]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/power/swsusp.c
[PATCH] swsusp: fix error handling and cleanups
[mirror_ubuntu-zesty-kernel.git] / kernel / power / swsusp.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/power/swsusp.c
3 *
4 * This file is to realize architecture-independent
5 * machine suspend feature using pretty near only high-level routines
6 *
7 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
8 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
9 *
10 * This file is released under the GPLv2.
11 *
12 * I'd like to thank the following people for their work:
2e4d5822 13 *
1da177e4
LT
14 * Pavel Machek <pavel@ucw.cz>:
15 * Modifications, defectiveness pointing, being with me at the very beginning,
16 * suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
17 *
2e4d5822 18 * Steve Doddi <dirk@loth.demon.co.uk>:
1da177e4
LT
19 * Support the possibility of hardware state restoring.
20 *
21 * Raph <grey.havens@earthling.net>:
22 * Support for preserving states of network devices and virtual console
23 * (including X and svgatextmode)
24 *
25 * Kurt Garloff <garloff@suse.de>:
26 * Straightened the critical function in order to prevent compilers from
27 * playing tricks with local variables.
28 *
29 * Andreas Mohr <a.mohr@mailto.de>
30 *
31 * Alex Badea <vampire@go.ro>:
32 * Fixed runaway init
33 *
c2ff18f4
AS
34 * Andreas Steinmetz <ast@domdv.de>:
35 * Added encrypted suspend option
36 *
1da177e4
LT
37 * More state savers are welcome. Especially for the scsi layer...
38 *
39 * For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
40 */
41
42#include <linux/module.h>
43#include <linux/mm.h>
44#include <linux/suspend.h>
45#include <linux/smp_lock.h>
46#include <linux/file.h>
47#include <linux/utsname.h>
48#include <linux/version.h>
49#include <linux/delay.h>
50#include <linux/reboot.h>
51#include <linux/bitops.h>
52#include <linux/vt_kern.h>
53#include <linux/kbd_kern.h>
54#include <linux/keyboard.h>
55#include <linux/spinlock.h>
56#include <linux/genhd.h>
57#include <linux/kernel.h>
58#include <linux/major.h>
59#include <linux/swap.h>
60#include <linux/pm.h>
61#include <linux/device.h>
62#include <linux/buffer_head.h>
63#include <linux/swapops.h>
64#include <linux/bootmem.h>
65#include <linux/syscalls.h>
66#include <linux/console.h>
67#include <linux/highmem.h>
68#include <linux/bio.h>
d53d9f16 69#include <linux/mount.h>
1da177e4
LT
70
71#include <asm/uaccess.h>
72#include <asm/mmu_context.h>
73#include <asm/pgtable.h>
74#include <asm/tlbflush.h>
75#include <asm/io.h>
76
c2ff18f4
AS
77#include <linux/random.h>
78#include <linux/crypto.h>
79#include <asm/scatterlist.h>
80
1da177e4
LT
81#include "power.h"
82
c2ff18f4
AS
83#define CIPHER "aes"
84#define MAXKEY 32
85#define MAXIV 32
86
1da177e4
LT
87/* References to section boundaries */
88extern const void __nosave_begin, __nosave_end;
89
90/* Variables to be preserved over suspend */
91static int nr_copy_pages_check;
92
93extern char resume_file[];
94
95/* Local variables that should not be affected by save */
52c1da39 96static unsigned int nr_copy_pages __nosavedata = 0;
1da177e4
LT
97
98/* Suspend pagedir is allocated before final copy, therefore it
2e4d5822 99 must be freed after resume
1da177e4
LT
100
101 Warning: this is evil. There are actually two pagedirs at time of
102 resume. One is "pagedir_save", which is empty frame allocated at
2e4d5822 103 time of suspend, that must be freed. Second is "pagedir_nosave",
1da177e4
LT
104 allocated at time of resume, that travels through memory not to
105 collide with anything.
106
107 Warning: this is even more evil than it seems. Pagedirs this file
108 talks about are completely different from page directories used by
109 MMU hardware.
110 */
111suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
112static suspend_pagedir_t *pagedir_save;
113
114#define SWSUSP_SIG "S1SUSPEND"
115
116static struct swsusp_header {
c2ff18f4
AS
117 char reserved[PAGE_SIZE - 20 - MAXKEY - MAXIV - sizeof(swp_entry_t)];
118 u8 key_iv[MAXKEY+MAXIV];
1da177e4
LT
119 swp_entry_t swsusp_info;
120 char orig_sig[10];
121 char sig[10];
122} __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
123
124static struct swsusp_info swsusp_info;
125
126/*
127 * XXX: We try to keep some more pages free so that I/O operations succeed
128 * without paging. Might this be more?
129 */
130#define PAGES_FOR_IO 512
131
132/*
133 * Saving part...
134 */
135
136/* We memorize in swapfile_used what swap devices are used for suspension */
137#define SWAPFILE_UNUSED 0
138#define SWAPFILE_SUSPEND 1 /* This is the suspending device */
139#define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
140
141static unsigned short swapfile_used[MAX_SWAPFILES];
142static unsigned short root_swap;
143
c2ff18f4
AS
144static int write_page(unsigned long addr, swp_entry_t * loc);
145static int bio_read_page(pgoff_t page_off, void * page);
146
147static u8 key_iv[MAXKEY+MAXIV];
148
149#ifdef CONFIG_SWSUSP_ENCRYPT
150
151static int crypto_init(int mode, void **mem)
152{
153 int error = 0;
154 int len;
155 char *modemsg;
156 struct crypto_tfm *tfm;
157
158 modemsg = mode ? "suspend not possible" : "resume not possible";
159
160 tfm = crypto_alloc_tfm(CIPHER, CRYPTO_TFM_MODE_CBC);
161 if(!tfm) {
162 printk(KERN_ERR "swsusp: no tfm, %s\n", modemsg);
163 error = -EINVAL;
164 goto out;
165 }
166
167 if(MAXKEY < crypto_tfm_alg_min_keysize(tfm)) {
168 printk(KERN_ERR "swsusp: key buffer too small, %s\n", modemsg);
169 error = -ENOKEY;
170 goto fail;
171 }
172
173 if (mode)
174 get_random_bytes(key_iv, MAXKEY+MAXIV);
175
176 len = crypto_tfm_alg_max_keysize(tfm);
177 if (len > MAXKEY)
178 len = MAXKEY;
179
180 if (crypto_cipher_setkey(tfm, key_iv, len)) {
181 printk(KERN_ERR "swsusp: key setup failure, %s\n", modemsg);
182 error = -EKEYREJECTED;
183 goto fail;
184 }
185
186 len = crypto_tfm_alg_ivsize(tfm);
187
188 if (MAXIV < len) {
189 printk(KERN_ERR "swsusp: iv buffer too small, %s\n", modemsg);
190 error = -EOVERFLOW;
191 goto fail;
192 }
193
194 crypto_cipher_set_iv(tfm, key_iv+MAXKEY, len);
195
196 *mem=(void *)tfm;
197
198 goto out;
199
200fail: crypto_free_tfm(tfm);
201out: return error;
202}
203
204static __inline__ void crypto_exit(void *mem)
205{
206 crypto_free_tfm((struct crypto_tfm *)mem);
207}
208
209static __inline__ int crypto_write(struct pbe *p, void *mem)
210{
211 int error = 0;
212 struct scatterlist src, dst;
213
214 src.page = virt_to_page(p->address);
215 src.offset = 0;
216 src.length = PAGE_SIZE;
217 dst.page = virt_to_page((void *)&swsusp_header);
218 dst.offset = 0;
219 dst.length = PAGE_SIZE;
220
221 error = crypto_cipher_encrypt((struct crypto_tfm *)mem, &dst, &src,
222 PAGE_SIZE);
223
224 if (!error)
225 error = write_page((unsigned long)&swsusp_header,
226 &(p->swap_address));
227 return error;
228}
229
230static __inline__ int crypto_read(struct pbe *p, void *mem)
231{
232 int error = 0;
233 struct scatterlist src, dst;
234
235 error = bio_read_page(swp_offset(p->swap_address), (void *)p->address);
236 if (!error) {
237 src.offset = 0;
238 src.length = PAGE_SIZE;
239 dst.offset = 0;
240 dst.length = PAGE_SIZE;
241 src.page = dst.page = virt_to_page((void *)p->address);
242
243 error = crypto_cipher_decrypt((struct crypto_tfm *)mem, &dst,
244 &src, PAGE_SIZE);
245 }
246 return error;
247}
248#else
249static __inline__ int crypto_init(int mode, void *mem)
250{
251 return 0;
252}
253
254static __inline__ void crypto_exit(void *mem)
255{
256}
257
258static __inline__ int crypto_write(struct pbe *p, void *mem)
259{
260 return write_page(p->address, &(p->swap_address));
261}
262
263static __inline__ int crypto_read(struct pbe *p, void *mem)
264{
265 return bio_read_page(swp_offset(p->swap_address), (void *)p->address);
266}
267#endif
268
1da177e4
LT
269static int mark_swapfiles(swp_entry_t prev)
270{
271 int error;
272
2e4d5822 273 rw_swap_page_sync(READ,
1da177e4
LT
274 swp_entry(root_swap, 0),
275 virt_to_page((unsigned long)&swsusp_header));
276 if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
277 !memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
278 memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
279 memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
c2ff18f4 280 memcpy(swsusp_header.key_iv, key_iv, MAXKEY+MAXIV);
1da177e4 281 swsusp_header.swsusp_info = prev;
2e4d5822 282 error = rw_swap_page_sync(WRITE,
1da177e4
LT
283 swp_entry(root_swap, 0),
284 virt_to_page((unsigned long)
285 &swsusp_header));
286 } else {
287 pr_debug("swsusp: Partition is not swap space.\n");
288 error = -ENODEV;
289 }
290 return error;
291}
292
293/*
294 * Check whether the swap device is the specified resume
295 * device, irrespective of whether they are specified by
296 * identical names.
297 *
298 * (Thus, device inode aliasing is allowed. You can say /dev/hda4
299 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
300 * and they'll be considered the same device. This is *necessary* for
301 * devfs, since the resume code can only recognize the form /dev/hda4,
302 * but the suspend code would see the long name.)
303 */
304static int is_resume_device(const struct swap_info_struct *swap_info)
305{
306 struct file *file = swap_info->swap_file;
307 struct inode *inode = file->f_dentry->d_inode;
308
309 return S_ISBLK(inode->i_mode) &&
310 swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
311}
312
313static int swsusp_swap_check(void) /* This is called before saving image */
314{
315 int i, len;
2e4d5822 316
1da177e4
LT
317 len=strlen(resume_file);
318 root_swap = 0xFFFF;
2e4d5822 319
dae06ac4 320 spin_lock(&swap_lock);
2e4d5822 321 for (i=0; i<MAX_SWAPFILES; i++) {
dae06ac4 322 if (!(swap_info[i].flags & SWP_WRITEOK)) {
1da177e4
LT
323 swapfile_used[i]=SWAPFILE_UNUSED;
324 } else {
2e4d5822 325 if (!len) {
1da177e4 326 printk(KERN_WARNING "resume= option should be used to set suspend device" );
2e4d5822 327 if (root_swap == 0xFFFF) {
1da177e4
LT
328 swapfile_used[i] = SWAPFILE_SUSPEND;
329 root_swap = i;
330 } else
2e4d5822 331 swapfile_used[i] = SWAPFILE_IGNORED;
1da177e4
LT
332 } else {
333 /* we ignore all swap devices that are not the resume_file */
334 if (is_resume_device(&swap_info[i])) {
335 swapfile_used[i] = SWAPFILE_SUSPEND;
336 root_swap = i;
337 } else {
338 swapfile_used[i] = SWAPFILE_IGNORED;
339 }
340 }
341 }
342 }
dae06ac4 343 spin_unlock(&swap_lock);
1da177e4
LT
344 return (root_swap != 0xffff) ? 0 : -ENODEV;
345}
346
347/**
348 * This is called after saving image so modification
349 * will be lost after resume... and that's what we want.
350 * we make the device unusable. A new call to
2e4d5822 351 * lock_swapdevices can unlock the devices.
1da177e4
LT
352 */
353static void lock_swapdevices(void)
354{
355 int i;
356
dae06ac4 357 spin_lock(&swap_lock);
2e4d5822
PM
358 for (i = 0; i< MAX_SWAPFILES; i++)
359 if (swapfile_used[i] == SWAPFILE_IGNORED) {
dae06ac4 360 swap_info[i].flags ^= SWP_WRITEOK;
1da177e4 361 }
dae06ac4 362 spin_unlock(&swap_lock);
1da177e4
LT
363}
364
365/**
366 * write_swap_page - Write one page to a fresh swap location.
367 * @addr: Address we're writing.
368 * @loc: Place to store the entry we used.
369 *
370 * Allocate a new swap entry and 'sync' it. Note we discard -EIO
2e4d5822 371 * errors. That is an artifact left over from swsusp. It did not
1da177e4
LT
372 * check the return of rw_swap_page_sync() at all, since most pages
373 * written back to swap would return -EIO.
374 * This is a partial improvement, since we will at least return other
375 * errors, though we need to eventually fix the damn code.
376 */
377static int write_page(unsigned long addr, swp_entry_t * loc)
378{
379 swp_entry_t entry;
380 int error = 0;
381
382 entry = get_swap_page();
2e4d5822 383 if (swp_offset(entry) &&
1da177e4
LT
384 swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
385 error = rw_swap_page_sync(WRITE, entry,
386 virt_to_page(addr));
387 if (error == -EIO)
388 error = 0;
389 if (!error)
390 *loc = entry;
391 } else
392 error = -ENOSPC;
393 return error;
394}
395
396/**
397 * data_free - Free the swap entries used by the saved image.
398 *
2e4d5822 399 * Walk the list of used swap entries and free each one.
1da177e4
LT
400 * This is only used for cleanup when suspend fails.
401 */
402static void data_free(void)
403{
404 swp_entry_t entry;
405 int i;
406
407 for (i = 0; i < nr_copy_pages; i++) {
408 entry = (pagedir_nosave + i)->swap_address;
409 if (entry.val)
410 swap_free(entry);
411 else
412 break;
413 (pagedir_nosave + i)->swap_address = (swp_entry_t){0};
414 }
415}
416
417/**
418 * data_write - Write saved image to swap.
419 *
420 * Walk the list of pages in the image and sync each one to swap.
421 */
422static int data_write(void)
423{
424 int error = 0, i = 0;
425 unsigned int mod = nr_copy_pages / 100;
426 struct pbe *p;
c2ff18f4
AS
427 void *tfm;
428
429 if ((error = crypto_init(1, &tfm)))
430 return error;
1da177e4
LT
431
432 if (!mod)
433 mod = 1;
434
435 printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
2e4d5822 436 for_each_pbe (p, pagedir_nosave) {
1da177e4
LT
437 if (!(i%mod))
438 printk( "\b\b\b\b%3d%%", i / mod );
c2ff18f4
AS
439 if ((error = crypto_write(p, tfm))) {
440 crypto_exit(tfm);
1da177e4 441 return error;
c2ff18f4 442 }
1da177e4
LT
443 i++;
444 }
445 printk("\b\b\b\bdone\n");
c2ff18f4 446 crypto_exit(tfm);
1da177e4
LT
447 return error;
448}
449
450static void dump_info(void)
451{
452 pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
453 pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
454 pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
455 pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
456 pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
457 pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
458 pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
459 pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
460 pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
461 pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
462 pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
463}
464
465static void init_header(void)
466{
467 memset(&swsusp_info, 0, sizeof(swsusp_info));
468 swsusp_info.version_code = LINUX_VERSION_CODE;
469 swsusp_info.num_physpages = num_physpages;
470 memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
471
472 swsusp_info.suspend_pagedir = pagedir_nosave;
473 swsusp_info.cpus = num_online_cpus();
474 swsusp_info.image_pages = nr_copy_pages;
475}
476
477static int close_swap(void)
478{
479 swp_entry_t entry;
480 int error;
481
482 dump_info();
483 error = write_page((unsigned long)&swsusp_info, &entry);
2e4d5822 484 if (!error) {
1da177e4
LT
485 printk( "S" );
486 error = mark_swapfiles(entry);
487 printk( "|\n" );
488 }
489 return error;
490}
491
492/**
493 * free_pagedir_entries - Free pages used by the page directory.
494 *
495 * This is used during suspend for error recovery.
496 */
497
498static void free_pagedir_entries(void)
499{
500 int i;
501
502 for (i = 0; i < swsusp_info.pagedir_pages; i++)
503 swap_free(swsusp_info.pagedir[i]);
504}
505
506
507/**
508 * write_pagedir - Write the array of pages holding the page directory.
509 * @last: Last swap entry we write (needed for header).
510 */
511
512static int write_pagedir(void)
513{
514 int error = 0;
515 unsigned n = 0;
516 struct pbe * pbe;
517
518 printk( "Writing pagedir...");
2e4d5822 519 for_each_pb_page (pbe, pagedir_nosave) {
1da177e4
LT
520 if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
521 return error;
522 }
523
524 swsusp_info.pagedir_pages = n;
525 printk("done (%u pages)\n", n);
526 return error;
527}
528
529/**
530 * write_suspend_image - Write entire image and metadata.
531 *
532 */
1da177e4
LT
533static int write_suspend_image(void)
534{
535 int error;
536
537 init_header();
538 if ((error = data_write()))
539 goto FreeData;
540
541 if ((error = write_pagedir()))
542 goto FreePagedir;
543
544 if ((error = close_swap()))
545 goto FreePagedir;
546 Done:
c2ff18f4 547 memset(key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
548 return error;
549 FreePagedir:
550 free_pagedir_entries();
551 FreeData:
552 data_free();
553 goto Done;
554}
555
556
557#ifdef CONFIG_HIGHMEM
558struct highmem_page {
559 char *data;
560 struct page *page;
561 struct highmem_page *next;
562};
563
564static struct highmem_page *highmem_copy;
565
566static int save_highmem_zone(struct zone *zone)
567{
568 unsigned long zone_pfn;
569 mark_free_pages(zone);
570 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
571 struct page *page;
572 struct highmem_page *save;
573 void *kaddr;
574 unsigned long pfn = zone_pfn + zone->zone_start_pfn;
575
576 if (!(pfn%1000))
577 printk(".");
578 if (!pfn_valid(pfn))
579 continue;
580 page = pfn_to_page(pfn);
581 /*
582 * This condition results from rvmalloc() sans vmalloc_32()
583 * and architectural memory reservations. This should be
584 * corrected eventually when the cases giving rise to this
585 * are better understood.
586 */
587 if (PageReserved(page)) {
588 printk("highmem reserved page?!\n");
589 continue;
590 }
591 BUG_ON(PageNosave(page));
592 if (PageNosaveFree(page))
593 continue;
594 save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
595 if (!save)
596 return -ENOMEM;
597 save->next = highmem_copy;
598 save->page = page;
599 save->data = (void *) get_zeroed_page(GFP_ATOMIC);
600 if (!save->data) {
601 kfree(save);
602 return -ENOMEM;
603 }
604 kaddr = kmap_atomic(page, KM_USER0);
605 memcpy(save->data, kaddr, PAGE_SIZE);
606 kunmap_atomic(kaddr, KM_USER0);
607 highmem_copy = save;
608 }
609 return 0;
610}
611#endif /* CONFIG_HIGHMEM */
612
613
614static int save_highmem(void)
615{
616#ifdef CONFIG_HIGHMEM
617 struct zone *zone;
618 int res = 0;
619
620 pr_debug("swsusp: Saving Highmem\n");
2e4d5822 621 for_each_zone (zone) {
1da177e4
LT
622 if (is_highmem(zone))
623 res = save_highmem_zone(zone);
624 if (res)
625 return res;
626 }
627#endif
628 return 0;
629}
630
631static int restore_highmem(void)
632{
633#ifdef CONFIG_HIGHMEM
634 printk("swsusp: Restoring Highmem\n");
635 while (highmem_copy) {
636 struct highmem_page *save = highmem_copy;
637 void *kaddr;
638 highmem_copy = save->next;
639
640 kaddr = kmap_atomic(save->page, KM_USER0);
641 memcpy(kaddr, save->data, PAGE_SIZE);
642 kunmap_atomic(kaddr, KM_USER0);
643 free_page((long) save->data);
644 kfree(save);
645 }
646#endif
647 return 0;
648}
649
650
651static int pfn_is_nosave(unsigned long pfn)
652{
653 unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
654 unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
655 return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
656}
657
658/**
659 * saveable - Determine whether a page should be cloned or not.
660 * @pfn: The page
661 *
662 * We save a page if it's Reserved, and not in the range of pages
663 * statically defined as 'unsaveable', or if it isn't reserved, and
664 * isn't part of a free chunk of pages.
665 */
666
667static int saveable(struct zone * zone, unsigned long * zone_pfn)
668{
669 unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
670 struct page * page;
671
672 if (!pfn_valid(pfn))
673 return 0;
674
675 page = pfn_to_page(pfn);
676 BUG_ON(PageReserved(page) && PageNosave(page));
677 if (PageNosave(page))
678 return 0;
679 if (PageReserved(page) && pfn_is_nosave(pfn)) {
680 pr_debug("[nosave pfn 0x%lx]", pfn);
681 return 0;
682 }
683 if (PageNosaveFree(page))
684 return 0;
685
686 return 1;
687}
688
689static void count_data_pages(void)
690{
691 struct zone *zone;
692 unsigned long zone_pfn;
693
694 nr_copy_pages = 0;
695
2e4d5822 696 for_each_zone (zone) {
1da177e4
LT
697 if (is_highmem(zone))
698 continue;
699 mark_free_pages(zone);
700 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
701 nr_copy_pages += saveable(zone, &zone_pfn);
702 }
703}
704
705
706static void copy_data_pages(void)
707{
708 struct zone *zone;
709 unsigned long zone_pfn;
710 struct pbe * pbe = pagedir_nosave;
2e4d5822 711
1da177e4 712 pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
2e4d5822 713 for_each_zone (zone) {
1da177e4
LT
714 if (is_highmem(zone))
715 continue;
716 mark_free_pages(zone);
717 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
718 if (saveable(zone, &zone_pfn)) {
719 struct page * page;
720 page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
721 BUG_ON(!pbe);
722 pbe->orig_address = (long) page_address(page);
723 /* copy_page is not usable for copying task structs. */
724 memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
725 pbe = pbe->next;
726 }
727 }
728 }
729 BUG_ON(pbe);
730}
731
732
733/**
734 * calc_nr - Determine the number of pages needed for a pbe list.
735 */
736
737static int calc_nr(int nr_copy)
738{
56057e1a 739 return nr_copy + (nr_copy+PBES_PER_PAGE-2)/(PBES_PER_PAGE-1);
1da177e4
LT
740}
741
742/**
743 * free_pagedir - free pages allocated with alloc_pagedir()
744 */
745
746static inline void free_pagedir(struct pbe *pblist)
747{
748 struct pbe *pbe;
749
750 while (pblist) {
751 pbe = (pblist + PB_PAGE_SKIP)->next;
752 free_page((unsigned long)pblist);
753 pblist = pbe;
754 }
755}
756
757/**
758 * fill_pb_page - Create a list of PBEs on a given memory page
759 */
760
761static inline void fill_pb_page(struct pbe *pbpage)
762{
763 struct pbe *p;
764
765 p = pbpage;
766 pbpage += PB_PAGE_SKIP;
767 do
768 p->next = p + 1;
769 while (++p < pbpage);
770}
771
772/**
773 * create_pbe_list - Create a list of PBEs on top of a given chain
774 * of memory pages allocated with alloc_pagedir()
775 */
776
777static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
778{
779 struct pbe *pbpage, *p;
780 unsigned num = PBES_PER_PAGE;
781
782 for_each_pb_page (pbpage, pblist) {
783 if (num >= nr_pages)
784 break;
785
786 fill_pb_page(pbpage);
787 num += PBES_PER_PAGE;
788 }
789 if (pbpage) {
790 for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
791 p->next = p + 1;
792 p->next = NULL;
793 }
794 pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
795}
796
797/**
798 * alloc_pagedir - Allocate the page directory.
799 *
800 * First, determine exactly how many pages we need and
801 * allocate them.
802 *
803 * We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
804 * struct pbe elements (pbes) and the last element in the page points
805 * to the next page.
806 *
807 * On each page we set up a list of struct_pbe elements.
808 */
809
810static struct pbe * alloc_pagedir(unsigned nr_pages)
811{
812 unsigned num;
813 struct pbe *pblist, *pbe;
814
815 if (!nr_pages)
816 return NULL;
817
818 pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
819 pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
820 for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
821 pbe = pbe->next, num += PBES_PER_PAGE) {
822 pbe += PB_PAGE_SKIP;
823 pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
824 }
825 if (!pbe) { /* get_zeroed_page() failed */
826 free_pagedir(pblist);
827 pblist = NULL;
828 }
829 return pblist;
830}
831
832/**
833 * free_image_pages - Free pages allocated for snapshot
834 */
835
836static void free_image_pages(void)
837{
838 struct pbe * p;
839
2e4d5822 840 for_each_pbe (p, pagedir_save) {
1da177e4
LT
841 if (p->address) {
842 ClearPageNosave(virt_to_page(p->address));
843 free_page(p->address);
844 p->address = 0;
845 }
846 }
847}
848
849/**
850 * alloc_image_pages - Allocate pages for the snapshot.
851 */
852
853static int alloc_image_pages(void)
854{
855 struct pbe * p;
856
2e4d5822 857 for_each_pbe (p, pagedir_save) {
1da177e4
LT
858 p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
859 if (!p->address)
860 return -ENOMEM;
861 SetPageNosave(virt_to_page(p->address));
862 }
863 return 0;
864}
865
866void swsusp_free(void)
867{
868 BUG_ON(PageNosave(virt_to_page(pagedir_save)));
869 BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
870 free_image_pages();
871 free_pagedir(pagedir_save);
872}
873
874
875/**
876 * enough_free_mem - Make sure we enough free memory to snapshot.
877 *
2e4d5822 878 * Returns TRUE or FALSE after checking the number of available
1da177e4
LT
879 * free pages.
880 */
881
882static int enough_free_mem(void)
883{
884 if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
885 pr_debug("swsusp: Not enough free pages: Have %d\n",
886 nr_free_pages());
887 return 0;
888 }
889 return 1;
890}
891
892
893/**
894 * enough_swap - Make sure we have enough swap to save the image.
895 *
2e4d5822 896 * Returns TRUE or FALSE after checking the total amount of swap
1da177e4
LT
897 * space avaiable.
898 *
899 * FIXME: si_swapinfo(&i) returns all swap devices information.
2e4d5822 900 * We should only consider resume_device.
1da177e4
LT
901 */
902
903static int enough_swap(void)
904{
905 struct sysinfo i;
906
907 si_swapinfo(&i);
908 if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
909 pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
910 return 0;
911 }
912 return 1;
913}
914
915static int swsusp_alloc(void)
916{
917 int error;
918
c61978b3
PM
919 pagedir_nosave = NULL;
920 nr_copy_pages = calc_nr(nr_copy_pages);
921
1da177e4
LT
922 pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
923 nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
924
1da177e4
LT
925 if (!enough_free_mem())
926 return -ENOMEM;
927
928 if (!enough_swap())
929 return -ENOSPC;
930
1da177e4
LT
931 if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
932 printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
933 return -ENOMEM;
934 }
935 create_pbe_list(pagedir_save, nr_copy_pages);
936 pagedir_nosave = pagedir_save;
937 if ((error = alloc_image_pages())) {
938 printk(KERN_ERR "suspend: Allocating image pages failed.\n");
939 swsusp_free();
940 return error;
941 }
942
943 nr_copy_pages_check = nr_copy_pages;
944 return 0;
945}
946
947static int suspend_prepare_image(void)
948{
949 int error;
950
951 pr_debug("swsusp: critical section: \n");
952 if (save_highmem()) {
953 printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
954 restore_highmem();
955 return -ENOMEM;
956 }
957
958 drain_local_pages();
959 count_data_pages();
960 printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
961
962 error = swsusp_alloc();
963 if (error)
964 return error;
2e4d5822
PM
965
966 /* During allocating of suspend pagedir, new cold pages may appear.
1da177e4
LT
967 * Kill them.
968 */
969 drain_local_pages();
970 copy_data_pages();
971
972 /*
973 * End of critical section. From now on, we can write to memory,
974 * but we should not touch disk. This specially means we must _not_
975 * touch swap space! Except we must write out our image of course.
976 */
977
978 printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
979 return 0;
980}
981
982
983/* It is important _NOT_ to umount filesystems at this point. We want
984 * them synced (in case something goes wrong) but we DO not want to mark
985 * filesystem clean: it is not. (And it does not matter, if we resume
986 * correctly, we'll mark system clean, anyway.)
987 */
988int swsusp_write(void)
989{
990 int error;
991 device_resume();
992 lock_swapdevices();
993 error = write_suspend_image();
994 /* This will unlock ignored swap devices since writing is finished */
995 lock_swapdevices();
996 return error;
997
998}
999
1000
1001extern asmlinkage int swsusp_arch_suspend(void);
1002extern asmlinkage int swsusp_arch_resume(void);
1003
1004
1005asmlinkage int swsusp_save(void)
1006{
1da177e4
LT
1007 return suspend_prepare_image();
1008}
1009
1010int swsusp_suspend(void)
1011{
1012 int error;
1013 if ((error = arch_prepare_suspend()))
1014 return error;
1015 local_irq_disable();
1016 /* At this point, device_suspend() has been called, but *not*
1017 * device_power_down(). We *must* device_power_down() now.
1018 * Otherwise, drivers for some devices (e.g. interrupt controllers)
1019 * become desynchronized with the actual state of the hardware
1020 * at resume time, and evil weirdness ensues.
1021 */
1022 if ((error = device_power_down(PMSG_FREEZE))) {
99dc7d63 1023 printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
1da177e4 1024 local_irq_enable();
1da177e4
LT
1025 return error;
1026 }
47b724f3
PM
1027
1028 if ((error = swsusp_swap_check())) {
99dc7d63
PM
1029 printk(KERN_ERR "swsusp: cannot find swap device, try swapon -a.\n");
1030 device_power_up();
47b724f3
PM
1031 local_irq_enable();
1032 return error;
1033 }
1034
1da177e4
LT
1035 save_processor_state();
1036 if ((error = swsusp_arch_suspend()))
99dc7d63 1037 printk(KERN_ERR "Error %d suspending\n", error);
1da177e4
LT
1038 /* Restore control flow magically appears here */
1039 restore_processor_state();
1040 BUG_ON (nr_copy_pages_check != nr_copy_pages);
1041 restore_highmem();
1042 device_power_up();
1043 local_irq_enable();
1044 return error;
1045}
1046
1047int swsusp_resume(void)
1048{
1049 int error;
1050 local_irq_disable();
1051 if (device_power_down(PMSG_FREEZE))
1052 printk(KERN_ERR "Some devices failed to power down, very bad\n");
1053 /* We'll ignore saved state, but this gets preempt count (etc) right */
1054 save_processor_state();
1055 error = swsusp_arch_resume();
1056 /* Code below is only ever reached in case of failure. Otherwise
1057 * execution continues at place where swsusp_arch_suspend was called
1058 */
1059 BUG_ON(!error);
1060 restore_processor_state();
1061 restore_highmem();
1062 device_power_up();
1063 local_irq_enable();
1064 return error;
1065}
1066
1da177e4
LT
1067/**
1068 * On resume, for storing the PBE list and the image,
1069 * we can only use memory pages that do not conflict with the pages
1070 * which had been used before suspend.
1071 *
1072 * We don't know which pages are usable until we allocate them.
1073 *
1074 * Allocated but unusable (ie eaten) memory pages are linked together
1075 * to create a list, so that we can free them easily
1076 *
1077 * We could have used a type other than (void *)
1078 * for this purpose, but ...
1079 */
1080static void **eaten_memory = NULL;
1081
1082static inline void eat_page(void *page)
1083{
1084 void **c;
1085
1086 c = eaten_memory;
1087 eaten_memory = page;
1088 *eaten_memory = c;
1089}
1090
1091static unsigned long get_usable_page(unsigned gfp_mask)
1092{
1093 unsigned long m;
1094
1095 m = get_zeroed_page(gfp_mask);
8f9bdf15 1096 while (!PageNosaveFree(virt_to_page(m))) {
1da177e4
LT
1097 eat_page((void *)m);
1098 m = get_zeroed_page(gfp_mask);
1099 if (!m)
1100 break;
1101 }
1102 return m;
1103}
1104
1105static void free_eaten_memory(void)
1106{
1107 unsigned long m;
1108 void **c;
1109 int i = 0;
1110
1111 c = eaten_memory;
1112 while (c) {
1113 m = (unsigned long)c;
1114 c = *c;
1115 free_page(m);
1116 i++;
1117 }
1118 eaten_memory = NULL;
1119 pr_debug("swsusp: %d unused pages freed\n", i);
1120}
1121
1122/**
1123 * check_pagedir - We ensure here that pages that the PBEs point to
1124 * won't collide with pages where we're going to restore from the loaded
1125 * pages later
1126 */
1127
1128static int check_pagedir(struct pbe *pblist)
1129{
1130 struct pbe *p;
1131
1132 /* This is necessary, so that we can free allocated pages
1133 * in case of failure
1134 */
1135 for_each_pbe (p, pblist)
1136 p->address = 0UL;
1137
1138 for_each_pbe (p, pblist) {
1139 p->address = get_usable_page(GFP_ATOMIC);
1140 if (!p->address)
1141 return -ENOMEM;
1142 }
1143 return 0;
1144}
1145
1146/**
1147 * swsusp_pagedir_relocate - It is possible, that some memory pages
1148 * occupied by the list of PBEs collide with pages where we're going to
1149 * restore from the loaded pages later. We relocate them here.
1150 */
1151
1152static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
1153{
1154 struct zone *zone;
1155 unsigned long zone_pfn;
1156 struct pbe *pbpage, *tail, *p;
1157 void *m;
1158 int rel = 0, error = 0;
1159
1160 if (!pblist) /* a sanity check */
1161 return NULL;
1162
1163 pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
1164 swsusp_info.pagedir_pages);
1165
1166 /* Set page flags */
1167
2e4d5822 1168 for_each_zone (zone) {
1da177e4
LT
1169 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
1170 SetPageNosaveFree(pfn_to_page(zone_pfn +
1171 zone->zone_start_pfn));
1172 }
1173
1174 /* Clear orig addresses */
1175
1176 for_each_pbe (p, pblist)
1177 ClearPageNosaveFree(virt_to_page(p->orig_address));
1178
1179 tail = pblist + PB_PAGE_SKIP;
1180
1181 /* Relocate colliding pages */
1182
1183 for_each_pb_page (pbpage, pblist) {
8f9bdf15 1184 if (!PageNosaveFree(virt_to_page((unsigned long)pbpage))) {
1da177e4
LT
1185 m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
1186 if (!m) {
1187 error = -ENOMEM;
1188 break;
1189 }
1190 memcpy(m, (void *)pbpage, PAGE_SIZE);
1191 if (pbpage == pblist)
1192 pblist = (struct pbe *)m;
1193 else
1194 tail->next = (struct pbe *)m;
1195
1196 eat_page((void *)pbpage);
1197 pbpage = (struct pbe *)m;
1198
1199 /* We have to link the PBEs again */
1200
1201 for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
1202 if (p->next) /* needed to save the end */
1203 p->next = p + 1;
1204
1205 rel++;
1206 }
1207 tail = pbpage + PB_PAGE_SKIP;
1208 }
1209
1210 if (error) {
1211 printk("\nswsusp: Out of memory\n\n");
1212 free_pagedir(pblist);
1213 free_eaten_memory();
1214 pblist = NULL;
1215 }
1216 else
1217 printk("swsusp: Relocated %d pages\n", rel);
1218
1219 return pblist;
1220}
1221
4dc3b16b 1222/*
1da177e4
LT
1223 * Using bio to read from swap.
1224 * This code requires a bit more work than just using buffer heads
1225 * but, it is the recommended way for 2.5/2.6.
1226 * The following are to signal the beginning and end of I/O. Bios
1227 * finish asynchronously, while we want them to happen synchronously.
1228 * A simple atomic_t, and a wait loop take care of this problem.
1229 */
1230
1231static atomic_t io_done = ATOMIC_INIT(0);
1232
1233static int end_io(struct bio * bio, unsigned int num, int err)
1234{
1235 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1236 panic("I/O error reading memory image");
1237 atomic_set(&io_done, 0);
1238 return 0;
1239}
1240
1241static struct block_device * resume_bdev;
1242
1243/**
1244 * submit - submit BIO request.
1245 * @rw: READ or WRITE.
1246 * @off physical offset of page.
1247 * @page: page we're reading or writing.
1248 *
1249 * Straight from the textbook - allocate and initialize the bio.
1250 * If we're writing, make sure the page is marked as dirty.
1251 * Then submit it and wait.
1252 */
1253
1254static int submit(int rw, pgoff_t page_off, void * page)
1255{
1256 int error = 0;
1257 struct bio * bio;
1258
1259 bio = bio_alloc(GFP_ATOMIC, 1);
1260 if (!bio)
1261 return -ENOMEM;
1262 bio->bi_sector = page_off * (PAGE_SIZE >> 9);
1263 bio_get(bio);
1264 bio->bi_bdev = resume_bdev;
1265 bio->bi_end_io = end_io;
1266
1267 if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
1268 printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
1269 error = -EFAULT;
1270 goto Done;
1271 }
1272
1273 if (rw == WRITE)
1274 bio_set_pages_dirty(bio);
1275
1276 atomic_set(&io_done, 1);
1277 submit_bio(rw | (1 << BIO_RW_SYNC), bio);
1278 while (atomic_read(&io_done))
1279 yield();
1280
1281 Done:
1282 bio_put(bio);
1283 return error;
1284}
1285
1286static int bio_read_page(pgoff_t page_off, void * page)
1287{
1288 return submit(READ, page_off, page);
1289}
1290
1291static int bio_write_page(pgoff_t page_off, void * page)
1292{
1293 return submit(WRITE, page_off, page);
1294}
1295
1296/*
1297 * Sanity check if this image makes sense with this kernel/swap context
1298 * I really don't think that it's foolproof but more than nothing..
1299 */
1300
1301static const char * sanity_check(void)
1302{
1303 dump_info();
47b724f3 1304 if (swsusp_info.version_code != LINUX_VERSION_CODE)
1da177e4 1305 return "kernel version";
47b724f3 1306 if (swsusp_info.num_physpages != num_physpages)
1da177e4
LT
1307 return "memory size";
1308 if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
1309 return "system type";
1310 if (strcmp(swsusp_info.uts.release,system_utsname.release))
1311 return "kernel release";
1312 if (strcmp(swsusp_info.uts.version,system_utsname.version))
1313 return "version";
1314 if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
1315 return "machine";
5a72e04d 1316#if 0
99dc7d63
PM
1317 /* We can't use number of online CPUs when we use hotplug to remove them ;-))) */
1318 if (swsusp_info.cpus != num_possible_cpus())
1da177e4 1319 return "number of cpus";
5a72e04d 1320#endif
1da177e4
LT
1321 return NULL;
1322}
1323
1324
1325static int check_header(void)
1326{
1327 const char * reason = NULL;
1328 int error;
1329
1330 if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
1331 return error;
1332
1333 /* Is this same machine? */
1334 if ((reason = sanity_check())) {
1335 printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
1336 return -EPERM;
1337 }
1338 nr_copy_pages = swsusp_info.image_pages;
1339 return error;
1340}
1341
1342static int check_sig(void)
1343{
1344 int error;
1345
1346 memset(&swsusp_header, 0, sizeof(swsusp_header));
1347 if ((error = bio_read_page(0, &swsusp_header)))
1348 return error;
1349 if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
1350 memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
c2ff18f4
AS
1351 memcpy(key_iv, swsusp_header.key_iv, MAXKEY+MAXIV);
1352 memset(swsusp_header.key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
1353
1354 /*
1355 * Reset swap signature now.
1356 */
1357 error = bio_write_page(0, &swsusp_header);
1358 } else {
1da177e4
LT
1359 return -EINVAL;
1360 }
1361 if (!error)
1362 pr_debug("swsusp: Signature found, resuming\n");
1363 return error;
1364}
1365
1366/**
1367 * data_read - Read image pages from swap.
1368 *
1369 * You do not need to check for overlaps, check_pagedir()
1370 * already did that.
1371 */
1372
1373static int data_read(struct pbe *pblist)
1374{
1375 struct pbe * p;
1376 int error = 0;
1377 int i = 0;
1378 int mod = swsusp_info.image_pages / 100;
c2ff18f4
AS
1379 void *tfm;
1380
1381 if ((error = crypto_init(0, &tfm)))
1382 return error;
1da177e4
LT
1383
1384 if (!mod)
1385 mod = 1;
1386
1387 printk("swsusp: Reading image data (%lu pages): ",
1388 swsusp_info.image_pages);
1389
1390 for_each_pbe (p, pblist) {
1391 if (!(i % mod))
1392 printk("\b\b\b\b%3d%%", i / mod);
1393
c2ff18f4
AS
1394 if ((error = crypto_read(p, tfm))) {
1395 crypto_exit(tfm);
1da177e4 1396 return error;
c2ff18f4 1397 }
1da177e4
LT
1398
1399 i++;
1400 }
1401 printk("\b\b\b\bdone\n");
c2ff18f4 1402 crypto_exit(tfm);
1da177e4
LT
1403 return error;
1404}
1405
1da177e4
LT
1406/**
1407 * read_pagedir - Read page backup list pages from swap
1408 */
1409
1410static int read_pagedir(struct pbe *pblist)
1411{
1412 struct pbe *pbpage, *p;
1413 unsigned i = 0;
1414 int error;
1415
1416 if (!pblist)
1417 return -EFAULT;
1418
1419 printk("swsusp: Reading pagedir (%lu pages)\n",
1420 swsusp_info.pagedir_pages);
1421
1422 for_each_pb_page (pbpage, pblist) {
1423 unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
1424
1425 error = -EFAULT;
1426 if (offset) {
1427 p = (pbpage + PB_PAGE_SKIP)->next;
1428 error = bio_read_page(offset, (void *)pbpage);
1429 (pbpage + PB_PAGE_SKIP)->next = p;
1430 }
1431 if (error)
1432 break;
1433 }
1434
1435 if (error)
1436 free_page((unsigned long)pblist);
1437
1438 BUG_ON(i != swsusp_info.pagedir_pages);
1439
1440 return error;
1441}
1442
1443
1444static int check_suspend_image(void)
1445{
1446 int error = 0;
1447
1448 if ((error = check_sig()))
1449 return error;
1450
1451 if ((error = check_header()))
1452 return error;
1453
1454 return 0;
1455}
1456
1457static int read_suspend_image(void)
1458{
1459 int error = 0;
1460 struct pbe *p;
1461
1462 if (!(p = alloc_pagedir(nr_copy_pages)))
1463 return -ENOMEM;
1464
1465 if ((error = read_pagedir(p)))
1466 return error;
1467
1468 create_pbe_list(p, nr_copy_pages);
1469
1470 if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
1471 return -ENOMEM;
1472
1473 /* Allocate memory for the image and read the data from swap */
1474
1475 error = check_pagedir(pagedir_nosave);
1476 free_eaten_memory();
1477 if (!error)
1478 error = data_read(pagedir_nosave);
1479
1480 if (error) { /* We fail cleanly */
1481 for_each_pbe (p, pagedir_nosave)
1482 if (p->address) {
1483 free_page(p->address);
1484 p->address = 0UL;
1485 }
1486 free_pagedir(pagedir_nosave);
1487 }
1488 return error;
1489}
1490
1491/**
1492 * swsusp_check - Check for saved image in swap
1493 */
1494
1495int swsusp_check(void)
1496{
1497 int error;
1498
1da177e4
LT
1499 resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
1500 if (!IS_ERR(resume_bdev)) {
1501 set_blocksize(resume_bdev, PAGE_SIZE);
1502 error = check_suspend_image();
1503 if (error)
1504 blkdev_put(resume_bdev);
1505 } else
1506 error = PTR_ERR(resume_bdev);
1507
1508 if (!error)
1509 pr_debug("swsusp: resume file found\n");
1510 else
1511 pr_debug("swsusp: Error %d check for resume file\n", error);
1512 return error;
1513}
1514
1515/**
1516 * swsusp_read - Read saved image from swap.
1517 */
1518
1519int swsusp_read(void)
1520{
1521 int error;
1522
1523 if (IS_ERR(resume_bdev)) {
1524 pr_debug("swsusp: block device not initialised\n");
1525 return PTR_ERR(resume_bdev);
1526 }
1527
1528 error = read_suspend_image();
1529 blkdev_put(resume_bdev);
c2ff18f4 1530 memset(key_iv, 0, MAXKEY+MAXIV);
1da177e4
LT
1531
1532 if (!error)
1533 pr_debug("swsusp: Reading resume file was successful\n");
1534 else
1535 pr_debug("swsusp: Error %d resuming\n", error);
1536 return error;
1537}
1538
1539/**
1540 * swsusp_close - close swap device.
1541 */
1542
1543void swsusp_close(void)
1544{
1545 if (IS_ERR(resume_bdev)) {
1546 pr_debug("swsusp: block device not initialised\n");
1547 return;
1548 }
1549
1550 blkdev_put(resume_bdev);
1551}