]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/posix-timers.c
posix-timers: Make clock_getres and clock_get mandatory
[mirror_ubuntu-zesty-kernel.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
65da528d
TG
84/*
85 * parisc wants ENOTSUP instead of EOPNOTSUPP
86 */
87#ifndef ENOTSUP
88# define ENANOSLEEP_NOTSUP EOPNOTSUPP
89#else
90# define ENANOSLEEP_NOTSUP ENOTSUP
91#endif
1da177e4
LT
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 127 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 143
1da177e4 144/*
becf8b5d 145 * These ones are defined below.
1da177e4 146 */
becf8b5d
TG
147static int common_nsleep(const clockid_t, int flags, struct timespec *t,
148 struct timespec __user *rmtp);
149static void common_timer_get(struct k_itimer *, struct itimerspec *);
150static int common_timer_set(struct k_itimer *, int,
151 struct itimerspec *, struct itimerspec *);
152static int common_timer_del(struct k_itimer *timer);
1da177e4 153
c9cb2e3d 154static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 155
20f33a03
NK
156static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
157
158#define lock_timer(tid, flags) \
159({ struct k_itimer *__timr; \
160 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
161 __timr; \
162})
1da177e4
LT
163
164static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
165{
166 spin_unlock_irqrestore(&timr->it_lock, flags);
167}
168
169/*
170 * Call the k_clock hook function if non-null, or the default function.
171 */
172#define CLOCK_DISPATCH(clock, call, arglist) \
173 ((clock) < 0 ? posix_cpu_##call arglist : \
174 (posix_clocks[clock].call != NULL \
175 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
176
177/*
178 * Default clock hook functions when the struct k_clock passed
179 * to register_posix_clock leaves a function pointer null.
180 *
181 * The function common_CALL is the default implementation for
182 * the function pointer CALL in struct k_clock.
183 */
184
a924b04d 185static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
186 struct timespec *tp)
187{
188 tp->tv_sec = 0;
189 tp->tv_nsec = posix_clocks[which_clock].res;
190 return 0;
191}
192
858119e1 193static int common_timer_create(struct k_itimer *new_timer)
1da177e4 194{
7978672c 195 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
196 return 0;
197}
198
3d44cc3e
TG
199static int no_timer_create(struct k_itimer *new_timer)
200{
201 return -EOPNOTSUPP;
202}
203
1da177e4 204/*
becf8b5d 205 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 206 */
a924b04d 207static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
208{
209 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
210 return 0;
211 if ((unsigned) which_clock >= MAX_CLOCKS)
212 return 1;
213 if (posix_clocks[which_clock].clock_getres != NULL)
214 return 0;
1da177e4
LT
215 if (posix_clocks[which_clock].res != 0)
216 return 0;
1da177e4
LT
217 return 1;
218}
219
42285777
TG
220/* Get clock_realtime */
221static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
222{
223 ktime_get_real_ts(tp);
224 return 0;
225}
226
26f9a479
TG
227/* Set clock_realtime */
228static int posix_clock_realtime_set(const clockid_t which_clock,
229 const struct timespec *tp)
230{
231 return do_sys_settimeofday(tp, NULL);
232}
233
becf8b5d
TG
234/*
235 * Get monotonic time for posix timers
236 */
237static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
238{
239 ktime_get_ts(tp);
240 return 0;
241}
1da177e4 242
2d42244a
JS
243/*
244 * Get monotonic time for posix timers
245 */
246static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
247{
248 getrawmonotonic(tp);
249 return 0;
250}
251
da15cfda
JS
252
253static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
254{
255 *tp = current_kernel_time();
256 return 0;
257}
258
259static int posix_get_monotonic_coarse(clockid_t which_clock,
260 struct timespec *tp)
261{
262 *tp = get_monotonic_coarse();
263 return 0;
264}
265
6622e670 266static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
267{
268 *tp = ktime_to_timespec(KTIME_LOW_RES);
269 return 0;
270}
1da177e4
LT
271/*
272 * Initialize everything, well, just everything in Posix clocks/timers ;)
273 */
274static __init int init_posix_timers(void)
275{
becf8b5d 276 struct k_clock clock_realtime = {
2fd1f040 277 .clock_getres = hrtimer_get_res,
42285777 278 .clock_get = posix_clock_realtime_get,
26f9a479 279 .clock_set = posix_clock_realtime_set,
a5cd2880 280 .nsleep = common_nsleep,
59bd5bc2 281 .nsleep_restart = hrtimer_nanosleep_restart,
1da177e4 282 };
becf8b5d 283 struct k_clock clock_monotonic = {
2fd1f040
TG
284 .clock_getres = hrtimer_get_res,
285 .clock_get = posix_ktime_get_ts,
a5cd2880 286 .nsleep = common_nsleep,
59bd5bc2 287 .nsleep_restart = hrtimer_nanosleep_restart,
1da177e4 288 };
2d42244a 289 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
290 .clock_getres = hrtimer_get_res,
291 .clock_get = posix_get_monotonic_raw,
2fd1f040 292 .timer_create = no_timer_create,
2d42244a 293 };
da15cfda 294 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
295 .clock_getres = posix_get_coarse_res,
296 .clock_get = posix_get_realtime_coarse,
2fd1f040 297 .timer_create = no_timer_create,
da15cfda
JS
298 };
299 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
300 .clock_getres = posix_get_coarse_res,
301 .clock_get = posix_get_monotonic_coarse,
2fd1f040 302 .timer_create = no_timer_create,
da15cfda 303 };
1da177e4
LT
304
305 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
306 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 307 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda
JS
308 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
309 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
310
311 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
312 sizeof (struct k_itimer), 0, SLAB_PANIC,
313 NULL);
1da177e4
LT
314 idr_init(&posix_timers_id);
315 return 0;
316}
317
318__initcall(init_posix_timers);
319
1da177e4
LT
320static void schedule_next_timer(struct k_itimer *timr)
321{
44f21475
RZ
322 struct hrtimer *timer = &timr->it.real.timer;
323
becf8b5d 324 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
325 return;
326
4d672e7a
DL
327 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
328 timer->base->get_time(),
329 timr->it.real.interval);
44f21475 330
1da177e4
LT
331 timr->it_overrun_last = timr->it_overrun;
332 timr->it_overrun = -1;
333 ++timr->it_requeue_pending;
44f21475 334 hrtimer_restart(timer);
1da177e4
LT
335}
336
337/*
338 * This function is exported for use by the signal deliver code. It is
339 * called just prior to the info block being released and passes that
340 * block to us. It's function is to update the overrun entry AND to
341 * restart the timer. It should only be called if the timer is to be
342 * restarted (i.e. we have flagged this in the sys_private entry of the
343 * info block).
344 *
345 * To protect aginst the timer going away while the interrupt is queued,
346 * we require that the it_requeue_pending flag be set.
347 */
348void do_schedule_next_timer(struct siginfo *info)
349{
350 struct k_itimer *timr;
351 unsigned long flags;
352
353 timr = lock_timer(info->si_tid, &flags);
354
becf8b5d
TG
355 if (timr && timr->it_requeue_pending == info->si_sys_private) {
356 if (timr->it_clock < 0)
357 posix_cpu_timer_schedule(timr);
358 else
359 schedule_next_timer(timr);
1da177e4 360
54da1174 361 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
362 }
363
b6557fbc
TG
364 if (timr)
365 unlock_timer(timr, flags);
1da177e4
LT
366}
367
ba661292 368int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 369{
27af4245
ON
370 struct task_struct *task;
371 int shared, ret = -1;
ba661292
ON
372 /*
373 * FIXME: if ->sigq is queued we can race with
374 * dequeue_signal()->do_schedule_next_timer().
375 *
376 * If dequeue_signal() sees the "right" value of
377 * si_sys_private it calls do_schedule_next_timer().
378 * We re-queue ->sigq and drop ->it_lock().
379 * do_schedule_next_timer() locks the timer
380 * and re-schedules it while ->sigq is pending.
381 * Not really bad, but not that we want.
382 */
1da177e4 383 timr->sigq->info.si_sys_private = si_private;
1da177e4 384
27af4245
ON
385 rcu_read_lock();
386 task = pid_task(timr->it_pid, PIDTYPE_PID);
387 if (task) {
388 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
389 ret = send_sigqueue(timr->sigq, task, shared);
390 }
391 rcu_read_unlock();
4aa73611
ON
392 /* If we failed to send the signal the timer stops. */
393 return ret > 0;
1da177e4
LT
394}
395EXPORT_SYMBOL_GPL(posix_timer_event);
396
397/*
398 * This function gets called when a POSIX.1b interval timer expires. It
399 * is used as a callback from the kernel internal timer. The
400 * run_timer_list code ALWAYS calls with interrupts on.
401
402 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
403 */
c9cb2e3d 404static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 405{
05cfb614 406 struct k_itimer *timr;
1da177e4 407 unsigned long flags;
becf8b5d 408 int si_private = 0;
c9cb2e3d 409 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 410
05cfb614 411 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 412 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 413
becf8b5d
TG
414 if (timr->it.real.interval.tv64 != 0)
415 si_private = ++timr->it_requeue_pending;
1da177e4 416
becf8b5d
TG
417 if (posix_timer_event(timr, si_private)) {
418 /*
419 * signal was not sent because of sig_ignor
420 * we will not get a call back to restart it AND
421 * it should be restarted.
422 */
423 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
424 ktime_t now = hrtimer_cb_get_time(timer);
425
426 /*
427 * FIXME: What we really want, is to stop this
428 * timer completely and restart it in case the
429 * SIG_IGN is removed. This is a non trivial
430 * change which involves sighand locking
431 * (sigh !), which we don't want to do late in
432 * the release cycle.
433 *
434 * For now we just let timers with an interval
435 * less than a jiffie expire every jiffie to
436 * avoid softirq starvation in case of SIG_IGN
437 * and a very small interval, which would put
438 * the timer right back on the softirq pending
439 * list. By moving now ahead of time we trick
440 * hrtimer_forward() to expire the timer
441 * later, while we still maintain the overrun
442 * accuracy, but have some inconsistency in
443 * the timer_gettime() case. This is at least
444 * better than a starved softirq. A more
445 * complex fix which solves also another related
446 * inconsistency is already in the pipeline.
447 */
448#ifdef CONFIG_HIGH_RES_TIMERS
449 {
450 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
451
452 if (timr->it.real.interval.tv64 < kj.tv64)
453 now = ktime_add(now, kj);
454 }
455#endif
4d672e7a 456 timr->it_overrun += (unsigned int)
58229a18 457 hrtimer_forward(timer, now,
becf8b5d
TG
458 timr->it.real.interval);
459 ret = HRTIMER_RESTART;
a0a0c28c 460 ++timr->it_requeue_pending;
1da177e4 461 }
1da177e4 462 }
1da177e4 463
becf8b5d
TG
464 unlock_timer(timr, flags);
465 return ret;
466}
1da177e4 467
27af4245 468static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
469{
470 struct task_struct *rtn = current->group_leader;
471
472 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 473 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 474 !same_thread_group(rtn, current) ||
1da177e4
LT
475 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
476 return NULL;
477
478 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
479 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
480 return NULL;
481
27af4245 482 return task_pid(rtn);
1da177e4
LT
483}
484
a924b04d 485void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
486{
487 if ((unsigned) clock_id >= MAX_CLOCKS) {
4359ac0a
TG
488 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
489 clock_id);
490 return;
491 }
492
493 if (!new_clock->clock_get) {
494 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
495 clock_id);
496 return;
497 }
498 if (!new_clock->clock_getres) {
499 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
1da177e4
LT
500 clock_id);
501 return;
502 }
503
504 posix_clocks[clock_id] = *new_clock;
505}
506EXPORT_SYMBOL_GPL(register_posix_clock);
507
508static struct k_itimer * alloc_posix_timer(void)
509{
510 struct k_itimer *tmr;
c3762229 511 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
512 if (!tmr)
513 return tmr;
1da177e4
LT
514 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
515 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 516 return NULL;
1da177e4 517 }
ba661292 518 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
519 return tmr;
520}
521
522#define IT_ID_SET 1
523#define IT_ID_NOT_SET 0
524static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
525{
526 if (it_id_set) {
527 unsigned long flags;
528 spin_lock_irqsave(&idr_lock, flags);
529 idr_remove(&posix_timers_id, tmr->it_id);
530 spin_unlock_irqrestore(&idr_lock, flags);
531 }
89992102 532 put_pid(tmr->it_pid);
1da177e4 533 sigqueue_free(tmr->sigq);
1da177e4
LT
534 kmem_cache_free(posix_timers_cache, tmr);
535}
536
cc785ac2
TG
537static struct k_clock *clockid_to_kclock(const clockid_t id)
538{
539 if (id < 0)
540 return &clock_posix_cpu;
541
542 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
543 return NULL;
544 return &posix_clocks[id];
545}
546
1da177e4
LT
547/* Create a POSIX.1b interval timer. */
548
362e9c07
HC
549SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
550 struct sigevent __user *, timer_event_spec,
551 timer_t __user *, created_timer_id)
1da177e4 552{
2cd499e3 553 struct k_itimer *new_timer;
ef864c95 554 int error, new_timer_id;
1da177e4
LT
555 sigevent_t event;
556 int it_id_set = IT_ID_NOT_SET;
557
558 if (invalid_clockid(which_clock))
559 return -EINVAL;
560
561 new_timer = alloc_posix_timer();
562 if (unlikely(!new_timer))
563 return -EAGAIN;
564
565 spin_lock_init(&new_timer->it_lock);
566 retry:
567 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
568 error = -EAGAIN;
569 goto out;
570 }
571 spin_lock_irq(&idr_lock);
5a51b713 572 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 573 spin_unlock_irq(&idr_lock);
ef864c95
ON
574 if (error) {
575 if (error == -EAGAIN)
576 goto retry;
1da177e4 577 /*
0b0a3e7b 578 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
579 * full (proper POSIX return value for this)
580 */
581 error = -EAGAIN;
582 goto out;
583 }
584
585 it_id_set = IT_ID_SET;
586 new_timer->it_id = (timer_t) new_timer_id;
587 new_timer->it_clock = which_clock;
588 new_timer->it_overrun = -1;
1da177e4 589
1da177e4
LT
590 if (timer_event_spec) {
591 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
592 error = -EFAULT;
593 goto out;
594 }
36b2f046 595 rcu_read_lock();
89992102 596 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 597 rcu_read_unlock();
89992102 598 if (!new_timer->it_pid) {
1da177e4
LT
599 error = -EINVAL;
600 goto out;
601 }
602 } else {
5a9fa730
ON
603 event.sigev_notify = SIGEV_SIGNAL;
604 event.sigev_signo = SIGALRM;
605 event.sigev_value.sival_int = new_timer->it_id;
89992102 606 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
607 }
608
5a9fa730
ON
609 new_timer->it_sigev_notify = event.sigev_notify;
610 new_timer->sigq->info.si_signo = event.sigev_signo;
611 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 612 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 613 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 614
2b08de00
AV
615 if (copy_to_user(created_timer_id,
616 &new_timer_id, sizeof (new_timer_id))) {
617 error = -EFAULT;
618 goto out;
619 }
620
45e0fffc
AV
621 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
622 if (error)
623 goto out;
624
36b2f046 625 spin_lock_irq(&current->sighand->siglock);
27af4245 626 new_timer->it_signal = current->signal;
36b2f046
ON
627 list_add(&new_timer->list, &current->signal->posix_timers);
628 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
629
630 return 0;
1da177e4
LT
631 /*
632 * In the case of the timer belonging to another task, after
633 * the task is unlocked, the timer is owned by the other task
634 * and may cease to exist at any time. Don't use or modify
635 * new_timer after the unlock call.
636 */
1da177e4 637out:
ef864c95 638 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
639 return error;
640}
641
1da177e4
LT
642/*
643 * Locking issues: We need to protect the result of the id look up until
644 * we get the timer locked down so it is not deleted under us. The
645 * removal is done under the idr spinlock so we use that here to bridge
646 * the find to the timer lock. To avoid a dead lock, the timer id MUST
647 * be release with out holding the timer lock.
648 */
20f33a03 649static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
650{
651 struct k_itimer *timr;
652 /*
653 * Watch out here. We do a irqsave on the idr_lock and pass the
654 * flags part over to the timer lock. Must not let interrupts in
655 * while we are moving the lock.
656 */
1da177e4 657 spin_lock_irqsave(&idr_lock, *flags);
31d92845 658 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
659 if (timr) {
660 spin_lock(&timr->it_lock);
89992102 661 if (timr->it_signal == current->signal) {
179394af 662 spin_unlock(&idr_lock);
31d92845
ON
663 return timr;
664 }
665 spin_unlock(&timr->it_lock);
666 }
667 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 668
31d92845 669 return NULL;
1da177e4
LT
670}
671
672/*
673 * Get the time remaining on a POSIX.1b interval timer. This function
674 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
675 * mess with irq.
676 *
677 * We have a couple of messes to clean up here. First there is the case
678 * of a timer that has a requeue pending. These timers should appear to
679 * be in the timer list with an expiry as if we were to requeue them
680 * now.
681 *
682 * The second issue is the SIGEV_NONE timer which may be active but is
683 * not really ever put in the timer list (to save system resources).
684 * This timer may be expired, and if so, we will do it here. Otherwise
685 * it is the same as a requeue pending timer WRT to what we should
686 * report.
687 */
688static void
689common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
690{
3b98a532 691 ktime_t now, remaining, iv;
becf8b5d 692 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 693
becf8b5d 694 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 695
3b98a532
RZ
696 iv = timr->it.real.interval;
697
becf8b5d 698 /* interval timer ? */
3b98a532
RZ
699 if (iv.tv64)
700 cur_setting->it_interval = ktime_to_timespec(iv);
701 else if (!hrtimer_active(timer) &&
702 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 703 return;
3b98a532
RZ
704
705 now = timer->base->get_time();
706
becf8b5d 707 /*
3b98a532
RZ
708 * When a requeue is pending or this is a SIGEV_NONE
709 * timer move the expiry time forward by intervals, so
710 * expiry is > now.
becf8b5d 711 */
3b98a532
RZ
712 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
713 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 714 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 715
cc584b21 716 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 717 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
718 if (remaining.tv64 <= 0) {
719 /*
720 * A single shot SIGEV_NONE timer must return 0, when
721 * it is expired !
722 */
723 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
724 cur_setting->it_value.tv_nsec = 1;
725 } else
becf8b5d 726 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
727}
728
729/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
730SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
731 struct itimerspec __user *, setting)
1da177e4
LT
732{
733 struct k_itimer *timr;
734 struct itimerspec cur_setting;
735 unsigned long flags;
736
737 timr = lock_timer(timer_id, &flags);
738 if (!timr)
739 return -EINVAL;
740
741 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
742
743 unlock_timer(timr, flags);
744
745 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
746 return -EFAULT;
747
748 return 0;
749}
becf8b5d 750
1da177e4
LT
751/*
752 * Get the number of overruns of a POSIX.1b interval timer. This is to
753 * be the overrun of the timer last delivered. At the same time we are
754 * accumulating overruns on the next timer. The overrun is frozen when
755 * the signal is delivered, either at the notify time (if the info block
756 * is not queued) or at the actual delivery time (as we are informed by
757 * the call back to do_schedule_next_timer(). So all we need to do is
758 * to pick up the frozen overrun.
759 */
362e9c07 760SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
761{
762 struct k_itimer *timr;
763 int overrun;
5ba25331 764 unsigned long flags;
1da177e4
LT
765
766 timr = lock_timer(timer_id, &flags);
767 if (!timr)
768 return -EINVAL;
769
770 overrun = timr->it_overrun_last;
771 unlock_timer(timr, flags);
772
773 return overrun;
774}
1da177e4
LT
775
776/* Set a POSIX.1b interval timer. */
777/* timr->it_lock is taken. */
858119e1 778static int
1da177e4
LT
779common_timer_set(struct k_itimer *timr, int flags,
780 struct itimerspec *new_setting, struct itimerspec *old_setting)
781{
becf8b5d 782 struct hrtimer *timer = &timr->it.real.timer;
7978672c 783 enum hrtimer_mode mode;
1da177e4
LT
784
785 if (old_setting)
786 common_timer_get(timr, old_setting);
787
788 /* disable the timer */
becf8b5d 789 timr->it.real.interval.tv64 = 0;
1da177e4
LT
790 /*
791 * careful here. If smp we could be in the "fire" routine which will
792 * be spinning as we hold the lock. But this is ONLY an SMP issue.
793 */
becf8b5d 794 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 795 return TIMER_RETRY;
1da177e4
LT
796
797 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
798 ~REQUEUE_PENDING;
799 timr->it_overrun_last = 0;
1da177e4 800
becf8b5d
TG
801 /* switch off the timer when it_value is zero */
802 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
803 return 0;
1da177e4 804
c9cb2e3d 805 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 806 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 807 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 808
cc584b21 809 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
810
811 /* Convert interval */
812 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
813
814 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
815 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
816 /* Setup correct expiry time for relative timers */
5a7780e7 817 if (mode == HRTIMER_MODE_REL) {
cc584b21 818 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 819 }
becf8b5d 820 return 0;
952bbc87 821 }
becf8b5d 822
cc584b21 823 hrtimer_start_expires(timer, mode);
1da177e4
LT
824 return 0;
825}
826
827/* Set a POSIX.1b interval timer */
362e9c07
HC
828SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
829 const struct itimerspec __user *, new_setting,
830 struct itimerspec __user *, old_setting)
1da177e4
LT
831{
832 struct k_itimer *timr;
833 struct itimerspec new_spec, old_spec;
834 int error = 0;
5ba25331 835 unsigned long flag;
1da177e4
LT
836 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
837
838 if (!new_setting)
839 return -EINVAL;
840
841 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
842 return -EFAULT;
843
becf8b5d
TG
844 if (!timespec_valid(&new_spec.it_interval) ||
845 !timespec_valid(&new_spec.it_value))
1da177e4
LT
846 return -EINVAL;
847retry:
848 timr = lock_timer(timer_id, &flag);
849 if (!timr)
850 return -EINVAL;
851
852 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
853 (timr, flags, &new_spec, rtn));
854
855 unlock_timer(timr, flag);
856 if (error == TIMER_RETRY) {
857 rtn = NULL; // We already got the old time...
858 goto retry;
859 }
860
becf8b5d
TG
861 if (old_setting && !error &&
862 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
863 error = -EFAULT;
864
865 return error;
866}
867
868static inline int common_timer_del(struct k_itimer *timer)
869{
becf8b5d 870 timer->it.real.interval.tv64 = 0;
f972be33 871
becf8b5d 872 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 873 return TIMER_RETRY;
1da177e4
LT
874 return 0;
875}
876
877static inline int timer_delete_hook(struct k_itimer *timer)
878{
879 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
880}
881
882/* Delete a POSIX.1b interval timer. */
362e9c07 883SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
884{
885 struct k_itimer *timer;
5ba25331 886 unsigned long flags;
1da177e4 887
1da177e4 888retry_delete:
1da177e4
LT
889 timer = lock_timer(timer_id, &flags);
890 if (!timer)
891 return -EINVAL;
892
becf8b5d 893 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
894 unlock_timer(timer, flags);
895 goto retry_delete;
896 }
becf8b5d 897
1da177e4
LT
898 spin_lock(&current->sighand->siglock);
899 list_del(&timer->list);
900 spin_unlock(&current->sighand->siglock);
901 /*
902 * This keeps any tasks waiting on the spin lock from thinking
903 * they got something (see the lock code above).
904 */
89992102 905 timer->it_signal = NULL;
4b7a1304 906
1da177e4
LT
907 unlock_timer(timer, flags);
908 release_posix_timer(timer, IT_ID_SET);
909 return 0;
910}
becf8b5d 911
1da177e4
LT
912/*
913 * return timer owned by the process, used by exit_itimers
914 */
858119e1 915static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
916{
917 unsigned long flags;
918
1da177e4 919retry_delete:
1da177e4
LT
920 spin_lock_irqsave(&timer->it_lock, flags);
921
becf8b5d 922 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
923 unlock_timer(timer, flags);
924 goto retry_delete;
925 }
1da177e4
LT
926 list_del(&timer->list);
927 /*
928 * This keeps any tasks waiting on the spin lock from thinking
929 * they got something (see the lock code above).
930 */
89992102 931 timer->it_signal = NULL;
4b7a1304 932
1da177e4
LT
933 unlock_timer(timer, flags);
934 release_posix_timer(timer, IT_ID_SET);
935}
936
937/*
25f407f0 938 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
939 * references to the shared signal_struct.
940 */
941void exit_itimers(struct signal_struct *sig)
942{
943 struct k_itimer *tmr;
944
945 while (!list_empty(&sig->posix_timers)) {
946 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
947 itimer_delete(tmr);
948 }
949}
950
362e9c07
HC
951SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
952 const struct timespec __user *, tp)
1da177e4 953{
26f9a479 954 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
955 struct timespec new_tp;
956
26f9a479 957 if (!kc || !kc->clock_set)
1da177e4 958 return -EINVAL;
26f9a479 959
1da177e4
LT
960 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
961 return -EFAULT;
962
26f9a479 963 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
964}
965
362e9c07
HC
966SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
967 struct timespec __user *,tp)
1da177e4 968{
42285777 969 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
970 struct timespec kernel_tp;
971 int error;
972
42285777 973 if (!kc)
1da177e4 974 return -EINVAL;
42285777
TG
975
976 error = kc->clock_get(which_clock, &kernel_tp);
977
1da177e4
LT
978 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
979 error = -EFAULT;
980
981 return error;
1da177e4
LT
982}
983
362e9c07
HC
984SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
985 struct timespec __user *, tp)
1da177e4
LT
986{
987 struct timespec rtn_tp;
988 int error;
989
990 if (invalid_clockid(which_clock))
991 return -EINVAL;
992
993 error = CLOCK_DISPATCH(which_clock, clock_getres,
994 (which_clock, &rtn_tp));
995
996 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
997 error = -EFAULT;
998 }
999
1000 return error;
1001}
1002
97735f25
TG
1003/*
1004 * nanosleep for monotonic and realtime clocks
1005 */
1006static int common_nsleep(const clockid_t which_clock, int flags,
1007 struct timespec *tsave, struct timespec __user *rmtp)
1008{
080344b9
ON
1009 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
1010 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1011 which_clock);
97735f25 1012}
1da177e4 1013
362e9c07
HC
1014SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
1015 const struct timespec __user *, rqtp,
1016 struct timespec __user *, rmtp)
1da177e4 1017{
a5cd2880 1018 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 1019 struct timespec t;
1da177e4 1020
a5cd2880 1021 if (!kc)
1da177e4 1022 return -EINVAL;
a5cd2880
TG
1023 if (!kc->nsleep)
1024 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1025
1026 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1027 return -EFAULT;
1028
5f82b2b7 1029 if (!timespec_valid(&t))
1da177e4
LT
1030 return -EINVAL;
1031
a5cd2880 1032 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1033}
1711ef38 1034
1711ef38
TA
1035/*
1036 * This will restart clock_nanosleep. This is required only by
1037 * compat_clock_nanosleep_restart for now.
1038 */
59bd5bc2 1039long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38 1040{
3751f9f2 1041 clockid_t which_clock = restart_block->nanosleep.index;
59bd5bc2
TG
1042 struct k_clock *kc = clockid_to_kclock(which_clock);
1043
1044 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1045 return -EINVAL;
1711ef38 1046
59bd5bc2 1047 return kc->nsleep_restart(restart_block);
1711ef38 1048}