]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/posix-timers.c
posix-timers: Convert clock_settime to clockid_to_kclock()
[mirror_ubuntu-zesty-kernel.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
65da528d
TG
84/*
85 * parisc wants ENOTSUP instead of EOPNOTSUPP
86 */
87#ifndef ENOTSUP
88# define ENANOSLEEP_NOTSUP EOPNOTSUPP
89#else
90# define ENANOSLEEP_NOTSUP ENOTSUP
91#endif
1da177e4
LT
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 127 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 143
1da177e4 144/*
becf8b5d 145 * These ones are defined below.
1da177e4 146 */
becf8b5d
TG
147static int common_nsleep(const clockid_t, int flags, struct timespec *t,
148 struct timespec __user *rmtp);
149static void common_timer_get(struct k_itimer *, struct itimerspec *);
150static int common_timer_set(struct k_itimer *, int,
151 struct itimerspec *, struct itimerspec *);
152static int common_timer_del(struct k_itimer *timer);
1da177e4 153
c9cb2e3d 154static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 155
20f33a03
NK
156static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
157
158#define lock_timer(tid, flags) \
159({ struct k_itimer *__timr; \
160 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
161 __timr; \
162})
1da177e4
LT
163
164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
165{
166 spin_unlock_irqrestore(&timr->it_lock, flags);
167}
168
169/*
170 * Call the k_clock hook function if non-null, or the default function.
171 */
172#define CLOCK_DISPATCH(clock, call, arglist) \
173 ((clock) < 0 ? posix_cpu_##call arglist : \
174 (posix_clocks[clock].call != NULL \
175 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
176
177/*
178 * Default clock hook functions when the struct k_clock passed
179 * to register_posix_clock leaves a function pointer null.
180 *
181 * The function common_CALL is the default implementation for
182 * the function pointer CALL in struct k_clock.
183 */
184
a924b04d 185static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
186 struct timespec *tp)
187{
188 tp->tv_sec = 0;
189 tp->tv_nsec = posix_clocks[which_clock].res;
190 return 0;
191}
192
becf8b5d
TG
193/*
194 * Get real time for posix timers
195 */
196static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 197{
becf8b5d 198 ktime_get_real_ts(tp);
1da177e4
LT
199 return 0;
200}
201
858119e1 202static int common_timer_create(struct k_itimer *new_timer)
1da177e4 203{
7978672c 204 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
205 return 0;
206}
207
3d44cc3e
TG
208static int no_timer_create(struct k_itimer *new_timer)
209{
210 return -EOPNOTSUPP;
211}
212
1da177e4 213/*
becf8b5d 214 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 215 */
a924b04d 216static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
217{
218 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
219 return 0;
220 if ((unsigned) which_clock >= MAX_CLOCKS)
221 return 1;
222 if (posix_clocks[which_clock].clock_getres != NULL)
223 return 0;
1da177e4
LT
224 if (posix_clocks[which_clock].res != 0)
225 return 0;
1da177e4
LT
226 return 1;
227}
228
26f9a479
TG
229/* Set clock_realtime */
230static int posix_clock_realtime_set(const clockid_t which_clock,
231 const struct timespec *tp)
232{
233 return do_sys_settimeofday(tp, NULL);
234}
235
becf8b5d
TG
236/*
237 * Get monotonic time for posix timers
238 */
239static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
240{
241 ktime_get_ts(tp);
242 return 0;
243}
1da177e4 244
2d42244a
JS
245/*
246 * Get monotonic time for posix timers
247 */
248static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
249{
250 getrawmonotonic(tp);
251 return 0;
252}
253
da15cfda
JS
254
255static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
256{
257 *tp = current_kernel_time();
258 return 0;
259}
260
261static int posix_get_monotonic_coarse(clockid_t which_clock,
262 struct timespec *tp)
263{
264 *tp = get_monotonic_coarse();
265 return 0;
266}
267
6622e670 268static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
269{
270 *tp = ktime_to_timespec(KTIME_LOW_RES);
271 return 0;
272}
1da177e4
LT
273/*
274 * Initialize everything, well, just everything in Posix clocks/timers ;)
275 */
276static __init int init_posix_timers(void)
277{
becf8b5d 278 struct k_clock clock_realtime = {
2fd1f040 279 .clock_getres = hrtimer_get_res,
26f9a479 280 .clock_set = posix_clock_realtime_set,
a5cd2880 281 .nsleep = common_nsleep,
59bd5bc2 282 .nsleep_restart = hrtimer_nanosleep_restart,
1da177e4 283 };
becf8b5d 284 struct k_clock clock_monotonic = {
2fd1f040
TG
285 .clock_getres = hrtimer_get_res,
286 .clock_get = posix_ktime_get_ts,
a5cd2880 287 .nsleep = common_nsleep,
59bd5bc2 288 .nsleep_restart = hrtimer_nanosleep_restart,
1da177e4 289 };
2d42244a 290 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
291 .clock_getres = hrtimer_get_res,
292 .clock_get = posix_get_monotonic_raw,
2fd1f040 293 .timer_create = no_timer_create,
2d42244a 294 };
da15cfda 295 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
296 .clock_getres = posix_get_coarse_res,
297 .clock_get = posix_get_realtime_coarse,
2fd1f040 298 .timer_create = no_timer_create,
da15cfda
JS
299 };
300 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
301 .clock_getres = posix_get_coarse_res,
302 .clock_get = posix_get_monotonic_coarse,
2fd1f040 303 .timer_create = no_timer_create,
da15cfda 304 };
1da177e4
LT
305
306 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
307 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 308 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda
JS
309 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
310 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
311
312 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
313 sizeof (struct k_itimer), 0, SLAB_PANIC,
314 NULL);
1da177e4
LT
315 idr_init(&posix_timers_id);
316 return 0;
317}
318
319__initcall(init_posix_timers);
320
1da177e4
LT
321static void schedule_next_timer(struct k_itimer *timr)
322{
44f21475
RZ
323 struct hrtimer *timer = &timr->it.real.timer;
324
becf8b5d 325 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
326 return;
327
4d672e7a
DL
328 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
329 timer->base->get_time(),
330 timr->it.real.interval);
44f21475 331
1da177e4
LT
332 timr->it_overrun_last = timr->it_overrun;
333 timr->it_overrun = -1;
334 ++timr->it_requeue_pending;
44f21475 335 hrtimer_restart(timer);
1da177e4
LT
336}
337
338/*
339 * This function is exported for use by the signal deliver code. It is
340 * called just prior to the info block being released and passes that
341 * block to us. It's function is to update the overrun entry AND to
342 * restart the timer. It should only be called if the timer is to be
343 * restarted (i.e. we have flagged this in the sys_private entry of the
344 * info block).
345 *
346 * To protect aginst the timer going away while the interrupt is queued,
347 * we require that the it_requeue_pending flag be set.
348 */
349void do_schedule_next_timer(struct siginfo *info)
350{
351 struct k_itimer *timr;
352 unsigned long flags;
353
354 timr = lock_timer(info->si_tid, &flags);
355
becf8b5d
TG
356 if (timr && timr->it_requeue_pending == info->si_sys_private) {
357 if (timr->it_clock < 0)
358 posix_cpu_timer_schedule(timr);
359 else
360 schedule_next_timer(timr);
1da177e4 361
54da1174 362 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
363 }
364
b6557fbc
TG
365 if (timr)
366 unlock_timer(timr, flags);
1da177e4
LT
367}
368
ba661292 369int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 370{
27af4245
ON
371 struct task_struct *task;
372 int shared, ret = -1;
ba661292
ON
373 /*
374 * FIXME: if ->sigq is queued we can race with
375 * dequeue_signal()->do_schedule_next_timer().
376 *
377 * If dequeue_signal() sees the "right" value of
378 * si_sys_private it calls do_schedule_next_timer().
379 * We re-queue ->sigq and drop ->it_lock().
380 * do_schedule_next_timer() locks the timer
381 * and re-schedules it while ->sigq is pending.
382 * Not really bad, but not that we want.
383 */
1da177e4 384 timr->sigq->info.si_sys_private = si_private;
1da177e4 385
27af4245
ON
386 rcu_read_lock();
387 task = pid_task(timr->it_pid, PIDTYPE_PID);
388 if (task) {
389 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
390 ret = send_sigqueue(timr->sigq, task, shared);
391 }
392 rcu_read_unlock();
4aa73611
ON
393 /* If we failed to send the signal the timer stops. */
394 return ret > 0;
1da177e4
LT
395}
396EXPORT_SYMBOL_GPL(posix_timer_event);
397
398/*
399 * This function gets called when a POSIX.1b interval timer expires. It
400 * is used as a callback from the kernel internal timer. The
401 * run_timer_list code ALWAYS calls with interrupts on.
402
403 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
404 */
c9cb2e3d 405static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 406{
05cfb614 407 struct k_itimer *timr;
1da177e4 408 unsigned long flags;
becf8b5d 409 int si_private = 0;
c9cb2e3d 410 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 411
05cfb614 412 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 413 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 414
becf8b5d
TG
415 if (timr->it.real.interval.tv64 != 0)
416 si_private = ++timr->it_requeue_pending;
1da177e4 417
becf8b5d
TG
418 if (posix_timer_event(timr, si_private)) {
419 /*
420 * signal was not sent because of sig_ignor
421 * we will not get a call back to restart it AND
422 * it should be restarted.
423 */
424 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
425 ktime_t now = hrtimer_cb_get_time(timer);
426
427 /*
428 * FIXME: What we really want, is to stop this
429 * timer completely and restart it in case the
430 * SIG_IGN is removed. This is a non trivial
431 * change which involves sighand locking
432 * (sigh !), which we don't want to do late in
433 * the release cycle.
434 *
435 * For now we just let timers with an interval
436 * less than a jiffie expire every jiffie to
437 * avoid softirq starvation in case of SIG_IGN
438 * and a very small interval, which would put
439 * the timer right back on the softirq pending
440 * list. By moving now ahead of time we trick
441 * hrtimer_forward() to expire the timer
442 * later, while we still maintain the overrun
443 * accuracy, but have some inconsistency in
444 * the timer_gettime() case. This is at least
445 * better than a starved softirq. A more
446 * complex fix which solves also another related
447 * inconsistency is already in the pipeline.
448 */
449#ifdef CONFIG_HIGH_RES_TIMERS
450 {
451 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
452
453 if (timr->it.real.interval.tv64 < kj.tv64)
454 now = ktime_add(now, kj);
455 }
456#endif
4d672e7a 457 timr->it_overrun += (unsigned int)
58229a18 458 hrtimer_forward(timer, now,
becf8b5d
TG
459 timr->it.real.interval);
460 ret = HRTIMER_RESTART;
a0a0c28c 461 ++timr->it_requeue_pending;
1da177e4 462 }
1da177e4 463 }
1da177e4 464
becf8b5d
TG
465 unlock_timer(timr, flags);
466 return ret;
467}
1da177e4 468
27af4245 469static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
470{
471 struct task_struct *rtn = current->group_leader;
472
473 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 474 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 475 !same_thread_group(rtn, current) ||
1da177e4
LT
476 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
477 return NULL;
478
479 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
480 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
481 return NULL;
482
27af4245 483 return task_pid(rtn);
1da177e4
LT
484}
485
a924b04d 486void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
487{
488 if ((unsigned) clock_id >= MAX_CLOCKS) {
489 printk("POSIX clock register failed for clock_id %d\n",
490 clock_id);
491 return;
492 }
493
494 posix_clocks[clock_id] = *new_clock;
495}
496EXPORT_SYMBOL_GPL(register_posix_clock);
497
498static struct k_itimer * alloc_posix_timer(void)
499{
500 struct k_itimer *tmr;
c3762229 501 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
502 if (!tmr)
503 return tmr;
1da177e4
LT
504 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
505 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 506 return NULL;
1da177e4 507 }
ba661292 508 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
509 return tmr;
510}
511
512#define IT_ID_SET 1
513#define IT_ID_NOT_SET 0
514static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
515{
516 if (it_id_set) {
517 unsigned long flags;
518 spin_lock_irqsave(&idr_lock, flags);
519 idr_remove(&posix_timers_id, tmr->it_id);
520 spin_unlock_irqrestore(&idr_lock, flags);
521 }
89992102 522 put_pid(tmr->it_pid);
1da177e4 523 sigqueue_free(tmr->sigq);
1da177e4
LT
524 kmem_cache_free(posix_timers_cache, tmr);
525}
526
cc785ac2
TG
527static struct k_clock *clockid_to_kclock(const clockid_t id)
528{
529 if (id < 0)
530 return &clock_posix_cpu;
531
532 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
533 return NULL;
534 return &posix_clocks[id];
535}
536
1da177e4
LT
537/* Create a POSIX.1b interval timer. */
538
362e9c07
HC
539SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
540 struct sigevent __user *, timer_event_spec,
541 timer_t __user *, created_timer_id)
1da177e4 542{
2cd499e3 543 struct k_itimer *new_timer;
ef864c95 544 int error, new_timer_id;
1da177e4
LT
545 sigevent_t event;
546 int it_id_set = IT_ID_NOT_SET;
547
548 if (invalid_clockid(which_clock))
549 return -EINVAL;
550
551 new_timer = alloc_posix_timer();
552 if (unlikely(!new_timer))
553 return -EAGAIN;
554
555 spin_lock_init(&new_timer->it_lock);
556 retry:
557 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
558 error = -EAGAIN;
559 goto out;
560 }
561 spin_lock_irq(&idr_lock);
5a51b713 562 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 563 spin_unlock_irq(&idr_lock);
ef864c95
ON
564 if (error) {
565 if (error == -EAGAIN)
566 goto retry;
1da177e4 567 /*
0b0a3e7b 568 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
569 * full (proper POSIX return value for this)
570 */
571 error = -EAGAIN;
572 goto out;
573 }
574
575 it_id_set = IT_ID_SET;
576 new_timer->it_id = (timer_t) new_timer_id;
577 new_timer->it_clock = which_clock;
578 new_timer->it_overrun = -1;
1da177e4 579
1da177e4
LT
580 if (timer_event_spec) {
581 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
582 error = -EFAULT;
583 goto out;
584 }
36b2f046 585 rcu_read_lock();
89992102 586 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 587 rcu_read_unlock();
89992102 588 if (!new_timer->it_pid) {
1da177e4
LT
589 error = -EINVAL;
590 goto out;
591 }
592 } else {
5a9fa730
ON
593 event.sigev_notify = SIGEV_SIGNAL;
594 event.sigev_signo = SIGALRM;
595 event.sigev_value.sival_int = new_timer->it_id;
89992102 596 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
597 }
598
5a9fa730
ON
599 new_timer->it_sigev_notify = event.sigev_notify;
600 new_timer->sigq->info.si_signo = event.sigev_signo;
601 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 602 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 603 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 604
2b08de00
AV
605 if (copy_to_user(created_timer_id,
606 &new_timer_id, sizeof (new_timer_id))) {
607 error = -EFAULT;
608 goto out;
609 }
610
45e0fffc
AV
611 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
612 if (error)
613 goto out;
614
36b2f046 615 spin_lock_irq(&current->sighand->siglock);
27af4245 616 new_timer->it_signal = current->signal;
36b2f046
ON
617 list_add(&new_timer->list, &current->signal->posix_timers);
618 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
619
620 return 0;
1da177e4
LT
621 /*
622 * In the case of the timer belonging to another task, after
623 * the task is unlocked, the timer is owned by the other task
624 * and may cease to exist at any time. Don't use or modify
625 * new_timer after the unlock call.
626 */
1da177e4 627out:
ef864c95 628 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
629 return error;
630}
631
1da177e4
LT
632/*
633 * Locking issues: We need to protect the result of the id look up until
634 * we get the timer locked down so it is not deleted under us. The
635 * removal is done under the idr spinlock so we use that here to bridge
636 * the find to the timer lock. To avoid a dead lock, the timer id MUST
637 * be release with out holding the timer lock.
638 */
20f33a03 639static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
640{
641 struct k_itimer *timr;
642 /*
643 * Watch out here. We do a irqsave on the idr_lock and pass the
644 * flags part over to the timer lock. Must not let interrupts in
645 * while we are moving the lock.
646 */
1da177e4 647 spin_lock_irqsave(&idr_lock, *flags);
31d92845 648 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
649 if (timr) {
650 spin_lock(&timr->it_lock);
89992102 651 if (timr->it_signal == current->signal) {
179394af 652 spin_unlock(&idr_lock);
31d92845
ON
653 return timr;
654 }
655 spin_unlock(&timr->it_lock);
656 }
657 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 658
31d92845 659 return NULL;
1da177e4
LT
660}
661
662/*
663 * Get the time remaining on a POSIX.1b interval timer. This function
664 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
665 * mess with irq.
666 *
667 * We have a couple of messes to clean up here. First there is the case
668 * of a timer that has a requeue pending. These timers should appear to
669 * be in the timer list with an expiry as if we were to requeue them
670 * now.
671 *
672 * The second issue is the SIGEV_NONE timer which may be active but is
673 * not really ever put in the timer list (to save system resources).
674 * This timer may be expired, and if so, we will do it here. Otherwise
675 * it is the same as a requeue pending timer WRT to what we should
676 * report.
677 */
678static void
679common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
680{
3b98a532 681 ktime_t now, remaining, iv;
becf8b5d 682 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 683
becf8b5d 684 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 685
3b98a532
RZ
686 iv = timr->it.real.interval;
687
becf8b5d 688 /* interval timer ? */
3b98a532
RZ
689 if (iv.tv64)
690 cur_setting->it_interval = ktime_to_timespec(iv);
691 else if (!hrtimer_active(timer) &&
692 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 693 return;
3b98a532
RZ
694
695 now = timer->base->get_time();
696
becf8b5d 697 /*
3b98a532
RZ
698 * When a requeue is pending or this is a SIGEV_NONE
699 * timer move the expiry time forward by intervals, so
700 * expiry is > now.
becf8b5d 701 */
3b98a532
RZ
702 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
703 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 704 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 705
cc584b21 706 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 707 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
708 if (remaining.tv64 <= 0) {
709 /*
710 * A single shot SIGEV_NONE timer must return 0, when
711 * it is expired !
712 */
713 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
714 cur_setting->it_value.tv_nsec = 1;
715 } else
becf8b5d 716 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
717}
718
719/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
720SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
721 struct itimerspec __user *, setting)
1da177e4
LT
722{
723 struct k_itimer *timr;
724 struct itimerspec cur_setting;
725 unsigned long flags;
726
727 timr = lock_timer(timer_id, &flags);
728 if (!timr)
729 return -EINVAL;
730
731 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
732
733 unlock_timer(timr, flags);
734
735 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
736 return -EFAULT;
737
738 return 0;
739}
becf8b5d 740
1da177e4
LT
741/*
742 * Get the number of overruns of a POSIX.1b interval timer. This is to
743 * be the overrun of the timer last delivered. At the same time we are
744 * accumulating overruns on the next timer. The overrun is frozen when
745 * the signal is delivered, either at the notify time (if the info block
746 * is not queued) or at the actual delivery time (as we are informed by
747 * the call back to do_schedule_next_timer(). So all we need to do is
748 * to pick up the frozen overrun.
749 */
362e9c07 750SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
751{
752 struct k_itimer *timr;
753 int overrun;
5ba25331 754 unsigned long flags;
1da177e4
LT
755
756 timr = lock_timer(timer_id, &flags);
757 if (!timr)
758 return -EINVAL;
759
760 overrun = timr->it_overrun_last;
761 unlock_timer(timr, flags);
762
763 return overrun;
764}
1da177e4
LT
765
766/* Set a POSIX.1b interval timer. */
767/* timr->it_lock is taken. */
858119e1 768static int
1da177e4
LT
769common_timer_set(struct k_itimer *timr, int flags,
770 struct itimerspec *new_setting, struct itimerspec *old_setting)
771{
becf8b5d 772 struct hrtimer *timer = &timr->it.real.timer;
7978672c 773 enum hrtimer_mode mode;
1da177e4
LT
774
775 if (old_setting)
776 common_timer_get(timr, old_setting);
777
778 /* disable the timer */
becf8b5d 779 timr->it.real.interval.tv64 = 0;
1da177e4
LT
780 /*
781 * careful here. If smp we could be in the "fire" routine which will
782 * be spinning as we hold the lock. But this is ONLY an SMP issue.
783 */
becf8b5d 784 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 785 return TIMER_RETRY;
1da177e4
LT
786
787 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
788 ~REQUEUE_PENDING;
789 timr->it_overrun_last = 0;
1da177e4 790
becf8b5d
TG
791 /* switch off the timer when it_value is zero */
792 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
793 return 0;
1da177e4 794
c9cb2e3d 795 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 796 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 797 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 798
cc584b21 799 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
800
801 /* Convert interval */
802 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
803
804 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
805 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
806 /* Setup correct expiry time for relative timers */
5a7780e7 807 if (mode == HRTIMER_MODE_REL) {
cc584b21 808 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 809 }
becf8b5d 810 return 0;
952bbc87 811 }
becf8b5d 812
cc584b21 813 hrtimer_start_expires(timer, mode);
1da177e4
LT
814 return 0;
815}
816
817/* Set a POSIX.1b interval timer */
362e9c07
HC
818SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
819 const struct itimerspec __user *, new_setting,
820 struct itimerspec __user *, old_setting)
1da177e4
LT
821{
822 struct k_itimer *timr;
823 struct itimerspec new_spec, old_spec;
824 int error = 0;
5ba25331 825 unsigned long flag;
1da177e4
LT
826 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
827
828 if (!new_setting)
829 return -EINVAL;
830
831 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
832 return -EFAULT;
833
becf8b5d
TG
834 if (!timespec_valid(&new_spec.it_interval) ||
835 !timespec_valid(&new_spec.it_value))
1da177e4
LT
836 return -EINVAL;
837retry:
838 timr = lock_timer(timer_id, &flag);
839 if (!timr)
840 return -EINVAL;
841
842 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
843 (timr, flags, &new_spec, rtn));
844
845 unlock_timer(timr, flag);
846 if (error == TIMER_RETRY) {
847 rtn = NULL; // We already got the old time...
848 goto retry;
849 }
850
becf8b5d
TG
851 if (old_setting && !error &&
852 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
853 error = -EFAULT;
854
855 return error;
856}
857
858static inline int common_timer_del(struct k_itimer *timer)
859{
becf8b5d 860 timer->it.real.interval.tv64 = 0;
f972be33 861
becf8b5d 862 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 863 return TIMER_RETRY;
1da177e4
LT
864 return 0;
865}
866
867static inline int timer_delete_hook(struct k_itimer *timer)
868{
869 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
870}
871
872/* Delete a POSIX.1b interval timer. */
362e9c07 873SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
874{
875 struct k_itimer *timer;
5ba25331 876 unsigned long flags;
1da177e4 877
1da177e4 878retry_delete:
1da177e4
LT
879 timer = lock_timer(timer_id, &flags);
880 if (!timer)
881 return -EINVAL;
882
becf8b5d 883 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
884 unlock_timer(timer, flags);
885 goto retry_delete;
886 }
becf8b5d 887
1da177e4
LT
888 spin_lock(&current->sighand->siglock);
889 list_del(&timer->list);
890 spin_unlock(&current->sighand->siglock);
891 /*
892 * This keeps any tasks waiting on the spin lock from thinking
893 * they got something (see the lock code above).
894 */
89992102 895 timer->it_signal = NULL;
4b7a1304 896
1da177e4
LT
897 unlock_timer(timer, flags);
898 release_posix_timer(timer, IT_ID_SET);
899 return 0;
900}
becf8b5d 901
1da177e4
LT
902/*
903 * return timer owned by the process, used by exit_itimers
904 */
858119e1 905static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
906{
907 unsigned long flags;
908
1da177e4 909retry_delete:
1da177e4
LT
910 spin_lock_irqsave(&timer->it_lock, flags);
911
becf8b5d 912 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
913 unlock_timer(timer, flags);
914 goto retry_delete;
915 }
1da177e4
LT
916 list_del(&timer->list);
917 /*
918 * This keeps any tasks waiting on the spin lock from thinking
919 * they got something (see the lock code above).
920 */
89992102 921 timer->it_signal = NULL;
4b7a1304 922
1da177e4
LT
923 unlock_timer(timer, flags);
924 release_posix_timer(timer, IT_ID_SET);
925}
926
927/*
25f407f0 928 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
929 * references to the shared signal_struct.
930 */
931void exit_itimers(struct signal_struct *sig)
932{
933 struct k_itimer *tmr;
934
935 while (!list_empty(&sig->posix_timers)) {
936 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
937 itimer_delete(tmr);
938 }
939}
940
362e9c07
HC
941SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
942 const struct timespec __user *, tp)
1da177e4 943{
26f9a479 944 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
945 struct timespec new_tp;
946
26f9a479 947 if (!kc || !kc->clock_set)
1da177e4 948 return -EINVAL;
26f9a479 949
1da177e4
LT
950 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
951 return -EFAULT;
952
26f9a479 953 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
954}
955
362e9c07
HC
956SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
957 struct timespec __user *,tp)
1da177e4
LT
958{
959 struct timespec kernel_tp;
960 int error;
961
962 if (invalid_clockid(which_clock))
963 return -EINVAL;
964 error = CLOCK_DISPATCH(which_clock, clock_get,
965 (which_clock, &kernel_tp));
966 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
967 error = -EFAULT;
968
969 return error;
970
971}
972
362e9c07
HC
973SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
974 struct timespec __user *, tp)
1da177e4
LT
975{
976 struct timespec rtn_tp;
977 int error;
978
979 if (invalid_clockid(which_clock))
980 return -EINVAL;
981
982 error = CLOCK_DISPATCH(which_clock, clock_getres,
983 (which_clock, &rtn_tp));
984
985 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
986 error = -EFAULT;
987 }
988
989 return error;
990}
991
97735f25
TG
992/*
993 * nanosleep for monotonic and realtime clocks
994 */
995static int common_nsleep(const clockid_t which_clock, int flags,
996 struct timespec *tsave, struct timespec __user *rmtp)
997{
080344b9
ON
998 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
999 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1000 which_clock);
97735f25 1001}
1da177e4 1002
362e9c07
HC
1003SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1004 const struct timespec __user *, rqtp,
1005 struct timespec __user *, rmtp)
1da177e4 1006{
a5cd2880 1007 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 1008 struct timespec t;
1da177e4 1009
a5cd2880 1010 if (!kc)
1da177e4 1011 return -EINVAL;
a5cd2880
TG
1012 if (!kc->nsleep)
1013 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1014
1015 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1016 return -EFAULT;
1017
5f82b2b7 1018 if (!timespec_valid(&t))
1da177e4
LT
1019 return -EINVAL;
1020
a5cd2880 1021 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1022}
1711ef38 1023
1711ef38
TA
1024/*
1025 * This will restart clock_nanosleep. This is required only by
1026 * compat_clock_nanosleep_restart for now.
1027 */
59bd5bc2 1028long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38 1029{
3751f9f2 1030 clockid_t which_clock = restart_block->nanosleep.index;
59bd5bc2
TG
1031 struct k_clock *kc = clockid_to_kclock(which_clock);
1032
1033 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1034 return -EINVAL;
1711ef38 1035
59bd5bc2 1036 return kc->nsleep_restart(restart_block);
1711ef38 1037}