]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/power/snapshot.c
PM: Add comment describing relationships between PM callbacks to pm.h
[mirror_ubuntu-hirsute-kernel.git] / kernel / power / snapshot.c
CommitLineData
25761b6e 1/*
96bc7aec 2 * linux/kernel/power/snapshot.c
25761b6e 3 *
8357376d 4 * This file provides system snapshot/restore functionality for swsusp.
25761b6e 5 *
a2531293 6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8357376d 7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
25761b6e 8 *
8357376d 9 * This file is released under the GPLv2.
25761b6e
RW
10 *
11 */
12
f577eb30 13#include <linux/version.h>
25761b6e
RW
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
25761b6e 17#include <linux/delay.h>
25761b6e 18#include <linux/bitops.h>
25761b6e 19#include <linux/spinlock.h>
25761b6e 20#include <linux/kernel.h>
25761b6e
RW
21#include <linux/pm.h>
22#include <linux/device.h>
74dfd666 23#include <linux/init.h>
25761b6e
RW
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
846705de 28#include <linux/list.h>
5a0e3ad6 29#include <linux/slab.h>
25761b6e
RW
30
31#include <asm/uaccess.h>
32#include <asm/mmu_context.h>
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <asm/io.h>
36
25761b6e
RW
37#include "power.h"
38
74dfd666
RW
39static int swsusp_page_is_free(struct page *);
40static void swsusp_set_page_forbidden(struct page *);
41static void swsusp_unset_page_forbidden(struct page *);
42
ddeb6487
RW
43/*
44 * Number of bytes to reserve for memory allocations made by device drivers
45 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
46 * cause image creation to fail (tunable via /sys/power/reserved_size).
47 */
48unsigned long reserved_size;
49
50void __init hibernate_reserved_size_init(void)
51{
52 reserved_size = SPARE_PAGES * PAGE_SIZE;
53}
54
fe419535
RW
55/*
56 * Preferred image size in bytes (tunable via /sys/power/image_size).
1c1be3a9
RW
57 * When it is set to N, swsusp will do its best to ensure the image
58 * size will not exceed N bytes, but if that is impossible, it will
59 * try to create the smallest image possible.
fe419535 60 */
ac5c24ec
RW
61unsigned long image_size;
62
63void __init hibernate_image_size_init(void)
64{
1c1be3a9 65 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
ac5c24ec 66}
fe419535 67
8357376d
RW
68/* List of PBEs needed for restoring the pages that were allocated before
69 * the suspend and included in the suspend image, but have also been
70 * allocated by the "resume" kernel, so their contents cannot be written
71 * directly to their "original" page frames.
72 */
75534b50
RW
73struct pbe *restore_pblist;
74
8357376d 75/* Pointer to an auxiliary buffer (1 page) */
940864dd 76static void *buffer;
7088a5c0 77
f6143aa6
RW
78/**
79 * @safe_needed - on resume, for storing the PBE list and the image,
80 * we can only use memory pages that do not conflict with the pages
8357376d
RW
81 * used before suspend. The unsafe pages have PageNosaveFree set
82 * and we count them using unsafe_pages.
f6143aa6 83 *
8357376d
RW
84 * Each allocated image page is marked as PageNosave and PageNosaveFree
85 * so that swsusp_free() can release it.
f6143aa6
RW
86 */
87
0bcd888d
RW
88#define PG_ANY 0
89#define PG_SAFE 1
90#define PG_UNSAFE_CLEAR 1
91#define PG_UNSAFE_KEEP 0
92
940864dd 93static unsigned int allocated_unsafe_pages;
f6143aa6 94
8357376d 95static void *get_image_page(gfp_t gfp_mask, int safe_needed)
f6143aa6
RW
96{
97 void *res;
98
99 res = (void *)get_zeroed_page(gfp_mask);
100 if (safe_needed)
7be98234 101 while (res && swsusp_page_is_free(virt_to_page(res))) {
f6143aa6 102 /* The page is unsafe, mark it for swsusp_free() */
7be98234 103 swsusp_set_page_forbidden(virt_to_page(res));
940864dd 104 allocated_unsafe_pages++;
f6143aa6
RW
105 res = (void *)get_zeroed_page(gfp_mask);
106 }
107 if (res) {
7be98234
RW
108 swsusp_set_page_forbidden(virt_to_page(res));
109 swsusp_set_page_free(virt_to_page(res));
f6143aa6
RW
110 }
111 return res;
112}
113
114unsigned long get_safe_page(gfp_t gfp_mask)
115{
8357376d
RW
116 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
117}
118
5b6d15de
RW
119static struct page *alloc_image_page(gfp_t gfp_mask)
120{
8357376d
RW
121 struct page *page;
122
123 page = alloc_page(gfp_mask);
124 if (page) {
7be98234
RW
125 swsusp_set_page_forbidden(page);
126 swsusp_set_page_free(page);
8357376d
RW
127 }
128 return page;
f6143aa6
RW
129}
130
131/**
132 * free_image_page - free page represented by @addr, allocated with
8357376d 133 * get_image_page (page flags set by it must be cleared)
f6143aa6
RW
134 */
135
136static inline void free_image_page(void *addr, int clear_nosave_free)
137{
8357376d
RW
138 struct page *page;
139
140 BUG_ON(!virt_addr_valid(addr));
141
142 page = virt_to_page(addr);
143
7be98234 144 swsusp_unset_page_forbidden(page);
f6143aa6 145 if (clear_nosave_free)
7be98234 146 swsusp_unset_page_free(page);
8357376d
RW
147
148 __free_page(page);
f6143aa6
RW
149}
150
b788db79
RW
151/* struct linked_page is used to build chains of pages */
152
153#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
154
155struct linked_page {
156 struct linked_page *next;
157 char data[LINKED_PAGE_DATA_SIZE];
158} __attribute__((packed));
159
160static inline void
161free_list_of_pages(struct linked_page *list, int clear_page_nosave)
162{
163 while (list) {
164 struct linked_page *lp = list->next;
165
166 free_image_page(list, clear_page_nosave);
167 list = lp;
168 }
169}
170
171/**
172 * struct chain_allocator is used for allocating small objects out of
173 * a linked list of pages called 'the chain'.
174 *
175 * The chain grows each time when there is no room for a new object in
176 * the current page. The allocated objects cannot be freed individually.
177 * It is only possible to free them all at once, by freeing the entire
178 * chain.
179 *
180 * NOTE: The chain allocator may be inefficient if the allocated objects
181 * are not much smaller than PAGE_SIZE.
182 */
183
184struct chain_allocator {
185 struct linked_page *chain; /* the chain */
186 unsigned int used_space; /* total size of objects allocated out
187 * of the current page
188 */
189 gfp_t gfp_mask; /* mask for allocating pages */
190 int safe_needed; /* if set, only "safe" pages are allocated */
191};
192
193static void
194chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
195{
196 ca->chain = NULL;
197 ca->used_space = LINKED_PAGE_DATA_SIZE;
198 ca->gfp_mask = gfp_mask;
199 ca->safe_needed = safe_needed;
200}
201
202static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
203{
204 void *ret;
205
206 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
207 struct linked_page *lp;
208
8357376d 209 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
b788db79
RW
210 if (!lp)
211 return NULL;
212
213 lp->next = ca->chain;
214 ca->chain = lp;
215 ca->used_space = 0;
216 }
217 ret = ca->chain->data + ca->used_space;
218 ca->used_space += size;
219 return ret;
220}
221
b788db79
RW
222/**
223 * Data types related to memory bitmaps.
224 *
225 * Memory bitmap is a structure consiting of many linked lists of
226 * objects. The main list's elements are of type struct zone_bitmap
227 * and each of them corresonds to one zone. For each zone bitmap
228 * object there is a list of objects of type struct bm_block that
0d83304c 229 * represent each blocks of bitmap in which information is stored.
b788db79
RW
230 *
231 * struct memory_bitmap contains a pointer to the main list of zone
232 * bitmap objects, a struct bm_position used for browsing the bitmap,
233 * and a pointer to the list of pages used for allocating all of the
234 * zone bitmap objects and bitmap block objects.
235 *
236 * NOTE: It has to be possible to lay out the bitmap in memory
237 * using only allocations of order 0. Additionally, the bitmap is
238 * designed to work with arbitrary number of zones (this is over the
239 * top for now, but let's avoid making unnecessary assumptions ;-).
240 *
241 * struct zone_bitmap contains a pointer to a list of bitmap block
242 * objects and a pointer to the bitmap block object that has been
243 * most recently used for setting bits. Additionally, it contains the
244 * pfns that correspond to the start and end of the represented zone.
245 *
246 * struct bm_block contains a pointer to the memory page in which
0d83304c
AM
247 * information is stored (in the form of a block of bitmap)
248 * It also contains the pfns that correspond to the start and end of
249 * the represented memory area.
b788db79
RW
250 */
251
252#define BM_END_OF_MAP (~0UL)
253
8de03073 254#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
b788db79
RW
255
256struct bm_block {
846705de 257 struct list_head hook; /* hook into a list of bitmap blocks */
b788db79
RW
258 unsigned long start_pfn; /* pfn represented by the first bit */
259 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
0d83304c 260 unsigned long *data; /* bitmap representing pages */
b788db79
RW
261};
262
0d83304c
AM
263static inline unsigned long bm_block_bits(struct bm_block *bb)
264{
265 return bb->end_pfn - bb->start_pfn;
266}
267
b788db79
RW
268/* strcut bm_position is used for browsing memory bitmaps */
269
270struct bm_position {
b788db79 271 struct bm_block *block;
b788db79
RW
272 int bit;
273};
274
275struct memory_bitmap {
846705de 276 struct list_head blocks; /* list of bitmap blocks */
b788db79
RW
277 struct linked_page *p_list; /* list of pages used to store zone
278 * bitmap objects and bitmap block
279 * objects
280 */
281 struct bm_position cur; /* most recently used bit position */
282};
283
284/* Functions that operate on memory bitmaps */
285
b788db79
RW
286static void memory_bm_position_reset(struct memory_bitmap *bm)
287{
846705de 288 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
0d83304c 289 bm->cur.bit = 0;
b788db79
RW
290}
291
292static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
293
294/**
295 * create_bm_block_list - create a list of block bitmap objects
8de03073 296 * @pages - number of pages to track
846705de
RW
297 * @list - list to put the allocated blocks into
298 * @ca - chain allocator to be used for allocating memory
b788db79 299 */
846705de
RW
300static int create_bm_block_list(unsigned long pages,
301 struct list_head *list,
302 struct chain_allocator *ca)
b788db79 303{
846705de 304 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
b788db79
RW
305
306 while (nr_blocks-- > 0) {
307 struct bm_block *bb;
308
309 bb = chain_alloc(ca, sizeof(struct bm_block));
310 if (!bb)
846705de
RW
311 return -ENOMEM;
312 list_add(&bb->hook, list);
b788db79 313 }
846705de
RW
314
315 return 0;
b788db79
RW
316}
317
846705de
RW
318struct mem_extent {
319 struct list_head hook;
320 unsigned long start;
321 unsigned long end;
322};
323
b788db79 324/**
846705de
RW
325 * free_mem_extents - free a list of memory extents
326 * @list - list of extents to empty
b788db79 327 */
846705de
RW
328static void free_mem_extents(struct list_head *list)
329{
330 struct mem_extent *ext, *aux;
b788db79 331
846705de
RW
332 list_for_each_entry_safe(ext, aux, list, hook) {
333 list_del(&ext->hook);
334 kfree(ext);
335 }
336}
337
338/**
339 * create_mem_extents - create a list of memory extents representing
340 * contiguous ranges of PFNs
341 * @list - list to put the extents into
342 * @gfp_mask - mask to use for memory allocations
343 */
344static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
b788db79 345{
846705de 346 struct zone *zone;
b788db79 347
846705de 348 INIT_LIST_HEAD(list);
b788db79 349
ee99c71c 350 for_each_populated_zone(zone) {
846705de
RW
351 unsigned long zone_start, zone_end;
352 struct mem_extent *ext, *cur, *aux;
353
846705de
RW
354 zone_start = zone->zone_start_pfn;
355 zone_end = zone->zone_start_pfn + zone->spanned_pages;
356
357 list_for_each_entry(ext, list, hook)
358 if (zone_start <= ext->end)
359 break;
b788db79 360
846705de
RW
361 if (&ext->hook == list || zone_end < ext->start) {
362 /* New extent is necessary */
363 struct mem_extent *new_ext;
364
365 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
366 if (!new_ext) {
367 free_mem_extents(list);
368 return -ENOMEM;
369 }
370 new_ext->start = zone_start;
371 new_ext->end = zone_end;
372 list_add_tail(&new_ext->hook, &ext->hook);
373 continue;
374 }
375
376 /* Merge this zone's range of PFNs with the existing one */
377 if (zone_start < ext->start)
378 ext->start = zone_start;
379 if (zone_end > ext->end)
380 ext->end = zone_end;
381
382 /* More merging may be possible */
383 cur = ext;
384 list_for_each_entry_safe_continue(cur, aux, list, hook) {
385 if (zone_end < cur->start)
386 break;
387 if (zone_end < cur->end)
388 ext->end = cur->end;
389 list_del(&cur->hook);
390 kfree(cur);
391 }
b788db79 392 }
846705de
RW
393
394 return 0;
b788db79
RW
395}
396
397/**
398 * memory_bm_create - allocate memory for a memory bitmap
399 */
b788db79
RW
400static int
401memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
402{
403 struct chain_allocator ca;
846705de
RW
404 struct list_head mem_extents;
405 struct mem_extent *ext;
406 int error;
b788db79
RW
407
408 chain_init(&ca, gfp_mask, safe_needed);
846705de 409 INIT_LIST_HEAD(&bm->blocks);
b788db79 410
846705de
RW
411 error = create_mem_extents(&mem_extents, gfp_mask);
412 if (error)
413 return error;
b788db79 414
846705de
RW
415 list_for_each_entry(ext, &mem_extents, hook) {
416 struct bm_block *bb;
417 unsigned long pfn = ext->start;
418 unsigned long pages = ext->end - ext->start;
b788db79 419
846705de 420 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
b788db79 421
846705de
RW
422 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
423 if (error)
424 goto Error;
b788db79 425
846705de
RW
426 list_for_each_entry_continue(bb, &bm->blocks, hook) {
427 bb->data = get_image_page(gfp_mask, safe_needed);
428 if (!bb->data) {
429 error = -ENOMEM;
430 goto Error;
431 }
b788db79
RW
432
433 bb->start_pfn = pfn;
846705de 434 if (pages >= BM_BITS_PER_BLOCK) {
b788db79 435 pfn += BM_BITS_PER_BLOCK;
846705de 436 pages -= BM_BITS_PER_BLOCK;
b788db79
RW
437 } else {
438 /* This is executed only once in the loop */
846705de 439 pfn += pages;
b788db79
RW
440 }
441 bb->end_pfn = pfn;
b788db79 442 }
b788db79 443 }
846705de 444
b788db79
RW
445 bm->p_list = ca.chain;
446 memory_bm_position_reset(bm);
846705de
RW
447 Exit:
448 free_mem_extents(&mem_extents);
449 return error;
b788db79 450
846705de 451 Error:
b788db79
RW
452 bm->p_list = ca.chain;
453 memory_bm_free(bm, PG_UNSAFE_CLEAR);
846705de 454 goto Exit;
b788db79
RW
455}
456
457/**
458 * memory_bm_free - free memory occupied by the memory bitmap @bm
459 */
b788db79
RW
460static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
461{
846705de 462 struct bm_block *bb;
b788db79 463
846705de
RW
464 list_for_each_entry(bb, &bm->blocks, hook)
465 if (bb->data)
466 free_image_page(bb->data, clear_nosave_free);
b788db79 467
b788db79 468 free_list_of_pages(bm->p_list, clear_nosave_free);
846705de
RW
469
470 INIT_LIST_HEAD(&bm->blocks);
b788db79
RW
471}
472
473/**
74dfd666 474 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
b788db79
RW
475 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
476 * of @bm->cur_zone_bm are updated.
b788db79 477 */
a82f7119 478static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
74dfd666 479 void **addr, unsigned int *bit_nr)
b788db79 480{
b788db79
RW
481 struct bm_block *bb;
482
846705de
RW
483 /*
484 * Check if the pfn corresponds to the current bitmap block and find
485 * the block where it fits if this is not the case.
486 */
487 bb = bm->cur.block;
b788db79 488 if (pfn < bb->start_pfn)
846705de
RW
489 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
490 if (pfn >= bb->start_pfn)
491 break;
b788db79 492
846705de
RW
493 if (pfn >= bb->end_pfn)
494 list_for_each_entry_continue(bb, &bm->blocks, hook)
495 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
496 break;
74dfd666 497
846705de
RW
498 if (&bb->hook == &bm->blocks)
499 return -EFAULT;
500
501 /* The block has been found */
502 bm->cur.block = bb;
b788db79 503 pfn -= bb->start_pfn;
846705de 504 bm->cur.bit = pfn + 1;
0d83304c
AM
505 *bit_nr = pfn;
506 *addr = bb->data;
a82f7119 507 return 0;
74dfd666
RW
508}
509
510static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
511{
512 void *addr;
513 unsigned int bit;
a82f7119 514 int error;
74dfd666 515
a82f7119
RW
516 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
517 BUG_ON(error);
74dfd666
RW
518 set_bit(bit, addr);
519}
520
a82f7119
RW
521static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
522{
523 void *addr;
524 unsigned int bit;
525 int error;
526
527 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
528 if (!error)
529 set_bit(bit, addr);
530 return error;
531}
532
74dfd666
RW
533static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
534{
535 void *addr;
536 unsigned int bit;
a82f7119 537 int error;
74dfd666 538
a82f7119
RW
539 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
540 BUG_ON(error);
74dfd666
RW
541 clear_bit(bit, addr);
542}
543
544static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
545{
546 void *addr;
547 unsigned int bit;
a82f7119 548 int error;
74dfd666 549
a82f7119
RW
550 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
551 BUG_ON(error);
74dfd666 552 return test_bit(bit, addr);
b788db79
RW
553}
554
69643279
RW
555static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
556{
557 void *addr;
558 unsigned int bit;
559
560 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
561}
562
b788db79
RW
563/**
564 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
565 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
566 * returned.
567 *
568 * It is required to run memory_bm_position_reset() before the first call to
569 * this function.
570 */
571
572static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
573{
b788db79 574 struct bm_block *bb;
b788db79
RW
575 int bit;
576
846705de 577 bb = bm->cur.block;
b788db79 578 do {
846705de
RW
579 bit = bm->cur.bit;
580 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
581 if (bit < bm_block_bits(bb))
582 goto Return_pfn;
583
584 bb = list_entry(bb->hook.next, struct bm_block, hook);
585 bm->cur.block = bb;
586 bm->cur.bit = 0;
587 } while (&bb->hook != &bm->blocks);
588
b788db79
RW
589 memory_bm_position_reset(bm);
590 return BM_END_OF_MAP;
591
59a49335 592 Return_pfn:
0d83304c
AM
593 bm->cur.bit = bit + 1;
594 return bb->start_pfn + bit;
b788db79
RW
595}
596
74dfd666
RW
597/**
598 * This structure represents a range of page frames the contents of which
599 * should not be saved during the suspend.
600 */
601
602struct nosave_region {
603 struct list_head list;
604 unsigned long start_pfn;
605 unsigned long end_pfn;
606};
607
608static LIST_HEAD(nosave_regions);
609
610/**
611 * register_nosave_region - register a range of page frames the contents
612 * of which should not be saved during the suspend (to be used in the early
613 * initialization code)
614 */
615
616void __init
940d67f6
JB
617__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
618 int use_kmalloc)
74dfd666
RW
619{
620 struct nosave_region *region;
621
622 if (start_pfn >= end_pfn)
623 return;
624
625 if (!list_empty(&nosave_regions)) {
626 /* Try to extend the previous region (they should be sorted) */
627 region = list_entry(nosave_regions.prev,
628 struct nosave_region, list);
629 if (region->end_pfn == start_pfn) {
630 region->end_pfn = end_pfn;
631 goto Report;
632 }
633 }
940d67f6
JB
634 if (use_kmalloc) {
635 /* during init, this shouldn't fail */
636 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
637 BUG_ON(!region);
638 } else
639 /* This allocation cannot fail */
3c1596ef 640 region = alloc_bootmem(sizeof(struct nosave_region));
74dfd666
RW
641 region->start_pfn = start_pfn;
642 region->end_pfn = end_pfn;
643 list_add_tail(&region->list, &nosave_regions);
644 Report:
23976728 645 printk(KERN_INFO "PM: Registered nosave memory: %016lx - %016lx\n",
74dfd666
RW
646 start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
647}
648
649/*
650 * Set bits in this map correspond to the page frames the contents of which
651 * should not be saved during the suspend.
652 */
653static struct memory_bitmap *forbidden_pages_map;
654
655/* Set bits in this map correspond to free page frames. */
656static struct memory_bitmap *free_pages_map;
657
658/*
659 * Each page frame allocated for creating the image is marked by setting the
660 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
661 */
662
663void swsusp_set_page_free(struct page *page)
664{
665 if (free_pages_map)
666 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
667}
668
669static int swsusp_page_is_free(struct page *page)
670{
671 return free_pages_map ?
672 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
673}
674
675void swsusp_unset_page_free(struct page *page)
676{
677 if (free_pages_map)
678 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
679}
680
681static void swsusp_set_page_forbidden(struct page *page)
682{
683 if (forbidden_pages_map)
684 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
685}
686
687int swsusp_page_is_forbidden(struct page *page)
688{
689 return forbidden_pages_map ?
690 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
691}
692
693static void swsusp_unset_page_forbidden(struct page *page)
694{
695 if (forbidden_pages_map)
696 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
697}
698
699/**
700 * mark_nosave_pages - set bits corresponding to the page frames the
701 * contents of which should not be saved in a given bitmap.
702 */
703
704static void mark_nosave_pages(struct memory_bitmap *bm)
705{
706 struct nosave_region *region;
707
708 if (list_empty(&nosave_regions))
709 return;
710
711 list_for_each_entry(region, &nosave_regions, list) {
712 unsigned long pfn;
713
23976728 714 pr_debug("PM: Marking nosave pages: %016lx - %016lx\n",
74dfd666
RW
715 region->start_pfn << PAGE_SHIFT,
716 region->end_pfn << PAGE_SHIFT);
717
718 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
a82f7119
RW
719 if (pfn_valid(pfn)) {
720 /*
721 * It is safe to ignore the result of
722 * mem_bm_set_bit_check() here, since we won't
723 * touch the PFNs for which the error is
724 * returned anyway.
725 */
726 mem_bm_set_bit_check(bm, pfn);
727 }
74dfd666
RW
728 }
729}
730
731/**
732 * create_basic_memory_bitmaps - create bitmaps needed for marking page
733 * frames that should not be saved and free page frames. The pointers
734 * forbidden_pages_map and free_pages_map are only modified if everything
735 * goes well, because we don't want the bits to be used before both bitmaps
736 * are set up.
737 */
738
739int create_basic_memory_bitmaps(void)
740{
741 struct memory_bitmap *bm1, *bm2;
742 int error = 0;
743
744 BUG_ON(forbidden_pages_map || free_pages_map);
745
0709db60 746 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
747 if (!bm1)
748 return -ENOMEM;
749
0709db60 750 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
74dfd666
RW
751 if (error)
752 goto Free_first_object;
753
0709db60 754 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
74dfd666
RW
755 if (!bm2)
756 goto Free_first_bitmap;
757
0709db60 758 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
74dfd666
RW
759 if (error)
760 goto Free_second_object;
761
762 forbidden_pages_map = bm1;
763 free_pages_map = bm2;
764 mark_nosave_pages(forbidden_pages_map);
765
23976728 766 pr_debug("PM: Basic memory bitmaps created\n");
74dfd666
RW
767
768 return 0;
769
770 Free_second_object:
771 kfree(bm2);
772 Free_first_bitmap:
773 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
774 Free_first_object:
775 kfree(bm1);
776 return -ENOMEM;
777}
778
779/**
780 * free_basic_memory_bitmaps - free memory bitmaps allocated by
781 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
782 * so that the bitmaps themselves are not referred to while they are being
783 * freed.
784 */
785
786void free_basic_memory_bitmaps(void)
787{
788 struct memory_bitmap *bm1, *bm2;
789
790 BUG_ON(!(forbidden_pages_map && free_pages_map));
791
792 bm1 = forbidden_pages_map;
793 bm2 = free_pages_map;
794 forbidden_pages_map = NULL;
795 free_pages_map = NULL;
796 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
797 kfree(bm1);
798 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
799 kfree(bm2);
800
23976728 801 pr_debug("PM: Basic memory bitmaps freed\n");
74dfd666
RW
802}
803
b788db79
RW
804/**
805 * snapshot_additional_pages - estimate the number of additional pages
806 * be needed for setting up the suspend image data structures for given
807 * zone (usually the returned value is greater than the exact number)
808 */
809
810unsigned int snapshot_additional_pages(struct zone *zone)
811{
812 unsigned int res;
813
814 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
160cb5a9
NK
815 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
816 LINKED_PAGE_DATA_SIZE);
8357376d 817 return 2 * res;
b788db79
RW
818}
819
8357376d
RW
820#ifdef CONFIG_HIGHMEM
821/**
822 * count_free_highmem_pages - compute the total number of free highmem
823 * pages, system-wide.
824 */
825
826static unsigned int count_free_highmem_pages(void)
827{
828 struct zone *zone;
829 unsigned int cnt = 0;
830
ee99c71c
KM
831 for_each_populated_zone(zone)
832 if (is_highmem(zone))
d23ad423 833 cnt += zone_page_state(zone, NR_FREE_PAGES);
8357376d
RW
834
835 return cnt;
836}
837
838/**
839 * saveable_highmem_page - Determine whether a highmem page should be
840 * included in the suspend image.
841 *
842 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
843 * and it isn't a part of a free chunk of pages.
844 */
846705de 845static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
8357376d
RW
846{
847 struct page *page;
848
849 if (!pfn_valid(pfn))
850 return NULL;
851
852 page = pfn_to_page(pfn);
846705de
RW
853 if (page_zone(page) != zone)
854 return NULL;
8357376d
RW
855
856 BUG_ON(!PageHighMem(page));
857
7be98234
RW
858 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
859 PageReserved(page))
8357376d
RW
860 return NULL;
861
c6968e73
SG
862 if (page_is_guard(page))
863 return NULL;
864
8357376d
RW
865 return page;
866}
867
868/**
869 * count_highmem_pages - compute the total number of saveable highmem
870 * pages.
871 */
872
fe419535 873static unsigned int count_highmem_pages(void)
8357376d
RW
874{
875 struct zone *zone;
876 unsigned int n = 0;
877
98e73dc5 878 for_each_populated_zone(zone) {
8357376d
RW
879 unsigned long pfn, max_zone_pfn;
880
881 if (!is_highmem(zone))
882 continue;
883
884 mark_free_pages(zone);
885 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
886 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 887 if (saveable_highmem_page(zone, pfn))
8357376d
RW
888 n++;
889 }
890 return n;
891}
892#else
846705de
RW
893static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
894{
895 return NULL;
896}
8357376d
RW
897#endif /* CONFIG_HIGHMEM */
898
25761b6e 899/**
8a235efa
RW
900 * saveable_page - Determine whether a non-highmem page should be included
901 * in the suspend image.
25761b6e 902 *
8357376d
RW
903 * We should save the page if it isn't Nosave, and is not in the range
904 * of pages statically defined as 'unsaveable', and it isn't a part of
905 * a free chunk of pages.
25761b6e 906 */
846705de 907static struct page *saveable_page(struct zone *zone, unsigned long pfn)
25761b6e 908{
de491861 909 struct page *page;
25761b6e
RW
910
911 if (!pfn_valid(pfn))
ae83c5ee 912 return NULL;
25761b6e
RW
913
914 page = pfn_to_page(pfn);
846705de
RW
915 if (page_zone(page) != zone)
916 return NULL;
ae83c5ee 917
8357376d
RW
918 BUG_ON(PageHighMem(page));
919
7be98234 920 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
ae83c5ee 921 return NULL;
8357376d 922
8a235efa
RW
923 if (PageReserved(page)
924 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
ae83c5ee 925 return NULL;
25761b6e 926
c6968e73
SG
927 if (page_is_guard(page))
928 return NULL;
929
ae83c5ee 930 return page;
25761b6e
RW
931}
932
8357376d
RW
933/**
934 * count_data_pages - compute the total number of saveable non-highmem
935 * pages.
936 */
937
fe419535 938static unsigned int count_data_pages(void)
25761b6e
RW
939{
940 struct zone *zone;
ae83c5ee 941 unsigned long pfn, max_zone_pfn;
dc19d507 942 unsigned int n = 0;
25761b6e 943
98e73dc5 944 for_each_populated_zone(zone) {
25761b6e
RW
945 if (is_highmem(zone))
946 continue;
8357376d 947
25761b6e 948 mark_free_pages(zone);
ae83c5ee
RW
949 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
950 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
846705de 951 if (saveable_page(zone, pfn))
8357376d 952 n++;
25761b6e 953 }
a0f49651 954 return n;
25761b6e
RW
955}
956
8357376d
RW
957/* This is needed, because copy_page and memcpy are not usable for copying
958 * task structs.
959 */
960static inline void do_copy_page(long *dst, long *src)
f623f0db
RW
961{
962 int n;
963
f623f0db
RW
964 for (n = PAGE_SIZE / sizeof(long); n; n--)
965 *dst++ = *src++;
966}
967
8a235efa
RW
968
969/**
970 * safe_copy_page - check if the page we are going to copy is marked as
971 * present in the kernel page tables (this always is the case if
972 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
973 * kernel_page_present() always returns 'true').
974 */
975static void safe_copy_page(void *dst, struct page *s_page)
976{
977 if (kernel_page_present(s_page)) {
978 do_copy_page(dst, page_address(s_page));
979 } else {
980 kernel_map_pages(s_page, 1, 1);
981 do_copy_page(dst, page_address(s_page));
982 kernel_map_pages(s_page, 1, 0);
983 }
984}
985
986
8357376d
RW
987#ifdef CONFIG_HIGHMEM
988static inline struct page *
989page_is_saveable(struct zone *zone, unsigned long pfn)
990{
991 return is_highmem(zone) ?
846705de 992 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
8357376d
RW
993}
994
8a235efa 995static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d
RW
996{
997 struct page *s_page, *d_page;
998 void *src, *dst;
999
1000 s_page = pfn_to_page(src_pfn);
1001 d_page = pfn_to_page(dst_pfn);
1002 if (PageHighMem(s_page)) {
1003 src = kmap_atomic(s_page, KM_USER0);
1004 dst = kmap_atomic(d_page, KM_USER1);
1005 do_copy_page(dst, src);
8357376d 1006 kunmap_atomic(dst, KM_USER1);
61ecdb80 1007 kunmap_atomic(src, KM_USER0);
8357376d 1008 } else {
8357376d
RW
1009 if (PageHighMem(d_page)) {
1010 /* Page pointed to by src may contain some kernel
1011 * data modified by kmap_atomic()
1012 */
8a235efa 1013 safe_copy_page(buffer, s_page);
baa5835d 1014 dst = kmap_atomic(d_page, KM_USER0);
3ecb01df 1015 copy_page(dst, buffer);
8357376d
RW
1016 kunmap_atomic(dst, KM_USER0);
1017 } else {
8a235efa 1018 safe_copy_page(page_address(d_page), s_page);
8357376d
RW
1019 }
1020 }
1021}
1022#else
846705de 1023#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
8357376d 1024
8a235efa 1025static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
8357376d 1026{
8a235efa
RW
1027 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1028 pfn_to_page(src_pfn));
8357376d
RW
1029}
1030#endif /* CONFIG_HIGHMEM */
1031
b788db79
RW
1032static void
1033copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
25761b6e
RW
1034{
1035 struct zone *zone;
b788db79 1036 unsigned long pfn;
25761b6e 1037
98e73dc5 1038 for_each_populated_zone(zone) {
b788db79
RW
1039 unsigned long max_zone_pfn;
1040
25761b6e 1041 mark_free_pages(zone);
ae83c5ee 1042 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
b788db79 1043 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
8357376d 1044 if (page_is_saveable(zone, pfn))
b788db79 1045 memory_bm_set_bit(orig_bm, pfn);
25761b6e 1046 }
b788db79
RW
1047 memory_bm_position_reset(orig_bm);
1048 memory_bm_position_reset(copy_bm);
df7c4872 1049 for(;;) {
b788db79 1050 pfn = memory_bm_next_pfn(orig_bm);
df7c4872
FW
1051 if (unlikely(pfn == BM_END_OF_MAP))
1052 break;
1053 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1054 }
25761b6e
RW
1055}
1056
8357376d
RW
1057/* Total number of image pages */
1058static unsigned int nr_copy_pages;
1059/* Number of pages needed for saving the original pfns of the image pages */
1060static unsigned int nr_meta_pages;
64a473cb
RW
1061/*
1062 * Numbers of normal and highmem page frames allocated for hibernation image
1063 * before suspending devices.
1064 */
1065unsigned int alloc_normal, alloc_highmem;
1066/*
1067 * Memory bitmap used for marking saveable pages (during hibernation) or
1068 * hibernation image pages (during restore)
1069 */
1070static struct memory_bitmap orig_bm;
1071/*
1072 * Memory bitmap used during hibernation for marking allocated page frames that
1073 * will contain copies of saveable pages. During restore it is initially used
1074 * for marking hibernation image pages, but then the set bits from it are
1075 * duplicated in @orig_bm and it is released. On highmem systems it is next
1076 * used for marking "safe" highmem pages, but it has to be reinitialized for
1077 * this purpose.
1078 */
1079static struct memory_bitmap copy_bm;
8357376d 1080
25761b6e 1081/**
940864dd 1082 * swsusp_free - free pages allocated for the suspend.
cd560bb2 1083 *
940864dd
RW
1084 * Suspend pages are alocated before the atomic copy is made, so we
1085 * need to release them after the resume.
25761b6e
RW
1086 */
1087
1088void swsusp_free(void)
1089{
1090 struct zone *zone;
ae83c5ee 1091 unsigned long pfn, max_zone_pfn;
25761b6e 1092
98e73dc5 1093 for_each_populated_zone(zone) {
ae83c5ee
RW
1094 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1095 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1096 if (pfn_valid(pfn)) {
1097 struct page *page = pfn_to_page(pfn);
1098
7be98234
RW
1099 if (swsusp_page_is_forbidden(page) &&
1100 swsusp_page_is_free(page)) {
1101 swsusp_unset_page_forbidden(page);
1102 swsusp_unset_page_free(page);
8357376d 1103 __free_page(page);
25761b6e
RW
1104 }
1105 }
1106 }
f577eb30
RW
1107 nr_copy_pages = 0;
1108 nr_meta_pages = 0;
75534b50 1109 restore_pblist = NULL;
6e1819d6 1110 buffer = NULL;
64a473cb
RW
1111 alloc_normal = 0;
1112 alloc_highmem = 0;
25761b6e
RW
1113}
1114
4bb33435
RW
1115/* Helper functions used for the shrinking of memory. */
1116
1117#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1118
fe419535 1119/**
4bb33435
RW
1120 * preallocate_image_pages - Allocate a number of pages for hibernation image
1121 * @nr_pages: Number of page frames to allocate.
1122 * @mask: GFP flags to use for the allocation.
fe419535 1123 *
4bb33435
RW
1124 * Return value: Number of page frames actually allocated
1125 */
1126static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1127{
1128 unsigned long nr_alloc = 0;
1129
1130 while (nr_pages > 0) {
64a473cb
RW
1131 struct page *page;
1132
1133 page = alloc_image_page(mask);
1134 if (!page)
4bb33435 1135 break;
64a473cb
RW
1136 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1137 if (PageHighMem(page))
1138 alloc_highmem++;
1139 else
1140 alloc_normal++;
4bb33435
RW
1141 nr_pages--;
1142 nr_alloc++;
1143 }
1144
1145 return nr_alloc;
1146}
1147
6715045d
RW
1148static unsigned long preallocate_image_memory(unsigned long nr_pages,
1149 unsigned long avail_normal)
4bb33435 1150{
6715045d
RW
1151 unsigned long alloc;
1152
1153 if (avail_normal <= alloc_normal)
1154 return 0;
1155
1156 alloc = avail_normal - alloc_normal;
1157 if (nr_pages < alloc)
1158 alloc = nr_pages;
1159
1160 return preallocate_image_pages(alloc, GFP_IMAGE);
4bb33435
RW
1161}
1162
1163#ifdef CONFIG_HIGHMEM
1164static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1165{
1166 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1167}
1168
1169/**
1170 * __fraction - Compute (an approximation of) x * (multiplier / base)
fe419535 1171 */
4bb33435
RW
1172static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1173{
1174 x *= multiplier;
1175 do_div(x, base);
1176 return (unsigned long)x;
1177}
fe419535 1178
4bb33435
RW
1179static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1180 unsigned long highmem,
1181 unsigned long total)
fe419535 1182{
4bb33435
RW
1183 unsigned long alloc = __fraction(nr_pages, highmem, total);
1184
1185 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
fe419535 1186}
4bb33435
RW
1187#else /* CONFIG_HIGHMEM */
1188static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1189{
1190 return 0;
1191}
1192
1193static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1194 unsigned long highmem,
1195 unsigned long total)
1196{
1197 return 0;
1198}
1199#endif /* CONFIG_HIGHMEM */
fe419535 1200
4bb33435 1201/**
64a473cb
RW
1202 * free_unnecessary_pages - Release preallocated pages not needed for the image
1203 */
1204static void free_unnecessary_pages(void)
1205{
6715045d 1206 unsigned long save, to_free_normal, to_free_highmem;
64a473cb 1207
6715045d
RW
1208 save = count_data_pages();
1209 if (alloc_normal >= save) {
1210 to_free_normal = alloc_normal - save;
1211 save = 0;
1212 } else {
1213 to_free_normal = 0;
1214 save -= alloc_normal;
1215 }
1216 save += count_highmem_pages();
1217 if (alloc_highmem >= save) {
1218 to_free_highmem = alloc_highmem - save;
64a473cb
RW
1219 } else {
1220 to_free_highmem = 0;
4d4cf23c
RW
1221 save -= alloc_highmem;
1222 if (to_free_normal > save)
1223 to_free_normal -= save;
1224 else
1225 to_free_normal = 0;
64a473cb
RW
1226 }
1227
1228 memory_bm_position_reset(&copy_bm);
1229
a9c9b442 1230 while (to_free_normal > 0 || to_free_highmem > 0) {
64a473cb
RW
1231 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1232 struct page *page = pfn_to_page(pfn);
1233
1234 if (PageHighMem(page)) {
1235 if (!to_free_highmem)
1236 continue;
1237 to_free_highmem--;
1238 alloc_highmem--;
1239 } else {
1240 if (!to_free_normal)
1241 continue;
1242 to_free_normal--;
1243 alloc_normal--;
1244 }
1245 memory_bm_clear_bit(&copy_bm, pfn);
1246 swsusp_unset_page_forbidden(page);
1247 swsusp_unset_page_free(page);
1248 __free_page(page);
1249 }
1250}
1251
ef4aede3
RW
1252/**
1253 * minimum_image_size - Estimate the minimum acceptable size of an image
1254 * @saveable: Number of saveable pages in the system.
1255 *
1256 * We want to avoid attempting to free too much memory too hard, so estimate the
1257 * minimum acceptable size of a hibernation image to use as the lower limit for
1258 * preallocating memory.
1259 *
1260 * We assume that the minimum image size should be proportional to
1261 *
1262 * [number of saveable pages] - [number of pages that can be freed in theory]
1263 *
1264 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1265 * and (3) inactive anonymouns pages, (4) active and (5) inactive file pages,
1266 * minus mapped file pages.
1267 */
1268static unsigned long minimum_image_size(unsigned long saveable)
1269{
1270 unsigned long size;
1271
1272 size = global_page_state(NR_SLAB_RECLAIMABLE)
1273 + global_page_state(NR_ACTIVE_ANON)
1274 + global_page_state(NR_INACTIVE_ANON)
1275 + global_page_state(NR_ACTIVE_FILE)
1276 + global_page_state(NR_INACTIVE_FILE)
1277 - global_page_state(NR_FILE_MAPPED);
1278
1279 return saveable <= size ? 0 : saveable - size;
1280}
1281
64a473cb
RW
1282/**
1283 * hibernate_preallocate_memory - Preallocate memory for hibernation image
4bb33435
RW
1284 *
1285 * To create a hibernation image it is necessary to make a copy of every page
1286 * frame in use. We also need a number of page frames to be free during
1287 * hibernation for allocations made while saving the image and for device
1288 * drivers, in case they need to allocate memory from their hibernation
ddeb6487
RW
1289 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1290 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1291 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1292 * total number of available page frames and allocate at least
4bb33435 1293 *
ddeb6487
RW
1294 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1295 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
4bb33435
RW
1296 *
1297 * of them, which corresponds to the maximum size of a hibernation image.
1298 *
1299 * If image_size is set below the number following from the above formula,
1300 * the preallocation of memory is continued until the total number of saveable
ef4aede3
RW
1301 * pages in the system is below the requested image size or the minimum
1302 * acceptable image size returned by minimum_image_size(), whichever is greater.
4bb33435 1303 */
64a473cb 1304int hibernate_preallocate_memory(void)
fe419535 1305{
fe419535 1306 struct zone *zone;
4bb33435 1307 unsigned long saveable, size, max_size, count, highmem, pages = 0;
6715045d 1308 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
fe419535 1309 struct timeval start, stop;
64a473cb 1310 int error;
fe419535 1311
64a473cb 1312 printk(KERN_INFO "PM: Preallocating image memory... ");
fe419535 1313 do_gettimeofday(&start);
fe419535 1314
64a473cb
RW
1315 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1316 if (error)
1317 goto err_out;
1318
1319 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1320 if (error)
1321 goto err_out;
1322
1323 alloc_normal = 0;
1324 alloc_highmem = 0;
1325
4bb33435 1326 /* Count the number of saveable data pages. */
64a473cb 1327 save_highmem = count_highmem_pages();
4bb33435 1328 saveable = count_data_pages();
fe419535 1329
4bb33435
RW
1330 /*
1331 * Compute the total number of page frames we can use (count) and the
1332 * number of pages needed for image metadata (size).
1333 */
1334 count = saveable;
64a473cb
RW
1335 saveable += save_highmem;
1336 highmem = save_highmem;
4bb33435
RW
1337 size = 0;
1338 for_each_populated_zone(zone) {
1339 size += snapshot_additional_pages(zone);
1340 if (is_highmem(zone))
1341 highmem += zone_page_state(zone, NR_FREE_PAGES);
1342 else
1343 count += zone_page_state(zone, NR_FREE_PAGES);
1344 }
6715045d 1345 avail_normal = count;
4bb33435
RW
1346 count += highmem;
1347 count -= totalreserve_pages;
1348
85055dd8
MS
1349 /* Add number of pages required for page keys (s390 only). */
1350 size += page_key_additional_pages(saveable);
1351
4bb33435 1352 /* Compute the maximum number of saveable pages to leave in memory. */
ddeb6487
RW
1353 max_size = (count - (size + PAGES_FOR_IO)) / 2
1354 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
266f1a25 1355 /* Compute the desired number of image pages specified by image_size. */
4bb33435
RW
1356 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1357 if (size > max_size)
1358 size = max_size;
1359 /*
266f1a25
RW
1360 * If the desired number of image pages is at least as large as the
1361 * current number of saveable pages in memory, allocate page frames for
1362 * the image and we're done.
4bb33435 1363 */
64a473cb
RW
1364 if (size >= saveable) {
1365 pages = preallocate_image_highmem(save_highmem);
6715045d 1366 pages += preallocate_image_memory(saveable - pages, avail_normal);
4bb33435 1367 goto out;
64a473cb 1368 }
4bb33435 1369
ef4aede3
RW
1370 /* Estimate the minimum size of the image. */
1371 pages = minimum_image_size(saveable);
6715045d
RW
1372 /*
1373 * To avoid excessive pressure on the normal zone, leave room in it to
1374 * accommodate an image of the minimum size (unless it's already too
1375 * small, in which case don't preallocate pages from it at all).
1376 */
1377 if (avail_normal > pages)
1378 avail_normal -= pages;
1379 else
1380 avail_normal = 0;
ef4aede3
RW
1381 if (size < pages)
1382 size = min_t(unsigned long, pages, max_size);
1383
4bb33435
RW
1384 /*
1385 * Let the memory management subsystem know that we're going to need a
1386 * large number of page frames to allocate and make it free some memory.
1387 * NOTE: If this is not done, performance will be hurt badly in some
1388 * test cases.
1389 */
1390 shrink_all_memory(saveable - size);
1391
1392 /*
1393 * The number of saveable pages in memory was too high, so apply some
1394 * pressure to decrease it. First, make room for the largest possible
1395 * image and fail if that doesn't work. Next, try to decrease the size
ef4aede3
RW
1396 * of the image as much as indicated by 'size' using allocations from
1397 * highmem and non-highmem zones separately.
4bb33435
RW
1398 */
1399 pages_highmem = preallocate_image_highmem(highmem / 2);
1400 alloc = (count - max_size) - pages_highmem;
6715045d
RW
1401 pages = preallocate_image_memory(alloc, avail_normal);
1402 if (pages < alloc) {
1403 /* We have exhausted non-highmem pages, try highmem. */
1404 alloc -= pages;
1405 pages += pages_highmem;
1406 pages_highmem = preallocate_image_highmem(alloc);
1407 if (pages_highmem < alloc)
1408 goto err_out;
1409 pages += pages_highmem;
1410 /*
1411 * size is the desired number of saveable pages to leave in
1412 * memory, so try to preallocate (all memory - size) pages.
1413 */
1414 alloc = (count - pages) - size;
1415 pages += preallocate_image_highmem(alloc);
1416 } else {
1417 /*
1418 * There are approximately max_size saveable pages at this point
1419 * and we want to reduce this number down to size.
1420 */
1421 alloc = max_size - size;
1422 size = preallocate_highmem_fraction(alloc, highmem, count);
1423 pages_highmem += size;
1424 alloc -= size;
1425 size = preallocate_image_memory(alloc, avail_normal);
1426 pages_highmem += preallocate_image_highmem(alloc - size);
1427 pages += pages_highmem + size;
1428 }
4bb33435 1429
64a473cb
RW
1430 /*
1431 * We only need as many page frames for the image as there are saveable
1432 * pages in memory, but we have allocated more. Release the excessive
1433 * ones now.
1434 */
1435 free_unnecessary_pages();
4bb33435
RW
1436
1437 out:
fe419535 1438 do_gettimeofday(&stop);
64a473cb
RW
1439 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1440 swsusp_show_speed(&start, &stop, pages, "Allocated");
fe419535
RW
1441
1442 return 0;
64a473cb
RW
1443
1444 err_out:
1445 printk(KERN_CONT "\n");
1446 swsusp_free();
1447 return -ENOMEM;
fe419535
RW
1448}
1449
8357376d
RW
1450#ifdef CONFIG_HIGHMEM
1451/**
1452 * count_pages_for_highmem - compute the number of non-highmem pages
1453 * that will be necessary for creating copies of highmem pages.
1454 */
1455
1456static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1457{
64a473cb 1458 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
8357376d
RW
1459
1460 if (free_highmem >= nr_highmem)
1461 nr_highmem = 0;
1462 else
1463 nr_highmem -= free_highmem;
1464
1465 return nr_highmem;
1466}
1467#else
1468static unsigned int
1469count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1470#endif /* CONFIG_HIGHMEM */
25761b6e
RW
1471
1472/**
8357376d
RW
1473 * enough_free_mem - Make sure we have enough free memory for the
1474 * snapshot image.
25761b6e
RW
1475 */
1476
8357376d 1477static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
25761b6e 1478{
e5e2fa78 1479 struct zone *zone;
64a473cb 1480 unsigned int free = alloc_normal;
e5e2fa78 1481
98e73dc5 1482 for_each_populated_zone(zone)
8357376d 1483 if (!is_highmem(zone))
d23ad423 1484 free += zone_page_state(zone, NR_FREE_PAGES);
940864dd 1485
8357376d 1486 nr_pages += count_pages_for_highmem(nr_highmem);
64a473cb
RW
1487 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1488 nr_pages, PAGES_FOR_IO, free);
940864dd 1489
64a473cb 1490 return free > nr_pages + PAGES_FOR_IO;
25761b6e
RW
1491}
1492
8357376d
RW
1493#ifdef CONFIG_HIGHMEM
1494/**
1495 * get_highmem_buffer - if there are some highmem pages in the suspend
1496 * image, we may need the buffer to copy them and/or load their data.
1497 */
1498
1499static inline int get_highmem_buffer(int safe_needed)
1500{
1501 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1502 return buffer ? 0 : -ENOMEM;
1503}
1504
1505/**
1506 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1507 * Try to allocate as many pages as needed, but if the number of free
1508 * highmem pages is lesser than that, allocate them all.
1509 */
1510
1511static inline unsigned int
64a473cb 1512alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
8357376d
RW
1513{
1514 unsigned int to_alloc = count_free_highmem_pages();
1515
1516 if (to_alloc > nr_highmem)
1517 to_alloc = nr_highmem;
1518
1519 nr_highmem -= to_alloc;
1520 while (to_alloc-- > 0) {
1521 struct page *page;
1522
1523 page = alloc_image_page(__GFP_HIGHMEM);
1524 memory_bm_set_bit(bm, page_to_pfn(page));
1525 }
1526 return nr_highmem;
1527}
1528#else
1529static inline int get_highmem_buffer(int safe_needed) { return 0; }
1530
1531static inline unsigned int
64a473cb 1532alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
8357376d
RW
1533#endif /* CONFIG_HIGHMEM */
1534
1535/**
1536 * swsusp_alloc - allocate memory for the suspend image
1537 *
1538 * We first try to allocate as many highmem pages as there are
1539 * saveable highmem pages in the system. If that fails, we allocate
1540 * non-highmem pages for the copies of the remaining highmem ones.
1541 *
1542 * In this approach it is likely that the copies of highmem pages will
1543 * also be located in the high memory, because of the way in which
1544 * copy_data_pages() works.
1545 */
1546
b788db79
RW
1547static int
1548swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
8357376d 1549 unsigned int nr_pages, unsigned int nr_highmem)
054bd4c1 1550{
8357376d 1551 if (nr_highmem > 0) {
2e725a06 1552 if (get_highmem_buffer(PG_ANY))
64a473cb
RW
1553 goto err_out;
1554 if (nr_highmem > alloc_highmem) {
1555 nr_highmem -= alloc_highmem;
1556 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1557 }
8357376d 1558 }
64a473cb
RW
1559 if (nr_pages > alloc_normal) {
1560 nr_pages -= alloc_normal;
1561 while (nr_pages-- > 0) {
1562 struct page *page;
1563
1564 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1565 if (!page)
1566 goto err_out;
1567 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1568 }
25761b6e 1569 }
64a473cb 1570
b788db79 1571 return 0;
25761b6e 1572
64a473cb 1573 err_out:
b788db79 1574 swsusp_free();
2e725a06 1575 return -ENOMEM;
25761b6e
RW
1576}
1577
2e32a43e 1578asmlinkage int swsusp_save(void)
25761b6e 1579{
8357376d 1580 unsigned int nr_pages, nr_highmem;
25761b6e 1581
07c3bb57 1582 printk(KERN_INFO "PM: Creating hibernation image:\n");
25761b6e 1583
9f8f2172 1584 drain_local_pages(NULL);
a0f49651 1585 nr_pages = count_data_pages();
8357376d 1586 nr_highmem = count_highmem_pages();
23976728 1587 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
25761b6e 1588
8357376d 1589 if (!enough_free_mem(nr_pages, nr_highmem)) {
23976728 1590 printk(KERN_ERR "PM: Not enough free memory\n");
25761b6e
RW
1591 return -ENOMEM;
1592 }
1593
8357376d 1594 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
23976728 1595 printk(KERN_ERR "PM: Memory allocation failed\n");
a0f49651 1596 return -ENOMEM;
8357376d 1597 }
25761b6e
RW
1598
1599 /* During allocating of suspend pagedir, new cold pages may appear.
1600 * Kill them.
1601 */
9f8f2172 1602 drain_local_pages(NULL);
b788db79 1603 copy_data_pages(&copy_bm, &orig_bm);
25761b6e
RW
1604
1605 /*
1606 * End of critical section. From now on, we can write to memory,
1607 * but we should not touch disk. This specially means we must _not_
1608 * touch swap space! Except we must write out our image of course.
1609 */
1610
8357376d 1611 nr_pages += nr_highmem;
a0f49651 1612 nr_copy_pages = nr_pages;
8357376d 1613 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
a0f49651 1614
23976728
RW
1615 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1616 nr_pages);
8357376d 1617
25761b6e
RW
1618 return 0;
1619}
f577eb30 1620
d307c4a8
RW
1621#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1622static int init_header_complete(struct swsusp_info *info)
f577eb30 1623{
d307c4a8 1624 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
f577eb30 1625 info->version_code = LINUX_VERSION_CODE;
d307c4a8
RW
1626 return 0;
1627}
1628
1629static char *check_image_kernel(struct swsusp_info *info)
1630{
1631 if (info->version_code != LINUX_VERSION_CODE)
1632 return "kernel version";
1633 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1634 return "system type";
1635 if (strcmp(info->uts.release,init_utsname()->release))
1636 return "kernel release";
1637 if (strcmp(info->uts.version,init_utsname()->version))
1638 return "version";
1639 if (strcmp(info->uts.machine,init_utsname()->machine))
1640 return "machine";
1641 return NULL;
1642}
1643#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1644
af508b34
RW
1645unsigned long snapshot_get_image_size(void)
1646{
1647 return nr_copy_pages + nr_meta_pages + 1;
1648}
1649
d307c4a8
RW
1650static int init_header(struct swsusp_info *info)
1651{
1652 memset(info, 0, sizeof(struct swsusp_info));
f577eb30 1653 info->num_physpages = num_physpages;
f577eb30 1654 info->image_pages = nr_copy_pages;
af508b34 1655 info->pages = snapshot_get_image_size();
6e1819d6
RW
1656 info->size = info->pages;
1657 info->size <<= PAGE_SHIFT;
d307c4a8 1658 return init_header_complete(info);
f577eb30
RW
1659}
1660
1661/**
940864dd
RW
1662 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1663 * are stored in the array @buf[] (1 page at a time)
f577eb30
RW
1664 */
1665
b788db79 1666static inline void
940864dd 1667pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1668{
1669 int j;
1670
b788db79 1671 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
940864dd
RW
1672 buf[j] = memory_bm_next_pfn(bm);
1673 if (unlikely(buf[j] == BM_END_OF_MAP))
b788db79 1674 break;
85055dd8
MS
1675 /* Save page key for data page (s390 only). */
1676 page_key_read(buf + j);
f577eb30 1677 }
f577eb30
RW
1678}
1679
1680/**
1681 * snapshot_read_next - used for reading the system memory snapshot.
1682 *
1683 * On the first call to it @handle should point to a zeroed
1684 * snapshot_handle structure. The structure gets updated and a pointer
1685 * to it should be passed to this function every next time.
1686 *
f577eb30
RW
1687 * On success the function returns a positive number. Then, the caller
1688 * is allowed to read up to the returned number of bytes from the memory
d3c1b24c 1689 * location computed by the data_of() macro.
f577eb30
RW
1690 *
1691 * The function returns 0 to indicate the end of data stream condition,
1692 * and a negative number is returned on error. In such cases the
1693 * structure pointed to by @handle is not updated and should not be used
1694 * any more.
1695 */
1696
d3c1b24c 1697int snapshot_read_next(struct snapshot_handle *handle)
f577eb30 1698{
fb13a28b 1699 if (handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 1700 return 0;
b788db79 1701
f577eb30
RW
1702 if (!buffer) {
1703 /* This makes the buffer be freed by swsusp_free() */
8357376d 1704 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
f577eb30
RW
1705 if (!buffer)
1706 return -ENOMEM;
1707 }
d3c1b24c 1708 if (!handle->cur) {
d307c4a8
RW
1709 int error;
1710
1711 error = init_header((struct swsusp_info *)buffer);
1712 if (error)
1713 return error;
f577eb30 1714 handle->buffer = buffer;
b788db79
RW
1715 memory_bm_position_reset(&orig_bm);
1716 memory_bm_position_reset(&copy_bm);
d3c1b24c 1717 } else if (handle->cur <= nr_meta_pages) {
3ecb01df 1718 clear_page(buffer);
d3c1b24c
JS
1719 pack_pfns(buffer, &orig_bm);
1720 } else {
1721 struct page *page;
b788db79 1722
d3c1b24c
JS
1723 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1724 if (PageHighMem(page)) {
1725 /* Highmem pages are copied to the buffer,
1726 * because we can't return with a kmapped
1727 * highmem page (we may not be called again).
1728 */
1729 void *kaddr;
8357376d 1730
d3c1b24c 1731 kaddr = kmap_atomic(page, KM_USER0);
3ecb01df 1732 copy_page(buffer, kaddr);
d3c1b24c
JS
1733 kunmap_atomic(kaddr, KM_USER0);
1734 handle->buffer = buffer;
1735 } else {
1736 handle->buffer = page_address(page);
f577eb30 1737 }
f577eb30 1738 }
d3c1b24c
JS
1739 handle->cur++;
1740 return PAGE_SIZE;
f577eb30
RW
1741}
1742
1743/**
1744 * mark_unsafe_pages - mark the pages that cannot be used for storing
1745 * the image during resume, because they conflict with the pages that
1746 * had been used before suspend
1747 */
1748
940864dd 1749static int mark_unsafe_pages(struct memory_bitmap *bm)
f577eb30
RW
1750{
1751 struct zone *zone;
ae83c5ee 1752 unsigned long pfn, max_zone_pfn;
f577eb30
RW
1753
1754 /* Clear page flags */
98e73dc5 1755 for_each_populated_zone(zone) {
ae83c5ee
RW
1756 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1757 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1758 if (pfn_valid(pfn))
7be98234 1759 swsusp_unset_page_free(pfn_to_page(pfn));
f577eb30
RW
1760 }
1761
940864dd
RW
1762 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1763 memory_bm_position_reset(bm);
1764 do {
1765 pfn = memory_bm_next_pfn(bm);
1766 if (likely(pfn != BM_END_OF_MAP)) {
1767 if (likely(pfn_valid(pfn)))
7be98234 1768 swsusp_set_page_free(pfn_to_page(pfn));
940864dd
RW
1769 else
1770 return -EFAULT;
1771 }
1772 } while (pfn != BM_END_OF_MAP);
f577eb30 1773
940864dd 1774 allocated_unsafe_pages = 0;
968808b8 1775
f577eb30
RW
1776 return 0;
1777}
1778
940864dd
RW
1779static void
1780duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
f577eb30 1781{
940864dd
RW
1782 unsigned long pfn;
1783
1784 memory_bm_position_reset(src);
1785 pfn = memory_bm_next_pfn(src);
1786 while (pfn != BM_END_OF_MAP) {
1787 memory_bm_set_bit(dst, pfn);
1788 pfn = memory_bm_next_pfn(src);
f577eb30
RW
1789 }
1790}
1791
d307c4a8 1792static int check_header(struct swsusp_info *info)
f577eb30 1793{
d307c4a8 1794 char *reason;
f577eb30 1795
d307c4a8
RW
1796 reason = check_image_kernel(info);
1797 if (!reason && info->num_physpages != num_physpages)
f577eb30 1798 reason = "memory size";
f577eb30 1799 if (reason) {
23976728 1800 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
f577eb30
RW
1801 return -EPERM;
1802 }
1803 return 0;
1804}
1805
1806/**
1807 * load header - check the image header and copy data from it
1808 */
1809
940864dd
RW
1810static int
1811load_header(struct swsusp_info *info)
f577eb30
RW
1812{
1813 int error;
f577eb30 1814
940864dd 1815 restore_pblist = NULL;
f577eb30
RW
1816 error = check_header(info);
1817 if (!error) {
f577eb30
RW
1818 nr_copy_pages = info->image_pages;
1819 nr_meta_pages = info->pages - info->image_pages - 1;
1820 }
1821 return error;
1822}
1823
1824/**
940864dd
RW
1825 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1826 * the corresponding bit in the memory bitmap @bm
f577eb30 1827 */
69643279 1828static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
f577eb30
RW
1829{
1830 int j;
1831
940864dd
RW
1832 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1833 if (unlikely(buf[j] == BM_END_OF_MAP))
1834 break;
1835
85055dd8
MS
1836 /* Extract and buffer page key for data page (s390 only). */
1837 page_key_memorize(buf + j);
1838
69643279
RW
1839 if (memory_bm_pfn_present(bm, buf[j]))
1840 memory_bm_set_bit(bm, buf[j]);
1841 else
1842 return -EFAULT;
f577eb30 1843 }
69643279
RW
1844
1845 return 0;
f577eb30
RW
1846}
1847
8357376d
RW
1848/* List of "safe" pages that may be used to store data loaded from the suspend
1849 * image
1850 */
1851static struct linked_page *safe_pages_list;
1852
1853#ifdef CONFIG_HIGHMEM
1854/* struct highmem_pbe is used for creating the list of highmem pages that
1855 * should be restored atomically during the resume from disk, because the page
1856 * frames they have occupied before the suspend are in use.
1857 */
1858struct highmem_pbe {
1859 struct page *copy_page; /* data is here now */
1860 struct page *orig_page; /* data was here before the suspend */
1861 struct highmem_pbe *next;
1862};
1863
1864/* List of highmem PBEs needed for restoring the highmem pages that were
1865 * allocated before the suspend and included in the suspend image, but have
1866 * also been allocated by the "resume" kernel, so their contents cannot be
1867 * written directly to their "original" page frames.
1868 */
1869static struct highmem_pbe *highmem_pblist;
1870
1871/**
1872 * count_highmem_image_pages - compute the number of highmem pages in the
1873 * suspend image. The bits in the memory bitmap @bm that correspond to the
1874 * image pages are assumed to be set.
1875 */
1876
1877static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1878{
1879 unsigned long pfn;
1880 unsigned int cnt = 0;
1881
1882 memory_bm_position_reset(bm);
1883 pfn = memory_bm_next_pfn(bm);
1884 while (pfn != BM_END_OF_MAP) {
1885 if (PageHighMem(pfn_to_page(pfn)))
1886 cnt++;
1887
1888 pfn = memory_bm_next_pfn(bm);
1889 }
1890 return cnt;
1891}
1892
1893/**
1894 * prepare_highmem_image - try to allocate as many highmem pages as
1895 * there are highmem image pages (@nr_highmem_p points to the variable
1896 * containing the number of highmem image pages). The pages that are
1897 * "safe" (ie. will not be overwritten when the suspend image is
1898 * restored) have the corresponding bits set in @bm (it must be
1899 * unitialized).
1900 *
1901 * NOTE: This function should not be called if there are no highmem
1902 * image pages.
1903 */
1904
1905static unsigned int safe_highmem_pages;
1906
1907static struct memory_bitmap *safe_highmem_bm;
1908
1909static int
1910prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1911{
1912 unsigned int to_alloc;
1913
1914 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1915 return -ENOMEM;
1916
1917 if (get_highmem_buffer(PG_SAFE))
1918 return -ENOMEM;
1919
1920 to_alloc = count_free_highmem_pages();
1921 if (to_alloc > *nr_highmem_p)
1922 to_alloc = *nr_highmem_p;
1923 else
1924 *nr_highmem_p = to_alloc;
1925
1926 safe_highmem_pages = 0;
1927 while (to_alloc-- > 0) {
1928 struct page *page;
1929
1930 page = alloc_page(__GFP_HIGHMEM);
7be98234 1931 if (!swsusp_page_is_free(page)) {
8357376d
RW
1932 /* The page is "safe", set its bit the bitmap */
1933 memory_bm_set_bit(bm, page_to_pfn(page));
1934 safe_highmem_pages++;
1935 }
1936 /* Mark the page as allocated */
7be98234
RW
1937 swsusp_set_page_forbidden(page);
1938 swsusp_set_page_free(page);
8357376d
RW
1939 }
1940 memory_bm_position_reset(bm);
1941 safe_highmem_bm = bm;
1942 return 0;
1943}
1944
1945/**
1946 * get_highmem_page_buffer - for given highmem image page find the buffer
1947 * that suspend_write_next() should set for its caller to write to.
1948 *
1949 * If the page is to be saved to its "original" page frame or a copy of
1950 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1951 * the copy of the page is to be made in normal memory, so the address of
1952 * the copy is returned.
1953 *
1954 * If @buffer is returned, the caller of suspend_write_next() will write
1955 * the page's contents to @buffer, so they will have to be copied to the
1956 * right location on the next call to suspend_write_next() and it is done
1957 * with the help of copy_last_highmem_page(). For this purpose, if
1958 * @buffer is returned, @last_highmem page is set to the page to which
1959 * the data will have to be copied from @buffer.
1960 */
1961
1962static struct page *last_highmem_page;
1963
1964static void *
1965get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1966{
1967 struct highmem_pbe *pbe;
1968 void *kaddr;
1969
7be98234 1970 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
8357376d
RW
1971 /* We have allocated the "original" page frame and we can
1972 * use it directly to store the loaded page.
1973 */
1974 last_highmem_page = page;
1975 return buffer;
1976 }
1977 /* The "original" page frame has not been allocated and we have to
1978 * use a "safe" page frame to store the loaded page.
1979 */
1980 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1981 if (!pbe) {
1982 swsusp_free();
69643279 1983 return ERR_PTR(-ENOMEM);
8357376d
RW
1984 }
1985 pbe->orig_page = page;
1986 if (safe_highmem_pages > 0) {
1987 struct page *tmp;
1988
1989 /* Copy of the page will be stored in high memory */
1990 kaddr = buffer;
1991 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
1992 safe_highmem_pages--;
1993 last_highmem_page = tmp;
1994 pbe->copy_page = tmp;
1995 } else {
1996 /* Copy of the page will be stored in normal memory */
1997 kaddr = safe_pages_list;
1998 safe_pages_list = safe_pages_list->next;
1999 pbe->copy_page = virt_to_page(kaddr);
2000 }
2001 pbe->next = highmem_pblist;
2002 highmem_pblist = pbe;
2003 return kaddr;
2004}
2005
2006/**
2007 * copy_last_highmem_page - copy the contents of a highmem image from
2008 * @buffer, where the caller of snapshot_write_next() has place them,
2009 * to the right location represented by @last_highmem_page .
2010 */
2011
2012static void copy_last_highmem_page(void)
2013{
2014 if (last_highmem_page) {
2015 void *dst;
2016
2017 dst = kmap_atomic(last_highmem_page, KM_USER0);
3ecb01df 2018 copy_page(dst, buffer);
8357376d
RW
2019 kunmap_atomic(dst, KM_USER0);
2020 last_highmem_page = NULL;
2021 }
2022}
2023
2024static inline int last_highmem_page_copied(void)
2025{
2026 return !last_highmem_page;
2027}
2028
2029static inline void free_highmem_data(void)
2030{
2031 if (safe_highmem_bm)
2032 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2033
2034 if (buffer)
2035 free_image_page(buffer, PG_UNSAFE_CLEAR);
2036}
2037#else
2038static inline int get_safe_write_buffer(void) { return 0; }
2039
2040static unsigned int
2041count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2042
2043static inline int
2044prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2045{
2046 return 0;
2047}
2048
2049static inline void *
2050get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2051{
69643279 2052 return ERR_PTR(-EINVAL);
8357376d
RW
2053}
2054
2055static inline void copy_last_highmem_page(void) {}
2056static inline int last_highmem_page_copied(void) { return 1; }
2057static inline void free_highmem_data(void) {}
2058#endif /* CONFIG_HIGHMEM */
2059
f577eb30 2060/**
940864dd
RW
2061 * prepare_image - use the memory bitmap @bm to mark the pages that will
2062 * be overwritten in the process of restoring the system memory state
2063 * from the suspend image ("unsafe" pages) and allocate memory for the
2064 * image.
968808b8 2065 *
940864dd
RW
2066 * The idea is to allocate a new memory bitmap first and then allocate
2067 * as many pages as needed for the image data, but not to assign these
2068 * pages to specific tasks initially. Instead, we just mark them as
8357376d
RW
2069 * allocated and create a lists of "safe" pages that will be used
2070 * later. On systems with high memory a list of "safe" highmem pages is
2071 * also created.
f577eb30
RW
2072 */
2073
940864dd
RW
2074#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2075
940864dd
RW
2076static int
2077prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
f577eb30 2078{
8357376d 2079 unsigned int nr_pages, nr_highmem;
940864dd
RW
2080 struct linked_page *sp_list, *lp;
2081 int error;
f577eb30 2082
8357376d
RW
2083 /* If there is no highmem, the buffer will not be necessary */
2084 free_image_page(buffer, PG_UNSAFE_CLEAR);
2085 buffer = NULL;
2086
2087 nr_highmem = count_highmem_image_pages(bm);
940864dd
RW
2088 error = mark_unsafe_pages(bm);
2089 if (error)
2090 goto Free;
2091
2092 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2093 if (error)
2094 goto Free;
2095
2096 duplicate_memory_bitmap(new_bm, bm);
2097 memory_bm_free(bm, PG_UNSAFE_KEEP);
8357376d
RW
2098 if (nr_highmem > 0) {
2099 error = prepare_highmem_image(bm, &nr_highmem);
2100 if (error)
2101 goto Free;
2102 }
940864dd
RW
2103 /* Reserve some safe pages for potential later use.
2104 *
2105 * NOTE: This way we make sure there will be enough safe pages for the
2106 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2107 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2108 */
2109 sp_list = NULL;
2110 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
8357376d 2111 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2112 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2113 while (nr_pages > 0) {
8357376d 2114 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
940864dd 2115 if (!lp) {
f577eb30 2116 error = -ENOMEM;
940864dd
RW
2117 goto Free;
2118 }
2119 lp->next = sp_list;
2120 sp_list = lp;
2121 nr_pages--;
f577eb30 2122 }
940864dd
RW
2123 /* Preallocate memory for the image */
2124 safe_pages_list = NULL;
8357376d 2125 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
940864dd
RW
2126 while (nr_pages > 0) {
2127 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2128 if (!lp) {
2129 error = -ENOMEM;
2130 goto Free;
2131 }
7be98234 2132 if (!swsusp_page_is_free(virt_to_page(lp))) {
940864dd
RW
2133 /* The page is "safe", add it to the list */
2134 lp->next = safe_pages_list;
2135 safe_pages_list = lp;
968808b8 2136 }
940864dd 2137 /* Mark the page as allocated */
7be98234
RW
2138 swsusp_set_page_forbidden(virt_to_page(lp));
2139 swsusp_set_page_free(virt_to_page(lp));
940864dd 2140 nr_pages--;
968808b8 2141 }
940864dd
RW
2142 /* Free the reserved safe pages so that chain_alloc() can use them */
2143 while (sp_list) {
2144 lp = sp_list->next;
2145 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2146 sp_list = lp;
f577eb30 2147 }
940864dd
RW
2148 return 0;
2149
59a49335 2150 Free:
940864dd 2151 swsusp_free();
f577eb30
RW
2152 return error;
2153}
2154
940864dd
RW
2155/**
2156 * get_buffer - compute the address that snapshot_write_next() should
2157 * set for its caller to write to.
2158 */
2159
2160static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
968808b8 2161{
940864dd 2162 struct pbe *pbe;
69643279
RW
2163 struct page *page;
2164 unsigned long pfn = memory_bm_next_pfn(bm);
968808b8 2165
69643279
RW
2166 if (pfn == BM_END_OF_MAP)
2167 return ERR_PTR(-EFAULT);
2168
2169 page = pfn_to_page(pfn);
8357376d
RW
2170 if (PageHighMem(page))
2171 return get_highmem_page_buffer(page, ca);
2172
7be98234 2173 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
940864dd
RW
2174 /* We have allocated the "original" page frame and we can
2175 * use it directly to store the loaded page.
968808b8 2176 */
940864dd
RW
2177 return page_address(page);
2178
2179 /* The "original" page frame has not been allocated and we have to
2180 * use a "safe" page frame to store the loaded page.
968808b8 2181 */
940864dd
RW
2182 pbe = chain_alloc(ca, sizeof(struct pbe));
2183 if (!pbe) {
2184 swsusp_free();
69643279 2185 return ERR_PTR(-ENOMEM);
940864dd 2186 }
8357376d
RW
2187 pbe->orig_address = page_address(page);
2188 pbe->address = safe_pages_list;
940864dd
RW
2189 safe_pages_list = safe_pages_list->next;
2190 pbe->next = restore_pblist;
2191 restore_pblist = pbe;
8357376d 2192 return pbe->address;
968808b8
RW
2193}
2194
f577eb30
RW
2195/**
2196 * snapshot_write_next - used for writing the system memory snapshot.
2197 *
2198 * On the first call to it @handle should point to a zeroed
2199 * snapshot_handle structure. The structure gets updated and a pointer
2200 * to it should be passed to this function every next time.
2201 *
f577eb30
RW
2202 * On success the function returns a positive number. Then, the caller
2203 * is allowed to write up to the returned number of bytes to the memory
d3c1b24c 2204 * location computed by the data_of() macro.
f577eb30
RW
2205 *
2206 * The function returns 0 to indicate the "end of file" condition,
2207 * and a negative number is returned on error. In such cases the
2208 * structure pointed to by @handle is not updated and should not be used
2209 * any more.
2210 */
2211
d3c1b24c 2212int snapshot_write_next(struct snapshot_handle *handle)
f577eb30 2213{
940864dd 2214 static struct chain_allocator ca;
f577eb30
RW
2215 int error = 0;
2216
940864dd 2217 /* Check if we have already loaded the entire image */
d3c1b24c 2218 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
f577eb30 2219 return 0;
940864dd 2220
d3c1b24c
JS
2221 handle->sync_read = 1;
2222
2223 if (!handle->cur) {
8357376d
RW
2224 if (!buffer)
2225 /* This makes the buffer be freed by swsusp_free() */
2226 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2227
f577eb30
RW
2228 if (!buffer)
2229 return -ENOMEM;
8357376d 2230
f577eb30 2231 handle->buffer = buffer;
d3c1b24c
JS
2232 } else if (handle->cur == 1) {
2233 error = load_header(buffer);
2234 if (error)
2235 return error;
940864dd 2236
d3c1b24c
JS
2237 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2238 if (error)
2239 return error;
2240
85055dd8
MS
2241 /* Allocate buffer for page keys. */
2242 error = page_key_alloc(nr_copy_pages);
2243 if (error)
2244 return error;
2245
d3c1b24c
JS
2246 } else if (handle->cur <= nr_meta_pages + 1) {
2247 error = unpack_orig_pfns(buffer, &copy_bm);
2248 if (error)
2249 return error;
940864dd 2250
d3c1b24c
JS
2251 if (handle->cur == nr_meta_pages + 1) {
2252 error = prepare_image(&orig_bm, &copy_bm);
69643279
RW
2253 if (error)
2254 return error;
2255
d3c1b24c
JS
2256 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2257 memory_bm_position_reset(&orig_bm);
2258 restore_pblist = NULL;
940864dd 2259 handle->buffer = get_buffer(&orig_bm, &ca);
d3c1b24c 2260 handle->sync_read = 0;
69643279
RW
2261 if (IS_ERR(handle->buffer))
2262 return PTR_ERR(handle->buffer);
f577eb30 2263 }
f577eb30 2264 } else {
d3c1b24c 2265 copy_last_highmem_page();
85055dd8
MS
2266 /* Restore page key for data page (s390 only). */
2267 page_key_write(handle->buffer);
d3c1b24c
JS
2268 handle->buffer = get_buffer(&orig_bm, &ca);
2269 if (IS_ERR(handle->buffer))
2270 return PTR_ERR(handle->buffer);
2271 if (handle->buffer != buffer)
2272 handle->sync_read = 0;
f577eb30 2273 }
d3c1b24c
JS
2274 handle->cur++;
2275 return PAGE_SIZE;
f577eb30
RW
2276}
2277
8357376d
RW
2278/**
2279 * snapshot_write_finalize - must be called after the last call to
2280 * snapshot_write_next() in case the last page in the image happens
2281 * to be a highmem page and its contents should be stored in the
2282 * highmem. Additionally, it releases the memory that will not be
2283 * used any more.
2284 */
2285
2286void snapshot_write_finalize(struct snapshot_handle *handle)
2287{
2288 copy_last_highmem_page();
85055dd8
MS
2289 /* Restore page key for data page (s390 only). */
2290 page_key_write(handle->buffer);
2291 page_key_free();
8357376d 2292 /* Free only if we have loaded the image entirely */
d3c1b24c 2293 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
8357376d
RW
2294 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2295 free_highmem_data();
2296 }
2297}
2298
f577eb30
RW
2299int snapshot_image_loaded(struct snapshot_handle *handle)
2300{
8357376d 2301 return !(!nr_copy_pages || !last_highmem_page_copied() ||
940864dd
RW
2302 handle->cur <= nr_meta_pages + nr_copy_pages);
2303}
2304
8357376d
RW
2305#ifdef CONFIG_HIGHMEM
2306/* Assumes that @buf is ready and points to a "safe" page */
2307static inline void
2308swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
940864dd 2309{
8357376d
RW
2310 void *kaddr1, *kaddr2;
2311
2312 kaddr1 = kmap_atomic(p1, KM_USER0);
2313 kaddr2 = kmap_atomic(p2, KM_USER1);
3ecb01df
JB
2314 copy_page(buf, kaddr1);
2315 copy_page(kaddr1, kaddr2);
2316 copy_page(kaddr2, buf);
8357376d 2317 kunmap_atomic(kaddr2, KM_USER1);
61ecdb80 2318 kunmap_atomic(kaddr1, KM_USER0);
8357376d
RW
2319}
2320
2321/**
2322 * restore_highmem - for each highmem page that was allocated before
2323 * the suspend and included in the suspend image, and also has been
2324 * allocated by the "resume" kernel swap its current (ie. "before
2325 * resume") contents with the previous (ie. "before suspend") one.
2326 *
2327 * If the resume eventually fails, we can call this function once
2328 * again and restore the "before resume" highmem state.
2329 */
2330
2331int restore_highmem(void)
2332{
2333 struct highmem_pbe *pbe = highmem_pblist;
2334 void *buf;
2335
2336 if (!pbe)
2337 return 0;
2338
2339 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2340 if (!buf)
2341 return -ENOMEM;
2342
2343 while (pbe) {
2344 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2345 pbe = pbe->next;
2346 }
2347 free_image_page(buf, PG_UNSAFE_CLEAR);
2348 return 0;
f577eb30 2349}
8357376d 2350#endif /* CONFIG_HIGHMEM */