]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Implement CPU time clocks for the POSIX clock interface. | |
3 | */ | |
4 | ||
5 | #include <linux/sched.h> | |
6 | #include <linux/posix-timers.h> | |
7 | #include <asm/uaccess.h> | |
8 | #include <linux/errno.h> | |
9 | ||
a924b04d | 10 | static int check_clock(const clockid_t which_clock) |
1da177e4 LT |
11 | { |
12 | int error = 0; | |
13 | struct task_struct *p; | |
14 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
15 | ||
16 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | |
17 | return -EINVAL; | |
18 | ||
19 | if (pid == 0) | |
20 | return 0; | |
21 | ||
22 | read_lock(&tasklist_lock); | |
23 | p = find_task_by_pid(pid); | |
24 | if (!p || (CPUCLOCK_PERTHREAD(which_clock) ? | |
25 | p->tgid != current->tgid : p->tgid != pid)) { | |
26 | error = -EINVAL; | |
27 | } | |
28 | read_unlock(&tasklist_lock); | |
29 | ||
30 | return error; | |
31 | } | |
32 | ||
33 | static inline union cpu_time_count | |
a924b04d | 34 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
1da177e4 LT |
35 | { |
36 | union cpu_time_count ret; | |
37 | ret.sched = 0; /* high half always zero when .cpu used */ | |
38 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
ee500f27 | 39 | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
1da177e4 LT |
40 | } else { |
41 | ret.cpu = timespec_to_cputime(tp); | |
42 | } | |
43 | return ret; | |
44 | } | |
45 | ||
a924b04d | 46 | static void sample_to_timespec(const clockid_t which_clock, |
1da177e4 LT |
47 | union cpu_time_count cpu, |
48 | struct timespec *tp) | |
49 | { | |
50 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
51 | tp->tv_sec = div_long_long_rem(cpu.sched, | |
52 | NSEC_PER_SEC, &tp->tv_nsec); | |
53 | } else { | |
54 | cputime_to_timespec(cpu.cpu, tp); | |
55 | } | |
56 | } | |
57 | ||
a924b04d | 58 | static inline int cpu_time_before(const clockid_t which_clock, |
1da177e4 LT |
59 | union cpu_time_count now, |
60 | union cpu_time_count then) | |
61 | { | |
62 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
63 | return now.sched < then.sched; | |
64 | } else { | |
65 | return cputime_lt(now.cpu, then.cpu); | |
66 | } | |
67 | } | |
a924b04d | 68 | static inline void cpu_time_add(const clockid_t which_clock, |
1da177e4 LT |
69 | union cpu_time_count *acc, |
70 | union cpu_time_count val) | |
71 | { | |
72 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
73 | acc->sched += val.sched; | |
74 | } else { | |
75 | acc->cpu = cputime_add(acc->cpu, val.cpu); | |
76 | } | |
77 | } | |
a924b04d | 78 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
1da177e4 LT |
79 | union cpu_time_count a, |
80 | union cpu_time_count b) | |
81 | { | |
82 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
83 | a.sched -= b.sched; | |
84 | } else { | |
85 | a.cpu = cputime_sub(a.cpu, b.cpu); | |
86 | } | |
87 | return a; | |
88 | } | |
89 | ||
90 | /* | |
91 | * Update expiry time from increment, and increase overrun count, | |
92 | * given the current clock sample. | |
93 | */ | |
7a4ed937 | 94 | static void bump_cpu_timer(struct k_itimer *timer, |
1da177e4 LT |
95 | union cpu_time_count now) |
96 | { | |
97 | int i; | |
98 | ||
99 | if (timer->it.cpu.incr.sched == 0) | |
100 | return; | |
101 | ||
102 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | |
103 | unsigned long long delta, incr; | |
104 | ||
105 | if (now.sched < timer->it.cpu.expires.sched) | |
106 | return; | |
107 | incr = timer->it.cpu.incr.sched; | |
108 | delta = now.sched + incr - timer->it.cpu.expires.sched; | |
109 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
110 | for (i = 0; incr < delta - incr; i++) | |
111 | incr = incr << 1; | |
112 | for (; i >= 0; incr >>= 1, i--) { | |
7a4ed937 | 113 | if (delta < incr) |
1da177e4 LT |
114 | continue; |
115 | timer->it.cpu.expires.sched += incr; | |
116 | timer->it_overrun += 1 << i; | |
117 | delta -= incr; | |
118 | } | |
119 | } else { | |
120 | cputime_t delta, incr; | |
121 | ||
122 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | |
123 | return; | |
124 | incr = timer->it.cpu.incr.cpu; | |
125 | delta = cputime_sub(cputime_add(now.cpu, incr), | |
126 | timer->it.cpu.expires.cpu); | |
127 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
128 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | |
129 | incr = cputime_add(incr, incr); | |
130 | for (; i >= 0; incr = cputime_halve(incr), i--) { | |
7a4ed937 | 131 | if (cputime_lt(delta, incr)) |
1da177e4 LT |
132 | continue; |
133 | timer->it.cpu.expires.cpu = | |
134 | cputime_add(timer->it.cpu.expires.cpu, incr); | |
135 | timer->it_overrun += 1 << i; | |
136 | delta = cputime_sub(delta, incr); | |
137 | } | |
138 | } | |
139 | } | |
140 | ||
141 | static inline cputime_t prof_ticks(struct task_struct *p) | |
142 | { | |
143 | return cputime_add(p->utime, p->stime); | |
144 | } | |
145 | static inline cputime_t virt_ticks(struct task_struct *p) | |
146 | { | |
147 | return p->utime; | |
148 | } | |
149 | static inline unsigned long long sched_ns(struct task_struct *p) | |
150 | { | |
151 | return (p == current) ? current_sched_time(p) : p->sched_time; | |
152 | } | |
153 | ||
a924b04d | 154 | int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) |
1da177e4 LT |
155 | { |
156 | int error = check_clock(which_clock); | |
157 | if (!error) { | |
158 | tp->tv_sec = 0; | |
159 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | |
160 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
161 | /* | |
162 | * If sched_clock is using a cycle counter, we | |
163 | * don't have any idea of its true resolution | |
164 | * exported, but it is much more than 1s/HZ. | |
165 | */ | |
166 | tp->tv_nsec = 1; | |
167 | } | |
168 | } | |
169 | return error; | |
170 | } | |
171 | ||
a924b04d | 172 | int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) |
1da177e4 LT |
173 | { |
174 | /* | |
175 | * You can never reset a CPU clock, but we check for other errors | |
176 | * in the call before failing with EPERM. | |
177 | */ | |
178 | int error = check_clock(which_clock); | |
179 | if (error == 0) { | |
180 | error = -EPERM; | |
181 | } | |
182 | return error; | |
183 | } | |
184 | ||
185 | ||
186 | /* | |
187 | * Sample a per-thread clock for the given task. | |
188 | */ | |
a924b04d | 189 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
1da177e4 LT |
190 | union cpu_time_count *cpu) |
191 | { | |
192 | switch (CPUCLOCK_WHICH(which_clock)) { | |
193 | default: | |
194 | return -EINVAL; | |
195 | case CPUCLOCK_PROF: | |
196 | cpu->cpu = prof_ticks(p); | |
197 | break; | |
198 | case CPUCLOCK_VIRT: | |
199 | cpu->cpu = virt_ticks(p); | |
200 | break; | |
201 | case CPUCLOCK_SCHED: | |
202 | cpu->sched = sched_ns(p); | |
203 | break; | |
204 | } | |
205 | return 0; | |
206 | } | |
207 | ||
208 | /* | |
209 | * Sample a process (thread group) clock for the given group_leader task. | |
210 | * Must be called with tasklist_lock held for reading. | |
211 | * Must be called with tasklist_lock held for reading, and p->sighand->siglock. | |
212 | */ | |
213 | static int cpu_clock_sample_group_locked(unsigned int clock_idx, | |
214 | struct task_struct *p, | |
215 | union cpu_time_count *cpu) | |
216 | { | |
217 | struct task_struct *t = p; | |
218 | switch (clock_idx) { | |
219 | default: | |
220 | return -EINVAL; | |
221 | case CPUCLOCK_PROF: | |
222 | cpu->cpu = cputime_add(p->signal->utime, p->signal->stime); | |
223 | do { | |
224 | cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t)); | |
225 | t = next_thread(t); | |
226 | } while (t != p); | |
227 | break; | |
228 | case CPUCLOCK_VIRT: | |
229 | cpu->cpu = p->signal->utime; | |
230 | do { | |
231 | cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t)); | |
232 | t = next_thread(t); | |
233 | } while (t != p); | |
234 | break; | |
235 | case CPUCLOCK_SCHED: | |
236 | cpu->sched = p->signal->sched_time; | |
237 | /* Add in each other live thread. */ | |
238 | while ((t = next_thread(t)) != p) { | |
239 | cpu->sched += t->sched_time; | |
240 | } | |
0aec63e6 | 241 | cpu->sched += sched_ns(p); |
1da177e4 LT |
242 | break; |
243 | } | |
244 | return 0; | |
245 | } | |
246 | ||
247 | /* | |
248 | * Sample a process (thread group) clock for the given group_leader task. | |
249 | * Must be called with tasklist_lock held for reading. | |
250 | */ | |
a924b04d | 251 | static int cpu_clock_sample_group(const clockid_t which_clock, |
1da177e4 LT |
252 | struct task_struct *p, |
253 | union cpu_time_count *cpu) | |
254 | { | |
255 | int ret; | |
256 | unsigned long flags; | |
257 | spin_lock_irqsave(&p->sighand->siglock, flags); | |
258 | ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p, | |
259 | cpu); | |
260 | spin_unlock_irqrestore(&p->sighand->siglock, flags); | |
261 | return ret; | |
262 | } | |
263 | ||
264 | ||
a924b04d | 265 | int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4 LT |
266 | { |
267 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
268 | int error = -EINVAL; | |
269 | union cpu_time_count rtn; | |
270 | ||
271 | if (pid == 0) { | |
272 | /* | |
273 | * Special case constant value for our own clocks. | |
274 | * We don't have to do any lookup to find ourselves. | |
275 | */ | |
276 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
277 | /* | |
278 | * Sampling just ourselves we can do with no locking. | |
279 | */ | |
280 | error = cpu_clock_sample(which_clock, | |
281 | current, &rtn); | |
282 | } else { | |
283 | read_lock(&tasklist_lock); | |
284 | error = cpu_clock_sample_group(which_clock, | |
285 | current, &rtn); | |
286 | read_unlock(&tasklist_lock); | |
287 | } | |
288 | } else { | |
289 | /* | |
290 | * Find the given PID, and validate that the caller | |
291 | * should be able to see it. | |
292 | */ | |
293 | struct task_struct *p; | |
294 | read_lock(&tasklist_lock); | |
295 | p = find_task_by_pid(pid); | |
296 | if (p) { | |
297 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
298 | if (p->tgid == current->tgid) { | |
299 | error = cpu_clock_sample(which_clock, | |
300 | p, &rtn); | |
301 | } | |
302 | } else if (p->tgid == pid && p->signal) { | |
303 | error = cpu_clock_sample_group(which_clock, | |
304 | p, &rtn); | |
305 | } | |
306 | } | |
307 | read_unlock(&tasklist_lock); | |
308 | } | |
309 | ||
310 | if (error) | |
311 | return error; | |
312 | sample_to_timespec(which_clock, rtn, tp); | |
313 | return 0; | |
314 | } | |
315 | ||
316 | ||
317 | /* | |
318 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | |
319 | * This is called from sys_timer_create with the new timer already locked. | |
320 | */ | |
321 | int posix_cpu_timer_create(struct k_itimer *new_timer) | |
322 | { | |
323 | int ret = 0; | |
324 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | |
325 | struct task_struct *p; | |
326 | ||
327 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | |
328 | return -EINVAL; | |
329 | ||
330 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | |
331 | new_timer->it.cpu.incr.sched = 0; | |
332 | new_timer->it.cpu.expires.sched = 0; | |
333 | ||
334 | read_lock(&tasklist_lock); | |
335 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { | |
336 | if (pid == 0) { | |
337 | p = current; | |
338 | } else { | |
339 | p = find_task_by_pid(pid); | |
340 | if (p && p->tgid != current->tgid) | |
341 | p = NULL; | |
342 | } | |
343 | } else { | |
344 | if (pid == 0) { | |
345 | p = current->group_leader; | |
346 | } else { | |
347 | p = find_task_by_pid(pid); | |
348 | if (p && p->tgid != pid) | |
349 | p = NULL; | |
350 | } | |
351 | } | |
352 | new_timer->it.cpu.task = p; | |
353 | if (p) { | |
354 | get_task_struct(p); | |
355 | } else { | |
356 | ret = -EINVAL; | |
357 | } | |
358 | read_unlock(&tasklist_lock); | |
359 | ||
360 | return ret; | |
361 | } | |
362 | ||
363 | /* | |
364 | * Clean up a CPU-clock timer that is about to be destroyed. | |
365 | * This is called from timer deletion with the timer already locked. | |
366 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
367 | * and try again. (This happens when the timer is in the middle of firing.) | |
368 | */ | |
369 | int posix_cpu_timer_del(struct k_itimer *timer) | |
370 | { | |
371 | struct task_struct *p = timer->it.cpu.task; | |
108150ea | 372 | int ret = 0; |
1da177e4 | 373 | |
108150ea | 374 | if (likely(p != NULL)) { |
9465bee8 LT |
375 | read_lock(&tasklist_lock); |
376 | if (unlikely(p->signal == NULL)) { | |
377 | /* | |
378 | * We raced with the reaping of the task. | |
379 | * The deletion should have cleared us off the list. | |
380 | */ | |
381 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | |
382 | } else { | |
9465bee8 | 383 | spin_lock(&p->sighand->siglock); |
108150ea ON |
384 | if (timer->it.cpu.firing) |
385 | ret = TIMER_RETRY; | |
386 | else | |
387 | list_del(&timer->it.cpu.entry); | |
9465bee8 LT |
388 | spin_unlock(&p->sighand->siglock); |
389 | } | |
390 | read_unlock(&tasklist_lock); | |
108150ea ON |
391 | |
392 | if (!ret) | |
393 | put_task_struct(p); | |
1da177e4 | 394 | } |
1da177e4 | 395 | |
108150ea | 396 | return ret; |
1da177e4 LT |
397 | } |
398 | ||
399 | /* | |
400 | * Clean out CPU timers still ticking when a thread exited. The task | |
401 | * pointer is cleared, and the expiry time is replaced with the residual | |
402 | * time for later timer_gettime calls to return. | |
403 | * This must be called with the siglock held. | |
404 | */ | |
405 | static void cleanup_timers(struct list_head *head, | |
406 | cputime_t utime, cputime_t stime, | |
407 | unsigned long long sched_time) | |
408 | { | |
409 | struct cpu_timer_list *timer, *next; | |
410 | cputime_t ptime = cputime_add(utime, stime); | |
411 | ||
412 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
413 | list_del_init(&timer->entry); |
414 | if (cputime_lt(timer->expires.cpu, ptime)) { | |
415 | timer->expires.cpu = cputime_zero; | |
416 | } else { | |
417 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | |
418 | ptime); | |
419 | } | |
420 | } | |
421 | ||
422 | ++head; | |
423 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
424 | list_del_init(&timer->entry); |
425 | if (cputime_lt(timer->expires.cpu, utime)) { | |
426 | timer->expires.cpu = cputime_zero; | |
427 | } else { | |
428 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | |
429 | utime); | |
430 | } | |
431 | } | |
432 | ||
433 | ++head; | |
434 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
435 | list_del_init(&timer->entry); |
436 | if (timer->expires.sched < sched_time) { | |
437 | timer->expires.sched = 0; | |
438 | } else { | |
439 | timer->expires.sched -= sched_time; | |
440 | } | |
441 | } | |
442 | } | |
443 | ||
444 | /* | |
445 | * These are both called with the siglock held, when the current thread | |
446 | * is being reaped. When the final (leader) thread in the group is reaped, | |
447 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | |
448 | */ | |
449 | void posix_cpu_timers_exit(struct task_struct *tsk) | |
450 | { | |
451 | cleanup_timers(tsk->cpu_timers, | |
452 | tsk->utime, tsk->stime, tsk->sched_time); | |
453 | ||
454 | } | |
455 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | |
456 | { | |
457 | cleanup_timers(tsk->signal->cpu_timers, | |
458 | cputime_add(tsk->utime, tsk->signal->utime), | |
459 | cputime_add(tsk->stime, tsk->signal->stime), | |
460 | tsk->sched_time + tsk->signal->sched_time); | |
461 | } | |
462 | ||
463 | ||
464 | /* | |
465 | * Set the expiry times of all the threads in the process so one of them | |
466 | * will go off before the process cumulative expiry total is reached. | |
467 | */ | |
468 | static void process_timer_rebalance(struct task_struct *p, | |
469 | unsigned int clock_idx, | |
470 | union cpu_time_count expires, | |
471 | union cpu_time_count val) | |
472 | { | |
473 | cputime_t ticks, left; | |
474 | unsigned long long ns, nsleft; | |
475 | struct task_struct *t = p; | |
476 | unsigned int nthreads = atomic_read(&p->signal->live); | |
477 | ||
ca531a0a ON |
478 | if (!nthreads) |
479 | return; | |
480 | ||
1da177e4 LT |
481 | switch (clock_idx) { |
482 | default: | |
483 | BUG(); | |
484 | break; | |
485 | case CPUCLOCK_PROF: | |
486 | left = cputime_div(cputime_sub(expires.cpu, val.cpu), | |
487 | nthreads); | |
488 | do { | |
7fd93cf3 | 489 | if (likely(!(t->flags & PF_EXITING))) { |
1da177e4 LT |
490 | ticks = cputime_add(prof_ticks(t), left); |
491 | if (cputime_eq(t->it_prof_expires, | |
492 | cputime_zero) || | |
493 | cputime_gt(t->it_prof_expires, ticks)) { | |
494 | t->it_prof_expires = ticks; | |
495 | } | |
496 | } | |
497 | t = next_thread(t); | |
498 | } while (t != p); | |
499 | break; | |
500 | case CPUCLOCK_VIRT: | |
501 | left = cputime_div(cputime_sub(expires.cpu, val.cpu), | |
502 | nthreads); | |
503 | do { | |
7fd93cf3 | 504 | if (likely(!(t->flags & PF_EXITING))) { |
1da177e4 LT |
505 | ticks = cputime_add(virt_ticks(t), left); |
506 | if (cputime_eq(t->it_virt_expires, | |
507 | cputime_zero) || | |
508 | cputime_gt(t->it_virt_expires, ticks)) { | |
509 | t->it_virt_expires = ticks; | |
510 | } | |
511 | } | |
512 | t = next_thread(t); | |
513 | } while (t != p); | |
514 | break; | |
515 | case CPUCLOCK_SCHED: | |
516 | nsleft = expires.sched - val.sched; | |
517 | do_div(nsleft, nthreads); | |
518 | do { | |
7fd93cf3 | 519 | if (likely(!(t->flags & PF_EXITING))) { |
1da177e4 LT |
520 | ns = t->sched_time + nsleft; |
521 | if (t->it_sched_expires == 0 || | |
522 | t->it_sched_expires > ns) { | |
523 | t->it_sched_expires = ns; | |
524 | } | |
525 | } | |
526 | t = next_thread(t); | |
527 | } while (t != p); | |
528 | break; | |
529 | } | |
530 | } | |
531 | ||
532 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |
533 | { | |
534 | /* | |
535 | * That's all for this thread or process. | |
536 | * We leave our residual in expires to be reported. | |
537 | */ | |
538 | put_task_struct(timer->it.cpu.task); | |
539 | timer->it.cpu.task = NULL; | |
540 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | |
541 | timer->it.cpu.expires, | |
542 | now); | |
543 | } | |
544 | ||
545 | /* | |
546 | * Insert the timer on the appropriate list before any timers that | |
547 | * expire later. This must be called with the tasklist_lock held | |
548 | * for reading, and interrupts disabled. | |
549 | */ | |
550 | static void arm_timer(struct k_itimer *timer, union cpu_time_count now) | |
551 | { | |
552 | struct task_struct *p = timer->it.cpu.task; | |
553 | struct list_head *head, *listpos; | |
554 | struct cpu_timer_list *const nt = &timer->it.cpu; | |
555 | struct cpu_timer_list *next; | |
556 | unsigned long i; | |
557 | ||
558 | head = (CPUCLOCK_PERTHREAD(timer->it_clock) ? | |
559 | p->cpu_timers : p->signal->cpu_timers); | |
560 | head += CPUCLOCK_WHICH(timer->it_clock); | |
561 | ||
562 | BUG_ON(!irqs_disabled()); | |
563 | spin_lock(&p->sighand->siglock); | |
564 | ||
565 | listpos = head; | |
566 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | |
567 | list_for_each_entry(next, head, entry) { | |
70ab81c2 | 568 | if (next->expires.sched > nt->expires.sched) |
1da177e4 | 569 | break; |
70ab81c2 | 570 | listpos = &next->entry; |
1da177e4 LT |
571 | } |
572 | } else { | |
573 | list_for_each_entry(next, head, entry) { | |
70ab81c2 | 574 | if (cputime_gt(next->expires.cpu, nt->expires.cpu)) |
1da177e4 | 575 | break; |
70ab81c2 | 576 | listpos = &next->entry; |
1da177e4 LT |
577 | } |
578 | } | |
579 | list_add(&nt->entry, listpos); | |
580 | ||
581 | if (listpos == head) { | |
582 | /* | |
583 | * We are the new earliest-expiring timer. | |
584 | * If we are a thread timer, there can always | |
585 | * be a process timer telling us to stop earlier. | |
586 | */ | |
587 | ||
588 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
589 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | |
590 | default: | |
591 | BUG(); | |
592 | case CPUCLOCK_PROF: | |
593 | if (cputime_eq(p->it_prof_expires, | |
594 | cputime_zero) || | |
595 | cputime_gt(p->it_prof_expires, | |
596 | nt->expires.cpu)) | |
597 | p->it_prof_expires = nt->expires.cpu; | |
598 | break; | |
599 | case CPUCLOCK_VIRT: | |
600 | if (cputime_eq(p->it_virt_expires, | |
601 | cputime_zero) || | |
602 | cputime_gt(p->it_virt_expires, | |
603 | nt->expires.cpu)) | |
604 | p->it_virt_expires = nt->expires.cpu; | |
605 | break; | |
606 | case CPUCLOCK_SCHED: | |
607 | if (p->it_sched_expires == 0 || | |
608 | p->it_sched_expires > nt->expires.sched) | |
609 | p->it_sched_expires = nt->expires.sched; | |
610 | break; | |
611 | } | |
612 | } else { | |
613 | /* | |
614 | * For a process timer, we must balance | |
615 | * all the live threads' expirations. | |
616 | */ | |
617 | switch (CPUCLOCK_WHICH(timer->it_clock)) { | |
618 | default: | |
619 | BUG(); | |
620 | case CPUCLOCK_VIRT: | |
621 | if (!cputime_eq(p->signal->it_virt_expires, | |
622 | cputime_zero) && | |
623 | cputime_lt(p->signal->it_virt_expires, | |
624 | timer->it.cpu.expires.cpu)) | |
625 | break; | |
626 | goto rebalance; | |
627 | case CPUCLOCK_PROF: | |
628 | if (!cputime_eq(p->signal->it_prof_expires, | |
629 | cputime_zero) && | |
630 | cputime_lt(p->signal->it_prof_expires, | |
631 | timer->it.cpu.expires.cpu)) | |
632 | break; | |
633 | i = p->signal->rlim[RLIMIT_CPU].rlim_cur; | |
634 | if (i != RLIM_INFINITY && | |
635 | i <= cputime_to_secs(timer->it.cpu.expires.cpu)) | |
636 | break; | |
637 | goto rebalance; | |
638 | case CPUCLOCK_SCHED: | |
639 | rebalance: | |
640 | process_timer_rebalance( | |
641 | timer->it.cpu.task, | |
642 | CPUCLOCK_WHICH(timer->it_clock), | |
643 | timer->it.cpu.expires, now); | |
644 | break; | |
645 | } | |
646 | } | |
647 | } | |
648 | ||
649 | spin_unlock(&p->sighand->siglock); | |
650 | } | |
651 | ||
652 | /* | |
653 | * The timer is locked, fire it and arrange for its reload. | |
654 | */ | |
655 | static void cpu_timer_fire(struct k_itimer *timer) | |
656 | { | |
657 | if (unlikely(timer->sigq == NULL)) { | |
658 | /* | |
659 | * This a special case for clock_nanosleep, | |
660 | * not a normal timer from sys_timer_create. | |
661 | */ | |
662 | wake_up_process(timer->it_process); | |
663 | timer->it.cpu.expires.sched = 0; | |
664 | } else if (timer->it.cpu.incr.sched == 0) { | |
665 | /* | |
666 | * One-shot timer. Clear it as soon as it's fired. | |
667 | */ | |
668 | posix_timer_event(timer, 0); | |
669 | timer->it.cpu.expires.sched = 0; | |
670 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | |
671 | /* | |
672 | * The signal did not get queued because the signal | |
673 | * was ignored, so we won't get any callback to | |
674 | * reload the timer. But we need to keep it | |
675 | * ticking in case the signal is deliverable next time. | |
676 | */ | |
677 | posix_cpu_timer_schedule(timer); | |
678 | } | |
679 | } | |
680 | ||
681 | /* | |
682 | * Guts of sys_timer_settime for CPU timers. | |
683 | * This is called with the timer locked and interrupts disabled. | |
684 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
685 | * and try again. (This happens when the timer is in the middle of firing.) | |
686 | */ | |
687 | int posix_cpu_timer_set(struct k_itimer *timer, int flags, | |
688 | struct itimerspec *new, struct itimerspec *old) | |
689 | { | |
690 | struct task_struct *p = timer->it.cpu.task; | |
691 | union cpu_time_count old_expires, new_expires, val; | |
692 | int ret; | |
693 | ||
694 | if (unlikely(p == NULL)) { | |
695 | /* | |
696 | * Timer refers to a dead task's clock. | |
697 | */ | |
698 | return -ESRCH; | |
699 | } | |
700 | ||
701 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | |
702 | ||
703 | read_lock(&tasklist_lock); | |
704 | /* | |
705 | * We need the tasklist_lock to protect against reaping that | |
706 | * clears p->signal. If p has just been reaped, we can no | |
707 | * longer get any information about it at all. | |
708 | */ | |
709 | if (unlikely(p->signal == NULL)) { | |
710 | read_unlock(&tasklist_lock); | |
711 | put_task_struct(p); | |
712 | timer->it.cpu.task = NULL; | |
713 | return -ESRCH; | |
714 | } | |
715 | ||
716 | /* | |
717 | * Disarm any old timer after extracting its expiry time. | |
718 | */ | |
719 | BUG_ON(!irqs_disabled()); | |
a69ac4a7 ON |
720 | |
721 | ret = 0; | |
1da177e4 LT |
722 | spin_lock(&p->sighand->siglock); |
723 | old_expires = timer->it.cpu.expires; | |
a69ac4a7 ON |
724 | if (unlikely(timer->it.cpu.firing)) { |
725 | timer->it.cpu.firing = -1; | |
726 | ret = TIMER_RETRY; | |
727 | } else | |
728 | list_del_init(&timer->it.cpu.entry); | |
1da177e4 LT |
729 | spin_unlock(&p->sighand->siglock); |
730 | ||
731 | /* | |
732 | * We need to sample the current value to convert the new | |
733 | * value from to relative and absolute, and to convert the | |
734 | * old value from absolute to relative. To set a process | |
735 | * timer, we need a sample to balance the thread expiry | |
736 | * times (in arm_timer). With an absolute time, we must | |
737 | * check if it's already passed. In short, we need a sample. | |
738 | */ | |
739 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
740 | cpu_clock_sample(timer->it_clock, p, &val); | |
741 | } else { | |
742 | cpu_clock_sample_group(timer->it_clock, p, &val); | |
743 | } | |
744 | ||
745 | if (old) { | |
746 | if (old_expires.sched == 0) { | |
747 | old->it_value.tv_sec = 0; | |
748 | old->it_value.tv_nsec = 0; | |
749 | } else { | |
750 | /* | |
751 | * Update the timer in case it has | |
752 | * overrun already. If it has, | |
753 | * we'll report it as having overrun | |
754 | * and with the next reloaded timer | |
755 | * already ticking, though we are | |
756 | * swallowing that pending | |
757 | * notification here to install the | |
758 | * new setting. | |
759 | */ | |
760 | bump_cpu_timer(timer, val); | |
761 | if (cpu_time_before(timer->it_clock, val, | |
762 | timer->it.cpu.expires)) { | |
763 | old_expires = cpu_time_sub( | |
764 | timer->it_clock, | |
765 | timer->it.cpu.expires, val); | |
766 | sample_to_timespec(timer->it_clock, | |
767 | old_expires, | |
768 | &old->it_value); | |
769 | } else { | |
770 | old->it_value.tv_nsec = 1; | |
771 | old->it_value.tv_sec = 0; | |
772 | } | |
773 | } | |
774 | } | |
775 | ||
a69ac4a7 | 776 | if (unlikely(ret)) { |
1da177e4 LT |
777 | /* |
778 | * We are colliding with the timer actually firing. | |
779 | * Punt after filling in the timer's old value, and | |
780 | * disable this firing since we are already reporting | |
781 | * it as an overrun (thanks to bump_cpu_timer above). | |
782 | */ | |
783 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
784 | goto out; |
785 | } | |
786 | ||
787 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | |
788 | cpu_time_add(timer->it_clock, &new_expires, val); | |
789 | } | |
790 | ||
791 | /* | |
792 | * Install the new expiry time (or zero). | |
793 | * For a timer with no notification action, we don't actually | |
794 | * arm the timer (we'll just fake it for timer_gettime). | |
795 | */ | |
796 | timer->it.cpu.expires = new_expires; | |
797 | if (new_expires.sched != 0 && | |
798 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | |
799 | cpu_time_before(timer->it_clock, val, new_expires)) { | |
800 | arm_timer(timer, val); | |
801 | } | |
802 | ||
803 | read_unlock(&tasklist_lock); | |
804 | ||
805 | /* | |
806 | * Install the new reload setting, and | |
807 | * set up the signal and overrun bookkeeping. | |
808 | */ | |
809 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | |
810 | &new->it_interval); | |
811 | ||
812 | /* | |
813 | * This acts as a modification timestamp for the timer, | |
814 | * so any automatic reload attempt will punt on seeing | |
815 | * that we have reset the timer manually. | |
816 | */ | |
817 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | |
818 | ~REQUEUE_PENDING; | |
819 | timer->it_overrun_last = 0; | |
820 | timer->it_overrun = -1; | |
821 | ||
822 | if (new_expires.sched != 0 && | |
823 | (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE && | |
824 | !cpu_time_before(timer->it_clock, val, new_expires)) { | |
825 | /* | |
826 | * The designated time already passed, so we notify | |
827 | * immediately, even if the thread never runs to | |
828 | * accumulate more time on this clock. | |
829 | */ | |
830 | cpu_timer_fire(timer); | |
831 | } | |
832 | ||
833 | ret = 0; | |
834 | out: | |
835 | if (old) { | |
836 | sample_to_timespec(timer->it_clock, | |
837 | timer->it.cpu.incr, &old->it_interval); | |
838 | } | |
839 | return ret; | |
840 | } | |
841 | ||
842 | void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) | |
843 | { | |
844 | union cpu_time_count now; | |
845 | struct task_struct *p = timer->it.cpu.task; | |
846 | int clear_dead; | |
847 | ||
848 | /* | |
849 | * Easy part: convert the reload time. | |
850 | */ | |
851 | sample_to_timespec(timer->it_clock, | |
852 | timer->it.cpu.incr, &itp->it_interval); | |
853 | ||
854 | if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ | |
855 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | |
856 | return; | |
857 | } | |
858 | ||
859 | if (unlikely(p == NULL)) { | |
860 | /* | |
861 | * This task already died and the timer will never fire. | |
862 | * In this case, expires is actually the dead value. | |
863 | */ | |
864 | dead: | |
865 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | |
866 | &itp->it_value); | |
867 | return; | |
868 | } | |
869 | ||
870 | /* | |
871 | * Sample the clock to take the difference with the expiry time. | |
872 | */ | |
873 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
874 | cpu_clock_sample(timer->it_clock, p, &now); | |
875 | clear_dead = p->exit_state; | |
876 | } else { | |
877 | read_lock(&tasklist_lock); | |
878 | if (unlikely(p->signal == NULL)) { | |
879 | /* | |
880 | * The process has been reaped. | |
881 | * We can't even collect a sample any more. | |
882 | * Call the timer disarmed, nothing else to do. | |
883 | */ | |
884 | put_task_struct(p); | |
885 | timer->it.cpu.task = NULL; | |
886 | timer->it.cpu.expires.sched = 0; | |
887 | read_unlock(&tasklist_lock); | |
888 | goto dead; | |
889 | } else { | |
890 | cpu_clock_sample_group(timer->it_clock, p, &now); | |
891 | clear_dead = (unlikely(p->exit_state) && | |
892 | thread_group_empty(p)); | |
893 | } | |
894 | read_unlock(&tasklist_lock); | |
895 | } | |
896 | ||
897 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | |
898 | if (timer->it.cpu.incr.sched == 0 && | |
899 | cpu_time_before(timer->it_clock, | |
900 | timer->it.cpu.expires, now)) { | |
901 | /* | |
902 | * Do-nothing timer expired and has no reload, | |
903 | * so it's as if it was never set. | |
904 | */ | |
905 | timer->it.cpu.expires.sched = 0; | |
906 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | |
907 | return; | |
908 | } | |
909 | /* | |
910 | * Account for any expirations and reloads that should | |
911 | * have happened. | |
912 | */ | |
913 | bump_cpu_timer(timer, now); | |
914 | } | |
915 | ||
916 | if (unlikely(clear_dead)) { | |
917 | /* | |
918 | * We've noticed that the thread is dead, but | |
919 | * not yet reaped. Take this opportunity to | |
920 | * drop our task ref. | |
921 | */ | |
922 | clear_dead_task(timer, now); | |
923 | goto dead; | |
924 | } | |
925 | ||
926 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | |
927 | sample_to_timespec(timer->it_clock, | |
928 | cpu_time_sub(timer->it_clock, | |
929 | timer->it.cpu.expires, now), | |
930 | &itp->it_value); | |
931 | } else { | |
932 | /* | |
933 | * The timer should have expired already, but the firing | |
934 | * hasn't taken place yet. Say it's just about to expire. | |
935 | */ | |
936 | itp->it_value.tv_nsec = 1; | |
937 | itp->it_value.tv_sec = 0; | |
938 | } | |
939 | } | |
940 | ||
941 | /* | |
942 | * Check for any per-thread CPU timers that have fired and move them off | |
943 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | |
944 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | |
945 | */ | |
946 | static void check_thread_timers(struct task_struct *tsk, | |
947 | struct list_head *firing) | |
948 | { | |
e80eda94 | 949 | int maxfire; |
1da177e4 LT |
950 | struct list_head *timers = tsk->cpu_timers; |
951 | ||
e80eda94 | 952 | maxfire = 20; |
1da177e4 LT |
953 | tsk->it_prof_expires = cputime_zero; |
954 | while (!list_empty(timers)) { | |
955 | struct cpu_timer_list *t = list_entry(timers->next, | |
956 | struct cpu_timer_list, | |
957 | entry); | |
e80eda94 | 958 | if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
1da177e4 LT |
959 | tsk->it_prof_expires = t->expires.cpu; |
960 | break; | |
961 | } | |
962 | t->firing = 1; | |
963 | list_move_tail(&t->entry, firing); | |
964 | } | |
965 | ||
966 | ++timers; | |
e80eda94 | 967 | maxfire = 20; |
1da177e4 LT |
968 | tsk->it_virt_expires = cputime_zero; |
969 | while (!list_empty(timers)) { | |
970 | struct cpu_timer_list *t = list_entry(timers->next, | |
971 | struct cpu_timer_list, | |
972 | entry); | |
e80eda94 | 973 | if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
1da177e4 LT |
974 | tsk->it_virt_expires = t->expires.cpu; |
975 | break; | |
976 | } | |
977 | t->firing = 1; | |
978 | list_move_tail(&t->entry, firing); | |
979 | } | |
980 | ||
981 | ++timers; | |
e80eda94 | 982 | maxfire = 20; |
1da177e4 LT |
983 | tsk->it_sched_expires = 0; |
984 | while (!list_empty(timers)) { | |
985 | struct cpu_timer_list *t = list_entry(timers->next, | |
986 | struct cpu_timer_list, | |
987 | entry); | |
e80eda94 | 988 | if (!--maxfire || tsk->sched_time < t->expires.sched) { |
1da177e4 LT |
989 | tsk->it_sched_expires = t->expires.sched; |
990 | break; | |
991 | } | |
992 | t->firing = 1; | |
993 | list_move_tail(&t->entry, firing); | |
994 | } | |
995 | } | |
996 | ||
997 | /* | |
998 | * Check for any per-thread CPU timers that have fired and move them | |
999 | * off the tsk->*_timers list onto the firing list. Per-thread timers | |
1000 | * have already been taken off. | |
1001 | */ | |
1002 | static void check_process_timers(struct task_struct *tsk, | |
1003 | struct list_head *firing) | |
1004 | { | |
e80eda94 | 1005 | int maxfire; |
1da177e4 LT |
1006 | struct signal_struct *const sig = tsk->signal; |
1007 | cputime_t utime, stime, ptime, virt_expires, prof_expires; | |
1008 | unsigned long long sched_time, sched_expires; | |
1009 | struct task_struct *t; | |
1010 | struct list_head *timers = sig->cpu_timers; | |
1011 | ||
1012 | /* | |
1013 | * Don't sample the current process CPU clocks if there are no timers. | |
1014 | */ | |
1015 | if (list_empty(&timers[CPUCLOCK_PROF]) && | |
1016 | cputime_eq(sig->it_prof_expires, cputime_zero) && | |
1017 | sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY && | |
1018 | list_empty(&timers[CPUCLOCK_VIRT]) && | |
1019 | cputime_eq(sig->it_virt_expires, cputime_zero) && | |
1020 | list_empty(&timers[CPUCLOCK_SCHED])) | |
1021 | return; | |
1022 | ||
1023 | /* | |
1024 | * Collect the current process totals. | |
1025 | */ | |
1026 | utime = sig->utime; | |
1027 | stime = sig->stime; | |
1028 | sched_time = sig->sched_time; | |
1029 | t = tsk; | |
1030 | do { | |
1031 | utime = cputime_add(utime, t->utime); | |
1032 | stime = cputime_add(stime, t->stime); | |
1033 | sched_time += t->sched_time; | |
1034 | t = next_thread(t); | |
1035 | } while (t != tsk); | |
1036 | ptime = cputime_add(utime, stime); | |
1037 | ||
e80eda94 | 1038 | maxfire = 20; |
1da177e4 LT |
1039 | prof_expires = cputime_zero; |
1040 | while (!list_empty(timers)) { | |
1041 | struct cpu_timer_list *t = list_entry(timers->next, | |
1042 | struct cpu_timer_list, | |
1043 | entry); | |
e80eda94 | 1044 | if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) { |
1da177e4 LT |
1045 | prof_expires = t->expires.cpu; |
1046 | break; | |
1047 | } | |
1048 | t->firing = 1; | |
1049 | list_move_tail(&t->entry, firing); | |
1050 | } | |
1051 | ||
1052 | ++timers; | |
e80eda94 | 1053 | maxfire = 20; |
1da177e4 LT |
1054 | virt_expires = cputime_zero; |
1055 | while (!list_empty(timers)) { | |
1056 | struct cpu_timer_list *t = list_entry(timers->next, | |
1057 | struct cpu_timer_list, | |
1058 | entry); | |
e80eda94 | 1059 | if (!--maxfire || cputime_lt(utime, t->expires.cpu)) { |
1da177e4 LT |
1060 | virt_expires = t->expires.cpu; |
1061 | break; | |
1062 | } | |
1063 | t->firing = 1; | |
1064 | list_move_tail(&t->entry, firing); | |
1065 | } | |
1066 | ||
1067 | ++timers; | |
e80eda94 | 1068 | maxfire = 20; |
1da177e4 LT |
1069 | sched_expires = 0; |
1070 | while (!list_empty(timers)) { | |
1071 | struct cpu_timer_list *t = list_entry(timers->next, | |
1072 | struct cpu_timer_list, | |
1073 | entry); | |
e80eda94 | 1074 | if (!--maxfire || sched_time < t->expires.sched) { |
1da177e4 LT |
1075 | sched_expires = t->expires.sched; |
1076 | break; | |
1077 | } | |
1078 | t->firing = 1; | |
1079 | list_move_tail(&t->entry, firing); | |
1080 | } | |
1081 | ||
1082 | /* | |
1083 | * Check for the special case process timers. | |
1084 | */ | |
1085 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | |
1086 | if (cputime_ge(ptime, sig->it_prof_expires)) { | |
1087 | /* ITIMER_PROF fires and reloads. */ | |
1088 | sig->it_prof_expires = sig->it_prof_incr; | |
1089 | if (!cputime_eq(sig->it_prof_expires, cputime_zero)) { | |
1090 | sig->it_prof_expires = cputime_add( | |
1091 | sig->it_prof_expires, ptime); | |
1092 | } | |
1093 | __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk); | |
1094 | } | |
1095 | if (!cputime_eq(sig->it_prof_expires, cputime_zero) && | |
1096 | (cputime_eq(prof_expires, cputime_zero) || | |
1097 | cputime_lt(sig->it_prof_expires, prof_expires))) { | |
1098 | prof_expires = sig->it_prof_expires; | |
1099 | } | |
1100 | } | |
1101 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | |
1102 | if (cputime_ge(utime, sig->it_virt_expires)) { | |
1103 | /* ITIMER_VIRTUAL fires and reloads. */ | |
1104 | sig->it_virt_expires = sig->it_virt_incr; | |
1105 | if (!cputime_eq(sig->it_virt_expires, cputime_zero)) { | |
1106 | sig->it_virt_expires = cputime_add( | |
1107 | sig->it_virt_expires, utime); | |
1108 | } | |
1109 | __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk); | |
1110 | } | |
1111 | if (!cputime_eq(sig->it_virt_expires, cputime_zero) && | |
1112 | (cputime_eq(virt_expires, cputime_zero) || | |
1113 | cputime_lt(sig->it_virt_expires, virt_expires))) { | |
1114 | virt_expires = sig->it_virt_expires; | |
1115 | } | |
1116 | } | |
1117 | if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { | |
1118 | unsigned long psecs = cputime_to_secs(ptime); | |
1119 | cputime_t x; | |
1120 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) { | |
1121 | /* | |
1122 | * At the hard limit, we just die. | |
1123 | * No need to calculate anything else now. | |
1124 | */ | |
1125 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | |
1126 | return; | |
1127 | } | |
1128 | if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) { | |
1129 | /* | |
1130 | * At the soft limit, send a SIGXCPU every second. | |
1131 | */ | |
1132 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | |
1133 | if (sig->rlim[RLIMIT_CPU].rlim_cur | |
1134 | < sig->rlim[RLIMIT_CPU].rlim_max) { | |
1135 | sig->rlim[RLIMIT_CPU].rlim_cur++; | |
1136 | } | |
1137 | } | |
1138 | x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur); | |
1139 | if (cputime_eq(prof_expires, cputime_zero) || | |
1140 | cputime_lt(x, prof_expires)) { | |
1141 | prof_expires = x; | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | if (!cputime_eq(prof_expires, cputime_zero) || | |
1146 | !cputime_eq(virt_expires, cputime_zero) || | |
1147 | sched_expires != 0) { | |
1148 | /* | |
1149 | * Rebalance the threads' expiry times for the remaining | |
1150 | * process CPU timers. | |
1151 | */ | |
1152 | ||
1153 | cputime_t prof_left, virt_left, ticks; | |
1154 | unsigned long long sched_left, sched; | |
1155 | const unsigned int nthreads = atomic_read(&sig->live); | |
1156 | ||
ca531a0a ON |
1157 | if (!nthreads) |
1158 | return; | |
1159 | ||
1da177e4 LT |
1160 | prof_left = cputime_sub(prof_expires, utime); |
1161 | prof_left = cputime_sub(prof_left, stime); | |
1162 | prof_left = cputime_div(prof_left, nthreads); | |
1163 | virt_left = cputime_sub(virt_expires, utime); | |
1164 | virt_left = cputime_div(virt_left, nthreads); | |
1165 | if (sched_expires) { | |
1166 | sched_left = sched_expires - sched_time; | |
1167 | do_div(sched_left, nthreads); | |
1168 | } else { | |
1169 | sched_left = 0; | |
1170 | } | |
1171 | t = tsk; | |
1172 | do { | |
8f17fc20 ON |
1173 | if (unlikely(t->flags & PF_EXITING)) |
1174 | continue; | |
1175 | ||
1da177e4 LT |
1176 | ticks = cputime_add(cputime_add(t->utime, t->stime), |
1177 | prof_left); | |
1178 | if (!cputime_eq(prof_expires, cputime_zero) && | |
1179 | (cputime_eq(t->it_prof_expires, cputime_zero) || | |
1180 | cputime_gt(t->it_prof_expires, ticks))) { | |
1181 | t->it_prof_expires = ticks; | |
1182 | } | |
1183 | ||
1184 | ticks = cputime_add(t->utime, virt_left); | |
1185 | if (!cputime_eq(virt_expires, cputime_zero) && | |
1186 | (cputime_eq(t->it_virt_expires, cputime_zero) || | |
1187 | cputime_gt(t->it_virt_expires, ticks))) { | |
1188 | t->it_virt_expires = ticks; | |
1189 | } | |
1190 | ||
1191 | sched = t->sched_time + sched_left; | |
1192 | if (sched_expires && (t->it_sched_expires == 0 || | |
1193 | t->it_sched_expires > sched)) { | |
1194 | t->it_sched_expires = sched; | |
1195 | } | |
8f17fc20 | 1196 | } while ((t = next_thread(t)) != tsk); |
1da177e4 LT |
1197 | } |
1198 | } | |
1199 | ||
1200 | /* | |
1201 | * This is called from the signal code (via do_schedule_next_timer) | |
1202 | * when the last timer signal was delivered and we have to reload the timer. | |
1203 | */ | |
1204 | void posix_cpu_timer_schedule(struct k_itimer *timer) | |
1205 | { | |
1206 | struct task_struct *p = timer->it.cpu.task; | |
1207 | union cpu_time_count now; | |
1208 | ||
1209 | if (unlikely(p == NULL)) | |
1210 | /* | |
1211 | * The task was cleaned up already, no future firings. | |
1212 | */ | |
708f430d | 1213 | goto out; |
1da177e4 LT |
1214 | |
1215 | /* | |
1216 | * Fetch the current sample and update the timer's expiry time. | |
1217 | */ | |
1218 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
1219 | cpu_clock_sample(timer->it_clock, p, &now); | |
1220 | bump_cpu_timer(timer, now); | |
1221 | if (unlikely(p->exit_state)) { | |
1222 | clear_dead_task(timer, now); | |
708f430d | 1223 | goto out; |
1da177e4 LT |
1224 | } |
1225 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | |
1226 | } else { | |
1227 | read_lock(&tasklist_lock); | |
1228 | if (unlikely(p->signal == NULL)) { | |
1229 | /* | |
1230 | * The process has been reaped. | |
1231 | * We can't even collect a sample any more. | |
1232 | */ | |
1233 | put_task_struct(p); | |
1234 | timer->it.cpu.task = p = NULL; | |
1235 | timer->it.cpu.expires.sched = 0; | |
708f430d | 1236 | goto out_unlock; |
1da177e4 LT |
1237 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
1238 | /* | |
1239 | * We've noticed that the thread is dead, but | |
1240 | * not yet reaped. Take this opportunity to | |
1241 | * drop our task ref. | |
1242 | */ | |
1243 | clear_dead_task(timer, now); | |
708f430d | 1244 | goto out_unlock; |
1da177e4 LT |
1245 | } |
1246 | cpu_clock_sample_group(timer->it_clock, p, &now); | |
1247 | bump_cpu_timer(timer, now); | |
1248 | /* Leave the tasklist_lock locked for the call below. */ | |
1249 | } | |
1250 | ||
1251 | /* | |
1252 | * Now re-arm for the new expiry time. | |
1253 | */ | |
1254 | arm_timer(timer, now); | |
1255 | ||
708f430d | 1256 | out_unlock: |
1da177e4 | 1257 | read_unlock(&tasklist_lock); |
708f430d RM |
1258 | |
1259 | out: | |
1260 | timer->it_overrun_last = timer->it_overrun; | |
1261 | timer->it_overrun = -1; | |
1262 | ++timer->it_requeue_pending; | |
1da177e4 LT |
1263 | } |
1264 | ||
1265 | /* | |
1266 | * This is called from the timer interrupt handler. The irq handler has | |
1267 | * already updated our counts. We need to check if any timers fire now. | |
1268 | * Interrupts are disabled. | |
1269 | */ | |
1270 | void run_posix_cpu_timers(struct task_struct *tsk) | |
1271 | { | |
1272 | LIST_HEAD(firing); | |
1273 | struct k_itimer *timer, *next; | |
1274 | ||
1275 | BUG_ON(!irqs_disabled()); | |
1276 | ||
1277 | #define UNEXPIRED(clock) \ | |
1278 | (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \ | |
1279 | cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires)) | |
1280 | ||
1281 | if (UNEXPIRED(prof) && UNEXPIRED(virt) && | |
1282 | (tsk->it_sched_expires == 0 || | |
1283 | tsk->sched_time < tsk->it_sched_expires)) | |
1284 | return; | |
1285 | ||
1286 | #undef UNEXPIRED | |
1287 | ||
1da177e4 LT |
1288 | /* |
1289 | * Double-check with locks held. | |
1290 | */ | |
1291 | read_lock(&tasklist_lock); | |
30f1e3dd ON |
1292 | if (likely(tsk->signal != NULL)) { |
1293 | spin_lock(&tsk->sighand->siglock); | |
1da177e4 | 1294 | |
30f1e3dd ON |
1295 | /* |
1296 | * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N] | |
1297 | * all the timers that are firing, and put them on the firing list. | |
1298 | */ | |
1299 | check_thread_timers(tsk, &firing); | |
1300 | check_process_timers(tsk, &firing); | |
1da177e4 | 1301 | |
30f1e3dd ON |
1302 | /* |
1303 | * We must release these locks before taking any timer's lock. | |
1304 | * There is a potential race with timer deletion here, as the | |
1305 | * siglock now protects our private firing list. We have set | |
1306 | * the firing flag in each timer, so that a deletion attempt | |
1307 | * that gets the timer lock before we do will give it up and | |
1308 | * spin until we've taken care of that timer below. | |
1309 | */ | |
1310 | spin_unlock(&tsk->sighand->siglock); | |
1311 | } | |
1da177e4 LT |
1312 | read_unlock(&tasklist_lock); |
1313 | ||
1314 | /* | |
1315 | * Now that all the timers on our list have the firing flag, | |
1316 | * noone will touch their list entries but us. We'll take | |
1317 | * each timer's lock before clearing its firing flag, so no | |
1318 | * timer call will interfere. | |
1319 | */ | |
1320 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | |
1321 | int firing; | |
1322 | spin_lock(&timer->it_lock); | |
1323 | list_del_init(&timer->it.cpu.entry); | |
1324 | firing = timer->it.cpu.firing; | |
1325 | timer->it.cpu.firing = 0; | |
1326 | /* | |
1327 | * The firing flag is -1 if we collided with a reset | |
1328 | * of the timer, which already reported this | |
1329 | * almost-firing as an overrun. So don't generate an event. | |
1330 | */ | |
1331 | if (likely(firing >= 0)) { | |
1332 | cpu_timer_fire(timer); | |
1333 | } | |
1334 | spin_unlock(&timer->it_lock); | |
1335 | } | |
1336 | } | |
1337 | ||
1338 | /* | |
1339 | * Set one of the process-wide special case CPU timers. | |
1340 | * The tasklist_lock and tsk->sighand->siglock must be held by the caller. | |
1341 | * The oldval argument is null for the RLIMIT_CPU timer, where *newval is | |
1342 | * absolute; non-null for ITIMER_*, where *newval is relative and we update | |
1343 | * it to be absolute, *oldval is absolute and we update it to be relative. | |
1344 | */ | |
1345 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |
1346 | cputime_t *newval, cputime_t *oldval) | |
1347 | { | |
1348 | union cpu_time_count now; | |
1349 | struct list_head *head; | |
1350 | ||
1351 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | |
1352 | cpu_clock_sample_group_locked(clock_idx, tsk, &now); | |
1353 | ||
1354 | if (oldval) { | |
1355 | if (!cputime_eq(*oldval, cputime_zero)) { | |
1356 | if (cputime_le(*oldval, now.cpu)) { | |
1357 | /* Just about to fire. */ | |
1358 | *oldval = jiffies_to_cputime(1); | |
1359 | } else { | |
1360 | *oldval = cputime_sub(*oldval, now.cpu); | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | if (cputime_eq(*newval, cputime_zero)) | |
1365 | return; | |
1366 | *newval = cputime_add(*newval, now.cpu); | |
1367 | ||
1368 | /* | |
1369 | * If the RLIMIT_CPU timer will expire before the | |
1370 | * ITIMER_PROF timer, we have nothing else to do. | |
1371 | */ | |
1372 | if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur | |
1373 | < cputime_to_secs(*newval)) | |
1374 | return; | |
1375 | } | |
1376 | ||
1377 | /* | |
1378 | * Check whether there are any process timers already set to fire | |
1379 | * before this one. If so, we don't have anything more to do. | |
1380 | */ | |
1381 | head = &tsk->signal->cpu_timers[clock_idx]; | |
1382 | if (list_empty(head) || | |
1383 | cputime_ge(list_entry(head->next, | |
1384 | struct cpu_timer_list, entry)->expires.cpu, | |
1385 | *newval)) { | |
1386 | /* | |
1387 | * Rejigger each thread's expiry time so that one will | |
1388 | * notice before we hit the process-cumulative expiry time. | |
1389 | */ | |
1390 | union cpu_time_count expires = { .sched = 0 }; | |
1391 | expires.cpu = *newval; | |
1392 | process_timer_rebalance(tsk, clock_idx, expires, now); | |
1393 | } | |
1394 | } | |
1395 | ||
a924b04d | 1396 | int posix_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 | 1397 | struct timespec *rqtp, struct timespec __user *rmtp) |
1da177e4 LT |
1398 | { |
1399 | struct restart_block *restart_block = | |
1400 | ¤t_thread_info()->restart_block; | |
1401 | struct k_itimer timer; | |
1402 | int error; | |
1403 | ||
1404 | /* | |
1405 | * Diagnose required errors first. | |
1406 | */ | |
1407 | if (CPUCLOCK_PERTHREAD(which_clock) && | |
1408 | (CPUCLOCK_PID(which_clock) == 0 || | |
1409 | CPUCLOCK_PID(which_clock) == current->pid)) | |
1410 | return -EINVAL; | |
1411 | ||
1412 | /* | |
1413 | * Set up a temporary timer and then wait for it to go off. | |
1414 | */ | |
1415 | memset(&timer, 0, sizeof timer); | |
1416 | spin_lock_init(&timer.it_lock); | |
1417 | timer.it_clock = which_clock; | |
1418 | timer.it_overrun = -1; | |
1419 | error = posix_cpu_timer_create(&timer); | |
1420 | timer.it_process = current; | |
1421 | if (!error) { | |
1da177e4 LT |
1422 | static struct itimerspec zero_it; |
1423 | struct itimerspec it = { .it_value = *rqtp, | |
1424 | .it_interval = {} }; | |
1425 | ||
1426 | spin_lock_irq(&timer.it_lock); | |
1427 | error = posix_cpu_timer_set(&timer, flags, &it, NULL); | |
1428 | if (error) { | |
1429 | spin_unlock_irq(&timer.it_lock); | |
1430 | return error; | |
1431 | } | |
1432 | ||
1433 | while (!signal_pending(current)) { | |
1434 | if (timer.it.cpu.expires.sched == 0) { | |
1435 | /* | |
1436 | * Our timer fired and was reset. | |
1437 | */ | |
1438 | spin_unlock_irq(&timer.it_lock); | |
1439 | return 0; | |
1440 | } | |
1441 | ||
1442 | /* | |
1443 | * Block until cpu_timer_fire (or a signal) wakes us. | |
1444 | */ | |
1445 | __set_current_state(TASK_INTERRUPTIBLE); | |
1446 | spin_unlock_irq(&timer.it_lock); | |
1447 | schedule(); | |
1448 | spin_lock_irq(&timer.it_lock); | |
1449 | } | |
1450 | ||
1451 | /* | |
1452 | * We were interrupted by a signal. | |
1453 | */ | |
1454 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | |
1455 | posix_cpu_timer_set(&timer, 0, &zero_it, &it); | |
1456 | spin_unlock_irq(&timer.it_lock); | |
1457 | ||
1458 | if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) { | |
1459 | /* | |
1460 | * It actually did fire already. | |
1461 | */ | |
1462 | return 0; | |
1463 | } | |
1464 | ||
1465 | /* | |
1466 | * Report back to the user the time still remaining. | |
1467 | */ | |
1da177e4 LT |
1468 | if (rmtp != NULL && !(flags & TIMER_ABSTIME) && |
1469 | copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
1470 | return -EFAULT; | |
1471 | ||
1711ef38 | 1472 | restart_block->fn = posix_cpu_nsleep_restart; |
1da177e4 LT |
1473 | /* Caller already set restart_block->arg1 */ |
1474 | restart_block->arg0 = which_clock; | |
97735f25 | 1475 | restart_block->arg1 = (unsigned long) rmtp; |
1da177e4 LT |
1476 | restart_block->arg2 = rqtp->tv_sec; |
1477 | restart_block->arg3 = rqtp->tv_nsec; | |
1478 | ||
1479 | error = -ERESTART_RESTARTBLOCK; | |
1480 | } | |
1481 | ||
1482 | return error; | |
1483 | } | |
1484 | ||
1711ef38 | 1485 | long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1da177e4 LT |
1486 | { |
1487 | clockid_t which_clock = restart_block->arg0; | |
97735f25 TG |
1488 | struct timespec __user *rmtp; |
1489 | struct timespec t; | |
1490 | ||
1491 | rmtp = (struct timespec __user *) restart_block->arg1; | |
1492 | t.tv_sec = restart_block->arg2; | |
1493 | t.tv_nsec = restart_block->arg3; | |
1494 | ||
1da177e4 | 1495 | restart_block->fn = do_no_restart_syscall; |
97735f25 | 1496 | return posix_cpu_nsleep(which_clock, TIMER_ABSTIME, &t, rmtp); |
1da177e4 LT |
1497 | } |
1498 | ||
1499 | ||
1500 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) | |
1501 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | |
1502 | ||
a924b04d TG |
1503 | static int process_cpu_clock_getres(const clockid_t which_clock, |
1504 | struct timespec *tp) | |
1da177e4 LT |
1505 | { |
1506 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | |
1507 | } | |
a924b04d TG |
1508 | static int process_cpu_clock_get(const clockid_t which_clock, |
1509 | struct timespec *tp) | |
1da177e4 LT |
1510 | { |
1511 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | |
1512 | } | |
1513 | static int process_cpu_timer_create(struct k_itimer *timer) | |
1514 | { | |
1515 | timer->it_clock = PROCESS_CLOCK; | |
1516 | return posix_cpu_timer_create(timer); | |
1517 | } | |
a924b04d | 1518 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 TG |
1519 | struct timespec *rqtp, |
1520 | struct timespec __user *rmtp) | |
1da177e4 | 1521 | { |
97735f25 | 1522 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
1da177e4 | 1523 | } |
1711ef38 TA |
1524 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
1525 | { | |
1526 | return -EINVAL; | |
1527 | } | |
a924b04d TG |
1528 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
1529 | struct timespec *tp) | |
1da177e4 LT |
1530 | { |
1531 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | |
1532 | } | |
a924b04d TG |
1533 | static int thread_cpu_clock_get(const clockid_t which_clock, |
1534 | struct timespec *tp) | |
1da177e4 LT |
1535 | { |
1536 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | |
1537 | } | |
1538 | static int thread_cpu_timer_create(struct k_itimer *timer) | |
1539 | { | |
1540 | timer->it_clock = THREAD_CLOCK; | |
1541 | return posix_cpu_timer_create(timer); | |
1542 | } | |
a924b04d | 1543 | static int thread_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 | 1544 | struct timespec *rqtp, struct timespec __user *rmtp) |
1da177e4 LT |
1545 | { |
1546 | return -EINVAL; | |
1547 | } | |
1711ef38 TA |
1548 | static long thread_cpu_nsleep_restart(struct restart_block *restart_block) |
1549 | { | |
1550 | return -EINVAL; | |
1551 | } | |
1da177e4 LT |
1552 | |
1553 | static __init int init_posix_cpu_timers(void) | |
1554 | { | |
1555 | struct k_clock process = { | |
1556 | .clock_getres = process_cpu_clock_getres, | |
1557 | .clock_get = process_cpu_clock_get, | |
1558 | .clock_set = do_posix_clock_nosettime, | |
1559 | .timer_create = process_cpu_timer_create, | |
1560 | .nsleep = process_cpu_nsleep, | |
1711ef38 | 1561 | .nsleep_restart = process_cpu_nsleep_restart, |
1da177e4 LT |
1562 | }; |
1563 | struct k_clock thread = { | |
1564 | .clock_getres = thread_cpu_clock_getres, | |
1565 | .clock_get = thread_cpu_clock_get, | |
1566 | .clock_set = do_posix_clock_nosettime, | |
1567 | .timer_create = thread_cpu_timer_create, | |
1568 | .nsleep = thread_cpu_nsleep, | |
1711ef38 | 1569 | .nsleep_restart = thread_cpu_nsleep_restart, |
1da177e4 LT |
1570 | }; |
1571 | ||
1572 | register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process); | |
1573 | register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | |
1574 | ||
1575 | return 0; | |
1576 | } | |
1577 | __initcall(init_posix_cpu_timers); |