context *ctx = &task->perf_counter_ctx;
460 struct perf_counter *counter;
461
462 if (likely(!ctx->nr_counters))
463 return;
464
465 spin_lock(&ctx->lock);
04289bb9 466 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
0793a61d
TG
467 if (ctx->nr_active == cpuctx->max_pertask)
468 break;
04289bb9
IM
469
470 /*
471 * Listen to the 'cpu' scheduling filter constraint
472 * of counters:
473 */
0793a61d
TG
474 if (counter->cpu != -1 && counter->cpu != cpu)
475 continue;
476
04289bb9 477 group_sched_in(counter, cpuctx, ctx, cpu);
0793a61d
TG
478 }
479 spin_unlock(&ctx->lock);
04289bb9 480
0793a61d
TG
481 cpuctx->task_ctx = ctx;
482}
483
1d1c7ddb
IM
484int perf_counter_task_disable(void)
485{
486 struct task_struct *curr = current;
487 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
488 struct perf_counter *counter;
489 u64 perf_flags;
490 int cpu;
491
492 if (likely(!ctx->nr_counters))
493 return 0;
494
495 local_irq_disable();
496 cpu = smp_processor_id();
497
498 perf_counter_task_sched_out(curr, cpu);
499
500 spin_lock(&ctx->lock);
501
502 /*
503 * Disable all the counters:
504 */
505 perf_flags = hw_perf_save_disable();
506
507 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
6a930700
IM
508 WARN_ON_ONCE(counter->state == PERF_COUNTER_STATE_ACTIVE);
509 counter->state = PERF_COUNTER_STATE_OFF;
1d1c7ddb
IM
510 }
511 hw_perf_restore(perf_flags);
512
513 spin_unlock(&ctx->lock);
514
515 local_irq_enable();
516
517 return 0;
518}
519
520int perf_counter_task_enable(void)
521{
522 struct task_struct *curr = current;
523 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
524 struct perf_counter *counter;
525 u64 perf_flags;
526 int cpu;
527
528 if (likely(!ctx->nr_counters))
529 return 0;
530
531 local_irq_disable();
532 cpu = smp_processor_id();
533
534 spin_lock(&ctx->lock);
535
536 /*
537 * Disable all the counters:
538 */
539 perf_flags = hw_perf_save_disable();
540
541 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
6a930700 542 if (counter->state != PERF_COUNTER_STATE_OFF)
1d1c7ddb 543 continue;
6a930700 544 counter->state = PERF_COUNTER_STATE_INACTIVE;
1d1c7ddb
IM
545 }
546 hw_perf_restore(perf_flags);
547
548 spin_unlock(&ctx->lock);
549
550 perf_counter_task_sched_in(curr, cpu);
551
552 local_irq_enable();
553
554 return 0;
555}
556
0793a61d
TG
557void perf_counter_task_tick(struct task_struct *curr, int cpu)
558{
559 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
560 struct perf_counter *counter;
5c92d124 561 u64 perf_flags;
0793a61d
TG
562
563 if (likely(!ctx->nr_counters))
564 return;
565
566 perf_counter_task_sched_out(curr, cpu);
567
568 spin_lock(&ctx->lock);
569
570 /*
04289bb9 571 * Rotate the first entry last (works just fine for group counters too):
0793a61d 572 */
01b2838c 573 perf_flags = hw_perf_save_disable();
04289bb9
IM
574 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
575 list_del(&counter->list_entry);
576 list_add_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
577 break;
578 }
01b2838c 579 hw_perf_restore(perf_flags);
0793a61d
TG
580
581 spin_unlock(&ctx->lock);
582
583 perf_counter_task_sched_in(curr, cpu);
584}
585
04289bb9
IM
586/*
587 * Initialize the perf_counter context in a task_struct:
588 */
589static void
590__perf_counter_init_context(struct perf_counter_context *ctx,
591 struct task_struct *task)
592{
593 spin_lock_init(&ctx->lock);
594 INIT_LIST_HEAD(&ctx->counter_list);
595 ctx->nr_counters = 0;
596 ctx->task = task;
597}
0793a61d
TG
598/*
599 * Initialize the perf_counter context in task_struct
600 */
601void perf_counter_init_task(struct task_struct *task)
602{
04289bb9 603 __perf_counter_init_context(&task->perf_counter_ctx, task);
0793a61d
TG
604}
605
606/*
607 * Cross CPU call to read the hardware counter
608 */
609static void __hw_perf_counter_read(void *info)
610{
621a01ea
IM
611 struct perf_counter *counter = info;
612
613 counter->hw_ops->hw_perf_counter_read(counter);
0793a61d
TG
614}
615
04289bb9 616static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
617{
618 /*
619 * If counter is enabled and currently active on a CPU, update the
620 * value in the counter structure:
621 */
6a930700 622 if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
0793a61d
TG
623 smp_call_function_single(counter->oncpu,
624 __hw_perf_counter_read, counter, 1);
625 }
626
04289bb9 627 return perf_counter_read_safe(counter);
0793a61d
TG
628}
629
630/*
631 * Cross CPU call to switch performance data pointers
632 */
633static void __perf_switch_irq_data(void *info)
634{
635 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
636 struct perf_counter *counter = info;
637 struct perf_counter_context *ctx = counter->ctx;
638 struct perf_data *oldirqdata = counter->irqdata;
639
640 /*
641 * If this is a task context, we need to check whether it is
642 * the current task context of this cpu. If not it has been
643 * scheduled out before the smp call arrived.
644 */
645 if (ctx->task) {
646 if (cpuctx->task_ctx != ctx)
647 return;
648 spin_lock(&ctx->lock);
649 }
650
651 /* Change the pointer NMI safe */
652 atomic_long_set((atomic_long_t *)&counter->irqdata,
653 (unsigned long) counter->usrdata);
654 counter->usrdata = oldirqdata;
655
656 if (ctx->task)
657 spin_unlock(&ctx->lock);
658}
659
660static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
661{
662 struct perf_counter_context *ctx = counter->ctx;
663 struct perf_data *oldirqdata = counter->irqdata;
664 struct task_struct *task = ctx->task;
665
666 if (!task) {
667 smp_call_function_single(counter->cpu,
668 __perf_switch_irq_data,
669 counter, 1);
670 return counter->usrdata;
671 }
672
673retry:
674 spin_lock_irq(&ctx->lock);
6a930700 675 if (counter->state != PERF_COUNTER_STATE_ACTIVE) {
0793a61d
TG
676 counter->irqdata = counter->usrdata;
677 counter->usrdata = oldirqdata;
678 spin_unlock_irq(&ctx->lock);
679 return oldirqdata;
680 }
681 spin_unlock_irq(&ctx->lock);
682 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
683 /* Might have failed, because task was scheduled out */
684 if (counter->irqdata == oldirqdata)
685 goto retry;
686
687 return counter->usrdata;
688}
689
690static void put_context(struct perf_counter_context *ctx)
691{
692 if (ctx->task)
693 put_task_struct(ctx->task);
694}
695
696static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
697{
698 struct perf_cpu_context *cpuctx;
699 struct perf_counter_context *ctx;
700 struct task_struct *task;
701
702 /*
703 * If cpu is not a wildcard then this is a percpu counter:
704 */
705 if (cpu != -1) {
706 /* Must be root to operate on a CPU counter: */
707 if (!capable(CAP_SYS_ADMIN))
708 return ERR_PTR(-EACCES);
709
710 if (cpu < 0 || cpu > num_possible_cpus())
711 return ERR_PTR(-EINVAL);
712
713 /*
714 * We could be clever and allow to attach a counter to an
715 * offline CPU and activate it when the CPU comes up, but
716 * that's for later.
717 */
718 if (!cpu_isset(cpu, cpu_online_map))
719 return ERR_PTR(-ENODEV);
720
721 cpuctx = &per_cpu(perf_cpu_context, cpu);
722 ctx = &cpuctx->ctx;
723
724 WARN_ON_ONCE(ctx->task);
725 return ctx;
726 }
727
728 rcu_read_lock();
729 if (!pid)
730 task = current;
731 else
732 task = find_task_by_vpid(pid);
733 if (task)
734 get_task_struct(task);
735 rcu_read_unlock();
736
737 if (!task)
738 return ERR_PTR(-ESRCH);
739
740 ctx = &task->perf_counter_ctx;
741 ctx->task = task;
742
743 /* Reuse ptrace permission checks for now. */
744 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
745 put_context(ctx);
746 return ERR_PTR(-EACCES);
747 }
748
749 return ctx;
750}
751
752/*
753 * Called when the last reference to the file is gone.
754 */
755static int perf_release(struct inode *inode, struct file *file)
756{
757 struct perf_counter *counter = file->private_data;
758 struct perf_counter_context *ctx = counter->ctx;
759
760 file->private_data = NULL;
761
762 mutex_lock(&counter->mutex);
763
04289bb9 764 perf_counter_remove_from_context(counter);
0793a61d
TG
765 put_context(ctx);
766
767 mutex_unlock(&counter->mutex);
768
769 kfree(counter);
770
771 return 0;
772}
773
774/*
775 * Read the performance counter - simple non blocking version for now
776 */
777static ssize_t
778perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
779{
780 u64 cntval;
781
782 if (count != sizeof(cntval))
783 return -EINVAL;
784
785 mutex_lock(&counter->mutex);
04289bb9 786 cntval = perf_counter_read(counter);
0793a61d
TG
787 mutex_unlock(&counter->mutex);
788
789 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
790}
791
792static ssize_t
793perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
794{
795 if (!usrdata->len)
796 return 0;
797
798 count = min(count, (size_t)usrdata->len);
799 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
800 return -EFAULT;
801
802 /* Adjust the counters */
803 usrdata->len -= count;
804 if (!usrdata->len)
805 usrdata->rd_idx = 0;
806 else
807 usrdata->rd_idx += count;
808
809 return count;
810}
811
812static ssize_t
813perf_read_irq_data(struct perf_counter *counter,
814 char __user *buf,
815 size_t count,
816 int nonblocking)
817{
818 struct perf_data *irqdata, *usrdata;
819 DECLARE_WAITQUEUE(wait, current);
820 ssize_t res;
821
822 irqdata = counter->irqdata;
823 usrdata = counter->usrdata;
824
825 if (usrdata->len + irqdata->len >= count)
826 goto read_pending;
827
828 if (nonblocking)
829 return -EAGAIN;
830
831 spin_lock_irq(&counter->waitq.lock);
832 __add_wait_queue(&counter->waitq, &wait);
833 for (;;) {
834 set_current_state(TASK_INTERRUPTIBLE);
835 if (usrdata->len + irqdata->len >= count)
836 break;
837
838 if (signal_pending(current))
839 break;
840
841 spin_unlock_irq(&counter->waitq.lock);
842 schedule();
843 spin_lock_irq(&counter->waitq.lock);
844 }
845 __remove_wait_queue(&counter->waitq, &wait);
846 __set_current_state(TASK_RUNNING);
847 spin_unlock_irq(&counter->waitq.lock);
848
849 if (usrdata->len + irqdata->len < count)
850 return -ERESTARTSYS;
851read_pending:
852 mutex_lock(&counter->mutex);
853
854 /* Drain pending data first: */
855 res = perf_copy_usrdata(usrdata, buf, count);
856 if (res < 0 || res == count)
857 goto out;
858
859 /* Switch irq buffer: */
860 usrdata = perf_switch_irq_data(counter);
861 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
862 if (!res)
863 res = -EFAULT;
864 } else {
865 res = count;
866 }
867out:
868 mutex_unlock(&counter->mutex);
869
870 return res;
871}
872
873static ssize_t
874perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
875{
876 struct perf_counter *counter = file->private_data;
877
9f66a381 878 switch (counter->hw_event.record_type) {
0793a61d
TG
879 case PERF_RECORD_SIMPLE:
880 return perf_read_hw(counter, buf, count);
881
882 case PERF_RECORD_IRQ:
883 case PERF_RECORD_GROUP:
884 return perf_read_irq_data(counter, buf, count,
885 file->f_flags & O_NONBLOCK);
886 }
887 return -EINVAL;
888}
889
890static unsigned int perf_poll(struct file *file, poll_table *wait)
891{
892 struct perf_counter *counter = file->private_data;
893 unsigned int events = 0;
894 unsigned long flags;
895
896 poll_wait(file, &counter->waitq, wait);
897
898 spin_lock_irqsave(&counter->waitq.lock, flags);
899 if (counter->usrdata->len || counter->irqdata->len)
900 events |= POLLIN;
901 spin_unlock_irqrestore(&counter->waitq.lock, flags);
902
903 return events;
904}
905
906static const struct file_operations perf_fops = {
907 .release = perf_release,
908 .read = perf_read,
909 .poll = perf_poll,
910};
911
5c92d124
IM
912static void cpu_clock_perf_counter_enable(struct perf_counter *counter)
913{
914}
915
916static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
917{
918}
919
920static void cpu_clock_perf_counter_read(struct perf_counter *counter)
921{
922 int cpu = raw_smp_processor_id();
923
924 atomic64_counter_set(counter, cpu_clock(cpu));
925}
926
927static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
928 .hw_perf_counter_enable = cpu_clock_perf_counter_enable,
929 .hw_perf_counter_disable = cpu_clock_perf_counter_disable,
930 .hw_perf_counter_read = cpu_clock_perf_counter_read,
931};
932
bae43c99
IM
933static void task_clock_perf_counter_enable(struct perf_counter *counter)
934{
935}
936
937static void task_clock_perf_counter_disable(struct perf_counter *counter)
938{
939}
940
941static void task_clock_perf_counter_read(struct perf_counter *counter)
942{
943 atomic64_counter_set(counter, current->se.sum_exec_runtime);
944}
945
946static const struct hw_perf_counter_ops perf_ops_task_clock = {
947 .hw_perf_counter_enable = task_clock_perf_counter_enable,
948 .hw_perf_counter_disable = task_clock_perf_counter_disable,
949 .hw_perf_counter_read = task_clock_perf_counter_read,
950};
951
5c92d124
IM
952static const struct hw_perf_counter_ops *
953sw_perf_counter_init(struct perf_counter *counter)
954{
955 const struct hw_perf_counter_ops *hw_ops = NULL;
956
957 switch (counter->hw_event.type) {
958 case PERF_COUNT_CPU_CLOCK:
959 hw_ops = &perf_ops_cpu_clock;
960 break;
bae43c99
IM
961 case PERF_COUNT_TASK_CLOCK:
962 hw_ops = &perf_ops_task_clock;
963 break;
5c92d124
IM
964 default:
965 break;
966 }
967 return hw_ops;
968}
969
0793a61d
TG
970/*
971 * Allocate and initialize a counter structure
972 */
973static struct perf_counter *
04289bb9
IM
974perf_counter_alloc(struct perf_counter_hw_event *hw_event,
975 int cpu,
976 struct perf_counter *group_leader)
0793a61d 977{
5c92d124 978 const struct hw_perf_counter_ops *hw_ops;
621a01ea 979 struct perf_counter *counter;
0793a61d 980
621a01ea 981 counter = kzalloc(sizeof(*counter), GFP_KERNEL);
0793a61d
TG
982 if (!counter)
983 return NULL;
984
04289bb9
IM
985 /*
986 * Single counters are their own group leaders, with an
987 * empty sibling list:
988 */
989 if (!group_leader)
990 group_leader = counter;
991
0793a61d 992 mutex_init(&counter->mutex);
04289bb9
IM
993 INIT_LIST_HEAD(&counter->list_entry);
994 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
995 init_waitqueue_head(&counter->waitq);
996
9f66a381
IM
997 counter->irqdata = &counter->data[0];
998 counter->usrdata = &counter->data[1];
999 counter->cpu = cpu;
1000 counter->hw_event = *hw_event;
1001 counter->wakeup_pending = 0;
04289bb9 1002 counter->group_leader = group_leader;
621a01ea
IM
1003 counter->hw_ops = NULL;
1004
5c92d124
IM
1005 hw_ops = NULL;
1006 if (!hw_event->raw && hw_event->type < 0)
1007 hw_ops = sw_perf_counter_init(counter);
1008 if (!hw_ops) {
1009 hw_ops = hw_perf_counter_init(counter);
1010 }
1011
621a01ea
IM
1012 if (!hw_ops) {
1013 kfree(counter);
1014 return NULL;
1015 }
1016 counter->hw_ops = hw_ops;
0793a61d
TG
1017
1018 return counter;
1019}
1020
1021/**
9f66a381
IM
1022 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
1023 *
1024 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 1025 * @pid: target pid
9f66a381
IM
1026 * @cpu: target cpu
1027 * @group_fd: group leader counter fd
0793a61d 1028 */
1d1c7ddb
IM
1029asmlinkage int
1030sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user,
1031 pid_t pid, int cpu, int group_fd)
0793a61d 1032{
04289bb9 1033 struct perf_counter *counter, *group_leader;
9f66a381 1034 struct perf_counter_hw_event hw_event;
04289bb9
IM
1035 struct perf_counter_context *ctx;
1036 struct file *group_file = NULL;
1037 int fput_needed = 0;
0793a61d
TG
1038 int ret;
1039
9f66a381 1040 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
1041 return -EFAULT;
1042
04289bb9 1043 /*
ccff286d
IM
1044 * Get the target context (task or percpu):
1045 */
1046 ctx = find_get_context(pid, cpu);
1047 if (IS_ERR(ctx))
1048 return PTR_ERR(ctx);
1049
1050 /*
1051 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
1052 */
1053 group_leader = NULL;
1054 if (group_fd != -1) {
1055 ret = -EINVAL;
1056 group_file = fget_light(group_fd, &fput_needed);
1057 if (!group_file)
ccff286d 1058 goto err_put_context;
04289bb9 1059 if (group_file->f_op != &perf_fops)
ccff286d 1060 goto err_put_context;
04289bb9
IM
1061
1062 group_leader = group_file->private_data;
1063 /*
ccff286d
IM
1064 * Do not allow a recursive hierarchy (this new sibling
1065 * becoming part of another group-sibling):
1066 */
1067 if (group_leader->group_leader != group_leader)
1068 goto err_put_context;
1069 /*
1070 * Do not allow to attach to a group in a different
1071 * task or CPU context:
04289bb9 1072 */
ccff286d
IM
1073 if (group_leader->ctx != ctx)
1074 goto err_put_context;
04289bb9
IM
1075 }
1076
5c92d124 1077 ret = -EINVAL;
04289bb9 1078 counter = perf_counter_alloc(&hw_event, cpu, group_leader);
0793a61d
TG
1079 if (!counter)
1080 goto err_put_context;
1081
0793a61d
TG
1082 perf_install_in_context(ctx, counter, cpu);
1083
1084 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1085 if (ret < 0)
1086 goto err_remove_free_put_context;
1087
04289bb9
IM
1088out_fput:
1089 fput_light(group_file, fput_needed);
1090
0793a61d
TG
1091 return ret;
1092
1093err_remove_free_put_context:
1094 mutex_lock(&counter->mutex);
04289bb9 1095 perf_counter_remove_from_context(counter);
0793a61d 1096 mutex_unlock(&counter->mutex);
0793a61d
TG
1097 kfree(counter);
1098
1099err_put_context:
1100 put_context(ctx);
1101
04289bb9 1102 goto out_fput;
0793a61d
TG
1103}
1104
04289bb9 1105static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 1106{
04289bb9 1107 struct perf_cpu_context *cpuctx;
0793a61d 1108
04289bb9
IM
1109 cpuctx = &per_cpu(perf_cpu_context, cpu);
1110 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
1111
1112 mutex_lock(&perf_resource_mutex);
04289bb9 1113 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 1114 mutex_unlock(&perf_resource_mutex);
04289bb9 1115
0793a61d
TG
1116 hw_perf_counter_setup();
1117}
1118
1119#ifdef CONFIG_HOTPLUG_CPU
04289bb9 1120static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
1121{
1122 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1123 struct perf_counter_context *ctx = &cpuctx->ctx;
1124 struct perf_counter *counter, *tmp;
1125
04289bb9
IM
1126 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
1127 __perf_counter_remove_from_context(counter);
0793a61d
TG
1128
1129}
04289bb9 1130static void perf_counter_exit_cpu(int cpu)
0793a61d 1131{
04289bb9 1132 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
0793a61d
TG
1133}
1134#else
04289bb9 1135static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
1136#endif
1137
1138static int __cpuinit
1139perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
1140{
1141 unsigned int cpu = (long)hcpu;
1142
1143 switch (action) {
1144
1145 case CPU_UP_PREPARE:
1146 case CPU_UP_PREPARE_FROZEN:
04289bb9 1147 perf_counter_init_cpu(cpu);
0793a61d
TG
1148 break;
1149
1150 case CPU_DOWN_PREPARE:
1151 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 1152 perf_counter_exit_cpu(cpu);
0793a61d
TG
1153 break;
1154
1155 default:
1156 break;
1157 }
1158
1159 return NOTIFY_OK;
1160}
1161
1162static struct notifier_block __cpuinitdata perf_cpu_nb = {
1163 .notifier_call = perf_cpu_notify,
1164};
1165
1166static int __init perf_counter_init(void)
1167{
1168 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1169 (void *)(long)smp_processor_id());
1170 register_cpu_notifier(&perf_cpu_nb);
1171
1172 return 0;
1173}
1174early_initcall(perf_counter_init);
1175
1176static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1177{
1178 return sprintf(buf, "%d\n", perf_reserved_percpu);
1179}
1180
1181static ssize_t
1182perf_set_reserve_percpu(struct sysdev_class *class,
1183 const char *buf,
1184 size_t count)
1185{
1186 struct perf_cpu_context *cpuctx;
1187 unsigned long val;
1188 int err, cpu, mpt;
1189
1190 err = strict_strtoul(buf, 10, &val);
1191 if (err)
1192 return err;
1193 if (val > perf_max_counters)
1194 return -EINVAL;
1195
1196 mutex_lock(&perf_resource_mutex);
1197 perf_reserved_percpu = val;
1198 for_each_online_cpu(cpu) {
1199 cpuctx = &per_cpu(perf_cpu_context, cpu);
1200 spin_lock_irq(&cpuctx->ctx.lock);
1201 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1202 perf_max_counters - perf_reserved_percpu);
1203 cpuctx->max_pertask = mpt;
1204 spin_unlock_irq(&cpuctx->ctx.lock);
1205 }
1206 mutex_unlock(&perf_resource_mutex);
1207
1208 return count;
1209}
1210
1211static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1212{
1213 return sprintf(buf, "%d\n", perf_overcommit);
1214}
1215
1216static ssize_t
1217perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1218{
1219 unsigned long val;
1220 int err;
1221
1222 err = strict_strtoul(buf, 10, &val);
1223 if (err)
1224 return err;
1225 if (val > 1)
1226 return -EINVAL;
1227
1228 mutex_lock(&perf_resource_mutex);
1229 perf_overcommit = val;
1230 mutex_unlock(&perf_resource_mutex);
1231
1232 return count;
1233}
1234
1235static SYSDEV_CLASS_ATTR(
1236 reserve_percpu,
1237 0644,
1238 perf_show_reserve_percpu,
1239 perf_set_reserve_percpu
1240 );
1241
1242static SYSDEV_CLASS_ATTR(
1243 overcommit,
1244 0644,
1245 perf_show_overcommit,
1246 perf_set_overcommit
1247 );
1248
1249static struct attribute *perfclass_attrs[] = {
1250 &attr_reserve_percpu.attr,
1251 &attr_overcommit.attr,
1252 NULL
1253};
1254
1255static struct attribute_group perfclass_attr_group = {
1256 .attrs = perfclass_attrs,
1257 .name = "perf_counters",
1258};
1259
1260static int __init perf_counter_sysfs_init(void)
1261{
1262 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1263 &perfclass_attr_group);
1264}
1265device_initcall(perf_counter_sysfs_init);
1266