]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/perf_counter.c
perf counters: implement PERF_COUNT_TASK_CLOCK
[mirror_ubuntu-jammy-kernel.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
04289bb9 13#include <linux/file.h>
0793a61d
TG
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
21#include <linux/perf_counter.h>
22
23/*
24 * Each CPU has a list of per CPU counters:
25 */
26DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
27
28int perf_max_counters __read_mostly;
29static int perf_reserved_percpu __read_mostly;
30static int perf_overcommit __read_mostly = 1;
31
32/*
33 * Mutex for (sysadmin-configurable) counter reservations:
34 */
35static DEFINE_MUTEX(perf_resource_mutex);
36
37/*
38 * Architecture provided APIs - weak aliases:
39 */
5c92d124 40extern __weak const struct hw_perf_counter_ops *
621a01ea 41hw_perf_counter_init(struct perf_counter *counter)
0793a61d 42{
621a01ea 43 return ERR_PTR(-EINVAL);
0793a61d
TG
44}
45
01b2838c
IM
46u64 __weak hw_perf_save_disable(void) { return 0; }
47void __weak hw_perf_restore(u64 ctrl) { }
5c92d124 48void __weak hw_perf_counter_setup(void) { }
0793a61d
TG
49
50#if BITS_PER_LONG == 64
51
52/*
53 * Read the cached counter in counter safe against cross CPU / NMI
54 * modifications. 64 bit version - no complications.
55 */
04289bb9 56static inline u64 perf_counter_read_safe(struct perf_counter *counter)
0793a61d
TG
57{
58 return (u64) atomic64_read(&counter->count);
59}
60
5c92d124
IM
61void atomic64_counter_set(struct perf_counter *counter, u64 val)
62{
63 atomic64_set(&counter->count, val);
64}
65
66u64 atomic64_counter_read(struct perf_counter *counter)
67{
68 return atomic64_read(&counter->count);
69}
70
0793a61d
TG
71#else
72
73/*
74 * Read the cached counter in counter safe against cross CPU / NMI
75 * modifications. 32 bit version.
76 */
04289bb9 77static u64 perf_counter_read_safe(struct perf_counter *counter)
0793a61d
TG
78{
79 u32 cntl, cnth;
80
81 local_irq_disable();
82 do {
83 cnth = atomic_read(&counter->count32[1]);
84 cntl = atomic_read(&counter->count32[0]);
85 } while (cnth != atomic_read(&counter->count32[1]));
86
87 local_irq_enable();
88
89 return cntl | ((u64) cnth) << 32;
90}
91
5c92d124
IM
92void atomic64_counter_set(struct perf_counter *counter, u64 val64)
93{
94 u32 *val32 = (void *)&val64;
95
96 atomic_set(counter->count32 + 0, *(val32 + 0));
97 atomic_set(counter->count32 + 1, *(val32 + 1));
98}
99
100u64 atomic64_counter_read(struct perf_counter *counter)
101{
102 return atomic_read(counter->count32 + 0) |
103 (u64) atomic_read(counter->count32 + 1) << 32;
104}
105
0793a61d
TG
106#endif
107
04289bb9
IM
108static void
109list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
110{
111 struct perf_counter *group_leader = counter->group_leader;
112
113 /*
114 * Depending on whether it is a standalone or sibling counter,
115 * add it straight to the context's counter list, or to the group
116 * leader's sibling list:
117 */
118 if (counter->group_leader == counter)
119 list_add_tail(&counter->list_entry, &ctx->counter_list);
120 else
121 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
122}
123
124static void
125list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
126{
127 struct perf_counter *sibling, *tmp;
128
129 list_del_init(&counter->list_entry);
130
04289bb9
IM
131 /*
132 * If this was a group counter with sibling counters then
133 * upgrade the siblings to singleton counters by adding them
134 * to the context list directly:
135 */
136 list_for_each_entry_safe(sibling, tmp,
137 &counter->sibling_list, list_entry) {
138
139 list_del_init(&sibling->list_entry);
140 list_add_tail(&sibling->list_entry, &ctx->counter_list);
141 WARN_ON_ONCE(!sibling->group_leader);
142 WARN_ON_ONCE(sibling->group_leader == sibling);
143 sibling->group_leader = sibling;
144 }
145}
146
0793a61d
TG
147/*
148 * Cross CPU call to remove a performance counter
149 *
150 * We disable the counter on the hardware level first. After that we
151 * remove it from the context list.
152 */
04289bb9 153static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
154{
155 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
156 struct perf_counter *counter = info;
157 struct perf_counter_context *ctx = counter->ctx;
5c92d124 158 u64 perf_flags;
0793a61d
TG
159
160 /*
161 * If this is a task context, we need to check whether it is
162 * the current task context of this cpu. If not it has been
163 * scheduled out before the smp call arrived.
164 */
165 if (ctx->task && cpuctx->task_ctx != ctx)
166 return;
167
168 spin_lock(&ctx->lock);
169
170 if (counter->active) {
621a01ea 171 counter->hw_ops->hw_perf_counter_disable(counter);
0793a61d
TG
172 counter->active = 0;
173 ctx->nr_active--;
174 cpuctx->active_oncpu--;
175 counter->task = NULL;
176 }
177 ctx->nr_counters--;
178
179 /*
180 * Protect the list operation against NMI by disabling the
181 * counters on a global level. NOP for non NMI based counters.
182 */
01b2838c 183 perf_flags = hw_perf_save_disable();
04289bb9 184 list_del_counter(counter, ctx);
01b2838c 185 hw_perf_restore(perf_flags);
0793a61d
TG
186
187 if (!ctx->task) {
188 /*
189 * Allow more per task counters with respect to the
190 * reservation:
191 */
192 cpuctx->max_pertask =
193 min(perf_max_counters - ctx->nr_counters,
194 perf_max_counters - perf_reserved_percpu);
195 }
196
197 spin_unlock(&ctx->lock);
198}
199
200
201/*
202 * Remove the counter from a task's (or a CPU's) list of counters.
203 *
204 * Must be called with counter->mutex held.
205 *
206 * CPU counters are removed with a smp call. For task counters we only
207 * call when the task is on a CPU.
208 */
04289bb9 209static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
210{
211 struct perf_counter_context *ctx = counter->ctx;
212 struct task_struct *task = ctx->task;
213
214 if (!task) {
215 /*
216 * Per cpu counters are removed via an smp call and
217 * the removal is always sucessful.
218 */
219 smp_call_function_single(counter->cpu,
04289bb9 220 __perf_counter_remove_from_context,
0793a61d
TG
221 counter, 1);
222 return;
223 }
224
225retry:
04289bb9 226 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
227 counter);
228
229 spin_lock_irq(&ctx->lock);
230 /*
231 * If the context is active we need to retry the smp call.
232 */
04289bb9 233 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
234 spin_unlock_irq(&ctx->lock);
235 goto retry;
236 }
237
238 /*
239 * The lock prevents that this context is scheduled in so we
04289bb9 240 * can remove the counter safely, if the call above did not
0793a61d
TG
241 * succeed.
242 */
04289bb9 243 if (!list_empty(&counter->list_entry)) {
0793a61d 244 ctx->nr_counters--;
04289bb9 245 list_del_counter(counter, ctx);
0793a61d
TG
246 counter->task = NULL;
247 }
248 spin_unlock_irq(&ctx->lock);
249}
250
251/*
252 * Cross CPU call to install and enable a preformance counter
253 */
254static void __perf_install_in_context(void *info)
255{
256 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
257 struct perf_counter *counter = info;
258 struct perf_counter_context *ctx = counter->ctx;
259 int cpu = smp_processor_id();
5c92d124 260 u64 perf_flags;
0793a61d
TG
261
262 /*
263 * If this is a task context, we need to check whether it is
264 * the current task context of this cpu. If not it has been
265 * scheduled out before the smp call arrived.
266 */
267 if (ctx->task && cpuctx->task_ctx != ctx)
268 return;
269
270 spin_lock(&ctx->lock);
271
272 /*
273 * Protect the list operation against NMI by disabling the
274 * counters on a global level. NOP for non NMI based counters.
275 */
01b2838c 276 perf_flags = hw_perf_save_disable();
04289bb9 277 list_add_counter(counter, ctx);
01b2838c 278 hw_perf_restore(perf_flags);
0793a61d
TG
279
280 ctx->nr_counters++;
281
282 if (cpuctx->active_oncpu < perf_max_counters) {
621a01ea 283 counter->hw_ops->hw_perf_counter_enable(counter);
0793a61d
TG
284 counter->active = 1;
285 counter->oncpu = cpu;
286 ctx->nr_active++;
287 cpuctx->active_oncpu++;
288 }
289
290 if (!ctx->task && cpuctx->max_pertask)
291 cpuctx->max_pertask--;
292
293 spin_unlock(&ctx->lock);
294}
295
296/*
297 * Attach a performance counter to a context
298 *
299 * First we add the counter to the list with the hardware enable bit
300 * in counter->hw_config cleared.
301 *
302 * If the counter is attached to a task which is on a CPU we use a smp
303 * call to enable it in the task context. The task might have been
304 * scheduled away, but we check this in the smp call again.
305 */
306static void
307perf_install_in_context(struct perf_counter_context *ctx,
308 struct perf_counter *counter,
309 int cpu)
310{
311 struct task_struct *task = ctx->task;
312
313 counter->ctx = ctx;
314 if (!task) {
315 /*
316 * Per cpu counters are installed via an smp call and
317 * the install is always sucessful.
318 */
319 smp_call_function_single(cpu, __perf_install_in_context,
320 counter, 1);
321 return;
322 }
323
324 counter->task = task;
325retry:
326 task_oncpu_function_call(task, __perf_install_in_context,
327 counter);
328
329 spin_lock_irq(&ctx->lock);
330 /*
331 * If the context is active and the counter has not been added
332 * we need to retry the smp call.
333 */
04289bb9 334 if (ctx->nr_active && list_empty(&counter->list_entry)) {
0793a61d
TG
335 spin_unlock_irq(&ctx->lock);
336 goto retry;
337 }
338
339 /*
340 * The lock prevents that this context is scheduled in so we
341 * can add the counter safely, if it the call above did not
342 * succeed.
343 */
04289bb9
IM
344 if (list_empty(&counter->list_entry)) {
345 list_add_counter(counter, ctx);
0793a61d
TG
346 ctx->nr_counters++;
347 }
348 spin_unlock_irq(&ctx->lock);
349}
350
04289bb9
IM
351static void
352counter_sched_out(struct perf_counter *counter,
353 struct perf_cpu_context *cpuctx,
354 struct perf_counter_context *ctx)
355{
356 if (!counter->active)
357 return;
358
621a01ea 359 counter->hw_ops->hw_perf_counter_disable(counter);
04289bb9
IM
360 counter->active = 0;
361 counter->oncpu = -1;
362
363 cpuctx->active_oncpu--;
364 ctx->nr_active--;
365}
366
367static void
368group_sched_out(struct perf_counter *group_counter,
369 struct perf_cpu_context *cpuctx,
370 struct perf_counter_context *ctx)
371{
372 struct perf_counter *counter;
373
374 counter_sched_out(group_counter, cpuctx, ctx);
375
376 /*
377 * Schedule out siblings (if any):
378 */
379 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
380 counter_sched_out(counter, cpuctx, ctx);
381}
382
0793a61d
TG
383/*
384 * Called from scheduler to remove the counters of the current task,
385 * with interrupts disabled.
386 *
387 * We stop each counter and update the counter value in counter->count.
388 *
389 * This does not protect us against NMI, but hw_perf_counter_disable()
390 * sets the disabled bit in the control field of counter _before_
391 * accessing the counter control register. If a NMI hits, then it will
392 * not restart the counter.
393 */
394void perf_counter_task_sched_out(struct task_struct *task, int cpu)
395{
396 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
397 struct perf_counter_context *ctx = &task->perf_counter_ctx;
398 struct perf_counter *counter;
399
400 if (likely(!cpuctx->task_ctx))
401 return;
402
403 spin_lock(&ctx->lock);
04289bb9
IM
404 if (ctx->nr_active) {
405 list_for_each_entry(counter, &ctx->counter_list, list_entry)
406 group_sched_out(counter, cpuctx, ctx);
0793a61d
TG
407 }
408 spin_unlock(&ctx->lock);
409 cpuctx->task_ctx = NULL;
410}
411
04289bb9
IM
412static void
413counter_sched_in(struct perf_counter *counter,
414 struct perf_cpu_context *cpuctx,
415 struct perf_counter_context *ctx,
416 int cpu)
417{
621a01ea 418 counter->hw_ops->hw_perf_counter_enable(counter);
04289bb9
IM
419 counter->active = 1;
420 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
421
422 cpuctx->active_oncpu++;
423 ctx->nr_active++;
424}
425
426static void
427group_sched_in(struct perf_counter *group_counter,
428 struct perf_cpu_context *cpuctx,
429 struct perf_counter_context *ctx,
430 int cpu)
431{
432 struct perf_counter *counter;
433
434 counter_sched_in(group_counter, cpuctx, ctx, cpu);
435
436 /*
437 * Schedule in siblings as one group (if any):
438 */
439 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
440 counter_sched_in(counter, cpuctx, ctx, cpu);
441}
442
0793a61d
TG
443/*
444 * Called from scheduler to add the counters of the current task
445 * with interrupts disabled.
446 *
447 * We restore the counter value and then enable it.
448 *
449 * This does not protect us against NMI, but hw_perf_counter_enable()
450 * sets the enabled bit in the control field of counter _before_
451 * accessing the counter control register. If a NMI hits, then it will
452 * keep the counter running.
453 */
454void perf_counter_task_sched_in(struct task_struct *task, int cpu)
455{
456 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
457 struct perf_counter_context *ctx = &task->perf_counter_ctx;
458 struct perf_counter *counter;
459
460 if (likely(!ctx->nr_counters))
461 return;
462
463 spin_lock(&ctx->lock);
04289bb9 464 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
0793a61d
TG
465 if (ctx->nr_active == cpuctx->max_pertask)
466 break;
04289bb9
IM
467
468 /*
469 * Listen to the 'cpu' scheduling filter constraint
470 * of counters:
471 */
0793a61d
TG
472 if (counter->cpu != -1 && counter->cpu != cpu)
473 continue;
474
04289bb9 475 group_sched_in(counter, cpuctx, ctx, cpu);
0793a61d
TG
476 }
477 spin_unlock(&ctx->lock);
04289bb9 478
0793a61d
TG
479 cpuctx->task_ctx = ctx;
480}
481
482void perf_counter_task_tick(struct task_struct *curr, int cpu)
483{
484 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
485 struct perf_counter *counter;
5c92d124 486 u64 perf_flags;
0793a61d
TG
487
488 if (likely(!ctx->nr_counters))
489 return;
490
491 perf_counter_task_sched_out(curr, cpu);
492
493 spin_lock(&ctx->lock);
494
495 /*
04289bb9 496 * Rotate the first entry last (works just fine for group counters too):
0793a61d 497 */
01b2838c 498 perf_flags = hw_perf_save_disable();
04289bb9
IM
499 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
500 list_del(&counter->list_entry);
501 list_add_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
502 break;
503 }
01b2838c 504 hw_perf_restore(perf_flags);
0793a61d
TG
505
506 spin_unlock(&ctx->lock);
507
508 perf_counter_task_sched_in(curr, cpu);
509}
510
04289bb9
IM
511/*
512 * Initialize the perf_counter context in a task_struct:
513 */
514static void
515__perf_counter_init_context(struct perf_counter_context *ctx,
516 struct task_struct *task)
517{
518 spin_lock_init(&ctx->lock);
519 INIT_LIST_HEAD(&ctx->counter_list);
520 ctx->nr_counters = 0;
521 ctx->task = task;
522}
0793a61d
TG
523/*
524 * Initialize the perf_counter context in task_struct
525 */
526void perf_counter_init_task(struct task_struct *task)
527{
04289bb9 528 __perf_counter_init_context(&task->perf_counter_ctx, task);
0793a61d
TG
529}
530
531/*
532 * Cross CPU call to read the hardware counter
533 */
534static void __hw_perf_counter_read(void *info)
535{
621a01ea
IM
536 struct perf_counter *counter = info;
537
538 counter->hw_ops->hw_perf_counter_read(counter);
0793a61d
TG
539}
540
04289bb9 541static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
542{
543 /*
544 * If counter is enabled and currently active on a CPU, update the
545 * value in the counter structure:
546 */
547 if (counter->active) {
548 smp_call_function_single(counter->oncpu,
549 __hw_perf_counter_read, counter, 1);
550 }
551
04289bb9 552 return perf_counter_read_safe(counter);
0793a61d
TG
553}
554
555/*
556 * Cross CPU call to switch performance data pointers
557 */
558static void __perf_switch_irq_data(void *info)
559{
560 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
561 struct perf_counter *counter = info;
562 struct perf_counter_context *ctx = counter->ctx;
563 struct perf_data *oldirqdata = counter->irqdata;
564
565 /*
566 * If this is a task context, we need to check whether it is
567 * the current task context of this cpu. If not it has been
568 * scheduled out before the smp call arrived.
569 */
570 if (ctx->task) {
571 if (cpuctx->task_ctx != ctx)
572 return;
573 spin_lock(&ctx->lock);
574 }
575
576 /* Change the pointer NMI safe */
577 atomic_long_set((atomic_long_t *)&counter->irqdata,
578 (unsigned long) counter->usrdata);
579 counter->usrdata = oldirqdata;
580
581 if (ctx->task)
582 spin_unlock(&ctx->lock);
583}
584
585static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
586{
587 struct perf_counter_context *ctx = counter->ctx;
588 struct perf_data *oldirqdata = counter->irqdata;
589 struct task_struct *task = ctx->task;
590
591 if (!task) {
592 smp_call_function_single(counter->cpu,
593 __perf_switch_irq_data,
594 counter, 1);
595 return counter->usrdata;
596 }
597
598retry:
599 spin_lock_irq(&ctx->lock);
600 if (!counter->active) {
601 counter->irqdata = counter->usrdata;
602 counter->usrdata = oldirqdata;
603 spin_unlock_irq(&ctx->lock);
604 return oldirqdata;
605 }
606 spin_unlock_irq(&ctx->lock);
607 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
608 /* Might have failed, because task was scheduled out */
609 if (counter->irqdata == oldirqdata)
610 goto retry;
611
612 return counter->usrdata;
613}
614
615static void put_context(struct perf_counter_context *ctx)
616{
617 if (ctx->task)
618 put_task_struct(ctx->task);
619}
620
621static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
622{
623 struct perf_cpu_context *cpuctx;
624 struct perf_counter_context *ctx;
625 struct task_struct *task;
626
627 /*
628 * If cpu is not a wildcard then this is a percpu counter:
629 */
630 if (cpu != -1) {
631 /* Must be root to operate on a CPU counter: */
632 if (!capable(CAP_SYS_ADMIN))
633 return ERR_PTR(-EACCES);
634
635 if (cpu < 0 || cpu > num_possible_cpus())
636 return ERR_PTR(-EINVAL);
637
638 /*
639 * We could be clever and allow to attach a counter to an
640 * offline CPU and activate it when the CPU comes up, but
641 * that's for later.
642 */
643 if (!cpu_isset(cpu, cpu_online_map))
644 return ERR_PTR(-ENODEV);
645
646 cpuctx = &per_cpu(perf_cpu_context, cpu);
647 ctx = &cpuctx->ctx;
648
649 WARN_ON_ONCE(ctx->task);
650 return ctx;
651 }
652
653 rcu_read_lock();
654 if (!pid)
655 task = current;
656 else
657 task = find_task_by_vpid(pid);
658 if (task)
659 get_task_struct(task);
660 rcu_read_unlock();
661
662 if (!task)
663 return ERR_PTR(-ESRCH);
664
665 ctx = &task->perf_counter_ctx;
666 ctx->task = task;
667
668 /* Reuse ptrace permission checks for now. */
669 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
670 put_context(ctx);
671 return ERR_PTR(-EACCES);
672 }
673
674 return ctx;
675}
676
677/*
678 * Called when the last reference to the file is gone.
679 */
680static int perf_release(struct inode *inode, struct file *file)
681{
682 struct perf_counter *counter = file->private_data;
683 struct perf_counter_context *ctx = counter->ctx;
684
685 file->private_data = NULL;
686
687 mutex_lock(&counter->mutex);
688
04289bb9 689 perf_counter_remove_from_context(counter);
0793a61d
TG
690 put_context(ctx);
691
692 mutex_unlock(&counter->mutex);
693
694 kfree(counter);
695
696 return 0;
697}
698
699/*
700 * Read the performance counter - simple non blocking version for now
701 */
702static ssize_t
703perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
704{
705 u64 cntval;
706
707 if (count != sizeof(cntval))
708 return -EINVAL;
709
710 mutex_lock(&counter->mutex);
04289bb9 711 cntval = perf_counter_read(counter);
0793a61d
TG
712 mutex_unlock(&counter->mutex);
713
714 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
715}
716
717static ssize_t
718perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
719{
720 if (!usrdata->len)
721 return 0;
722
723 count = min(count, (size_t)usrdata->len);
724 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
725 return -EFAULT;
726
727 /* Adjust the counters */
728 usrdata->len -= count;
729 if (!usrdata->len)
730 usrdata->rd_idx = 0;
731 else
732 usrdata->rd_idx += count;
733
734 return count;
735}
736
737static ssize_t
738perf_read_irq_data(struct perf_counter *counter,
739 char __user *buf,
740 size_t count,
741 int nonblocking)
742{
743 struct perf_data *irqdata, *usrdata;
744 DECLARE_WAITQUEUE(wait, current);
745 ssize_t res;
746
747 irqdata = counter->irqdata;
748 usrdata = counter->usrdata;
749
750 if (usrdata->len + irqdata->len >= count)
751 goto read_pending;
752
753 if (nonblocking)
754 return -EAGAIN;
755
756 spin_lock_irq(&counter->waitq.lock);
757 __add_wait_queue(&counter->waitq, &wait);
758 for (;;) {
759 set_current_state(TASK_INTERRUPTIBLE);
760 if (usrdata->len + irqdata->len >= count)
761 break;
762
763 if (signal_pending(current))
764 break;
765
766 spin_unlock_irq(&counter->waitq.lock);
767 schedule();
768 spin_lock_irq(&counter->waitq.lock);
769 }
770 __remove_wait_queue(&counter->waitq, &wait);
771 __set_current_state(TASK_RUNNING);
772 spin_unlock_irq(&counter->waitq.lock);
773
774 if (usrdata->len + irqdata->len < count)
775 return -ERESTARTSYS;
776read_pending:
777 mutex_lock(&counter->mutex);
778
779 /* Drain pending data first: */
780 res = perf_copy_usrdata(usrdata, buf, count);
781 if (res < 0 || res == count)
782 goto out;
783
784 /* Switch irq buffer: */
785 usrdata = perf_switch_irq_data(counter);
786 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
787 if (!res)
788 res = -EFAULT;
789 } else {
790 res = count;
791 }
792out:
793 mutex_unlock(&counter->mutex);
794
795 return res;
796}
797
798static ssize_t
799perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
800{
801 struct perf_counter *counter = file->private_data;
802
9f66a381 803 switch (counter->hw_event.record_type) {
0793a61d
TG
804 case PERF_RECORD_SIMPLE:
805 return perf_read_hw(counter, buf, count);
806
807 case PERF_RECORD_IRQ:
808 case PERF_RECORD_GROUP:
809 return perf_read_irq_data(counter, buf, count,
810 file->f_flags & O_NONBLOCK);
811 }
812 return -EINVAL;
813}
814
815static unsigned int perf_poll(struct file *file, poll_table *wait)
816{
817 struct perf_counter *counter = file->private_data;
818 unsigned int events = 0;
819 unsigned long flags;
820
821 poll_wait(file, &counter->waitq, wait);
822
823 spin_lock_irqsave(&counter->waitq.lock, flags);
824 if (counter->usrdata->len || counter->irqdata->len)
825 events |= POLLIN;
826 spin_unlock_irqrestore(&counter->waitq.lock, flags);
827
828 return events;
829}
830
831static const struct file_operations perf_fops = {
832 .release = perf_release,
833 .read = perf_read,
834 .poll = perf_poll,
835};
836
5c92d124
IM
837static void cpu_clock_perf_counter_enable(struct perf_counter *counter)
838{
839}
840
841static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
842{
843}
844
845static void cpu_clock_perf_counter_read(struct perf_counter *counter)
846{
847 int cpu = raw_smp_processor_id();
848
849 atomic64_counter_set(counter, cpu_clock(cpu));
850}
851
852static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
853 .hw_perf_counter_enable = cpu_clock_perf_counter_enable,
854 .hw_perf_counter_disable = cpu_clock_perf_counter_disable,
855 .hw_perf_counter_read = cpu_clock_perf_counter_read,
856};
857
bae43c99
IM
858static void task_clock_perf_counter_enable(struct perf_counter *counter)
859{
860}
861
862static void task_clock_perf_counter_disable(struct perf_counter *counter)
863{
864}
865
866static void task_clock_perf_counter_read(struct perf_counter *counter)
867{
868 atomic64_counter_set(counter, current->se.sum_exec_runtime);
869}
870
871static const struct hw_perf_counter_ops perf_ops_task_clock = {
872 .hw_perf_counter_enable = task_clock_perf_counter_enable,
873 .hw_perf_counter_disable = task_clock_perf_counter_disable,
874 .hw_perf_counter_read = task_clock_perf_counter_read,
875};
876
5c92d124
IM
877static const struct hw_perf_counter_ops *
878sw_perf_counter_init(struct perf_counter *counter)
879{
880 const struct hw_perf_counter_ops *hw_ops = NULL;
881
882 switch (counter->hw_event.type) {
883 case PERF_COUNT_CPU_CLOCK:
884 hw_ops = &perf_ops_cpu_clock;
885 break;
bae43c99
IM
886 case PERF_COUNT_TASK_CLOCK:
887 hw_ops = &perf_ops_task_clock;
888 break;
5c92d124
IM
889 default:
890 break;
891 }
892 return hw_ops;
893}
894
0793a61d
TG
895/*
896 * Allocate and initialize a counter structure
897 */
898static struct perf_counter *
04289bb9
IM
899perf_counter_alloc(struct perf_counter_hw_event *hw_event,
900 int cpu,
901 struct perf_counter *group_leader)
0793a61d 902{
5c92d124 903 const struct hw_perf_counter_ops *hw_ops;
621a01ea 904 struct perf_counter *counter;
0793a61d 905
621a01ea 906 counter = kzalloc(sizeof(*counter), GFP_KERNEL);
0793a61d
TG
907 if (!counter)
908 return NULL;
909
04289bb9
IM
910 /*
911 * Single counters are their own group leaders, with an
912 * empty sibling list:
913 */
914 if (!group_leader)
915 group_leader = counter;
916
0793a61d 917 mutex_init(&counter->mutex);
04289bb9
IM
918 INIT_LIST_HEAD(&counter->list_entry);
919 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
920 init_waitqueue_head(&counter->waitq);
921
9f66a381
IM
922 counter->irqdata = &counter->data[0];
923 counter->usrdata = &counter->data[1];
924 counter->cpu = cpu;
925 counter->hw_event = *hw_event;
926 counter->wakeup_pending = 0;
04289bb9 927 counter->group_leader = group_leader;
621a01ea
IM
928 counter->hw_ops = NULL;
929
5c92d124
IM
930 hw_ops = NULL;
931 if (!hw_event->raw && hw_event->type < 0)
932 hw_ops = sw_perf_counter_init(counter);
933 if (!hw_ops) {
934 hw_ops = hw_perf_counter_init(counter);
935 }
936
621a01ea
IM
937 if (!hw_ops) {
938 kfree(counter);
939 return NULL;
940 }
941 counter->hw_ops = hw_ops;
0793a61d
TG
942
943 return counter;
944}
945
946/**
9f66a381
IM
947 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
948 *
949 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 950 * @pid: target pid
9f66a381
IM
951 * @cpu: target cpu
952 * @group_fd: group leader counter fd
0793a61d 953 */
9f66a381
IM
954asmlinkage int sys_perf_counter_open(
955
956 struct perf_counter_hw_event *hw_event_uptr __user,
957 pid_t pid,
958 int cpu,
959 int group_fd)
960
0793a61d 961{
04289bb9 962 struct perf_counter *counter, *group_leader;
9f66a381 963 struct perf_counter_hw_event hw_event;
04289bb9
IM
964 struct perf_counter_context *ctx;
965 struct file *group_file = NULL;
966 int fput_needed = 0;
0793a61d
TG
967 int ret;
968
9f66a381 969 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
970 return -EFAULT;
971
04289bb9 972 /*
ccff286d
IM
973 * Get the target context (task or percpu):
974 */
975 ctx = find_get_context(pid, cpu);
976 if (IS_ERR(ctx))
977 return PTR_ERR(ctx);
978
979 /*
980 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
981 */
982 group_leader = NULL;
983 if (group_fd != -1) {
984 ret = -EINVAL;
985 group_file = fget_light(group_fd, &fput_needed);
986 if (!group_file)
ccff286d 987 goto err_put_context;
04289bb9 988 if (group_file->f_op != &perf_fops)
ccff286d 989 goto err_put_context;
04289bb9
IM
990
991 group_leader = group_file->private_data;
992 /*
ccff286d
IM
993 * Do not allow a recursive hierarchy (this new sibling
994 * becoming part of another group-sibling):
995 */
996 if (group_leader->group_leader != group_leader)
997 goto err_put_context;
998 /*
999 * Do not allow to attach to a group in a different
1000 * task or CPU context:
04289bb9 1001 */
ccff286d
IM
1002 if (group_leader->ctx != ctx)
1003 goto err_put_context;
04289bb9
IM
1004 }
1005
5c92d124 1006 ret = -EINVAL;
04289bb9 1007 counter = perf_counter_alloc(&hw_event, cpu, group_leader);
0793a61d
TG
1008 if (!counter)
1009 goto err_put_context;
1010
0793a61d
TG
1011 perf_install_in_context(ctx, counter, cpu);
1012
1013 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
1014 if (ret < 0)
1015 goto err_remove_free_put_context;
1016
04289bb9
IM
1017out_fput:
1018 fput_light(group_file, fput_needed);
1019
0793a61d
TG
1020 return ret;
1021
1022err_remove_free_put_context:
1023 mutex_lock(&counter->mutex);
04289bb9 1024 perf_counter_remove_from_context(counter);
0793a61d 1025 mutex_unlock(&counter->mutex);
0793a61d
TG
1026 kfree(counter);
1027
1028err_put_context:
1029 put_context(ctx);
1030
04289bb9 1031 goto out_fput;
0793a61d
TG
1032}
1033
04289bb9 1034static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 1035{
04289bb9 1036 struct perf_cpu_context *cpuctx;
0793a61d 1037
04289bb9
IM
1038 cpuctx = &per_cpu(perf_cpu_context, cpu);
1039 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
1040
1041 mutex_lock(&perf_resource_mutex);
04289bb9 1042 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 1043 mutex_unlock(&perf_resource_mutex);
04289bb9 1044
0793a61d
TG
1045 hw_perf_counter_setup();
1046}
1047
1048#ifdef CONFIG_HOTPLUG_CPU
04289bb9 1049static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
1050{
1051 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1052 struct perf_counter_context *ctx = &cpuctx->ctx;
1053 struct perf_counter *counter, *tmp;
1054
04289bb9
IM
1055 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
1056 __perf_counter_remove_from_context(counter);
0793a61d
TG
1057
1058}
04289bb9 1059static void perf_counter_exit_cpu(int cpu)
0793a61d 1060{
04289bb9 1061 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
0793a61d
TG
1062}
1063#else
04289bb9 1064static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
1065#endif
1066
1067static int __cpuinit
1068perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
1069{
1070 unsigned int cpu = (long)hcpu;
1071
1072 switch (action) {
1073
1074 case CPU_UP_PREPARE:
1075 case CPU_UP_PREPARE_FROZEN:
04289bb9 1076 perf_counter_init_cpu(cpu);
0793a61d
TG
1077 break;
1078
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 1081 perf_counter_exit_cpu(cpu);
0793a61d
TG
1082 break;
1083
1084 default:
1085 break;
1086 }
1087
1088 return NOTIFY_OK;
1089}
1090
1091static struct notifier_block __cpuinitdata perf_cpu_nb = {
1092 .notifier_call = perf_cpu_notify,
1093};
1094
1095static int __init perf_counter_init(void)
1096{
1097 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1098 (void *)(long)smp_processor_id());
1099 register_cpu_notifier(&perf_cpu_nb);
1100
1101 return 0;
1102}
1103early_initcall(perf_counter_init);
1104
1105static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1106{
1107 return sprintf(buf, "%d\n", perf_reserved_percpu);
1108}
1109
1110static ssize_t
1111perf_set_reserve_percpu(struct sysdev_class *class,
1112 const char *buf,
1113 size_t count)
1114{
1115 struct perf_cpu_context *cpuctx;
1116 unsigned long val;
1117 int err, cpu, mpt;
1118
1119 err = strict_strtoul(buf, 10, &val);
1120 if (err)
1121 return err;
1122 if (val > perf_max_counters)
1123 return -EINVAL;
1124
1125 mutex_lock(&perf_resource_mutex);
1126 perf_reserved_percpu = val;
1127 for_each_online_cpu(cpu) {
1128 cpuctx = &per_cpu(perf_cpu_context, cpu);
1129 spin_lock_irq(&cpuctx->ctx.lock);
1130 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1131 perf_max_counters - perf_reserved_percpu);
1132 cpuctx->max_pertask = mpt;
1133 spin_unlock_irq(&cpuctx->ctx.lock);
1134 }
1135 mutex_unlock(&perf_resource_mutex);
1136
1137 return count;
1138}
1139
1140static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1141{
1142 return sprintf(buf, "%d\n", perf_overcommit);
1143}
1144
1145static ssize_t
1146perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1147{
1148 unsigned long val;
1149 int err;
1150
1151 err = strict_strtoul(buf, 10, &val);
1152 if (err)
1153 return err;
1154 if (val > 1)
1155 return -EINVAL;
1156
1157 mutex_lock(&perf_resource_mutex);
1158 perf_overcommit = val;
1159 mutex_unlock(&perf_resource_mutex);
1160
1161 return count;
1162}
1163
1164static SYSDEV_CLASS_ATTR(
1165 reserve_percpu,
1166 0644,
1167 perf_show_reserve_percpu,
1168 perf_set_reserve_percpu
1169 );
1170
1171static SYSDEV_CLASS_ATTR(
1172 overcommit,
1173 0644,
1174 perf_show_overcommit,
1175 perf_set_overcommit
1176 );
1177
1178static struct attribute *perfclass_attrs[] = {
1179 &attr_reserve_percpu.attr,
1180 &attr_overcommit.attr,
1181 NULL
1182};
1183
1184static struct attribute_group perfclass_attr_group = {
1185 .attrs = perfclass_attrs,
1186 .name = "perf_counters",
1187};
1188
1189static int __init perf_counter_sysfs_init(void)
1190{
1191 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1192 &perfclass_attr_group);
1193}
1194device_initcall(perf_counter_sysfs_init);
1195