]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/pid_namespace.c
UBUNTU: [Config] updateconfigs after rebase to Ubuntu-4.10.0-17.19
[mirror_ubuntu-zesty-kernel.git] / kernel / pid_namespace.c
CommitLineData
74bd59bb
PE
1/*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11#include <linux/pid.h>
12#include <linux/pid_namespace.h>
49f4d8b9 13#include <linux/user_namespace.h>
74bd59bb
PE
14#include <linux/syscalls.h>
15#include <linux/err.h>
0b6b030f 16#include <linux/acct.h>
5a0e3ad6 17#include <linux/slab.h>
0bb80f24 18#include <linux/proc_ns.h>
cf3f8921 19#include <linux/reboot.h>
523a6a94 20#include <linux/export.h>
74bd59bb 21
74bd59bb
PE
22struct pid_cache {
23 int nr_ids;
24 char name[16];
25 struct kmem_cache *cachep;
26 struct list_head list;
27};
28
29static LIST_HEAD(pid_caches_lh);
30static DEFINE_MUTEX(pid_caches_mutex);
31static struct kmem_cache *pid_ns_cachep;
32
33/*
34 * creates the kmem cache to allocate pids from.
35 * @nr_ids: the number of numerical ids this pid will have to carry
36 */
37
38static struct kmem_cache *create_pid_cachep(int nr_ids)
39{
40 struct pid_cache *pcache;
41 struct kmem_cache *cachep;
42
43 mutex_lock(&pid_caches_mutex);
44 list_for_each_entry(pcache, &pid_caches_lh, list)
45 if (pcache->nr_ids == nr_ids)
46 goto out;
47
48 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
49 if (pcache == NULL)
50 goto err_alloc;
51
52 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
53 cachep = kmem_cache_create(pcache->name,
54 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
55 0, SLAB_HWCACHE_ALIGN, NULL);
56 if (cachep == NULL)
57 goto err_cachep;
58
59 pcache->nr_ids = nr_ids;
60 pcache->cachep = cachep;
61 list_add(&pcache->list, &pid_caches_lh);
62out:
63 mutex_unlock(&pid_caches_mutex);
64 return pcache->cachep;
65
66err_cachep:
67 kfree(pcache);
68err_alloc:
69 mutex_unlock(&pid_caches_mutex);
70 return NULL;
71}
72
0a01f2cc
EB
73static void proc_cleanup_work(struct work_struct *work)
74{
75 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
76 pid_ns_release_proc(ns);
77}
78
f2302505
AV
79/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
80#define MAX_PID_NS_LEVEL 32
81
f333c700
EB
82static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
83{
84 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
85}
86
87static void dec_pid_namespaces(struct ucounts *ucounts)
88{
89 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
90}
91
49f4d8b9
EB
92static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
93 struct pid_namespace *parent_pid_ns)
74bd59bb
PE
94{
95 struct pid_namespace *ns;
ed469a63 96 unsigned int level = parent_pid_ns->level + 1;
f333c700 97 struct ucounts *ucounts;
f2302505
AV
98 int i;
99 int err;
100
df75e774 101 err = -ENOSPC;
f333c700
EB
102 if (level > MAX_PID_NS_LEVEL)
103 goto out;
104 ucounts = inc_pid_namespaces(user_ns);
105 if (!ucounts)
f2302505 106 goto out;
74bd59bb 107
f2302505 108 err = -ENOMEM;
84406c15 109 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
74bd59bb 110 if (ns == NULL)
f333c700 111 goto out_dec;
74bd59bb
PE
112
113 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
114 if (!ns->pidmap[0].page)
115 goto out_free;
116
117 ns->pid_cachep = create_pid_cachep(level + 1);
118 if (ns->pid_cachep == NULL)
119 goto out_free_map;
120
6344c433 121 err = ns_alloc_inum(&ns->ns);
98f842e6
EB
122 if (err)
123 goto out_free_map;
33c42940 124 ns->ns.ops = &pidns_operations;
98f842e6 125
74bd59bb 126 kref_init(&ns->kref);
74bd59bb 127 ns->level = level;
ed469a63 128 ns->parent = get_pid_ns(parent_pid_ns);
49f4d8b9 129 ns->user_ns = get_user_ns(user_ns);
f333c700 130 ns->ucounts = ucounts;
c876ad76 131 ns->nr_hashed = PIDNS_HASH_ADDING;
0a01f2cc 132 INIT_WORK(&ns->proc_work, proc_cleanup_work);
74bd59bb
PE
133
134 set_bit(0, ns->pidmap[0].page);
135 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
136
84406c15 137 for (i = 1; i < PIDMAP_ENTRIES; i++)
74bd59bb 138 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
74bd59bb
PE
139
140 return ns;
141
142out_free_map:
143 kfree(ns->pidmap[0].page);
144out_free:
145 kmem_cache_free(pid_ns_cachep, ns);
f333c700
EB
146out_dec:
147 dec_pid_namespaces(ucounts);
74bd59bb 148out:
4308eebb 149 return ERR_PTR(err);
74bd59bb
PE
150}
151
1adfcb03
AV
152static void delayed_free_pidns(struct rcu_head *p)
153{
add7c65c
AV
154 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
155
156 dec_pid_namespaces(ns->ucounts);
157 put_user_ns(ns->user_ns);
158
159 kmem_cache_free(pid_ns_cachep, ns);
1adfcb03
AV
160}
161
74bd59bb
PE
162static void destroy_pid_namespace(struct pid_namespace *ns)
163{
164 int i;
165
6344c433 166 ns_free_inum(&ns->ns);
74bd59bb
PE
167 for (i = 0; i < PIDMAP_ENTRIES; i++)
168 kfree(ns->pidmap[i].page);
1adfcb03 169 call_rcu(&ns->rcu, delayed_free_pidns);
74bd59bb
PE
170}
171
49f4d8b9
EB
172struct pid_namespace *copy_pid_ns(unsigned long flags,
173 struct user_namespace *user_ns, struct pid_namespace *old_ns)
74bd59bb 174{
74bd59bb 175 if (!(flags & CLONE_NEWPID))
dca4a979 176 return get_pid_ns(old_ns);
225778d6
EB
177 if (task_active_pid_ns(current) != old_ns)
178 return ERR_PTR(-EINVAL);
49f4d8b9 179 return create_pid_namespace(user_ns, old_ns);
74bd59bb
PE
180}
181
bbc2e3ef 182static void free_pid_ns(struct kref *kref)
74bd59bb 183{
bbc2e3ef 184 struct pid_namespace *ns;
74bd59bb
PE
185
186 ns = container_of(kref, struct pid_namespace, kref);
74bd59bb 187 destroy_pid_namespace(ns);
bbc2e3ef 188}
74bd59bb 189
bbc2e3ef
CG
190void put_pid_ns(struct pid_namespace *ns)
191{
192 struct pid_namespace *parent;
193
194 while (ns != &init_pid_ns) {
195 parent = ns->parent;
196 if (!kref_put(&ns->kref, free_pid_ns))
197 break;
198 ns = parent;
199 }
74bd59bb 200}
bbc2e3ef 201EXPORT_SYMBOL_GPL(put_pid_ns);
74bd59bb
PE
202
203void zap_pid_ns_processes(struct pid_namespace *pid_ns)
204{
205 int nr;
206 int rc;
00c10bc1 207 struct task_struct *task, *me = current;
751c644b 208 int init_pids = thread_group_leader(me) ? 1 : 2;
00c10bc1 209
c876ad76
EB
210 /* Don't allow any more processes into the pid namespace */
211 disable_pid_allocation(pid_ns);
212
a53b8315
ON
213 /*
214 * Ignore SIGCHLD causing any terminated children to autoreap.
215 * This speeds up the namespace shutdown, plus see the comment
216 * below.
217 */
00c10bc1
EB
218 spin_lock_irq(&me->sighand->siglock);
219 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
220 spin_unlock_irq(&me->sighand->siglock);
74bd59bb
PE
221
222 /*
223 * The last thread in the cgroup-init thread group is terminating.
224 * Find remaining pid_ts in the namespace, signal and wait for them
225 * to exit.
226 *
227 * Note: This signals each threads in the namespace - even those that
228 * belong to the same thread group, To avoid this, we would have
229 * to walk the entire tasklist looking a processes in this
230 * namespace, but that could be unnecessarily expensive if the
231 * pid namespace has just a few processes. Or we need to
232 * maintain a tasklist for each pid namespace.
233 *
234 */
235 read_lock(&tasklist_lock);
236 nr = next_pidmap(pid_ns, 1);
237 while (nr > 0) {
e4da026f
SB
238 rcu_read_lock();
239
e4da026f 240 task = pid_task(find_vpid(nr), PIDTYPE_PID);
a02d6fd6
ON
241 if (task && !__fatal_signal_pending(task))
242 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
e4da026f
SB
243
244 rcu_read_unlock();
245
74bd59bb
PE
246 nr = next_pidmap(pid_ns, nr);
247 }
248 read_unlock(&tasklist_lock);
249
a53b8315
ON
250 /*
251 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
252 * sys_wait4() will also block until our children traced from the
253 * parent namespace are detached and become EXIT_DEAD.
254 */
74bd59bb
PE
255 do {
256 clear_thread_flag(TIF_SIGPENDING);
257 rc = sys_wait4(-1, NULL, __WALL, NULL);
258 } while (rc != -ECHILD);
259
6347e900 260 /*
a53b8315
ON
261 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
262 * really care, we could reparent them to the global init. We could
263 * exit and reap ->child_reaper even if it is not the last thread in
264 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
265 * pid_ns can not go away until proc_kill_sb() drops the reference.
266 *
267 * But this ns can also have other tasks injected by setns()+fork().
268 * Again, ignoring the user visible semantics we do not really need
269 * to wait until they are all reaped, but they can be reparented to
270 * us and thus we need to ensure that pid->child_reaper stays valid
271 * until they all go away. See free_pid()->wake_up_process().
272 *
273 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
274 * if reparented.
6347e900
EB
275 */
276 for (;;) {
6f48766e 277 set_current_state(TASK_INTERRUPTIBLE);
751c644b 278 if (pid_ns->nr_hashed == init_pids)
6347e900
EB
279 break;
280 schedule();
281 }
af4b8a83 282 __set_current_state(TASK_RUNNING);
6347e900 283
cf3f8921
DL
284 if (pid_ns->reboot)
285 current->signal->group_exit_code = pid_ns->reboot;
286
0b6b030f 287 acct_exit_ns(pid_ns);
74bd59bb
PE
288 return;
289}
290
98ed57ee 291#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0
PE
292static int pid_ns_ctl_handler(struct ctl_table *table, int write,
293 void __user *buffer, size_t *lenp, loff_t *ppos)
294{
49f4d8b9 295 struct pid_namespace *pid_ns = task_active_pid_ns(current);
b8f566b0
PE
296 struct ctl_table tmp = *table;
297
49f4d8b9 298 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
b8f566b0
PE
299 return -EPERM;
300
301 /*
302 * Writing directly to ns' last_pid field is OK, since this field
303 * is volatile in a living namespace anyway and a code writing to
304 * it should synchronize its usage with external means.
305 */
306
49f4d8b9 307 tmp.data = &pid_ns->last_pid;
579035dc 308 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
b8f566b0
PE
309}
310
579035dc
AV
311extern int pid_max;
312static int zero = 0;
b8f566b0
PE
313static struct ctl_table pid_ns_ctl_table[] = {
314 {
315 .procname = "ns_last_pid",
316 .maxlen = sizeof(int),
317 .mode = 0666, /* permissions are checked in the handler */
318 .proc_handler = pid_ns_ctl_handler,
579035dc
AV
319 .extra1 = &zero,
320 .extra2 = &pid_max,
b8f566b0
PE
321 },
322 { }
323};
b8f566b0 324static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
98ed57ee 325#endif /* CONFIG_CHECKPOINT_RESTORE */
b8f566b0 326
cf3f8921
DL
327int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
328{
329 if (pid_ns == &init_pid_ns)
330 return 0;
331
332 switch (cmd) {
333 case LINUX_REBOOT_CMD_RESTART2:
334 case LINUX_REBOOT_CMD_RESTART:
335 pid_ns->reboot = SIGHUP;
336 break;
337
338 case LINUX_REBOOT_CMD_POWER_OFF:
339 case LINUX_REBOOT_CMD_HALT:
340 pid_ns->reboot = SIGINT;
341 break;
342 default:
343 return -EINVAL;
344 }
345
346 read_lock(&tasklist_lock);
347 force_sig(SIGKILL, pid_ns->child_reaper);
348 read_unlock(&tasklist_lock);
349
350 do_exit(0);
351
352 /* Not reached */
353 return 0;
354}
355
3c041184
AV
356static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
357{
358 return container_of(ns, struct pid_namespace, ns);
359}
360
64964528 361static struct ns_common *pidns_get(struct task_struct *task)
57e8391d
EB
362{
363 struct pid_namespace *ns;
364
365 rcu_read_lock();
d2308225
ON
366 ns = task_active_pid_ns(task);
367 if (ns)
368 get_pid_ns(ns);
57e8391d
EB
369 rcu_read_unlock();
370
3c041184 371 return ns ? &ns->ns : NULL;
57e8391d
EB
372}
373
64964528 374static void pidns_put(struct ns_common *ns)
57e8391d 375{
3c041184 376 put_pid_ns(to_pid_ns(ns));
57e8391d
EB
377}
378
64964528 379static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
57e8391d
EB
380{
381 struct pid_namespace *active = task_active_pid_ns(current);
3c041184 382 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
57e8391d 383
5e4a0847 384 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
c7b96acf 385 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
57e8391d
EB
386 return -EPERM;
387
388 /*
389 * Only allow entering the current active pid namespace
390 * or a child of the current active pid namespace.
391 *
392 * This is required for fork to return a usable pid value and
393 * this maintains the property that processes and their
394 * children can not escape their current pid namespace.
395 */
396 if (new->level < active->level)
397 return -EINVAL;
398
399 ancestor = new;
400 while (ancestor->level > active->level)
401 ancestor = ancestor->parent;
402 if (ancestor != active)
403 return -EINVAL;
404
c2b1df2e
AL
405 put_pid_ns(nsproxy->pid_ns_for_children);
406 nsproxy->pid_ns_for_children = get_pid_ns(new);
57e8391d
EB
407 return 0;
408}
409
a7306ed8
AV
410static struct ns_common *pidns_get_parent(struct ns_common *ns)
411{
412 struct pid_namespace *active = task_active_pid_ns(current);
413 struct pid_namespace *pid_ns, *p;
414
415 /* See if the parent is in the current namespace */
416 pid_ns = p = to_pid_ns(ns)->parent;
417 for (;;) {
418 if (!p)
419 return ERR_PTR(-EPERM);
420 if (p == active)
421 break;
422 p = p->parent;
423 }
424
425 return &get_pid_ns(pid_ns)->ns;
426}
427
bcac25a5
AV
428static struct user_namespace *pidns_owner(struct ns_common *ns)
429{
430 return to_pid_ns(ns)->user_ns;
431}
432
57e8391d
EB
433const struct proc_ns_operations pidns_operations = {
434 .name = "pid",
435 .type = CLONE_NEWPID,
436 .get = pidns_get,
437 .put = pidns_put,
438 .install = pidns_install,
bcac25a5 439 .owner = pidns_owner,
a7306ed8 440 .get_parent = pidns_get_parent,
57e8391d
EB
441};
442
74bd59bb
PE
443static __init int pid_namespaces_init(void)
444{
445 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
98ed57ee
CG
446
447#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0 448 register_sysctl_paths(kern_path, pid_ns_ctl_table);
98ed57ee 449#endif
74bd59bb
PE
450 return 0;
451}
452
453__initcall(pid_namespaces_init);