]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/profile.c | |
3 | * Simple profiling. Manages a direct-mapped profile hit count buffer, | |
4 | * with configurable resolution, support for restricting the cpus on | |
5 | * which profiling is done, and switching between cpu time and | |
6 | * schedule() calls via kernel command line parameters passed at boot. | |
7 | * | |
8 | * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, | |
9 | * Red Hat, July 2004 | |
10 | * Consolidation of architecture support code for profiling, | |
6d49e352 | 11 | * Nadia Yvette Chambers, Oracle, July 2004 |
1da177e4 | 12 | * Amortized hit count accounting via per-cpu open-addressed hashtables |
6d49e352 NYC |
13 | * to resolve timer interrupt livelocks, Nadia Yvette Chambers, |
14 | * Oracle, 2004 | |
1da177e4 LT |
15 | */ |
16 | ||
9984de1a | 17 | #include <linux/export.h> |
1da177e4 | 18 | #include <linux/profile.h> |
57c8a661 | 19 | #include <linux/memblock.h> |
1da177e4 LT |
20 | #include <linux/notifier.h> |
21 | #include <linux/mm.h> | |
22 | #include <linux/cpumask.h> | |
23 | #include <linux/cpu.h> | |
1da177e4 | 24 | #include <linux/highmem.h> |
97d1f15b | 25 | #include <linux/mutex.h> |
22b8ce94 DH |
26 | #include <linux/slab.h> |
27 | #include <linux/vmalloc.h> | |
3905f9ad IM |
28 | #include <linux/sched/stat.h> |
29 | ||
1da177e4 | 30 | #include <asm/sections.h> |
7d12e780 | 31 | #include <asm/irq_regs.h> |
e8edc6e0 | 32 | #include <asm/ptrace.h> |
1da177e4 LT |
33 | |
34 | struct profile_hit { | |
35 | u32 pc, hits; | |
36 | }; | |
37 | #define PROFILE_GRPSHIFT 3 | |
38 | #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) | |
39 | #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) | |
40 | #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) | |
41 | ||
1da177e4 LT |
42 | static atomic_t *prof_buffer; |
43 | static unsigned long prof_len, prof_shift; | |
07031e14 | 44 | |
ece8a684 | 45 | int prof_on __read_mostly; |
07031e14 IM |
46 | EXPORT_SYMBOL_GPL(prof_on); |
47 | ||
c309b917 | 48 | static cpumask_var_t prof_cpu_mask; |
ade356b9 | 49 | #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) |
1da177e4 LT |
50 | static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); |
51 | static DEFINE_PER_CPU(int, cpu_profile_flip); | |
97d1f15b | 52 | static DEFINE_MUTEX(profile_flip_mutex); |
1da177e4 LT |
53 | #endif /* CONFIG_SMP */ |
54 | ||
22b8ce94 | 55 | int profile_setup(char *str) |
1da177e4 | 56 | { |
f3da64d1 FF |
57 | static const char schedstr[] = "schedule"; |
58 | static const char sleepstr[] = "sleep"; | |
59 | static const char kvmstr[] = "kvm"; | |
1da177e4 LT |
60 | int par; |
61 | ||
ece8a684 | 62 | if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
b3da2a73 | 63 | #ifdef CONFIG_SCHEDSTATS |
cb251765 | 64 | force_schedstat_enabled(); |
ece8a684 IM |
65 | prof_on = SLEEP_PROFILING; |
66 | if (str[strlen(sleepstr)] == ',') | |
67 | str += strlen(sleepstr) + 1; | |
68 | if (get_option(&str, &par)) | |
69 | prof_shift = par; | |
aba871f1 | 70 | pr_info("kernel sleep profiling enabled (shift: %ld)\n", |
ece8a684 | 71 | prof_shift); |
b3da2a73 | 72 | #else |
aba871f1 | 73 | pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); |
b3da2a73 | 74 | #endif /* CONFIG_SCHEDSTATS */ |
a75acf85 | 75 | } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
1da177e4 | 76 | prof_on = SCHED_PROFILING; |
dfaa9c94 WLII |
77 | if (str[strlen(schedstr)] == ',') |
78 | str += strlen(schedstr) + 1; | |
79 | if (get_option(&str, &par)) | |
80 | prof_shift = par; | |
aba871f1 | 81 | pr_info("kernel schedule profiling enabled (shift: %ld)\n", |
dfaa9c94 | 82 | prof_shift); |
07031e14 IM |
83 | } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
84 | prof_on = KVM_PROFILING; | |
85 | if (str[strlen(kvmstr)] == ',') | |
86 | str += strlen(kvmstr) + 1; | |
87 | if (get_option(&str, &par)) | |
88 | prof_shift = par; | |
aba871f1 | 89 | pr_info("kernel KVM profiling enabled (shift: %ld)\n", |
07031e14 | 90 | prof_shift); |
dfaa9c94 | 91 | } else if (get_option(&str, &par)) { |
1da177e4 LT |
92 | prof_shift = par; |
93 | prof_on = CPU_PROFILING; | |
aba871f1 | 94 | pr_info("kernel profiling enabled (shift: %ld)\n", |
1da177e4 LT |
95 | prof_shift); |
96 | } | |
97 | return 1; | |
98 | } | |
99 | __setup("profile=", profile_setup); | |
100 | ||
101 | ||
ce05fcc3 | 102 | int __ref profile_init(void) |
1da177e4 | 103 | { |
22b8ce94 | 104 | int buffer_bytes; |
1ad82fd5 | 105 | if (!prof_on) |
22b8ce94 | 106 | return 0; |
1ad82fd5 | 107 | |
1da177e4 LT |
108 | /* only text is profiled */ |
109 | prof_len = (_etext - _stext) >> prof_shift; | |
22b8ce94 | 110 | buffer_bytes = prof_len*sizeof(atomic_t); |
22b8ce94 | 111 | |
c309b917 RR |
112 | if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL)) |
113 | return -ENOMEM; | |
114 | ||
acd89579 HD |
115 | cpumask_copy(prof_cpu_mask, cpu_possible_mask); |
116 | ||
b62f495d | 117 | prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN); |
22b8ce94 DH |
118 | if (prof_buffer) |
119 | return 0; | |
120 | ||
b62f495d MG |
121 | prof_buffer = alloc_pages_exact(buffer_bytes, |
122 | GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN); | |
22b8ce94 DH |
123 | if (prof_buffer) |
124 | return 0; | |
125 | ||
559fa6e7 JJ |
126 | prof_buffer = vzalloc(buffer_bytes); |
127 | if (prof_buffer) | |
22b8ce94 DH |
128 | return 0; |
129 | ||
c309b917 | 130 | free_cpumask_var(prof_cpu_mask); |
22b8ce94 | 131 | return -ENOMEM; |
1da177e4 LT |
132 | } |
133 | ||
134 | /* Profile event notifications */ | |
1ad82fd5 | 135 | |
e041c683 AS |
136 | static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
137 | static ATOMIC_NOTIFIER_HEAD(task_free_notifier); | |
138 | static BLOCKING_NOTIFIER_HEAD(munmap_notifier); | |
1ad82fd5 PC |
139 | |
140 | void profile_task_exit(struct task_struct *task) | |
1da177e4 | 141 | { |
e041c683 | 142 | blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
1da177e4 | 143 | } |
1ad82fd5 PC |
144 | |
145 | int profile_handoff_task(struct task_struct *task) | |
1da177e4 LT |
146 | { |
147 | int ret; | |
e041c683 | 148 | ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
1da177e4 LT |
149 | return (ret == NOTIFY_OK) ? 1 : 0; |
150 | } | |
151 | ||
152 | void profile_munmap(unsigned long addr) | |
153 | { | |
e041c683 | 154 | blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
1da177e4 LT |
155 | } |
156 | ||
1ad82fd5 | 157 | int task_handoff_register(struct notifier_block *n) |
1da177e4 | 158 | { |
e041c683 | 159 | return atomic_notifier_chain_register(&task_free_notifier, n); |
1da177e4 | 160 | } |
1ad82fd5 | 161 | EXPORT_SYMBOL_GPL(task_handoff_register); |
1da177e4 | 162 | |
1ad82fd5 | 163 | int task_handoff_unregister(struct notifier_block *n) |
1da177e4 | 164 | { |
e041c683 | 165 | return atomic_notifier_chain_unregister(&task_free_notifier, n); |
1da177e4 | 166 | } |
1ad82fd5 | 167 | EXPORT_SYMBOL_GPL(task_handoff_unregister); |
1da177e4 | 168 | |
1ad82fd5 | 169 | int profile_event_register(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
170 | { |
171 | int err = -EINVAL; | |
1ad82fd5 | 172 | |
1da177e4 | 173 | switch (type) { |
1ad82fd5 PC |
174 | case PROFILE_TASK_EXIT: |
175 | err = blocking_notifier_chain_register( | |
176 | &task_exit_notifier, n); | |
177 | break; | |
178 | case PROFILE_MUNMAP: | |
179 | err = blocking_notifier_chain_register( | |
180 | &munmap_notifier, n); | |
181 | break; | |
1da177e4 | 182 | } |
1ad82fd5 | 183 | |
1da177e4 LT |
184 | return err; |
185 | } | |
1ad82fd5 | 186 | EXPORT_SYMBOL_GPL(profile_event_register); |
1da177e4 | 187 | |
1ad82fd5 | 188 | int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
1da177e4 LT |
189 | { |
190 | int err = -EINVAL; | |
1ad82fd5 | 191 | |
1da177e4 | 192 | switch (type) { |
1ad82fd5 PC |
193 | case PROFILE_TASK_EXIT: |
194 | err = blocking_notifier_chain_unregister( | |
195 | &task_exit_notifier, n); | |
196 | break; | |
197 | case PROFILE_MUNMAP: | |
198 | err = blocking_notifier_chain_unregister( | |
199 | &munmap_notifier, n); | |
200 | break; | |
1da177e4 LT |
201 | } |
202 | ||
1da177e4 LT |
203 | return err; |
204 | } | |
1ad82fd5 | 205 | EXPORT_SYMBOL_GPL(profile_event_unregister); |
1da177e4 | 206 | |
ade356b9 | 207 | #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS) |
1da177e4 LT |
208 | /* |
209 | * Each cpu has a pair of open-addressed hashtables for pending | |
210 | * profile hits. read_profile() IPI's all cpus to request them | |
211 | * to flip buffers and flushes their contents to prof_buffer itself. | |
212 | * Flip requests are serialized by the profile_flip_mutex. The sole | |
213 | * use of having a second hashtable is for avoiding cacheline | |
214 | * contention that would otherwise happen during flushes of pending | |
215 | * profile hits required for the accuracy of reported profile hits | |
216 | * and so resurrect the interrupt livelock issue. | |
217 | * | |
218 | * The open-addressed hashtables are indexed by profile buffer slot | |
219 | * and hold the number of pending hits to that profile buffer slot on | |
220 | * a cpu in an entry. When the hashtable overflows, all pending hits | |
221 | * are accounted to their corresponding profile buffer slots with | |
222 | * atomic_add() and the hashtable emptied. As numerous pending hits | |
223 | * may be accounted to a profile buffer slot in a hashtable entry, | |
224 | * this amortizes a number of atomic profile buffer increments likely | |
225 | * to be far larger than the number of entries in the hashtable, | |
226 | * particularly given that the number of distinct profile buffer | |
227 | * positions to which hits are accounted during short intervals (e.g. | |
228 | * several seconds) is usually very small. Exclusion from buffer | |
229 | * flipping is provided by interrupt disablement (note that for | |
ece8a684 IM |
230 | * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
231 | * process context). | |
1da177e4 LT |
232 | * The hash function is meant to be lightweight as opposed to strong, |
233 | * and was vaguely inspired by ppc64 firmware-supported inverted | |
234 | * pagetable hash functions, but uses a full hashtable full of finite | |
235 | * collision chains, not just pairs of them. | |
236 | * | |
6d49e352 | 237 | * -- nyc |
1da177e4 LT |
238 | */ |
239 | static void __profile_flip_buffers(void *unused) | |
240 | { | |
241 | int cpu = smp_processor_id(); | |
242 | ||
243 | per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); | |
244 | } | |
245 | ||
246 | static void profile_flip_buffers(void) | |
247 | { | |
248 | int i, j, cpu; | |
249 | ||
97d1f15b | 250 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
251 | j = per_cpu(cpu_profile_flip, get_cpu()); |
252 | put_cpu(); | |
15c8b6c1 | 253 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
254 | for_each_online_cpu(cpu) { |
255 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; | |
256 | for (i = 0; i < NR_PROFILE_HIT; ++i) { | |
257 | if (!hits[i].hits) { | |
258 | if (hits[i].pc) | |
259 | hits[i].pc = 0; | |
260 | continue; | |
261 | } | |
262 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
263 | hits[i].hits = hits[i].pc = 0; | |
264 | } | |
265 | } | |
97d1f15b | 266 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
267 | } |
268 | ||
269 | static void profile_discard_flip_buffers(void) | |
270 | { | |
271 | int i, cpu; | |
272 | ||
97d1f15b | 273 | mutex_lock(&profile_flip_mutex); |
1da177e4 LT |
274 | i = per_cpu(cpu_profile_flip, get_cpu()); |
275 | put_cpu(); | |
15c8b6c1 | 276 | on_each_cpu(__profile_flip_buffers, NULL, 1); |
1da177e4 LT |
277 | for_each_online_cpu(cpu) { |
278 | struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; | |
279 | memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); | |
280 | } | |
97d1f15b | 281 | mutex_unlock(&profile_flip_mutex); |
1da177e4 LT |
282 | } |
283 | ||
6f7bd76f | 284 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
285 | { |
286 | unsigned long primary, secondary, flags, pc = (unsigned long)__pc; | |
287 | int i, j, cpu; | |
288 | struct profile_hit *hits; | |
289 | ||
1da177e4 LT |
290 | pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); |
291 | i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
292 | secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; | |
293 | cpu = get_cpu(); | |
294 | hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; | |
295 | if (!hits) { | |
296 | put_cpu(); | |
297 | return; | |
298 | } | |
ece8a684 IM |
299 | /* |
300 | * We buffer the global profiler buffer into a per-CPU | |
301 | * queue and thus reduce the number of global (and possibly | |
302 | * NUMA-alien) accesses. The write-queue is self-coalescing: | |
303 | */ | |
1da177e4 LT |
304 | local_irq_save(flags); |
305 | do { | |
306 | for (j = 0; j < PROFILE_GRPSZ; ++j) { | |
307 | if (hits[i + j].pc == pc) { | |
ece8a684 | 308 | hits[i + j].hits += nr_hits; |
1da177e4 LT |
309 | goto out; |
310 | } else if (!hits[i + j].hits) { | |
311 | hits[i + j].pc = pc; | |
ece8a684 | 312 | hits[i + j].hits = nr_hits; |
1da177e4 LT |
313 | goto out; |
314 | } | |
315 | } | |
316 | i = (i + secondary) & (NR_PROFILE_HIT - 1); | |
317 | } while (i != primary); | |
ece8a684 IM |
318 | |
319 | /* | |
320 | * Add the current hit(s) and flush the write-queue out | |
321 | * to the global buffer: | |
322 | */ | |
323 | atomic_add(nr_hits, &prof_buffer[pc]); | |
1da177e4 LT |
324 | for (i = 0; i < NR_PROFILE_HIT; ++i) { |
325 | atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); | |
326 | hits[i].pc = hits[i].hits = 0; | |
327 | } | |
328 | out: | |
329 | local_irq_restore(flags); | |
330 | put_cpu(); | |
331 | } | |
332 | ||
e722d8da | 333 | static int profile_dead_cpu(unsigned int cpu) |
1da177e4 | 334 | { |
1da177e4 | 335 | struct page *page; |
e722d8da | 336 | int i; |
1da177e4 | 337 | |
e722d8da SAS |
338 | if (prof_cpu_mask != NULL) |
339 | cpumask_clear_cpu(cpu, prof_cpu_mask); | |
340 | ||
341 | for (i = 0; i < 2; i++) { | |
342 | if (per_cpu(cpu_profile_hits, cpu)[i]) { | |
343 | page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[i]); | |
344 | per_cpu(cpu_profile_hits, cpu)[i] = NULL; | |
1da177e4 LT |
345 | __free_page(page); |
346 | } | |
e722d8da SAS |
347 | } |
348 | return 0; | |
349 | } | |
350 | ||
351 | static int profile_prepare_cpu(unsigned int cpu) | |
352 | { | |
353 | int i, node = cpu_to_mem(cpu); | |
354 | struct page *page; | |
355 | ||
356 | per_cpu(cpu_profile_flip, cpu) = 0; | |
357 | ||
358 | for (i = 0; i < 2; i++) { | |
359 | if (per_cpu(cpu_profile_hits, cpu)[i]) | |
360 | continue; | |
361 | ||
362 | page = __alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); | |
363 | if (!page) { | |
364 | profile_dead_cpu(cpu); | |
365 | return -ENOMEM; | |
1da177e4 | 366 | } |
e722d8da SAS |
367 | per_cpu(cpu_profile_hits, cpu)[i] = page_address(page); |
368 | ||
1da177e4 | 369 | } |
e722d8da SAS |
370 | return 0; |
371 | } | |
372 | ||
373 | static int profile_online_cpu(unsigned int cpu) | |
374 | { | |
375 | if (prof_cpu_mask != NULL) | |
376 | cpumask_set_cpu(cpu, prof_cpu_mask); | |
377 | ||
378 | return 0; | |
1da177e4 | 379 | } |
e722d8da | 380 | |
1da177e4 LT |
381 | #else /* !CONFIG_SMP */ |
382 | #define profile_flip_buffers() do { } while (0) | |
383 | #define profile_discard_flip_buffers() do { } while (0) | |
384 | ||
6f7bd76f | 385 | static void do_profile_hits(int type, void *__pc, unsigned int nr_hits) |
1da177e4 LT |
386 | { |
387 | unsigned long pc; | |
1da177e4 | 388 | pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
ece8a684 | 389 | atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
1da177e4 LT |
390 | } |
391 | #endif /* !CONFIG_SMP */ | |
6f7bd76f RM |
392 | |
393 | void profile_hits(int type, void *__pc, unsigned int nr_hits) | |
394 | { | |
395 | if (prof_on != type || !prof_buffer) | |
396 | return; | |
397 | do_profile_hits(type, __pc, nr_hits); | |
398 | } | |
bbe1a59b AM |
399 | EXPORT_SYMBOL_GPL(profile_hits); |
400 | ||
7d12e780 | 401 | void profile_tick(int type) |
1da177e4 | 402 | { |
7d12e780 DH |
403 | struct pt_regs *regs = get_irq_regs(); |
404 | ||
c309b917 RR |
405 | if (!user_mode(regs) && prof_cpu_mask != NULL && |
406 | cpumask_test_cpu(smp_processor_id(), prof_cpu_mask)) | |
1da177e4 LT |
407 | profile_hit(type, (void *)profile_pc(regs)); |
408 | } | |
409 | ||
410 | #ifdef CONFIG_PROC_FS | |
411 | #include <linux/proc_fs.h> | |
583a22e7 | 412 | #include <linux/seq_file.h> |
7c0f6ba6 | 413 | #include <linux/uaccess.h> |
1da177e4 | 414 | |
583a22e7 | 415 | static int prof_cpu_mask_proc_show(struct seq_file *m, void *v) |
1da177e4 | 416 | { |
ccbd59c1 | 417 | seq_printf(m, "%*pb\n", cpumask_pr_args(prof_cpu_mask)); |
583a22e7 AD |
418 | return 0; |
419 | } | |
420 | ||
421 | static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file) | |
422 | { | |
423 | return single_open(file, prof_cpu_mask_proc_show, NULL); | |
1da177e4 LT |
424 | } |
425 | ||
583a22e7 AD |
426 | static ssize_t prof_cpu_mask_proc_write(struct file *file, |
427 | const char __user *buffer, size_t count, loff_t *pos) | |
1da177e4 | 428 | { |
c309b917 | 429 | cpumask_var_t new_value; |
583a22e7 | 430 | int err; |
1da177e4 | 431 | |
c309b917 RR |
432 | if (!alloc_cpumask_var(&new_value, GFP_KERNEL)) |
433 | return -ENOMEM; | |
1da177e4 | 434 | |
c309b917 RR |
435 | err = cpumask_parse_user(buffer, count, new_value); |
436 | if (!err) { | |
583a22e7 AD |
437 | cpumask_copy(prof_cpu_mask, new_value); |
438 | err = count; | |
c309b917 RR |
439 | } |
440 | free_cpumask_var(new_value); | |
441 | return err; | |
1da177e4 LT |
442 | } |
443 | ||
583a22e7 AD |
444 | static const struct file_operations prof_cpu_mask_proc_fops = { |
445 | .open = prof_cpu_mask_proc_open, | |
446 | .read = seq_read, | |
447 | .llseek = seq_lseek, | |
448 | .release = single_release, | |
449 | .write = prof_cpu_mask_proc_write, | |
450 | }; | |
451 | ||
fbd387ae | 452 | void create_prof_cpu_mask(void) |
1da177e4 | 453 | { |
1da177e4 | 454 | /* create /proc/irq/prof_cpu_mask */ |
fbd387ae | 455 | proc_create("irq/prof_cpu_mask", 0600, NULL, &prof_cpu_mask_proc_fops); |
1da177e4 LT |
456 | } |
457 | ||
458 | /* | |
459 | * This function accesses profiling information. The returned data is | |
460 | * binary: the sampling step and the actual contents of the profile | |
461 | * buffer. Use of the program readprofile is recommended in order to | |
462 | * get meaningful info out of these data. | |
463 | */ | |
464 | static ssize_t | |
465 | read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) | |
466 | { | |
467 | unsigned long p = *ppos; | |
468 | ssize_t read; | |
1ad82fd5 | 469 | char *pnt; |
1da177e4 LT |
470 | unsigned int sample_step = 1 << prof_shift; |
471 | ||
472 | profile_flip_buffers(); | |
473 | if (p >= (prof_len+1)*sizeof(unsigned int)) | |
474 | return 0; | |
475 | if (count > (prof_len+1)*sizeof(unsigned int) - p) | |
476 | count = (prof_len+1)*sizeof(unsigned int) - p; | |
477 | read = 0; | |
478 | ||
479 | while (p < sizeof(unsigned int) && count > 0) { | |
1ad82fd5 | 480 | if (put_user(*((char *)(&sample_step)+p), buf)) |
064b022c | 481 | return -EFAULT; |
1da177e4 LT |
482 | buf++; p++; count--; read++; |
483 | } | |
484 | pnt = (char *)prof_buffer + p - sizeof(atomic_t); | |
1ad82fd5 | 485 | if (copy_to_user(buf, (void *)pnt, count)) |
1da177e4 LT |
486 | return -EFAULT; |
487 | read += count; | |
488 | *ppos += read; | |
489 | return read; | |
490 | } | |
491 | ||
492 | /* | |
493 | * Writing to /proc/profile resets the counters | |
494 | * | |
495 | * Writing a 'profiling multiplier' value into it also re-sets the profiling | |
496 | * interrupt frequency, on architectures that support this. | |
497 | */ | |
498 | static ssize_t write_profile(struct file *file, const char __user *buf, | |
499 | size_t count, loff_t *ppos) | |
500 | { | |
501 | #ifdef CONFIG_SMP | |
1ad82fd5 | 502 | extern int setup_profiling_timer(unsigned int multiplier); |
1da177e4 LT |
503 | |
504 | if (count == sizeof(int)) { | |
505 | unsigned int multiplier; | |
506 | ||
507 | if (copy_from_user(&multiplier, buf, sizeof(int))) | |
508 | return -EFAULT; | |
509 | ||
510 | if (setup_profiling_timer(multiplier)) | |
511 | return -EINVAL; | |
512 | } | |
513 | #endif | |
514 | profile_discard_flip_buffers(); | |
515 | memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); | |
516 | return count; | |
517 | } | |
518 | ||
15ad7cdc | 519 | static const struct file_operations proc_profile_operations = { |
1da177e4 LT |
520 | .read = read_profile, |
521 | .write = write_profile, | |
6038f373 | 522 | .llseek = default_llseek, |
1da177e4 LT |
523 | }; |
524 | ||
e722d8da | 525 | int __ref create_proc_profile(void) |
1da177e4 | 526 | { |
e722d8da SAS |
527 | struct proc_dir_entry *entry; |
528 | #ifdef CONFIG_SMP | |
529 | enum cpuhp_state online_state; | |
1da177e4 LT |
530 | #endif |
531 | ||
c270a817 | 532 | int err = 0; |
1da177e4 LT |
533 | |
534 | if (!prof_on) | |
535 | return 0; | |
e722d8da SAS |
536 | #ifdef CONFIG_SMP |
537 | err = cpuhp_setup_state(CPUHP_PROFILE_PREPARE, "PROFILE_PREPARE", | |
538 | profile_prepare_cpu, profile_dead_cpu); | |
539 | if (err) | |
540 | return err; | |
541 | ||
542 | err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "AP_PROFILE_ONLINE", | |
543 | profile_online_cpu, NULL); | |
544 | if (err < 0) | |
545 | goto err_state_prep; | |
546 | online_state = err; | |
547 | err = 0; | |
548 | #endif | |
c33fff0a DL |
549 | entry = proc_create("profile", S_IWUSR | S_IRUGO, |
550 | NULL, &proc_profile_operations); | |
1ad82fd5 | 551 | if (!entry) |
e722d8da | 552 | goto err_state_onl; |
271a15ea | 553 | proc_set_size(entry, (1 + prof_len) * sizeof(atomic_t)); |
c270a817 | 554 | |
e722d8da SAS |
555 | return err; |
556 | err_state_onl: | |
557 | #ifdef CONFIG_SMP | |
558 | cpuhp_remove_state(online_state); | |
559 | err_state_prep: | |
560 | cpuhp_remove_state(CPUHP_PROFILE_PREPARE); | |
561 | #endif | |
c270a817 | 562 | return err; |
1da177e4 | 563 | } |
c96d6660 | 564 | subsys_initcall(create_proc_profile); |
1da177e4 | 565 | #endif /* CONFIG_PROC_FS */ |