]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/rcu/tree.c
Merge tag 'sched-psi-2022-10-14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / kernel / rcu / tree.c
CommitLineData
22e40925 1// SPDX-License-Identifier: GPL-2.0+
64db4cff 2/*
65bb0dc4 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
64db4cff 4 *
64db4cff
PM
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
65bb0dc4 9 * Paul E. McKenney <paulmck@linux.ibm.com>
64db4cff 10 *
22e40925 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
64db4cff
PM
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 15 * Documentation/RCU
64db4cff 16 */
a7538352
JP
17
18#define pr_fmt(fmt) "rcu: " fmt
19
64db4cff
PM
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
f9411ebe 25#include <linux/rcupdate_wait.h>
64db4cff
PM
26#include <linux/interrupt.h>
27#include <linux/sched.h>
b17b0153 28#include <linux/sched/debug.h>
c1dc0b9c 29#include <linux/nmi.h>
8826f3b0 30#include <linux/atomic.h>
64db4cff 31#include <linux/bitops.h>
9984de1a 32#include <linux/export.h>
64db4cff
PM
33#include <linux/completion.h>
34#include <linux/moduleparam.h>
f39650de
AS
35#include <linux/panic.h>
36#include <linux/panic_notifier.h>
64db4cff
PM
37#include <linux/percpu.h>
38#include <linux/notifier.h>
39#include <linux/cpu.h>
40#include <linux/mutex.h>
41#include <linux/time.h>
bbad9379 42#include <linux/kernel_stat.h>
a26ac245
PM
43#include <linux/wait.h>
44#include <linux/kthread.h>
ae7e81c0 45#include <uapi/linux/sched/types.h>
268bb0ce 46#include <linux/prefetch.h>
3d3b7db0 47#include <linux/delay.h>
661a85dc 48#include <linux/random.h>
af658dca 49#include <linux/trace_events.h>
d1d74d14 50#include <linux/suspend.h>
a278d471 51#include <linux/ftrace.h>
d3052109 52#include <linux/tick.h>
2ccaff10 53#include <linux/sysrq.h>
c13324a5 54#include <linux/kprobes.h>
48d07c04
SAS
55#include <linux/gfp.h>
56#include <linux/oom.h>
57#include <linux/smpboot.h>
58#include <linux/jiffies.h>
77a40f97 59#include <linux/slab.h>
48d07c04 60#include <linux/sched/isolation.h>
cfcdef5e 61#include <linux/sched/clock.h>
5f3c8d62
URS
62#include <linux/vmalloc.h>
63#include <linux/mm.h>
26e760c9 64#include <linux/kasan.h>
17211455 65#include <linux/context_tracking.h>
48d07c04 66#include "../time/tick-internal.h"
64db4cff 67
4102adab 68#include "tree.h"
29c00b4a 69#include "rcu.h"
9f77da9f 70
4102adab
PM
71#ifdef MODULE_PARAM_PREFIX
72#undef MODULE_PARAM_PREFIX
73#endif
74#define MODULE_PARAM_PREFIX "rcutree."
75
64db4cff
PM
76/* Data structures. */
77
4c5273bf 78static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
a5d1b0b6 79 .gpwrap = true,
8d346d43 80#ifdef CONFIG_RCU_NOCB_CPU
213d56bf 81 .cblist.flags = SEGCBLIST_RCU_CORE,
8d346d43 82#endif
4c5273bf 83};
c30fe541 84static struct rcu_state rcu_state = {
358be2d3 85 .level = { &rcu_state.node[0] },
358be2d3
PM
86 .gp_state = RCU_GP_IDLE,
87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
80b3fd47 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
358be2d3
PM
90 .name = RCU_NAME,
91 .abbr = RCU_ABBR,
92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
82980b16 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
358be2d3 95};
27f4d280 96
a3dc2948
PM
97/* Dump rcu_node combining tree at boot to verify correct setup. */
98static bool dump_tree;
99module_param(dump_tree, bool, 0444);
48d07c04 100/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
8b9a0ecc
SW
101static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
102#ifndef CONFIG_PREEMPT_RT
48d07c04 103module_param(use_softirq, bool, 0444);
8b9a0ecc 104#endif
7fa27001
PM
105/* Control rcu_node-tree auto-balancing at boot time. */
106static bool rcu_fanout_exact;
107module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 110module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 112/* Number of rcu_nodes at specified level. */
e95d68d2 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
115
b0d30417 116/*
52d7e48b
PM
117 * The rcu_scheduler_active variable is initialized to the value
118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
120 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 121 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
123 * to detect real grace periods. This variable is also used to suppress
124 * boot-time false positives from lockdep-RCU error checking. Finally, it
125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
126 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 127 */
bbad9379
PM
128int rcu_scheduler_active __read_mostly;
129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
130
b0d30417
PM
131/*
132 * The rcu_scheduler_fully_active variable transitions from zero to one
133 * during the early_initcall() processing, which is after the scheduler
134 * is capable of creating new tasks. So RCU processing (for example,
135 * creating tasks for RCU priority boosting) must be delayed until after
136 * rcu_scheduler_fully_active transitions from zero to one. We also
137 * currently delay invocation of any RCU callbacks until after this point.
138 *
139 * It might later prove better for people registering RCU callbacks during
140 * early boot to take responsibility for these callbacks, but one step at
141 * a time.
142 */
143static int rcu_scheduler_fully_active __read_mostly;
144
b50912d0
PM
145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
146 unsigned long gps, unsigned long flags);
0aa04b05
PM
147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 150static void invoke_rcu_core(void);
63d4c8c9 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 152static void sync_sched_exp_online_cleanup(int cpu);
b2b00ddf 153static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
3820b513 154static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
a26ac245 155
8f489b4d
URS
156/*
157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
158 * real-time priority(enabling/disabling) is controlled by
159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
160 */
26730f55 161static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
3ffe3d1a 162module_param(kthread_prio, int, 0444);
a94844b2 163
8d7dc928 164/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 165
90040c9e
PM
166static int gp_preinit_delay;
167module_param(gp_preinit_delay, int, 0444);
168static int gp_init_delay;
169module_param(gp_init_delay, int, 0444);
170static int gp_cleanup_delay;
171module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 172
aa40c138
PM
173// Add delay to rcu_read_unlock() for strict grace periods.
174static int rcu_unlock_delay;
175#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
176module_param(rcu_unlock_delay, int, 0444);
177#endif
178
53c72b59
URS
179/*
180 * This rcu parameter is runtime-read-only. It reflects
181 * a minimum allowed number of objects which can be cached
182 * per-CPU. Object size is equal to one page. This value
183 * can be changed at boot time.
184 */
56292e86 185static int rcu_min_cached_objs = 5;
53c72b59
URS
186module_param(rcu_min_cached_objs, int, 0444);
187
d0bfa8b3
ZQ
188// A page shrinker can ask for pages to be freed to make them
189// available for other parts of the system. This usually happens
190// under low memory conditions, and in that case we should also
191// defer page-cache filling for a short time period.
192//
193// The default value is 5 seconds, which is long enough to reduce
194// interference with the shrinker while it asks other systems to
195// drain their caches.
196static int rcu_delay_page_cache_fill_msec = 5000;
197module_param(rcu_delay_page_cache_fill_msec, int, 0444);
198
4cf439a2 199/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
200int rcu_get_gp_kthreads_prio(void)
201{
202 return kthread_prio;
203}
204EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
205
eab128e8
PM
206/*
207 * Number of grace periods between delays, normalized by the duration of
bfd090be 208 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
209 * each delay. The reason for this normalization is that it means that,
210 * for non-zero delays, the overall slowdown of grace periods is constant
211 * regardless of the duration of the delay. This arrangement balances
212 * the need for long delays to increase some race probabilities with the
213 * need for fast grace periods to increase other race probabilities.
214 */
277ffe1b 215#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
37745d28 216
0aa04b05
PM
217/*
218 * Compute the mask of online CPUs for the specified rcu_node structure.
219 * This will not be stable unless the rcu_node structure's ->lock is
220 * held, but the bit corresponding to the current CPU will be stable
221 * in most contexts.
222 */
c30fe541 223static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
0aa04b05 224{
7d0ae808 225 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
226}
227
5ae0f1b5
PM
228/*
229 * Is the CPU corresponding to the specified rcu_data structure online
230 * from RCU's perspective? This perspective is given by that structure's
231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
232 */
233static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
234{
235 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
236}
237
fc2219d4 238/*
7d0ae808 239 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
240 * permit this function to be invoked without holding the root rcu_node
241 * structure's ->lock, but of course results can be subject to change.
242 */
de8e8730 243static int rcu_gp_in_progress(void)
fc2219d4 244{
de8e8730 245 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
b1f77b05
IM
246}
247
903ee83d
PM
248/*
249 * Return the number of callbacks queued on the specified CPU.
250 * Handles both the nocbs and normal cases.
251 */
252static long rcu_get_n_cbs_cpu(int cpu)
253{
254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
255
c035280f 256 if (rcu_segcblist_is_enabled(&rdp->cblist))
903ee83d 257 return rcu_segcblist_n_cbs(&rdp->cblist);
c035280f 258 return 0;
903ee83d
PM
259}
260
d28139c4 261void rcu_softirq_qs(void)
b1f77b05 262{
45975c7d 263 rcu_qs();
d28139c4 264 rcu_preempt_deferred_qs(current);
cf868c2a 265 rcu_tasks_qs(current, false);
b1f77b05 266}
64db4cff 267
2625d469
PM
268/*
269 * Reset the current CPU's ->dynticks counter to indicate that the
270 * newly onlined CPU is no longer in an extended quiescent state.
271 * This will either leave the counter unchanged, or increment it
272 * to the next non-quiescent value.
273 *
274 * The non-atomic test/increment sequence works because the upper bits
275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
276 * or when the corresponding CPU is offline.
277 */
278static void rcu_dynticks_eqs_online(void)
279{
17147677 280 if (ct_dynticks() & RCU_DYNTICKS_IDX)
2625d469 281 return;
17147677 282 ct_state_inc(RCU_DYNTICKS_IDX);
02a5c550
PM
283}
284
8b2f63ab
PM
285/*
286 * Snapshot the ->dynticks counter with full ordering so as to allow
287 * stable comparison of this counter with past and future snapshots.
288 */
62e2412d 289static int rcu_dynticks_snap(int cpu)
8b2f63ab 290{
2be57f73 291 smp_mb(); // Fundamental RCU ordering guarantee.
62e2412d 292 return ct_dynticks_cpu_acquire(cpu);
8b2f63ab
PM
293}
294
02a5c550
PM
295/*
296 * Return true if the snapshot returned from rcu_dynticks_snap()
297 * indicates that RCU is in an extended quiescent state.
298 */
299static bool rcu_dynticks_in_eqs(int snap)
300{
17147677 301 return !(snap & RCU_DYNTICKS_IDX);
02a5c550
PM
302}
303
3fcd6a23
PM
304/* Return true if the specified CPU is currently idle from an RCU viewpoint. */
305bool rcu_is_idle_cpu(int cpu)
306{
62e2412d 307 return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
3fcd6a23
PM
308}
309
02a5c550 310/*
dc5a4f29 311 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
312 * structure has spent some time in an extended quiescent state since
313 * rcu_dynticks_snap() returned the specified snapshot.
314 */
dc5a4f29 315static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 316{
62e2412d 317 return snap != rcu_dynticks_snap(rdp->cpu);
02a5c550
PM
318}
319
7d0c9c50
PM
320/*
321 * Return true if the referenced integer is zero while the specified
322 * CPU remains within a single extended quiescent state.
323 */
324bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
325{
7d0c9c50
PM
326 int snap;
327
328 // If not quiescent, force back to earlier extended quiescent state.
17147677 329 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
7d0c9c50
PM
330 smp_rmb(); // Order ->dynticks and *vp reads.
331 if (READ_ONCE(*vp))
332 return false; // Non-zero, so report failure;
333 smp_rmb(); // Order *vp read and ->dynticks re-read.
334
335 // If still in the same extended quiescent state, we are good!
62e2412d 336 return snap == ct_dynticks_cpu(cpu);
6563de9d 337}
5cd37193 338
4a81e832
PM
339/*
340 * Let the RCU core know that this CPU has gone through the scheduler,
341 * which is a quiescent state. This is called when the need for a
342 * quiescent state is urgent, so we burn an atomic operation and full
343 * memory barriers to let the RCU core know about it, regardless of what
344 * this CPU might (or might not) do in the near future.
345 *
0f9be8ca 346 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 347 *
3b57a399 348 * The caller must have disabled interrupts and must not be idle.
4a81e832 349 */
4230e2de 350notrace void rcu_momentary_dyntick_idle(void)
4a81e832 351{
2be57f73 352 int seq;
3b57a399 353
2dba13f0 354 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
17147677 355 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
3b57a399 356 /* It is illegal to call this from idle state. */
17147677 357 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
3e310098 358 rcu_preempt_deferred_qs(current);
4a81e832 359}
79ba7ff5 360EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
4a81e832 361
45975c7d 362/**
806f04e9 363 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
bb73c52b 364 *
eddded80 365 * If the current CPU is idle and running at a first-level (not nested)
806f04e9
PZ
366 * interrupt, or directly, from idle, return true.
367 *
368 * The caller must have at least disabled IRQs.
5cd37193 369 */
45975c7d 370static int rcu_is_cpu_rrupt_from_idle(void)
5cd37193 371{
806f04e9
PZ
372 long nesting;
373
374 /*
375 * Usually called from the tick; but also used from smp_function_call()
376 * for expedited grace periods. This latter can result in running from
377 * the idle task, instead of an actual IPI.
378 */
379 lockdep_assert_irqs_disabled();
eddded80
JFG
380
381 /* Check for counter underflows */
904e600e 382 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
eddded80 383 "RCU dynticks_nesting counter underflow!");
95e04f48 384 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
eddded80
JFG
385 "RCU dynticks_nmi_nesting counter underflow/zero!");
386
387 /* Are we at first interrupt nesting level? */
95e04f48 388 nesting = ct_dynticks_nmi_nesting();
806f04e9 389 if (nesting > 1)
eddded80
JFG
390 return false;
391
806f04e9
PZ
392 /*
393 * If we're not in an interrupt, we must be in the idle task!
394 */
395 WARN_ON_ONCE(!nesting && !is_idle_task(current));
396
eddded80 397 /* Does CPU appear to be idle from an RCU standpoint? */
904e600e 398 return ct_dynticks_nesting() == 0;
5cd37193 399}
5cd37193 400
29fc5f93
PM
401#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
402 // Maximum callbacks per rcu_do_batch ...
403#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
17c7798b 404static long blimit = DEFAULT_RCU_BLIMIT;
29fc5f93 405#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
17c7798b 406static long qhimark = DEFAULT_RCU_QHIMARK;
29fc5f93 407#define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
17c7798b 408static long qlowmark = DEFAULT_RCU_QLOMARK;
b2b00ddf
PM
409#define DEFAULT_RCU_QOVLD_MULT 2
410#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
29fc5f93
PM
411static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
412static long qovld_calc = -1; // No pre-initialization lock acquisitions!
64db4cff 413
878d7439
ED
414module_param(blimit, long, 0444);
415module_param(qhimark, long, 0444);
416module_param(qlowmark, long, 0444);
b2b00ddf 417module_param(qovld, long, 0444);
3d76c082 418
aecd34b9 419static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
026ad283 420static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 421static bool rcu_kick_kthreads;
cfcdef5e
ED
422static int rcu_divisor = 7;
423module_param(rcu_divisor, int, 0644);
424
425/* Force an exit from rcu_do_batch() after 3 milliseconds. */
426static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
427module_param(rcu_resched_ns, long, 0644);
d40011f6 428
c06aed0e
PM
429/*
430 * How long the grace period must be before we start recruiting
431 * quiescent-state help from rcu_note_context_switch().
432 */
433static ulong jiffies_till_sched_qs = ULONG_MAX;
434module_param(jiffies_till_sched_qs, ulong, 0444);
85f2b60c 435static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
c06aed0e
PM
436module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
437
438/*
439 * Make sure that we give the grace-period kthread time to detect any
440 * idle CPUs before taking active measures to force quiescent states.
441 * However, don't go below 100 milliseconds, adjusted upwards for really
442 * large systems.
443 */
444static void adjust_jiffies_till_sched_qs(void)
445{
446 unsigned long j;
447
448 /* If jiffies_till_sched_qs was specified, respect the request. */
449 if (jiffies_till_sched_qs != ULONG_MAX) {
450 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
451 return;
452 }
85f2b60c 453 /* Otherwise, set to third fqs scan, but bound below on large system. */
c06aed0e
PM
454 j = READ_ONCE(jiffies_till_first_fqs) +
455 2 * READ_ONCE(jiffies_till_next_fqs);
456 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
457 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
458 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
459 WRITE_ONCE(jiffies_to_sched_qs, j);
460}
461
67abb96c
BP
462static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
463{
464 ulong j;
465 int ret = kstrtoul(val, 0, &j);
466
c06aed0e 467 if (!ret) {
67abb96c 468 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
469 adjust_jiffies_till_sched_qs();
470 }
67abb96c
BP
471 return ret;
472}
473
474static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
475{
476 ulong j;
477 int ret = kstrtoul(val, 0, &j);
478
c06aed0e 479 if (!ret) {
67abb96c 480 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
481 adjust_jiffies_till_sched_qs();
482 }
67abb96c
BP
483 return ret;
484}
485
7c47ee5a 486static const struct kernel_param_ops first_fqs_jiffies_ops = {
67abb96c
BP
487 .set = param_set_first_fqs_jiffies,
488 .get = param_get_ulong,
489};
490
7c47ee5a 491static const struct kernel_param_ops next_fqs_jiffies_ops = {
67abb96c
BP
492 .set = param_set_next_fqs_jiffies,
493 .get = param_get_ulong,
494};
495
496module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
497module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 498module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 499
8ff0b907 500static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
dd7dafd1 501static int rcu_pending(int user);
64db4cff
PM
502
503/*
17ef2fe9 504 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 505 */
17ef2fe9 506unsigned long rcu_get_gp_seq(void)
917963d0 507{
16fc9c60 508 return READ_ONCE(rcu_state.gp_seq);
917963d0 509}
17ef2fe9 510EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 511
291783b8
PM
512/*
513 * Return the number of RCU expedited batches completed thus far for
514 * debug & stats. Odd numbers mean that a batch is in progress, even
515 * numbers mean idle. The value returned will thus be roughly double
516 * the cumulative batches since boot.
517 */
518unsigned long rcu_exp_batches_completed(void)
519{
16fc9c60 520 return rcu_state.expedited_sequence;
291783b8
PM
521}
522EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
523
fd897573
PM
524/*
525 * Return the root node of the rcu_state structure.
526 */
527static struct rcu_node *rcu_get_root(void)
528{
529 return &rcu_state.node[0];
530}
531
ad0dc7f9
PM
532/*
533 * Send along grace-period-related data for rcutorture diagnostics.
534 */
535void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 536 unsigned long *gp_seq)
ad0dc7f9 537{
ad0dc7f9
PM
538 switch (test_type) {
539 case RCU_FLAVOR:
f7dd7d44
PM
540 *flags = READ_ONCE(rcu_state.gp_flags);
541 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
542 break;
543 default:
544 break;
545 }
ad0dc7f9
PM
546}
547EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
548
17211455 549#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
f8bb5cae
FW
550/*
551 * An empty function that will trigger a reschedule on
4ae7dc97 552 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
f8bb5cae
FW
553 */
554static void late_wakeup_func(struct irq_work *work)
555{
556}
557
558static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
559 IRQ_WORK_INIT(late_wakeup_func);
560
4ae7dc97
FW
561/*
562 * If either:
563 *
564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
566 *
567 * In these cases the late RCU wake ups aren't supported in the resched loops and our
568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
569 * get re-enabled again.
570 */
56450649 571noinstr void rcu_irq_work_resched(void)
4ae7dc97
FW
572{
573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
574
575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
576 return;
577
578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
579 return;
580
581 instrumentation_begin();
582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
583 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
584 }
585 instrumentation_end();
586}
17211455 587#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
7c9906ca 588
07325d4a
TG
589#ifdef CONFIG_PROVE_RCU
590/**
591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
592 */
593void rcu_irq_exit_check_preempt(void)
594{
595 lockdep_assert_irqs_disabled();
596
904e600e 597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
07325d4a 598 "RCU dynticks_nesting counter underflow/zero!");
95e04f48 599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
07325d4a
TG
600 DYNTICK_IRQ_NONIDLE,
601 "Bad RCU dynticks_nmi_nesting counter\n");
602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
603 "RCU in extended quiescent state!");
604}
605#endif /* #ifdef CONFIG_PROVE_RCU */
606
d1ec4c34 607#ifdef CONFIG_NO_HZ_FULL
aaf2bc50
PM
608/**
609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
610 *
611 * The scheduler tick is not normally enabled when CPUs enter the kernel
612 * from nohz_full userspace execution. After all, nohz_full userspace
613 * execution is an RCU quiescent state and the time executing in the kernel
614 * is quite short. Except of course when it isn't. And it is not hard to
615 * cause a large system to spend tens of seconds or even minutes looping
616 * in the kernel, which can cause a number of problems, include RCU CPU
617 * stall warnings.
618 *
619 * Therefore, if a nohz_full CPU fails to report a quiescent state
620 * in a timely manner, the RCU grace-period kthread sets that CPU's
621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
622 * exception will invoke this function, which will turn on the scheduler
623 * tick, which will enable RCU to detect that CPU's quiescent states,
624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
625 * The tick will be disabled once a quiescent state is reported for
626 * this CPU.
627 *
628 * Of course, in carefully tuned systems, there might never be an
629 * interrupt or exception. In that case, the RCU grace-period kthread
630 * will eventually cause one to happen. However, in less carefully
631 * controlled environments, this function allows RCU to get what it
632 * needs without creating otherwise useless interruptions.
633 */
634void __rcu_irq_enter_check_tick(void)
635{
636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
637
6dbce04d
PZ
638 // If we're here from NMI there's nothing to do.
639 if (in_nmi())
aaf2bc50
PM
640 return;
641
642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
644
645 if (!tick_nohz_full_cpu(rdp->cpu) ||
646 !READ_ONCE(rdp->rcu_urgent_qs) ||
647 READ_ONCE(rdp->rcu_forced_tick)) {
648 // RCU doesn't need nohz_full help from this CPU, or it is
649 // already getting that help.
650 return;
651 }
652
653 // We get here only when not in an extended quiescent state and
654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
655 // already watching and (2) The fact that we are in an interrupt
656 // handler and that the rcu_node lock is an irq-disabled lock
657 // prevents self-deadlock. So we can safely recheck under the lock.
658 // Note that the nohz_full state currently cannot change.
659 raw_spin_lock_rcu_node(rdp->mynode);
660 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
661 // A nohz_full CPU is in the kernel and RCU needs a
662 // quiescent state. Turn on the tick!
663 WRITE_ONCE(rdp->rcu_forced_tick, true);
664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
665 }
666 raw_spin_unlock_rcu_node(rdp->mynode);
667}
d1ec4c34 668#endif /* CONFIG_NO_HZ_FULL */
19dd1591 669
bc849e91
PM
670/*
671 * Check to see if any future non-offloaded RCU-related work will need
672 * to be done by the current CPU, even if none need be done immediately,
673 * returning 1 if so. This function is part of the RCU implementation;
674 * it is -not- an exported member of the RCU API. This is used by
675 * the idle-entry code to figure out whether it is safe to disable the
676 * scheduler-clock interrupt.
677 *
678 * Just check whether or not this CPU has non-offloaded RCU callbacks
679 * queued.
680 */
29845399 681int rcu_needs_cpu(void)
bc849e91 682{
bc849e91
PM
683 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
684 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
685}
686
66e4c33b 687/*
516e5ae0
JFG
688 * If any sort of urgency was applied to the current CPU (for example,
689 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
690 * to get to a quiescent state, disable it.
66e4c33b 691 */
516e5ae0 692static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
66e4c33b 693{
5b14557b 694 raw_lockdep_assert_held_rcu_node(rdp->mynode);
516e5ae0
JFG
695 WRITE_ONCE(rdp->rcu_urgent_qs, false);
696 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
66e4c33b
PM
697 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
698 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
2a2ae872 699 WRITE_ONCE(rdp->rcu_forced_tick, false);
66e4c33b
PM
700 }
701}
702
5c173eb8 703/**
2320bda2 704 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
64db4cff 705 *
791875d1
PM
706 * Return true if RCU is watching the running CPU, which means that this
707 * CPU can safely enter RCU read-side critical sections. In other words,
2320bda2
ZZ
708 * if the current CPU is not in its idle loop or is in an interrupt or
709 * NMI handler, return true.
d2098b44
PZ
710 *
711 * Make notrace because it can be called by the internal functions of
712 * ftrace, and making this notrace removes unnecessary recursion calls.
64db4cff 713 */
d2098b44 714notrace bool rcu_is_watching(void)
64db4cff 715{
f534ed1f 716 bool ret;
34240697 717
46f00d18 718 preempt_disable_notrace();
791875d1 719 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 720 preempt_enable_notrace();
34240697 721 return ret;
64db4cff 722}
5c173eb8 723EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 724
bcbfdd01
PM
725/*
726 * If a holdout task is actually running, request an urgent quiescent
727 * state from its CPU. This is unsynchronized, so migrations can cause
728 * the request to go to the wrong CPU. Which is OK, all that will happen
729 * is that the CPU's next context switch will be a bit slower and next
730 * time around this task will generate another request.
731 */
732void rcu_request_urgent_qs_task(struct task_struct *t)
733{
734 int cpu;
735
736 barrier();
737 cpu = task_cpu(t);
738 if (!task_curr(t))
739 return; /* This task is not running on that CPU. */
2dba13f0 740 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
741}
742
62fde6ed 743#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
744
745/*
5554788e 746 * Is the current CPU online as far as RCU is concerned?
2036d94a 747 *
5554788e
PM
748 * Disable preemption to avoid false positives that could otherwise
749 * happen due to the current CPU number being sampled, this task being
750 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 751 * then determining that its old CPU is now offline.
c0d6d01b 752 *
5554788e
PM
753 * Disable checking if in an NMI handler because we cannot safely
754 * report errors from NMI handlers anyway. In addition, it is OK to use
755 * RCU on an offline processor during initial boot, hence the check for
756 * rcu_scheduler_fully_active.
c0d6d01b
PM
757 */
758bool rcu_lockdep_current_cpu_online(void)
759{
2036d94a 760 struct rcu_data *rdp;
b97d23c5 761 bool ret = false;
c0d6d01b 762
5554788e 763 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 764 return true;
ff5c4f5c 765 preempt_disable_notrace();
b97d23c5 766 rdp = this_cpu_ptr(&rcu_data);
82980b16
DW
767 /*
768 * Strictly, we care here about the case where the current CPU is
769 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
770 * not being up to date. So arch_spin_is_locked() might have a
771 * false positive if it's held by some *other* CPU, but that's
772 * OK because that just means a false *negative* on the warning.
773 */
5ae0f1b5 774 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
b97d23c5 775 ret = true;
ff5c4f5c 776 preempt_enable_notrace();
b97d23c5 777 return ret;
c0d6d01b
PM
778}
779EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
780
62fde6ed 781#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 782
9b9500da 783/*
277ffe1b 784 * When trying to report a quiescent state on behalf of some other CPU,
9b9500da 785 * it is our responsibility to check for and handle potential overflow
a66ae8ae 786 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
787 * After all, the CPU might be in deep idle state, and thus executing no
788 * code whatsoever.
789 */
790static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
791{
a32e01ee 792 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
793 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
794 rnp->gp_seq))
9b9500da 795 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
796 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
797 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
798}
799
64db4cff
PM
800/*
801 * Snapshot the specified CPU's dynticks counter so that we can later
802 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 803 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 804 */
fe5ac724 805static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 806{
62e2412d 807 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
02a5c550 808 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 809 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 810 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 811 return 1;
7941dbde 812 }
23a9bacd 813 return 0;
64db4cff
PM
814}
815
816/*
817 * Return true if the specified CPU has passed through a quiescent
818 * state by virtue of being in or having passed through an dynticks
819 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 820 * for this same CPU, or by virtue of having been offline.
64db4cff 821 */
fe5ac724 822static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 823{
3a19b46a 824 unsigned long jtsq;
9b9500da 825 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
826
827 /*
828 * If the CPU passed through or entered a dynticks idle phase with
829 * no active irq/NMI handlers, then we can safely pretend that the CPU
830 * already acknowledged the request to pass through a quiescent
831 * state. Either way, that CPU cannot possibly be in an RCU
832 * read-side critical section that started before the beginning
833 * of the current RCU grace period.
834 */
dc5a4f29 835 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 836 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 837 rcu_gpnum_ovf(rnp, rdp);
3a19b46a
PM
838 return 1;
839 }
840
666ca290
JFG
841 /*
842 * Complain if a CPU that is considered to be offline from RCU's
843 * perspective has not yet reported a quiescent state. After all,
844 * the offline CPU should have reported a quiescent state during
845 * the CPU-offline process, or, failing that, by rcu_gp_init()
846 * if it ran concurrently with either the CPU going offline or the
847 * last task on a leaf rcu_node structure exiting its RCU read-side
848 * critical section while all CPUs corresponding to that structure
849 * are offline. This added warning detects bugs in any of these
850 * code paths.
851 *
852 * The rcu_node structure's ->lock is held here, which excludes
853 * the relevant portions the CPU-hotplug code, the grace-period
854 * initialization code, and the rcu_read_unlock() code paths.
855 *
856 * For more detail, please refer to the "Hotplug CPU" section
857 * of RCU's Requirements documentation.
858 */
5ae0f1b5 859 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
f2e2df59
PM
860 struct rcu_node *rnp1;
861
f2e2df59
PM
862 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
863 __func__, rnp->grplo, rnp->grphi, rnp->level,
864 (long)rnp->gp_seq, (long)rnp->completedqs);
865 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
866 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
867 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
f2e2df59 868 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
5ae0f1b5 869 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
f2e2df59
PM
870 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
871 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
872 return 1; /* Break things loose after complaining. */
873 }
874
65d798f0 875 /*
4a81e832 876 * A CPU running for an extended time within the kernel can
c06aed0e
PM
877 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
878 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
879 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
880 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
881 * variable are safe because the assignments are repeated if this
882 * CPU failed to pass through a quiescent state. This code
c06aed0e 883 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 884 * is set way high.
6193c76a 885 */
c06aed0e 886 jtsq = READ_ONCE(jiffies_to_sched_qs);
88ee23ef 887 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
7e28c5af 888 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
b2b00ddf
PM
889 time_after(jiffies, rcu_state.jiffies_resched) ||
890 rcu_state.cbovld)) {
88ee23ef 891 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
9226b10d 892 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
9424b867 893 smp_store_release(&rdp->rcu_urgent_qs, true);
7e28c5af 894 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
9424b867 895 WRITE_ONCE(rdp->rcu_urgent_qs, true);
6193c76a
PM
896 }
897
28053bc7 898 /*
c98cac60 899 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
d3052109
PM
900 * The above code handles this, but only for straight cond_resched().
901 * And some in-kernel loops check need_resched() before calling
902 * cond_resched(), which defeats the above code for CPUs that are
903 * running in-kernel with scheduling-clock interrupts disabled.
904 * So hit them over the head with the resched_cpu() hammer!
28053bc7 905 */
d3052109 906 if (tick_nohz_full_cpu(rdp->cpu) &&
b2b00ddf
PM
907 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
908 rcu_state.cbovld)) {
9424b867 909 WRITE_ONCE(rdp->rcu_urgent_qs, true);
28053bc7 910 resched_cpu(rdp->cpu);
d3052109
PM
911 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
912 }
913
914 /*
915 * If more than halfway to RCU CPU stall-warning time, invoke
916 * resched_cpu() more frequently to try to loosen things up a bit.
917 * Also check to see if the CPU is getting hammered with interrupts,
918 * but only once per grace period, just to keep the IPIs down to
919 * a dull roar.
920 */
921 if (time_after(jiffies, rcu_state.jiffies_resched)) {
922 if (time_after(jiffies,
923 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
924 resched_cpu(rdp->cpu);
925 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
926 }
9b9500da 927 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 928 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da 929 (rnp->ffmask & rdp->grpmask)) {
9b9500da 930 rdp->rcu_iw_pending = true;
8aa670cd 931 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
932 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
933 }
934 }
4914950a 935
a82dcc76 936 return 0;
64db4cff
PM
937}
938
41e80595
PM
939/* Trace-event wrapper function for trace_rcu_future_grace_period. */
940static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 941 unsigned long gp_seq_req, const char *s)
0446be48 942{
0937d045
PM
943 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
944 gp_seq_req, rnp->level,
945 rnp->grplo, rnp->grphi, s);
0446be48
PM
946}
947
948/*
b73de91d 949 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 950 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
951 * @rdp: The rcu_data corresponding to the CPU from which to start.
952 * @gp_seq_req: The gp_seq of the grace period to start.
953 *
41e80595 954 * Start the specified grace period, as needed to handle newly arrived
0446be48 955 * callbacks. The required future grace periods are recorded in each
7a1d0f23 956 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 957 * is reason to awaken the grace-period kthread.
0446be48 958 *
d5cd9685
PM
959 * The caller must hold the specified rcu_node structure's ->lock, which
960 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
961 *
962 * Returns true if the GP thread needs to be awakened else false.
0446be48 963 */
df2bf8f7 964static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 965 unsigned long gp_seq_req)
0446be48 966{
48a7639c 967 bool ret = false;
df2bf8f7 968 struct rcu_node *rnp;
0446be48
PM
969
970 /*
360e0da6
PM
971 * Use funnel locking to either acquire the root rcu_node
972 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
973 * has already been recorded -- or if that grace period has in
974 * fact already started. If there is already a grace period in
975 * progress in a non-leaf node, no recording is needed because the
976 * end of the grace period will scan the leaf rcu_node structures.
977 * Note that rnp_start->lock must not be released.
0446be48 978 */
df2bf8f7
JFG
979 raw_lockdep_assert_held_rcu_node(rnp_start);
980 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
981 for (rnp = rnp_start; 1; rnp = rnp->parent) {
982 if (rnp != rnp_start)
983 raw_spin_lock_rcu_node(rnp);
984 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
985 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
986 (rnp != rnp_start &&
987 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
988 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 989 TPS("Prestarted"));
360e0da6
PM
990 goto unlock_out;
991 }
8ff37290 992 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
226ca5e7 993 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 994 /*
226ca5e7
JFG
995 * We just marked the leaf or internal node, and a
996 * grace period is in progress, which means that
997 * rcu_gp_cleanup() will see the marking. Bail to
998 * reduce contention.
a2165e41 999 */
df2bf8f7 1000 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1001 TPS("Startedleaf"));
a2165e41
PM
1002 goto unlock_out;
1003 }
df2bf8f7
JFG
1004 if (rnp != rnp_start && rnp->parent != NULL)
1005 raw_spin_unlock_rcu_node(rnp);
1006 if (!rnp->parent)
360e0da6 1007 break; /* At root, and perhaps also leaf. */
0446be48
PM
1008 }
1009
360e0da6 1010 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1011 if (rcu_gp_in_progress()) {
df2bf8f7 1012 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1013 goto unlock_out;
1014 }
df2bf8f7 1015 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97 1016 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
2906d215 1017 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5648d659 1018 if (!READ_ONCE(rcu_state.gp_kthread)) {
df2bf8f7 1019 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1020 goto unlock_out;
0446be48 1021 }
62ae1951 1022 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1023 ret = true; /* Caller must wake GP kthread. */
0446be48 1024unlock_out:
ab5e869c 1025 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7 1026 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
8ff37290
PM
1027 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1028 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
ab5e869c 1029 }
df2bf8f7
JFG
1030 if (rnp != rnp_start)
1031 raw_spin_unlock_rcu_node(rnp);
48a7639c 1032 return ret;
0446be48
PM
1033}
1034
1035/*
1036 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1037 * whether any additional grace periods have been requested.
0446be48 1038 */
3481f2ea 1039static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1040{
fb31340f 1041 bool needmore;
da1df50d 1042 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1043
7a1d0f23
PM
1044 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1045 if (!needmore)
1046 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1047 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1048 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1049 return needmore;
1050}
1051
48a7639c 1052/*
5648d659
PM
1053 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1054 * interrupt or softirq handler, in which case we just might immediately
1055 * sleep upon return, resulting in a grace-period hang), and don't bother
1056 * awakening when there is nothing for the grace-period kthread to do
1057 * (as in several CPUs raced to awaken, we lost), and finally don't try
1058 * to awaken a kthread that has not yet been created. If all those checks
1059 * are passed, track some debug information and awaken.
1d1f898d
ZJ
1060 *
1061 * So why do the self-wakeup when in an interrupt or softirq handler
1062 * in the grace-period kthread's context? Because the kthread might have
1063 * been interrupted just as it was going to sleep, and just after the final
1064 * pre-sleep check of the awaken condition. In this case, a wakeup really
1065 * is required, and is therefore supplied.
48a7639c 1066 */
532c00c9 1067static void rcu_gp_kthread_wake(void)
48a7639c 1068{
5648d659
PM
1069 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1070
2407a64f 1071 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
5648d659 1072 !READ_ONCE(rcu_state.gp_flags) || !t)
48a7639c 1073 return;
fd897573
PM
1074 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1075 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
532c00c9 1076 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1077}
1078
dc35c893 1079/*
29365e56
PM
1080 * If there is room, assign a ->gp_seq number to any callbacks on this
1081 * CPU that have not already been assigned. Also accelerate any callbacks
1082 * that were previously assigned a ->gp_seq number that has since proven
1083 * to be too conservative, which can happen if callbacks get assigned a
1084 * ->gp_seq number while RCU is idle, but with reference to a non-root
1085 * rcu_node structure. This function is idempotent, so it does not hurt
1086 * to call it repeatedly. Returns an flag saying that we should awaken
1087 * the RCU grace-period kthread.
dc35c893
PM
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
02f50142 1091static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1092{
b73de91d 1093 unsigned long gp_seq_req;
15fecf89 1094 bool ret = false;
dc35c893 1095
d1b222c6 1096 rcu_lockdep_assert_cblist_protected(rdp);
a32e01ee 1097 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1098
15fecf89
PM
1099 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1100 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1101 return false;
dc35c893 1102
3afe7fa5
JFG
1103 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1104
dc35c893 1105 /*
15fecf89
PM
1106 * Callbacks are often registered with incomplete grace-period
1107 * information. Something about the fact that getting exact
1108 * information requires acquiring a global lock... RCU therefore
1109 * makes a conservative estimate of the grace period number at which
1110 * a given callback will become ready to invoke. The following
1111 * code checks this estimate and improves it when possible, thus
1112 * accelerating callback invocation to an earlier grace-period
1113 * number.
dc35c893 1114 */
9cbc5b97 1115 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1116 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1117 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1118
1119 /* Trace depending on how much we were able to accelerate. */
15fecf89 1120 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
a7886e89 1121 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
6d4b418c 1122 else
a7886e89
JFG
1123 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1124
3afe7fa5
JFG
1125 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1126
48a7639c 1127 return ret;
dc35c893
PM
1128}
1129
e44e73ca
PM
1130/*
1131 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1132 * rcu_node structure's ->lock be held. It consults the cached value
1133 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1134 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1135 * while holding the leaf rcu_node structure's ->lock.
1136 */
c6e09b97 1137static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1138 struct rcu_data *rdp)
1139{
1140 unsigned long c;
1141 bool needwake;
1142
d1b222c6 1143 rcu_lockdep_assert_cblist_protected(rdp);
c6e09b97 1144 c = rcu_seq_snap(&rcu_state.gp_seq);
a5b89501 1145 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
e44e73ca
PM
1146 /* Old request still live, so mark recent callbacks. */
1147 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1148 return;
1149 }
1150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1151 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1152 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1153 if (needwake)
532c00c9 1154 rcu_gp_kthread_wake();
e44e73ca
PM
1155}
1156
dc35c893
PM
1157/*
1158 * Move any callbacks whose grace period has completed to the
1159 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1160 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1161 * sublist. This function is idempotent, so it does not hurt to
1162 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1163 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1164 *
1165 * The caller must hold rnp->lock with interrupts disabled.
1166 */
834f56bf 1167static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1168{
d1b222c6 1169 rcu_lockdep_assert_cblist_protected(rdp);
a32e01ee 1170 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1171
15fecf89
PM
1172 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1173 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1174 return false;
dc35c893
PM
1175
1176 /*
29365e56 1177 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1178 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1179 */
29365e56 1180 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1181
1182 /* Classify any remaining callbacks. */
02f50142 1183 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1184}
1185
7f36ef82
PM
1186/*
1187 * Move and classify callbacks, but only if doing so won't require
1188 * that the RCU grace-period kthread be awakened.
1189 */
1190static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1191 struct rcu_data *rdp)
1192{
d1b222c6 1193 rcu_lockdep_assert_cblist_protected(rdp);
614ddad1 1194 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
7f36ef82 1195 return;
614ddad1
PM
1196 // The grace period cannot end while we hold the rcu_node lock.
1197 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1198 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
6608c3a0 1199 raw_spin_unlock_rcu_node(rnp);
7f36ef82
PM
1200}
1201
1a2f5d57
PM
1202/*
1203 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1204 * quiescent state. This is intended to be invoked when the CPU notices
1205 * a new grace period.
1206 */
1207static void rcu_strict_gp_check_qs(void)
1208{
1209 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1210 rcu_read_lock();
1211 rcu_read_unlock();
1212 }
1213}
1214
d09b62df 1215/*
ba9fbe95
PM
1216 * Update CPU-local rcu_data state to record the beginnings and ends of
1217 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1218 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1219 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1220 */
c7e48f7b 1221static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1222{
5d6742b3 1223 bool ret = false;
b5ea0370 1224 bool need_qs;
3820b513 1225 const bool offloaded = rcu_rdp_is_offloaded(rdp);
48a7639c 1226
a32e01ee 1227 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1228
67e14c1e
PM
1229 if (rdp->gp_seq == rnp->gp_seq)
1230 return false; /* Nothing to do. */
d09b62df 1231
67e14c1e
PM
1232 /* Handle the ends of any preceding grace periods first. */
1233 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1234 unlikely(READ_ONCE(rdp->gpwrap))) {
5d6742b3
PM
1235 if (!offloaded)
1236 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
b5ea0370 1237 rdp->core_needs_qs = false;
9cbc5b97 1238 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1239 } else {
5d6742b3
PM
1240 if (!offloaded)
1241 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
b5ea0370
PM
1242 if (rdp->core_needs_qs)
1243 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
d09b62df 1244 }
398ebe60 1245
67e14c1e
PM
1246 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1247 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1248 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1249 /*
1250 * If the current grace period is waiting for this CPU,
1251 * set up to detect a quiescent state, otherwise don't
1252 * go looking for one.
1253 */
9cbc5b97 1254 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
b5ea0370
PM
1255 need_qs = !!(rnp->qsmask & rdp->grpmask);
1256 rdp->cpu_no_qs.b.norm = need_qs;
1257 rdp->core_needs_qs = need_qs;
6eaef633
PM
1258 zero_cpu_stall_ticks(rdp);
1259 }
67e14c1e 1260 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
13dc7d0c 1261 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
8ff37290 1262 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
c708b08c
PM
1263 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1264 WRITE_ONCE(rdp->last_sched_clock, jiffies);
3d18469a
PM
1265 WRITE_ONCE(rdp->gpwrap, false);
1266 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1267 return ret;
6eaef633
PM
1268}
1269
15cabdff 1270static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1271{
1272 unsigned long flags;
48a7639c 1273 bool needwake;
6eaef633
PM
1274 struct rcu_node *rnp;
1275
1276 local_irq_save(flags);
1277 rnp = rdp->mynode;
67e14c1e 1278 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1279 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1280 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1281 local_irq_restore(flags);
1282 return;
1283 }
c7e48f7b 1284 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1a2f5d57 1286 rcu_strict_gp_check_qs();
48a7639c 1287 if (needwake)
532c00c9 1288 rcu_gp_kthread_wake();
6eaef633
PM
1289}
1290
99d6a2ac
PM
1291static atomic_t *rcu_gp_slow_suppress;
1292
1293/* Register a counter to suppress debugging grace-period delays. */
1294void rcu_gp_slow_register(atomic_t *rgssp)
1295{
1296 WARN_ON_ONCE(rcu_gp_slow_suppress);
1297
1298 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1299}
1300EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1301
1302/* Unregister a counter, with NULL for not caring which. */
1303void rcu_gp_slow_unregister(atomic_t *rgssp)
1304{
1305 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1306
1307 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1308}
1309EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1310
1311static bool rcu_gp_slow_is_suppressed(void)
1312{
1313 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1314
1315 return rgssp && atomic_read(rgssp);
1316}
1317
22212332 1318static void rcu_gp_slow(int delay)
0f41c0dd 1319{
99d6a2ac
PM
1320 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1321 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
77865dea 1322 schedule_timeout_idle(delay);
0f41c0dd
PM
1323}
1324
55b2dcf5
PM
1325static unsigned long sleep_duration;
1326
1327/* Allow rcutorture to stall the grace-period kthread. */
1328void rcu_gp_set_torture_wait(int duration)
1329{
1330 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1331 WRITE_ONCE(sleep_duration, duration);
1332}
1333EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1334
1335/* Actually implement the aforementioned wait. */
1336static void rcu_gp_torture_wait(void)
1337{
1338 unsigned long duration;
1339
1340 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1341 return;
1342 duration = xchg(&sleep_duration, 0UL);
1343 if (duration > 0) {
1344 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
77865dea 1345 schedule_timeout_idle(duration);
55b2dcf5
PM
1346 pr_alert("%s: Wait complete\n", __func__);
1347 }
1348}
1349
933ada2c
PM
1350/*
1351 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1352 * processing.
1353 */
1354static void rcu_strict_gp_boundary(void *unused)
1355{
1356 invoke_rcu_core();
1357}
1358
bf95b2bc
PM
1359// Has rcu_init() been invoked? This is used (for example) to determine
1360// whether spinlocks may be acquired safely.
1361static bool rcu_init_invoked(void)
1362{
1363 return !!rcu_state.n_online_cpus;
1364}
1365
1366// Make the polled API aware of the beginning of a grace period.
1367static void rcu_poll_gp_seq_start(unsigned long *snap)
1368{
1369 struct rcu_node *rnp = rcu_get_root();
1370
1371 if (rcu_init_invoked())
1372 raw_lockdep_assert_held_rcu_node(rnp);
1373
1374 // If RCU was idle, note beginning of GP.
1375 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1376 rcu_seq_start(&rcu_state.gp_seq_polled);
1377
1378 // Either way, record current state.
1379 *snap = rcu_state.gp_seq_polled;
1380}
1381
1382// Make the polled API aware of the end of a grace period.
1383static void rcu_poll_gp_seq_end(unsigned long *snap)
1384{
1385 struct rcu_node *rnp = rcu_get_root();
1386
1387 if (rcu_init_invoked())
1388 raw_lockdep_assert_held_rcu_node(rnp);
1389
1390 // If the previously noted GP is still in effect, record the
1391 // end of that GP. Either way, zero counter to avoid counter-wrap
1392 // problems.
1393 if (*snap && *snap == rcu_state.gp_seq_polled) {
1394 rcu_seq_end(&rcu_state.gp_seq_polled);
1395 rcu_state.gp_seq_polled_snap = 0;
dd041405 1396 rcu_state.gp_seq_polled_exp_snap = 0;
bf95b2bc
PM
1397 } else {
1398 *snap = 0;
1399 }
1400}
1401
1402// Make the polled API aware of the beginning of a grace period, but
1403// where caller does not hold the root rcu_node structure's lock.
1404static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1405{
1406 struct rcu_node *rnp = rcu_get_root();
1407
1408 if (rcu_init_invoked()) {
1409 lockdep_assert_irqs_enabled();
1410 raw_spin_lock_irq_rcu_node(rnp);
1411 }
1412 rcu_poll_gp_seq_start(snap);
1413 if (rcu_init_invoked())
1414 raw_spin_unlock_irq_rcu_node(rnp);
1415}
1416
1417// Make the polled API aware of the end of a grace period, but where
1418// caller does not hold the root rcu_node structure's lock.
1419static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1420{
1421 struct rcu_node *rnp = rcu_get_root();
1422
1423 if (rcu_init_invoked()) {
1424 lockdep_assert_irqs_enabled();
1425 raw_spin_lock_irq_rcu_node(rnp);
1426 }
1427 rcu_poll_gp_seq_end(snap);
1428 if (rcu_init_invoked())
1429 raw_spin_unlock_irq_rcu_node(rnp);
1430}
1431
b3dbec76 1432/*
45fed3e7 1433 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1434 */
f74126dc 1435static noinline_for_stack bool rcu_gp_init(void)
b3dbec76 1436{
ec2c2976 1437 unsigned long flags;
0aa04b05 1438 unsigned long oldmask;
ec2c2976 1439 unsigned long mask;
b3dbec76 1440 struct rcu_data *rdp;
336a4f6c 1441 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1442
9cbc5b97 1443 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1444 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1445 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1446 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1447 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1448 return false;
f7be8209 1449 }
9cbc5b97 1450 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1451
de8e8730 1452 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1453 /*
1454 * Grace period already in progress, don't start another.
1455 * Not supposed to be able to happen.
1456 */
67c583a7 1457 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1458 return false;
7fdefc10
PM
1459 }
1460
7fdefc10 1461 /* Advance to a new grace period and initialize state. */
ad3832e9 1462 record_gp_stall_check_time();
ff3bb6f4 1463 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97 1464 rcu_seq_start(&rcu_state.gp_seq);
62ae1951 1465 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
9cbc5b97 1466 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
bf95b2bc 1467 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
67c583a7 1468 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1469
0aa04b05 1470 /*
f37599e6
JFG
1471 * Apply per-leaf buffered online and offline operations to
1472 * the rcu_node tree. Note that this new grace period need not
1473 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1474 * offlining path, when combined with checks in this function,
1475 * will handle CPUs that are currently going offline or that will
1476 * go offline later. Please also refer to "Hotplug CPU" section
1477 * of RCU's Requirements documentation.
0aa04b05 1478 */
683954e5 1479 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
82980b16 1480 /* Exclude CPU hotplug operations. */
aedf4ba9 1481 rcu_for_each_leaf_node(rnp) {
82980b16
DW
1482 local_irq_save(flags);
1483 arch_spin_lock(&rcu_state.ofl_lock);
1484 raw_spin_lock_rcu_node(rnp);
0aa04b05
PM
1485 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1486 !rnp->wait_blkd_tasks) {
1487 /* Nothing to do on this leaf rcu_node structure. */
82980b16
DW
1488 raw_spin_unlock_rcu_node(rnp);
1489 arch_spin_unlock(&rcu_state.ofl_lock);
1490 local_irq_restore(flags);
0aa04b05
PM
1491 continue;
1492 }
1493
1494 /* Record old state, apply changes to ->qsmaskinit field. */
1495 oldmask = rnp->qsmaskinit;
1496 rnp->qsmaskinit = rnp->qsmaskinitnext;
1497
1498 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1499 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1500 if (!oldmask) { /* First online CPU for rcu_node. */
1501 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1502 rcu_init_new_rnp(rnp);
1503 } else if (rcu_preempt_has_tasks(rnp)) {
1504 rnp->wait_blkd_tasks = true; /* blocked tasks */
1505 } else { /* Last offline CPU and can propagate. */
0aa04b05 1506 rcu_cleanup_dead_rnp(rnp);
962aff03 1507 }
0aa04b05
PM
1508 }
1509
1510 /*
1511 * If all waited-on tasks from prior grace period are
1512 * done, and if all this rcu_node structure's CPUs are
1513 * still offline, propagate up the rcu_node tree and
1514 * clear ->wait_blkd_tasks. Otherwise, if one of this
1515 * rcu_node structure's CPUs has since come back online,
962aff03 1516 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1517 */
1518 if (rnp->wait_blkd_tasks &&
962aff03 1519 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1520 rnp->wait_blkd_tasks = false;
962aff03
PM
1521 if (!rnp->qsmaskinit)
1522 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1523 }
1524
82980b16
DW
1525 raw_spin_unlock_rcu_node(rnp);
1526 arch_spin_unlock(&rcu_state.ofl_lock);
1527 local_irq_restore(flags);
0aa04b05 1528 }
22212332 1529 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1530
1531 /*
1532 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1533 * structures for all currently online CPUs in breadth-first
1534 * order, starting from the root rcu_node structure, relying on the
1535 * layout of the tree within the rcu_state.node[] array. Note that
1536 * other CPUs will access only the leaves of the hierarchy, thus
1537 * seeing that no grace period is in progress, at least until the
1538 * corresponding leaf node has been initialized.
7fdefc10
PM
1539 *
1540 * The grace period cannot complete until the initialization
1541 * process finishes, because this kthread handles both.
1542 */
683954e5 1543 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
aedf4ba9 1544 rcu_for_each_node_breadth_first(rnp) {
22212332 1545 rcu_gp_slow(gp_init_delay);
ec2c2976 1546 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1547 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1548 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1549 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1550 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1551 if (rnp == rdp->mynode)
c7e48f7b 1552 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1553 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1554 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1555 rnp->level, rnp->grplo,
1556 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1557 /* Quiescent states for tasks on any now-offline CPUs. */
1558 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1559 rnp->rcu_gp_init_mask = mask;
ec2c2976 1560 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1561 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1562 else
1563 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1564 cond_resched_tasks_rcu_qs();
9cbc5b97 1565 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1566 }
b3dbec76 1567
933ada2c
PM
1568 // If strict, make all CPUs aware of new grace period.
1569 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1570 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1571
45fed3e7 1572 return true;
7fdefc10 1573}
b3dbec76 1574
b9a425cf 1575/*
b3dae109 1576 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1577 * time.
b9a425cf 1578 */
0854a05c 1579static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1580{
336a4f6c 1581 struct rcu_node *rnp = rcu_get_root();
b9a425cf 1582
1fca4d12
PM
1583 // If under overload conditions, force an immediate FQS scan.
1584 if (*gfp & RCU_GP_FLAG_OVLD)
1585 return true;
1586
1587 // Someone like call_rcu() requested a force-quiescent-state scan.
0854a05c 1588 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1589 if (*gfp & RCU_GP_FLAG_FQS)
1590 return true;
1591
1fca4d12 1592 // The current grace period has completed.
b9a425cf
PM
1593 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1594 return true;
1595
1596 return false;
1597}
1598
4cdfc175
PM
1599/*
1600 * Do one round of quiescent-state forcing.
1601 */
0854a05c 1602static void rcu_gp_fqs(bool first_time)
4cdfc175 1603{
336a4f6c 1604 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1605
9cbc5b97 1606 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2431774f 1607 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
77f81fe0 1608 if (first_time) {
4cdfc175 1609 /* Collect dyntick-idle snapshots. */
e9ecb780 1610 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1611 } else {
1612 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1613 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1614 }
1615 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1616 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1617 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1618 WRITE_ONCE(rcu_state.gp_flags,
1619 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1620 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1621 }
4cdfc175
PM
1622}
1623
c3854a05
PM
1624/*
1625 * Loop doing repeated quiescent-state forcing until the grace period ends.
1626 */
f74126dc 1627static noinline_for_stack void rcu_gp_fqs_loop(void)
c3854a05 1628{
9bdb5b3a 1629 bool first_gp_fqs = true;
1fca4d12 1630 int gf = 0;
c3854a05
PM
1631 unsigned long j;
1632 int ret;
1633 struct rcu_node *rnp = rcu_get_root();
1634
c06aed0e 1635 j = READ_ONCE(jiffies_till_first_fqs);
1fca4d12
PM
1636 if (rcu_state.cbovld)
1637 gf = RCU_GP_FLAG_OVLD;
c3854a05
PM
1638 ret = 0;
1639 for (;;) {
fb77dccf
PM
1640 if (rcu_state.cbovld) {
1641 j = (j + 2) / 3;
1642 if (j <= 0)
1643 j = 1;
1644 }
1645 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
683954e5
NU
1646 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1647 /*
1648 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1649 * update; required for stall checks.
1650 */
1651 smp_wmb();
c3854a05 1652 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
9cf422a8 1653 jiffies + (j ? 3 * j : 2));
c3854a05 1654 }
0f11ad32 1655 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05 1656 TPS("fqswait"));
683954e5 1657 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
eb880949
LS
1658 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1659 rcu_gp_fqs_check_wake(&gf), j);
55b2dcf5 1660 rcu_gp_torture_wait();
683954e5 1661 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
c3854a05 1662 /* Locking provides needed memory barriers. */
a03ae49c
NU
1663 /*
1664 * Exit the loop if the root rcu_node structure indicates that the grace period
1665 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1666 * is required only for single-node rcu_node trees because readers blocking
1667 * the current grace period are queued only on leaf rcu_node structures.
1668 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1669 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1670 * the corresponding leaf nodes have passed through their quiescent state.
1671 */
c3854a05
PM
1672 if (!READ_ONCE(rnp->qsmask) &&
1673 !rcu_preempt_blocked_readers_cgp(rnp))
1674 break;
1675 /* If time for quiescent-state forcing, do it. */
29ffebc5 1676 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
9c392453 1677 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
0f11ad32 1678 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1679 TPS("fqsstart"));
1680 rcu_gp_fqs(first_gp_fqs);
1fca4d12
PM
1681 gf = 0;
1682 if (first_gp_fqs) {
1683 first_gp_fqs = false;
1684 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1685 }
0f11ad32 1686 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1687 TPS("fqsend"));
1688 cond_resched_tasks_rcu_qs();
1689 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1690 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1691 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1692 } else {
1693 /* Deal with stray signal. */
1694 cond_resched_tasks_rcu_qs();
1695 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1696 WARN_ON(signal_pending(current));
0f11ad32 1697 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1698 TPS("fqswaitsig"));
1699 ret = 1; /* Keep old FQS timing. */
1700 j = jiffies;
1701 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1702 j = 1;
1703 else
1704 j = rcu_state.jiffies_force_qs - j;
1fca4d12 1705 gf = 0;
c3854a05
PM
1706 }
1707 }
1708}
1709
7fdefc10
PM
1710/*
1711 * Clean up after the old grace period.
1712 */
2f20de99 1713static noinline void rcu_gp_cleanup(void)
7fdefc10 1714{
b2b00ddf 1715 int cpu;
48a7639c 1716 bool needgp = false;
b2b00ddf 1717 unsigned long gp_duration;
de30ad51 1718 unsigned long new_gp_seq;
5d6742b3 1719 bool offloaded;
7fdefc10 1720 struct rcu_data *rdp;
336a4f6c 1721 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1722 struct swait_queue_head *sq;
b3dbec76 1723
9cbc5b97 1724 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1725 raw_spin_lock_irq_rcu_node(rnp);
c51d7b5e
PM
1726 rcu_state.gp_end = jiffies;
1727 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
9cbc5b97
PM
1728 if (gp_duration > rcu_state.gp_max)
1729 rcu_state.gp_max = gp_duration;
b3dbec76 1730
7fdefc10
PM
1731 /*
1732 * We know the grace period is complete, but to everyone else
1733 * it appears to still be ongoing. But it is also the case
1734 * that to everyone else it looks like there is nothing that
1735 * they can do to advance the grace period. It is therefore
1736 * safe for us to drop the lock in order to mark the grace
1737 * period as completed in all of the rcu_node structures.
7fdefc10 1738 */
bf95b2bc 1739 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
67c583a7 1740 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 1741
5d4b8659 1742 /*
ff3bb6f4
PM
1743 * Propagate new ->gp_seq value to rcu_node structures so that
1744 * other CPUs don't have to wait until the start of the next grace
1745 * period to process their callbacks. This also avoids some nasty
1746 * RCU grace-period initialization races by forcing the end of
1747 * the current grace period to be completely recorded in all of
1748 * the rcu_node structures before the beginning of the next grace
1749 * period is recorded in any of the rcu_node structures.
5d4b8659 1750 */
9cbc5b97 1751 new_gp_seq = rcu_state.gp_seq;
de30ad51 1752 rcu_seq_end(&new_gp_seq);
aedf4ba9 1753 rcu_for_each_node_breadth_first(rnp) {
2a67e741 1754 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 1755 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 1756 dump_blkd_tasks(rnp, 10);
5c60d25f 1757 WARN_ON_ONCE(rnp->qsmask);
de30ad51 1758 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
3fdefca9
PM
1759 if (!rnp->parent)
1760 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
da1df50d 1761 rdp = this_cpu_ptr(&rcu_data);
b11cc576 1762 if (rnp == rdp->mynode)
c7e48f7b 1763 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 1764 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 1765 needgp = rcu_future_gp_cleanup(rnp) || needgp;
b2b00ddf
PM
1766 // Reset overload indication for CPUs no longer overloaded
1767 if (rcu_is_leaf_node(rnp))
1768 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1769 rdp = per_cpu_ptr(&rcu_data, cpu);
1770 check_cb_ovld_locked(rdp, rnp);
1771 }
065bb78c 1772 sq = rcu_nocb_gp_get(rnp);
67c583a7 1773 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 1774 rcu_nocb_gp_cleanup(sq);
cee43939 1775 cond_resched_tasks_rcu_qs();
9cbc5b97 1776 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 1777 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 1778 }
336a4f6c 1779 rnp = rcu_get_root();
9cbc5b97 1780 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 1781
0a89e5a4 1782 /* Declare grace period done, trace first to use old GP number. */
9cbc5b97 1783 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
0a89e5a4 1784 rcu_seq_end(&rcu_state.gp_seq);
62ae1951 1785 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
683954e5 1786 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
fb31340f 1787 /* Check for GP requests since above loop. */
da1df50d 1788 rdp = this_cpu_ptr(&rcu_data);
5b55072f 1789 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 1790 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 1791 TPS("CleanupMore"));
fb31340f
PM
1792 needgp = true;
1793 }
48a7639c 1794 /* Advance CBs to reduce false positives below. */
3820b513 1795 offloaded = rcu_rdp_is_offloaded(rdp);
5d6742b3 1796 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
75182a4e
PM
1797
1798 // We get here if a grace period was needed (“needgp”)
1799 // and the above call to rcu_accelerate_cbs() did not set
1800 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1801 // the need for another grace period).  The purpose
1802 // of the “offloaded” check is to avoid invoking
1803 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1804 // hold the ->nocb_lock needed to safely access an offloaded
1805 // ->cblist.  We do not want to acquire that lock because
1806 // it can be heavily contended during callback floods.
1807
9cbc5b97 1808 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2906d215 1809 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
75182a4e 1810 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
18390aea 1811 } else {
75182a4e
PM
1812
1813 // We get here either if there is no need for an
1814 // additional grace period or if rcu_accelerate_cbs() has
1815 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1816 // So all we need to do is to clear all of the other
1817 // ->gp_flags bits.
1818
1819 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 1820 }
67c583a7 1821 raw_spin_unlock_irq_rcu_node(rnp);
4e025f52
PM
1822
1823 // If strict, make all CPUs aware of the end of the old grace period.
1824 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1825 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
7fdefc10
PM
1826}
1827
1828/*
1829 * Body of kthread that handles grace periods.
1830 */
0854a05c 1831static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 1832{
5871968d 1833 rcu_bind_gp_kthread();
7fdefc10
PM
1834 for (;;) {
1835
1836 /* Handle grace-period start. */
1837 for (;;) {
0f11ad32 1838 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
63c4db78 1839 TPS("reqwait"));
683954e5 1840 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
9cbc5b97
PM
1841 swait_event_idle_exclusive(rcu_state.gp_wq,
1842 READ_ONCE(rcu_state.gp_flags) &
1843 RCU_GP_FLAG_INIT);
55b2dcf5 1844 rcu_gp_torture_wait();
683954e5 1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
78e4bc34 1846 /* Locking provides needed memory barrier. */
0854a05c 1847 if (rcu_gp_init())
7fdefc10 1848 break;
cee43939 1849 cond_resched_tasks_rcu_qs();
9cbc5b97 1850 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 1851 WARN_ON(signal_pending(current));
0f11ad32 1852 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
63c4db78 1853 TPS("reqwaitsig"));
7fdefc10 1854 }
cabc49c1 1855
4cdfc175 1856 /* Handle quiescent-state forcing. */
c3854a05 1857 rcu_gp_fqs_loop();
4cdfc175
PM
1858
1859 /* Handle grace-period end. */
683954e5 1860 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
0854a05c 1861 rcu_gp_cleanup();
683954e5 1862 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
b3dbec76 1863 }
b3dbec76
PM
1864}
1865
f41d911f 1866/*
49918a54
PM
1867 * Report a full set of quiescent states to the rcu_state data structure.
1868 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1869 * another grace period is required. Whether we wake the grace-period
1870 * kthread or it awakens itself for the next round of quiescent-state
1871 * forcing, that kthread will clean up after the just-completed grace
1872 * period. Note that the caller must hold rnp->lock, which is released
1873 * before return.
f41d911f 1874 */
aff4e9ed 1875static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 1876 __releases(rcu_get_root()->lock)
f41d911f 1877{
336a4f6c 1878 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 1879 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
1880 WRITE_ONCE(rcu_state.gp_flags,
1881 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 1882 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 1883 rcu_gp_kthread_wake();
f41d911f
PM
1884}
1885
64db4cff 1886/*
d3f6bad3
PM
1887 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1888 * Allows quiescent states for a group of CPUs to be reported at one go
1889 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
1890 * must be represented by the same rcu_node structure (which need not be a
1891 * leaf rcu_node structure, though it often will be). The gps parameter
1892 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 1893 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 1894 * must be held upon entry, and it is released before return.
ec2c2976
PM
1895 *
1896 * As a special case, if mask is zero, the bit-already-cleared check is
1897 * disabled. This allows propagating quiescent state due to resumed tasks
1898 * during grace-period initialization.
64db4cff 1899 */
b50912d0
PM
1900static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1901 unsigned long gps, unsigned long flags)
64db4cff
PM
1902 __releases(rnp->lock)
1903{
654e9533 1904 unsigned long oldmask = 0;
28ecd580
PM
1905 struct rcu_node *rnp_c;
1906
a32e01ee 1907 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1908
64db4cff
PM
1909 /* Walk up the rcu_node hierarchy. */
1910 for (;;) {
ec2c2976 1911 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 1912
654e9533
PM
1913 /*
1914 * Our bit has already been cleared, or the
1915 * relevant grace period is already over, so done.
1916 */
67c583a7 1917 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1918 return;
1919 }
654e9533 1920 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 1921 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 1922 rcu_preempt_blocked_readers_cgp(rnp));
7672d647 1923 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
67a0edbf 1924 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
1925 mask, rnp->qsmask, rnp->level,
1926 rnp->grplo, rnp->grphi,
1927 !!rnp->gp_tasks);
27f4d280 1928 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1929
1930 /* Other bits still set at this level, so done. */
67c583a7 1931 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1932 return;
1933 }
d43a5d32 1934 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
1935 mask = rnp->grpmask;
1936 if (rnp->parent == NULL) {
1937
1938 /* No more levels. Exit loop holding root lock. */
1939
1940 break;
1941 }
67c583a7 1942 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 1943 rnp_c = rnp;
64db4cff 1944 rnp = rnp->parent;
2a67e741 1945 raw_spin_lock_irqsave_rcu_node(rnp, flags);
0937d045 1946 oldmask = READ_ONCE(rnp_c->qsmask);
64db4cff
PM
1947 }
1948
1949 /*
1950 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1951 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1952 * to clean up and start the next grace period if one is needed.
64db4cff 1953 */
aff4e9ed 1954 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
1955}
1956
cc99a310
PM
1957/*
1958 * Record a quiescent state for all tasks that were previously queued
1959 * on the specified rcu_node structure and that were blocking the current
49918a54 1960 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
1961 * irqs disabled, and this lock is released upon return, but irqs remain
1962 * disabled.
1963 */
17a8212b 1964static void __maybe_unused
139ad4da 1965rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
1966 __releases(rnp->lock)
1967{
654e9533 1968 unsigned long gps;
cc99a310
PM
1969 unsigned long mask;
1970 struct rcu_node *rnp_p;
1971
a32e01ee 1972 raw_lockdep_assert_held_rcu_node(rnp);
c130d2dc 1973 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
c74859d1
PM
1974 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1975 rnp->qsmask != 0) {
67c583a7 1976 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
1977 return; /* Still need more quiescent states! */
1978 }
1979
77cfc7bf 1980 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
1981 rnp_p = rnp->parent;
1982 if (rnp_p == NULL) {
1983 /*
a77da14c
PM
1984 * Only one rcu_node structure in the tree, so don't
1985 * try to report up to its nonexistent parent!
cc99a310 1986 */
aff4e9ed 1987 rcu_report_qs_rsp(flags);
cc99a310
PM
1988 return;
1989 }
1990
c9a24e2d
PM
1991 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1992 gps = rnp->gp_seq;
cc99a310 1993 mask = rnp->grpmask;
67c583a7 1994 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 1995 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 1996 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
1997}
1998
64db4cff 1999/*
d3f6bad3 2000 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2001 * structure. This must be called from the specified CPU.
64db4cff
PM
2002 */
2003static void
cfeac397 2004rcu_report_qs_rdp(struct rcu_data *rdp)
64db4cff
PM
2005{
2006 unsigned long flags;
2007 unsigned long mask;
5d6742b3 2008 bool needwake = false;
b3bb02fe 2009 bool needacc = false;
64db4cff
PM
2010 struct rcu_node *rnp;
2011
cfeac397 2012 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
64db4cff 2013 rnp = rdp->mynode;
2a67e741 2014 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2015 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2016 rdp->gpwrap) {
64db4cff
PM
2017
2018 /*
e4cc1f22
PM
2019 * The grace period in which this quiescent state was
2020 * recorded has ended, so don't report it upwards.
2021 * We will instead need a new quiescent state that lies
2022 * within the current grace period.
64db4cff 2023 */
5b74c458 2024 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 2025 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2026 return;
2027 }
2028 mask = rdp->grpmask;
cfeac397 2029 rdp->core_needs_qs = false;
64db4cff 2030 if ((rnp->qsmask & mask) == 0) {
67c583a7 2031 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2032 } else {
64db4cff
PM
2033 /*
2034 * This GP can't end until cpu checks in, so all of our
2035 * callbacks can be processed during the next GP.
24ee940d 2036 *
b3bb02fe 2037 * NOCB kthreads have their own way to deal with that...
64db4cff 2038 */
b3bb02fe 2039 if (!rcu_rdp_is_offloaded(rdp)) {
5d6742b3 2040 needwake = rcu_accelerate_cbs(rnp, rdp);
b3bb02fe
FW
2041 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2042 /*
2043 * ...but NOCB kthreads may miss or delay callbacks acceleration
2044 * if in the middle of a (de-)offloading process.
2045 */
2046 needacc = true;
2047 }
64db4cff 2048
516e5ae0 2049 rcu_disable_urgency_upon_qs(rdp);
b50912d0 2050 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 2051 /* ^^^ Released rnp->lock */
48a7639c 2052 if (needwake)
532c00c9 2053 rcu_gp_kthread_wake();
b3bb02fe
FW
2054
2055 if (needacc) {
2056 rcu_nocb_lock_irqsave(rdp, flags);
2057 rcu_accelerate_cbs_unlocked(rnp, rdp);
2058 rcu_nocb_unlock_irqrestore(rdp, flags);
2059 }
64db4cff
PM
2060 }
2061}
2062
2063/*
2064 * Check to see if there is a new grace period of which this CPU
2065 * is not yet aware, and if so, set up local rcu_data state for it.
2066 * Otherwise, see if this CPU has just passed through its first
2067 * quiescent state for this grace period, and record that fact if so.
2068 */
2069static void
8087d3e3 2070rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 2071{
05eb552b 2072 /* Check for grace-period ends and beginnings. */
15cabdff 2073 note_gp_changes(rdp);
64db4cff
PM
2074
2075 /*
2076 * Does this CPU still need to do its part for current grace period?
2077 * If no, return and let the other CPUs do their part as well.
2078 */
97c668b8 2079 if (!rdp->core_needs_qs)
64db4cff
PM
2080 return;
2081
2082 /*
2083 * Was there a quiescent state since the beginning of the grace
2084 * period? If no, then exit and wait for the next call.
2085 */
3a19b46a 2086 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2087 return;
2088
d3f6bad3
PM
2089 /*
2090 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2091 * judge of that).
2092 */
cfeac397 2093 rcu_report_qs_rdp(rdp);
64db4cff
PM
2094}
2095
b1420f1c 2096/*
780cd590
PM
2097 * Near the end of the offline process. Trace the fact that this CPU
2098 * is going offline.
b1420f1c 2099 */
780cd590 2100int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 2101{
4f5fbd78 2102 bool blkd;
4aa846f9 2103 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4f5fbd78 2104 struct rcu_node *rnp = rdp->mynode;
b1420f1c 2105
ea46351c 2106 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2107 return 0;
ea46351c 2108
4f5fbd78 2109 blkd = !!(rnp->qsmask & rdp->grpmask);
0937d045 2110 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
47fcbc8d 2111 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
780cd590 2112 return 0;
64db4cff
PM
2113}
2114
8af3a5e7
PM
2115/*
2116 * All CPUs for the specified rcu_node structure have gone offline,
2117 * and all tasks that were preempted within an RCU read-side critical
2118 * section while running on one of those CPUs have since exited their RCU
2119 * read-side critical section. Some other CPU is reporting this fact with
2120 * the specified rcu_node structure's ->lock held and interrupts disabled.
2121 * This function therefore goes up the tree of rcu_node structures,
2122 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2123 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2124 * updated.
8af3a5e7
PM
2125 *
2126 * This function does check that the specified rcu_node structure has
2127 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2128 * prematurely. That said, invoking it after the fact will cost you
2129 * a needless lock acquisition. So once it has done its work, don't
2130 * invoke it again.
2131 */
2132static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2133{
2134 long mask;
2135 struct rcu_node *rnp = rnp_leaf;
2136
962aff03 2137 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2138 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2139 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2140 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2141 return;
2142 for (;;) {
2143 mask = rnp->grpmask;
2144 rnp = rnp->parent;
2145 if (!rnp)
2146 break;
2a67e741 2147 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2148 rnp->qsmaskinit &= ~mask;
962aff03
PM
2149 /* Between grace periods, so better already be zero! */
2150 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2151 if (rnp->qsmaskinit) {
67c583a7
BF
2152 raw_spin_unlock_rcu_node(rnp);
2153 /* irqs remain disabled. */
8af3a5e7
PM
2154 return;
2155 }
67c583a7 2156 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2157 }
2158}
2159
64db4cff 2160/*
e5601400 2161 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2162 * this fact from process context. Do the remainder of the cleanup.
2163 * There can only be one CPU hotplug operation at a time, so no need for
2164 * explicit locking.
64db4cff 2165 */
780cd590 2166int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2167{
da1df50d 2168 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2169 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2170
ea46351c 2171 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2172 return 0;
ea46351c 2173
ed73860c 2174 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2036d94a 2175 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2176 rcu_boost_kthread_setaffinity(rnp, -1);
96926686
PM
2177 // Stop-machine done, so allow nohz_full to disable tick.
2178 tick_dep_clear(TICK_DEP_BIT_RCU);
780cd590 2179 return 0;
64db4cff
PM
2180}
2181
64db4cff
PM
2182/*
2183 * Invoke any RCU callbacks that have made it to the end of their grace
a616aec9 2184 * period. Throttle as specified by rdp->blimit.
64db4cff 2185 */
5bb5d09c 2186static void rcu_do_batch(struct rcu_data *rdp)
64db4cff 2187{
b5374b2d 2188 int div;
b4e6039e 2189 bool __maybe_unused empty;
64db4cff 2190 unsigned long flags;
15fecf89
PM
2191 struct rcu_head *rhp;
2192 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
6bc33582 2193 long bl, count = 0;
cfcdef5e 2194 long pending, tlimit = 0;
64db4cff 2195
dc35c893 2196 /* If no callbacks are ready, just return. */
15fecf89 2197 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2198 trace_rcu_batch_start(rcu_state.name,
15fecf89 2199 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2200 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2201 !rcu_segcblist_empty(&rdp->cblist),
4968c300 2202 need_resched(), is_idle_task(current),
51038506 2203 rcu_is_callbacks_kthread(rdp));
64db4cff 2204 return;
29c00b4a 2205 }
64db4cff
PM
2206
2207 /*
7b65dfa3 2208 * Extract the list of ready callbacks, disabling IRQs to prevent
15fecf89
PM
2209 * races with call_rcu() from interrupt handlers. Leave the
2210 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff 2211 */
7b65dfa3 2212 rcu_nocb_lock_irqsave(rdp, flags);
8146c4e2 2213 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
cfcdef5e 2214 pending = rcu_segcblist_n_cbs(&rdp->cblist);
b5374b2d
PM
2215 div = READ_ONCE(rcu_divisor);
2216 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2217 bl = max(rdp->blimit, pending >> div);
a554ba28 2218 if (in_serving_softirq() && unlikely(bl > 100)) {
a2b354b9
PM
2219 long rrn = READ_ONCE(rcu_resched_ns);
2220
2221 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2222 tlimit = local_clock() + rrn;
2223 }
3c779dfe 2224 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2225 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2226 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
344e219d 2227 if (rcu_rdp_is_offloaded(rdp))
7f36ef82 2228 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3afe7fa5
JFG
2229
2230 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
5d6742b3 2231 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff
PM
2232
2233 /* Invoke callbacks. */
6a949b7a 2234 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
15fecf89 2235 rhp = rcu_cblist_dequeue(&rcl);
3afe7fa5 2236
15fecf89 2237 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
77a40f97
JFG
2238 rcu_callback_t f;
2239
6bc33582 2240 count++;
15fecf89 2241 debug_rcu_head_unqueue(rhp);
77a40f97
JFG
2242
2243 rcu_lock_acquire(&rcu_callback_map);
2244 trace_rcu_invoke_callback(rcu_state.name, rhp);
2245
2246 f = rhp->func;
2247 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2248 f(rhp);
2249
2250 rcu_lock_release(&rcu_callback_map);
2251
15fecf89
PM
2252 /*
2253 * Stop only if limit reached and CPU has something to do.
15fecf89 2254 */
3e61e95e
FW
2255 if (in_serving_softirq()) {
2256 if (count >= bl && (need_resched() || !is_idle_task(current)))
2257 break;
a554ba28
FW
2258 /*
2259 * Make sure we don't spend too much time here and deprive other
2260 * softirq vectors of CPU cycles.
2261 */
2262 if (unlikely(tlimit)) {
2263 /* only call local_clock() every 32 callbacks */
2264 if (likely((count & 31) || local_clock() < tlimit))
2265 continue;
2266 /* Exceeded the time limit, so leave. */
2267 break;
2268 }
3e61e95e 2269 } else {
5d6742b3
PM
2270 local_bh_enable();
2271 lockdep_assert_irqs_enabled();
2272 cond_resched_tasks_rcu_qs();
2273 lockdep_assert_irqs_enabled();
2274 local_bh_disable();
2275 }
64db4cff
PM
2276 }
2277
7b65dfa3 2278 rcu_nocb_lock_irqsave(rdp, flags);
e816d56f 2279 rdp->n_cbs_invoked += count;
3c779dfe 2280 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
51038506 2281 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
64db4cff 2282
15fecf89
PM
2283 /* Update counts and requeue any remaining callbacks. */
2284 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
6bc33582 2285 rcu_segcblist_add_len(&rdp->cblist, -count);
64db4cff
PM
2286
2287 /* Reinstate batch limit if we have worked down the excess. */
15fecf89 2288 count = rcu_segcblist_n_cbs(&rdp->cblist);
d5a9a8c3 2289 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
64db4cff
PM
2290 rdp->blimit = blimit;
2291
37c72e56 2292 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2293 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2294 rdp->qlen_last_fqs_check = 0;
2431774f 2295 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
15fecf89
PM
2296 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2297 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2298
2299 /*
2300 * The following usually indicates a double call_rcu(). To track
2301 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2302 */
b4e6039e
JFG
2303 empty = rcu_segcblist_empty(&rdp->cblist);
2304 WARN_ON_ONCE(count == 0 && !empty);
d1b222c6 2305 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
b4e6039e
JFG
2306 count != 0 && empty);
2307 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2308 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
37c72e56 2309
5d6742b3 2310 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff 2311
6a949b7a 2312 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
64db4cff
PM
2313}
2314
2315/*
c98cac60
PM
2316 * This function is invoked from each scheduling-clock interrupt,
2317 * and checks to see if this CPU is in a non-context-switch quiescent
2318 * state, for example, user mode or idle loop. It also schedules RCU
2319 * core processing. If the current grace period has gone on too long,
2320 * it will ask the scheduler to manufacture a context switch for the sole
277ffe1b 2321 * purpose of providing the needed quiescent state.
64db4cff 2322 */
c98cac60 2323void rcu_sched_clock_irq(int user)
64db4cff 2324{
c708b08c
PM
2325 unsigned long j;
2326
2327 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2328 j = jiffies;
2329 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2330 __this_cpu_write(rcu_data.last_sched_clock, j);
2331 }
f7f7bac9 2332 trace_rcu_utilization(TPS("Start scheduler-tick"));
a649d25d 2333 lockdep_assert_irqs_disabled();
4e95020c 2334 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2335 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2336 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2337 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2338 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2339 set_tsk_need_resched(current);
2340 set_preempt_need_resched();
2341 }
2dba13f0 2342 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
64db4cff 2343 }
c98cac60 2344 rcu_flavor_sched_clock_irq(user);
dd7dafd1 2345 if (rcu_pending(user))
a46e0899 2346 invoke_rcu_core();
528262f5
Z
2347 if (user || rcu_is_cpu_rrupt_from_idle())
2348 rcu_note_voluntary_context_switch(current);
a649d25d 2349 lockdep_assert_irqs_disabled();
07f27570 2350
f7f7bac9 2351 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2352}
2353
64db4cff 2354/*
5d8a752e
ZZ
2355 * Scan the leaf rcu_node structures. For each structure on which all
2356 * CPUs have reported a quiescent state and on which there are tasks
2357 * blocking the current grace period, initiate RCU priority boosting.
2358 * Otherwise, invoke the specified function to check dyntick state for
2359 * each CPU that has not yet reported a quiescent state.
64db4cff 2360 */
8ff0b907 2361static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2362{
64db4cff
PM
2363 int cpu;
2364 unsigned long flags;
2365 unsigned long mask;
66e4c33b 2366 struct rcu_data *rdp;
a0b6c9a7 2367 struct rcu_node *rnp;
64db4cff 2368
b2b00ddf
PM
2369 rcu_state.cbovld = rcu_state.cbovldnext;
2370 rcu_state.cbovldnext = false;
aedf4ba9 2371 rcu_for_each_leaf_node(rnp) {
cee43939 2372 cond_resched_tasks_rcu_qs();
64db4cff 2373 mask = 0;
2a67e741 2374 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b2b00ddf 2375 rcu_state.cbovldnext |= !!rnp->cbovldmask;
a0b6c9a7 2376 if (rnp->qsmask == 0) {
9b1ce0ac 2377 if (rcu_preempt_blocked_readers_cgp(rnp)) {
a77da14c
PM
2378 /*
2379 * No point in scanning bits because they
2380 * are all zero. But we might need to
2381 * priority-boost blocked readers.
2382 */
2383 rcu_initiate_boost(rnp, flags);
2384 /* rcu_initiate_boost() releases rnp->lock */
2385 continue;
2386 }
92816435
PM
2387 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2388 continue;
64db4cff 2389 }
7441e766
PM
2390 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2391 rdp = per_cpu_ptr(&rcu_data, cpu);
2392 if (f(rdp)) {
2393 mask |= rdp->grpmask;
2394 rcu_disable_urgency_upon_qs(rdp);
0edd1b17 2395 }
64db4cff 2396 }
45f014c5 2397 if (mask != 0) {
c9a24e2d 2398 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2399 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2400 } else {
2401 /* Nothing to do here, so just drop the lock. */
67c583a7 2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2403 }
64db4cff 2404 }
64db4cff
PM
2405}
2406
2407/*
2408 * Force quiescent states on reluctant CPUs, and also detect which
2409 * CPUs are in dyntick-idle mode.
2410 */
cd920e5a 2411void rcu_force_quiescent_state(void)
64db4cff
PM
2412{
2413 unsigned long flags;
394f2769
PM
2414 bool ret;
2415 struct rcu_node *rnp;
2416 struct rcu_node *rnp_old = NULL;
2417
2418 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2419 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2420 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2421 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
66e4c33b 2422 !raw_spin_trylock(&rnp->fqslock);
394f2769
PM
2423 if (rnp_old != NULL)
2424 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2425 if (ret)
394f2769 2426 return;
394f2769
PM
2427 rnp_old = rnp;
2428 }
336a4f6c 2429 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2430
394f2769 2431 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2432 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2433 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2434 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2435 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2436 return; /* Someone beat us to it. */
46a1e34e 2437 }
67a0edbf
PM
2438 WRITE_ONCE(rcu_state.gp_flags,
2439 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2440 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2441 rcu_gp_kthread_wake();
64db4cff 2442}
cd920e5a 2443EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
64db4cff 2444
a657f261
PM
2445// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2446// grace periods.
2447static void strict_work_handler(struct work_struct *work)
2448{
2449 rcu_read_lock();
2450 rcu_read_unlock();
2451}
2452
fb60e533 2453/* Perform RCU core processing work for the current CPU. */
48d07c04 2454static __latent_entropy void rcu_core(void)
64db4cff
PM
2455{
2456 unsigned long flags;
da1df50d 2457 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2458 struct rcu_node *rnp = rdp->mynode;
fbb94cbd
FW
2459 /*
2460 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2461 * Therefore this function can race with concurrent NOCB (de-)offloading
2462 * on this CPU and the below condition must be considered volatile.
2463 * However if we race with:
2464 *
2465 * _ Offloading: In the worst case we accelerate or process callbacks
2466 * concurrently with NOCB kthreads. We are guaranteed to
2467 * call rcu_nocb_lock() if that happens.
2468 *
2469 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2470 * processing. This is fine because the early stage
2471 * of deoffloading invokes rcu_core() after setting
2472 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2473 * what could have been dismissed without the need to wait
2474 * for the next rcu_pending() check in the next jiffy.
2475 */
32aa2f41 2476 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
64db4cff 2477
b049fdf8
PM
2478 if (cpu_is_offline(smp_processor_id()))
2479 return;
2480 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2481 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2482
3e310098 2483 /* Report any deferred quiescent states if preemption enabled. */
790da248 2484 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
3e310098 2485 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2486 } else if (rcu_preempt_need_deferred_qs(current)) {
2487 set_tsk_need_resched(current);
2488 set_preempt_need_resched();
2489 }
3e310098 2490
64db4cff 2491 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2492 rcu_check_quiescent_state(rdp);
64db4cff 2493
bd7af846 2494 /* No grace period and unregistered callbacks? */
de8e8730 2495 if (!rcu_gp_in_progress() &&
634954c2
FW
2496 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2497 rcu_nocb_lock_irqsave(rdp, flags);
e44e73ca 2498 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2499 rcu_accelerate_cbs_unlocked(rnp, rdp);
634954c2 2500 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff
PM
2501 }
2502
791416c4 2503 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
26d950a9 2504
64db4cff 2505 /* If there are callbacks ready, invoke them. */
32aa2f41 2506 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
0598a4d4 2507 likely(READ_ONCE(rcu_scheduler_fully_active))) {
43e903ad 2508 rcu_do_batch(rdp);
0598a4d4
FW
2509 /* Re-invoke RCU core processing if there are callbacks remaining. */
2510 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2511 invoke_rcu_core();
2512 }
96d3fd0d
PM
2513
2514 /* Do any needed deferred wakeups of rcuo kthreads. */
2515 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2516 trace_rcu_utilization(TPS("End RCU core"));
a657f261
PM
2517
2518 // If strict GPs, schedule an RCU reader in a clean environment.
2519 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2520 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
64db4cff
PM
2521}
2522
48d07c04
SAS
2523static void rcu_core_si(struct softirq_action *h)
2524{
2525 rcu_core();
2526}
2527
2528static void rcu_wake_cond(struct task_struct *t, int status)
2529{
2530 /*
2531 * If the thread is yielding, only wake it when this
2532 * is invoked from idle
2533 */
2534 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2535 wake_up_process(t);
2536}
2537
2538static void invoke_rcu_core_kthread(void)
2539{
2540 struct task_struct *t;
2541 unsigned long flags;
2542
2543 local_irq_save(flags);
2544 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2545 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2546 if (t != NULL && t != current)
2547 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2548 local_irq_restore(flags);
2549}
2550
48d07c04
SAS
2551/*
2552 * Wake up this CPU's rcuc kthread to do RCU core processing.
2553 */
a46e0899 2554static void invoke_rcu_core(void)
09223371 2555{
48d07c04
SAS
2556 if (!cpu_online(smp_processor_id()))
2557 return;
2558 if (use_softirq)
b0f74036 2559 raise_softirq(RCU_SOFTIRQ);
48d07c04
SAS
2560 else
2561 invoke_rcu_core_kthread();
2562}
2563
2564static void rcu_cpu_kthread_park(unsigned int cpu)
2565{
2566 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2567}
2568
2569static int rcu_cpu_kthread_should_run(unsigned int cpu)
2570{
2571 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2572}
2573
2574/*
2575 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2576 * the RCU softirq used in configurations of RCU that do not support RCU
2577 * priority boosting.
2578 */
2579static void rcu_cpu_kthread(unsigned int cpu)
2580{
2581 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2582 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
c9515875 2583 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
48d07c04
SAS
2584 int spincnt;
2585
2488a5e6 2586 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
48d07c04 2587 for (spincnt = 0; spincnt < 10; spincnt++) {
c9515875 2588 WRITE_ONCE(*j, jiffies);
48d07c04
SAS
2589 local_bh_disable();
2590 *statusp = RCU_KTHREAD_RUNNING;
2591 local_irq_disable();
2592 work = *workp;
2593 *workp = 0;
2594 local_irq_enable();
2595 if (work)
2596 rcu_core();
2597 local_bh_enable();
2598 if (*workp == 0) {
2599 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2600 *statusp = RCU_KTHREAD_WAITING;
2601 return;
2602 }
2603 }
2604 *statusp = RCU_KTHREAD_YIELDING;
2605 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
77865dea 2606 schedule_timeout_idle(2);
48d07c04
SAS
2607 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2608 *statusp = RCU_KTHREAD_WAITING;
c9515875 2609 WRITE_ONCE(*j, jiffies);
48d07c04
SAS
2610}
2611
2612static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2613 .store = &rcu_data.rcu_cpu_kthread_task,
2614 .thread_should_run = rcu_cpu_kthread_should_run,
2615 .thread_fn = rcu_cpu_kthread,
2616 .thread_comm = "rcuc/%u",
2617 .setup = rcu_cpu_kthread_setup,
2618 .park = rcu_cpu_kthread_park,
2619};
2620
2621/*
2622 * Spawn per-CPU RCU core processing kthreads.
2623 */
2624static int __init rcu_spawn_core_kthreads(void)
2625{
2626 int cpu;
2627
2628 for_each_possible_cpu(cpu)
2629 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
4b4399b2 2630 if (use_softirq)
48d07c04
SAS
2631 return 0;
2632 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2633 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2634 return 0;
09223371
SL
2635}
2636
29154c57
PM
2637/*
2638 * Handle any core-RCU processing required by a call_rcu() invocation.
2639 */
5c7d8967
PM
2640static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2641 unsigned long flags)
64db4cff 2642{
62fde6ed
PM
2643 /*
2644 * If called from an extended quiescent state, invoke the RCU
2645 * core in order to force a re-evaluation of RCU's idleness.
2646 */
9910affa 2647 if (!rcu_is_watching())
62fde6ed
PM
2648 invoke_rcu_core();
2649
a16b7a69 2650 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2651 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2652 return;
64db4cff 2653
37c72e56
PM
2654 /*
2655 * Force the grace period if too many callbacks or too long waiting.
cd920e5a 2656 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
37c72e56 2657 * if some other CPU has recently done so. Also, don't bother
cd920e5a 2658 * invoking rcu_force_quiescent_state() if the newly enqueued callback
37c72e56
PM
2659 * is the only one waiting for a grace period to complete.
2660 */
15fecf89
PM
2661 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2662 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2663
2664 /* Are we ignoring a completed grace period? */
15cabdff 2665 note_gp_changes(rdp);
b52573d2
PM
2666
2667 /* Start a new grace period if one not already started. */
de8e8730 2668 if (!rcu_gp_in_progress()) {
c6e09b97 2669 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2670 } else {
2671 /* Give the grace period a kick. */
d5a9a8c3 2672 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2431774f 2673 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
15fecf89 2674 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
cd920e5a 2675 rcu_force_quiescent_state();
2431774f 2676 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
15fecf89 2677 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2678 }
4cdfc175 2679 }
29154c57
PM
2680}
2681
ae150184
PM
2682/*
2683 * RCU callback function to leak a callback.
2684 */
2685static void rcu_leak_callback(struct rcu_head *rhp)
2686{
2687}
2688
3fbfbf7a 2689/*
b2b00ddf
PM
2690 * Check and if necessary update the leaf rcu_node structure's
2691 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2692 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2693 * structure's ->lock.
3fbfbf7a 2694 */
b2b00ddf
PM
2695static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2696{
2697 raw_lockdep_assert_held_rcu_node(rnp);
2698 if (qovld_calc <= 0)
2699 return; // Early boot and wildcard value set.
2700 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2701 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2702 else
2703 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2704}
2705
2706/*
2707 * Check and if necessary update the leaf rcu_node structure's
2708 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2709 * number of queued RCU callbacks. No locks need be held, but the
2710 * caller must have disabled interrupts.
2711 *
2712 * Note that this function ignores the possibility that there are a lot
2713 * of callbacks all of which have already seen the end of their respective
2714 * grace periods. This omission is due to the need for no-CBs CPUs to
2715 * be holding ->nocb_lock to do this check, which is too heavy for a
2716 * common-case operation.
3fbfbf7a 2717 */
b2b00ddf
PM
2718static void check_cb_ovld(struct rcu_data *rdp)
2719{
2720 struct rcu_node *const rnp = rdp->mynode;
2721
2722 if (qovld_calc <= 0 ||
2723 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2724 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2725 return; // Early boot wildcard value or already set correctly.
2726 raw_spin_lock_rcu_node(rnp);
2727 check_cb_ovld_locked(rdp, rnp);
2728 raw_spin_unlock_rcu_node(rnp);
2729}
2730
1fe09ebe
PM
2731/**
2732 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2733 * @head: structure to be used for queueing the RCU updates.
2734 * @func: actual callback function to be invoked after the grace period
2735 *
2736 * The callback function will be invoked some time after a full grace
2737 * period elapses, in other words after all pre-existing RCU read-side
2738 * critical sections have completed. However, the callback function
2739 * might well execute concurrently with RCU read-side critical sections
2740 * that started after call_rcu() was invoked.
2741 *
2742 * RCU read-side critical sections are delimited by rcu_read_lock()
2743 * and rcu_read_unlock(), and may be nested. In addition, but only in
2744 * v5.0 and later, regions of code across which interrupts, preemption,
2745 * or softirqs have been disabled also serve as RCU read-side critical
2746 * sections. This includes hardware interrupt handlers, softirq handlers,
2747 * and NMI handlers.
2748 *
2749 * Note that all CPUs must agree that the grace period extended beyond
2750 * all pre-existing RCU read-side critical section. On systems with more
2751 * than one CPU, this means that when "func()" is invoked, each CPU is
2752 * guaranteed to have executed a full memory barrier since the end of its
2753 * last RCU read-side critical section whose beginning preceded the call
2754 * to call_rcu(). It also means that each CPU executing an RCU read-side
2755 * critical section that continues beyond the start of "func()" must have
2756 * executed a memory barrier after the call_rcu() but before the beginning
2757 * of that RCU read-side critical section. Note that these guarantees
2758 * include CPUs that are offline, idle, or executing in user mode, as
2759 * well as CPUs that are executing in the kernel.
2760 *
2761 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2762 * resulting RCU callback function "func()", then both CPU A and CPU B are
2763 * guaranteed to execute a full memory barrier during the time interval
2764 * between the call to call_rcu() and the invocation of "func()" -- even
2765 * if CPU A and CPU B are the same CPU (but again only if the system has
2766 * more than one CPU).
2767 *
2768 * Implementation of these memory-ordering guarantees is described here:
2769 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2770 */
2771void call_rcu(struct rcu_head *head, rcu_callback_t func)
64db4cff 2772{
b4b7914a 2773 static atomic_t doublefrees;
64db4cff
PM
2774 unsigned long flags;
2775 struct rcu_data *rdp;
5d6742b3 2776 bool was_alldone;
64db4cff 2777
b8f2ed53
PM
2778 /* Misaligned rcu_head! */
2779 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2780
ae150184 2781 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2782 /*
2783 * Probable double call_rcu(), so leak the callback.
2784 * Use rcu:rcu_callback trace event to find the previous
1fe09ebe 2785 * time callback was passed to call_rcu().
fa3c6647 2786 */
b4b7914a
PM
2787 if (atomic_inc_return(&doublefrees) < 4) {
2788 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2789 mem_dump_obj(head);
2790 }
7d0ae808 2791 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2792 return;
2793 }
64db4cff
PM
2794 head->func = func;
2795 head->next = NULL;
300c0c5e 2796 kasan_record_aux_stack_noalloc(head);
d818cc76 2797 local_irq_save(flags);
da1df50d 2798 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2799
2800 /* Add the callback to our list. */
5d6742b3
PM
2801 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2802 // This can trigger due to call_rcu() from offline CPU:
2803 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
34404ca8 2804 WARN_ON_ONCE(!rcu_is_watching());
5d6742b3
PM
2805 // Very early boot, before rcu_init(). Initialize if needed
2806 // and then drop through to queue the callback.
15fecf89
PM
2807 if (rcu_segcblist_empty(&rdp->cblist))
2808 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2809 }
77a40f97 2810
b2b00ddf 2811 check_cb_ovld(rdp);
d1b222c6
PM
2812 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2813 return; // Enqueued onto ->nocb_bypass, so just leave.
b692dc4a 2814 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
77a40f97 2815 rcu_segcblist_enqueue(&rdp->cblist, head);
c408b215
URS
2816 if (__is_kvfree_rcu_offset((unsigned long)func))
2817 trace_rcu_kvfree_callback(rcu_state.name, head,
3c779dfe 2818 (unsigned long)func,
15fecf89 2819 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2820 else
3c779dfe 2821 trace_rcu_callback(rcu_state.name, head,
15fecf89 2822 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2823
3afe7fa5
JFG
2824 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2825
29154c57 2826 /* Go handle any RCU core processing required. */
3820b513 2827 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
5d6742b3
PM
2828 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2829 } else {
2830 __call_rcu_core(rdp, head, flags);
2831 local_irq_restore(flags);
2832 }
64db4cff 2833}
45975c7d 2834EXPORT_SYMBOL_GPL(call_rcu);
64db4cff 2835
a35d1690
BP
2836
2837/* Maximum number of jiffies to wait before draining a batch. */
51824b78 2838#define KFREE_DRAIN_JIFFIES (5 * HZ)
0392bebe 2839#define KFREE_N_BATCHES 2
5f3c8d62 2840#define FREE_N_CHANNELS 2
34c88174
URS
2841
2842/**
5f3c8d62 2843 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
34c88174 2844 * @nr_records: Number of active pointers in the array
34c88174 2845 * @next: Next bulk object in the block chain
5f3c8d62 2846 * @records: Array of the kvfree_rcu() pointers
34c88174 2847 */
5f3c8d62 2848struct kvfree_rcu_bulk_data {
34c88174 2849 unsigned long nr_records;
5f3c8d62 2850 struct kvfree_rcu_bulk_data *next;
3af84862 2851 void *records[];
34c88174
URS
2852};
2853
3af84862
URS
2854/*
2855 * This macro defines how many entries the "records" array
2856 * will contain. It is based on the fact that the size of
5f3c8d62 2857 * kvfree_rcu_bulk_data structure becomes exactly one page.
3af84862 2858 */
5f3c8d62
URS
2859#define KVFREE_BULK_MAX_ENTR \
2860 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3af84862 2861
a35d1690 2862/**
0392bebe 2863 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
a35d1690 2864 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
0392bebe 2865 * @head_free: List of kfree_rcu() objects waiting for a grace period
5f3c8d62 2866 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
0392bebe
JFG
2867 * @krcp: Pointer to @kfree_rcu_cpu structure
2868 */
2869
2870struct kfree_rcu_cpu_work {
2871 struct rcu_work rcu_work;
2872 struct rcu_head *head_free;
5f3c8d62 2873 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
0392bebe
JFG
2874 struct kfree_rcu_cpu *krcp;
2875};
2876
2877/**
2878 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
a35d1690 2879 * @head: List of kfree_rcu() objects not yet waiting for a grace period
5f3c8d62 2880 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
0392bebe 2881 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
a35d1690
BP
2882 * @lock: Synchronize access to this structure
2883 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
69f08d39 2884 * @initialized: The @rcu_work fields have been initialized
8e11690d 2885 * @count: Number of objects for which GP not started
72a2fbda
MCC
2886 * @bkvcache:
2887 * A simple cache list that contains objects for reuse purpose.
2888 * In order to save some per-cpu space the list is singular.
2889 * Even though it is lockless an access has to be protected by the
2890 * per-cpu lock.
56292e86 2891 * @page_cache_work: A work to refill the cache when it is empty
d0bfa8b3 2892 * @backoff_page_cache_fill: Delay cache refills
56292e86
URS
2893 * @work_in_progress: Indicates that page_cache_work is running
2894 * @hrtimer: A hrtimer for scheduling a page_cache_work
72a2fbda 2895 * @nr_bkv_objs: number of allocated objects at @bkvcache.
a35d1690
BP
2896 *
2897 * This is a per-CPU structure. The reason that it is not included in
2898 * the rcu_data structure is to permit this code to be extracted from
2899 * the RCU files. Such extraction could allow further optimization of
2900 * the interactions with the slab allocators.
2901 */
2902struct kfree_rcu_cpu {
a35d1690 2903 struct rcu_head *head;
5f3c8d62 2904 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
0392bebe 2905 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
8ac88f71 2906 raw_spinlock_t lock;
a35d1690 2907 struct delayed_work monitor_work;
a35d1690 2908 bool initialized;
9154244c 2909 int count;
56292e86 2910
d0bfa8b3
ZQ
2911 struct delayed_work page_cache_work;
2912 atomic_t backoff_page_cache_fill;
56292e86
URS
2913 atomic_t work_in_progress;
2914 struct hrtimer hrtimer;
2915
53c72b59
URS
2916 struct llist_head bkvcache;
2917 int nr_bkv_objs;
a35d1690
BP
2918};
2919
69f08d39
SAS
2920static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2921 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2922};
a35d1690 2923
34c88174 2924static __always_inline void
5f3c8d62 2925debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
34c88174
URS
2926{
2927#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
446044eb
JFG
2928 int i;
2929
2930 for (i = 0; i < bhead->nr_records; i++)
2931 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
34c88174
URS
2932#endif
2933}
2934
952371d6
URS
2935static inline struct kfree_rcu_cpu *
2936krc_this_cpu_lock(unsigned long *flags)
2937{
2938 struct kfree_rcu_cpu *krcp;
2939
2940 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2941 krcp = this_cpu_ptr(&krc);
69f08d39 2942 raw_spin_lock(&krcp->lock);
952371d6
URS
2943
2944 return krcp;
2945}
2946
2947static inline void
2948krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2949{
7ffc9ec8 2950 raw_spin_unlock_irqrestore(&krcp->lock, flags);
952371d6
URS
2951}
2952
5f3c8d62 2953static inline struct kvfree_rcu_bulk_data *
53c72b59
URS
2954get_cached_bnode(struct kfree_rcu_cpu *krcp)
2955{
2956 if (!krcp->nr_bkv_objs)
2957 return NULL;
2958
ac7625eb 2959 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
5f3c8d62 2960 return (struct kvfree_rcu_bulk_data *)
53c72b59
URS
2961 llist_del_first(&krcp->bkvcache);
2962}
2963
2964static inline bool
2965put_cached_bnode(struct kfree_rcu_cpu *krcp,
5f3c8d62 2966 struct kvfree_rcu_bulk_data *bnode)
53c72b59
URS
2967{
2968 // Check the limit.
2969 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2970 return false;
2971
2972 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
ac7625eb 2973 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
53c72b59 2974 return true;
53c72b59
URS
2975}
2976
d0bfa8b3
ZQ
2977static int
2978drain_page_cache(struct kfree_rcu_cpu *krcp)
2979{
2980 unsigned long flags;
2981 struct llist_node *page_list, *pos, *n;
2982 int freed = 0;
53c72b59 2983
d0bfa8b3
ZQ
2984 raw_spin_lock_irqsave(&krcp->lock, flags);
2985 page_list = llist_del_all(&krcp->bkvcache);
ac7625eb 2986 WRITE_ONCE(krcp->nr_bkv_objs, 0);
d0bfa8b3 2987 raw_spin_unlock_irqrestore(&krcp->lock, flags);
53c72b59 2988
d0bfa8b3
ZQ
2989 llist_for_each_safe(pos, n, page_list) {
2990 free_page((unsigned long)pos);
2991 freed++;
2992 }
2993
2994 return freed;
53c72b59
URS
2995}
2996
495aa969 2997/*
a35d1690 2998 * This function is invoked in workqueue context after a grace period.
277ffe1b 2999 * It frees all the objects queued on ->bkvhead_free or ->head_free.
495aa969 3000 */
a35d1690
BP
3001static void kfree_rcu_work(struct work_struct *work)
3002{
3003 unsigned long flags;
5f3c8d62 3004 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
a35d1690
BP
3005 struct rcu_head *head, *next;
3006 struct kfree_rcu_cpu *krcp;
0392bebe 3007 struct kfree_rcu_cpu_work *krwp;
5f3c8d62 3008 int i, j;
a35d1690 3009
0392bebe
JFG
3010 krwp = container_of(to_rcu_work(work),
3011 struct kfree_rcu_cpu_work, rcu_work);
3012 krcp = krwp->krcp;
34c88174 3013
8ac88f71 3014 raw_spin_lock_irqsave(&krcp->lock, flags);
5f3c8d62
URS
3015 // Channels 1 and 2.
3016 for (i = 0; i < FREE_N_CHANNELS; i++) {
3017 bkvhead[i] = krwp->bkvhead_free[i];
3018 krwp->bkvhead_free[i] = NULL;
3019 }
34c88174 3020
5f3c8d62 3021 // Channel 3.
0392bebe
JFG
3022 head = krwp->head_free;
3023 krwp->head_free = NULL;
8ac88f71 3024 raw_spin_unlock_irqrestore(&krcp->lock, flags);
a35d1690 3025
277ffe1b 3026 // Handle the first two channels.
5f3c8d62
URS
3027 for (i = 0; i < FREE_N_CHANNELS; i++) {
3028 for (; bkvhead[i]; bkvhead[i] = bnext) {
3029 bnext = bkvhead[i]->next;
3030 debug_rcu_bhead_unqueue(bkvhead[i]);
3031
3032 rcu_lock_acquire(&rcu_callback_map);
3033 if (i == 0) { // kmalloc() / kfree().
3034 trace_rcu_invoke_kfree_bulk_callback(
3035 rcu_state.name, bkvhead[i]->nr_records,
3036 bkvhead[i]->records);
3037
3038 kfree_bulk(bkvhead[i]->nr_records,
3039 bkvhead[i]->records);
3040 } else { // vmalloc() / vfree().
3041 for (j = 0; j < bkvhead[i]->nr_records; j++) {
c408b215 3042 trace_rcu_invoke_kvfree_callback(
5f3c8d62
URS
3043 rcu_state.name,
3044 bkvhead[i]->records[j], 0);
3045
3046 vfree(bkvhead[i]->records[j]);
3047 }
3048 }
3049 rcu_lock_release(&rcu_callback_map);
61370792 3050
56292e86 3051 raw_spin_lock_irqsave(&krcp->lock, flags);
5f3c8d62
URS
3052 if (put_cached_bnode(krcp, bkvhead[i]))
3053 bkvhead[i] = NULL;
56292e86 3054 raw_spin_unlock_irqrestore(&krcp->lock, flags);
34c88174 3055
5f3c8d62
URS
3056 if (bkvhead[i])
3057 free_page((unsigned long) bkvhead[i]);
34c88174 3058
5f3c8d62
URS
3059 cond_resched_tasks_rcu_qs();
3060 }
34c88174
URS
3061 }
3062
3063 /*
d8628f35
URS
3064 * This is used when the "bulk" path can not be used for the
3065 * double-argument of kvfree_rcu(). This happens when the
3066 * page-cache is empty, which means that objects are instead
3067 * queued on a linked list through their rcu_head structures.
3068 * This list is named "Channel 3".
34c88174 3069 */
a35d1690 3070 for (; head; head = next) {
77a40f97 3071 unsigned long offset = (unsigned long)head->func;
446044eb 3072 void *ptr = (void *)head - offset;
77a40f97 3073
a35d1690 3074 next = head->next;
446044eb 3075 debug_rcu_head_unqueue((struct rcu_head *)ptr);
77a40f97 3076 rcu_lock_acquire(&rcu_callback_map);
c408b215 3077 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
77a40f97 3078
c408b215 3079 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
5f3c8d62 3080 kvfree(ptr);
77a40f97
JFG
3081
3082 rcu_lock_release(&rcu_callback_map);
a35d1690
BP
3083 cond_resched_tasks_rcu_qs();
3084 }
3085}
3086
82d26c36
JFG
3087static bool
3088need_offload_krc(struct kfree_rcu_cpu *krcp)
3089{
3090 int i;
3091
3092 for (i = 0; i < FREE_N_CHANNELS; i++)
3093 if (krcp->bkvhead[i])
3094 return true;
3095
3096 return !!krcp->head;
3097}
3098
51824b78
URS
3099static void
3100schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3101{
3102 long delay, delay_left;
3103
3104 delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3105 if (delayed_work_pending(&krcp->monitor_work)) {
3106 delay_left = krcp->monitor_work.timer.expires - jiffies;
3107 if (delay < delay_left)
3108 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3109 return;
3110 }
3111 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3112}
3113
495aa969 3114/*
a78d4a2a 3115 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
a35d1690 3116 */
a78d4a2a 3117static void kfree_rcu_monitor(struct work_struct *work)
a35d1690 3118{
a78d4a2a
URS
3119 struct kfree_rcu_cpu *krcp = container_of(work,
3120 struct kfree_rcu_cpu, monitor_work.work);
3121 unsigned long flags;
5f3c8d62 3122 int i, j;
0392bebe 3123
a78d4a2a 3124 raw_spin_lock_irqsave(&krcp->lock, flags);
a35d1690 3125
a78d4a2a 3126 // Attempt to start a new batch.
34c88174 3127 for (i = 0; i < KFREE_N_BATCHES; i++) {
a78d4a2a 3128 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
a35d1690 3129
a78d4a2a
URS
3130 // Try to detach bkvhead or head and attach it over any
3131 // available corresponding free channel. It can be that
3132 // a previous RCU batch is in progress, it means that
3133 // immediately to queue another one is not possible so
3134 // in that case the monitor work is rearmed.
5f3c8d62
URS
3135 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3136 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
34c88174 3137 (krcp->head && !krwp->head_free)) {
d8628f35
URS
3138 // Channel 1 corresponds to the SLAB-pointer bulk path.
3139 // Channel 2 corresponds to vmalloc-pointer bulk path.
5f3c8d62
URS
3140 for (j = 0; j < FREE_N_CHANNELS; j++) {
3141 if (!krwp->bkvhead_free[j]) {
3142 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3143 krcp->bkvhead[j] = NULL;
3144 }
34c88174
URS
3145 }
3146
d8628f35
URS
3147 // Channel 3 corresponds to both SLAB and vmalloc
3148 // objects queued on the linked list.
34c88174
URS
3149 if (!krwp->head_free) {
3150 krwp->head_free = krcp->head;
3151 krcp->head = NULL;
3152 }
3153
a6a82ce1 3154 WRITE_ONCE(krcp->count, 0);
9154244c 3155
a78d4a2a
URS
3156 // One work is per one batch, so there are three
3157 // "free channels", the batch can handle. It can
3158 // be that the work is in the pending state when
3159 // channels have been detached following by each
3160 // other.
34c88174 3161 queue_rcu_work(system_wq, &krwp->rcu_work);
34c88174
URS
3162 }
3163 }
3164
a78d4a2a
URS
3165 // If there is nothing to detach, it means that our job is
3166 // successfully done here. In case of having at least one
3167 // of the channels that is still busy we should rearm the
3168 // work to repeat an attempt. Because previous batches are
3169 // still in progress.
82d26c36 3170 if (need_offload_krc(krcp))
51824b78 3171 schedule_delayed_monitor_work(krcp);
a35d1690 3172
8ac88f71 3173 raw_spin_unlock_irqrestore(&krcp->lock, flags);
a35d1690
BP
3174}
3175
56292e86
URS
3176static enum hrtimer_restart
3177schedule_page_work_fn(struct hrtimer *t)
3178{
3179 struct kfree_rcu_cpu *krcp =
3180 container_of(t, struct kfree_rcu_cpu, hrtimer);
3181
d0bfa8b3 3182 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
56292e86
URS
3183 return HRTIMER_NORESTART;
3184}
3185
3186static void fill_page_cache_func(struct work_struct *work)
3187{
3188 struct kvfree_rcu_bulk_data *bnode;
3189 struct kfree_rcu_cpu *krcp =
3190 container_of(work, struct kfree_rcu_cpu,
d0bfa8b3 3191 page_cache_work.work);
56292e86 3192 unsigned long flags;
d0bfa8b3 3193 int nr_pages;
56292e86
URS
3194 bool pushed;
3195 int i;
3196
d0bfa8b3
ZQ
3197 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3198 1 : rcu_min_cached_objs;
3199
3200 for (i = 0; i < nr_pages; i++) {
56292e86 3201 bnode = (struct kvfree_rcu_bulk_data *)
ee6ddf58 3202 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
56292e86 3203
093590c1
MH
3204 if (!bnode)
3205 break;
56292e86 3206
093590c1
MH
3207 raw_spin_lock_irqsave(&krcp->lock, flags);
3208 pushed = put_cached_bnode(krcp, bnode);
3209 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3210
3211 if (!pushed) {
3212 free_page((unsigned long) bnode);
3213 break;
56292e86
URS
3214 }
3215 }
3216
3217 atomic_set(&krcp->work_in_progress, 0);
d0bfa8b3 3218 atomic_set(&krcp->backoff_page_cache_fill, 0);
56292e86
URS
3219}
3220
3221static void
3222run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3223{
3224 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3225 !atomic_xchg(&krcp->work_in_progress, 1)) {
d0bfa8b3
ZQ
3226 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3227 queue_delayed_work(system_wq,
3228 &krcp->page_cache_work,
3229 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3230 } else {
3231 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3232 krcp->hrtimer.function = schedule_page_work_fn;
3233 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3234 }
56292e86
URS
3235 }
3236}
3237
148e3731
URS
3238// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3239// state specified by flags. If can_alloc is true, the caller must
3240// be schedulable and not be holding any locks or mutexes that might be
3241// acquired by the memory allocator or anything that it might invoke.
3242// Returns true if ptr was successfully recorded, else the caller must
3243// use a fallback.
34c88174 3244static inline bool
148e3731
URS
3245add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3246 unsigned long *flags, void *ptr, bool can_alloc)
34c88174 3247{
5f3c8d62
URS
3248 struct kvfree_rcu_bulk_data *bnode;
3249 int idx;
34c88174 3250
148e3731
URS
3251 *krcp = krc_this_cpu_lock(flags);
3252 if (unlikely(!(*krcp)->initialized))
34c88174
URS
3253 return false;
3254
5f3c8d62 3255 idx = !!is_vmalloc_addr(ptr);
34c88174
URS
3256
3257 /* Check if a new block is required. */
148e3731
URS
3258 if (!(*krcp)->bkvhead[idx] ||
3259 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3260 bnode = get_cached_bnode(*krcp);
3261 if (!bnode && can_alloc) {
3262 krc_this_cpu_unlock(*krcp, *flags);
3e7ce7a1
URS
3263
3264 // __GFP_NORETRY - allows a light-weight direct reclaim
3265 // what is OK from minimizing of fallback hitting point of
3266 // view. Apart of that it forbids any OOM invoking what is
3267 // also beneficial since we are about to release memory soon.
3268 //
3269 // __GFP_NOMEMALLOC - prevents from consuming of all the
3270 // memory reserves. Please note we have a fallback path.
3271 //
3272 // __GFP_NOWARN - it is supposed that an allocation can
3273 // be failed under low memory or high memory pressure
3274 // scenarios.
148e3731 3275 bnode = (struct kvfree_rcu_bulk_data *)
3e7ce7a1 3276 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
148e3731
URS
3277 *krcp = krc_this_cpu_lock(flags);
3278 }
3279
56292e86 3280 if (!bnode)
34c88174
URS
3281 return false;
3282
3283 /* Initialize the new block. */
3284 bnode->nr_records = 0;
148e3731 3285 bnode->next = (*krcp)->bkvhead[idx];
34c88174
URS
3286
3287 /* Attach it to the head. */
148e3731 3288 (*krcp)->bkvhead[idx] = bnode;
34c88174
URS
3289 }
3290
34c88174 3291 /* Finally insert. */
148e3731
URS
3292 (*krcp)->bkvhead[idx]->records
3293 [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
34c88174
URS
3294
3295 return true;
3296}
3297
a35d1690 3298/*
277ffe1b
ZZ
3299 * Queue a request for lazy invocation of the appropriate free routine
3300 * after a grace period. Please note that three paths are maintained,
3301 * two for the common case using arrays of pointers and a third one that
3302 * is used only when the main paths cannot be used, for example, due to
3303 * memory pressure.
a35d1690 3304 *
c408b215 3305 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
34c88174
URS
3306 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3307 * be free'd in workqueue context. This allows us to: batch requests together to
5f3c8d62 3308 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
495aa969 3309 */
c408b215 3310void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 3311{
a35d1690
BP
3312 unsigned long flags;
3313 struct kfree_rcu_cpu *krcp;
3042f83f 3314 bool success;
446044eb 3315 void *ptr;
a35d1690 3316
3042f83f
URS
3317 if (head) {
3318 ptr = (void *) head - (unsigned long) func;
3319 } else {
3320 /*
3321 * Please note there is a limitation for the head-less
3322 * variant, that is why there is a clear rule for such
3323 * objects: it can be used from might_sleep() context
3324 * only. For other places please embed an rcu_head to
3325 * your data.
3326 */
3327 might_sleep();
3328 ptr = (unsigned long *) func;
3329 }
3330
a35d1690 3331 // Queue the object but don't yet schedule the batch.
446044eb 3332 if (debug_rcu_head_queue(ptr)) {
e99637be
JFG
3333 // Probable double kfree_rcu(), just leak.
3334 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3335 __func__, head);
3042f83f
URS
3336
3337 // Mark as success and leave.
148e3731 3338 return;
e99637be 3339 }
34c88174 3340
300c0c5e 3341 kasan_record_aux_stack_noalloc(ptr);
148e3731 3342 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3042f83f 3343 if (!success) {
56292e86
URS
3344 run_page_cache_worker(krcp);
3345
3042f83f
URS
3346 if (head == NULL)
3347 // Inline if kvfree_rcu(one_arg) call.
3348 goto unlock_return;
3349
34c88174
URS
3350 head->func = func;
3351 head->next = krcp->head;
3352 krcp->head = head;
3042f83f 3353 success = true;
34c88174 3354 }
a35d1690 3355
a6a82ce1 3356 WRITE_ONCE(krcp->count, krcp->count + 1);
9154244c 3357
a35d1690 3358 // Set timer to drain after KFREE_DRAIN_JIFFIES.
82d26c36 3359 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
51824b78 3360 schedule_delayed_monitor_work(krcp);
a35d1690 3361
e99637be 3362unlock_return:
952371d6 3363 krc_this_cpu_unlock(krcp, flags);
3042f83f
URS
3364
3365 /*
3366 * Inline kvfree() after synchronize_rcu(). We can do
3367 * it from might_sleep() context only, so the current
3368 * CPU can pass the QS state.
3369 */
3370 if (!success) {
3371 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3372 synchronize_rcu();
3373 kvfree(ptr);
3374 }
495aa969 3375}
c408b215 3376EXPORT_SYMBOL_GPL(kvfree_call_rcu);
495aa969 3377
9154244c
JFG
3378static unsigned long
3379kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3380{
3381 int cpu;
a6a82ce1 3382 unsigned long count = 0;
9154244c
JFG
3383
3384 /* Snapshot count of all CPUs */
70060b87 3385 for_each_possible_cpu(cpu) {
9154244c
JFG
3386 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3387
a6a82ce1 3388 count += READ_ONCE(krcp->count);
ac7625eb 3389 count += READ_ONCE(krcp->nr_bkv_objs);
d0bfa8b3 3390 atomic_set(&krcp->backoff_page_cache_fill, 1);
9154244c
JFG
3391 }
3392
38269096 3393 return count == 0 ? SHRINK_EMPTY : count;
9154244c
JFG
3394}
3395
3396static unsigned long
3397kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3398{
3399 int cpu, freed = 0;
9154244c 3400
70060b87 3401 for_each_possible_cpu(cpu) {
9154244c
JFG
3402 int count;
3403 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3404
3405 count = krcp->count;
d0bfa8b3 3406 count += drain_page_cache(krcp);
7fe1da33 3407 kfree_rcu_monitor(&krcp->monitor_work.work);
9154244c
JFG
3408
3409 sc->nr_to_scan -= count;
3410 freed += count;
3411
3412 if (sc->nr_to_scan <= 0)
3413 break;
3414 }
3415
c6dfd72b 3416 return freed == 0 ? SHRINK_STOP : freed;
9154244c
JFG
3417}
3418
3419static struct shrinker kfree_rcu_shrinker = {
3420 .count_objects = kfree_rcu_shrink_count,
3421 .scan_objects = kfree_rcu_shrink_scan,
3422 .batch = 0,
3423 .seeks = DEFAULT_SEEKS,
3424};
3425
a35d1690
BP
3426void __init kfree_rcu_scheduler_running(void)
3427{
3428 int cpu;
3429 unsigned long flags;
3430
70060b87 3431 for_each_possible_cpu(cpu) {
a35d1690
BP
3432 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3433
8ac88f71 3434 raw_spin_lock_irqsave(&krcp->lock, flags);
82d26c36 3435 if (need_offload_krc(krcp))
51824b78 3436 schedule_delayed_monitor_work(krcp);
8ac88f71 3437 raw_spin_unlock_irqrestore(&krcp->lock, flags);
a35d1690
BP
3438 }
3439}
3440
e5bc3af7
PM
3441/*
3442 * During early boot, any blocking grace-period wait automatically
258f887a 3443 * implies a grace period.
e5bc3af7 3444 *
258f887a
PM
3445 * Later on, this could in theory be the case for kernels built with
3446 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3447 * is not a common case. Furthermore, this optimization would cause
3448 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3449 * grace-period optimization is ignored once the scheduler is running.
e5bc3af7
PM
3450 */
3451static int rcu_blocking_is_gp(void)
3452{
258f887a
PM
3453 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3454 return false;
e5bc3af7 3455 might_sleep(); /* Check for RCU read-side critical section. */
258f887a 3456 return true;
e5bc3af7
PM
3457}
3458
3459/**
3460 * synchronize_rcu - wait until a grace period has elapsed.
3461 *
3462 * Control will return to the caller some time after a full grace
3463 * period has elapsed, in other words after all currently executing RCU
3464 * read-side critical sections have completed. Note, however, that
3465 * upon return from synchronize_rcu(), the caller might well be executing
3466 * concurrently with new RCU read-side critical sections that began while
1893afd6
PM
3467 * synchronize_rcu() was waiting.
3468 *
3469 * RCU read-side critical sections are delimited by rcu_read_lock()
3470 * and rcu_read_unlock(), and may be nested. In addition, but only in
3471 * v5.0 and later, regions of code across which interrupts, preemption,
3472 * or softirqs have been disabled also serve as RCU read-side critical
e5bc3af7
PM
3473 * sections. This includes hardware interrupt handlers, softirq handlers,
3474 * and NMI handlers.
3475 *
3476 * Note that this guarantee implies further memory-ordering guarantees.
3477 * On systems with more than one CPU, when synchronize_rcu() returns,
3478 * each CPU is guaranteed to have executed a full memory barrier since
3479 * the end of its last RCU read-side critical section whose beginning
3480 * preceded the call to synchronize_rcu(). In addition, each CPU having
3481 * an RCU read-side critical section that extends beyond the return from
3482 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3483 * after the beginning of synchronize_rcu() and before the beginning of
3484 * that RCU read-side critical section. Note that these guarantees include
3485 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3486 * that are executing in the kernel.
3487 *
3488 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3489 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3490 * to have executed a full memory barrier during the execution of
3491 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3492 * again only if the system has more than one CPU).
3d3a0d1b
PM
3493 *
3494 * Implementation of these memory-ordering guarantees is described here:
3495 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
e5bc3af7
PM
3496 */
3497void synchronize_rcu(void)
3498{
910e1209
PM
3499 unsigned long flags;
3500 struct rcu_node *rnp;
3501
e5bc3af7
PM
3502 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3503 lock_is_held(&rcu_lock_map) ||
3504 lock_is_held(&rcu_sched_lock_map),
3505 "Illegal synchronize_rcu() in RCU read-side critical section");
910e1209
PM
3506 if (!rcu_blocking_is_gp()) {
3507 if (rcu_gp_is_expedited())
3508 synchronize_rcu_expedited();
3509 else
3510 wait_rcu_gp(call_rcu);
3511 return;
bf95b2bc 3512 }
910e1209
PM
3513
3514 // Context allows vacuous grace periods.
3515 // Note well that this code runs with !PREEMPT && !SMP.
3516 // In addition, all code that advances grace periods runs at
3517 // process level. Therefore, this normal GP overlaps with other
3518 // normal GPs only by being fully nested within them, which allows
3519 // reuse of ->gp_seq_polled_snap.
3520 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3521 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3522
d761de8a
PM
3523 // Update the normal grace-period counters to record
3524 // this grace period, but only those used by the boot CPU.
3525 // The rcu_scheduler_starting() will take care of the rest of
3526 // these counters.
910e1209
PM
3527 local_irq_save(flags);
3528 WARN_ON_ONCE(num_online_cpus() > 1);
3529 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
d761de8a 3530 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
910e1209
PM
3531 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3532 local_irq_restore(flags);
e5bc3af7
PM
3533}
3534EXPORT_SYMBOL_GPL(synchronize_rcu);
3535
91a967fd
PM
3536/**
3537 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3538 * @rgosp: Place to put state cookie
3539 *
3540 * Stores into @rgosp a value that will always be treated by functions
3541 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3542 * has already completed.
3543 */
3544void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3545{
3546 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3547 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
91a967fd
PM
3548}
3549EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3550
765a3f4f
PM
3551/**
3552 * get_state_synchronize_rcu - Snapshot current RCU state
3553 *
3554 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
7abb18bd
PM
3555 * or poll_state_synchronize_rcu() to determine whether or not a full
3556 * grace period has elapsed in the meantime.
765a3f4f
PM
3557 */
3558unsigned long get_state_synchronize_rcu(void)
3559{
3560 /*
3561 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3562 * before the load from ->gp_seq.
765a3f4f
PM
3563 */
3564 smp_mb(); /* ^^^ */
bf95b2bc 3565 return rcu_seq_snap(&rcu_state.gp_seq_polled);
765a3f4f
PM
3566}
3567EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3568
7abb18bd 3569/**
3fdefca9
PM
3570 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3571 * @rgosp: location to place combined normal/expedited grace-period state
7abb18bd 3572 *
3fdefca9
PM
3573 * Places the normal and expedited grace-period states in @rgosp. This
3574 * state value can be passed to a later call to cond_synchronize_rcu_full()
3575 * or poll_state_synchronize_rcu_full() to determine whether or not a
3576 * grace period (whether normal or expedited) has elapsed in the meantime.
3577 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3578 * long, but is guaranteed to see all grace periods. In contrast, the
3579 * combined state occupies less memory, but can sometimes fail to take
3580 * grace periods into account.
7abb18bd 3581 *
3fdefca9
PM
3582 * This does not guarantee that the needed grace period will actually
3583 * start.
7abb18bd 3584 */
3fdefca9
PM
3585void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3586{
3587 struct rcu_node *rnp = rcu_get_root();
3588
3589 /*
3590 * Any prior manipulation of RCU-protected data must happen
3591 * before the loads from ->gp_seq and ->expedited_sequence.
3592 */
3593 smp_mb(); /* ^^^ */
3594 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3595 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3fdefca9
PM
3596}
3597EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3598
76ea3641
PM
3599/*
3600 * Helper function for start_poll_synchronize_rcu() and
3601 * start_poll_synchronize_rcu_full().
7abb18bd 3602 */
76ea3641 3603static void start_poll_synchronize_rcu_common(void)
7abb18bd
PM
3604{
3605 unsigned long flags;
7abb18bd
PM
3606 bool needwake;
3607 struct rcu_data *rdp;
3608 struct rcu_node *rnp;
3609
3610 lockdep_assert_irqs_enabled();
3611 local_irq_save(flags);
3612 rdp = this_cpu_ptr(&rcu_data);
3613 rnp = rdp->mynode;
3614 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
bf95b2bc
PM
3615 // Note it is possible for a grace period to have elapsed between
3616 // the above call to get_state_synchronize_rcu() and the below call
3617 // to rcu_seq_snap. This is OK, the worst that happens is that we
3618 // get a grace period that no one needed. These accesses are ordered
3619 // by smp_mb(), and we are accessing them in the opposite order
3620 // from which they are updated at grace-period start, as required.
3621 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
7abb18bd
PM
3622 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3623 if (needwake)
3624 rcu_gp_kthread_wake();
76ea3641
PM
3625}
3626
3627/**
3628 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3629 *
3630 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3631 * or poll_state_synchronize_rcu() to determine whether or not a full
3632 * grace period has elapsed in the meantime. If the needed grace period
3633 * is not already slated to start, notifies RCU core of the need for that
3634 * grace period.
3635 *
3636 * Interrupts must be enabled for the case where it is necessary to awaken
3637 * the grace-period kthread.
3638 */
3639unsigned long start_poll_synchronize_rcu(void)
3640{
3641 unsigned long gp_seq = get_state_synchronize_rcu();
3642
3643 start_poll_synchronize_rcu_common();
7abb18bd
PM
3644 return gp_seq;
3645}
3646EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3647
3648/**
76ea3641
PM
3649 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3650 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
7abb18bd 3651 *
76ea3641
PM
3652 * Places the normal and expedited grace-period states in *@rgos. This
3653 * state value can be passed to a later call to cond_synchronize_rcu_full()
3654 * or poll_state_synchronize_rcu_full() to determine whether or not a
3655 * grace period (whether normal or expedited) has elapsed in the meantime.
3656 * If the needed grace period is not already slated to start, notifies
3657 * RCU core of the need for that grace period.
3658 *
3659 * Interrupts must be enabled for the case where it is necessary to awaken
3660 * the grace-period kthread.
3661 */
3662void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3663{
3664 get_state_synchronize_rcu_full(rgosp);
3665
3666 start_poll_synchronize_rcu_common();
3667}
3668EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3669
7abb18bd 3670/**
91a967fd 3671 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3d3a0d1b 3672 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
7abb18bd
PM
3673 *
3674 * If a full RCU grace period has elapsed since the earlier call from
f21e0143 3675 * which @oldstate was obtained, return @true, otherwise return @false.
a616aec9 3676 * If @false is returned, it is the caller's responsibility to invoke this
7abb18bd
PM
3677 * function later on until it does return @true. Alternatively, the caller
3678 * can explicitly wait for a grace period, for example, by passing @oldstate
3679 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3680 *
3681 * Yes, this function does not take counter wrap into account.
3682 * But counter wrap is harmless. If the counter wraps, we have waited for
2403e804 3683 * more than a billion grace periods (and way more on a 64-bit system!).
f21e0143 3684 * Those needing to keep old state values for very long time periods
91a967fd
PM
3685 * (many hours even on 32-bit systems) should check them occasionally and
3686 * either refresh them or set a flag indicating that the grace period has
3687 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3688 * to get a guaranteed-completed grace-period state.
3d3a0d1b
PM
3689 *
3690 * This function provides the same memory-ordering guarantees that
3691 * would be provided by a synchronize_rcu() that was invoked at the call
3692 * to the function that provided @oldstate, and that returned at the end
3693 * of this function.
7abb18bd
PM
3694 */
3695bool poll_state_synchronize_rcu(unsigned long oldstate)
3696{
414c1238 3697 if (oldstate == RCU_GET_STATE_COMPLETED ||
bf95b2bc 3698 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
7abb18bd
PM
3699 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3700 return true;
3701 }
3702 return false;
3703}
3704EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3705
765a3f4f 3706/**
91a967fd
PM
3707 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3708 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
765a3f4f 3709 *
91a967fd
PM
3710 * If a full RCU grace period has elapsed since the earlier call from
3711 * which *rgosp was obtained, return @true, otherwise return @false.
3712 * If @false is returned, it is the caller's responsibility to invoke this
3713 * function later on until it does return @true. Alternatively, the caller
3714 * can explicitly wait for a grace period, for example, by passing @rgosp
3715 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3716 *
3717 * Yes, this function does not take counter wrap into account.
3718 * But counter wrap is harmless. If the counter wraps, we have waited
3719 * for more than a billion grace periods (and way more on a 64-bit
3720 * system!). Those needing to keep rcu_gp_oldstate values for very
3721 * long time periods (many hours even on 32-bit systems) should check
3722 * them occasionally and either refresh them or set a flag indicating
3723 * that the grace period has completed. Alternatively, they can use
3724 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3725 * grace-period state.
765a3f4f 3726 *
91a967fd
PM
3727 * This function provides the same memory-ordering guarantees that would
3728 * be provided by a synchronize_rcu() that was invoked at the call to
3729 * the function that provided @rgosp, and that returned at the end of this
3730 * function. And this guarantee requires that the root rcu_node structure's
3731 * ->gp_seq field be checked instead of that of the rcu_state structure.
3732 * The problem is that the just-ending grace-period's callbacks can be
3733 * invoked between the time that the root rcu_node structure's ->gp_seq
3734 * field is updated and the time that the rcu_state structure's ->gp_seq
3735 * field is updated. Therefore, if a single synchronize_rcu() is to
3736 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3737 * then the root rcu_node structure is the one that needs to be polled.
3738 */
3739bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3740{
3741 struct rcu_node *rnp = rcu_get_root();
3742
3743 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3744 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3745 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3746 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
7ecef087 3747 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
91a967fd
PM
3748 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3749 return true;
3750 }
3751 return false;
3752}
3753EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3754
765a3f4f
PM
3755/**
3756 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
d96c52fe 3757 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
765a3f4f
PM
3758 *
3759 * If a full RCU grace period has elapsed since the earlier call to
7abb18bd
PM
3760 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3761 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
765a3f4f 3762 *
d96c52fe
PM
3763 * Yes, this function does not take counter wrap into account.
3764 * But counter wrap is harmless. If the counter wraps, we have waited for
765a3f4f 3765 * more than 2 billion grace periods (and way more on a 64-bit system!),
d96c52fe 3766 * so waiting for a couple of additional grace periods should be just fine.
3d3a0d1b
PM
3767 *
3768 * This function provides the same memory-ordering guarantees that
3769 * would be provided by a synchronize_rcu() that was invoked at the call
d96c52fe 3770 * to the function that provided @oldstate and that returned at the end
3d3a0d1b 3771 * of this function.
765a3f4f
PM
3772 */
3773void cond_synchronize_rcu(unsigned long oldstate)
3774{
7abb18bd 3775 if (!poll_state_synchronize_rcu(oldstate))
765a3f4f
PM
3776 synchronize_rcu();
3777}
3778EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3779
b6fe4917
PM
3780/**
3781 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3782 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3783 *
3784 * If a full RCU grace period has elapsed since the call to
3785 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3786 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3787 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3788 * for a full grace period.
3789 *
3790 * Yes, this function does not take counter wrap into account.
3791 * But counter wrap is harmless. If the counter wraps, we have waited for
3792 * more than 2 billion grace periods (and way more on a 64-bit system!),
3793 * so waiting for a couple of additional grace periods should be just fine.
3794 *
3795 * This function provides the same memory-ordering guarantees that
3796 * would be provided by a synchronize_rcu() that was invoked at the call
3797 * to the function that provided @rgosp and that returned at the end of
3798 * this function.
3799 */
3800void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3801{
3802 if (!poll_state_synchronize_rcu_full(rgosp))
3803 synchronize_rcu();
3804}
3805EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3806
64db4cff 3807/*
98ece508 3808 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
3809 * the current CPU, returning 1 if so and zero otherwise. The checks are
3810 * in order of increasing expense: checks that can be carried out against
3811 * CPU-local state are performed first. However, we must check for CPU
3812 * stalls first, else we might not get a chance.
64db4cff 3813 */
dd7dafd1 3814static int rcu_pending(int user)
64db4cff 3815{
ed93dfc6 3816 bool gp_in_progress;
98ece508 3817 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
3818 struct rcu_node *rnp = rdp->mynode;
3819
a649d25d
PM
3820 lockdep_assert_irqs_disabled();
3821
64db4cff 3822 /* Check for CPU stalls, if enabled. */
ea12ff2b 3823 check_cpu_stall(rdp);
64db4cff 3824
85f69b32 3825 /* Does this CPU need a deferred NOCB wakeup? */
87090516 3826 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
85f69b32
PM
3827 return 1;
3828
dd7dafd1
PM
3829 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3830 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
a096932f
PM
3831 return 0;
3832
64db4cff 3833 /* Is the RCU core waiting for a quiescent state from this CPU? */
ed93dfc6
PM
3834 gp_in_progress = rcu_gp_in_progress();
3835 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
64db4cff
PM
3836 return 1;
3837
3838 /* Does this CPU have callbacks ready to invoke? */
3820b513 3839 if (!rcu_rdp_is_offloaded(rdp) &&
bd56e0a4 3840 rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3841 return 1;
3842
3843 /* Has RCU gone idle with this CPU needing another grace period? */
ed93dfc6 3844 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3820b513 3845 !rcu_rdp_is_offloaded(rdp) &&
c1935209 3846 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
3847 return 1;
3848
67e14c1e
PM
3849 /* Have RCU grace period completed or started? */
3850 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 3851 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3852 return 1;
3853
64db4cff
PM
3854 /* nothing to do */
3855 return 0;
3856}
3857
a83eff0a 3858/*
dd46a788 3859 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
3860 * the compiler is expected to optimize this away.
3861 */
dd46a788 3862static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 3863{
8344b871
PM
3864 trace_rcu_barrier(rcu_state.name, s, cpu,
3865 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
3866}
3867
b1420f1c 3868/*
dd46a788
PM
3869 * RCU callback function for rcu_barrier(). If we are last, wake
3870 * up the task executing rcu_barrier().
aa24f937
PM
3871 *
3872 * Note that the value of rcu_state.barrier_sequence must be captured
3873 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3874 * other CPUs might count the value down to zero before this CPU gets
3875 * around to invoking rcu_barrier_trace(), which might result in bogus
3876 * data from the next instance of rcu_barrier().
b1420f1c 3877 */
24ebbca8 3878static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3879{
aa24f937
PM
3880 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3881
ec9f5835 3882 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
aa24f937 3883 rcu_barrier_trace(TPS("LastCB"), -1, s);
ec9f5835 3884 complete(&rcu_state.barrier_completion);
a83eff0a 3885 } else {
aa24f937 3886 rcu_barrier_trace(TPS("CB"), -1, s);
a83eff0a 3887 }
d0ec774c
PM
3888}
3889
3890/*
a16578dd 3891 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
d0ec774c 3892 */
a16578dd 3893static void rcu_barrier_entrain(struct rcu_data *rdp)
d0ec774c 3894{
a16578dd
PM
3895 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3896 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
d0ec774c 3897
80b3fd47 3898 lockdep_assert_held(&rcu_state.barrier_lock);
a16578dd
PM
3899 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3900 return;
dd46a788 3901 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
3902 rdp->barrier_head.func = rcu_barrier_callback;
3903 debug_rcu_head_queue(&rdp->barrier_head);
5d6742b3 3904 rcu_nocb_lock(rdp);
d1b222c6 3905 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
77a40f97 3906 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
ec9f5835 3907 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
3908 } else {
3909 debug_rcu_head_unqueue(&rdp->barrier_head);
a16578dd 3910 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
f92c734f 3911 }
5d6742b3 3912 rcu_nocb_unlock(rdp);
a16578dd
PM
3913 smp_store_release(&rdp->barrier_seq_snap, gseq);
3914}
3915
3916/*
3917 * Called with preemption disabled, and from cross-cpu IRQ context.
3918 */
3919static void rcu_barrier_handler(void *cpu_in)
3920{
3921 uintptr_t cpu = (uintptr_t)cpu_in;
3922 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3923
3924 lockdep_assert_irqs_disabled();
3925 WARN_ON_ONCE(cpu != rdp->cpu);
3926 WARN_ON_ONCE(cpu != smp_processor_id());
80b3fd47 3927 raw_spin_lock(&rcu_state.barrier_lock);
a16578dd 3928 rcu_barrier_entrain(rdp);
80b3fd47 3929 raw_spin_unlock(&rcu_state.barrier_lock);
d0ec774c
PM
3930}
3931
dd46a788
PM
3932/**
3933 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3934 *
3935 * Note that this primitive does not necessarily wait for an RCU grace period
3936 * to complete. For example, if there are no RCU callbacks queued anywhere
3937 * in the system, then rcu_barrier() is within its rights to return
3938 * immediately, without waiting for anything, much less an RCU grace period.
d0ec774c 3939 */
dd46a788 3940void rcu_barrier(void)
d0ec774c 3941{
127e2981 3942 uintptr_t cpu;
a16578dd
PM
3943 unsigned long flags;
3944 unsigned long gseq;
b1420f1c 3945 struct rcu_data *rdp;
ec9f5835 3946 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 3947
dd46a788 3948 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 3949
e74f4c45 3950 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 3951 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 3952
4f525a52 3953 /* Did someone else do our work for us? */
ec9f5835 3954 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
0cabb47a 3955 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
cf3a9c48 3956 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 3957 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
3958 return;
3959 }
3960
4f525a52 3961 /* Mark the start of the barrier operation. */
80b3fd47 3962 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
ec9f5835 3963 rcu_seq_start(&rcu_state.barrier_sequence);
a16578dd 3964 gseq = rcu_state.barrier_sequence;
dd46a788 3965 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 3966
d0ec774c 3967 /*
127e2981
PM
3968 * Initialize the count to two rather than to zero in order
3969 * to avoid a too-soon return to zero in case of an immediate
3970 * invocation of the just-enqueued callback (or preemption of
3971 * this task). Exclude CPU-hotplug operations to ensure that no
3972 * offline non-offloaded CPU has callbacks queued.
d0ec774c 3973 */
ec9f5835 3974 init_completion(&rcu_state.barrier_completion);
127e2981 3975 atomic_set(&rcu_state.barrier_cpu_count, 2);
80b3fd47 3976 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
b1420f1c
PM
3977
3978 /*
1331e7a1
PM
3979 * Force each CPU with callbacks to register a new callback.
3980 * When that callback is invoked, we will know that all of the
3981 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3982 */
3fbfbf7a 3983 for_each_possible_cpu(cpu) {
da1df50d 3984 rdp = per_cpu_ptr(&rcu_data, cpu);
a16578dd
PM
3985retry:
3986 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
ce5215c1 3987 continue;
80b3fd47 3988 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
0cabb47a 3989 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
a16578dd 3990 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
80b3fd47 3991 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
0cabb47a 3992 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
ce5215c1 3993 continue;
0cabb47a 3994 }
a16578dd
PM
3995 if (!rcu_rdp_cpu_online(rdp)) {
3996 rcu_barrier_entrain(rdp);
3997 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
80b3fd47 3998 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
0cabb47a 3999 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
a16578dd 4000 continue;
b1420f1c 4001 }
80b3fd47 4002 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
a16578dd
PM
4003 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4004 schedule_timeout_uninterruptible(1);
4005 goto retry;
b1420f1c 4006 }
a16578dd
PM
4007 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4008 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
b1420f1c 4009 }
b1420f1c
PM
4010
4011 /*
4012 * Now that we have an rcu_barrier_callback() callback on each
4013 * CPU, and thus each counted, remove the initial count.
4014 */
127e2981 4015 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
ec9f5835 4016 complete(&rcu_state.barrier_completion);
b1420f1c
PM
4017
4018 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 4019 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 4020
4f525a52 4021 /* Mark the end of the barrier operation. */
dd46a788 4022 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 4023 rcu_seq_end(&rcu_state.barrier_sequence);
a16578dd
PM
4024 gseq = rcu_state.barrier_sequence;
4025 for_each_possible_cpu(cpu) {
4026 rdp = per_cpu_ptr(&rcu_data, cpu);
4027
4028 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4029 }
4f525a52 4030
b1420f1c 4031 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 4032 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 4033}
45975c7d 4034EXPORT_SYMBOL_GPL(rcu_barrier);
d0ec774c 4035
0aa04b05
PM
4036/*
4037 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4038 * first CPU in a given leaf rcu_node structure coming online. The caller
a616aec9 4039 * must hold the corresponding leaf rcu_node ->lock with interrupts
0aa04b05
PM
4040 * disabled.
4041 */
4042static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4043{
4044 long mask;
8d672fa6 4045 long oldmask;
0aa04b05
PM
4046 struct rcu_node *rnp = rnp_leaf;
4047
8d672fa6 4048 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 4049 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
4050 for (;;) {
4051 mask = rnp->grpmask;
4052 rnp = rnp->parent;
4053 if (rnp == NULL)
4054 return;
6cf10081 4055 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 4056 oldmask = rnp->qsmaskinit;
0aa04b05 4057 rnp->qsmaskinit |= mask;
67c583a7 4058 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
4059 if (oldmask)
4060 return;
0aa04b05
PM
4061 }
4062}
4063
64db4cff 4064/*
27569620 4065 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 4066 */
27569620 4067static void __init
53b46303 4068rcu_boot_init_percpu_data(int cpu)
64db4cff 4069{
904e600e 4070 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
da1df50d 4071 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
4072
4073 /* Set up local state, ensuring consistent view of global state. */
bc75e999 4074 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
a657f261 4075 INIT_WORK(&rdp->strict_work, strict_work_handler);
904e600e 4076 WARN_ON_ONCE(ct->dynticks_nesting != 1);
62e2412d 4077 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
a16578dd 4078 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
53b46303 4079 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 4080 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 4081 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 4082 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
c708b08c 4083 rdp->last_sched_clock = jiffies;
27569620 4084 rdp->cpu = cpu;
3fbfbf7a 4085 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
4086}
4087
4088/*
53b46303
PM
4089 * Invoked early in the CPU-online process, when pretty much all services
4090 * are available. The incoming CPU is not present.
4091 *
4092 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
4093 * offline event can be happening at a given time. Note also that we can
4094 * accept some slop in the rsp->gp_seq access due to the fact that this
e83e73f5
PM
4095 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4096 * And any offloaded callbacks are being numbered elsewhere.
64db4cff 4097 */
53b46303 4098int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
4099{
4100 unsigned long flags;
904e600e 4101 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
da1df50d 4102 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 4103 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
4104
4105 /* Set up local state, ensuring consistent view of global state. */
6cf10081 4106 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 4107 rdp->qlen_last_fqs_check = 0;
2431774f 4108 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
64db4cff 4109 rdp->blimit = blimit;
904e600e 4110 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
67c583a7 4111 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
ec711bc1 4112
126d9d49 4113 /*
ec711bc1
FW
4114 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4115 * (re-)initialized.
126d9d49 4116 */
ec711bc1 4117 if (!rcu_segcblist_is_enabled(&rdp->cblist))
126d9d49 4118 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
64db4cff 4119
0aa04b05
PM
4120 /*
4121 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4122 * propagation up the rcu_node tree will happen at the beginning
4123 * of the next grace period.
4124 */
64db4cff 4125 rnp = rdp->mynode;
2a67e741 4126 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 4127 rdp->beenonline = true; /* We have now been online. */
8ff37290
PM
4128 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4129 rdp->gp_seq_needed = rdp->gp_seq;
5b74c458 4130 rdp->cpu_no_qs.b.norm = true;
97c668b8 4131 rdp->core_needs_qs = false;
9b9500da 4132 rdp->rcu_iw_pending = false;
7a9f50a0 4133 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
8ff37290 4134 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
53b46303 4135 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 4136 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3ef5a1c3 4137 rcu_spawn_one_boost_kthread(rnp);
ad368d15 4138 rcu_spawn_cpu_nocb_kthread(cpu);
ed73860c 4139 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4df83742
TG
4140
4141 return 0;
4142}
4143
deb34f36
PM
4144/*
4145 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4146 */
4df83742
TG
4147static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4148{
da1df50d 4149 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
4150
4151 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4152}
4153
deb34f36
PM
4154/*
4155 * Near the end of the CPU-online process. Pretty much all services
4156 * enabled, and the CPU is now very much alive.
4157 */
4df83742
TG
4158int rcutree_online_cpu(unsigned int cpu)
4159{
9b9500da
PM
4160 unsigned long flags;
4161 struct rcu_data *rdp;
4162 struct rcu_node *rnp;
9b9500da 4163
b97d23c5
PM
4164 rdp = per_cpu_ptr(&rcu_data, cpu);
4165 rnp = rdp->mynode;
4166 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4167 rnp->ffmask |= rdp->grpmask;
4168 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da
PM
4169 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4170 return 0; /* Too early in boot for scheduler work. */
4171 sync_sched_exp_online_cleanup(cpu);
4172 rcutree_affinity_setting(cpu, -1);
96926686
PM
4173
4174 // Stop-machine done, so allow nohz_full to disable tick.
4175 tick_dep_clear(TICK_DEP_BIT_RCU);
4df83742
TG
4176 return 0;
4177}
4178
deb34f36
PM
4179/*
4180 * Near the beginning of the process. The CPU is still very much alive
4181 * with pretty much all services enabled.
4182 */
4df83742
TG
4183int rcutree_offline_cpu(unsigned int cpu)
4184{
9b9500da
PM
4185 unsigned long flags;
4186 struct rcu_data *rdp;
4187 struct rcu_node *rnp;
9b9500da 4188
b97d23c5
PM
4189 rdp = per_cpu_ptr(&rcu_data, cpu);
4190 rnp = rdp->mynode;
4191 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4192 rnp->ffmask &= ~rdp->grpmask;
4193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 4194
4df83742 4195 rcutree_affinity_setting(cpu, cpu);
96926686
PM
4196
4197 // nohz_full CPUs need the tick for stop-machine to work quickly
4198 tick_dep_set(TICK_DEP_BIT_RCU);
4df83742
TG
4199 return 0;
4200}
4201
7ec99de3
PM
4202/*
4203 * Mark the specified CPU as being online so that subsequent grace periods
4204 * (both expedited and normal) will wait on it. Note that this means that
4205 * incoming CPUs are not allowed to use RCU read-side critical sections
4206 * until this function is called. Failing to observe this restriction
4207 * will result in lockdep splats.
deb34f36
PM
4208 *
4209 * Note that this function is special in that it is invoked directly
4210 * from the incoming CPU rather than from the cpuhp_step mechanism.
4211 * This is because this function must be invoked at a precise location.
7ec99de3
PM
4212 */
4213void rcu_cpu_starting(unsigned int cpu)
4214{
4215 unsigned long flags;
4216 unsigned long mask;
4217 struct rcu_data *rdp;
4218 struct rcu_node *rnp;
abfce041 4219 bool newcpu;
7ec99de3 4220
c0f97f20
PM
4221 rdp = per_cpu_ptr(&rcu_data, cpu);
4222 if (rdp->cpu_started)
f64c6013 4223 return;
c0f97f20 4224 rdp->cpu_started = true;
f64c6013 4225
b97d23c5
PM
4226 rnp = rdp->mynode;
4227 mask = rdp->grpmask;
82980b16
DW
4228 local_irq_save(flags);
4229 arch_spin_lock(&rcu_state.ofl_lock);
2caebefb 4230 rcu_dynticks_eqs_online();
80b3fd47 4231 raw_spin_lock(&rcu_state.barrier_lock);
82980b16 4232 raw_spin_lock_rcu_node(rnp);
105abf82 4233 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
80b3fd47 4234 raw_spin_unlock(&rcu_state.barrier_lock);
abfce041 4235 newcpu = !(rnp->expmaskinitnext & mask);
b97d23c5 4236 rnp->expmaskinitnext |= mask;
b97d23c5 4237 /* Allow lockless access for expedited grace periods. */
abfce041 4238 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
2f084695 4239 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
b97d23c5 4240 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
4241 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4242 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
9f866dac
JFG
4243
4244 /* An incoming CPU should never be blocking a grace period. */
4245 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
82980b16
DW
4246 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4247 unsigned long flags2;
4248
4249 local_irq_save(flags2);
516e5ae0 4250 rcu_disable_urgency_upon_qs(rdp);
b97d23c5 4251 /* Report QS -after- changing ->qsmaskinitnext! */
82980b16 4252 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
b97d23c5 4253 } else {
82980b16 4254 raw_spin_unlock_rcu_node(rnp);
7ec99de3 4255 }
82980b16
DW
4256 arch_spin_unlock(&rcu_state.ofl_lock);
4257 local_irq_restore(flags);
313517fc 4258 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
4259}
4260
27d50c7e 4261/*
53b46303
PM
4262 * The outgoing function has no further need of RCU, so remove it from
4263 * the rcu_node tree's ->qsmaskinitnext bit masks.
4264 *
4265 * Note that this function is special in that it is invoked directly
4266 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4267 * This is because this function must be invoked at a precise location.
27d50c7e 4268 */
53b46303 4269void rcu_report_dead(unsigned int cpu)
27d50c7e 4270{
82980b16 4271 unsigned long flags, seq_flags;
27d50c7e 4272 unsigned long mask;
da1df50d 4273 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
4274 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4275
147c6852
PM
4276 // Do any dangling deferred wakeups.
4277 do_nocb_deferred_wakeup(rdp);
4278
49918a54 4279 /* QS for any half-done expedited grace period. */
768f5d50 4280 rcu_report_exp_rdp(rdp);
53b46303
PM
4281 rcu_preempt_deferred_qs(current);
4282
27d50c7e
TG
4283 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4284 mask = rdp->grpmask;
82980b16
DW
4285 local_irq_save(seq_flags);
4286 arch_spin_lock(&rcu_state.ofl_lock);
27d50c7e 4287 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
4288 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4289 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
4290 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4291 /* Report quiescent state -before- changing ->qsmaskinitnext! */
e2bb1288 4292 rcu_disable_urgency_upon_qs(rdp);
b50912d0 4293 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
4294 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4295 }
105abf82 4296 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
710d60cb 4297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
82980b16
DW
4298 arch_spin_unlock(&rcu_state.ofl_lock);
4299 local_irq_restore(seq_flags);
f64c6013 4300
c0f97f20 4301 rdp->cpu_started = false;
27d50c7e 4302}
a58163d8 4303
04e613de 4304#ifdef CONFIG_HOTPLUG_CPU
53b46303
PM
4305/*
4306 * The outgoing CPU has just passed through the dying-idle state, and we
4307 * are being invoked from the CPU that was IPIed to continue the offline
4308 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4309 */
4310void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
4311{
4312 unsigned long flags;
b1a2d79f 4313 struct rcu_data *my_rdp;
c00045be 4314 struct rcu_node *my_rnp;
da1df50d 4315 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
ec4eacce 4316 bool needwake;
a58163d8 4317
3820b513 4318 if (rcu_rdp_is_offloaded(rdp) ||
ce5215c1 4319 rcu_segcblist_empty(&rdp->cblist))
95335c03
PM
4320 return; /* No callbacks to migrate. */
4321
80b3fd47 4322 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
a16578dd
PM
4323 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4324 rcu_barrier_entrain(rdp);
da1df50d 4325 my_rdp = this_cpu_ptr(&rcu_data);
c00045be 4326 my_rnp = my_rdp->mynode;
5d6742b3 4327 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
d1b222c6 4328 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
c00045be 4329 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
ec4eacce 4330 /* Leverage recent GPs and set GP for new callbacks. */
c00045be
PM
4331 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4332 rcu_advance_cbs(my_rnp, my_rdp);
f2dbe4a5 4333 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
80b3fd47 4334 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
23651d9b 4335 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
c035280f 4336 rcu_segcblist_disable(&rdp->cblist);
a16578dd 4337 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
52c1d81e 4338 check_cb_ovld_locked(my_rdp, my_rnp);
3820b513 4339 if (rcu_rdp_is_offloaded(my_rdp)) {
5d6742b3
PM
4340 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4341 __call_rcu_nocb_wake(my_rdp, true, flags);
4342 } else {
4343 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4344 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4345 }
ec4eacce 4346 if (needwake)
532c00c9 4347 rcu_gp_kthread_wake();
5d6742b3 4348 lockdep_assert_irqs_enabled();
a58163d8
PM
4349 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4350 !rcu_segcblist_empty(&rdp->cblist),
4351 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4352 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4353 rcu_segcblist_first_cb(&rdp->cblist));
4354}
27d50c7e
TG
4355#endif
4356
deb34f36
PM
4357/*
4358 * On non-huge systems, use expedited RCU grace periods to make suspend
4359 * and hibernation run faster.
4360 */
d1d74d14
BP
4361static int rcu_pm_notify(struct notifier_block *self,
4362 unsigned long action, void *hcpu)
4363{
4364 switch (action) {
4365 case PM_HIBERNATION_PREPARE:
4366 case PM_SUSPEND_PREPARE:
e85e6a21 4367 rcu_expedite_gp();
d1d74d14
BP
4368 break;
4369 case PM_POST_HIBERNATION:
4370 case PM_POST_SUSPEND:
e85e6a21 4371 rcu_unexpedite_gp();
d1d74d14
BP
4372 break;
4373 default:
4374 break;
4375 }
4376 return NOTIFY_OK;
4377}
4378
9621fbee
KS
4379#ifdef CONFIG_RCU_EXP_KTHREAD
4380struct kthread_worker *rcu_exp_gp_kworker;
4381struct kthread_worker *rcu_exp_par_gp_kworker;
4382
4383static void __init rcu_start_exp_gp_kworkers(void)
4384{
4385 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4386 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4387 struct sched_param param = { .sched_priority = kthread_prio };
4388
4389 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4390 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4391 pr_err("Failed to create %s!\n", gp_kworker_name);
4392 return;
4393 }
4394
4395 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4396 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4397 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4398 kthread_destroy_worker(rcu_exp_gp_kworker);
4399 return;
4400 }
4401
4402 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4403 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4404 &param);
4405}
4406
4407static inline void rcu_alloc_par_gp_wq(void)
4408{
4409}
4410#else /* !CONFIG_RCU_EXP_KTHREAD */
4411struct workqueue_struct *rcu_par_gp_wq;
4412
4413static void __init rcu_start_exp_gp_kworkers(void)
4414{
4415}
4416
4417static inline void rcu_alloc_par_gp_wq(void)
4418{
4419 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4420 WARN_ON(!rcu_par_gp_wq);
4421}
4422#endif /* CONFIG_RCU_EXP_KTHREAD */
4423
b3dbec76 4424/*
49918a54 4425 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
4426 */
4427static int __init rcu_spawn_gp_kthread(void)
4428{
4429 unsigned long flags;
4430 struct rcu_node *rnp;
a94844b2 4431 struct sched_param sp;
b3dbec76 4432 struct task_struct *t;
3352911f 4433 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b3dbec76 4434
9386c0b7 4435 rcu_scheduler_fully_active = 1;
b97d23c5 4436 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
08543bda
PM
4437 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4438 return 0;
b97d23c5
PM
4439 if (kthread_prio) {
4440 sp.sched_priority = kthread_prio;
4441 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 4442 }
b97d23c5
PM
4443 rnp = rcu_get_root();
4444 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5648d659
PM
4445 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4446 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4447 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4448 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
b97d23c5
PM
4449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4450 wake_up_process(t);
3352911f
FW
4451 /* This is a pre-SMP initcall, we expect a single CPU */
4452 WARN_ON(num_online_cpus() > 1);
87c5adf0
FW
4453 /*
4454 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4455 * due to rcu_scheduler_fully_active.
4456 */
4457 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
3352911f 4458 rcu_spawn_one_boost_kthread(rdp->mynode);
8e4b1d2b 4459 rcu_spawn_core_kthreads();
9621fbee
KS
4460 /* Create kthread worker for expedited GPs */
4461 rcu_start_exp_gp_kworkers();
b3dbec76
PM
4462 return 0;
4463}
4464early_initcall(rcu_spawn_gp_kthread);
4465
bbad9379 4466/*
52d7e48b
PM
4467 * This function is invoked towards the end of the scheduler's
4468 * initialization process. Before this is called, the idle task might
4469 * contain synchronous grace-period primitives (during which time, this idle
4470 * task is booting the system, and such primitives are no-ops). After this
4471 * function is called, any synchronous grace-period primitives are run as
4472 * expedited, with the requesting task driving the grace period forward.
900b1028 4473 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4474 * runtime RCU functionality.
bbad9379
PM
4475 */
4476void rcu_scheduler_starting(void)
4477{
d761de8a
PM
4478 unsigned long flags;
4479 struct rcu_node *rnp;
4480
bbad9379
PM
4481 WARN_ON(num_online_cpus() != 1);
4482 WARN_ON(nr_context_switches() > 0);
52d7e48b 4483 rcu_test_sync_prims();
d761de8a
PM
4484
4485 // Fix up the ->gp_seq counters.
4486 local_irq_save(flags);
4487 rcu_for_each_node_breadth_first(rnp)
4488 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4489 local_irq_restore(flags);
4490
4491 // Switch out of early boot mode.
52d7e48b
PM
4492 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4493 rcu_test_sync_prims();
bbad9379
PM
4494}
4495
64db4cff 4496/*
49918a54 4497 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 4498 */
b8bb1f63 4499static void __init rcu_init_one(void)
64db4cff 4500{
cb007102
AG
4501 static const char * const buf[] = RCU_NODE_NAME_INIT;
4502 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4503 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4504 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4505
199977bf 4506 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4507 int cpustride = 1;
4508 int i;
4509 int j;
4510 struct rcu_node *rnp;
4511
05b84aec 4512 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4513
3eaaaf6c
PM
4514 /* Silence gcc 4.8 false positive about array index out of range. */
4515 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4516 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4517
64db4cff
PM
4518 /* Initialize the level-tracking arrays. */
4519
f885b7f2 4520 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
4521 rcu_state.level[i] =
4522 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 4523 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4524
4525 /* Initialize the elements themselves, starting from the leaves. */
4526
f885b7f2 4527 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4528 cpustride *= levelspread[i];
eb7a6653 4529 rnp = rcu_state.level[i];
41f5c631 4530 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4531 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4532 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4533 &rcu_node_class[i], buf[i]);
394f2769
PM
4534 raw_spin_lock_init(&rnp->fqslock);
4535 lockdep_set_class_and_name(&rnp->fqslock,
4536 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
4537 rnp->gp_seq = rcu_state.gp_seq;
4538 rnp->gp_seq_needed = rcu_state.gp_seq;
4539 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
4540 rnp->qsmask = 0;
4541 rnp->qsmaskinit = 0;
4542 rnp->grplo = j * cpustride;
4543 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4544 if (rnp->grphi >= nr_cpu_ids)
4545 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4546 if (i == 0) {
4547 rnp->grpnum = 0;
4548 rnp->grpmask = 0;
4549 rnp->parent = NULL;
4550 } else {
199977bf 4551 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 4552 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 4553 rnp->parent = rcu_state.level[i - 1] +
199977bf 4554 j / levelspread[i - 1];
64db4cff
PM
4555 }
4556 rnp->level = i;
12f5f524 4557 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4558 rcu_init_one_nocb(rnp);
f6a12f34
PM
4559 init_waitqueue_head(&rnp->exp_wq[0]);
4560 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4561 init_waitqueue_head(&rnp->exp_wq[2]);
4562 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4563 spin_lock_init(&rnp->exp_lock);
218b957a 4564 mutex_init(&rnp->boost_kthread_mutex);
d96c52fe
PM
4565 raw_spin_lock_init(&rnp->exp_poll_lock);
4566 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4567 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
64db4cff
PM
4568 }
4569 }
0c34029a 4570
eb7a6653
PM
4571 init_swait_queue_head(&rcu_state.gp_wq);
4572 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 4573 rnp = rcu_first_leaf_node();
0c34029a 4574 for_each_possible_cpu(i) {
4a90a068 4575 while (i > rnp->grphi)
0c34029a 4576 rnp++;
da1df50d 4577 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 4578 rcu_boot_init_percpu_data(i);
0c34029a 4579 }
64db4cff
PM
4580}
4581
c8db27dd
AC
4582/*
4583 * Force priority from the kernel command-line into range.
4584 */
4585static void __init sanitize_kthread_prio(void)
4586{
4587 int kthread_prio_in = kthread_prio;
4588
4589 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4590 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4591 kthread_prio = 2;
4592 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4593 kthread_prio = 1;
4594 else if (kthread_prio < 0)
4595 kthread_prio = 0;
4596 else if (kthread_prio > 99)
4597 kthread_prio = 99;
4598
4599 if (kthread_prio != kthread_prio_in)
4600 pr_alert("%s: Limited prio to %d from %d\n",
4601 __func__, kthread_prio, kthread_prio_in);
4602}
4603
f885b7f2
PM
4604/*
4605 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4606 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4607 * the ->node array in the rcu_state structure.
4608 */
b5befe84 4609void rcu_init_geometry(void)
f885b7f2 4610{
026ad283 4611 ulong d;
f885b7f2 4612 int i;
b5befe84 4613 static unsigned long old_nr_cpu_ids;
05b84aec 4614 int rcu_capacity[RCU_NUM_LVLS];
b5befe84
FW
4615 static bool initialized;
4616
4617 if (initialized) {
4618 /*
4619 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4620 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4621 */
4622 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4623 return;
4624 }
4625
4626 old_nr_cpu_ids = nr_cpu_ids;
4627 initialized = true;
f885b7f2 4628
026ad283
PM
4629 /*
4630 * Initialize any unspecified boot parameters.
4631 * The default values of jiffies_till_first_fqs and
4632 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4633 * value, which is a function of HZ, then adding one for each
4634 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4635 */
4636 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4637 if (jiffies_till_first_fqs == ULONG_MAX)
4638 jiffies_till_first_fqs = d;
4639 if (jiffies_till_next_fqs == ULONG_MAX)
4640 jiffies_till_next_fqs = d;
6973032a 4641 adjust_jiffies_till_sched_qs();
026ad283 4642
f885b7f2 4643 /* If the compile-time values are accurate, just leave. */
47d631af 4644 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4645 nr_cpu_ids == NR_CPUS)
f885b7f2 4646 return;
a7538352 4647 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4648 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4649
f885b7f2 4650 /*
ee968ac6
PM
4651 * The boot-time rcu_fanout_leaf parameter must be at least two
4652 * and cannot exceed the number of bits in the rcu_node masks.
4653 * Complain and fall back to the compile-time values if this
4654 * limit is exceeded.
f885b7f2 4655 */
ee968ac6 4656 if (rcu_fanout_leaf < 2 ||
75cf15a4 4657 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4658 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4659 WARN_ON(1);
4660 return;
4661 }
4662
f885b7f2
PM
4663 /*
4664 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4665 * with the given number of levels.
f885b7f2 4666 */
9618138b 4667 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4668 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4669 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4670
4671 /*
75cf15a4 4672 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4673 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4674 */
ee968ac6
PM
4675 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4676 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4677 WARN_ON(1);
4678 return;
4679 }
f885b7f2 4680
679f9858 4681 /* Calculate the number of levels in the tree. */
9618138b 4682 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4683 }
9618138b 4684 rcu_num_lvls = i + 1;
679f9858 4685
f885b7f2 4686 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4687 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4688 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4689 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4690 }
f885b7f2
PM
4691
4692 /* Calculate the total number of rcu_node structures. */
4693 rcu_num_nodes = 0;
679f9858 4694 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4695 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4696}
4697
a3dc2948
PM
4698/*
4699 * Dump out the structure of the rcu_node combining tree associated
49918a54 4700 * with the rcu_state structure.
a3dc2948 4701 */
b8bb1f63 4702static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
4703{
4704 int level = 0;
4705 struct rcu_node *rnp;
4706
4707 pr_info("rcu_node tree layout dump\n");
4708 pr_info(" ");
aedf4ba9 4709 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
4710 if (rnp->level != level) {
4711 pr_cont("\n");
4712 pr_info(" ");
4713 level = rnp->level;
4714 }
4715 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4716 }
4717 pr_cont("\n");
4718}
4719
ad7c946b
PM
4720struct workqueue_struct *rcu_gp_wq;
4721
a35d1690
BP
4722static void __init kfree_rcu_batch_init(void)
4723{
4724 int cpu;
0392bebe 4725 int i;
a35d1690 4726
d0bfa8b3
ZQ
4727 /* Clamp it to [0:100] seconds interval. */
4728 if (rcu_delay_page_cache_fill_msec < 0 ||
4729 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4730
4731 rcu_delay_page_cache_fill_msec =
4732 clamp(rcu_delay_page_cache_fill_msec, 0,
4733 (int) (100 * MSEC_PER_SEC));
4734
4735 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4736 rcu_delay_page_cache_fill_msec);
4737 }
4738
a35d1690
BP
4739 for_each_possible_cpu(cpu) {
4740 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4741
34c88174
URS
4742 for (i = 0; i < KFREE_N_BATCHES; i++) {
4743 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
0392bebe 4744 krcp->krw_arr[i].krcp = krcp;
34c88174
URS
4745 }
4746
a35d1690 4747 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
d0bfa8b3 4748 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
a35d1690
BP
4749 krcp->initialized = true;
4750 }
e33c267a 4751 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
9154244c 4752 pr_err("Failed to register kfree_rcu() shrinker!\n");
a35d1690
BP
4753}
4754
9f680ab4 4755void __init rcu_init(void)
64db4cff 4756{
2eed973a 4757 int cpu = smp_processor_id();
9f680ab4 4758
47627678
PM
4759 rcu_early_boot_tests();
4760
a35d1690 4761 kfree_rcu_batch_init();
f41d911f 4762 rcu_bootup_announce();
c8db27dd 4763 sanitize_kthread_prio();
f885b7f2 4764 rcu_init_geometry();
b8bb1f63 4765 rcu_init_one();
a3dc2948 4766 if (dump_tree)
b8bb1f63 4767 rcu_dump_rcu_node_tree();
48d07c04
SAS
4768 if (use_softirq)
4769 open_softirq(RCU_SOFTIRQ, rcu_core_si);
9f680ab4
PM
4770
4771 /*
4772 * We don't need protection against CPU-hotplug here because
4773 * this is called early in boot, before either interrupts
4774 * or the scheduler are operational.
4775 */
d1d74d14 4776 pm_notifier(rcu_pm_notify, 0);
2eed973a
FW
4777 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4778 rcutree_prepare_cpu(cpu);
4779 rcu_cpu_starting(cpu);
4780 rcutree_online_cpu(cpu);
ad7c946b 4781
277ffe1b 4782 /* Create workqueue for Tree SRCU and for expedited GPs. */
ad7c946b
PM
4783 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4784 WARN_ON(!rcu_gp_wq);
9621fbee 4785 rcu_alloc_par_gp_wq();
b2b00ddf
PM
4786
4787 /* Fill in default value for rcutree.qovld boot parameter. */
4788 /* -After- the rcu_node ->lock fields are initialized! */
4789 if (qovld < 0)
4790 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4791 else
4792 qovld_calc = qovld;
d96c52fe
PM
4793
4794 // Kick-start any polled grace periods that started early.
4795 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4796 (void)start_poll_synchronize_rcu_expedited();
64db4cff
PM
4797}
4798
10462d6f 4799#include "tree_stall.h"
3549c2bc 4800#include "tree_exp.h"
dfcb2754 4801#include "tree_nocb.h"
4102adab 4802#include "tree_plugin.h"