]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Implement CPU time clocks for the POSIX clock interface. | |
3 | */ | |
4 | ||
5 | #include <linux/sched.h> | |
6 | #include <linux/posix-timers.h> | |
1da177e4 | 7 | #include <linux/errno.h> |
f8bd2258 RZ |
8 | #include <linux/math64.h> |
9 | #include <asm/uaccess.h> | |
bb34d92f | 10 | #include <linux/kernel_stat.h> |
3f0a525e | 11 | #include <trace/events/timer.h> |
1da177e4 | 12 | |
f06febc9 | 13 | /* |
f55db609 SG |
14 | * Called after updating RLIMIT_CPU to run cpu timer and update |
15 | * tsk->signal->cputime_expires expiration cache if necessary. Needs | |
16 | * siglock protection since other code may update expiration cache as | |
17 | * well. | |
f06febc9 | 18 | */ |
5ab46b34 | 19 | void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new) |
f06febc9 | 20 | { |
42c4ab41 | 21 | cputime_t cputime = secs_to_cputime(rlim_new); |
f06febc9 | 22 | |
5ab46b34 JS |
23 | spin_lock_irq(&task->sighand->siglock); |
24 | set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL); | |
25 | spin_unlock_irq(&task->sighand->siglock); | |
f06febc9 FM |
26 | } |
27 | ||
a924b04d | 28 | static int check_clock(const clockid_t which_clock) |
1da177e4 LT |
29 | { |
30 | int error = 0; | |
31 | struct task_struct *p; | |
32 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
33 | ||
34 | if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX) | |
35 | return -EINVAL; | |
36 | ||
37 | if (pid == 0) | |
38 | return 0; | |
39 | ||
c0deae8c | 40 | rcu_read_lock(); |
8dc86af0 | 41 | p = find_task_by_vpid(pid); |
bac0abd6 | 42 | if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ? |
c0deae8c | 43 | same_thread_group(p, current) : has_group_leader_pid(p))) { |
1da177e4 LT |
44 | error = -EINVAL; |
45 | } | |
c0deae8c | 46 | rcu_read_unlock(); |
1da177e4 LT |
47 | |
48 | return error; | |
49 | } | |
50 | ||
51 | static inline union cpu_time_count | |
a924b04d | 52 | timespec_to_sample(const clockid_t which_clock, const struct timespec *tp) |
1da177e4 LT |
53 | { |
54 | union cpu_time_count ret; | |
55 | ret.sched = 0; /* high half always zero when .cpu used */ | |
56 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
ee500f27 | 57 | ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec; |
1da177e4 LT |
58 | } else { |
59 | ret.cpu = timespec_to_cputime(tp); | |
60 | } | |
61 | return ret; | |
62 | } | |
63 | ||
a924b04d | 64 | static void sample_to_timespec(const clockid_t which_clock, |
1da177e4 LT |
65 | union cpu_time_count cpu, |
66 | struct timespec *tp) | |
67 | { | |
f8bd2258 RZ |
68 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) |
69 | *tp = ns_to_timespec(cpu.sched); | |
70 | else | |
1da177e4 | 71 | cputime_to_timespec(cpu.cpu, tp); |
1da177e4 LT |
72 | } |
73 | ||
a924b04d | 74 | static inline int cpu_time_before(const clockid_t which_clock, |
1da177e4 LT |
75 | union cpu_time_count now, |
76 | union cpu_time_count then) | |
77 | { | |
78 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
79 | return now.sched < then.sched; | |
80 | } else { | |
81 | return cputime_lt(now.cpu, then.cpu); | |
82 | } | |
83 | } | |
a924b04d | 84 | static inline void cpu_time_add(const clockid_t which_clock, |
1da177e4 LT |
85 | union cpu_time_count *acc, |
86 | union cpu_time_count val) | |
87 | { | |
88 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
89 | acc->sched += val.sched; | |
90 | } else { | |
91 | acc->cpu = cputime_add(acc->cpu, val.cpu); | |
92 | } | |
93 | } | |
a924b04d | 94 | static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock, |
1da177e4 LT |
95 | union cpu_time_count a, |
96 | union cpu_time_count b) | |
97 | { | |
98 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
99 | a.sched -= b.sched; | |
100 | } else { | |
101 | a.cpu = cputime_sub(a.cpu, b.cpu); | |
102 | } | |
103 | return a; | |
104 | } | |
105 | ||
ac08c264 TG |
106 | /* |
107 | * Divide and limit the result to res >= 1 | |
108 | * | |
109 | * This is necessary to prevent signal delivery starvation, when the result of | |
110 | * the division would be rounded down to 0. | |
111 | */ | |
112 | static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div) | |
113 | { | |
114 | cputime_t res = cputime_div(time, div); | |
115 | ||
116 | return max_t(cputime_t, res, 1); | |
117 | } | |
118 | ||
1da177e4 LT |
119 | /* |
120 | * Update expiry time from increment, and increase overrun count, | |
121 | * given the current clock sample. | |
122 | */ | |
7a4ed937 | 123 | static void bump_cpu_timer(struct k_itimer *timer, |
1da177e4 LT |
124 | union cpu_time_count now) |
125 | { | |
126 | int i; | |
127 | ||
128 | if (timer->it.cpu.incr.sched == 0) | |
129 | return; | |
130 | ||
131 | if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) { | |
132 | unsigned long long delta, incr; | |
133 | ||
134 | if (now.sched < timer->it.cpu.expires.sched) | |
135 | return; | |
136 | incr = timer->it.cpu.incr.sched; | |
137 | delta = now.sched + incr - timer->it.cpu.expires.sched; | |
138 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
139 | for (i = 0; incr < delta - incr; i++) | |
140 | incr = incr << 1; | |
141 | for (; i >= 0; incr >>= 1, i--) { | |
7a4ed937 | 142 | if (delta < incr) |
1da177e4 LT |
143 | continue; |
144 | timer->it.cpu.expires.sched += incr; | |
145 | timer->it_overrun += 1 << i; | |
146 | delta -= incr; | |
147 | } | |
148 | } else { | |
149 | cputime_t delta, incr; | |
150 | ||
151 | if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu)) | |
152 | return; | |
153 | incr = timer->it.cpu.incr.cpu; | |
154 | delta = cputime_sub(cputime_add(now.cpu, incr), | |
155 | timer->it.cpu.expires.cpu); | |
156 | /* Don't use (incr*2 < delta), incr*2 might overflow. */ | |
157 | for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++) | |
158 | incr = cputime_add(incr, incr); | |
159 | for (; i >= 0; incr = cputime_halve(incr), i--) { | |
7a4ed937 | 160 | if (cputime_lt(delta, incr)) |
1da177e4 LT |
161 | continue; |
162 | timer->it.cpu.expires.cpu = | |
163 | cputime_add(timer->it.cpu.expires.cpu, incr); | |
164 | timer->it_overrun += 1 << i; | |
165 | delta = cputime_sub(delta, incr); | |
166 | } | |
167 | } | |
168 | } | |
169 | ||
170 | static inline cputime_t prof_ticks(struct task_struct *p) | |
171 | { | |
172 | return cputime_add(p->utime, p->stime); | |
173 | } | |
174 | static inline cputime_t virt_ticks(struct task_struct *p) | |
175 | { | |
176 | return p->utime; | |
177 | } | |
1da177e4 | 178 | |
bc2c8ea4 TG |
179 | static int |
180 | posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp) | |
1da177e4 LT |
181 | { |
182 | int error = check_clock(which_clock); | |
183 | if (!error) { | |
184 | tp->tv_sec = 0; | |
185 | tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ); | |
186 | if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) { | |
187 | /* | |
188 | * If sched_clock is using a cycle counter, we | |
189 | * don't have any idea of its true resolution | |
190 | * exported, but it is much more than 1s/HZ. | |
191 | */ | |
192 | tp->tv_nsec = 1; | |
193 | } | |
194 | } | |
195 | return error; | |
196 | } | |
197 | ||
bc2c8ea4 TG |
198 | static int |
199 | posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp) | |
1da177e4 LT |
200 | { |
201 | /* | |
202 | * You can never reset a CPU clock, but we check for other errors | |
203 | * in the call before failing with EPERM. | |
204 | */ | |
205 | int error = check_clock(which_clock); | |
206 | if (error == 0) { | |
207 | error = -EPERM; | |
208 | } | |
209 | return error; | |
210 | } | |
211 | ||
212 | ||
213 | /* | |
214 | * Sample a per-thread clock for the given task. | |
215 | */ | |
a924b04d | 216 | static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p, |
1da177e4 LT |
217 | union cpu_time_count *cpu) |
218 | { | |
219 | switch (CPUCLOCK_WHICH(which_clock)) { | |
220 | default: | |
221 | return -EINVAL; | |
222 | case CPUCLOCK_PROF: | |
223 | cpu->cpu = prof_ticks(p); | |
224 | break; | |
225 | case CPUCLOCK_VIRT: | |
226 | cpu->cpu = virt_ticks(p); | |
227 | break; | |
228 | case CPUCLOCK_SCHED: | |
c5f8d995 | 229 | cpu->sched = task_sched_runtime(p); |
1da177e4 LT |
230 | break; |
231 | } | |
232 | return 0; | |
233 | } | |
234 | ||
4cd4c1b4 PZ |
235 | void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times) |
236 | { | |
bfac7009 | 237 | struct signal_struct *sig = tsk->signal; |
4cd4c1b4 PZ |
238 | struct task_struct *t; |
239 | ||
bfac7009 ON |
240 | times->utime = sig->utime; |
241 | times->stime = sig->stime; | |
242 | times->sum_exec_runtime = sig->sum_sched_runtime; | |
4cd4c1b4 PZ |
243 | |
244 | rcu_read_lock(); | |
bfac7009 ON |
245 | /* make sure we can trust tsk->thread_group list */ |
246 | if (!likely(pid_alive(tsk))) | |
4cd4c1b4 PZ |
247 | goto out; |
248 | ||
4cd4c1b4 PZ |
249 | t = tsk; |
250 | do { | |
251 | times->utime = cputime_add(times->utime, t->utime); | |
252 | times->stime = cputime_add(times->stime, t->stime); | |
d670ec13 | 253 | times->sum_exec_runtime += task_sched_runtime(t); |
bfac7009 | 254 | } while_each_thread(tsk, t); |
4cd4c1b4 PZ |
255 | out: |
256 | rcu_read_unlock(); | |
257 | } | |
258 | ||
4da94d49 PZ |
259 | static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b) |
260 | { | |
261 | if (cputime_gt(b->utime, a->utime)) | |
262 | a->utime = b->utime; | |
263 | ||
264 | if (cputime_gt(b->stime, a->stime)) | |
265 | a->stime = b->stime; | |
266 | ||
267 | if (b->sum_exec_runtime > a->sum_exec_runtime) | |
268 | a->sum_exec_runtime = b->sum_exec_runtime; | |
269 | } | |
270 | ||
271 | void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times) | |
272 | { | |
273 | struct thread_group_cputimer *cputimer = &tsk->signal->cputimer; | |
274 | struct task_cputime sum; | |
275 | unsigned long flags; | |
276 | ||
4da94d49 | 277 | if (!cputimer->running) { |
4da94d49 PZ |
278 | /* |
279 | * The POSIX timer interface allows for absolute time expiry | |
280 | * values through the TIMER_ABSTIME flag, therefore we have | |
281 | * to synchronize the timer to the clock every time we start | |
282 | * it. | |
283 | */ | |
284 | thread_group_cputime(tsk, &sum); | |
3cfef952 | 285 | raw_spin_lock_irqsave(&cputimer->lock, flags); |
bcd5cff7 | 286 | cputimer->running = 1; |
4da94d49 | 287 | update_gt_cputime(&cputimer->cputime, &sum); |
bcd5cff7 | 288 | } else |
3cfef952 | 289 | raw_spin_lock_irqsave(&cputimer->lock, flags); |
4da94d49 | 290 | *times = cputimer->cputime; |
ee30a7b2 | 291 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); |
4da94d49 PZ |
292 | } |
293 | ||
1da177e4 LT |
294 | /* |
295 | * Sample a process (thread group) clock for the given group_leader task. | |
296 | * Must be called with tasklist_lock held for reading. | |
1da177e4 | 297 | */ |
bb34d92f FM |
298 | static int cpu_clock_sample_group(const clockid_t which_clock, |
299 | struct task_struct *p, | |
300 | union cpu_time_count *cpu) | |
1da177e4 | 301 | { |
f06febc9 FM |
302 | struct task_cputime cputime; |
303 | ||
eccdaeaf | 304 | switch (CPUCLOCK_WHICH(which_clock)) { |
1da177e4 LT |
305 | default: |
306 | return -EINVAL; | |
307 | case CPUCLOCK_PROF: | |
c5f8d995 | 308 | thread_group_cputime(p, &cputime); |
f06febc9 | 309 | cpu->cpu = cputime_add(cputime.utime, cputime.stime); |
1da177e4 LT |
310 | break; |
311 | case CPUCLOCK_VIRT: | |
c5f8d995 | 312 | thread_group_cputime(p, &cputime); |
f06febc9 | 313 | cpu->cpu = cputime.utime; |
1da177e4 LT |
314 | break; |
315 | case CPUCLOCK_SCHED: | |
d670ec13 PZ |
316 | thread_group_cputime(p, &cputime); |
317 | cpu->sched = cputime.sum_exec_runtime; | |
1da177e4 LT |
318 | break; |
319 | } | |
320 | return 0; | |
321 | } | |
322 | ||
1da177e4 | 323 | |
bc2c8ea4 | 324 | static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp) |
1da177e4 LT |
325 | { |
326 | const pid_t pid = CPUCLOCK_PID(which_clock); | |
327 | int error = -EINVAL; | |
328 | union cpu_time_count rtn; | |
329 | ||
330 | if (pid == 0) { | |
331 | /* | |
332 | * Special case constant value for our own clocks. | |
333 | * We don't have to do any lookup to find ourselves. | |
334 | */ | |
335 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
336 | /* | |
337 | * Sampling just ourselves we can do with no locking. | |
338 | */ | |
339 | error = cpu_clock_sample(which_clock, | |
340 | current, &rtn); | |
341 | } else { | |
342 | read_lock(&tasklist_lock); | |
343 | error = cpu_clock_sample_group(which_clock, | |
344 | current, &rtn); | |
345 | read_unlock(&tasklist_lock); | |
346 | } | |
347 | } else { | |
348 | /* | |
349 | * Find the given PID, and validate that the caller | |
350 | * should be able to see it. | |
351 | */ | |
352 | struct task_struct *p; | |
1f2ea083 | 353 | rcu_read_lock(); |
8dc86af0 | 354 | p = find_task_by_vpid(pid); |
1da177e4 LT |
355 | if (p) { |
356 | if (CPUCLOCK_PERTHREAD(which_clock)) { | |
bac0abd6 | 357 | if (same_thread_group(p, current)) { |
1da177e4 LT |
358 | error = cpu_clock_sample(which_clock, |
359 | p, &rtn); | |
360 | } | |
1f2ea083 PM |
361 | } else { |
362 | read_lock(&tasklist_lock); | |
d30fda35 | 363 | if (thread_group_leader(p) && p->sighand) { |
1f2ea083 PM |
364 | error = |
365 | cpu_clock_sample_group(which_clock, | |
366 | p, &rtn); | |
367 | } | |
368 | read_unlock(&tasklist_lock); | |
1da177e4 LT |
369 | } |
370 | } | |
1f2ea083 | 371 | rcu_read_unlock(); |
1da177e4 LT |
372 | } |
373 | ||
374 | if (error) | |
375 | return error; | |
376 | sample_to_timespec(which_clock, rtn, tp); | |
377 | return 0; | |
378 | } | |
379 | ||
380 | ||
381 | /* | |
382 | * Validate the clockid_t for a new CPU-clock timer, and initialize the timer. | |
ba5ea951 SG |
383 | * This is called from sys_timer_create() and do_cpu_nanosleep() with the |
384 | * new timer already all-zeros initialized. | |
1da177e4 | 385 | */ |
bc2c8ea4 | 386 | static int posix_cpu_timer_create(struct k_itimer *new_timer) |
1da177e4 LT |
387 | { |
388 | int ret = 0; | |
389 | const pid_t pid = CPUCLOCK_PID(new_timer->it_clock); | |
390 | struct task_struct *p; | |
391 | ||
392 | if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX) | |
393 | return -EINVAL; | |
394 | ||
395 | INIT_LIST_HEAD(&new_timer->it.cpu.entry); | |
1da177e4 | 396 | |
c0deae8c | 397 | rcu_read_lock(); |
1da177e4 LT |
398 | if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) { |
399 | if (pid == 0) { | |
400 | p = current; | |
401 | } else { | |
8dc86af0 | 402 | p = find_task_by_vpid(pid); |
bac0abd6 | 403 | if (p && !same_thread_group(p, current)) |
1da177e4 LT |
404 | p = NULL; |
405 | } | |
406 | } else { | |
407 | if (pid == 0) { | |
408 | p = current->group_leader; | |
409 | } else { | |
8dc86af0 | 410 | p = find_task_by_vpid(pid); |
c0deae8c | 411 | if (p && !has_group_leader_pid(p)) |
1da177e4 LT |
412 | p = NULL; |
413 | } | |
414 | } | |
415 | new_timer->it.cpu.task = p; | |
416 | if (p) { | |
417 | get_task_struct(p); | |
418 | } else { | |
419 | ret = -EINVAL; | |
420 | } | |
c0deae8c | 421 | rcu_read_unlock(); |
1da177e4 LT |
422 | |
423 | return ret; | |
424 | } | |
425 | ||
426 | /* | |
427 | * Clean up a CPU-clock timer that is about to be destroyed. | |
428 | * This is called from timer deletion with the timer already locked. | |
429 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
430 | * and try again. (This happens when the timer is in the middle of firing.) | |
431 | */ | |
bc2c8ea4 | 432 | static int posix_cpu_timer_del(struct k_itimer *timer) |
1da177e4 LT |
433 | { |
434 | struct task_struct *p = timer->it.cpu.task; | |
108150ea | 435 | int ret = 0; |
1da177e4 | 436 | |
108150ea | 437 | if (likely(p != NULL)) { |
9465bee8 | 438 | read_lock(&tasklist_lock); |
d30fda35 | 439 | if (unlikely(p->sighand == NULL)) { |
9465bee8 LT |
440 | /* |
441 | * We raced with the reaping of the task. | |
442 | * The deletion should have cleared us off the list. | |
443 | */ | |
444 | BUG_ON(!list_empty(&timer->it.cpu.entry)); | |
445 | } else { | |
9465bee8 | 446 | spin_lock(&p->sighand->siglock); |
108150ea ON |
447 | if (timer->it.cpu.firing) |
448 | ret = TIMER_RETRY; | |
449 | else | |
450 | list_del(&timer->it.cpu.entry); | |
9465bee8 LT |
451 | spin_unlock(&p->sighand->siglock); |
452 | } | |
453 | read_unlock(&tasklist_lock); | |
108150ea ON |
454 | |
455 | if (!ret) | |
456 | put_task_struct(p); | |
1da177e4 | 457 | } |
1da177e4 | 458 | |
108150ea | 459 | return ret; |
1da177e4 LT |
460 | } |
461 | ||
462 | /* | |
463 | * Clean out CPU timers still ticking when a thread exited. The task | |
464 | * pointer is cleared, and the expiry time is replaced with the residual | |
465 | * time for later timer_gettime calls to return. | |
466 | * This must be called with the siglock held. | |
467 | */ | |
468 | static void cleanup_timers(struct list_head *head, | |
469 | cputime_t utime, cputime_t stime, | |
41b86e9c | 470 | unsigned long long sum_exec_runtime) |
1da177e4 LT |
471 | { |
472 | struct cpu_timer_list *timer, *next; | |
473 | cputime_t ptime = cputime_add(utime, stime); | |
474 | ||
475 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
476 | list_del_init(&timer->entry); |
477 | if (cputime_lt(timer->expires.cpu, ptime)) { | |
478 | timer->expires.cpu = cputime_zero; | |
479 | } else { | |
480 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | |
481 | ptime); | |
482 | } | |
483 | } | |
484 | ||
485 | ++head; | |
486 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 LT |
487 | list_del_init(&timer->entry); |
488 | if (cputime_lt(timer->expires.cpu, utime)) { | |
489 | timer->expires.cpu = cputime_zero; | |
490 | } else { | |
491 | timer->expires.cpu = cputime_sub(timer->expires.cpu, | |
492 | utime); | |
493 | } | |
494 | } | |
495 | ||
496 | ++head; | |
497 | list_for_each_entry_safe(timer, next, head, entry) { | |
1da177e4 | 498 | list_del_init(&timer->entry); |
41b86e9c | 499 | if (timer->expires.sched < sum_exec_runtime) { |
1da177e4 LT |
500 | timer->expires.sched = 0; |
501 | } else { | |
41b86e9c | 502 | timer->expires.sched -= sum_exec_runtime; |
1da177e4 LT |
503 | } |
504 | } | |
505 | } | |
506 | ||
507 | /* | |
508 | * These are both called with the siglock held, when the current thread | |
509 | * is being reaped. When the final (leader) thread in the group is reaped, | |
510 | * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit. | |
511 | */ | |
512 | void posix_cpu_timers_exit(struct task_struct *tsk) | |
513 | { | |
514 | cleanup_timers(tsk->cpu_timers, | |
41b86e9c | 515 | tsk->utime, tsk->stime, tsk->se.sum_exec_runtime); |
1da177e4 LT |
516 | |
517 | } | |
518 | void posix_cpu_timers_exit_group(struct task_struct *tsk) | |
519 | { | |
17d42c1c | 520 | struct signal_struct *const sig = tsk->signal; |
ca531a0a | 521 | |
f06febc9 | 522 | cleanup_timers(tsk->signal->cpu_timers, |
17d42c1c SG |
523 | cputime_add(tsk->utime, sig->utime), |
524 | cputime_add(tsk->stime, sig->stime), | |
525 | tsk->se.sum_exec_runtime + sig->sum_sched_runtime); | |
1da177e4 LT |
526 | } |
527 | ||
528 | static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now) | |
529 | { | |
530 | /* | |
531 | * That's all for this thread or process. | |
532 | * We leave our residual in expires to be reported. | |
533 | */ | |
534 | put_task_struct(timer->it.cpu.task); | |
535 | timer->it.cpu.task = NULL; | |
536 | timer->it.cpu.expires = cpu_time_sub(timer->it_clock, | |
537 | timer->it.cpu.expires, | |
538 | now); | |
539 | } | |
540 | ||
d1e3b6d1 SG |
541 | static inline int expires_gt(cputime_t expires, cputime_t new_exp) |
542 | { | |
543 | return cputime_eq(expires, cputime_zero) || | |
544 | cputime_gt(expires, new_exp); | |
545 | } | |
546 | ||
1da177e4 LT |
547 | /* |
548 | * Insert the timer on the appropriate list before any timers that | |
549 | * expire later. This must be called with the tasklist_lock held | |
c2873937 | 550 | * for reading, interrupts disabled and p->sighand->siglock taken. |
1da177e4 | 551 | */ |
5eb9aa64 | 552 | static void arm_timer(struct k_itimer *timer) |
1da177e4 LT |
553 | { |
554 | struct task_struct *p = timer->it.cpu.task; | |
555 | struct list_head *head, *listpos; | |
5eb9aa64 | 556 | struct task_cputime *cputime_expires; |
1da177e4 LT |
557 | struct cpu_timer_list *const nt = &timer->it.cpu; |
558 | struct cpu_timer_list *next; | |
1da177e4 | 559 | |
5eb9aa64 SG |
560 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { |
561 | head = p->cpu_timers; | |
562 | cputime_expires = &p->cputime_expires; | |
563 | } else { | |
564 | head = p->signal->cpu_timers; | |
565 | cputime_expires = &p->signal->cputime_expires; | |
566 | } | |
1da177e4 LT |
567 | head += CPUCLOCK_WHICH(timer->it_clock); |
568 | ||
1da177e4 | 569 | listpos = head; |
5eb9aa64 SG |
570 | list_for_each_entry(next, head, entry) { |
571 | if (cpu_time_before(timer->it_clock, nt->expires, next->expires)) | |
572 | break; | |
573 | listpos = &next->entry; | |
1da177e4 LT |
574 | } |
575 | list_add(&nt->entry, listpos); | |
576 | ||
577 | if (listpos == head) { | |
5eb9aa64 SG |
578 | union cpu_time_count *exp = &nt->expires; |
579 | ||
1da177e4 | 580 | /* |
5eb9aa64 SG |
581 | * We are the new earliest-expiring POSIX 1.b timer, hence |
582 | * need to update expiration cache. Take into account that | |
583 | * for process timers we share expiration cache with itimers | |
584 | * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME. | |
1da177e4 LT |
585 | */ |
586 | ||
5eb9aa64 SG |
587 | switch (CPUCLOCK_WHICH(timer->it_clock)) { |
588 | case CPUCLOCK_PROF: | |
589 | if (expires_gt(cputime_expires->prof_exp, exp->cpu)) | |
590 | cputime_expires->prof_exp = exp->cpu; | |
591 | break; | |
592 | case CPUCLOCK_VIRT: | |
593 | if (expires_gt(cputime_expires->virt_exp, exp->cpu)) | |
594 | cputime_expires->virt_exp = exp->cpu; | |
595 | break; | |
596 | case CPUCLOCK_SCHED: | |
597 | if (cputime_expires->sched_exp == 0 || | |
598 | cputime_expires->sched_exp > exp->sched) | |
599 | cputime_expires->sched_exp = exp->sched; | |
600 | break; | |
1da177e4 LT |
601 | } |
602 | } | |
1da177e4 LT |
603 | } |
604 | ||
605 | /* | |
606 | * The timer is locked, fire it and arrange for its reload. | |
607 | */ | |
608 | static void cpu_timer_fire(struct k_itimer *timer) | |
609 | { | |
1f169f84 SG |
610 | if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { |
611 | /* | |
612 | * User don't want any signal. | |
613 | */ | |
614 | timer->it.cpu.expires.sched = 0; | |
615 | } else if (unlikely(timer->sigq == NULL)) { | |
1da177e4 LT |
616 | /* |
617 | * This a special case for clock_nanosleep, | |
618 | * not a normal timer from sys_timer_create. | |
619 | */ | |
620 | wake_up_process(timer->it_process); | |
621 | timer->it.cpu.expires.sched = 0; | |
622 | } else if (timer->it.cpu.incr.sched == 0) { | |
623 | /* | |
624 | * One-shot timer. Clear it as soon as it's fired. | |
625 | */ | |
626 | posix_timer_event(timer, 0); | |
627 | timer->it.cpu.expires.sched = 0; | |
628 | } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) { | |
629 | /* | |
630 | * The signal did not get queued because the signal | |
631 | * was ignored, so we won't get any callback to | |
632 | * reload the timer. But we need to keep it | |
633 | * ticking in case the signal is deliverable next time. | |
634 | */ | |
635 | posix_cpu_timer_schedule(timer); | |
636 | } | |
637 | } | |
638 | ||
3997ad31 PZ |
639 | /* |
640 | * Sample a process (thread group) timer for the given group_leader task. | |
641 | * Must be called with tasklist_lock held for reading. | |
642 | */ | |
643 | static int cpu_timer_sample_group(const clockid_t which_clock, | |
644 | struct task_struct *p, | |
645 | union cpu_time_count *cpu) | |
646 | { | |
647 | struct task_cputime cputime; | |
648 | ||
649 | thread_group_cputimer(p, &cputime); | |
650 | switch (CPUCLOCK_WHICH(which_clock)) { | |
651 | default: | |
652 | return -EINVAL; | |
653 | case CPUCLOCK_PROF: | |
654 | cpu->cpu = cputime_add(cputime.utime, cputime.stime); | |
655 | break; | |
656 | case CPUCLOCK_VIRT: | |
657 | cpu->cpu = cputime.utime; | |
658 | break; | |
659 | case CPUCLOCK_SCHED: | |
660 | cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p); | |
661 | break; | |
662 | } | |
663 | return 0; | |
664 | } | |
665 | ||
1da177e4 LT |
666 | /* |
667 | * Guts of sys_timer_settime for CPU timers. | |
668 | * This is called with the timer locked and interrupts disabled. | |
669 | * If we return TIMER_RETRY, it's necessary to release the timer's lock | |
670 | * and try again. (This happens when the timer is in the middle of firing.) | |
671 | */ | |
bc2c8ea4 TG |
672 | static int posix_cpu_timer_set(struct k_itimer *timer, int flags, |
673 | struct itimerspec *new, struct itimerspec *old) | |
1da177e4 LT |
674 | { |
675 | struct task_struct *p = timer->it.cpu.task; | |
ae1a78ee | 676 | union cpu_time_count old_expires, new_expires, old_incr, val; |
1da177e4 LT |
677 | int ret; |
678 | ||
679 | if (unlikely(p == NULL)) { | |
680 | /* | |
681 | * Timer refers to a dead task's clock. | |
682 | */ | |
683 | return -ESRCH; | |
684 | } | |
685 | ||
686 | new_expires = timespec_to_sample(timer->it_clock, &new->it_value); | |
687 | ||
688 | read_lock(&tasklist_lock); | |
689 | /* | |
690 | * We need the tasklist_lock to protect against reaping that | |
d30fda35 | 691 | * clears p->sighand. If p has just been reaped, we can no |
1da177e4 LT |
692 | * longer get any information about it at all. |
693 | */ | |
d30fda35 | 694 | if (unlikely(p->sighand == NULL)) { |
1da177e4 LT |
695 | read_unlock(&tasklist_lock); |
696 | put_task_struct(p); | |
697 | timer->it.cpu.task = NULL; | |
698 | return -ESRCH; | |
699 | } | |
700 | ||
701 | /* | |
702 | * Disarm any old timer after extracting its expiry time. | |
703 | */ | |
704 | BUG_ON(!irqs_disabled()); | |
a69ac4a7 ON |
705 | |
706 | ret = 0; | |
ae1a78ee | 707 | old_incr = timer->it.cpu.incr; |
1da177e4 LT |
708 | spin_lock(&p->sighand->siglock); |
709 | old_expires = timer->it.cpu.expires; | |
a69ac4a7 ON |
710 | if (unlikely(timer->it.cpu.firing)) { |
711 | timer->it.cpu.firing = -1; | |
712 | ret = TIMER_RETRY; | |
713 | } else | |
714 | list_del_init(&timer->it.cpu.entry); | |
1da177e4 LT |
715 | |
716 | /* | |
717 | * We need to sample the current value to convert the new | |
718 | * value from to relative and absolute, and to convert the | |
719 | * old value from absolute to relative. To set a process | |
720 | * timer, we need a sample to balance the thread expiry | |
721 | * times (in arm_timer). With an absolute time, we must | |
722 | * check if it's already passed. In short, we need a sample. | |
723 | */ | |
724 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
725 | cpu_clock_sample(timer->it_clock, p, &val); | |
726 | } else { | |
3997ad31 | 727 | cpu_timer_sample_group(timer->it_clock, p, &val); |
1da177e4 LT |
728 | } |
729 | ||
730 | if (old) { | |
731 | if (old_expires.sched == 0) { | |
732 | old->it_value.tv_sec = 0; | |
733 | old->it_value.tv_nsec = 0; | |
734 | } else { | |
735 | /* | |
736 | * Update the timer in case it has | |
737 | * overrun already. If it has, | |
738 | * we'll report it as having overrun | |
739 | * and with the next reloaded timer | |
740 | * already ticking, though we are | |
741 | * swallowing that pending | |
742 | * notification here to install the | |
743 | * new setting. | |
744 | */ | |
745 | bump_cpu_timer(timer, val); | |
746 | if (cpu_time_before(timer->it_clock, val, | |
747 | timer->it.cpu.expires)) { | |
748 | old_expires = cpu_time_sub( | |
749 | timer->it_clock, | |
750 | timer->it.cpu.expires, val); | |
751 | sample_to_timespec(timer->it_clock, | |
752 | old_expires, | |
753 | &old->it_value); | |
754 | } else { | |
755 | old->it_value.tv_nsec = 1; | |
756 | old->it_value.tv_sec = 0; | |
757 | } | |
758 | } | |
759 | } | |
760 | ||
a69ac4a7 | 761 | if (unlikely(ret)) { |
1da177e4 LT |
762 | /* |
763 | * We are colliding with the timer actually firing. | |
764 | * Punt after filling in the timer's old value, and | |
765 | * disable this firing since we are already reporting | |
766 | * it as an overrun (thanks to bump_cpu_timer above). | |
767 | */ | |
c2873937 | 768 | spin_unlock(&p->sighand->siglock); |
1da177e4 | 769 | read_unlock(&tasklist_lock); |
1da177e4 LT |
770 | goto out; |
771 | } | |
772 | ||
773 | if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) { | |
774 | cpu_time_add(timer->it_clock, &new_expires, val); | |
775 | } | |
776 | ||
777 | /* | |
778 | * Install the new expiry time (or zero). | |
779 | * For a timer with no notification action, we don't actually | |
780 | * arm the timer (we'll just fake it for timer_gettime). | |
781 | */ | |
782 | timer->it.cpu.expires = new_expires; | |
783 | if (new_expires.sched != 0 && | |
1da177e4 | 784 | cpu_time_before(timer->it_clock, val, new_expires)) { |
5eb9aa64 | 785 | arm_timer(timer); |
1da177e4 LT |
786 | } |
787 | ||
c2873937 | 788 | spin_unlock(&p->sighand->siglock); |
1da177e4 LT |
789 | read_unlock(&tasklist_lock); |
790 | ||
791 | /* | |
792 | * Install the new reload setting, and | |
793 | * set up the signal and overrun bookkeeping. | |
794 | */ | |
795 | timer->it.cpu.incr = timespec_to_sample(timer->it_clock, | |
796 | &new->it_interval); | |
797 | ||
798 | /* | |
799 | * This acts as a modification timestamp for the timer, | |
800 | * so any automatic reload attempt will punt on seeing | |
801 | * that we have reset the timer manually. | |
802 | */ | |
803 | timer->it_requeue_pending = (timer->it_requeue_pending + 2) & | |
804 | ~REQUEUE_PENDING; | |
805 | timer->it_overrun_last = 0; | |
806 | timer->it_overrun = -1; | |
807 | ||
808 | if (new_expires.sched != 0 && | |
1da177e4 LT |
809 | !cpu_time_before(timer->it_clock, val, new_expires)) { |
810 | /* | |
811 | * The designated time already passed, so we notify | |
812 | * immediately, even if the thread never runs to | |
813 | * accumulate more time on this clock. | |
814 | */ | |
815 | cpu_timer_fire(timer); | |
816 | } | |
817 | ||
818 | ret = 0; | |
819 | out: | |
820 | if (old) { | |
821 | sample_to_timespec(timer->it_clock, | |
ae1a78ee | 822 | old_incr, &old->it_interval); |
1da177e4 LT |
823 | } |
824 | return ret; | |
825 | } | |
826 | ||
bc2c8ea4 | 827 | static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp) |
1da177e4 LT |
828 | { |
829 | union cpu_time_count now; | |
830 | struct task_struct *p = timer->it.cpu.task; | |
831 | int clear_dead; | |
832 | ||
833 | /* | |
834 | * Easy part: convert the reload time. | |
835 | */ | |
836 | sample_to_timespec(timer->it_clock, | |
837 | timer->it.cpu.incr, &itp->it_interval); | |
838 | ||
839 | if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */ | |
840 | itp->it_value.tv_sec = itp->it_value.tv_nsec = 0; | |
841 | return; | |
842 | } | |
843 | ||
844 | if (unlikely(p == NULL)) { | |
845 | /* | |
846 | * This task already died and the timer will never fire. | |
847 | * In this case, expires is actually the dead value. | |
848 | */ | |
849 | dead: | |
850 | sample_to_timespec(timer->it_clock, timer->it.cpu.expires, | |
851 | &itp->it_value); | |
852 | return; | |
853 | } | |
854 | ||
855 | /* | |
856 | * Sample the clock to take the difference with the expiry time. | |
857 | */ | |
858 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
859 | cpu_clock_sample(timer->it_clock, p, &now); | |
860 | clear_dead = p->exit_state; | |
861 | } else { | |
862 | read_lock(&tasklist_lock); | |
d30fda35 | 863 | if (unlikely(p->sighand == NULL)) { |
1da177e4 LT |
864 | /* |
865 | * The process has been reaped. | |
866 | * We can't even collect a sample any more. | |
867 | * Call the timer disarmed, nothing else to do. | |
868 | */ | |
869 | put_task_struct(p); | |
870 | timer->it.cpu.task = NULL; | |
871 | timer->it.cpu.expires.sched = 0; | |
872 | read_unlock(&tasklist_lock); | |
873 | goto dead; | |
874 | } else { | |
3997ad31 | 875 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1da177e4 LT |
876 | clear_dead = (unlikely(p->exit_state) && |
877 | thread_group_empty(p)); | |
878 | } | |
879 | read_unlock(&tasklist_lock); | |
880 | } | |
881 | ||
1da177e4 LT |
882 | if (unlikely(clear_dead)) { |
883 | /* | |
884 | * We've noticed that the thread is dead, but | |
885 | * not yet reaped. Take this opportunity to | |
886 | * drop our task ref. | |
887 | */ | |
888 | clear_dead_task(timer, now); | |
889 | goto dead; | |
890 | } | |
891 | ||
892 | if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) { | |
893 | sample_to_timespec(timer->it_clock, | |
894 | cpu_time_sub(timer->it_clock, | |
895 | timer->it.cpu.expires, now), | |
896 | &itp->it_value); | |
897 | } else { | |
898 | /* | |
899 | * The timer should have expired already, but the firing | |
900 | * hasn't taken place yet. Say it's just about to expire. | |
901 | */ | |
902 | itp->it_value.tv_nsec = 1; | |
903 | itp->it_value.tv_sec = 0; | |
904 | } | |
905 | } | |
906 | ||
907 | /* | |
908 | * Check for any per-thread CPU timers that have fired and move them off | |
909 | * the tsk->cpu_timers[N] list onto the firing list. Here we update the | |
910 | * tsk->it_*_expires values to reflect the remaining thread CPU timers. | |
911 | */ | |
912 | static void check_thread_timers(struct task_struct *tsk, | |
913 | struct list_head *firing) | |
914 | { | |
e80eda94 | 915 | int maxfire; |
1da177e4 | 916 | struct list_head *timers = tsk->cpu_timers; |
78f2c7db | 917 | struct signal_struct *const sig = tsk->signal; |
d4bb5274 | 918 | unsigned long soft; |
1da177e4 | 919 | |
e80eda94 | 920 | maxfire = 20; |
f06febc9 | 921 | tsk->cputime_expires.prof_exp = cputime_zero; |
1da177e4 | 922 | while (!list_empty(timers)) { |
b5e61818 | 923 | struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4 LT |
924 | struct cpu_timer_list, |
925 | entry); | |
e80eda94 | 926 | if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) { |
f06febc9 | 927 | tsk->cputime_expires.prof_exp = t->expires.cpu; |
1da177e4 LT |
928 | break; |
929 | } | |
930 | t->firing = 1; | |
931 | list_move_tail(&t->entry, firing); | |
932 | } | |
933 | ||
934 | ++timers; | |
e80eda94 | 935 | maxfire = 20; |
f06febc9 | 936 | tsk->cputime_expires.virt_exp = cputime_zero; |
1da177e4 | 937 | while (!list_empty(timers)) { |
b5e61818 | 938 | struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4 LT |
939 | struct cpu_timer_list, |
940 | entry); | |
e80eda94 | 941 | if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) { |
f06febc9 | 942 | tsk->cputime_expires.virt_exp = t->expires.cpu; |
1da177e4 LT |
943 | break; |
944 | } | |
945 | t->firing = 1; | |
946 | list_move_tail(&t->entry, firing); | |
947 | } | |
948 | ||
949 | ++timers; | |
e80eda94 | 950 | maxfire = 20; |
f06febc9 | 951 | tsk->cputime_expires.sched_exp = 0; |
1da177e4 | 952 | while (!list_empty(timers)) { |
b5e61818 | 953 | struct cpu_timer_list *t = list_first_entry(timers, |
1da177e4 LT |
954 | struct cpu_timer_list, |
955 | entry); | |
41b86e9c | 956 | if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) { |
f06febc9 | 957 | tsk->cputime_expires.sched_exp = t->expires.sched; |
1da177e4 LT |
958 | break; |
959 | } | |
960 | t->firing = 1; | |
961 | list_move_tail(&t->entry, firing); | |
962 | } | |
78f2c7db PZ |
963 | |
964 | /* | |
965 | * Check for the special case thread timers. | |
966 | */ | |
78d7d407 | 967 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur); |
d4bb5274 | 968 | if (soft != RLIM_INFINITY) { |
78d7d407 JS |
969 | unsigned long hard = |
970 | ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max); | |
78f2c7db | 971 | |
5a52dd50 PZ |
972 | if (hard != RLIM_INFINITY && |
973 | tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) { | |
78f2c7db PZ |
974 | /* |
975 | * At the hard limit, we just die. | |
976 | * No need to calculate anything else now. | |
977 | */ | |
978 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | |
979 | return; | |
980 | } | |
d4bb5274 | 981 | if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) { |
78f2c7db PZ |
982 | /* |
983 | * At the soft limit, send a SIGXCPU every second. | |
984 | */ | |
d4bb5274 JS |
985 | if (soft < hard) { |
986 | soft += USEC_PER_SEC; | |
987 | sig->rlim[RLIMIT_RTTIME].rlim_cur = soft; | |
78f2c7db | 988 | } |
81d50bb2 HS |
989 | printk(KERN_INFO |
990 | "RT Watchdog Timeout: %s[%d]\n", | |
991 | tsk->comm, task_pid_nr(tsk)); | |
78f2c7db PZ |
992 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); |
993 | } | |
994 | } | |
1da177e4 LT |
995 | } |
996 | ||
15365c10 | 997 | static void stop_process_timers(struct signal_struct *sig) |
3fccfd67 | 998 | { |
15365c10 | 999 | struct thread_group_cputimer *cputimer = &sig->cputimer; |
3fccfd67 PZ |
1000 | unsigned long flags; |
1001 | ||
ee30a7b2 | 1002 | raw_spin_lock_irqsave(&cputimer->lock, flags); |
3fccfd67 | 1003 | cputimer->running = 0; |
ee30a7b2 | 1004 | raw_spin_unlock_irqrestore(&cputimer->lock, flags); |
3fccfd67 PZ |
1005 | } |
1006 | ||
8356b5f9 SG |
1007 | static u32 onecputick; |
1008 | ||
42c4ab41 SG |
1009 | static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it, |
1010 | cputime_t *expires, cputime_t cur_time, int signo) | |
1011 | { | |
1012 | if (cputime_eq(it->expires, cputime_zero)) | |
1013 | return; | |
1014 | ||
1015 | if (cputime_ge(cur_time, it->expires)) { | |
8356b5f9 SG |
1016 | if (!cputime_eq(it->incr, cputime_zero)) { |
1017 | it->expires = cputime_add(it->expires, it->incr); | |
1018 | it->error += it->incr_error; | |
1019 | if (it->error >= onecputick) { | |
1020 | it->expires = cputime_sub(it->expires, | |
a42548a1 | 1021 | cputime_one_jiffy); |
8356b5f9 SG |
1022 | it->error -= onecputick; |
1023 | } | |
3f0a525e | 1024 | } else { |
8356b5f9 | 1025 | it->expires = cputime_zero; |
3f0a525e | 1026 | } |
42c4ab41 | 1027 | |
3f0a525e XG |
1028 | trace_itimer_expire(signo == SIGPROF ? |
1029 | ITIMER_PROF : ITIMER_VIRTUAL, | |
1030 | tsk->signal->leader_pid, cur_time); | |
42c4ab41 SG |
1031 | __group_send_sig_info(signo, SEND_SIG_PRIV, tsk); |
1032 | } | |
1033 | ||
1034 | if (!cputime_eq(it->expires, cputime_zero) && | |
1035 | (cputime_eq(*expires, cputime_zero) || | |
1036 | cputime_lt(it->expires, *expires))) { | |
1037 | *expires = it->expires; | |
1038 | } | |
1039 | } | |
1040 | ||
29f87b79 SG |
1041 | /** |
1042 | * task_cputime_zero - Check a task_cputime struct for all zero fields. | |
1043 | * | |
1044 | * @cputime: The struct to compare. | |
1045 | * | |
1046 | * Checks @cputime to see if all fields are zero. Returns true if all fields | |
1047 | * are zero, false if any field is nonzero. | |
1048 | */ | |
1049 | static inline int task_cputime_zero(const struct task_cputime *cputime) | |
1050 | { | |
1051 | if (cputime_eq(cputime->utime, cputime_zero) && | |
1052 | cputime_eq(cputime->stime, cputime_zero) && | |
1053 | cputime->sum_exec_runtime == 0) | |
1054 | return 1; | |
1055 | return 0; | |
1056 | } | |
1057 | ||
1da177e4 LT |
1058 | /* |
1059 | * Check for any per-thread CPU timers that have fired and move them | |
1060 | * off the tsk->*_timers list onto the firing list. Per-thread timers | |
1061 | * have already been taken off. | |
1062 | */ | |
1063 | static void check_process_timers(struct task_struct *tsk, | |
1064 | struct list_head *firing) | |
1065 | { | |
e80eda94 | 1066 | int maxfire; |
1da177e4 | 1067 | struct signal_struct *const sig = tsk->signal; |
f06febc9 | 1068 | cputime_t utime, ptime, virt_expires, prof_expires; |
41b86e9c | 1069 | unsigned long long sum_sched_runtime, sched_expires; |
1da177e4 | 1070 | struct list_head *timers = sig->cpu_timers; |
f06febc9 | 1071 | struct task_cputime cputime; |
d4bb5274 | 1072 | unsigned long soft; |
1da177e4 | 1073 | |
1da177e4 LT |
1074 | /* |
1075 | * Collect the current process totals. | |
1076 | */ | |
4cd4c1b4 | 1077 | thread_group_cputimer(tsk, &cputime); |
f06febc9 FM |
1078 | utime = cputime.utime; |
1079 | ptime = cputime_add(utime, cputime.stime); | |
1080 | sum_sched_runtime = cputime.sum_exec_runtime; | |
e80eda94 | 1081 | maxfire = 20; |
1da177e4 LT |
1082 | prof_expires = cputime_zero; |
1083 | while (!list_empty(timers)) { | |
ee7dd205 | 1084 | struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4 LT |
1085 | struct cpu_timer_list, |
1086 | entry); | |
ee7dd205 WC |
1087 | if (!--maxfire || cputime_lt(ptime, tl->expires.cpu)) { |
1088 | prof_expires = tl->expires.cpu; | |
1da177e4 LT |
1089 | break; |
1090 | } | |
ee7dd205 WC |
1091 | tl->firing = 1; |
1092 | list_move_tail(&tl->entry, firing); | |
1da177e4 LT |
1093 | } |
1094 | ||
1095 | ++timers; | |
e80eda94 | 1096 | maxfire = 20; |
1da177e4 LT |
1097 | virt_expires = cputime_zero; |
1098 | while (!list_empty(timers)) { | |
ee7dd205 | 1099 | struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4 LT |
1100 | struct cpu_timer_list, |
1101 | entry); | |
ee7dd205 WC |
1102 | if (!--maxfire || cputime_lt(utime, tl->expires.cpu)) { |
1103 | virt_expires = tl->expires.cpu; | |
1da177e4 LT |
1104 | break; |
1105 | } | |
ee7dd205 WC |
1106 | tl->firing = 1; |
1107 | list_move_tail(&tl->entry, firing); | |
1da177e4 LT |
1108 | } |
1109 | ||
1110 | ++timers; | |
e80eda94 | 1111 | maxfire = 20; |
1da177e4 LT |
1112 | sched_expires = 0; |
1113 | while (!list_empty(timers)) { | |
ee7dd205 | 1114 | struct cpu_timer_list *tl = list_first_entry(timers, |
1da177e4 LT |
1115 | struct cpu_timer_list, |
1116 | entry); | |
ee7dd205 WC |
1117 | if (!--maxfire || sum_sched_runtime < tl->expires.sched) { |
1118 | sched_expires = tl->expires.sched; | |
1da177e4 LT |
1119 | break; |
1120 | } | |
ee7dd205 WC |
1121 | tl->firing = 1; |
1122 | list_move_tail(&tl->entry, firing); | |
1da177e4 LT |
1123 | } |
1124 | ||
1125 | /* | |
1126 | * Check for the special case process timers. | |
1127 | */ | |
42c4ab41 SG |
1128 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime, |
1129 | SIGPROF); | |
1130 | check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime, | |
1131 | SIGVTALRM); | |
78d7d407 | 1132 | soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); |
d4bb5274 | 1133 | if (soft != RLIM_INFINITY) { |
1da177e4 | 1134 | unsigned long psecs = cputime_to_secs(ptime); |
78d7d407 JS |
1135 | unsigned long hard = |
1136 | ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max); | |
1da177e4 | 1137 | cputime_t x; |
d4bb5274 | 1138 | if (psecs >= hard) { |
1da177e4 LT |
1139 | /* |
1140 | * At the hard limit, we just die. | |
1141 | * No need to calculate anything else now. | |
1142 | */ | |
1143 | __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk); | |
1144 | return; | |
1145 | } | |
d4bb5274 | 1146 | if (psecs >= soft) { |
1da177e4 LT |
1147 | /* |
1148 | * At the soft limit, send a SIGXCPU every second. | |
1149 | */ | |
1150 | __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk); | |
d4bb5274 JS |
1151 | if (soft < hard) { |
1152 | soft++; | |
1153 | sig->rlim[RLIMIT_CPU].rlim_cur = soft; | |
1da177e4 LT |
1154 | } |
1155 | } | |
d4bb5274 | 1156 | x = secs_to_cputime(soft); |
1da177e4 LT |
1157 | if (cputime_eq(prof_expires, cputime_zero) || |
1158 | cputime_lt(x, prof_expires)) { | |
1159 | prof_expires = x; | |
1160 | } | |
1161 | } | |
1162 | ||
29f87b79 SG |
1163 | sig->cputime_expires.prof_exp = prof_expires; |
1164 | sig->cputime_expires.virt_exp = virt_expires; | |
1165 | sig->cputime_expires.sched_exp = sched_expires; | |
1166 | if (task_cputime_zero(&sig->cputime_expires)) | |
1167 | stop_process_timers(sig); | |
1da177e4 LT |
1168 | } |
1169 | ||
1170 | /* | |
1171 | * This is called from the signal code (via do_schedule_next_timer) | |
1172 | * when the last timer signal was delivered and we have to reload the timer. | |
1173 | */ | |
1174 | void posix_cpu_timer_schedule(struct k_itimer *timer) | |
1175 | { | |
1176 | struct task_struct *p = timer->it.cpu.task; | |
1177 | union cpu_time_count now; | |
1178 | ||
1179 | if (unlikely(p == NULL)) | |
1180 | /* | |
1181 | * The task was cleaned up already, no future firings. | |
1182 | */ | |
708f430d | 1183 | goto out; |
1da177e4 LT |
1184 | |
1185 | /* | |
1186 | * Fetch the current sample and update the timer's expiry time. | |
1187 | */ | |
1188 | if (CPUCLOCK_PERTHREAD(timer->it_clock)) { | |
1189 | cpu_clock_sample(timer->it_clock, p, &now); | |
1190 | bump_cpu_timer(timer, now); | |
1191 | if (unlikely(p->exit_state)) { | |
1192 | clear_dead_task(timer, now); | |
708f430d | 1193 | goto out; |
1da177e4 LT |
1194 | } |
1195 | read_lock(&tasklist_lock); /* arm_timer needs it. */ | |
c2873937 | 1196 | spin_lock(&p->sighand->siglock); |
1da177e4 LT |
1197 | } else { |
1198 | read_lock(&tasklist_lock); | |
d30fda35 | 1199 | if (unlikely(p->sighand == NULL)) { |
1da177e4 LT |
1200 | /* |
1201 | * The process has been reaped. | |
1202 | * We can't even collect a sample any more. | |
1203 | */ | |
1204 | put_task_struct(p); | |
1205 | timer->it.cpu.task = p = NULL; | |
1206 | timer->it.cpu.expires.sched = 0; | |
708f430d | 1207 | goto out_unlock; |
1da177e4 LT |
1208 | } else if (unlikely(p->exit_state) && thread_group_empty(p)) { |
1209 | /* | |
1210 | * We've noticed that the thread is dead, but | |
1211 | * not yet reaped. Take this opportunity to | |
1212 | * drop our task ref. | |
1213 | */ | |
1214 | clear_dead_task(timer, now); | |
708f430d | 1215 | goto out_unlock; |
1da177e4 | 1216 | } |
c2873937 | 1217 | spin_lock(&p->sighand->siglock); |
3997ad31 | 1218 | cpu_timer_sample_group(timer->it_clock, p, &now); |
1da177e4 LT |
1219 | bump_cpu_timer(timer, now); |
1220 | /* Leave the tasklist_lock locked for the call below. */ | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Now re-arm for the new expiry time. | |
1225 | */ | |
c2873937 | 1226 | BUG_ON(!irqs_disabled()); |
5eb9aa64 | 1227 | arm_timer(timer); |
c2873937 | 1228 | spin_unlock(&p->sighand->siglock); |
1da177e4 | 1229 | |
708f430d | 1230 | out_unlock: |
1da177e4 | 1231 | read_unlock(&tasklist_lock); |
708f430d RM |
1232 | |
1233 | out: | |
1234 | timer->it_overrun_last = timer->it_overrun; | |
1235 | timer->it_overrun = -1; | |
1236 | ++timer->it_requeue_pending; | |
1da177e4 LT |
1237 | } |
1238 | ||
f06febc9 FM |
1239 | /** |
1240 | * task_cputime_expired - Compare two task_cputime entities. | |
1241 | * | |
1242 | * @sample: The task_cputime structure to be checked for expiration. | |
1243 | * @expires: Expiration times, against which @sample will be checked. | |
1244 | * | |
1245 | * Checks @sample against @expires to see if any field of @sample has expired. | |
1246 | * Returns true if any field of the former is greater than the corresponding | |
1247 | * field of the latter if the latter field is set. Otherwise returns false. | |
1248 | */ | |
1249 | static inline int task_cputime_expired(const struct task_cputime *sample, | |
1250 | const struct task_cputime *expires) | |
1251 | { | |
1252 | if (!cputime_eq(expires->utime, cputime_zero) && | |
1253 | cputime_ge(sample->utime, expires->utime)) | |
1254 | return 1; | |
1255 | if (!cputime_eq(expires->stime, cputime_zero) && | |
1256 | cputime_ge(cputime_add(sample->utime, sample->stime), | |
1257 | expires->stime)) | |
1258 | return 1; | |
1259 | if (expires->sum_exec_runtime != 0 && | |
1260 | sample->sum_exec_runtime >= expires->sum_exec_runtime) | |
1261 | return 1; | |
1262 | return 0; | |
1263 | } | |
1264 | ||
1265 | /** | |
1266 | * fastpath_timer_check - POSIX CPU timers fast path. | |
1267 | * | |
1268 | * @tsk: The task (thread) being checked. | |
f06febc9 | 1269 | * |
bb34d92f FM |
1270 | * Check the task and thread group timers. If both are zero (there are no |
1271 | * timers set) return false. Otherwise snapshot the task and thread group | |
1272 | * timers and compare them with the corresponding expiration times. Return | |
1273 | * true if a timer has expired, else return false. | |
f06febc9 | 1274 | */ |
bb34d92f | 1275 | static inline int fastpath_timer_check(struct task_struct *tsk) |
f06febc9 | 1276 | { |
ad133ba3 | 1277 | struct signal_struct *sig; |
bb34d92f | 1278 | |
bb34d92f FM |
1279 | if (!task_cputime_zero(&tsk->cputime_expires)) { |
1280 | struct task_cputime task_sample = { | |
1281 | .utime = tsk->utime, | |
1282 | .stime = tsk->stime, | |
1283 | .sum_exec_runtime = tsk->se.sum_exec_runtime | |
1284 | }; | |
1285 | ||
1286 | if (task_cputime_expired(&task_sample, &tsk->cputime_expires)) | |
1287 | return 1; | |
1288 | } | |
ad133ba3 ON |
1289 | |
1290 | sig = tsk->signal; | |
29f87b79 | 1291 | if (sig->cputimer.running) { |
bb34d92f FM |
1292 | struct task_cputime group_sample; |
1293 | ||
ee30a7b2 | 1294 | raw_spin_lock(&sig->cputimer.lock); |
8d1f431c | 1295 | group_sample = sig->cputimer.cputime; |
ee30a7b2 | 1296 | raw_spin_unlock(&sig->cputimer.lock); |
8d1f431c | 1297 | |
bb34d92f FM |
1298 | if (task_cputime_expired(&group_sample, &sig->cputime_expires)) |
1299 | return 1; | |
1300 | } | |
37bebc70 | 1301 | |
f55db609 | 1302 | return 0; |
f06febc9 FM |
1303 | } |
1304 | ||
1da177e4 LT |
1305 | /* |
1306 | * This is called from the timer interrupt handler. The irq handler has | |
1307 | * already updated our counts. We need to check if any timers fire now. | |
1308 | * Interrupts are disabled. | |
1309 | */ | |
1310 | void run_posix_cpu_timers(struct task_struct *tsk) | |
1311 | { | |
1312 | LIST_HEAD(firing); | |
1313 | struct k_itimer *timer, *next; | |
0bdd2ed4 | 1314 | unsigned long flags; |
1da177e4 LT |
1315 | |
1316 | BUG_ON(!irqs_disabled()); | |
1317 | ||
1da177e4 | 1318 | /* |
f06febc9 | 1319 | * The fast path checks that there are no expired thread or thread |
bb34d92f | 1320 | * group timers. If that's so, just return. |
1da177e4 | 1321 | */ |
bb34d92f | 1322 | if (!fastpath_timer_check(tsk)) |
f06febc9 | 1323 | return; |
5ce73a4a | 1324 | |
0bdd2ed4 ON |
1325 | if (!lock_task_sighand(tsk, &flags)) |
1326 | return; | |
bb34d92f FM |
1327 | /* |
1328 | * Here we take off tsk->signal->cpu_timers[N] and | |
1329 | * tsk->cpu_timers[N] all the timers that are firing, and | |
1330 | * put them on the firing list. | |
1331 | */ | |
1332 | check_thread_timers(tsk, &firing); | |
29f87b79 SG |
1333 | /* |
1334 | * If there are any active process wide timers (POSIX 1.b, itimers, | |
1335 | * RLIMIT_CPU) cputimer must be running. | |
1336 | */ | |
1337 | if (tsk->signal->cputimer.running) | |
1338 | check_process_timers(tsk, &firing); | |
1da177e4 | 1339 | |
bb34d92f FM |
1340 | /* |
1341 | * We must release these locks before taking any timer's lock. | |
1342 | * There is a potential race with timer deletion here, as the | |
1343 | * siglock now protects our private firing list. We have set | |
1344 | * the firing flag in each timer, so that a deletion attempt | |
1345 | * that gets the timer lock before we do will give it up and | |
1346 | * spin until we've taken care of that timer below. | |
1347 | */ | |
0bdd2ed4 | 1348 | unlock_task_sighand(tsk, &flags); |
1da177e4 LT |
1349 | |
1350 | /* | |
1351 | * Now that all the timers on our list have the firing flag, | |
25985edc | 1352 | * no one will touch their list entries but us. We'll take |
1da177e4 LT |
1353 | * each timer's lock before clearing its firing flag, so no |
1354 | * timer call will interfere. | |
1355 | */ | |
1356 | list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) { | |
6e85c5ba HS |
1357 | int cpu_firing; |
1358 | ||
1da177e4 LT |
1359 | spin_lock(&timer->it_lock); |
1360 | list_del_init(&timer->it.cpu.entry); | |
6e85c5ba | 1361 | cpu_firing = timer->it.cpu.firing; |
1da177e4 LT |
1362 | timer->it.cpu.firing = 0; |
1363 | /* | |
1364 | * The firing flag is -1 if we collided with a reset | |
1365 | * of the timer, which already reported this | |
1366 | * almost-firing as an overrun. So don't generate an event. | |
1367 | */ | |
6e85c5ba | 1368 | if (likely(cpu_firing >= 0)) |
1da177e4 | 1369 | cpu_timer_fire(timer); |
1da177e4 LT |
1370 | spin_unlock(&timer->it_lock); |
1371 | } | |
1372 | } | |
1373 | ||
1374 | /* | |
f55db609 | 1375 | * Set one of the process-wide special case CPU timers or RLIMIT_CPU. |
f06febc9 | 1376 | * The tsk->sighand->siglock must be held by the caller. |
1da177e4 LT |
1377 | */ |
1378 | void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx, | |
1379 | cputime_t *newval, cputime_t *oldval) | |
1380 | { | |
1381 | union cpu_time_count now; | |
1da177e4 LT |
1382 | |
1383 | BUG_ON(clock_idx == CPUCLOCK_SCHED); | |
4cd4c1b4 | 1384 | cpu_timer_sample_group(clock_idx, tsk, &now); |
1da177e4 LT |
1385 | |
1386 | if (oldval) { | |
f55db609 SG |
1387 | /* |
1388 | * We are setting itimer. The *oldval is absolute and we update | |
1389 | * it to be relative, *newval argument is relative and we update | |
1390 | * it to be absolute. | |
1391 | */ | |
1da177e4 LT |
1392 | if (!cputime_eq(*oldval, cputime_zero)) { |
1393 | if (cputime_le(*oldval, now.cpu)) { | |
1394 | /* Just about to fire. */ | |
a42548a1 | 1395 | *oldval = cputime_one_jiffy; |
1da177e4 LT |
1396 | } else { |
1397 | *oldval = cputime_sub(*oldval, now.cpu); | |
1398 | } | |
1399 | } | |
1400 | ||
1401 | if (cputime_eq(*newval, cputime_zero)) | |
1402 | return; | |
1403 | *newval = cputime_add(*newval, now.cpu); | |
1da177e4 LT |
1404 | } |
1405 | ||
1406 | /* | |
f55db609 SG |
1407 | * Update expiration cache if we are the earliest timer, or eventually |
1408 | * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire. | |
1da177e4 | 1409 | */ |
f55db609 SG |
1410 | switch (clock_idx) { |
1411 | case CPUCLOCK_PROF: | |
1412 | if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval)) | |
f06febc9 | 1413 | tsk->signal->cputime_expires.prof_exp = *newval; |
f55db609 SG |
1414 | break; |
1415 | case CPUCLOCK_VIRT: | |
1416 | if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval)) | |
f06febc9 | 1417 | tsk->signal->cputime_expires.virt_exp = *newval; |
f55db609 | 1418 | break; |
1da177e4 LT |
1419 | } |
1420 | } | |
1421 | ||
e4b76555 TA |
1422 | static int do_cpu_nanosleep(const clockid_t which_clock, int flags, |
1423 | struct timespec *rqtp, struct itimerspec *it) | |
1da177e4 | 1424 | { |
1da177e4 LT |
1425 | struct k_itimer timer; |
1426 | int error; | |
1427 | ||
1da177e4 LT |
1428 | /* |
1429 | * Set up a temporary timer and then wait for it to go off. | |
1430 | */ | |
1431 | memset(&timer, 0, sizeof timer); | |
1432 | spin_lock_init(&timer.it_lock); | |
1433 | timer.it_clock = which_clock; | |
1434 | timer.it_overrun = -1; | |
1435 | error = posix_cpu_timer_create(&timer); | |
1436 | timer.it_process = current; | |
1437 | if (!error) { | |
1da177e4 | 1438 | static struct itimerspec zero_it; |
e4b76555 TA |
1439 | |
1440 | memset(it, 0, sizeof *it); | |
1441 | it->it_value = *rqtp; | |
1da177e4 LT |
1442 | |
1443 | spin_lock_irq(&timer.it_lock); | |
e4b76555 | 1444 | error = posix_cpu_timer_set(&timer, flags, it, NULL); |
1da177e4 LT |
1445 | if (error) { |
1446 | spin_unlock_irq(&timer.it_lock); | |
1447 | return error; | |
1448 | } | |
1449 | ||
1450 | while (!signal_pending(current)) { | |
1451 | if (timer.it.cpu.expires.sched == 0) { | |
1452 | /* | |
1453 | * Our timer fired and was reset. | |
1454 | */ | |
1455 | spin_unlock_irq(&timer.it_lock); | |
1456 | return 0; | |
1457 | } | |
1458 | ||
1459 | /* | |
1460 | * Block until cpu_timer_fire (or a signal) wakes us. | |
1461 | */ | |
1462 | __set_current_state(TASK_INTERRUPTIBLE); | |
1463 | spin_unlock_irq(&timer.it_lock); | |
1464 | schedule(); | |
1465 | spin_lock_irq(&timer.it_lock); | |
1466 | } | |
1467 | ||
1468 | /* | |
1469 | * We were interrupted by a signal. | |
1470 | */ | |
1471 | sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp); | |
e4b76555 | 1472 | posix_cpu_timer_set(&timer, 0, &zero_it, it); |
1da177e4 LT |
1473 | spin_unlock_irq(&timer.it_lock); |
1474 | ||
e4b76555 | 1475 | if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) { |
1da177e4 LT |
1476 | /* |
1477 | * It actually did fire already. | |
1478 | */ | |
1479 | return 0; | |
1480 | } | |
1481 | ||
e4b76555 TA |
1482 | error = -ERESTART_RESTARTBLOCK; |
1483 | } | |
1484 | ||
1485 | return error; | |
1486 | } | |
1487 | ||
bc2c8ea4 TG |
1488 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block); |
1489 | ||
1490 | static int posix_cpu_nsleep(const clockid_t which_clock, int flags, | |
1491 | struct timespec *rqtp, struct timespec __user *rmtp) | |
e4b76555 TA |
1492 | { |
1493 | struct restart_block *restart_block = | |
3751f9f2 | 1494 | ¤t_thread_info()->restart_block; |
e4b76555 TA |
1495 | struct itimerspec it; |
1496 | int error; | |
1497 | ||
1498 | /* | |
1499 | * Diagnose required errors first. | |
1500 | */ | |
1501 | if (CPUCLOCK_PERTHREAD(which_clock) && | |
1502 | (CPUCLOCK_PID(which_clock) == 0 || | |
1503 | CPUCLOCK_PID(which_clock) == current->pid)) | |
1504 | return -EINVAL; | |
1505 | ||
1506 | error = do_cpu_nanosleep(which_clock, flags, rqtp, &it); | |
1507 | ||
1508 | if (error == -ERESTART_RESTARTBLOCK) { | |
1509 | ||
3751f9f2 | 1510 | if (flags & TIMER_ABSTIME) |
e4b76555 | 1511 | return -ERESTARTNOHAND; |
1da177e4 | 1512 | /* |
3751f9f2 TG |
1513 | * Report back to the user the time still remaining. |
1514 | */ | |
1515 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
1da177e4 LT |
1516 | return -EFAULT; |
1517 | ||
1711ef38 | 1518 | restart_block->fn = posix_cpu_nsleep_restart; |
ab8177bc | 1519 | restart_block->nanosleep.clockid = which_clock; |
3751f9f2 TG |
1520 | restart_block->nanosleep.rmtp = rmtp; |
1521 | restart_block->nanosleep.expires = timespec_to_ns(rqtp); | |
1da177e4 | 1522 | } |
1da177e4 LT |
1523 | return error; |
1524 | } | |
1525 | ||
bc2c8ea4 | 1526 | static long posix_cpu_nsleep_restart(struct restart_block *restart_block) |
1da177e4 | 1527 | { |
ab8177bc | 1528 | clockid_t which_clock = restart_block->nanosleep.clockid; |
97735f25 | 1529 | struct timespec t; |
e4b76555 TA |
1530 | struct itimerspec it; |
1531 | int error; | |
97735f25 | 1532 | |
3751f9f2 | 1533 | t = ns_to_timespec(restart_block->nanosleep.expires); |
97735f25 | 1534 | |
e4b76555 TA |
1535 | error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it); |
1536 | ||
1537 | if (error == -ERESTART_RESTARTBLOCK) { | |
3751f9f2 | 1538 | struct timespec __user *rmtp = restart_block->nanosleep.rmtp; |
e4b76555 | 1539 | /* |
3751f9f2 TG |
1540 | * Report back to the user the time still remaining. |
1541 | */ | |
1542 | if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp)) | |
e4b76555 TA |
1543 | return -EFAULT; |
1544 | ||
3751f9f2 | 1545 | restart_block->nanosleep.expires = timespec_to_ns(&t); |
e4b76555 TA |
1546 | } |
1547 | return error; | |
1548 | ||
1da177e4 LT |
1549 | } |
1550 | ||
1da177e4 LT |
1551 | #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED) |
1552 | #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED) | |
1553 | ||
a924b04d TG |
1554 | static int process_cpu_clock_getres(const clockid_t which_clock, |
1555 | struct timespec *tp) | |
1da177e4 LT |
1556 | { |
1557 | return posix_cpu_clock_getres(PROCESS_CLOCK, tp); | |
1558 | } | |
a924b04d TG |
1559 | static int process_cpu_clock_get(const clockid_t which_clock, |
1560 | struct timespec *tp) | |
1da177e4 LT |
1561 | { |
1562 | return posix_cpu_clock_get(PROCESS_CLOCK, tp); | |
1563 | } | |
1564 | static int process_cpu_timer_create(struct k_itimer *timer) | |
1565 | { | |
1566 | timer->it_clock = PROCESS_CLOCK; | |
1567 | return posix_cpu_timer_create(timer); | |
1568 | } | |
a924b04d | 1569 | static int process_cpu_nsleep(const clockid_t which_clock, int flags, |
97735f25 TG |
1570 | struct timespec *rqtp, |
1571 | struct timespec __user *rmtp) | |
1da177e4 | 1572 | { |
97735f25 | 1573 | return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp); |
1da177e4 | 1574 | } |
1711ef38 TA |
1575 | static long process_cpu_nsleep_restart(struct restart_block *restart_block) |
1576 | { | |
1577 | return -EINVAL; | |
1578 | } | |
a924b04d TG |
1579 | static int thread_cpu_clock_getres(const clockid_t which_clock, |
1580 | struct timespec *tp) | |
1da177e4 LT |
1581 | { |
1582 | return posix_cpu_clock_getres(THREAD_CLOCK, tp); | |
1583 | } | |
a924b04d TG |
1584 | static int thread_cpu_clock_get(const clockid_t which_clock, |
1585 | struct timespec *tp) | |
1da177e4 LT |
1586 | { |
1587 | return posix_cpu_clock_get(THREAD_CLOCK, tp); | |
1588 | } | |
1589 | static int thread_cpu_timer_create(struct k_itimer *timer) | |
1590 | { | |
1591 | timer->it_clock = THREAD_CLOCK; | |
1592 | return posix_cpu_timer_create(timer); | |
1593 | } | |
1da177e4 | 1594 | |
1976945e TG |
1595 | struct k_clock clock_posix_cpu = { |
1596 | .clock_getres = posix_cpu_clock_getres, | |
1597 | .clock_set = posix_cpu_clock_set, | |
1598 | .clock_get = posix_cpu_clock_get, | |
1599 | .timer_create = posix_cpu_timer_create, | |
1600 | .nsleep = posix_cpu_nsleep, | |
1601 | .nsleep_restart = posix_cpu_nsleep_restart, | |
1602 | .timer_set = posix_cpu_timer_set, | |
1603 | .timer_del = posix_cpu_timer_del, | |
1604 | .timer_get = posix_cpu_timer_get, | |
1605 | }; | |
1606 | ||
1da177e4 LT |
1607 | static __init int init_posix_cpu_timers(void) |
1608 | { | |
1609 | struct k_clock process = { | |
2fd1f040 TG |
1610 | .clock_getres = process_cpu_clock_getres, |
1611 | .clock_get = process_cpu_clock_get, | |
2fd1f040 TG |
1612 | .timer_create = process_cpu_timer_create, |
1613 | .nsleep = process_cpu_nsleep, | |
1614 | .nsleep_restart = process_cpu_nsleep_restart, | |
1da177e4 LT |
1615 | }; |
1616 | struct k_clock thread = { | |
2fd1f040 TG |
1617 | .clock_getres = thread_cpu_clock_getres, |
1618 | .clock_get = thread_cpu_clock_get, | |
2fd1f040 | 1619 | .timer_create = thread_cpu_timer_create, |
1da177e4 | 1620 | }; |
8356b5f9 | 1621 | struct timespec ts; |
1da177e4 | 1622 | |
52708737 TG |
1623 | posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process); |
1624 | posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread); | |
1da177e4 | 1625 | |
a42548a1 | 1626 | cputime_to_timespec(cputime_one_jiffy, &ts); |
8356b5f9 SG |
1627 | onecputick = ts.tv_nsec; |
1628 | WARN_ON(ts.tv_sec != 0); | |
1629 | ||
1da177e4 LT |
1630 | return 0; |
1631 | } | |
1632 | __initcall(init_posix_cpu_timers); |