]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/posix-timers.c
posix-timers: Convert timer_create() to clockid_to_kclock()
[mirror_ubuntu-zesty-kernel.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
65da528d
TG
84/*
85 * parisc wants ENOTSUP instead of EOPNOTSUPP
86 */
87#ifndef ENOTSUP
88# define ENANOSLEEP_NOTSUP EOPNOTSUPP
89#else
90# define ENANOSLEEP_NOTSUP ENOTSUP
91#endif
1da177e4
LT
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 127 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 143
1da177e4 144/*
becf8b5d 145 * These ones are defined below.
1da177e4 146 */
becf8b5d
TG
147static int common_nsleep(const clockid_t, int flags, struct timespec *t,
148 struct timespec __user *rmtp);
838394fb 149static int common_timer_create(struct k_itimer *new_timer);
becf8b5d
TG
150static void common_timer_get(struct k_itimer *, struct itimerspec *);
151static int common_timer_set(struct k_itimer *, int,
152 struct itimerspec *, struct itimerspec *);
153static int common_timer_del(struct k_itimer *timer);
1da177e4 154
c9cb2e3d 155static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 156
20f33a03
NK
157static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
158
159#define lock_timer(tid, flags) \
160({ struct k_itimer *__timr; \
161 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
162 __timr; \
163})
1da177e4
LT
164
165static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
166{
167 spin_unlock_irqrestore(&timr->it_lock, flags);
168}
169
170/*
171 * Call the k_clock hook function if non-null, or the default function.
172 */
173#define CLOCK_DISPATCH(clock, call, arglist) \
174 ((clock) < 0 ? posix_cpu_##call arglist : \
175 (posix_clocks[clock].call != NULL \
176 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
177
1da177e4 178/*
becf8b5d 179 * Return nonzero if we know a priori this clockid_t value is bogus.
1da177e4 180 */
a924b04d 181static inline int invalid_clockid(const clockid_t which_clock)
1da177e4
LT
182{
183 if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
184 return 0;
185 if ((unsigned) which_clock >= MAX_CLOCKS)
186 return 1;
187 if (posix_clocks[which_clock].clock_getres != NULL)
188 return 0;
1da177e4
LT
189 return 1;
190}
191
42285777
TG
192/* Get clock_realtime */
193static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
194{
195 ktime_get_real_ts(tp);
196 return 0;
197}
198
26f9a479
TG
199/* Set clock_realtime */
200static int posix_clock_realtime_set(const clockid_t which_clock,
201 const struct timespec *tp)
202{
203 return do_sys_settimeofday(tp, NULL);
204}
205
becf8b5d
TG
206/*
207 * Get monotonic time for posix timers
208 */
209static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
210{
211 ktime_get_ts(tp);
212 return 0;
213}
1da177e4 214
2d42244a
JS
215/*
216 * Get monotonic time for posix timers
217 */
218static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
219{
220 getrawmonotonic(tp);
221 return 0;
222}
223
da15cfda
JS
224
225static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
226{
227 *tp = current_kernel_time();
228 return 0;
229}
230
231static int posix_get_monotonic_coarse(clockid_t which_clock,
232 struct timespec *tp)
233{
234 *tp = get_monotonic_coarse();
235 return 0;
236}
237
6622e670 238static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
239{
240 *tp = ktime_to_timespec(KTIME_LOW_RES);
241 return 0;
242}
1da177e4
LT
243/*
244 * Initialize everything, well, just everything in Posix clocks/timers ;)
245 */
246static __init int init_posix_timers(void)
247{
becf8b5d 248 struct k_clock clock_realtime = {
2fd1f040 249 .clock_getres = hrtimer_get_res,
42285777 250 .clock_get = posix_clock_realtime_get,
26f9a479 251 .clock_set = posix_clock_realtime_set,
a5cd2880 252 .nsleep = common_nsleep,
59bd5bc2 253 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 254 .timer_create = common_timer_create,
1da177e4 255 };
becf8b5d 256 struct k_clock clock_monotonic = {
2fd1f040
TG
257 .clock_getres = hrtimer_get_res,
258 .clock_get = posix_ktime_get_ts,
a5cd2880 259 .nsleep = common_nsleep,
59bd5bc2 260 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 261 .timer_create = common_timer_create,
1da177e4 262 };
2d42244a 263 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
264 .clock_getres = hrtimer_get_res,
265 .clock_get = posix_get_monotonic_raw,
2d42244a 266 };
da15cfda 267 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
268 .clock_getres = posix_get_coarse_res,
269 .clock_get = posix_get_realtime_coarse,
da15cfda
JS
270 };
271 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
272 .clock_getres = posix_get_coarse_res,
273 .clock_get = posix_get_monotonic_coarse,
da15cfda 274 };
1da177e4
LT
275
276 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
277 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 278 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda
JS
279 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
280 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
281
282 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
283 sizeof (struct k_itimer), 0, SLAB_PANIC,
284 NULL);
1da177e4
LT
285 idr_init(&posix_timers_id);
286 return 0;
287}
288
289__initcall(init_posix_timers);
290
1da177e4
LT
291static void schedule_next_timer(struct k_itimer *timr)
292{
44f21475
RZ
293 struct hrtimer *timer = &timr->it.real.timer;
294
becf8b5d 295 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
296 return;
297
4d672e7a
DL
298 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
299 timer->base->get_time(),
300 timr->it.real.interval);
44f21475 301
1da177e4
LT
302 timr->it_overrun_last = timr->it_overrun;
303 timr->it_overrun = -1;
304 ++timr->it_requeue_pending;
44f21475 305 hrtimer_restart(timer);
1da177e4
LT
306}
307
308/*
309 * This function is exported for use by the signal deliver code. It is
310 * called just prior to the info block being released and passes that
311 * block to us. It's function is to update the overrun entry AND to
312 * restart the timer. It should only be called if the timer is to be
313 * restarted (i.e. we have flagged this in the sys_private entry of the
314 * info block).
315 *
316 * To protect aginst the timer going away while the interrupt is queued,
317 * we require that the it_requeue_pending flag be set.
318 */
319void do_schedule_next_timer(struct siginfo *info)
320{
321 struct k_itimer *timr;
322 unsigned long flags;
323
324 timr = lock_timer(info->si_tid, &flags);
325
becf8b5d
TG
326 if (timr && timr->it_requeue_pending == info->si_sys_private) {
327 if (timr->it_clock < 0)
328 posix_cpu_timer_schedule(timr);
329 else
330 schedule_next_timer(timr);
1da177e4 331
54da1174 332 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
333 }
334
b6557fbc
TG
335 if (timr)
336 unlock_timer(timr, flags);
1da177e4
LT
337}
338
ba661292 339int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 340{
27af4245
ON
341 struct task_struct *task;
342 int shared, ret = -1;
ba661292
ON
343 /*
344 * FIXME: if ->sigq is queued we can race with
345 * dequeue_signal()->do_schedule_next_timer().
346 *
347 * If dequeue_signal() sees the "right" value of
348 * si_sys_private it calls do_schedule_next_timer().
349 * We re-queue ->sigq and drop ->it_lock().
350 * do_schedule_next_timer() locks the timer
351 * and re-schedules it while ->sigq is pending.
352 * Not really bad, but not that we want.
353 */
1da177e4 354 timr->sigq->info.si_sys_private = si_private;
1da177e4 355
27af4245
ON
356 rcu_read_lock();
357 task = pid_task(timr->it_pid, PIDTYPE_PID);
358 if (task) {
359 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
360 ret = send_sigqueue(timr->sigq, task, shared);
361 }
362 rcu_read_unlock();
4aa73611
ON
363 /* If we failed to send the signal the timer stops. */
364 return ret > 0;
1da177e4
LT
365}
366EXPORT_SYMBOL_GPL(posix_timer_event);
367
368/*
369 * This function gets called when a POSIX.1b interval timer expires. It
370 * is used as a callback from the kernel internal timer. The
371 * run_timer_list code ALWAYS calls with interrupts on.
372
373 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
374 */
c9cb2e3d 375static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 376{
05cfb614 377 struct k_itimer *timr;
1da177e4 378 unsigned long flags;
becf8b5d 379 int si_private = 0;
c9cb2e3d 380 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 381
05cfb614 382 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 383 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 384
becf8b5d
TG
385 if (timr->it.real.interval.tv64 != 0)
386 si_private = ++timr->it_requeue_pending;
1da177e4 387
becf8b5d
TG
388 if (posix_timer_event(timr, si_private)) {
389 /*
390 * signal was not sent because of sig_ignor
391 * we will not get a call back to restart it AND
392 * it should be restarted.
393 */
394 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
395 ktime_t now = hrtimer_cb_get_time(timer);
396
397 /*
398 * FIXME: What we really want, is to stop this
399 * timer completely and restart it in case the
400 * SIG_IGN is removed. This is a non trivial
401 * change which involves sighand locking
402 * (sigh !), which we don't want to do late in
403 * the release cycle.
404 *
405 * For now we just let timers with an interval
406 * less than a jiffie expire every jiffie to
407 * avoid softirq starvation in case of SIG_IGN
408 * and a very small interval, which would put
409 * the timer right back on the softirq pending
410 * list. By moving now ahead of time we trick
411 * hrtimer_forward() to expire the timer
412 * later, while we still maintain the overrun
413 * accuracy, but have some inconsistency in
414 * the timer_gettime() case. This is at least
415 * better than a starved softirq. A more
416 * complex fix which solves also another related
417 * inconsistency is already in the pipeline.
418 */
419#ifdef CONFIG_HIGH_RES_TIMERS
420 {
421 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
422
423 if (timr->it.real.interval.tv64 < kj.tv64)
424 now = ktime_add(now, kj);
425 }
426#endif
4d672e7a 427 timr->it_overrun += (unsigned int)
58229a18 428 hrtimer_forward(timer, now,
becf8b5d
TG
429 timr->it.real.interval);
430 ret = HRTIMER_RESTART;
a0a0c28c 431 ++timr->it_requeue_pending;
1da177e4 432 }
1da177e4 433 }
1da177e4 434
becf8b5d
TG
435 unlock_timer(timr, flags);
436 return ret;
437}
1da177e4 438
27af4245 439static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
440{
441 struct task_struct *rtn = current->group_leader;
442
443 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 444 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 445 !same_thread_group(rtn, current) ||
1da177e4
LT
446 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
447 return NULL;
448
449 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
450 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
451 return NULL;
452
27af4245 453 return task_pid(rtn);
1da177e4
LT
454}
455
a924b04d 456void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
457{
458 if ((unsigned) clock_id >= MAX_CLOCKS) {
4359ac0a
TG
459 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
460 clock_id);
461 return;
462 }
463
464 if (!new_clock->clock_get) {
465 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
466 clock_id);
467 return;
468 }
469 if (!new_clock->clock_getres) {
470 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
1da177e4
LT
471 clock_id);
472 return;
473 }
474
475 posix_clocks[clock_id] = *new_clock;
476}
477EXPORT_SYMBOL_GPL(register_posix_clock);
478
479static struct k_itimer * alloc_posix_timer(void)
480{
481 struct k_itimer *tmr;
c3762229 482 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
483 if (!tmr)
484 return tmr;
1da177e4
LT
485 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
486 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 487 return NULL;
1da177e4 488 }
ba661292 489 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
490 return tmr;
491}
492
493#define IT_ID_SET 1
494#define IT_ID_NOT_SET 0
495static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
496{
497 if (it_id_set) {
498 unsigned long flags;
499 spin_lock_irqsave(&idr_lock, flags);
500 idr_remove(&posix_timers_id, tmr->it_id);
501 spin_unlock_irqrestore(&idr_lock, flags);
502 }
89992102 503 put_pid(tmr->it_pid);
1da177e4 504 sigqueue_free(tmr->sigq);
1da177e4
LT
505 kmem_cache_free(posix_timers_cache, tmr);
506}
507
cc785ac2
TG
508static struct k_clock *clockid_to_kclock(const clockid_t id)
509{
510 if (id < 0)
511 return &clock_posix_cpu;
512
513 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
514 return NULL;
515 return &posix_clocks[id];
516}
517
838394fb
TG
518static int common_timer_create(struct k_itimer *new_timer)
519{
520 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
521 return 0;
522}
523
1da177e4
LT
524/* Create a POSIX.1b interval timer. */
525
362e9c07
HC
526SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
527 struct sigevent __user *, timer_event_spec,
528 timer_t __user *, created_timer_id)
1da177e4 529{
838394fb 530 struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 531 struct k_itimer *new_timer;
ef864c95 532 int error, new_timer_id;
1da177e4
LT
533 sigevent_t event;
534 int it_id_set = IT_ID_NOT_SET;
535
838394fb 536 if (!kc)
1da177e4 537 return -EINVAL;
838394fb
TG
538 if (!kc->timer_create)
539 return -EOPNOTSUPP;
1da177e4
LT
540
541 new_timer = alloc_posix_timer();
542 if (unlikely(!new_timer))
543 return -EAGAIN;
544
545 spin_lock_init(&new_timer->it_lock);
546 retry:
547 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
548 error = -EAGAIN;
549 goto out;
550 }
551 spin_lock_irq(&idr_lock);
5a51b713 552 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 553 spin_unlock_irq(&idr_lock);
ef864c95
ON
554 if (error) {
555 if (error == -EAGAIN)
556 goto retry;
1da177e4 557 /*
0b0a3e7b 558 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
559 * full (proper POSIX return value for this)
560 */
561 error = -EAGAIN;
562 goto out;
563 }
564
565 it_id_set = IT_ID_SET;
566 new_timer->it_id = (timer_t) new_timer_id;
567 new_timer->it_clock = which_clock;
568 new_timer->it_overrun = -1;
1da177e4 569
1da177e4
LT
570 if (timer_event_spec) {
571 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
572 error = -EFAULT;
573 goto out;
574 }
36b2f046 575 rcu_read_lock();
89992102 576 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 577 rcu_read_unlock();
89992102 578 if (!new_timer->it_pid) {
1da177e4
LT
579 error = -EINVAL;
580 goto out;
581 }
582 } else {
5a9fa730
ON
583 event.sigev_notify = SIGEV_SIGNAL;
584 event.sigev_signo = SIGALRM;
585 event.sigev_value.sival_int = new_timer->it_id;
89992102 586 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
587 }
588
5a9fa730
ON
589 new_timer->it_sigev_notify = event.sigev_notify;
590 new_timer->sigq->info.si_signo = event.sigev_signo;
591 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 592 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 593 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 594
2b08de00
AV
595 if (copy_to_user(created_timer_id,
596 &new_timer_id, sizeof (new_timer_id))) {
597 error = -EFAULT;
598 goto out;
599 }
600
838394fb 601 error = kc->timer_create(new_timer);
45e0fffc
AV
602 if (error)
603 goto out;
604
36b2f046 605 spin_lock_irq(&current->sighand->siglock);
27af4245 606 new_timer->it_signal = current->signal;
36b2f046
ON
607 list_add(&new_timer->list, &current->signal->posix_timers);
608 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
609
610 return 0;
838394fb 611 /*
1da177e4
LT
612 * In the case of the timer belonging to another task, after
613 * the task is unlocked, the timer is owned by the other task
614 * and may cease to exist at any time. Don't use or modify
615 * new_timer after the unlock call.
616 */
1da177e4 617out:
ef864c95 618 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
619 return error;
620}
621
1da177e4
LT
622/*
623 * Locking issues: We need to protect the result of the id look up until
624 * we get the timer locked down so it is not deleted under us. The
625 * removal is done under the idr spinlock so we use that here to bridge
626 * the find to the timer lock. To avoid a dead lock, the timer id MUST
627 * be release with out holding the timer lock.
628 */
20f33a03 629static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
630{
631 struct k_itimer *timr;
632 /*
633 * Watch out here. We do a irqsave on the idr_lock and pass the
634 * flags part over to the timer lock. Must not let interrupts in
635 * while we are moving the lock.
636 */
1da177e4 637 spin_lock_irqsave(&idr_lock, *flags);
31d92845 638 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
639 if (timr) {
640 spin_lock(&timr->it_lock);
89992102 641 if (timr->it_signal == current->signal) {
179394af 642 spin_unlock(&idr_lock);
31d92845
ON
643 return timr;
644 }
645 spin_unlock(&timr->it_lock);
646 }
647 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 648
31d92845 649 return NULL;
1da177e4
LT
650}
651
652/*
653 * Get the time remaining on a POSIX.1b interval timer. This function
654 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
655 * mess with irq.
656 *
657 * We have a couple of messes to clean up here. First there is the case
658 * of a timer that has a requeue pending. These timers should appear to
659 * be in the timer list with an expiry as if we were to requeue them
660 * now.
661 *
662 * The second issue is the SIGEV_NONE timer which may be active but is
663 * not really ever put in the timer list (to save system resources).
664 * This timer may be expired, and if so, we will do it here. Otherwise
665 * it is the same as a requeue pending timer WRT to what we should
666 * report.
667 */
668static void
669common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
670{
3b98a532 671 ktime_t now, remaining, iv;
becf8b5d 672 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 673
becf8b5d 674 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 675
3b98a532
RZ
676 iv = timr->it.real.interval;
677
becf8b5d 678 /* interval timer ? */
3b98a532
RZ
679 if (iv.tv64)
680 cur_setting->it_interval = ktime_to_timespec(iv);
681 else if (!hrtimer_active(timer) &&
682 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 683 return;
3b98a532
RZ
684
685 now = timer->base->get_time();
686
becf8b5d 687 /*
3b98a532
RZ
688 * When a requeue is pending or this is a SIGEV_NONE
689 * timer move the expiry time forward by intervals, so
690 * expiry is > now.
becf8b5d 691 */
3b98a532
RZ
692 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
693 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 694 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 695
cc584b21 696 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 697 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
698 if (remaining.tv64 <= 0) {
699 /*
700 * A single shot SIGEV_NONE timer must return 0, when
701 * it is expired !
702 */
703 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
704 cur_setting->it_value.tv_nsec = 1;
705 } else
becf8b5d 706 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
707}
708
709/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
710SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
711 struct itimerspec __user *, setting)
1da177e4
LT
712{
713 struct k_itimer *timr;
714 struct itimerspec cur_setting;
715 unsigned long flags;
716
717 timr = lock_timer(timer_id, &flags);
718 if (!timr)
719 return -EINVAL;
720
721 CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
722
723 unlock_timer(timr, flags);
724
725 if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
726 return -EFAULT;
727
728 return 0;
729}
becf8b5d 730
1da177e4
LT
731/*
732 * Get the number of overruns of a POSIX.1b interval timer. This is to
733 * be the overrun of the timer last delivered. At the same time we are
734 * accumulating overruns on the next timer. The overrun is frozen when
735 * the signal is delivered, either at the notify time (if the info block
736 * is not queued) or at the actual delivery time (as we are informed by
737 * the call back to do_schedule_next_timer(). So all we need to do is
738 * to pick up the frozen overrun.
739 */
362e9c07 740SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
741{
742 struct k_itimer *timr;
743 int overrun;
5ba25331 744 unsigned long flags;
1da177e4
LT
745
746 timr = lock_timer(timer_id, &flags);
747 if (!timr)
748 return -EINVAL;
749
750 overrun = timr->it_overrun_last;
751 unlock_timer(timr, flags);
752
753 return overrun;
754}
1da177e4
LT
755
756/* Set a POSIX.1b interval timer. */
757/* timr->it_lock is taken. */
858119e1 758static int
1da177e4
LT
759common_timer_set(struct k_itimer *timr, int flags,
760 struct itimerspec *new_setting, struct itimerspec *old_setting)
761{
becf8b5d 762 struct hrtimer *timer = &timr->it.real.timer;
7978672c 763 enum hrtimer_mode mode;
1da177e4
LT
764
765 if (old_setting)
766 common_timer_get(timr, old_setting);
767
768 /* disable the timer */
becf8b5d 769 timr->it.real.interval.tv64 = 0;
1da177e4
LT
770 /*
771 * careful here. If smp we could be in the "fire" routine which will
772 * be spinning as we hold the lock. But this is ONLY an SMP issue.
773 */
becf8b5d 774 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 775 return TIMER_RETRY;
1da177e4
LT
776
777 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
778 ~REQUEUE_PENDING;
779 timr->it_overrun_last = 0;
1da177e4 780
becf8b5d
TG
781 /* switch off the timer when it_value is zero */
782 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
783 return 0;
1da177e4 784
c9cb2e3d 785 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 786 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 787 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 788
cc584b21 789 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
790
791 /* Convert interval */
792 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
793
794 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
795 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
796 /* Setup correct expiry time for relative timers */
5a7780e7 797 if (mode == HRTIMER_MODE_REL) {
cc584b21 798 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 799 }
becf8b5d 800 return 0;
952bbc87 801 }
becf8b5d 802
cc584b21 803 hrtimer_start_expires(timer, mode);
1da177e4
LT
804 return 0;
805}
806
807/* Set a POSIX.1b interval timer */
362e9c07
HC
808SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
809 const struct itimerspec __user *, new_setting,
810 struct itimerspec __user *, old_setting)
1da177e4
LT
811{
812 struct k_itimer *timr;
813 struct itimerspec new_spec, old_spec;
814 int error = 0;
5ba25331 815 unsigned long flag;
1da177e4
LT
816 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
817
818 if (!new_setting)
819 return -EINVAL;
820
821 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
822 return -EFAULT;
823
becf8b5d
TG
824 if (!timespec_valid(&new_spec.it_interval) ||
825 !timespec_valid(&new_spec.it_value))
1da177e4
LT
826 return -EINVAL;
827retry:
828 timr = lock_timer(timer_id, &flag);
829 if (!timr)
830 return -EINVAL;
831
832 error = CLOCK_DISPATCH(timr->it_clock, timer_set,
833 (timr, flags, &new_spec, rtn));
834
835 unlock_timer(timr, flag);
836 if (error == TIMER_RETRY) {
837 rtn = NULL; // We already got the old time...
838 goto retry;
839 }
840
becf8b5d
TG
841 if (old_setting && !error &&
842 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
843 error = -EFAULT;
844
845 return error;
846}
847
848static inline int common_timer_del(struct k_itimer *timer)
849{
becf8b5d 850 timer->it.real.interval.tv64 = 0;
f972be33 851
becf8b5d 852 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 853 return TIMER_RETRY;
1da177e4
LT
854 return 0;
855}
856
857static inline int timer_delete_hook(struct k_itimer *timer)
858{
859 return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
860}
861
862/* Delete a POSIX.1b interval timer. */
362e9c07 863SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
864{
865 struct k_itimer *timer;
5ba25331 866 unsigned long flags;
1da177e4 867
1da177e4 868retry_delete:
1da177e4
LT
869 timer = lock_timer(timer_id, &flags);
870 if (!timer)
871 return -EINVAL;
872
becf8b5d 873 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
874 unlock_timer(timer, flags);
875 goto retry_delete;
876 }
becf8b5d 877
1da177e4
LT
878 spin_lock(&current->sighand->siglock);
879 list_del(&timer->list);
880 spin_unlock(&current->sighand->siglock);
881 /*
882 * This keeps any tasks waiting on the spin lock from thinking
883 * they got something (see the lock code above).
884 */
89992102 885 timer->it_signal = NULL;
4b7a1304 886
1da177e4
LT
887 unlock_timer(timer, flags);
888 release_posix_timer(timer, IT_ID_SET);
889 return 0;
890}
becf8b5d 891
1da177e4
LT
892/*
893 * return timer owned by the process, used by exit_itimers
894 */
858119e1 895static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
896{
897 unsigned long flags;
898
1da177e4 899retry_delete:
1da177e4
LT
900 spin_lock_irqsave(&timer->it_lock, flags);
901
becf8b5d 902 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
903 unlock_timer(timer, flags);
904 goto retry_delete;
905 }
1da177e4
LT
906 list_del(&timer->list);
907 /*
908 * This keeps any tasks waiting on the spin lock from thinking
909 * they got something (see the lock code above).
910 */
89992102 911 timer->it_signal = NULL;
4b7a1304 912
1da177e4
LT
913 unlock_timer(timer, flags);
914 release_posix_timer(timer, IT_ID_SET);
915}
916
917/*
25f407f0 918 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
919 * references to the shared signal_struct.
920 */
921void exit_itimers(struct signal_struct *sig)
922{
923 struct k_itimer *tmr;
924
925 while (!list_empty(&sig->posix_timers)) {
926 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
927 itimer_delete(tmr);
928 }
929}
930
362e9c07
HC
931SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
932 const struct timespec __user *, tp)
1da177e4 933{
26f9a479 934 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
935 struct timespec new_tp;
936
26f9a479 937 if (!kc || !kc->clock_set)
1da177e4 938 return -EINVAL;
26f9a479 939
1da177e4
LT
940 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
941 return -EFAULT;
942
26f9a479 943 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
944}
945
362e9c07
HC
946SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
947 struct timespec __user *,tp)
1da177e4 948{
42285777 949 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
950 struct timespec kernel_tp;
951 int error;
952
42285777 953 if (!kc)
1da177e4 954 return -EINVAL;
42285777
TG
955
956 error = kc->clock_get(which_clock, &kernel_tp);
957
1da177e4
LT
958 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
959 error = -EFAULT;
960
961 return error;
1da177e4
LT
962}
963
362e9c07
HC
964SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
965 struct timespec __user *, tp)
1da177e4 966{
e5e542ee 967 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
968 struct timespec rtn_tp;
969 int error;
970
e5e542ee 971 if (!kc)
1da177e4
LT
972 return -EINVAL;
973
e5e542ee 974 error = kc->clock_getres(which_clock, &rtn_tp);
1da177e4 975
e5e542ee 976 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1da177e4 977 error = -EFAULT;
1da177e4
LT
978
979 return error;
980}
981
97735f25
TG
982/*
983 * nanosleep for monotonic and realtime clocks
984 */
985static int common_nsleep(const clockid_t which_clock, int flags,
986 struct timespec *tsave, struct timespec __user *rmtp)
987{
080344b9
ON
988 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
989 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
990 which_clock);
97735f25 991}
1da177e4 992
362e9c07
HC
993SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
994 const struct timespec __user *, rqtp,
995 struct timespec __user *, rmtp)
1da177e4 996{
a5cd2880 997 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 998 struct timespec t;
1da177e4 999
a5cd2880 1000 if (!kc)
1da177e4 1001 return -EINVAL;
a5cd2880
TG
1002 if (!kc->nsleep)
1003 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1004
1005 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1006 return -EFAULT;
1007
5f82b2b7 1008 if (!timespec_valid(&t))
1da177e4
LT
1009 return -EINVAL;
1010
a5cd2880 1011 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1012}
1711ef38 1013
1711ef38
TA
1014/*
1015 * This will restart clock_nanosleep. This is required only by
1016 * compat_clock_nanosleep_restart for now.
1017 */
59bd5bc2 1018long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38 1019{
3751f9f2 1020 clockid_t which_clock = restart_block->nanosleep.index;
59bd5bc2
TG
1021 struct k_clock *kc = clockid_to_kclock(which_clock);
1022
1023 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1024 return -EINVAL;
1711ef38 1025
59bd5bc2 1026 return kc->nsleep_restart(restart_block);
1711ef38 1027}