]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/posix-timers.c
[PATCH] hrtimers: cleanups and simplifications
[mirror_ubuntu-bionic-kernel.git] / kernel / posix-timers.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/posix_timers.c
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
34#include <linux/smp_lock.h>
35#include <linux/interrupt.h>
36#include <linux/slab.h>
37#include <linux/time.h>
38
39#include <asm/uaccess.h>
40#include <asm/semaphore.h>
41#include <linux/list.h>
42#include <linux/init.h>
43#include <linux/compiler.h>
44#include <linux/idr.h>
45#include <linux/posix-timers.h>
46#include <linux/syscalls.h>
47#include <linux/wait.h>
48#include <linux/workqueue.h>
49#include <linux/module.h>
50
1da177e4
LT
51/*
52 * Management arrays for POSIX timers. Timers are kept in slab memory
53 * Timer ids are allocated by an external routine that keeps track of the
54 * id and the timer. The external interface is:
55 *
56 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
57 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
58 * related it to <ptr>
59 * void idr_remove(struct idr *idp, int id); to release <id>
60 * void idr_init(struct idr *idp); to initialize <idp>
61 * which we supply.
62 * The idr_get_new *may* call slab for more memory so it must not be
63 * called under a spin lock. Likewise idr_remore may release memory
64 * (but it may be ok to do this under a lock...).
65 * idr_find is just a memory look up and is quite fast. A -1 return
66 * indicates that the requested id does not exist.
67 */
68
69/*
70 * Lets keep our timers in a slab cache :-)
71 */
72static kmem_cache_t *posix_timers_cache;
73static struct idr posix_timers_id;
74static DEFINE_SPINLOCK(idr_lock);
75
1da177e4
LT
76/*
77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
78 * SIGEV values. Here we put out an error if this assumption fails.
79 */
80#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
81 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
82#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
83#endif
84
85
86/*
87 * The timer ID is turned into a timer address by idr_find().
88 * Verifying a valid ID consists of:
89 *
90 * a) checking that idr_find() returns other than -1.
91 * b) checking that the timer id matches the one in the timer itself.
92 * c) that the timer owner is in the callers thread group.
93 */
94
95/*
96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
97 * to implement others. This structure defines the various
98 * clocks and allows the possibility of adding others. We
99 * provide an interface to add clocks to the table and expect
100 * the "arch" code to add at least one clock that is high
101 * resolution. Here we define the standard CLOCK_REALTIME as a
102 * 1/HZ resolution clock.
103 *
104 * RESOLUTION: Clock resolution is used to round up timer and interval
105 * times, NOT to report clock times, which are reported with as
106 * much resolution as the system can muster. In some cases this
107 * resolution may depend on the underlying clock hardware and
108 * may not be quantifiable until run time, and only then is the
109 * necessary code is written. The standard says we should say
110 * something about this issue in the documentation...
111 *
112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
113 * various clock functions. For clocks that use the standard
114 * system timer code these entries should be NULL. This will
115 * allow dispatch without the overhead of indirect function
116 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
117 * must supply functions here, even if the function just returns
118 * ENOSYS. The standard POSIX timer management code assumes the
119 * following: 1.) The k_itimer struct (sched.h) is used for the
120 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
121 * fields are not modified by timer code.
122 *
123 * At this time all functions EXCEPT clock_nanosleep can be
124 * redirected by the CLOCKS structure. Clock_nanosleep is in
125 * there, but the code ignores it.
126 *
127 * Permissions: It is assumed that the clock_settime() function defined
128 * for each clock will take care of permission checks. Some
129 * clocks may be set able by any user (i.e. local process
130 * clocks) others not. Currently the only set able clock we
131 * have is CLOCK_REALTIME and its high res counter part, both of
132 * which we beg off on and pass to do_sys_settimeofday().
133 */
134
135static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 136
1da177e4 137/*
becf8b5d 138 * These ones are defined below.
1da177e4 139 */
becf8b5d
TG
140static int common_nsleep(const clockid_t, int flags, struct timespec *t,
141 struct timespec __user *rmtp);
142static void common_timer_get(struct k_itimer *, struct itimerspec *);
143static int common_timer_set(struct k_itimer *, int,
144 struct itimerspec *, struct itimerspec *);
145static int common_timer_del(struct k_itimer *timer);
1da177e4 146
becf8b5d 147static int posix_timer_fn(void *data);
1da177e4
LT
148
149static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
150
151static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
152{
153 spin_unlock_irqrestore(&timr->it_lock, flags);
154}
155
156/*
157 * Call the k_clock hook function if non-null, or the default function.
158 */
159#define CLOCK_DISPATCH(clock, call, arglist) \
160 ((clock) < 0 ? posix_cpu_##call arglist : \
161 (posix_clocks[clock].call != NULL \
162 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
163
164/*
165 * Default clock hook functions when the struct k_clock passed
166 * to register_posix_clock leaves a function pointer null.
167 *
168 * The function common_CALL is the default implementation for
169 * the function pointer CALL in struct k_clock.
170 */
171
a924b04d 172static inline int common_clock_getres(const clockid_t which_clock,
1da177e4
LT
173 struct timespec *tp)
174{
175 tp->tv_sec = 0;
176 tp->tv_nsec = posix_clocks[which_clock].res;
177 return 0;
178}
179
becf8b5d
TG
180/*
181 * Get real time for posix timers
182 */
183static int common_clock_get(clockid_t which_clock, struct timespec *tp)
1da177e4 184{
becf8b5d 185 ktime_get_real_ts(tp);
1da177e4
LT
186 return 0;
187}
188
a924b04d
TG
189static inline int common_clock_set(const clockid_t which_clock,
190 struct timespec *tp)
1da177e4
LT
191{
192 return do_sys_settimeofday(tp, NULL);
193}
194
858119e1 195static int common_timer_create(struct k_itimer *new_timer)
1da177e4 196{
7978672c 197 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
1da177e4
LT
198 return 0;
199}
200
201/*
becf8b5d 202 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 203 */
a924b04d 204static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
205{
206 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
207 return 0;
208 if ((unsigned) which_clock >= MAX_CLOCKS)
209 return 1;
210 if (posix_clocks[which_clock].clock_getres != NULL)
211 return 0;
1da177e4
LT
212 if (posix_clocks[which_clock].res != 0)
213 return 0;
1da177e4
LT
214 return 1;
215}
216
becf8b5d
TG
217/*
218 * Get monotonic time for posix timers
219 */
220static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
221{
222 ktime_get_ts(tp);
223 return 0;
224}
1da177e4
LT
225
226/*
227 * Initialize everything, well, just everything in Posix clocks/timers ;)
228 */
229static __init int init_posix_timers(void)
230{
becf8b5d
TG
231 struct k_clock clock_realtime = {
232 .clock_getres = hrtimer_get_res,
1da177e4 233 };
becf8b5d
TG
234 struct k_clock clock_monotonic = {
235 .clock_getres = hrtimer_get_res,
236 .clock_get = posix_ktime_get_ts,
237 .clock_set = do_posix_clock_nosettime,
1da177e4
LT
238 };
239
240 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
241 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
242
243 posix_timers_cache = kmem_cache_create("posix_timers_cache",
244 sizeof (struct k_itimer), 0, 0, NULL, NULL);
245 idr_init(&posix_timers_id);
246 return 0;
247}
248
249__initcall(init_posix_timers);
250
1da177e4
LT
251static void schedule_next_timer(struct k_itimer *timr)
252{
becf8b5d 253 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
254 return;
255
becf8b5d
TG
256 timr->it_overrun += hrtimer_forward(&timr->it.real.timer,
257 timr->it.real.interval);
1da177e4
LT
258 timr->it_overrun_last = timr->it_overrun;
259 timr->it_overrun = -1;
260 ++timr->it_requeue_pending;
becf8b5d 261 hrtimer_restart(&timr->it.real.timer);
1da177e4
LT
262}
263
264/*
265 * This function is exported for use by the signal deliver code. It is
266 * called just prior to the info block being released and passes that
267 * block to us. It's function is to update the overrun entry AND to
268 * restart the timer. It should only be called if the timer is to be
269 * restarted (i.e. we have flagged this in the sys_private entry of the
270 * info block).
271 *
272 * To protect aginst the timer going away while the interrupt is queued,
273 * we require that the it_requeue_pending flag be set.
274 */
275void do_schedule_next_timer(struct siginfo *info)
276{
277 struct k_itimer *timr;
278 unsigned long flags;
279
280 timr = lock_timer(info->si_tid, &flags);
281
becf8b5d
TG
282 if (timr && timr->it_requeue_pending == info->si_sys_private) {
283 if (timr->it_clock < 0)
284 posix_cpu_timer_schedule(timr);
285 else
286 schedule_next_timer(timr);
1da177e4 287
becf8b5d
TG
288 info->si_overrun = timr->it_overrun_last;
289 }
290
b6557fbc
TG
291 if (timr)
292 unlock_timer(timr, flags);
1da177e4
LT
293}
294
295int posix_timer_event(struct k_itimer *timr,int si_private)
296{
297 memset(&timr->sigq->info, 0, sizeof(siginfo_t));
298 timr->sigq->info.si_sys_private = si_private;
becf8b5d 299 /* Send signal to the process that owns this timer.*/
1da177e4
LT
300
301 timr->sigq->info.si_signo = timr->it_sigev_signo;
302 timr->sigq->info.si_errno = 0;
303 timr->sigq->info.si_code = SI_TIMER;
304 timr->sigq->info.si_tid = timr->it_id;
305 timr->sigq->info.si_value = timr->it_sigev_value;
e752dd6c 306
1da177e4 307 if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
e752dd6c
ON
308 struct task_struct *leader;
309 int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
310 timr->it_process);
311
312 if (likely(ret >= 0))
313 return ret;
314
315 timr->it_sigev_notify = SIGEV_SIGNAL;
316 leader = timr->it_process->group_leader;
317 put_task_struct(timr->it_process);
318 timr->it_process = leader;
1da177e4 319 }
e752dd6c
ON
320
321 return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
322 timr->it_process);
1da177e4
LT
323}
324EXPORT_SYMBOL_GPL(posix_timer_event);
325
326/*
327 * This function gets called when a POSIX.1b interval timer expires. It
328 * is used as a callback from the kernel internal timer. The
329 * run_timer_list code ALWAYS calls with interrupts on.
330
331 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
332 */
becf8b5d 333static int posix_timer_fn(void *data)
1da177e4 334{
becf8b5d 335 struct k_itimer *timr = data;
1da177e4 336 unsigned long flags;
becf8b5d
TG
337 int si_private = 0;
338 int ret = HRTIMER_NORESTART;
1da177e4
LT
339
340 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 341
becf8b5d
TG
342 if (timr->it.real.interval.tv64 != 0)
343 si_private = ++timr->it_requeue_pending;
1da177e4 344
becf8b5d
TG
345 if (posix_timer_event(timr, si_private)) {
346 /*
347 * signal was not sent because of sig_ignor
348 * we will not get a call back to restart it AND
349 * it should be restarted.
350 */
351 if (timr->it.real.interval.tv64 != 0) {
352 timr->it_overrun +=
353 hrtimer_forward(&timr->it.real.timer,
354 timr->it.real.interval);
355 ret = HRTIMER_RESTART;
1da177e4 356 }
1da177e4 357 }
1da177e4 358
becf8b5d
TG
359 unlock_timer(timr, flags);
360 return ret;
361}
1da177e4 362
858119e1 363static struct task_struct * good_sigevent(sigevent_t * event)
1da177e4
LT
364{
365 struct task_struct *rtn = current->group_leader;
366
367 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
368 (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
369 rtn->tgid != current->tgid ||
370 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
371 return NULL;
372
373 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
374 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
375 return NULL;
376
377 return rtn;
378}
379
a924b04d 380void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
381{
382 if ((unsigned) clock_id >= MAX_CLOCKS) {
383 printk("POSIX clock register failed for clock_id %d\n",
384 clock_id);
385 return;
386 }
387
388 posix_clocks[clock_id] = *new_clock;
389}
390EXPORT_SYMBOL_GPL(register_posix_clock);
391
392static struct k_itimer * alloc_posix_timer(void)
393{
394 struct k_itimer *tmr;
395 tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL);
396 if (!tmr)
397 return tmr;
398 memset(tmr, 0, sizeof (struct k_itimer));
399 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
400 kmem_cache_free(posix_timers_cache, tmr);
401 tmr = NULL;
402 }
403 return tmr;
404}
405
406#define IT_ID_SET 1
407#define IT_ID_NOT_SET 0
408static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
409{
410 if (it_id_set) {
411 unsigned long flags;
412 spin_lock_irqsave(&idr_lock, flags);
413 idr_remove(&posix_timers_id, tmr->it_id);
414 spin_unlock_irqrestore(&idr_lock, flags);
415 }
416 sigqueue_free(tmr->sigq);
417 if (unlikely(tmr->it_process) &&
418 tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
419 put_task_struct(tmr->it_process);
420 kmem_cache_free(posix_timers_cache, tmr);
421}
422
423/* Create a POSIX.1b interval timer. */
424
425asmlinkage long
a924b04d 426sys_timer_create(const clockid_t which_clock,
1da177e4
LT
427 struct sigevent __user *timer_event_spec,
428 timer_t __user * created_timer_id)
429{
430 int error = 0;
431 struct k_itimer *new_timer = NULL;
432 int new_timer_id;
433 struct task_struct *process = NULL;
434 unsigned long flags;
435 sigevent_t event;
436 int it_id_set = IT_ID_NOT_SET;
437
438 if (invalid_clockid(which_clock))
439 return -EINVAL;
440
441 new_timer = alloc_posix_timer();
442 if (unlikely(!new_timer))
443 return -EAGAIN;
444
445 spin_lock_init(&new_timer->it_lock);
446 retry:
447 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
448 error = -EAGAIN;
449 goto out;
450 }
451 spin_lock_irq(&idr_lock);
becf8b5d 452 error = idr_get_new(&posix_timers_id, (void *) new_timer,
1da177e4
LT
453 &new_timer_id);
454 spin_unlock_irq(&idr_lock);
455 if (error == -EAGAIN)
456 goto retry;
457 else if (error) {
458 /*
459 * Wierd looking, but we return EAGAIN if the IDR is
460 * full (proper POSIX return value for this)
461 */
462 error = -EAGAIN;
463 goto out;
464 }
465
466 it_id_set = IT_ID_SET;
467 new_timer->it_id = (timer_t) new_timer_id;
468 new_timer->it_clock = which_clock;
469 new_timer->it_overrun = -1;
470 error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
471 if (error)
472 goto out;
473
474 /*
475 * return the timer_id now. The next step is hard to
476 * back out if there is an error.
477 */
478 if (copy_to_user(created_timer_id,
479 &new_timer_id, sizeof (new_timer_id))) {
480 error = -EFAULT;
481 goto out;
482 }
483 if (timer_event_spec) {
484 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
485 error = -EFAULT;
486 goto out;
487 }
488 new_timer->it_sigev_notify = event.sigev_notify;
489 new_timer->it_sigev_signo = event.sigev_signo;
490 new_timer->it_sigev_value = event.sigev_value;
491
492 read_lock(&tasklist_lock);
493 if ((process = good_sigevent(&event))) {
494 /*
495 * We may be setting up this process for another
496 * thread. It may be exiting. To catch this
497 * case the we check the PF_EXITING flag. If
498 * the flag is not set, the siglock will catch
499 * him before it is too late (in exit_itimers).
500 *
501 * The exec case is a bit more invloved but easy
502 * to code. If the process is in our thread
503 * group (and it must be or we would not allow
504 * it here) and is doing an exec, it will cause
505 * us to be killed. In this case it will wait
506 * for us to die which means we can finish this
507 * linkage with our last gasp. I.e. no code :)
508 */
509 spin_lock_irqsave(&process->sighand->siglock, flags);
510 if (!(process->flags & PF_EXITING)) {
511 new_timer->it_process = process;
512 list_add(&new_timer->list,
513 &process->signal->posix_timers);
514 spin_unlock_irqrestore(&process->sighand->siglock, flags);
515 if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
516 get_task_struct(process);
517 } else {
518 spin_unlock_irqrestore(&process->sighand->siglock, flags);
519 process = NULL;
520 }
521 }
522 read_unlock(&tasklist_lock);
523 if (!process) {
524 error = -EINVAL;
525 goto out;
526 }
527 } else {
528 new_timer->it_sigev_notify = SIGEV_SIGNAL;
529 new_timer->it_sigev_signo = SIGALRM;
530 new_timer->it_sigev_value.sival_int = new_timer->it_id;
531 process = current->group_leader;
532 spin_lock_irqsave(&process->sighand->siglock, flags);
533 new_timer->it_process = process;
534 list_add(&new_timer->list, &process->signal->posix_timers);
535 spin_unlock_irqrestore(&process->sighand->siglock, flags);
536 }
537
538 /*
539 * In the case of the timer belonging to another task, after
540 * the task is unlocked, the timer is owned by the other task
541 * and may cease to exist at any time. Don't use or modify
542 * new_timer after the unlock call.
543 */
544
545out:
546 if (error)
547 release_posix_timer(new_timer, it_id_set);
548
549 return error;
550}
551
1da177e4
LT
552/*
553 * Locking issues: We need to protect the result of the id look up until
554 * we get the timer locked down so it is not deleted under us. The
555 * removal is done under the idr spinlock so we use that here to bridge
556 * the find to the timer lock. To avoid a dead lock, the timer id MUST
557 * be release with out holding the timer lock.
558 */
559static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
560{
561 struct k_itimer *timr;
562 /*
563 * Watch out here. We do a irqsave on the idr_lock and pass the
564 * flags part over to the timer lock. Must not let interrupts in
565 * while we are moving the lock.
566 */
567
568 spin_lock_irqsave(&idr_lock, *flags);
569 timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
570 if (timr) {
571 spin_lock(&timr->it_lock);
572 spin_unlock(&idr_lock);
573
574 if ((timr->it_id != timer_id) || !(timr->it_process) ||
575 timr->it_process->tgid != current->tgid) {
576 unlock_timer(timr, *flags);
577 timr = NULL;
578 }
579 } else
580 spin_unlock_irqrestore(&idr_lock, *flags);
581
582 return timr;
583}
584
585/*
586 * Get the time remaining on a POSIX.1b interval timer. This function
587 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
588 * mess with irq.
589 *
590 * We have a couple of messes to clean up here. First there is the case
591 * of a timer that has a requeue pending. These timers should appear to
592 * be in the timer list with an expiry as if we were to requeue them
593 * now.
594 *
595 * The second issue is the SIGEV_NONE timer which may be active but is
596 * not really ever put in the timer list (to save system resources).
597 * This timer may be expired, and if so, we will do it here. Otherwise
598 * it is the same as a requeue pending timer WRT to what we should
599 * report.
600 */
601static void
602common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
603{
becf8b5d
TG
604 ktime_t remaining;
605 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 606
becf8b5d
TG
607 memset(cur_setting, 0, sizeof(struct itimerspec));
608 remaining = hrtimer_get_remaining(timer);
609
610 /* Time left ? or timer pending */
611 if (remaining.tv64 > 0 || hrtimer_active(timer))
612 goto calci;
613 /* interval timer ? */
614 if (timr->it.real.interval.tv64 == 0)
615 return;
616 /*
617 * When a requeue is pending or this is a SIGEV_NONE timer
618 * move the expiry time forward by intervals, so expiry is >
619 * now.
620 */
621 if (timr->it_requeue_pending & REQUEUE_PENDING ||
622 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
623 timr->it_overrun +=
624 hrtimer_forward(timer, timr->it.real.interval);
625 remaining = hrtimer_get_remaining(timer);
1da177e4 626 }
becf8b5d
TG
627 calci:
628 /* interval timer ? */
629 if (timr->it.real.interval.tv64 != 0)
630 cur_setting->it_interval =
631 ktime_to_timespec(timr->it.real.interval);
632 /* Return 0 only, when the timer is expired and not pending */
633 if (remaining.tv64 <= 0)
634 cur_setting->it_value.tv_nsec = 1;
635 else
636 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
637}
638
639/* Get the time remaining on a POSIX.1b interval timer. */
640asmlinkage long
641sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
642{
643 struct k_itimer *timr;
644 struct itimerspec cur_setting;
645 unsigned long flags;
646
647 timr = lock_timer(timer_id, &flags);
648 if (!timr)
649 return -EINVAL;
650
651 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
652
653 unlock_timer(timr, flags);
654
655 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
656 return -EFAULT;
657
658 return 0;
659}
becf8b5d 660
1da177e4
LT
661/*
662 * Get the number of overruns of a POSIX.1b interval timer. This is to
663 * be the overrun of the timer last delivered. At the same time we are
664 * accumulating overruns on the next timer. The overrun is frozen when
665 * the signal is delivered, either at the notify time (if the info block
666 * is not queued) or at the actual delivery time (as we are informed by
667 * the call back to do_schedule_next_timer(). So all we need to do is
668 * to pick up the frozen overrun.
669 */
1da177e4
LT
670asmlinkage long
671sys_timer_getoverrun(timer_t timer_id)
672{
673 struct k_itimer *timr;
674 int overrun;
675 long flags;
676
677 timr = lock_timer(timer_id, &flags);
678 if (!timr)
679 return -EINVAL;
680
681 overrun = timr->it_overrun_last;
682 unlock_timer(timr, flags);
683
684 return overrun;
685}
1da177e4
LT
686
687/* Set a POSIX.1b interval timer. */
688/* timr->it_lock is taken. */
858119e1 689static int
1da177e4
LT
690common_timer_set(struct k_itimer *timr, int flags,
691 struct itimerspec *new_setting, struct itimerspec *old_setting)
692{
becf8b5d 693 struct hrtimer *timer = &timr->it.real.timer;
7978672c 694 enum hrtimer_mode mode;
1da177e4
LT
695
696 if (old_setting)
697 common_timer_get(timr, old_setting);
698
699 /* disable the timer */
becf8b5d 700 timr->it.real.interval.tv64 = 0;
1da177e4
LT
701 /*
702 * careful here. If smp we could be in the "fire" routine which will
703 * be spinning as we hold the lock. But this is ONLY an SMP issue.
704 */
becf8b5d 705 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 706 return TIMER_RETRY;
1da177e4
LT
707
708 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
709 ~REQUEUE_PENDING;
710 timr->it_overrun_last = 0;
1da177e4 711
becf8b5d
TG
712 /* switch off the timer when it_value is zero */
713 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
714 return 0;
1da177e4 715
7978672c
GA
716 mode = flags & TIMER_ABSTIME ? HRTIMER_ABS : HRTIMER_REL;
717 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
718 timr->it.real.timer.data = timr;
719 timr->it.real.timer.function = posix_timer_fn;
becf8b5d
TG
720
721 timer->expires = timespec_to_ktime(new_setting->it_value);
722
723 /* Convert interval */
724 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
725
726 /* SIGEV_NONE timers are not queued ! See common_timer_get */
727 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
728 return 0;
729
7978672c 730 hrtimer_start(timer, timer->expires, mode);
1da177e4
LT
731 return 0;
732}
733
734/* Set a POSIX.1b interval timer */
735asmlinkage long
736sys_timer_settime(timer_t timer_id, int flags,
737 const struct itimerspec __user *new_setting,
738 struct itimerspec __user *old_setting)
739{
740 struct k_itimer *timr;
741 struct itimerspec new_spec, old_spec;
742 int error = 0;
743 long flag;
744 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
745
746 if (!new_setting)
747 return -EINVAL;
748
749 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
750 return -EFAULT;
751
becf8b5d
TG
752 if (!timespec_valid(&new_spec.it_interval) ||
753 !timespec_valid(&new_spec.it_value))
1da177e4
LT
754 return -EINVAL;
755retry:
756 timr = lock_timer(timer_id, &flag);
757 if (!timr)
758 return -EINVAL;
759
760 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
761 (timr, flags, &new_spec, rtn));
762
763 unlock_timer(timr, flag);
764 if (error == TIMER_RETRY) {
765 rtn = NULL; // We already got the old time...
766 goto retry;
767 }
768
becf8b5d
TG
769 if (old_setting && !error &&
770 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
771 error = -EFAULT;
772
773 return error;
774}
775
776static inline int common_timer_del(struct k_itimer *timer)
777{
becf8b5d 778 timer->it.real.interval.tv64 = 0;
f972be33 779
becf8b5d 780 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 781 return TIMER_RETRY;
1da177e4
LT
782 return 0;
783}
784
785static inline int timer_delete_hook(struct k_itimer *timer)
786{
787 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
788}
789
790/* Delete a POSIX.1b interval timer. */
791asmlinkage long
792sys_timer_delete(timer_t timer_id)
793{
794 struct k_itimer *timer;
795 long flags;
796
1da177e4 797retry_delete:
1da177e4
LT
798 timer = lock_timer(timer_id, &flags);
799 if (!timer)
800 return -EINVAL;
801
becf8b5d 802 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
803 unlock_timer(timer, flags);
804 goto retry_delete;
805 }
becf8b5d 806
1da177e4
LT
807 spin_lock(&current->sighand->siglock);
808 list_del(&timer->list);
809 spin_unlock(&current->sighand->siglock);
810 /*
811 * This keeps any tasks waiting on the spin lock from thinking
812 * they got something (see the lock code above).
813 */
814 if (timer->it_process) {
815 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
816 put_task_struct(timer->it_process);
817 timer->it_process = NULL;
818 }
819 unlock_timer(timer, flags);
820 release_posix_timer(timer, IT_ID_SET);
821 return 0;
822}
becf8b5d 823
1da177e4
LT
824/*
825 * return timer owned by the process, used by exit_itimers
826 */
858119e1 827static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
828{
829 unsigned long flags;
830
1da177e4 831retry_delete:
1da177e4
LT
832 spin_lock_irqsave(&timer->it_lock, flags);
833
becf8b5d 834 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
835 unlock_timer(timer, flags);
836 goto retry_delete;
837 }
1da177e4
LT
838 list_del(&timer->list);
839 /*
840 * This keeps any tasks waiting on the spin lock from thinking
841 * they got something (see the lock code above).
842 */
843 if (timer->it_process) {
844 if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
845 put_task_struct(timer->it_process);
846 timer->it_process = NULL;
847 }
848 unlock_timer(timer, flags);
849 release_posix_timer(timer, IT_ID_SET);
850}
851
852/*
25f407f0 853 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
854 * references to the shared signal_struct.
855 */
856void exit_itimers(struct signal_struct *sig)
857{
858 struct k_itimer *tmr;
859
860 while (!list_empty(&sig->posix_timers)) {
861 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
862 itimer_delete(tmr);
863 }
864}
865
becf8b5d 866/* Not available / possible... functions */
a924b04d 867int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
1da177e4
LT
868{
869 return -EINVAL;
870}
871EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
872
873int do_posix_clock_notimer_create(struct k_itimer *timer)
874{
875 return -EINVAL;
876}
877EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create);
878
a924b04d 879int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
97735f25 880 struct timespec *t, struct timespec __user *r)
1da177e4
LT
881{
882#ifndef ENOTSUP
883 return -EOPNOTSUPP; /* aka ENOTSUP in userland for POSIX */
884#else /* parisc does define it separately. */
885 return -ENOTSUP;
886#endif
887}
888EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
889
a924b04d
TG
890asmlinkage long sys_clock_settime(const clockid_t which_clock,
891 const struct timespec __user *tp)
1da177e4
LT
892{
893 struct timespec new_tp;
894
895 if (invalid_clockid(which_clock))
896 return -EINVAL;
897 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
898 return -EFAULT;
899
900 return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
901}
902
903asmlinkage long
a924b04d 904sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
905{
906 struct timespec kernel_tp;
907 int error;
908
909 if (invalid_clockid(which_clock))
910 return -EINVAL;
911 error = CLOCK_DISPATCH(which_clock, clock_get,
912 (which_clock, &kernel_tp));
913 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
914 error = -EFAULT;
915
916 return error;
917
918}
919
920asmlinkage long
a924b04d 921sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
1da177e4
LT
922{
923 struct timespec rtn_tp;
924 int error;
925
926 if (invalid_clockid(which_clock))
927 return -EINVAL;
928
929 error = CLOCK_DISPATCH(which_clock, clock_getres,
930 (which_clock, &rtn_tp));
931
932 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
933 error = -EFAULT;
934 }
935
936 return error;
937}
938
97735f25
TG
939/*
940 * nanosleep for monotonic and realtime clocks
941 */
942static int common_nsleep(const clockid_t which_clock, int flags,
943 struct timespec *tsave, struct timespec __user *rmtp)
944{
7978672c
GA
945 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
946 HRTIMER_ABS : HRTIMER_REL, which_clock);
97735f25 947}
1da177e4
LT
948
949asmlinkage long
a924b04d 950sys_clock_nanosleep(const clockid_t which_clock, int flags,
1da177e4
LT
951 const struct timespec __user *rqtp,
952 struct timespec __user *rmtp)
953{
954 struct timespec t;
1da177e4
LT
955
956 if (invalid_clockid(which_clock))
957 return -EINVAL;
958
959 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
960 return -EFAULT;
961
5f82b2b7 962 if (!timespec_valid(&t))
1da177e4
LT
963 return -EINVAL;
964
97735f25
TG
965 return CLOCK_DISPATCH(which_clock, nsleep,
966 (which_clock, flags, &t, rmtp));
1da177e4 967}