]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/pid_namespace.c
Bluetooth: hidp: buffer overflow in hidp_process_report
[mirror_ubuntu-bionic-kernel.git] / kernel / pid_namespace.c
CommitLineData
74bd59bb
PE
1/*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11#include <linux/pid.h>
12#include <linux/pid_namespace.h>
49f4d8b9 13#include <linux/user_namespace.h>
74bd59bb 14#include <linux/syscalls.h>
5b825c3a 15#include <linux/cred.h>
74bd59bb 16#include <linux/err.h>
0b6b030f 17#include <linux/acct.h>
5a0e3ad6 18#include <linux/slab.h>
0bb80f24 19#include <linux/proc_ns.h>
cf3f8921 20#include <linux/reboot.h>
523a6a94 21#include <linux/export.h>
29930025 22#include <linux/sched/task.h>
f361bf4a 23#include <linux/sched/signal.h>
95846ecf 24#include <linux/idr.h>
74bd59bb 25
74bd59bb
PE
26struct pid_cache {
27 int nr_ids;
28 char name[16];
29 struct kmem_cache *cachep;
30 struct list_head list;
31};
32
33static LIST_HEAD(pid_caches_lh);
34static DEFINE_MUTEX(pid_caches_mutex);
35static struct kmem_cache *pid_ns_cachep;
36
37/*
38 * creates the kmem cache to allocate pids from.
39 * @nr_ids: the number of numerical ids this pid will have to carry
40 */
41
42static struct kmem_cache *create_pid_cachep(int nr_ids)
43{
44 struct pid_cache *pcache;
45 struct kmem_cache *cachep;
46
47 mutex_lock(&pid_caches_mutex);
48 list_for_each_entry(pcache, &pid_caches_lh, list)
49 if (pcache->nr_ids == nr_ids)
50 goto out;
51
52 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
53 if (pcache == NULL)
54 goto err_alloc;
55
56 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
57 cachep = kmem_cache_create(pcache->name,
58 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
59 0, SLAB_HWCACHE_ALIGN, NULL);
60 if (cachep == NULL)
61 goto err_cachep;
62
63 pcache->nr_ids = nr_ids;
64 pcache->cachep = cachep;
65 list_add(&pcache->list, &pid_caches_lh);
66out:
67 mutex_unlock(&pid_caches_mutex);
68 return pcache->cachep;
69
70err_cachep:
71 kfree(pcache);
72err_alloc:
73 mutex_unlock(&pid_caches_mutex);
74 return NULL;
75}
76
0a01f2cc
EB
77static void proc_cleanup_work(struct work_struct *work)
78{
79 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
80 pid_ns_release_proc(ns);
81}
82
f2302505
AV
83/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
84#define MAX_PID_NS_LEVEL 32
85
f333c700
EB
86static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
87{
88 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
89}
90
91static void dec_pid_namespaces(struct ucounts *ucounts)
92{
93 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
94}
95
49f4d8b9
EB
96static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
97 struct pid_namespace *parent_pid_ns)
74bd59bb
PE
98{
99 struct pid_namespace *ns;
ed469a63 100 unsigned int level = parent_pid_ns->level + 1;
f333c700 101 struct ucounts *ucounts;
f2302505
AV
102 int err;
103
a2b42626
EB
104 err = -EINVAL;
105 if (!in_userns(parent_pid_ns->user_ns, user_ns))
106 goto out;
107
df75e774 108 err = -ENOSPC;
f333c700
EB
109 if (level > MAX_PID_NS_LEVEL)
110 goto out;
111 ucounts = inc_pid_namespaces(user_ns);
112 if (!ucounts)
f2302505 113 goto out;
74bd59bb 114
f2302505 115 err = -ENOMEM;
84406c15 116 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
74bd59bb 117 if (ns == NULL)
f333c700 118 goto out_dec;
74bd59bb 119
95846ecf 120 idr_init(&ns->idr);
74bd59bb
PE
121
122 ns->pid_cachep = create_pid_cachep(level + 1);
123 if (ns->pid_cachep == NULL)
95846ecf 124 goto out_free_idr;
74bd59bb 125
6344c433 126 err = ns_alloc_inum(&ns->ns);
98f842e6 127 if (err)
95846ecf 128 goto out_free_idr;
33c42940 129 ns->ns.ops = &pidns_operations;
98f842e6 130
74bd59bb 131 kref_init(&ns->kref);
74bd59bb 132 ns->level = level;
ed469a63 133 ns->parent = get_pid_ns(parent_pid_ns);
49f4d8b9 134 ns->user_ns = get_user_ns(user_ns);
f333c700 135 ns->ucounts = ucounts;
e8cfbc24 136 ns->pid_allocated = PIDNS_ADDING;
0a01f2cc 137 INIT_WORK(&ns->proc_work, proc_cleanup_work);
74bd59bb 138
74bd59bb
PE
139 return ns;
140
95846ecf
GS
141out_free_idr:
142 idr_destroy(&ns->idr);
74bd59bb 143 kmem_cache_free(pid_ns_cachep, ns);
f333c700
EB
144out_dec:
145 dec_pid_namespaces(ucounts);
74bd59bb 146out:
4308eebb 147 return ERR_PTR(err);
74bd59bb
PE
148}
149
1adfcb03
AV
150static void delayed_free_pidns(struct rcu_head *p)
151{
add7c65c
AV
152 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
153
154 dec_pid_namespaces(ns->ucounts);
155 put_user_ns(ns->user_ns);
156
157 kmem_cache_free(pid_ns_cachep, ns);
1adfcb03
AV
158}
159
74bd59bb
PE
160static void destroy_pid_namespace(struct pid_namespace *ns)
161{
6344c433 162 ns_free_inum(&ns->ns);
95846ecf
GS
163
164 idr_destroy(&ns->idr);
1adfcb03 165 call_rcu(&ns->rcu, delayed_free_pidns);
74bd59bb
PE
166}
167
49f4d8b9
EB
168struct pid_namespace *copy_pid_ns(unsigned long flags,
169 struct user_namespace *user_ns, struct pid_namespace *old_ns)
74bd59bb 170{
74bd59bb 171 if (!(flags & CLONE_NEWPID))
dca4a979 172 return get_pid_ns(old_ns);
225778d6
EB
173 if (task_active_pid_ns(current) != old_ns)
174 return ERR_PTR(-EINVAL);
49f4d8b9 175 return create_pid_namespace(user_ns, old_ns);
74bd59bb
PE
176}
177
bbc2e3ef 178static void free_pid_ns(struct kref *kref)
74bd59bb 179{
bbc2e3ef 180 struct pid_namespace *ns;
74bd59bb
PE
181
182 ns = container_of(kref, struct pid_namespace, kref);
74bd59bb 183 destroy_pid_namespace(ns);
bbc2e3ef 184}
74bd59bb 185
bbc2e3ef
CG
186void put_pid_ns(struct pid_namespace *ns)
187{
188 struct pid_namespace *parent;
189
190 while (ns != &init_pid_ns) {
191 parent = ns->parent;
192 if (!kref_put(&ns->kref, free_pid_ns))
193 break;
194 ns = parent;
195 }
74bd59bb 196}
bbc2e3ef 197EXPORT_SYMBOL_GPL(put_pid_ns);
74bd59bb
PE
198
199void zap_pid_ns_processes(struct pid_namespace *pid_ns)
200{
201 int nr;
202 int rc;
00c10bc1 203 struct task_struct *task, *me = current;
751c644b 204 int init_pids = thread_group_leader(me) ? 1 : 2;
95846ecf 205 struct pid *pid;
00c10bc1 206
c876ad76
EB
207 /* Don't allow any more processes into the pid namespace */
208 disable_pid_allocation(pid_ns);
209
a53b8315
ON
210 /*
211 * Ignore SIGCHLD causing any terminated children to autoreap.
212 * This speeds up the namespace shutdown, plus see the comment
213 * below.
214 */
00c10bc1
EB
215 spin_lock_irq(&me->sighand->siglock);
216 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
217 spin_unlock_irq(&me->sighand->siglock);
74bd59bb
PE
218
219 /*
220 * The last thread in the cgroup-init thread group is terminating.
221 * Find remaining pid_ts in the namespace, signal and wait for them
222 * to exit.
223 *
224 * Note: This signals each threads in the namespace - even those that
225 * belong to the same thread group, To avoid this, we would have
226 * to walk the entire tasklist looking a processes in this
227 * namespace, but that could be unnecessarily expensive if the
228 * pid namespace has just a few processes. Or we need to
229 * maintain a tasklist for each pid namespace.
230 *
231 */
95846ecf 232 rcu_read_lock();
74bd59bb 233 read_lock(&tasklist_lock);
95846ecf
GS
234 nr = 2;
235 idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
236 task = pid_task(pid, PIDTYPE_PID);
a02d6fd6
ON
237 if (task && !__fatal_signal_pending(task))
238 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
74bd59bb
PE
239 }
240 read_unlock(&tasklist_lock);
95846ecf 241 rcu_read_unlock();
74bd59bb 242
a53b8315
ON
243 /*
244 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
245 * sys_wait4() will also block until our children traced from the
246 * parent namespace are detached and become EXIT_DEAD.
247 */
74bd59bb
PE
248 do {
249 clear_thread_flag(TIF_SIGPENDING);
250 rc = sys_wait4(-1, NULL, __WALL, NULL);
251 } while (rc != -ECHILD);
252
6347e900 253 /*
a53b8315
ON
254 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
255 * really care, we could reparent them to the global init. We could
256 * exit and reap ->child_reaper even if it is not the last thread in
e8cfbc24 257 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
a53b8315
ON
258 * pid_ns can not go away until proc_kill_sb() drops the reference.
259 *
260 * But this ns can also have other tasks injected by setns()+fork().
261 * Again, ignoring the user visible semantics we do not really need
262 * to wait until they are all reaped, but they can be reparented to
263 * us and thus we need to ensure that pid->child_reaper stays valid
264 * until they all go away. See free_pid()->wake_up_process().
265 *
266 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
267 * if reparented.
6347e900
EB
268 */
269 for (;;) {
b9a985db 270 set_current_state(TASK_INTERRUPTIBLE);
e8cfbc24 271 if (pid_ns->pid_allocated == init_pids)
6347e900
EB
272 break;
273 schedule();
274 }
af4b8a83 275 __set_current_state(TASK_RUNNING);
6347e900 276
cf3f8921
DL
277 if (pid_ns->reboot)
278 current->signal->group_exit_code = pid_ns->reboot;
279
0b6b030f 280 acct_exit_ns(pid_ns);
74bd59bb
PE
281 return;
282}
283
98ed57ee 284#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0
PE
285static int pid_ns_ctl_handler(struct ctl_table *table, int write,
286 void __user *buffer, size_t *lenp, loff_t *ppos)
287{
49f4d8b9 288 struct pid_namespace *pid_ns = task_active_pid_ns(current);
b8f566b0 289 struct ctl_table tmp = *table;
95846ecf 290 int ret, next;
b8f566b0 291
49f4d8b9 292 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
b8f566b0
PE
293 return -EPERM;
294
295 /*
296 * Writing directly to ns' last_pid field is OK, since this field
297 * is volatile in a living namespace anyway and a code writing to
298 * it should synchronize its usage with external means.
299 */
300
95846ecf
GS
301 next = idr_get_cursor(&pid_ns->idr) - 1;
302
303 tmp.data = &next;
304 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
305 if (!ret && write)
306 idr_set_cursor(&pid_ns->idr, next + 1);
307
308 return ret;
b8f566b0
PE
309}
310
579035dc
AV
311extern int pid_max;
312static int zero = 0;
b8f566b0
PE
313static struct ctl_table pid_ns_ctl_table[] = {
314 {
315 .procname = "ns_last_pid",
316 .maxlen = sizeof(int),
317 .mode = 0666, /* permissions are checked in the handler */
318 .proc_handler = pid_ns_ctl_handler,
579035dc
AV
319 .extra1 = &zero,
320 .extra2 = &pid_max,
b8f566b0
PE
321 },
322 { }
323};
b8f566b0 324static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
98ed57ee 325#endif /* CONFIG_CHECKPOINT_RESTORE */
b8f566b0 326
cf3f8921
DL
327int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328{
329 if (pid_ns == &init_pid_ns)
330 return 0;
331
332 switch (cmd) {
333 case LINUX_REBOOT_CMD_RESTART2:
334 case LINUX_REBOOT_CMD_RESTART:
335 pid_ns->reboot = SIGHUP;
336 break;
337
338 case LINUX_REBOOT_CMD_POWER_OFF:
339 case LINUX_REBOOT_CMD_HALT:
340 pid_ns->reboot = SIGINT;
341 break;
342 default:
343 return -EINVAL;
344 }
345
346 read_lock(&tasklist_lock);
347 force_sig(SIGKILL, pid_ns->child_reaper);
348 read_unlock(&tasklist_lock);
349
350 do_exit(0);
351
352 /* Not reached */
353 return 0;
354}
355
3c041184
AV
356static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357{
358 return container_of(ns, struct pid_namespace, ns);
359}
360
64964528 361static struct ns_common *pidns_get(struct task_struct *task)
57e8391d
EB
362{
363 struct pid_namespace *ns;
364
365 rcu_read_lock();
d2308225
ON
366 ns = task_active_pid_ns(task);
367 if (ns)
368 get_pid_ns(ns);
57e8391d
EB
369 rcu_read_unlock();
370
3c041184 371 return ns ? &ns->ns : NULL;
57e8391d
EB
372}
373
eaa0d190
KT
374static struct ns_common *pidns_for_children_get(struct task_struct *task)
375{
376 struct pid_namespace *ns = NULL;
377
378 task_lock(task);
379 if (task->nsproxy) {
380 ns = task->nsproxy->pid_ns_for_children;
381 get_pid_ns(ns);
382 }
383 task_unlock(task);
384
385 if (ns) {
386 read_lock(&tasklist_lock);
387 if (!ns->child_reaper) {
388 put_pid_ns(ns);
389 ns = NULL;
390 }
391 read_unlock(&tasklist_lock);
392 }
393
394 return ns ? &ns->ns : NULL;
395}
396
64964528 397static void pidns_put(struct ns_common *ns)
57e8391d 398{
3c041184 399 put_pid_ns(to_pid_ns(ns));
57e8391d
EB
400}
401
64964528 402static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
57e8391d
EB
403{
404 struct pid_namespace *active = task_active_pid_ns(current);
3c041184 405 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
57e8391d 406
5e4a0847 407 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
c7b96acf 408 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
57e8391d
EB
409 return -EPERM;
410
411 /*
412 * Only allow entering the current active pid namespace
413 * or a child of the current active pid namespace.
414 *
415 * This is required for fork to return a usable pid value and
416 * this maintains the property that processes and their
417 * children can not escape their current pid namespace.
418 */
419 if (new->level < active->level)
420 return -EINVAL;
421
422 ancestor = new;
423 while (ancestor->level > active->level)
424 ancestor = ancestor->parent;
425 if (ancestor != active)
426 return -EINVAL;
427
c2b1df2e
AL
428 put_pid_ns(nsproxy->pid_ns_for_children);
429 nsproxy->pid_ns_for_children = get_pid_ns(new);
57e8391d
EB
430 return 0;
431}
432
a7306ed8
AV
433static struct ns_common *pidns_get_parent(struct ns_common *ns)
434{
435 struct pid_namespace *active = task_active_pid_ns(current);
436 struct pid_namespace *pid_ns, *p;
437
438 /* See if the parent is in the current namespace */
439 pid_ns = p = to_pid_ns(ns)->parent;
440 for (;;) {
441 if (!p)
442 return ERR_PTR(-EPERM);
443 if (p == active)
444 break;
445 p = p->parent;
446 }
447
448 return &get_pid_ns(pid_ns)->ns;
449}
450
bcac25a5
AV
451static struct user_namespace *pidns_owner(struct ns_common *ns)
452{
453 return to_pid_ns(ns)->user_ns;
454}
455
57e8391d
EB
456const struct proc_ns_operations pidns_operations = {
457 .name = "pid",
458 .type = CLONE_NEWPID,
459 .get = pidns_get,
460 .put = pidns_put,
461 .install = pidns_install,
bcac25a5 462 .owner = pidns_owner,
a7306ed8 463 .get_parent = pidns_get_parent,
57e8391d
EB
464};
465
eaa0d190
KT
466const struct proc_ns_operations pidns_for_children_operations = {
467 .name = "pid_for_children",
468 .real_ns_name = "pid",
469 .type = CLONE_NEWPID,
470 .get = pidns_for_children_get,
471 .put = pidns_put,
472 .install = pidns_install,
473 .owner = pidns_owner,
474 .get_parent = pidns_get_parent,
475};
476
74bd59bb
PE
477static __init int pid_namespaces_init(void)
478{
479 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
98ed57ee
CG
480
481#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0 482 register_sysctl_paths(kern_path, pid_ns_ctl_table);
98ed57ee 483#endif
74bd59bb
PE
484 return 0;
485}
486
487__initcall(pid_namespaces_init);