]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/posix-timers.c
posix-timers: Make posix-cpu-timers functions static
[mirror_ubuntu-hirsute-kernel.git] / kernel / posix-timers.c
CommitLineData
1da177e4 1/*
f30c2269 2 * linux/kernel/posix-timers.c
1da177e4
LT
3 *
4 *
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
7 *
8 * Copyright (C) 2002 2003 by MontaVista Software.
9 *
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
22
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
28 */
29
30/* These are all the functions necessary to implement
31 * POSIX clocks & timers
32 */
33#include <linux/mm.h>
1da177e4
LT
34#include <linux/interrupt.h>
35#include <linux/slab.h>
36#include <linux/time.h>
97d1f15b 37#include <linux/mutex.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
1da177e4
LT
40#include <linux/list.h>
41#include <linux/init.h>
42#include <linux/compiler.h>
43#include <linux/idr.h>
44#include <linux/posix-timers.h>
45#include <linux/syscalls.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48#include <linux/module.h>
49
1da177e4
LT
50/*
51 * Management arrays for POSIX timers. Timers are kept in slab memory
52 * Timer ids are allocated by an external routine that keeps track of the
53 * id and the timer. The external interface is:
54 *
55 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
56 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
57 * related it to <ptr>
58 * void idr_remove(struct idr *idp, int id); to release <id>
59 * void idr_init(struct idr *idp); to initialize <idp>
60 * which we supply.
61 * The idr_get_new *may* call slab for more memory so it must not be
62 * called under a spin lock. Likewise idr_remore may release memory
63 * (but it may be ok to do this under a lock...).
64 * idr_find is just a memory look up and is quite fast. A -1 return
65 * indicates that the requested id does not exist.
66 */
67
68/*
69 * Lets keep our timers in a slab cache :-)
70 */
e18b890b 71static struct kmem_cache *posix_timers_cache;
1da177e4
LT
72static struct idr posix_timers_id;
73static DEFINE_SPINLOCK(idr_lock);
74
1da177e4
LT
75/*
76 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
77 * SIGEV values. Here we put out an error if this assumption fails.
78 */
79#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
80 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
81#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
82#endif
83
65da528d
TG
84/*
85 * parisc wants ENOTSUP instead of EOPNOTSUPP
86 */
87#ifndef ENOTSUP
88# define ENANOSLEEP_NOTSUP EOPNOTSUPP
89#else
90# define ENANOSLEEP_NOTSUP ENOTSUP
91#endif
1da177e4
LT
92
93/*
94 * The timer ID is turned into a timer address by idr_find().
95 * Verifying a valid ID consists of:
96 *
97 * a) checking that idr_find() returns other than -1.
98 * b) checking that the timer id matches the one in the timer itself.
99 * c) that the timer owner is in the callers thread group.
100 */
101
102/*
103 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
104 * to implement others. This structure defines the various
105 * clocks and allows the possibility of adding others. We
106 * provide an interface to add clocks to the table and expect
107 * the "arch" code to add at least one clock that is high
108 * resolution. Here we define the standard CLOCK_REALTIME as a
109 * 1/HZ resolution clock.
110 *
111 * RESOLUTION: Clock resolution is used to round up timer and interval
112 * times, NOT to report clock times, which are reported with as
113 * much resolution as the system can muster. In some cases this
114 * resolution may depend on the underlying clock hardware and
115 * may not be quantifiable until run time, and only then is the
116 * necessary code is written. The standard says we should say
117 * something about this issue in the documentation...
118 *
119 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
120 * various clock functions. For clocks that use the standard
121 * system timer code these entries should be NULL. This will
122 * allow dispatch without the overhead of indirect function
123 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
124 * must supply functions here, even if the function just returns
125 * ENOSYS. The standard POSIX timer management code assumes the
126 * following: 1.) The k_itimer struct (sched.h) is used for the
27af4245 127 * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
1da177e4
LT
128 * fields are not modified by timer code.
129 *
130 * At this time all functions EXCEPT clock_nanosleep can be
131 * redirected by the CLOCKS structure. Clock_nanosleep is in
132 * there, but the code ignores it.
133 *
134 * Permissions: It is assumed that the clock_settime() function defined
135 * for each clock will take care of permission checks. Some
136 * clocks may be set able by any user (i.e. local process
137 * clocks) others not. Currently the only set able clock we
138 * have is CLOCK_REALTIME and its high res counter part, both of
139 * which we beg off on and pass to do_sys_settimeofday().
140 */
141
142static struct k_clock posix_clocks[MAX_CLOCKS];
becf8b5d 143
1da177e4 144/*
becf8b5d 145 * These ones are defined below.
1da177e4 146 */
becf8b5d
TG
147static int common_nsleep(const clockid_t, int flags, struct timespec *t,
148 struct timespec __user *rmtp);
838394fb 149static int common_timer_create(struct k_itimer *new_timer);
becf8b5d
TG
150static void common_timer_get(struct k_itimer *, struct itimerspec *);
151static int common_timer_set(struct k_itimer *, int,
152 struct itimerspec *, struct itimerspec *);
153static int common_timer_del(struct k_itimer *timer);
1da177e4 154
c9cb2e3d 155static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
1da177e4 156
20f33a03
NK
157static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
158
159#define lock_timer(tid, flags) \
160({ struct k_itimer *__timr; \
161 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
162 __timr; \
163})
1da177e4
LT
164
165static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
166{
167 spin_unlock_irqrestore(&timr->it_lock, flags);
168}
169
42285777
TG
170/* Get clock_realtime */
171static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
172{
173 ktime_get_real_ts(tp);
174 return 0;
175}
176
26f9a479
TG
177/* Set clock_realtime */
178static int posix_clock_realtime_set(const clockid_t which_clock,
179 const struct timespec *tp)
180{
181 return do_sys_settimeofday(tp, NULL);
182}
183
becf8b5d
TG
184/*
185 * Get monotonic time for posix timers
186 */
187static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
188{
189 ktime_get_ts(tp);
190 return 0;
191}
1da177e4 192
2d42244a
JS
193/*
194 * Get monotonic time for posix timers
195 */
196static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
197{
198 getrawmonotonic(tp);
199 return 0;
200}
201
da15cfda
JS
202
203static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
204{
205 *tp = current_kernel_time();
206 return 0;
207}
208
209static int posix_get_monotonic_coarse(clockid_t which_clock,
210 struct timespec *tp)
211{
212 *tp = get_monotonic_coarse();
213 return 0;
214}
215
6622e670 216static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
da15cfda
JS
217{
218 *tp = ktime_to_timespec(KTIME_LOW_RES);
219 return 0;
220}
1da177e4
LT
221/*
222 * Initialize everything, well, just everything in Posix clocks/timers ;)
223 */
224static __init int init_posix_timers(void)
225{
becf8b5d 226 struct k_clock clock_realtime = {
2fd1f040 227 .clock_getres = hrtimer_get_res,
42285777 228 .clock_get = posix_clock_realtime_get,
26f9a479 229 .clock_set = posix_clock_realtime_set,
a5cd2880 230 .nsleep = common_nsleep,
59bd5bc2 231 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 232 .timer_create = common_timer_create,
27722df1 233 .timer_set = common_timer_set,
a7319fa2 234 .timer_get = common_timer_get,
6761c670 235 .timer_del = common_timer_del,
1da177e4 236 };
becf8b5d 237 struct k_clock clock_monotonic = {
2fd1f040
TG
238 .clock_getres = hrtimer_get_res,
239 .clock_get = posix_ktime_get_ts,
a5cd2880 240 .nsleep = common_nsleep,
59bd5bc2 241 .nsleep_restart = hrtimer_nanosleep_restart,
838394fb 242 .timer_create = common_timer_create,
27722df1 243 .timer_set = common_timer_set,
a7319fa2 244 .timer_get = common_timer_get,
6761c670 245 .timer_del = common_timer_del,
1da177e4 246 };
2d42244a 247 struct k_clock clock_monotonic_raw = {
2fd1f040
TG
248 .clock_getres = hrtimer_get_res,
249 .clock_get = posix_get_monotonic_raw,
2d42244a 250 };
da15cfda 251 struct k_clock clock_realtime_coarse = {
2fd1f040
TG
252 .clock_getres = posix_get_coarse_res,
253 .clock_get = posix_get_realtime_coarse,
da15cfda
JS
254 };
255 struct k_clock clock_monotonic_coarse = {
2fd1f040
TG
256 .clock_getres = posix_get_coarse_res,
257 .clock_get = posix_get_monotonic_coarse,
da15cfda 258 };
1da177e4
LT
259
260 register_posix_clock(CLOCK_REALTIME, &clock_realtime);
261 register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
2d42244a 262 register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
da15cfda
JS
263 register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
264 register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
1da177e4
LT
265
266 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
267 sizeof (struct k_itimer), 0, SLAB_PANIC,
268 NULL);
1da177e4
LT
269 idr_init(&posix_timers_id);
270 return 0;
271}
272
273__initcall(init_posix_timers);
274
1da177e4
LT
275static void schedule_next_timer(struct k_itimer *timr)
276{
44f21475
RZ
277 struct hrtimer *timer = &timr->it.real.timer;
278
becf8b5d 279 if (timr->it.real.interval.tv64 == 0)
1da177e4
LT
280 return;
281
4d672e7a
DL
282 timr->it_overrun += (unsigned int) hrtimer_forward(timer,
283 timer->base->get_time(),
284 timr->it.real.interval);
44f21475 285
1da177e4
LT
286 timr->it_overrun_last = timr->it_overrun;
287 timr->it_overrun = -1;
288 ++timr->it_requeue_pending;
44f21475 289 hrtimer_restart(timer);
1da177e4
LT
290}
291
292/*
293 * This function is exported for use by the signal deliver code. It is
294 * called just prior to the info block being released and passes that
295 * block to us. It's function is to update the overrun entry AND to
296 * restart the timer. It should only be called if the timer is to be
297 * restarted (i.e. we have flagged this in the sys_private entry of the
298 * info block).
299 *
300 * To protect aginst the timer going away while the interrupt is queued,
301 * we require that the it_requeue_pending flag be set.
302 */
303void do_schedule_next_timer(struct siginfo *info)
304{
305 struct k_itimer *timr;
306 unsigned long flags;
307
308 timr = lock_timer(info->si_tid, &flags);
309
becf8b5d
TG
310 if (timr && timr->it_requeue_pending == info->si_sys_private) {
311 if (timr->it_clock < 0)
312 posix_cpu_timer_schedule(timr);
313 else
314 schedule_next_timer(timr);
1da177e4 315
54da1174 316 info->si_overrun += timr->it_overrun_last;
becf8b5d
TG
317 }
318
b6557fbc
TG
319 if (timr)
320 unlock_timer(timr, flags);
1da177e4
LT
321}
322
ba661292 323int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 324{
27af4245
ON
325 struct task_struct *task;
326 int shared, ret = -1;
ba661292
ON
327 /*
328 * FIXME: if ->sigq is queued we can race with
329 * dequeue_signal()->do_schedule_next_timer().
330 *
331 * If dequeue_signal() sees the "right" value of
332 * si_sys_private it calls do_schedule_next_timer().
333 * We re-queue ->sigq and drop ->it_lock().
334 * do_schedule_next_timer() locks the timer
335 * and re-schedules it while ->sigq is pending.
336 * Not really bad, but not that we want.
337 */
1da177e4 338 timr->sigq->info.si_sys_private = si_private;
1da177e4 339
27af4245
ON
340 rcu_read_lock();
341 task = pid_task(timr->it_pid, PIDTYPE_PID);
342 if (task) {
343 shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
344 ret = send_sigqueue(timr->sigq, task, shared);
345 }
346 rcu_read_unlock();
4aa73611
ON
347 /* If we failed to send the signal the timer stops. */
348 return ret > 0;
1da177e4
LT
349}
350EXPORT_SYMBOL_GPL(posix_timer_event);
351
352/*
353 * This function gets called when a POSIX.1b interval timer expires. It
354 * is used as a callback from the kernel internal timer. The
355 * run_timer_list code ALWAYS calls with interrupts on.
356
357 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
358 */
c9cb2e3d 359static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 360{
05cfb614 361 struct k_itimer *timr;
1da177e4 362 unsigned long flags;
becf8b5d 363 int si_private = 0;
c9cb2e3d 364 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 365
05cfb614 366 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 367 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 368
becf8b5d
TG
369 if (timr->it.real.interval.tv64 != 0)
370 si_private = ++timr->it_requeue_pending;
1da177e4 371
becf8b5d
TG
372 if (posix_timer_event(timr, si_private)) {
373 /*
374 * signal was not sent because of sig_ignor
375 * we will not get a call back to restart it AND
376 * it should be restarted.
377 */
378 if (timr->it.real.interval.tv64 != 0) {
58229a18
TG
379 ktime_t now = hrtimer_cb_get_time(timer);
380
381 /*
382 * FIXME: What we really want, is to stop this
383 * timer completely and restart it in case the
384 * SIG_IGN is removed. This is a non trivial
385 * change which involves sighand locking
386 * (sigh !), which we don't want to do late in
387 * the release cycle.
388 *
389 * For now we just let timers with an interval
390 * less than a jiffie expire every jiffie to
391 * avoid softirq starvation in case of SIG_IGN
392 * and a very small interval, which would put
393 * the timer right back on the softirq pending
394 * list. By moving now ahead of time we trick
395 * hrtimer_forward() to expire the timer
396 * later, while we still maintain the overrun
397 * accuracy, but have some inconsistency in
398 * the timer_gettime() case. This is at least
399 * better than a starved softirq. A more
400 * complex fix which solves also another related
401 * inconsistency is already in the pipeline.
402 */
403#ifdef CONFIG_HIGH_RES_TIMERS
404 {
405 ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
406
407 if (timr->it.real.interval.tv64 < kj.tv64)
408 now = ktime_add(now, kj);
409 }
410#endif
4d672e7a 411 timr->it_overrun += (unsigned int)
58229a18 412 hrtimer_forward(timer, now,
becf8b5d
TG
413 timr->it.real.interval);
414 ret = HRTIMER_RESTART;
a0a0c28c 415 ++timr->it_requeue_pending;
1da177e4 416 }
1da177e4 417 }
1da177e4 418
becf8b5d
TG
419 unlock_timer(timr, flags);
420 return ret;
421}
1da177e4 422
27af4245 423static struct pid *good_sigevent(sigevent_t * event)
1da177e4
LT
424{
425 struct task_struct *rtn = current->group_leader;
426
427 if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
8dc86af0 428 (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
bac0abd6 429 !same_thread_group(rtn, current) ||
1da177e4
LT
430 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
431 return NULL;
432
433 if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
434 ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
435 return NULL;
436
27af4245 437 return task_pid(rtn);
1da177e4
LT
438}
439
a924b04d 440void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
1da177e4
LT
441{
442 if ((unsigned) clock_id >= MAX_CLOCKS) {
4359ac0a
TG
443 printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
444 clock_id);
445 return;
446 }
447
448 if (!new_clock->clock_get) {
449 printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
450 clock_id);
451 return;
452 }
453 if (!new_clock->clock_getres) {
454 printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
1da177e4
LT
455 clock_id);
456 return;
457 }
458
459 posix_clocks[clock_id] = *new_clock;
460}
461EXPORT_SYMBOL_GPL(register_posix_clock);
462
463static struct k_itimer * alloc_posix_timer(void)
464{
465 struct k_itimer *tmr;
c3762229 466 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
467 if (!tmr)
468 return tmr;
1da177e4
LT
469 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
470 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 471 return NULL;
1da177e4 472 }
ba661292 473 memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
1da177e4
LT
474 return tmr;
475}
476
477#define IT_ID_SET 1
478#define IT_ID_NOT_SET 0
479static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
480{
481 if (it_id_set) {
482 unsigned long flags;
483 spin_lock_irqsave(&idr_lock, flags);
484 idr_remove(&posix_timers_id, tmr->it_id);
485 spin_unlock_irqrestore(&idr_lock, flags);
486 }
89992102 487 put_pid(tmr->it_pid);
1da177e4 488 sigqueue_free(tmr->sigq);
1da177e4
LT
489 kmem_cache_free(posix_timers_cache, tmr);
490}
491
cc785ac2
TG
492static struct k_clock *clockid_to_kclock(const clockid_t id)
493{
494 if (id < 0)
495 return &clock_posix_cpu;
496
497 if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
498 return NULL;
499 return &posix_clocks[id];
500}
501
838394fb
TG
502static int common_timer_create(struct k_itimer *new_timer)
503{
504 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
505 return 0;
506}
507
1da177e4
LT
508/* Create a POSIX.1b interval timer. */
509
362e9c07
HC
510SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
511 struct sigevent __user *, timer_event_spec,
512 timer_t __user *, created_timer_id)
1da177e4 513{
838394fb 514 struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 515 struct k_itimer *new_timer;
ef864c95 516 int error, new_timer_id;
1da177e4
LT
517 sigevent_t event;
518 int it_id_set = IT_ID_NOT_SET;
519
838394fb 520 if (!kc)
1da177e4 521 return -EINVAL;
838394fb
TG
522 if (!kc->timer_create)
523 return -EOPNOTSUPP;
1da177e4
LT
524
525 new_timer = alloc_posix_timer();
526 if (unlikely(!new_timer))
527 return -EAGAIN;
528
529 spin_lock_init(&new_timer->it_lock);
530 retry:
531 if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
532 error = -EAGAIN;
533 goto out;
534 }
535 spin_lock_irq(&idr_lock);
5a51b713 536 error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
1da177e4 537 spin_unlock_irq(&idr_lock);
ef864c95
ON
538 if (error) {
539 if (error == -EAGAIN)
540 goto retry;
1da177e4 541 /*
0b0a3e7b 542 * Weird looking, but we return EAGAIN if the IDR is
1da177e4
LT
543 * full (proper POSIX return value for this)
544 */
545 error = -EAGAIN;
546 goto out;
547 }
548
549 it_id_set = IT_ID_SET;
550 new_timer->it_id = (timer_t) new_timer_id;
551 new_timer->it_clock = which_clock;
552 new_timer->it_overrun = -1;
1da177e4 553
1da177e4
LT
554 if (timer_event_spec) {
555 if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
556 error = -EFAULT;
557 goto out;
558 }
36b2f046 559 rcu_read_lock();
89992102 560 new_timer->it_pid = get_pid(good_sigevent(&event));
36b2f046 561 rcu_read_unlock();
89992102 562 if (!new_timer->it_pid) {
1da177e4
LT
563 error = -EINVAL;
564 goto out;
565 }
566 } else {
5a9fa730
ON
567 event.sigev_notify = SIGEV_SIGNAL;
568 event.sigev_signo = SIGALRM;
569 event.sigev_value.sival_int = new_timer->it_id;
89992102 570 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
571 }
572
5a9fa730
ON
573 new_timer->it_sigev_notify = event.sigev_notify;
574 new_timer->sigq->info.si_signo = event.sigev_signo;
575 new_timer->sigq->info.si_value = event.sigev_value;
717835d9 576 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 577 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 578
2b08de00
AV
579 if (copy_to_user(created_timer_id,
580 &new_timer_id, sizeof (new_timer_id))) {
581 error = -EFAULT;
582 goto out;
583 }
584
838394fb 585 error = kc->timer_create(new_timer);
45e0fffc
AV
586 if (error)
587 goto out;
588
36b2f046 589 spin_lock_irq(&current->sighand->siglock);
27af4245 590 new_timer->it_signal = current->signal;
36b2f046
ON
591 list_add(&new_timer->list, &current->signal->posix_timers);
592 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
593
594 return 0;
838394fb 595 /*
1da177e4
LT
596 * In the case of the timer belonging to another task, after
597 * the task is unlocked, the timer is owned by the other task
598 * and may cease to exist at any time. Don't use or modify
599 * new_timer after the unlock call.
600 */
1da177e4 601out:
ef864c95 602 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
603 return error;
604}
605
1da177e4
LT
606/*
607 * Locking issues: We need to protect the result of the id look up until
608 * we get the timer locked down so it is not deleted under us. The
609 * removal is done under the idr spinlock so we use that here to bridge
610 * the find to the timer lock. To avoid a dead lock, the timer id MUST
611 * be release with out holding the timer lock.
612 */
20f33a03 613static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
614{
615 struct k_itimer *timr;
616 /*
617 * Watch out here. We do a irqsave on the idr_lock and pass the
618 * flags part over to the timer lock. Must not let interrupts in
619 * while we are moving the lock.
620 */
1da177e4 621 spin_lock_irqsave(&idr_lock, *flags);
31d92845 622 timr = idr_find(&posix_timers_id, (int)timer_id);
1da177e4
LT
623 if (timr) {
624 spin_lock(&timr->it_lock);
89992102 625 if (timr->it_signal == current->signal) {
179394af 626 spin_unlock(&idr_lock);
31d92845
ON
627 return timr;
628 }
629 spin_unlock(&timr->it_lock);
630 }
631 spin_unlock_irqrestore(&idr_lock, *flags);
1da177e4 632
31d92845 633 return NULL;
1da177e4
LT
634}
635
636/*
637 * Get the time remaining on a POSIX.1b interval timer. This function
638 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
639 * mess with irq.
640 *
641 * We have a couple of messes to clean up here. First there is the case
642 * of a timer that has a requeue pending. These timers should appear to
643 * be in the timer list with an expiry as if we were to requeue them
644 * now.
645 *
646 * The second issue is the SIGEV_NONE timer which may be active but is
647 * not really ever put in the timer list (to save system resources).
648 * This timer may be expired, and if so, we will do it here. Otherwise
649 * it is the same as a requeue pending timer WRT to what we should
650 * report.
651 */
652static void
653common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
654{
3b98a532 655 ktime_t now, remaining, iv;
becf8b5d 656 struct hrtimer *timer = &timr->it.real.timer;
1da177e4 657
becf8b5d 658 memset(cur_setting, 0, sizeof(struct itimerspec));
becf8b5d 659
3b98a532
RZ
660 iv = timr->it.real.interval;
661
becf8b5d 662 /* interval timer ? */
3b98a532
RZ
663 if (iv.tv64)
664 cur_setting->it_interval = ktime_to_timespec(iv);
665 else if (!hrtimer_active(timer) &&
666 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
becf8b5d 667 return;
3b98a532
RZ
668
669 now = timer->base->get_time();
670
becf8b5d 671 /*
3b98a532
RZ
672 * When a requeue is pending or this is a SIGEV_NONE
673 * timer move the expiry time forward by intervals, so
674 * expiry is > now.
becf8b5d 675 */
3b98a532
RZ
676 if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
677 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
4d672e7a 678 timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
3b98a532 679
cc584b21 680 remaining = ktime_sub(hrtimer_get_expires(timer), now);
becf8b5d 681 /* Return 0 only, when the timer is expired and not pending */
3b98a532
RZ
682 if (remaining.tv64 <= 0) {
683 /*
684 * A single shot SIGEV_NONE timer must return 0, when
685 * it is expired !
686 */
687 if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
688 cur_setting->it_value.tv_nsec = 1;
689 } else
becf8b5d 690 cur_setting->it_value = ktime_to_timespec(remaining);
1da177e4
LT
691}
692
693/* Get the time remaining on a POSIX.1b interval timer. */
362e9c07
HC
694SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
695 struct itimerspec __user *, setting)
1da177e4 696{
1da177e4 697 struct itimerspec cur_setting;
a7319fa2
TG
698 struct k_itimer *timr;
699 struct k_clock *kc;
1da177e4 700 unsigned long flags;
a7319fa2 701 int ret = 0;
1da177e4
LT
702
703 timr = lock_timer(timer_id, &flags);
704 if (!timr)
705 return -EINVAL;
706
a7319fa2
TG
707 kc = clockid_to_kclock(timr->it_clock);
708 if (WARN_ON_ONCE(!kc || !kc->timer_get))
709 ret = -EINVAL;
710 else
711 kc->timer_get(timr, &cur_setting);
1da177e4
LT
712
713 unlock_timer(timr, flags);
714
a7319fa2 715 if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
1da177e4
LT
716 return -EFAULT;
717
a7319fa2 718 return ret;
1da177e4 719}
becf8b5d 720
1da177e4
LT
721/*
722 * Get the number of overruns of a POSIX.1b interval timer. This is to
723 * be the overrun of the timer last delivered. At the same time we are
724 * accumulating overruns on the next timer. The overrun is frozen when
725 * the signal is delivered, either at the notify time (if the info block
726 * is not queued) or at the actual delivery time (as we are informed by
727 * the call back to do_schedule_next_timer(). So all we need to do is
728 * to pick up the frozen overrun.
729 */
362e9c07 730SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
731{
732 struct k_itimer *timr;
733 int overrun;
5ba25331 734 unsigned long flags;
1da177e4
LT
735
736 timr = lock_timer(timer_id, &flags);
737 if (!timr)
738 return -EINVAL;
739
740 overrun = timr->it_overrun_last;
741 unlock_timer(timr, flags);
742
743 return overrun;
744}
1da177e4
LT
745
746/* Set a POSIX.1b interval timer. */
747/* timr->it_lock is taken. */
858119e1 748static int
1da177e4
LT
749common_timer_set(struct k_itimer *timr, int flags,
750 struct itimerspec *new_setting, struct itimerspec *old_setting)
751{
becf8b5d 752 struct hrtimer *timer = &timr->it.real.timer;
7978672c 753 enum hrtimer_mode mode;
1da177e4
LT
754
755 if (old_setting)
756 common_timer_get(timr, old_setting);
757
758 /* disable the timer */
becf8b5d 759 timr->it.real.interval.tv64 = 0;
1da177e4
LT
760 /*
761 * careful here. If smp we could be in the "fire" routine which will
762 * be spinning as we hold the lock. But this is ONLY an SMP issue.
763 */
becf8b5d 764 if (hrtimer_try_to_cancel(timer) < 0)
1da177e4 765 return TIMER_RETRY;
1da177e4
LT
766
767 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
768 ~REQUEUE_PENDING;
769 timr->it_overrun_last = 0;
1da177e4 770
becf8b5d
TG
771 /* switch off the timer when it_value is zero */
772 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
773 return 0;
1da177e4 774
c9cb2e3d 775 mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
7978672c 776 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
7978672c 777 timr->it.real.timer.function = posix_timer_fn;
becf8b5d 778
cc584b21 779 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
becf8b5d
TG
780
781 /* Convert interval */
782 timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
783
784 /* SIGEV_NONE timers are not queued ! See common_timer_get */
952bbc87
TG
785 if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
786 /* Setup correct expiry time for relative timers */
5a7780e7 787 if (mode == HRTIMER_MODE_REL) {
cc584b21 788 hrtimer_add_expires(timer, timer->base->get_time());
5a7780e7 789 }
becf8b5d 790 return 0;
952bbc87 791 }
becf8b5d 792
cc584b21 793 hrtimer_start_expires(timer, mode);
1da177e4
LT
794 return 0;
795}
796
797/* Set a POSIX.1b interval timer */
362e9c07
HC
798SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
799 const struct itimerspec __user *, new_setting,
800 struct itimerspec __user *, old_setting)
1da177e4
LT
801{
802 struct k_itimer *timr;
803 struct itimerspec new_spec, old_spec;
804 int error = 0;
5ba25331 805 unsigned long flag;
1da177e4 806 struct itimerspec *rtn = old_setting ? &old_spec : NULL;
27722df1 807 struct k_clock *kc;
1da177e4
LT
808
809 if (!new_setting)
810 return -EINVAL;
811
812 if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
813 return -EFAULT;
814
becf8b5d
TG
815 if (!timespec_valid(&new_spec.it_interval) ||
816 !timespec_valid(&new_spec.it_value))
1da177e4
LT
817 return -EINVAL;
818retry:
819 timr = lock_timer(timer_id, &flag);
820 if (!timr)
821 return -EINVAL;
822
27722df1
TG
823 kc = clockid_to_kclock(timr->it_clock);
824 if (WARN_ON_ONCE(!kc || !kc->timer_set))
825 error = -EINVAL;
826 else
827 error = kc->timer_set(timr, flags, &new_spec, rtn);
1da177e4
LT
828
829 unlock_timer(timr, flag);
830 if (error == TIMER_RETRY) {
831 rtn = NULL; // We already got the old time...
832 goto retry;
833 }
834
becf8b5d
TG
835 if (old_setting && !error &&
836 copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
1da177e4
LT
837 error = -EFAULT;
838
839 return error;
840}
841
6761c670 842static int common_timer_del(struct k_itimer *timer)
1da177e4 843{
becf8b5d 844 timer->it.real.interval.tv64 = 0;
f972be33 845
becf8b5d 846 if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
1da177e4 847 return TIMER_RETRY;
1da177e4
LT
848 return 0;
849}
850
851static inline int timer_delete_hook(struct k_itimer *timer)
852{
6761c670
TG
853 struct k_clock *kc = clockid_to_kclock(timer->it_clock);
854
855 if (WARN_ON_ONCE(!kc || !kc->timer_del))
856 return -EINVAL;
857 return kc->timer_del(timer);
1da177e4
LT
858}
859
860/* Delete a POSIX.1b interval timer. */
362e9c07 861SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
862{
863 struct k_itimer *timer;
5ba25331 864 unsigned long flags;
1da177e4 865
1da177e4 866retry_delete:
1da177e4
LT
867 timer = lock_timer(timer_id, &flags);
868 if (!timer)
869 return -EINVAL;
870
becf8b5d 871 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
872 unlock_timer(timer, flags);
873 goto retry_delete;
874 }
becf8b5d 875
1da177e4
LT
876 spin_lock(&current->sighand->siglock);
877 list_del(&timer->list);
878 spin_unlock(&current->sighand->siglock);
879 /*
880 * This keeps any tasks waiting on the spin lock from thinking
881 * they got something (see the lock code above).
882 */
89992102 883 timer->it_signal = NULL;
4b7a1304 884
1da177e4
LT
885 unlock_timer(timer, flags);
886 release_posix_timer(timer, IT_ID_SET);
887 return 0;
888}
becf8b5d 889
1da177e4
LT
890/*
891 * return timer owned by the process, used by exit_itimers
892 */
858119e1 893static void itimer_delete(struct k_itimer *timer)
1da177e4
LT
894{
895 unsigned long flags;
896
1da177e4 897retry_delete:
1da177e4
LT
898 spin_lock_irqsave(&timer->it_lock, flags);
899
becf8b5d 900 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
901 unlock_timer(timer, flags);
902 goto retry_delete;
903 }
1da177e4
LT
904 list_del(&timer->list);
905 /*
906 * This keeps any tasks waiting on the spin lock from thinking
907 * they got something (see the lock code above).
908 */
89992102 909 timer->it_signal = NULL;
4b7a1304 910
1da177e4
LT
911 unlock_timer(timer, flags);
912 release_posix_timer(timer, IT_ID_SET);
913}
914
915/*
25f407f0 916 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
917 * references to the shared signal_struct.
918 */
919void exit_itimers(struct signal_struct *sig)
920{
921 struct k_itimer *tmr;
922
923 while (!list_empty(&sig->posix_timers)) {
924 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
925 itimer_delete(tmr);
926 }
927}
928
362e9c07
HC
929SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
930 const struct timespec __user *, tp)
1da177e4 931{
26f9a479 932 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
933 struct timespec new_tp;
934
26f9a479 935 if (!kc || !kc->clock_set)
1da177e4 936 return -EINVAL;
26f9a479 937
1da177e4
LT
938 if (copy_from_user(&new_tp, tp, sizeof (*tp)))
939 return -EFAULT;
940
26f9a479 941 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
942}
943
362e9c07
HC
944SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
945 struct timespec __user *,tp)
1da177e4 946{
42285777 947 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
948 struct timespec kernel_tp;
949 int error;
950
42285777 951 if (!kc)
1da177e4 952 return -EINVAL;
42285777
TG
953
954 error = kc->clock_get(which_clock, &kernel_tp);
955
1da177e4
LT
956 if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
957 error = -EFAULT;
958
959 return error;
1da177e4
LT
960}
961
362e9c07
HC
962SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
963 struct timespec __user *, tp)
1da177e4 964{
e5e542ee 965 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4
LT
966 struct timespec rtn_tp;
967 int error;
968
e5e542ee 969 if (!kc)
1da177e4
LT
970 return -EINVAL;
971
e5e542ee 972 error = kc->clock_getres(which_clock, &rtn_tp);
1da177e4 973
e5e542ee 974 if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
1da177e4 975 error = -EFAULT;
1da177e4
LT
976
977 return error;
978}
979
97735f25
TG
980/*
981 * nanosleep for monotonic and realtime clocks
982 */
983static int common_nsleep(const clockid_t which_clock, int flags,
984 struct timespec *tsave, struct timespec __user *rmtp)
985{
080344b9
ON
986 return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
987 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
988 which_clock);
97735f25 989}
1da177e4 990
362e9c07
HC
991SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
992 const struct timespec __user *, rqtp,
993 struct timespec __user *, rmtp)
1da177e4 994{
a5cd2880 995 struct k_clock *kc = clockid_to_kclock(which_clock);
1da177e4 996 struct timespec t;
1da177e4 997
a5cd2880 998 if (!kc)
1da177e4 999 return -EINVAL;
a5cd2880
TG
1000 if (!kc->nsleep)
1001 return -ENANOSLEEP_NOTSUP;
1da177e4
LT
1002
1003 if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1004 return -EFAULT;
1005
5f82b2b7 1006 if (!timespec_valid(&t))
1da177e4
LT
1007 return -EINVAL;
1008
a5cd2880 1009 return kc->nsleep(which_clock, flags, &t, rmtp);
1da177e4 1010}
1711ef38 1011
1711ef38
TA
1012/*
1013 * This will restart clock_nanosleep. This is required only by
1014 * compat_clock_nanosleep_restart for now.
1015 */
59bd5bc2 1016long clock_nanosleep_restart(struct restart_block *restart_block)
1711ef38 1017{
3751f9f2 1018 clockid_t which_clock = restart_block->nanosleep.index;
59bd5bc2
TG
1019 struct k_clock *kc = clockid_to_kclock(which_clock);
1020
1021 if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
1022 return -EINVAL;
1711ef38 1023
59bd5bc2 1024 return kc->nsleep_restart(restart_block);
1711ef38 1025}