]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/pid_namespace.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / kernel / pid_namespace.c
CommitLineData
74bd59bb
PE
1/*
2 * Pid namespaces
3 *
4 * Authors:
5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
8 *
9 */
10
11#include <linux/pid.h>
12#include <linux/pid_namespace.h>
49f4d8b9 13#include <linux/user_namespace.h>
74bd59bb 14#include <linux/syscalls.h>
5b825c3a 15#include <linux/cred.h>
74bd59bb 16#include <linux/err.h>
0b6b030f 17#include <linux/acct.h>
5a0e3ad6 18#include <linux/slab.h>
0bb80f24 19#include <linux/proc_ns.h>
cf3f8921 20#include <linux/reboot.h>
523a6a94 21#include <linux/export.h>
74bd59bb 22
74bd59bb
PE
23struct pid_cache {
24 int nr_ids;
25 char name[16];
26 struct kmem_cache *cachep;
27 struct list_head list;
28};
29
30static LIST_HEAD(pid_caches_lh);
31static DEFINE_MUTEX(pid_caches_mutex);
32static struct kmem_cache *pid_ns_cachep;
33
34/*
35 * creates the kmem cache to allocate pids from.
36 * @nr_ids: the number of numerical ids this pid will have to carry
37 */
38
39static struct kmem_cache *create_pid_cachep(int nr_ids)
40{
41 struct pid_cache *pcache;
42 struct kmem_cache *cachep;
43
44 mutex_lock(&pid_caches_mutex);
45 list_for_each_entry(pcache, &pid_caches_lh, list)
46 if (pcache->nr_ids == nr_ids)
47 goto out;
48
49 pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
50 if (pcache == NULL)
51 goto err_alloc;
52
53 snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
54 cachep = kmem_cache_create(pcache->name,
55 sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
56 0, SLAB_HWCACHE_ALIGN, NULL);
57 if (cachep == NULL)
58 goto err_cachep;
59
60 pcache->nr_ids = nr_ids;
61 pcache->cachep = cachep;
62 list_add(&pcache->list, &pid_caches_lh);
63out:
64 mutex_unlock(&pid_caches_mutex);
65 return pcache->cachep;
66
67err_cachep:
68 kfree(pcache);
69err_alloc:
70 mutex_unlock(&pid_caches_mutex);
71 return NULL;
72}
73
0a01f2cc
EB
74static void proc_cleanup_work(struct work_struct *work)
75{
76 struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
77 pid_ns_release_proc(ns);
78}
79
f2302505
AV
80/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
81#define MAX_PID_NS_LEVEL 32
82
f333c700
EB
83static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
84{
85 return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
86}
87
88static void dec_pid_namespaces(struct ucounts *ucounts)
89{
90 dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
91}
92
49f4d8b9
EB
93static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
94 struct pid_namespace *parent_pid_ns)
74bd59bb
PE
95{
96 struct pid_namespace *ns;
ed469a63 97 unsigned int level = parent_pid_ns->level + 1;
f333c700 98 struct ucounts *ucounts;
f2302505
AV
99 int i;
100 int err;
101
df75e774 102 err = -ENOSPC;
f333c700
EB
103 if (level > MAX_PID_NS_LEVEL)
104 goto out;
105 ucounts = inc_pid_namespaces(user_ns);
106 if (!ucounts)
f2302505 107 goto out;
74bd59bb 108
f2302505 109 err = -ENOMEM;
84406c15 110 ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
74bd59bb 111 if (ns == NULL)
f333c700 112 goto out_dec;
74bd59bb
PE
113
114 ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
115 if (!ns->pidmap[0].page)
116 goto out_free;
117
118 ns->pid_cachep = create_pid_cachep(level + 1);
119 if (ns->pid_cachep == NULL)
120 goto out_free_map;
121
6344c433 122 err = ns_alloc_inum(&ns->ns);
98f842e6
EB
123 if (err)
124 goto out_free_map;
33c42940 125 ns->ns.ops = &pidns_operations;
98f842e6 126
74bd59bb 127 kref_init(&ns->kref);
74bd59bb 128 ns->level = level;
ed469a63 129 ns->parent = get_pid_ns(parent_pid_ns);
49f4d8b9 130 ns->user_ns = get_user_ns(user_ns);
f333c700 131 ns->ucounts = ucounts;
c876ad76 132 ns->nr_hashed = PIDNS_HASH_ADDING;
0a01f2cc 133 INIT_WORK(&ns->proc_work, proc_cleanup_work);
74bd59bb
PE
134
135 set_bit(0, ns->pidmap[0].page);
136 atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
137
84406c15 138 for (i = 1; i < PIDMAP_ENTRIES; i++)
74bd59bb 139 atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
74bd59bb
PE
140
141 return ns;
142
143out_free_map:
144 kfree(ns->pidmap[0].page);
145out_free:
146 kmem_cache_free(pid_ns_cachep, ns);
f333c700
EB
147out_dec:
148 dec_pid_namespaces(ucounts);
74bd59bb 149out:
4308eebb 150 return ERR_PTR(err);
74bd59bb
PE
151}
152
1adfcb03
AV
153static void delayed_free_pidns(struct rcu_head *p)
154{
add7c65c
AV
155 struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
156
157 dec_pid_namespaces(ns->ucounts);
158 put_user_ns(ns->user_ns);
159
160 kmem_cache_free(pid_ns_cachep, ns);
1adfcb03
AV
161}
162
74bd59bb
PE
163static void destroy_pid_namespace(struct pid_namespace *ns)
164{
165 int i;
166
6344c433 167 ns_free_inum(&ns->ns);
74bd59bb
PE
168 for (i = 0; i < PIDMAP_ENTRIES; i++)
169 kfree(ns->pidmap[i].page);
1adfcb03 170 call_rcu(&ns->rcu, delayed_free_pidns);
74bd59bb
PE
171}
172
49f4d8b9
EB
173struct pid_namespace *copy_pid_ns(unsigned long flags,
174 struct user_namespace *user_ns, struct pid_namespace *old_ns)
74bd59bb 175{
74bd59bb 176 if (!(flags & CLONE_NEWPID))
dca4a979 177 return get_pid_ns(old_ns);
225778d6
EB
178 if (task_active_pid_ns(current) != old_ns)
179 return ERR_PTR(-EINVAL);
49f4d8b9 180 return create_pid_namespace(user_ns, old_ns);
74bd59bb
PE
181}
182
bbc2e3ef 183static void free_pid_ns(struct kref *kref)
74bd59bb 184{
bbc2e3ef 185 struct pid_namespace *ns;
74bd59bb
PE
186
187 ns = container_of(kref, struct pid_namespace, kref);
74bd59bb 188 destroy_pid_namespace(ns);
bbc2e3ef 189}
74bd59bb 190
bbc2e3ef
CG
191void put_pid_ns(struct pid_namespace *ns)
192{
193 struct pid_namespace *parent;
194
195 while (ns != &init_pid_ns) {
196 parent = ns->parent;
197 if (!kref_put(&ns->kref, free_pid_ns))
198 break;
199 ns = parent;
200 }
74bd59bb 201}
bbc2e3ef 202EXPORT_SYMBOL_GPL(put_pid_ns);
74bd59bb
PE
203
204void zap_pid_ns_processes(struct pid_namespace *pid_ns)
205{
206 int nr;
207 int rc;
00c10bc1 208 struct task_struct *task, *me = current;
751c644b 209 int init_pids = thread_group_leader(me) ? 1 : 2;
00c10bc1 210
c876ad76
EB
211 /* Don't allow any more processes into the pid namespace */
212 disable_pid_allocation(pid_ns);
213
a53b8315
ON
214 /*
215 * Ignore SIGCHLD causing any terminated children to autoreap.
216 * This speeds up the namespace shutdown, plus see the comment
217 * below.
218 */
00c10bc1
EB
219 spin_lock_irq(&me->sighand->siglock);
220 me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
221 spin_unlock_irq(&me->sighand->siglock);
74bd59bb
PE
222
223 /*
224 * The last thread in the cgroup-init thread group is terminating.
225 * Find remaining pid_ts in the namespace, signal and wait for them
226 * to exit.
227 *
228 * Note: This signals each threads in the namespace - even those that
229 * belong to the same thread group, To avoid this, we would have
230 * to walk the entire tasklist looking a processes in this
231 * namespace, but that could be unnecessarily expensive if the
232 * pid namespace has just a few processes. Or we need to
233 * maintain a tasklist for each pid namespace.
234 *
235 */
236 read_lock(&tasklist_lock);
237 nr = next_pidmap(pid_ns, 1);
238 while (nr > 0) {
e4da026f
SB
239 rcu_read_lock();
240
e4da026f 241 task = pid_task(find_vpid(nr), PIDTYPE_PID);
a02d6fd6
ON
242 if (task && !__fatal_signal_pending(task))
243 send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
e4da026f
SB
244
245 rcu_read_unlock();
246
74bd59bb
PE
247 nr = next_pidmap(pid_ns, nr);
248 }
249 read_unlock(&tasklist_lock);
250
a53b8315
ON
251 /*
252 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
253 * sys_wait4() will also block until our children traced from the
254 * parent namespace are detached and become EXIT_DEAD.
255 */
74bd59bb
PE
256 do {
257 clear_thread_flag(TIF_SIGPENDING);
258 rc = sys_wait4(-1, NULL, __WALL, NULL);
259 } while (rc != -ECHILD);
260
6347e900 261 /*
a53b8315
ON
262 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
263 * really care, we could reparent them to the global init. We could
264 * exit and reap ->child_reaper even if it is not the last thread in
265 * this pid_ns, free_pid(nr_hashed == 0) calls proc_cleanup_work(),
266 * pid_ns can not go away until proc_kill_sb() drops the reference.
267 *
268 * But this ns can also have other tasks injected by setns()+fork().
269 * Again, ignoring the user visible semantics we do not really need
270 * to wait until they are all reaped, but they can be reparented to
271 * us and thus we need to ensure that pid->child_reaper stays valid
272 * until they all go away. See free_pid()->wake_up_process().
273 *
274 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
275 * if reparented.
6347e900
EB
276 */
277 for (;;) {
af4b8a83 278 set_current_state(TASK_UNINTERRUPTIBLE);
751c644b 279 if (pid_ns->nr_hashed == init_pids)
6347e900
EB
280 break;
281 schedule();
282 }
af4b8a83 283 __set_current_state(TASK_RUNNING);
6347e900 284
cf3f8921
DL
285 if (pid_ns->reboot)
286 current->signal->group_exit_code = pid_ns->reboot;
287
0b6b030f 288 acct_exit_ns(pid_ns);
74bd59bb
PE
289 return;
290}
291
98ed57ee 292#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0
PE
293static int pid_ns_ctl_handler(struct ctl_table *table, int write,
294 void __user *buffer, size_t *lenp, loff_t *ppos)
295{
49f4d8b9 296 struct pid_namespace *pid_ns = task_active_pid_ns(current);
b8f566b0
PE
297 struct ctl_table tmp = *table;
298
49f4d8b9 299 if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
b8f566b0
PE
300 return -EPERM;
301
302 /*
303 * Writing directly to ns' last_pid field is OK, since this field
304 * is volatile in a living namespace anyway and a code writing to
305 * it should synchronize its usage with external means.
306 */
307
49f4d8b9 308 tmp.data = &pid_ns->last_pid;
579035dc 309 return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
b8f566b0
PE
310}
311
579035dc
AV
312extern int pid_max;
313static int zero = 0;
b8f566b0
PE
314static struct ctl_table pid_ns_ctl_table[] = {
315 {
316 .procname = "ns_last_pid",
317 .maxlen = sizeof(int),
318 .mode = 0666, /* permissions are checked in the handler */
319 .proc_handler = pid_ns_ctl_handler,
579035dc
AV
320 .extra1 = &zero,
321 .extra2 = &pid_max,
b8f566b0
PE
322 },
323 { }
324};
b8f566b0 325static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
98ed57ee 326#endif /* CONFIG_CHECKPOINT_RESTORE */
b8f566b0 327
cf3f8921
DL
328int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
329{
330 if (pid_ns == &init_pid_ns)
331 return 0;
332
333 switch (cmd) {
334 case LINUX_REBOOT_CMD_RESTART2:
335 case LINUX_REBOOT_CMD_RESTART:
336 pid_ns->reboot = SIGHUP;
337 break;
338
339 case LINUX_REBOOT_CMD_POWER_OFF:
340 case LINUX_REBOOT_CMD_HALT:
341 pid_ns->reboot = SIGINT;
342 break;
343 default:
344 return -EINVAL;
345 }
346
347 read_lock(&tasklist_lock);
348 force_sig(SIGKILL, pid_ns->child_reaper);
349 read_unlock(&tasklist_lock);
350
351 do_exit(0);
352
353 /* Not reached */
354 return 0;
355}
356
3c041184
AV
357static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
358{
359 return container_of(ns, struct pid_namespace, ns);
360}
361
64964528 362static struct ns_common *pidns_get(struct task_struct *task)
57e8391d
EB
363{
364 struct pid_namespace *ns;
365
366 rcu_read_lock();
d2308225
ON
367 ns = task_active_pid_ns(task);
368 if (ns)
369 get_pid_ns(ns);
57e8391d
EB
370 rcu_read_unlock();
371
3c041184 372 return ns ? &ns->ns : NULL;
57e8391d
EB
373}
374
64964528 375static void pidns_put(struct ns_common *ns)
57e8391d 376{
3c041184 377 put_pid_ns(to_pid_ns(ns));
57e8391d
EB
378}
379
64964528 380static int pidns_install(struct nsproxy *nsproxy, struct ns_common *ns)
57e8391d
EB
381{
382 struct pid_namespace *active = task_active_pid_ns(current);
3c041184 383 struct pid_namespace *ancestor, *new = to_pid_ns(ns);
57e8391d 384
5e4a0847 385 if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
c7b96acf 386 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
57e8391d
EB
387 return -EPERM;
388
389 /*
390 * Only allow entering the current active pid namespace
391 * or a child of the current active pid namespace.
392 *
393 * This is required for fork to return a usable pid value and
394 * this maintains the property that processes and their
395 * children can not escape their current pid namespace.
396 */
397 if (new->level < active->level)
398 return -EINVAL;
399
400 ancestor = new;
401 while (ancestor->level > active->level)
402 ancestor = ancestor->parent;
403 if (ancestor != active)
404 return -EINVAL;
405
c2b1df2e
AL
406 put_pid_ns(nsproxy->pid_ns_for_children);
407 nsproxy->pid_ns_for_children = get_pid_ns(new);
57e8391d
EB
408 return 0;
409}
410
a7306ed8
AV
411static struct ns_common *pidns_get_parent(struct ns_common *ns)
412{
413 struct pid_namespace *active = task_active_pid_ns(current);
414 struct pid_namespace *pid_ns, *p;
415
416 /* See if the parent is in the current namespace */
417 pid_ns = p = to_pid_ns(ns)->parent;
418 for (;;) {
419 if (!p)
420 return ERR_PTR(-EPERM);
421 if (p == active)
422 break;
423 p = p->parent;
424 }
425
426 return &get_pid_ns(pid_ns)->ns;
427}
428
bcac25a5
AV
429static struct user_namespace *pidns_owner(struct ns_common *ns)
430{
431 return to_pid_ns(ns)->user_ns;
432}
433
57e8391d
EB
434const struct proc_ns_operations pidns_operations = {
435 .name = "pid",
436 .type = CLONE_NEWPID,
437 .get = pidns_get,
438 .put = pidns_put,
439 .install = pidns_install,
bcac25a5 440 .owner = pidns_owner,
a7306ed8 441 .get_parent = pidns_get_parent,
57e8391d
EB
442};
443
74bd59bb
PE
444static __init int pid_namespaces_init(void)
445{
446 pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
98ed57ee
CG
447
448#ifdef CONFIG_CHECKPOINT_RESTORE
b8f566b0 449 register_sysctl_paths(kern_path, pid_ns_ctl_table);
98ed57ee 450#endif
74bd59bb
PE
451 return 0;
452}
453
454__initcall(pid_namespaces_init);