]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree.c
Merge tag 'devicetree-fixes-for-4.12' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
15fecf89
PM
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 104 .name = RCU_STATE_NAME(sname), \
a4889858 105 .abbr = sabbr, \
f6a12f34 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
b28a7c01 113static struct rcu_state *const rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
a3dc2948
PM
116/* Dump rcu_node combining tree at boot to verify correct setup. */
117static bool dump_tree;
118module_param(dump_tree, bool, 0444);
7fa27001
PM
119/* Control rcu_node-tree auto-balancing at boot time. */
120static bool rcu_fanout_exact;
121module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 124module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 126/* Number of rcu_nodes at specified level. */
e95d68d2 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
129/* panic() on RCU Stall sysctl. */
130int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 131
b0d30417 132/*
52d7e48b
PM
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 137 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 143 */
bbad9379
PM
144int rcu_scheduler_active __read_mostly;
145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
b0d30417
PM
147/*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159static int rcu_scheduler_fully_active __read_mostly;
160
0aa04b05
PM
161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
164static void invoke_rcu_core(void);
165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
166static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
3549c2bc 168static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 169
a94844b2 170/* rcuc/rcub kthread realtime priority */
26730f55 171#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 172static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
173#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
174static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
176module_param(kthread_prio, int, 0644);
177
8d7dc928 178/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
179
180#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
181static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
182module_param(gp_preinit_delay, int, 0644);
183#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184static const int gp_preinit_delay;
185#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186
8d7dc928
PM
187#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
188static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 189module_param(gp_init_delay, int, 0644);
8d7dc928
PM
190#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191static const int gp_init_delay;
192#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 193
0f41c0dd
PM
194#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
195static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
196module_param(gp_cleanup_delay, int, 0644);
197#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198static const int gp_cleanup_delay;
199#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
200
eab128e8
PM
201/*
202 * Number of grace periods between delays, normalized by the duration of
bfd090be 203 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
204 * each delay. The reason for this normalization is that it means that,
205 * for non-zero delays, the overall slowdown of grace periods is constant
206 * regardless of the duration of the delay. This arrangement balances
207 * the need for long delays to increase some race probabilities with the
208 * need for fast grace periods to increase other race probabilities.
209 */
210#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 211
4a298656
PM
212/*
213 * Track the rcutorture test sequence number and the update version
214 * number within a given test. The rcutorture_testseq is incremented
215 * on every rcutorture module load and unload, so has an odd value
216 * when a test is running. The rcutorture_vernum is set to zero
217 * when rcutorture starts and is incremented on each rcutorture update.
218 * These variables enable correlating rcutorture output with the
219 * RCU tracing information.
220 */
221unsigned long rcutorture_testseq;
222unsigned long rcutorture_vernum;
223
0aa04b05
PM
224/*
225 * Compute the mask of online CPUs for the specified rcu_node structure.
226 * This will not be stable unless the rcu_node structure's ->lock is
227 * held, but the bit corresponding to the current CPU will be stable
228 * in most contexts.
229 */
230unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231{
7d0ae808 232 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
233}
234
fc2219d4 235/*
7d0ae808 236 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
237 * permit this function to be invoked without holding the root rcu_node
238 * structure's ->lock, but of course results can be subject to change.
239 */
240static int rcu_gp_in_progress(struct rcu_state *rsp)
241{
7d0ae808 242 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
243}
244
b1f77b05 245/*
d6714c22 246 * Note a quiescent state. Because we do not need to know
b1f77b05 247 * how many quiescent states passed, just if there was at least
d6714c22 248 * one since the start of the grace period, this just sets a flag.
e4cc1f22 249 * The caller must have disabled preemption.
b1f77b05 250 */
284a8c93 251void rcu_sched_qs(void)
b1f77b05 252{
fecbf6f0
PM
253 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
254 return;
255 trace_rcu_grace_period(TPS("rcu_sched"),
256 __this_cpu_read(rcu_sched_data.gpnum),
257 TPS("cpuqs"));
258 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
259 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
260 return;
46a5d164
PM
261 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
262 rcu_report_exp_rdp(&rcu_sched_state,
263 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
264}
265
284a8c93 266void rcu_bh_qs(void)
b1f77b05 267{
5b74c458 268 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
269 trace_rcu_grace_period(TPS("rcu_bh"),
270 __this_cpu_read(rcu_bh_data.gpnum),
271 TPS("cpuqs"));
5b74c458 272 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 273 }
b1f77b05 274}
64db4cff 275
b8c17e66
PM
276/*
277 * Steal a bit from the bottom of ->dynticks for idle entry/exit
278 * control. Initially this is for TLB flushing.
279 */
280#define RCU_DYNTICK_CTRL_MASK 0x1
281#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
282#ifndef rcu_eqs_special_exit
283#define rcu_eqs_special_exit() do { } while (0)
284#endif
4a81e832
PM
285
286static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
287 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 288 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
289#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
290 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
291 .dynticks_idle = ATOMIC_INIT(1),
292#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
293};
294
03ecd3f4
SRV
295/*
296 * There's a few places, currently just in the tracing infrastructure,
297 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
298 * a small location where that will not even work. In those cases
299 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
300 * can be called.
301 */
302static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
303
304bool rcu_irq_enter_disabled(void)
305{
306 return this_cpu_read(disable_rcu_irq_enter);
307}
308
2625d469
PM
309/*
310 * Record entry into an extended quiescent state. This is only to be
311 * called when not already in an extended quiescent state.
312 */
313static void rcu_dynticks_eqs_enter(void)
314{
315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 316 int seq;
2625d469
PM
317
318 /*
b8c17e66 319 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
320 * critical sections, and we also must force ordering with the
321 * next idle sojourn.
322 */
b8c17e66
PM
323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 /* Better be in an extended quiescent state! */
325 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
326 (seq & RCU_DYNTICK_CTRL_CTR));
327 /* Better not have special action (TLB flush) pending! */
328 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
329 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
330}
331
332/*
333 * Record exit from an extended quiescent state. This is only to be
334 * called from an extended quiescent state.
335 */
336static void rcu_dynticks_eqs_exit(void)
337{
338 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 339 int seq;
2625d469
PM
340
341 /*
b8c17e66 342 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
343 * and we also must force ordering with the next RCU read-side
344 * critical section.
345 */
b8c17e66
PM
346 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
347 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
348 !(seq & RCU_DYNTICK_CTRL_CTR));
349 if (seq & RCU_DYNTICK_CTRL_MASK) {
350 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
351 smp_mb__after_atomic(); /* _exit after clearing mask. */
352 /* Prefer duplicate flushes to losing a flush. */
353 rcu_eqs_special_exit();
354 }
2625d469
PM
355}
356
357/*
358 * Reset the current CPU's ->dynticks counter to indicate that the
359 * newly onlined CPU is no longer in an extended quiescent state.
360 * This will either leave the counter unchanged, or increment it
361 * to the next non-quiescent value.
362 *
363 * The non-atomic test/increment sequence works because the upper bits
364 * of the ->dynticks counter are manipulated only by the corresponding CPU,
365 * or when the corresponding CPU is offline.
366 */
367static void rcu_dynticks_eqs_online(void)
368{
369 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
370
b8c17e66 371 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 372 return;
b8c17e66 373 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
374}
375
02a5c550
PM
376/*
377 * Is the current CPU in an extended quiescent state?
378 *
379 * No ordering, as we are sampling CPU-local information.
380 */
381bool rcu_dynticks_curr_cpu_in_eqs(void)
382{
383 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
384
b8c17e66 385 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
386}
387
8b2f63ab
PM
388/*
389 * Snapshot the ->dynticks counter with full ordering so as to allow
390 * stable comparison of this counter with past and future snapshots.
391 */
02a5c550 392int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
393{
394 int snap = atomic_add_return(0, &rdtp->dynticks);
395
b8c17e66 396 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
397}
398
02a5c550
PM
399/*
400 * Return true if the snapshot returned from rcu_dynticks_snap()
401 * indicates that RCU is in an extended quiescent state.
402 */
403static bool rcu_dynticks_in_eqs(int snap)
404{
b8c17e66 405 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
406}
407
408/*
409 * Return true if the CPU corresponding to the specified rcu_dynticks
410 * structure has spent some time in an extended quiescent state since
411 * rcu_dynticks_snap() returned the specified snapshot.
412 */
413static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
414{
415 return snap != rcu_dynticks_snap(rdtp);
416}
417
6563de9d
PM
418/*
419 * Do a double-increment of the ->dynticks counter to emulate a
420 * momentary idle-CPU quiescent state.
421 */
422static void rcu_dynticks_momentary_idle(void)
423{
424 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
425 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
426 &rdtp->dynticks);
6563de9d
PM
427
428 /* It is illegal to call this from idle state. */
b8c17e66 429 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
430}
431
b8c17e66
PM
432/*
433 * Set the special (bottom) bit of the specified CPU so that it
434 * will take special action (such as flushing its TLB) on the
435 * next exit from an extended quiescent state. Returns true if
436 * the bit was successfully set, or false if the CPU was not in
437 * an extended quiescent state.
438 */
439bool rcu_eqs_special_set(int cpu)
440{
441 int old;
442 int new;
443 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
444
445 do {
446 old = atomic_read(&rdtp->dynticks);
447 if (old & RCU_DYNTICK_CTRL_CTR)
448 return false;
449 new = old | RCU_DYNTICK_CTRL_MASK;
450 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
451 return true;
6563de9d 452}
5cd37193 453
4a81e832
PM
454/*
455 * Let the RCU core know that this CPU has gone through the scheduler,
456 * which is a quiescent state. This is called when the need for a
457 * quiescent state is urgent, so we burn an atomic operation and full
458 * memory barriers to let the RCU core know about it, regardless of what
459 * this CPU might (or might not) do in the near future.
460 *
0f9be8ca 461 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
462 *
463 * The caller must have disabled interrupts.
4a81e832
PM
464 */
465static void rcu_momentary_dyntick_idle(void)
466{
0f9be8ca
PM
467 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
468 rcu_dynticks_momentary_idle();
4a81e832
PM
469}
470
25502a6c
PM
471/*
472 * Note a context switch. This is a quiescent state for RCU-sched,
473 * and requires special handling for preemptible RCU.
46a5d164 474 * The caller must have disabled interrupts.
25502a6c 475 */
bcbfdd01 476void rcu_note_context_switch(bool preempt)
25502a6c 477{
bb73c52b 478 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 479 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 480 rcu_sched_qs();
38200cf2 481 rcu_preempt_note_context_switch();
9226b10d
PM
482 /* Load rcu_urgent_qs before other flags. */
483 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
484 goto out;
485 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 486 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 487 rcu_momentary_dyntick_idle();
9226b10d 488 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
489 if (!preempt)
490 rcu_note_voluntary_context_switch_lite(current);
9226b10d 491out:
f7f7bac9 492 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 493 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 494}
29ce8310 495EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 496
5cd37193 497/*
1925d196 498 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
499 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
500 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 501 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
502 * be none of them). Either way, do a lightweight quiescent state for
503 * all RCU flavors.
bb73c52b
BF
504 *
505 * The barrier() calls are redundant in the common case when this is
506 * called externally, but just in case this is called from within this
507 * file.
508 *
5cd37193
PM
509 */
510void rcu_all_qs(void)
511{
46a5d164
PM
512 unsigned long flags;
513
9226b10d
PM
514 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
515 return;
516 preempt_disable();
517 /* Load rcu_urgent_qs before other flags. */
518 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
519 preempt_enable();
520 return;
521 }
522 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 523 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 524 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 525 local_irq_save(flags);
5cd37193 526 rcu_momentary_dyntick_idle();
46a5d164
PM
527 local_irq_restore(flags);
528 }
9226b10d 529 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 530 rcu_sched_qs();
9577df9a 531 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 532 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 533 preempt_enable();
5cd37193
PM
534}
535EXPORT_SYMBOL_GPL(rcu_all_qs);
536
878d7439
ED
537static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
538static long qhimark = 10000; /* If this many pending, ignore blimit. */
539static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 540
878d7439
ED
541module_param(blimit, long, 0444);
542module_param(qhimark, long, 0444);
543module_param(qlowmark, long, 0444);
3d76c082 544
026ad283
PM
545static ulong jiffies_till_first_fqs = ULONG_MAX;
546static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 547static bool rcu_kick_kthreads;
d40011f6
PM
548
549module_param(jiffies_till_first_fqs, ulong, 0644);
550module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 551module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 552
4a81e832
PM
553/*
554 * How long the grace period must be before we start recruiting
555 * quiescent-state help from rcu_note_context_switch().
556 */
557static ulong jiffies_till_sched_qs = HZ / 20;
558module_param(jiffies_till_sched_qs, ulong, 0644);
559
48a7639c 560static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 561 struct rcu_data *rdp);
217af2a2
PM
562static void force_qs_rnp(struct rcu_state *rsp,
563 int (*f)(struct rcu_data *rsp, bool *isidle,
564 unsigned long *maxj),
565 bool *isidle, unsigned long *maxj);
4cdfc175 566static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 567static int rcu_pending(void);
64db4cff
PM
568
569/*
917963d0 570 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 571 */
917963d0
PM
572unsigned long rcu_batches_started(void)
573{
574 return rcu_state_p->gpnum;
575}
576EXPORT_SYMBOL_GPL(rcu_batches_started);
577
578/*
579 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 580 */
917963d0
PM
581unsigned long rcu_batches_started_sched(void)
582{
583 return rcu_sched_state.gpnum;
584}
585EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
586
587/*
588 * Return the number of RCU BH batches started thus far for debug & stats.
589 */
590unsigned long rcu_batches_started_bh(void)
591{
592 return rcu_bh_state.gpnum;
593}
594EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
595
596/*
597 * Return the number of RCU batches completed thus far for debug & stats.
598 */
599unsigned long rcu_batches_completed(void)
600{
601 return rcu_state_p->completed;
602}
603EXPORT_SYMBOL_GPL(rcu_batches_completed);
604
605/*
606 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 607 */
9733e4f0 608unsigned long rcu_batches_completed_sched(void)
64db4cff 609{
d6714c22 610 return rcu_sched_state.completed;
64db4cff 611}
d6714c22 612EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
613
614/*
917963d0 615 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 616 */
9733e4f0 617unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
618{
619 return rcu_bh_state.completed;
620}
621EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
622
291783b8
PM
623/*
624 * Return the number of RCU expedited batches completed thus far for
625 * debug & stats. Odd numbers mean that a batch is in progress, even
626 * numbers mean idle. The value returned will thus be roughly double
627 * the cumulative batches since boot.
628 */
629unsigned long rcu_exp_batches_completed(void)
630{
631 return rcu_state_p->expedited_sequence;
632}
633EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
634
635/*
636 * Return the number of RCU-sched expedited batches completed thus far
637 * for debug & stats. Similar to rcu_exp_batches_completed().
638 */
639unsigned long rcu_exp_batches_completed_sched(void)
640{
641 return rcu_sched_state.expedited_sequence;
642}
643EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
644
a381d757
ACB
645/*
646 * Force a quiescent state.
647 */
648void rcu_force_quiescent_state(void)
649{
e534165b 650 force_quiescent_state(rcu_state_p);
a381d757
ACB
651}
652EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
653
bf66f18e
PM
654/*
655 * Force a quiescent state for RCU BH.
656 */
657void rcu_bh_force_quiescent_state(void)
658{
4cdfc175 659 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
660}
661EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
662
e7580f33
PM
663/*
664 * Force a quiescent state for RCU-sched.
665 */
666void rcu_sched_force_quiescent_state(void)
667{
668 force_quiescent_state(&rcu_sched_state);
669}
670EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
671
afea227f
PM
672/*
673 * Show the state of the grace-period kthreads.
674 */
675void show_rcu_gp_kthreads(void)
676{
677 struct rcu_state *rsp;
678
679 for_each_rcu_flavor(rsp) {
680 pr_info("%s: wait state: %d ->state: %#lx\n",
681 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
682 /* sched_show_task(rsp->gp_kthread); */
683 }
684}
685EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
686
4a298656
PM
687/*
688 * Record the number of times rcutorture tests have been initiated and
689 * terminated. This information allows the debugfs tracing stats to be
690 * correlated to the rcutorture messages, even when the rcutorture module
691 * is being repeatedly loaded and unloaded. In other words, we cannot
692 * store this state in rcutorture itself.
693 */
694void rcutorture_record_test_transition(void)
695{
696 rcutorture_testseq++;
697 rcutorture_vernum = 0;
698}
699EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
700
ad0dc7f9
PM
701/*
702 * Send along grace-period-related data for rcutorture diagnostics.
703 */
704void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
705 unsigned long *gpnum, unsigned long *completed)
706{
707 struct rcu_state *rsp = NULL;
708
709 switch (test_type) {
710 case RCU_FLAVOR:
e534165b 711 rsp = rcu_state_p;
ad0dc7f9
PM
712 break;
713 case RCU_BH_FLAVOR:
714 rsp = &rcu_bh_state;
715 break;
716 case RCU_SCHED_FLAVOR:
717 rsp = &rcu_sched_state;
718 break;
719 default:
720 break;
721 }
7f6733c3 722 if (rsp == NULL)
ad0dc7f9 723 return;
7f6733c3
PM
724 *flags = READ_ONCE(rsp->gp_flags);
725 *gpnum = READ_ONCE(rsp->gpnum);
726 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
727}
728EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
729
4a298656
PM
730/*
731 * Record the number of writer passes through the current rcutorture test.
732 * This is also used to correlate debugfs tracing stats with the rcutorture
733 * messages.
734 */
735void rcutorture_record_progress(unsigned long vernum)
736{
737 rcutorture_vernum++;
738}
739EXPORT_SYMBOL_GPL(rcutorture_record_progress);
740
365187fb
PM
741/*
742 * Return the root node of the specified rcu_state structure.
743 */
744static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
745{
746 return &rsp->node[0];
747}
748
749/*
750 * Is there any need for future grace periods?
751 * Interrupts must be disabled. If the caller does not hold the root
752 * rnp_node structure's ->lock, the results are advisory only.
753 */
754static int rcu_future_needs_gp(struct rcu_state *rsp)
755{
756 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 757 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
758 int *fp = &rnp->need_future_gp[idx];
759
7d0ae808 760 return READ_ONCE(*fp);
365187fb
PM
761}
762
64db4cff 763/*
dc35c893
PM
764 * Does the current CPU require a not-yet-started grace period?
765 * The caller must have disabled interrupts to prevent races with
766 * normal callback registry.
64db4cff 767 */
d117c8aa 768static bool
64db4cff
PM
769cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
770{
dc35c893 771 if (rcu_gp_in_progress(rsp))
d117c8aa 772 return false; /* No, a grace period is already in progress. */
365187fb 773 if (rcu_future_needs_gp(rsp))
d117c8aa 774 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 775 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 776 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 777 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 778 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
779 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
780 READ_ONCE(rsp->completed)))
781 return true; /* Yes, CBs for future grace period. */
d117c8aa 782 return false; /* No grace period needed. */
64db4cff
PM
783}
784
9b2e4f18 785/*
a278d471 786 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 787 *
a278d471
PM
788 * Enter idle, doing appropriate accounting. The caller must have
789 * disabled interrupts.
9b2e4f18 790 */
a278d471 791static void rcu_eqs_enter_common(bool user)
9b2e4f18 792{
96d3fd0d
PM
793 struct rcu_state *rsp;
794 struct rcu_data *rdp;
a278d471 795 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 796
a278d471 797 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
798 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
799 !user && !is_idle_task(current)) {
289828e6
PM
800 struct task_struct *idle __maybe_unused =
801 idle_task(smp_processor_id());
0989cb46 802
a278d471 803 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 804 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
805 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
806 current->pid, current->comm,
807 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 808 }
96d3fd0d
PM
809 for_each_rcu_flavor(rsp) {
810 rdp = this_cpu_ptr(rsp->rda);
811 do_nocb_deferred_wakeup(rdp);
812 }
198bbf81 813 rcu_prepare_for_idle();
03ecd3f4 814 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
815 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
816 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 817 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 818 rcu_dynticks_task_enter();
c44e2cdd
PM
819
820 /*
adf5091e 821 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
822 * in an RCU read-side critical section.
823 */
f78f5b90
PM
824 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
825 "Illegal idle entry in RCU read-side critical section.");
826 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
827 "Illegal idle entry in RCU-bh read-side critical section.");
828 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
829 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 830}
64db4cff 831
adf5091e
FW
832/*
833 * Enter an RCU extended quiescent state, which can be either the
834 * idle loop or adaptive-tickless usermode execution.
64db4cff 835 */
adf5091e 836static void rcu_eqs_enter(bool user)
64db4cff 837{
64db4cff
PM
838 struct rcu_dynticks *rdtp;
839
c9d4b0af 840 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 841 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
842 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
843 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
844 rcu_eqs_enter_common(user);
845 else
29e37d81 846 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 847}
adf5091e
FW
848
849/**
850 * rcu_idle_enter - inform RCU that current CPU is entering idle
851 *
852 * Enter idle mode, in other words, -leave- the mode in which RCU
853 * read-side critical sections can occur. (Though RCU read-side
854 * critical sections can occur in irq handlers in idle, a possibility
855 * handled by irq_enter() and irq_exit().)
856 *
857 * We crowbar the ->dynticks_nesting field to zero to allow for
858 * the possibility of usermode upcalls having messed up our count
859 * of interrupt nesting level during the prior busy period.
860 */
861void rcu_idle_enter(void)
862{
c5d900bf
FW
863 unsigned long flags;
864
865 local_irq_save(flags);
cb349ca9 866 rcu_eqs_enter(false);
28ced795 867 rcu_sysidle_enter(0);
c5d900bf 868 local_irq_restore(flags);
adf5091e 869}
8a2ecf47 870EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 871
d1ec4c34 872#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
873/**
874 * rcu_user_enter - inform RCU that we are resuming userspace.
875 *
876 * Enter RCU idle mode right before resuming userspace. No use of RCU
877 * is permitted between this call and rcu_user_exit(). This way the
878 * CPU doesn't need to maintain the tick for RCU maintenance purposes
879 * when the CPU runs in userspace.
880 */
881void rcu_user_enter(void)
882{
91d1aa43 883 rcu_eqs_enter(1);
adf5091e 884}
d1ec4c34 885#endif /* CONFIG_NO_HZ_FULL */
19dd1591 886
9b2e4f18
PM
887/**
888 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
889 *
890 * Exit from an interrupt handler, which might possibly result in entering
891 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 892 * sections can occur. The caller must have disabled interrupts.
64db4cff 893 *
9b2e4f18
PM
894 * This code assumes that the idle loop never does anything that might
895 * result in unbalanced calls to irq_enter() and irq_exit(). If your
896 * architecture violates this assumption, RCU will give you what you
897 * deserve, good and hard. But very infrequently and irreproducibly.
898 *
899 * Use things like work queues to work around this limitation.
900 *
901 * You have been warned.
64db4cff 902 */
9b2e4f18 903void rcu_irq_exit(void)
64db4cff 904{
64db4cff
PM
905 struct rcu_dynticks *rdtp;
906
7c9906ca 907 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 908 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 909 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
910 rdtp->dynticks_nesting < 1);
911 if (rdtp->dynticks_nesting <= 1) {
912 rcu_eqs_enter_common(true);
913 } else {
914 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
915 rdtp->dynticks_nesting--;
916 }
28ced795 917 rcu_sysidle_enter(1);
7c9906ca
PM
918}
919
920/*
921 * Wrapper for rcu_irq_exit() where interrupts are enabled.
922 */
923void rcu_irq_exit_irqson(void)
924{
925 unsigned long flags;
926
927 local_irq_save(flags);
928 rcu_irq_exit();
9b2e4f18
PM
929 local_irq_restore(flags);
930}
931
932/*
adf5091e 933 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
934 *
935 * If the new value of the ->dynticks_nesting counter was previously zero,
936 * we really have exited idle, and must do the appropriate accounting.
937 * The caller must have disabled interrupts.
938 */
28ced795 939static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 940{
2625d469 941 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 942
176f8f7a 943 rcu_dynticks_task_exit();
2625d469 944 rcu_dynticks_eqs_exit();
8fa7845d 945 rcu_cleanup_after_idle();
f7f7bac9 946 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
947 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
948 !user && !is_idle_task(current)) {
289828e6
PM
949 struct task_struct *idle __maybe_unused =
950 idle_task(smp_processor_id());
0989cb46 951
f7f7bac9 952 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 953 oldval, rdtp->dynticks_nesting);
274529ba 954 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
955 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
956 current->pid, current->comm,
957 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
958 }
959}
960
adf5091e
FW
961/*
962 * Exit an RCU extended quiescent state, which can be either the
963 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 964 */
adf5091e 965static void rcu_eqs_exit(bool user)
9b2e4f18 966{
9b2e4f18
PM
967 struct rcu_dynticks *rdtp;
968 long long oldval;
969
c9d4b0af 970 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 971 oldval = rdtp->dynticks_nesting;
1ce46ee5 972 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 973 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 974 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 975 } else {
29e37d81 976 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 977 rcu_eqs_exit_common(oldval, user);
3a592405 978 }
9b2e4f18 979}
adf5091e
FW
980
981/**
982 * rcu_idle_exit - inform RCU that current CPU is leaving idle
983 *
984 * Exit idle mode, in other words, -enter- the mode in which RCU
985 * read-side critical sections can occur.
986 *
987 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
988 * allow for the possibility of usermode upcalls messing up our count
989 * of interrupt nesting level during the busy period that is just
990 * now starting.
991 */
992void rcu_idle_exit(void)
993{
c5d900bf
FW
994 unsigned long flags;
995
996 local_irq_save(flags);
cb349ca9 997 rcu_eqs_exit(false);
28ced795 998 rcu_sysidle_exit(0);
c5d900bf 999 local_irq_restore(flags);
adf5091e 1000}
8a2ecf47 1001EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 1002
d1ec4c34 1003#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
1004/**
1005 * rcu_user_exit - inform RCU that we are exiting userspace.
1006 *
1007 * Exit RCU idle mode while entering the kernel because it can
1008 * run a RCU read side critical section anytime.
1009 */
1010void rcu_user_exit(void)
1011{
91d1aa43 1012 rcu_eqs_exit(1);
adf5091e 1013}
d1ec4c34 1014#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1015
9b2e4f18
PM
1016/**
1017 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1018 *
1019 * Enter an interrupt handler, which might possibly result in exiting
1020 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1021 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1022 *
1023 * Note that the Linux kernel is fully capable of entering an interrupt
1024 * handler that it never exits, for example when doing upcalls to
1025 * user mode! This code assumes that the idle loop never does upcalls to
1026 * user mode. If your architecture does do upcalls from the idle loop (or
1027 * does anything else that results in unbalanced calls to the irq_enter()
1028 * and irq_exit() functions), RCU will give you what you deserve, good
1029 * and hard. But very infrequently and irreproducibly.
1030 *
1031 * Use things like work queues to work around this limitation.
1032 *
1033 * You have been warned.
1034 */
1035void rcu_irq_enter(void)
1036{
9b2e4f18
PM
1037 struct rcu_dynticks *rdtp;
1038 long long oldval;
1039
7c9906ca 1040 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1041 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1042 oldval = rdtp->dynticks_nesting;
1043 rdtp->dynticks_nesting++;
1ce46ee5
PM
1044 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1045 rdtp->dynticks_nesting == 0);
b6fc6020 1046 if (oldval)
f7f7bac9 1047 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1048 else
28ced795
CL
1049 rcu_eqs_exit_common(oldval, true);
1050 rcu_sysidle_exit(1);
7c9906ca
PM
1051}
1052
1053/*
1054 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1055 */
1056void rcu_irq_enter_irqson(void)
1057{
1058 unsigned long flags;
1059
1060 local_irq_save(flags);
1061 rcu_irq_enter();
64db4cff 1062 local_irq_restore(flags);
64db4cff
PM
1063}
1064
1065/**
1066 * rcu_nmi_enter - inform RCU of entry to NMI context
1067 *
734d1680
PM
1068 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1069 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1070 * that the CPU is active. This implementation permits nested NMIs, as
1071 * long as the nesting level does not overflow an int. (You will probably
1072 * run out of stack space first.)
64db4cff
PM
1073 */
1074void rcu_nmi_enter(void)
1075{
c9d4b0af 1076 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1077 int incby = 2;
64db4cff 1078
734d1680
PM
1079 /* Complain about underflow. */
1080 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1081
1082 /*
1083 * If idle from RCU viewpoint, atomically increment ->dynticks
1084 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1085 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1086 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1087 * to be in the outermost NMI handler that interrupted an RCU-idle
1088 * period (observation due to Andy Lutomirski).
1089 */
02a5c550 1090 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1091 rcu_dynticks_eqs_exit();
734d1680
PM
1092 incby = 1;
1093 }
1094 rdtp->dynticks_nmi_nesting += incby;
1095 barrier();
64db4cff
PM
1096}
1097
1098/**
1099 * rcu_nmi_exit - inform RCU of exit from NMI context
1100 *
734d1680
PM
1101 * If we are returning from the outermost NMI handler that interrupted an
1102 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1103 * to let the RCU grace-period handling know that the CPU is back to
1104 * being RCU-idle.
64db4cff
PM
1105 */
1106void rcu_nmi_exit(void)
1107{
c9d4b0af 1108 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1109
734d1680
PM
1110 /*
1111 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1112 * (We are exiting an NMI handler, so RCU better be paying attention
1113 * to us!)
1114 */
1115 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1116 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1117
1118 /*
1119 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1120 * leave it in non-RCU-idle state.
1121 */
1122 if (rdtp->dynticks_nmi_nesting != 1) {
1123 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1124 return;
734d1680
PM
1125 }
1126
1127 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1128 rdtp->dynticks_nmi_nesting = 0;
2625d469 1129 rcu_dynticks_eqs_enter();
64db4cff
PM
1130}
1131
1132/**
5c173eb8
PM
1133 * __rcu_is_watching - are RCU read-side critical sections safe?
1134 *
1135 * Return true if RCU is watching the running CPU, which means that
1136 * this CPU can safely enter RCU read-side critical sections. Unlike
1137 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1138 * least disabled preemption.
1139 */
9418fb20 1140bool notrace __rcu_is_watching(void)
5c173eb8 1141{
02a5c550 1142 return !rcu_dynticks_curr_cpu_in_eqs();
5c173eb8
PM
1143}
1144
1145/**
1146 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1147 *
9b2e4f18 1148 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1149 * or NMI handler, return true.
64db4cff 1150 */
9418fb20 1151bool notrace rcu_is_watching(void)
64db4cff 1152{
f534ed1f 1153 bool ret;
34240697 1154
46f00d18 1155 preempt_disable_notrace();
5c173eb8 1156 ret = __rcu_is_watching();
46f00d18 1157 preempt_enable_notrace();
34240697 1158 return ret;
64db4cff 1159}
5c173eb8 1160EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1161
bcbfdd01
PM
1162/*
1163 * If a holdout task is actually running, request an urgent quiescent
1164 * state from its CPU. This is unsynchronized, so migrations can cause
1165 * the request to go to the wrong CPU. Which is OK, all that will happen
1166 * is that the CPU's next context switch will be a bit slower and next
1167 * time around this task will generate another request.
1168 */
1169void rcu_request_urgent_qs_task(struct task_struct *t)
1170{
1171 int cpu;
1172
1173 barrier();
1174 cpu = task_cpu(t);
1175 if (!task_curr(t))
1176 return; /* This task is not running on that CPU. */
1177 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1178}
1179
62fde6ed 1180#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1181
1182/*
1183 * Is the current CPU online? Disable preemption to avoid false positives
1184 * that could otherwise happen due to the current CPU number being sampled,
1185 * this task being preempted, its old CPU being taken offline, resuming
1186 * on some other CPU, then determining that its old CPU is now offline.
1187 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1188 * the check for rcu_scheduler_fully_active. Note also that it is OK
1189 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1190 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1191 * offline to continue to use RCU for one jiffy after marking itself
1192 * offline in the cpu_online_mask. This leniency is necessary given the
1193 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1194 * the fact that a CPU enters the scheduler after completing the teardown
1195 * of the CPU.
2036d94a 1196 *
4df83742
TG
1197 * This is also why RCU internally marks CPUs online during in the
1198 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1199 *
1200 * Disable checking if in an NMI handler because we cannot safely report
1201 * errors from NMI handlers anyway.
1202 */
1203bool rcu_lockdep_current_cpu_online(void)
1204{
2036d94a
PM
1205 struct rcu_data *rdp;
1206 struct rcu_node *rnp;
c0d6d01b
PM
1207 bool ret;
1208
1209 if (in_nmi())
f6f7ee9a 1210 return true;
c0d6d01b 1211 preempt_disable();
c9d4b0af 1212 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1213 rnp = rdp->mynode;
0aa04b05 1214 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1215 !rcu_scheduler_fully_active;
1216 preempt_enable();
1217 return ret;
1218}
1219EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1220
62fde6ed 1221#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1222
64db4cff 1223/**
9b2e4f18 1224 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1225 *
9b2e4f18
PM
1226 * If the current CPU is idle or running at a first-level (not nested)
1227 * interrupt from idle, return true. The caller must have at least
1228 * disabled preemption.
64db4cff 1229 */
62e3cb14 1230static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1231{
c9d4b0af 1232 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1233}
1234
64db4cff
PM
1235/*
1236 * Snapshot the specified CPU's dynticks counter so that we can later
1237 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1238 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1239 */
217af2a2
PM
1240static int dyntick_save_progress_counter(struct rcu_data *rdp,
1241 bool *isidle, unsigned long *maxj)
64db4cff 1242{
8b2f63ab 1243 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
0edd1b17 1244 rcu_sysidle_check_cpu(rdp, isidle, maxj);
02a5c550 1245 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1246 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1247 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1248 rdp->mynode->gpnum))
7d0ae808 1249 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1250 return 1;
7941dbde 1251 }
23a9bacd 1252 return 0;
64db4cff
PM
1253}
1254
1255/*
1256 * Return true if the specified CPU has passed through a quiescent
1257 * state by virtue of being in or having passed through an dynticks
1258 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1259 * for this same CPU, or by virtue of having been offline.
64db4cff 1260 */
217af2a2
PM
1261static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1262 bool *isidle, unsigned long *maxj)
64db4cff 1263{
3a19b46a 1264 unsigned long jtsq;
0f9be8ca 1265 bool *rnhqp;
9226b10d 1266 bool *ruqp;
3a19b46a
PM
1267 unsigned long rjtsc;
1268 struct rcu_node *rnp;
64db4cff
PM
1269
1270 /*
1271 * If the CPU passed through or entered a dynticks idle phase with
1272 * no active irq/NMI handlers, then we can safely pretend that the CPU
1273 * already acknowledged the request to pass through a quiescent
1274 * state. Either way, that CPU cannot possibly be in an RCU
1275 * read-side critical section that started before the beginning
1276 * of the current RCU grace period.
1277 */
02a5c550 1278 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1279 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1280 rdp->dynticks_fqs++;
1281 return 1;
1282 }
1283
3a19b46a
PM
1284 /* Compute and saturate jiffies_till_sched_qs. */
1285 jtsq = jiffies_till_sched_qs;
1286 rjtsc = rcu_jiffies_till_stall_check();
1287 if (jtsq > rjtsc / 2) {
1288 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1289 jtsq = rjtsc / 2;
1290 } else if (jtsq < 1) {
1291 WRITE_ONCE(jiffies_till_sched_qs, 1);
1292 jtsq = 1;
1293 }
1294
a82dcc76 1295 /*
3a19b46a
PM
1296 * Has this CPU encountered a cond_resched_rcu_qs() since the
1297 * beginning of the grace period? For this to be the case,
1298 * the CPU has to have noticed the current grace period. This
1299 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1300 */
3a19b46a 1301 rnp = rdp->mynode;
9226b10d 1302 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1303 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1304 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1305 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1306 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1307 return 1;
9226b10d
PM
1308 } else {
1309 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1310 smp_store_release(ruqp, true);
3a19b46a
PM
1311 }
1312
38d30b33
PM
1313 /* Check for the CPU being offline. */
1314 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1315 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1316 rdp->offline_fqs++;
1317 return 1;
1318 }
65d798f0
PM
1319
1320 /*
4a81e832
PM
1321 * A CPU running for an extended time within the kernel can
1322 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1323 * even context-switching back and forth between a pair of
1324 * in-kernel CPU-bound tasks cannot advance grace periods.
1325 * So if the grace period is old enough, make the CPU pay attention.
1326 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1327 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1328 * bits can be lost, but they will be set again on the next
1329 * force-quiescent-state pass. So lost bit sets do not result
1330 * in incorrect behavior, merely in a grace period lasting
1331 * a few jiffies longer than it might otherwise. Because
1332 * there are at most four threads involved, and because the
1333 * updates are only once every few jiffies, the probability of
1334 * lossage (and thus of slight grace-period extension) is
1335 * quite low.
1336 *
1337 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1338 * is set too high, we override with half of the RCU CPU stall
1339 * warning delay.
6193c76a 1340 */
0f9be8ca
PM
1341 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1342 if (!READ_ONCE(*rnhqp) &&
1343 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1344 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1345 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1346 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1347 smp_store_release(ruqp, true);
4914950a 1348 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1349 }
1350
28053bc7
PM
1351 /*
1352 * If more than halfway to RCU CPU stall-warning time, do
1353 * a resched_cpu() to try to loosen things up a bit.
1354 */
1355 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1356 resched_cpu(rdp->cpu);
4914950a 1357
a82dcc76 1358 return 0;
64db4cff
PM
1359}
1360
64db4cff
PM
1361static void record_gp_stall_check_time(struct rcu_state *rsp)
1362{
cb1e78cf 1363 unsigned long j = jiffies;
6193c76a 1364 unsigned long j1;
26cdfedf
PM
1365
1366 rsp->gp_start = j;
1367 smp_wmb(); /* Record start time before stall time. */
6193c76a 1368 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1369 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1370 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1371 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1372}
1373
6b50e119
PM
1374/*
1375 * Convert a ->gp_state value to a character string.
1376 */
1377static const char *gp_state_getname(short gs)
1378{
1379 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1380 return "???";
1381 return gp_state_names[gs];
1382}
1383
fb81a44b
PM
1384/*
1385 * Complain about starvation of grace-period kthread.
1386 */
1387static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1388{
1389 unsigned long gpa;
1390 unsigned long j;
1391
1392 j = jiffies;
7d0ae808 1393 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1394 if (j - gpa > 2 * HZ) {
6b50e119 1395 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1396 rsp->name, j - gpa,
319362c9 1397 rsp->gpnum, rsp->completed,
6b50e119
PM
1398 rsp->gp_flags,
1399 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1400 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1401 if (rsp->gp_kthread) {
b1adb3e2 1402 sched_show_task(rsp->gp_kthread);
86057b80
PM
1403 wake_up_process(rsp->gp_kthread);
1404 }
b1adb3e2 1405 }
64db4cff
PM
1406}
1407
b637a328 1408/*
7aa92230
PM
1409 * Dump stacks of all tasks running on stalled CPUs. First try using
1410 * NMIs, but fall back to manual remote stack tracing on architectures
1411 * that don't support NMI-based stack dumps. The NMI-triggered stack
1412 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1413 */
1414static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1415{
1416 int cpu;
1417 unsigned long flags;
1418 struct rcu_node *rnp;
1419
1420 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1421 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1422 for_each_leaf_node_possible_cpu(rnp, cpu)
1423 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1424 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1425 dump_cpu_task(cpu);
67c583a7 1426 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1427 }
1428}
1429
8c7c4829
PM
1430/*
1431 * If too much time has passed in the current grace period, and if
1432 * so configured, go kick the relevant kthreads.
1433 */
1434static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1435{
1436 unsigned long j;
1437
1438 if (!rcu_kick_kthreads)
1439 return;
1440 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1441 if (time_after(jiffies, j) && rsp->gp_kthread &&
1442 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1443 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1444 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1445 wake_up_process(rsp->gp_kthread);
1446 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1447 }
1448}
1449
088e9d25
DBO
1450static inline void panic_on_rcu_stall(void)
1451{
1452 if (sysctl_panic_on_rcu_stall)
1453 panic("RCU Stall\n");
1454}
1455
6ccd2ecd 1456static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1457{
1458 int cpu;
1459 long delta;
1460 unsigned long flags;
6ccd2ecd
PM
1461 unsigned long gpa;
1462 unsigned long j;
285fe294 1463 int ndetected = 0;
64db4cff 1464 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1465 long totqlen = 0;
64db4cff 1466
8c7c4829
PM
1467 /* Kick and suppress, if so configured. */
1468 rcu_stall_kick_kthreads(rsp);
1469 if (rcu_cpu_stall_suppress)
1470 return;
1471
64db4cff
PM
1472 /* Only let one CPU complain about others per time interval. */
1473
6cf10081 1474 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1475 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1476 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1477 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1478 return;
1479 }
7d0ae808
PM
1480 WRITE_ONCE(rsp->jiffies_stall,
1481 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1483
8cdd32a9
PM
1484 /*
1485 * OK, time to rat on our buddy...
1486 * See Documentation/RCU/stallwarn.txt for info on how to debug
1487 * RCU CPU stall warnings.
1488 */
d7f3e207 1489 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1490 rsp->name);
a858af28 1491 print_cpu_stall_info_begin();
a0b6c9a7 1492 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1493 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1494 ndetected += rcu_print_task_stall(rnp);
c8020a67 1495 if (rnp->qsmask != 0) {
bc75e999
MR
1496 for_each_leaf_node_possible_cpu(rnp, cpu)
1497 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1498 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1499 ndetected++;
1500 }
1501 }
67c583a7 1502 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1503 }
a858af28 1504
a858af28 1505 print_cpu_stall_info_end();
53bb857c 1506 for_each_possible_cpu(cpu)
15fecf89
PM
1507 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1508 cpu)->cblist);
83ebe63e 1509 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1510 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1511 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1512 if (ndetected) {
b637a328 1513 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1514
1515 /* Complain about tasks blocking the grace period. */
1516 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1517 } else {
7d0ae808
PM
1518 if (READ_ONCE(rsp->gpnum) != gpnum ||
1519 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1520 pr_err("INFO: Stall ended before state dump start\n");
1521 } else {
1522 j = jiffies;
7d0ae808 1523 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1524 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1525 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1526 jiffies_till_next_fqs,
1527 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1528 /* In this case, the current CPU might be at fault. */
1529 sched_show_task(current);
1530 }
1531 }
c1dc0b9c 1532
fb81a44b
PM
1533 rcu_check_gp_kthread_starvation(rsp);
1534
088e9d25
DBO
1535 panic_on_rcu_stall();
1536
4cdfc175 1537 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1538}
1539
1540static void print_cpu_stall(struct rcu_state *rsp)
1541{
53bb857c 1542 int cpu;
64db4cff
PM
1543 unsigned long flags;
1544 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1545 long totqlen = 0;
64db4cff 1546
8c7c4829
PM
1547 /* Kick and suppress, if so configured. */
1548 rcu_stall_kick_kthreads(rsp);
1549 if (rcu_cpu_stall_suppress)
1550 return;
1551
8cdd32a9
PM
1552 /*
1553 * OK, time to rat on ourselves...
1554 * See Documentation/RCU/stallwarn.txt for info on how to debug
1555 * RCU CPU stall warnings.
1556 */
d7f3e207 1557 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1558 print_cpu_stall_info_begin();
1559 print_cpu_stall_info(rsp, smp_processor_id());
1560 print_cpu_stall_info_end();
53bb857c 1561 for_each_possible_cpu(cpu)
15fecf89
PM
1562 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1563 cpu)->cblist);
83ebe63e
PM
1564 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1565 jiffies - rsp->gp_start,
1566 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1567
1568 rcu_check_gp_kthread_starvation(rsp);
1569
bc1dce51 1570 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1571
6cf10081 1572 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1573 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1574 WRITE_ONCE(rsp->jiffies_stall,
1575 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1576 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1577
088e9d25
DBO
1578 panic_on_rcu_stall();
1579
b021fe3e
PZ
1580 /*
1581 * Attempt to revive the RCU machinery by forcing a context switch.
1582 *
1583 * A context switch would normally allow the RCU state machine to make
1584 * progress and it could be we're stuck in kernel space without context
1585 * switches for an entirely unreasonable amount of time.
1586 */
1587 resched_cpu(smp_processor_id());
64db4cff
PM
1588}
1589
1590static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1591{
26cdfedf
PM
1592 unsigned long completed;
1593 unsigned long gpnum;
1594 unsigned long gps;
bad6e139
PM
1595 unsigned long j;
1596 unsigned long js;
64db4cff
PM
1597 struct rcu_node *rnp;
1598
8c7c4829
PM
1599 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1600 !rcu_gp_in_progress(rsp))
c68de209 1601 return;
8c7c4829 1602 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1603 j = jiffies;
26cdfedf
PM
1604
1605 /*
1606 * Lots of memory barriers to reject false positives.
1607 *
1608 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1609 * then rsp->gp_start, and finally rsp->completed. These values
1610 * are updated in the opposite order with memory barriers (or
1611 * equivalent) during grace-period initialization and cleanup.
1612 * Now, a false positive can occur if we get an new value of
1613 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1614 * the memory barriers, the only way that this can happen is if one
1615 * grace period ends and another starts between these two fetches.
1616 * Detect this by comparing rsp->completed with the previous fetch
1617 * from rsp->gpnum.
1618 *
1619 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1620 * and rsp->gp_start suffice to forestall false positives.
1621 */
7d0ae808 1622 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1623 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1624 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1625 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1626 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1627 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1628 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1629 if (ULONG_CMP_GE(completed, gpnum) ||
1630 ULONG_CMP_LT(j, js) ||
1631 ULONG_CMP_GE(gps, js))
1632 return; /* No stall or GP completed since entering function. */
64db4cff 1633 rnp = rdp->mynode;
c96ea7cf 1634 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1635 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1636
1637 /* We haven't checked in, so go dump stack. */
1638 print_cpu_stall(rsp);
1639
bad6e139
PM
1640 } else if (rcu_gp_in_progress(rsp) &&
1641 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1642
bad6e139 1643 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1644 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1645 }
1646}
1647
53d84e00
PM
1648/**
1649 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1650 *
1651 * Set the stall-warning timeout way off into the future, thus preventing
1652 * any RCU CPU stall-warning messages from appearing in the current set of
1653 * RCU grace periods.
1654 *
1655 * The caller must disable hard irqs.
1656 */
1657void rcu_cpu_stall_reset(void)
1658{
6ce75a23
PM
1659 struct rcu_state *rsp;
1660
1661 for_each_rcu_flavor(rsp)
7d0ae808 1662 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1663}
1664
dc35c893
PM
1665/*
1666 * Determine the value that ->completed will have at the end of the
1667 * next subsequent grace period. This is used to tag callbacks so that
1668 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1669 * been dyntick-idle for an extended period with callbacks under the
1670 * influence of RCU_FAST_NO_HZ.
1671 *
1672 * The caller must hold rnp->lock with interrupts disabled.
1673 */
1674static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1675 struct rcu_node *rnp)
1676{
1677 /*
1678 * If RCU is idle, we just wait for the next grace period.
1679 * But we can only be sure that RCU is idle if we are looking
1680 * at the root rcu_node structure -- otherwise, a new grace
1681 * period might have started, but just not yet gotten around
1682 * to initializing the current non-root rcu_node structure.
1683 */
1684 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1685 return rnp->completed + 1;
1686
1687 /*
1688 * Otherwise, wait for a possible partial grace period and
1689 * then the subsequent full grace period.
1690 */
1691 return rnp->completed + 2;
1692}
1693
0446be48
PM
1694/*
1695 * Trace-event helper function for rcu_start_future_gp() and
1696 * rcu_nocb_wait_gp().
1697 */
1698static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1699 unsigned long c, const char *s)
0446be48
PM
1700{
1701 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1702 rnp->completed, c, rnp->level,
1703 rnp->grplo, rnp->grphi, s);
1704}
1705
1706/*
1707 * Start some future grace period, as needed to handle newly arrived
1708 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1709 * rcu_node structure's ->need_future_gp field. Returns true if there
1710 * is reason to awaken the grace-period kthread.
0446be48
PM
1711 *
1712 * The caller must hold the specified rcu_node structure's ->lock.
1713 */
48a7639c
PM
1714static bool __maybe_unused
1715rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1716 unsigned long *c_out)
0446be48
PM
1717{
1718 unsigned long c;
48a7639c 1719 bool ret = false;
0446be48
PM
1720 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1721
1722 /*
1723 * Pick up grace-period number for new callbacks. If this
1724 * grace period is already marked as needed, return to the caller.
1725 */
1726 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1727 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1728 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1729 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1730 goto out;
0446be48
PM
1731 }
1732
1733 /*
1734 * If either this rcu_node structure or the root rcu_node structure
1735 * believe that a grace period is in progress, then we must wait
1736 * for the one following, which is in "c". Because our request
1737 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1738 * need to explicitly start one. We only do the lockless check
1739 * of rnp_root's fields if the current rcu_node structure thinks
1740 * there is no grace period in flight, and because we hold rnp->lock,
1741 * the only possible change is when rnp_root's two fields are
1742 * equal, in which case rnp_root->gpnum might be concurrently
1743 * incremented. But that is OK, as it will just result in our
1744 * doing some extra useless work.
0446be48
PM
1745 */
1746 if (rnp->gpnum != rnp->completed ||
7d0ae808 1747 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1748 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1749 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1750 goto out;
0446be48
PM
1751 }
1752
1753 /*
1754 * There might be no grace period in progress. If we don't already
1755 * hold it, acquire the root rcu_node structure's lock in order to
1756 * start one (if needed).
1757 */
2a67e741
PZ
1758 if (rnp != rnp_root)
1759 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1760
1761 /*
1762 * Get a new grace-period number. If there really is no grace
1763 * period in progress, it will be smaller than the one we obtained
15fecf89 1764 * earlier. Adjust callbacks as needed.
0446be48
PM
1765 */
1766 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1767 if (!rcu_is_nocb_cpu(rdp->cpu))
1768 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1769
1770 /*
1771 * If the needed for the required grace period is already
1772 * recorded, trace and leave.
1773 */
1774 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1775 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1776 goto unlock_out;
1777 }
1778
1779 /* Record the need for the future grace period. */
1780 rnp_root->need_future_gp[c & 0x1]++;
1781
1782 /* If a grace period is not already in progress, start one. */
1783 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1784 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1785 } else {
f7f7bac9 1786 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1787 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1788 }
1789unlock_out:
1790 if (rnp != rnp_root)
67c583a7 1791 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1792out:
1793 if (c_out != NULL)
1794 *c_out = c;
1795 return ret;
0446be48
PM
1796}
1797
1798/*
1799 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1800 * whether any additional grace periods have been requested.
0446be48
PM
1801 */
1802static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1803{
1804 int c = rnp->completed;
1805 int needmore;
1806 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1807
0446be48
PM
1808 rnp->need_future_gp[c & 0x1] = 0;
1809 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1810 trace_rcu_future_gp(rnp, rdp, c,
1811 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1812 return needmore;
1813}
1814
48a7639c
PM
1815/*
1816 * Awaken the grace-period kthread for the specified flavor of RCU.
1817 * Don't do a self-awaken, and don't bother awakening when there is
1818 * nothing for the grace-period kthread to do (as in several CPUs
1819 * raced to awaken, and we lost), and finally don't try to awaken
1820 * a kthread that has not yet been created.
1821 */
1822static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1823{
1824 if (current == rsp->gp_kthread ||
7d0ae808 1825 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1826 !rsp->gp_kthread)
1827 return;
abedf8e2 1828 swake_up(&rsp->gp_wq);
48a7639c
PM
1829}
1830
dc35c893
PM
1831/*
1832 * If there is room, assign a ->completed number to any callbacks on
1833 * this CPU that have not already been assigned. Also accelerate any
1834 * callbacks that were previously assigned a ->completed number that has
1835 * since proven to be too conservative, which can happen if callbacks get
1836 * assigned a ->completed number while RCU is idle, but with reference to
1837 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1838 * not hurt to call it repeatedly. Returns an flag saying that we should
1839 * awaken the RCU grace-period kthread.
dc35c893
PM
1840 *
1841 * The caller must hold rnp->lock with interrupts disabled.
1842 */
48a7639c 1843static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1844 struct rcu_data *rdp)
1845{
15fecf89 1846 bool ret = false;
dc35c893 1847
15fecf89
PM
1848 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1849 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1850 return false;
dc35c893
PM
1851
1852 /*
15fecf89
PM
1853 * Callbacks are often registered with incomplete grace-period
1854 * information. Something about the fact that getting exact
1855 * information requires acquiring a global lock... RCU therefore
1856 * makes a conservative estimate of the grace period number at which
1857 * a given callback will become ready to invoke. The following
1858 * code checks this estimate and improves it when possible, thus
1859 * accelerating callback invocation to an earlier grace-period
1860 * number.
dc35c893 1861 */
15fecf89
PM
1862 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1863 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1864
1865 /* Trace depending on how much we were able to accelerate. */
15fecf89 1866 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1867 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1868 else
f7f7bac9 1869 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1870 return ret;
dc35c893
PM
1871}
1872
1873/*
1874 * Move any callbacks whose grace period has completed to the
1875 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1876 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1877 * sublist. This function is idempotent, so it does not hurt to
1878 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1879 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1880 *
1881 * The caller must hold rnp->lock with interrupts disabled.
1882 */
48a7639c 1883static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1884 struct rcu_data *rdp)
1885{
15fecf89
PM
1886 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1887 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1888 return false;
dc35c893
PM
1889
1890 /*
1891 * Find all callbacks whose ->completed numbers indicate that they
1892 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1893 */
15fecf89 1894 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1895
1896 /* Classify any remaining callbacks. */
48a7639c 1897 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1898}
1899
d09b62df 1900/*
ba9fbe95
PM
1901 * Update CPU-local rcu_data state to record the beginnings and ends of
1902 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1903 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1904 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1905 */
48a7639c
PM
1906static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1907 struct rcu_data *rdp)
d09b62df 1908{
48a7639c 1909 bool ret;
3563a438 1910 bool need_gp;
48a7639c 1911
ba9fbe95 1912 /* Handle the ends of any preceding grace periods first. */
e3663b10 1913 if (rdp->completed == rnp->completed &&
7d0ae808 1914 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1915
ba9fbe95 1916 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1917 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1918
dc35c893
PM
1919 } else {
1920
1921 /* Advance callbacks. */
48a7639c 1922 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1923
1924 /* Remember that we saw this grace-period completion. */
1925 rdp->completed = rnp->completed;
f7f7bac9 1926 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1927 }
398ebe60 1928
7d0ae808 1929 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1930 /*
1931 * If the current grace period is waiting for this CPU,
1932 * set up to detect a quiescent state, otherwise don't
1933 * go looking for one.
1934 */
1935 rdp->gpnum = rnp->gpnum;
f7f7bac9 1936 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1937 need_gp = !!(rnp->qsmask & rdp->grpmask);
1938 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1939 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1940 rdp->core_needs_qs = need_gp;
6eaef633 1941 zero_cpu_stall_ticks(rdp);
7d0ae808 1942 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1943 }
48a7639c 1944 return ret;
6eaef633
PM
1945}
1946
d34ea322 1947static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1948{
1949 unsigned long flags;
48a7639c 1950 bool needwake;
6eaef633
PM
1951 struct rcu_node *rnp;
1952
1953 local_irq_save(flags);
1954 rnp = rdp->mynode;
7d0ae808
PM
1955 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1956 rdp->completed == READ_ONCE(rnp->completed) &&
1957 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1958 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1959 local_irq_restore(flags);
1960 return;
1961 }
48a7639c 1962 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1963 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1964 if (needwake)
1965 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1966}
1967
0f41c0dd
PM
1968static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1969{
1970 if (delay > 0 &&
1971 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1972 schedule_timeout_uninterruptible(delay);
1973}
1974
b3dbec76 1975/*
45fed3e7 1976 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1977 */
45fed3e7 1978static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1979{
0aa04b05 1980 unsigned long oldmask;
b3dbec76 1981 struct rcu_data *rdp;
7fdefc10 1982 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1983
7d0ae808 1984 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1985 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1986 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1987 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1988 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1989 return false;
f7be8209 1990 }
7d0ae808 1991 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1992
f7be8209
PM
1993 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1994 /*
1995 * Grace period already in progress, don't start another.
1996 * Not supposed to be able to happen.
1997 */
67c583a7 1998 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1999 return false;
7fdefc10
PM
2000 }
2001
7fdefc10 2002 /* Advance to a new grace period and initialize state. */
26cdfedf 2003 record_gp_stall_check_time(rsp);
765a3f4f
PM
2004 /* Record GP times before starting GP, hence smp_store_release(). */
2005 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2006 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2007 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2008
0aa04b05
PM
2009 /*
2010 * Apply per-leaf buffered online and offline operations to the
2011 * rcu_node tree. Note that this new grace period need not wait
2012 * for subsequent online CPUs, and that quiescent-state forcing
2013 * will handle subsequent offline CPUs.
2014 */
2015 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2016 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2017 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2018 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2019 !rnp->wait_blkd_tasks) {
2020 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2021 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2022 continue;
2023 }
2024
2025 /* Record old state, apply changes to ->qsmaskinit field. */
2026 oldmask = rnp->qsmaskinit;
2027 rnp->qsmaskinit = rnp->qsmaskinitnext;
2028
2029 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2030 if (!oldmask != !rnp->qsmaskinit) {
2031 if (!oldmask) /* First online CPU for this rcu_node. */
2032 rcu_init_new_rnp(rnp);
2033 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2034 rnp->wait_blkd_tasks = true;
2035 else /* Last offline CPU and can propagate. */
2036 rcu_cleanup_dead_rnp(rnp);
2037 }
2038
2039 /*
2040 * If all waited-on tasks from prior grace period are
2041 * done, and if all this rcu_node structure's CPUs are
2042 * still offline, propagate up the rcu_node tree and
2043 * clear ->wait_blkd_tasks. Otherwise, if one of this
2044 * rcu_node structure's CPUs has since come back online,
2045 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2046 * checks for this, so just call it unconditionally).
2047 */
2048 if (rnp->wait_blkd_tasks &&
2049 (!rcu_preempt_has_tasks(rnp) ||
2050 rnp->qsmaskinit)) {
2051 rnp->wait_blkd_tasks = false;
2052 rcu_cleanup_dead_rnp(rnp);
2053 }
2054
67c583a7 2055 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2056 }
7fdefc10
PM
2057
2058 /*
2059 * Set the quiescent-state-needed bits in all the rcu_node
2060 * structures for all currently online CPUs in breadth-first order,
2061 * starting from the root rcu_node structure, relying on the layout
2062 * of the tree within the rsp->node[] array. Note that other CPUs
2063 * will access only the leaves of the hierarchy, thus seeing that no
2064 * grace period is in progress, at least until the corresponding
590d1757 2065 * leaf node has been initialized.
7fdefc10
PM
2066 *
2067 * The grace period cannot complete until the initialization
2068 * process finishes, because this kthread handles both.
2069 */
2070 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2071 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2072 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2073 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2074 rcu_preempt_check_blocked_tasks(rnp);
2075 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2076 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2077 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2078 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2079 if (rnp == rdp->mynode)
48a7639c 2080 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2081 rcu_preempt_boost_start_gp(rnp);
2082 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2083 rnp->level, rnp->grplo,
2084 rnp->grphi, rnp->qsmask);
67c583a7 2085 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2086 cond_resched_rcu_qs();
7d0ae808 2087 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2088 }
b3dbec76 2089
45fed3e7 2090 return true;
7fdefc10 2091}
b3dbec76 2092
b9a425cf
PM
2093/*
2094 * Helper function for wait_event_interruptible_timeout() wakeup
2095 * at force-quiescent-state time.
2096 */
2097static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2098{
2099 struct rcu_node *rnp = rcu_get_root(rsp);
2100
2101 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2102 *gfp = READ_ONCE(rsp->gp_flags);
2103 if (*gfp & RCU_GP_FLAG_FQS)
2104 return true;
2105
2106 /* The current grace period has completed. */
2107 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2108 return true;
2109
2110 return false;
2111}
2112
4cdfc175
PM
2113/*
2114 * Do one round of quiescent-state forcing.
2115 */
77f81fe0 2116static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2117{
217af2a2
PM
2118 bool isidle = false;
2119 unsigned long maxj;
4cdfc175
PM
2120 struct rcu_node *rnp = rcu_get_root(rsp);
2121
7d0ae808 2122 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2123 rsp->n_force_qs++;
77f81fe0 2124 if (first_time) {
4cdfc175 2125 /* Collect dyntick-idle snapshots. */
0edd1b17 2126 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2127 isidle = true;
0edd1b17
PM
2128 maxj = jiffies - ULONG_MAX / 4;
2129 }
217af2a2
PM
2130 force_qs_rnp(rsp, dyntick_save_progress_counter,
2131 &isidle, &maxj);
0edd1b17 2132 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2133 } else {
2134 /* Handle dyntick-idle and offline CPUs. */
675da67f 2135 isidle = true;
217af2a2 2136 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2137 }
2138 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2139 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2140 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2141 WRITE_ONCE(rsp->gp_flags,
2142 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2143 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2144 }
4cdfc175
PM
2145}
2146
7fdefc10
PM
2147/*
2148 * Clean up after the old grace period.
2149 */
4cdfc175 2150static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2151{
2152 unsigned long gp_duration;
48a7639c 2153 bool needgp = false;
dae6e64d 2154 int nocb = 0;
7fdefc10
PM
2155 struct rcu_data *rdp;
2156 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2157 struct swait_queue_head *sq;
b3dbec76 2158
7d0ae808 2159 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2160 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2161 gp_duration = jiffies - rsp->gp_start;
2162 if (gp_duration > rsp->gp_max)
2163 rsp->gp_max = gp_duration;
b3dbec76 2164
7fdefc10
PM
2165 /*
2166 * We know the grace period is complete, but to everyone else
2167 * it appears to still be ongoing. But it is also the case
2168 * that to everyone else it looks like there is nothing that
2169 * they can do to advance the grace period. It is therefore
2170 * safe for us to drop the lock in order to mark the grace
2171 * period as completed in all of the rcu_node structures.
7fdefc10 2172 */
67c583a7 2173 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2174
5d4b8659
PM
2175 /*
2176 * Propagate new ->completed value to rcu_node structures so
2177 * that other CPUs don't have to wait until the start of the next
2178 * grace period to process their callbacks. This also avoids
2179 * some nasty RCU grace-period initialization races by forcing
2180 * the end of the current grace period to be completely recorded in
2181 * all of the rcu_node structures before the beginning of the next
2182 * grace period is recorded in any of the rcu_node structures.
2183 */
2184 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2185 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2186 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2187 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2188 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2189 rdp = this_cpu_ptr(rsp->rda);
2190 if (rnp == rdp->mynode)
48a7639c 2191 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2192 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2193 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2194 sq = rcu_nocb_gp_get(rnp);
67c583a7 2195 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2196 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2197 cond_resched_rcu_qs();
7d0ae808 2198 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2199 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2200 }
5d4b8659 2201 rnp = rcu_get_root(rsp);
2a67e741 2202 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2203 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2204
765a3f4f 2205 /* Declare grace period done. */
7d0ae808 2206 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2207 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2208 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2209 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2210 /* Advance CBs to reduce false positives below. */
2211 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2212 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2213 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2214 trace_rcu_grace_period(rsp->name,
7d0ae808 2215 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2216 TPS("newreq"));
2217 }
67c583a7 2218 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2219}
2220
2221/*
2222 * Body of kthread that handles grace periods.
2223 */
2224static int __noreturn rcu_gp_kthread(void *arg)
2225{
77f81fe0 2226 bool first_gp_fqs;
88d6df61 2227 int gf;
d40011f6 2228 unsigned long j;
4cdfc175 2229 int ret;
7fdefc10
PM
2230 struct rcu_state *rsp = arg;
2231 struct rcu_node *rnp = rcu_get_root(rsp);
2232
5871968d 2233 rcu_bind_gp_kthread();
7fdefc10
PM
2234 for (;;) {
2235
2236 /* Handle grace-period start. */
2237 for (;;) {
63c4db78 2238 trace_rcu_grace_period(rsp->name,
7d0ae808 2239 READ_ONCE(rsp->gpnum),
63c4db78 2240 TPS("reqwait"));
afea227f 2241 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2242 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2243 READ_ONCE(rsp->gp_flags) &
4cdfc175 2244 RCU_GP_FLAG_INIT);
319362c9 2245 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2246 /* Locking provides needed memory barrier. */
f7be8209 2247 if (rcu_gp_init(rsp))
7fdefc10 2248 break;
bde6c3aa 2249 cond_resched_rcu_qs();
7d0ae808 2250 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2251 WARN_ON(signal_pending(current));
63c4db78 2252 trace_rcu_grace_period(rsp->name,
7d0ae808 2253 READ_ONCE(rsp->gpnum),
63c4db78 2254 TPS("reqwaitsig"));
7fdefc10 2255 }
cabc49c1 2256
4cdfc175 2257 /* Handle quiescent-state forcing. */
77f81fe0 2258 first_gp_fqs = true;
d40011f6
PM
2259 j = jiffies_till_first_fqs;
2260 if (j > HZ) {
2261 j = HZ;
2262 jiffies_till_first_fqs = HZ;
2263 }
88d6df61 2264 ret = 0;
cabc49c1 2265 for (;;) {
8c7c4829 2266 if (!ret) {
88d6df61 2267 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2268 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2269 jiffies + 3 * j);
2270 }
63c4db78 2271 trace_rcu_grace_period(rsp->name,
7d0ae808 2272 READ_ONCE(rsp->gpnum),
63c4db78 2273 TPS("fqswait"));
afea227f 2274 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2275 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2276 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2277 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2278 /* Locking provides needed memory barriers. */
4cdfc175 2279 /* If grace period done, leave loop. */
7d0ae808 2280 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2281 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2282 break;
4cdfc175 2283 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2284 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2285 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2286 trace_rcu_grace_period(rsp->name,
7d0ae808 2287 READ_ONCE(rsp->gpnum),
63c4db78 2288 TPS("fqsstart"));
77f81fe0
PM
2289 rcu_gp_fqs(rsp, first_gp_fqs);
2290 first_gp_fqs = false;
63c4db78 2291 trace_rcu_grace_period(rsp->name,
7d0ae808 2292 READ_ONCE(rsp->gpnum),
63c4db78 2293 TPS("fqsend"));
bde6c3aa 2294 cond_resched_rcu_qs();
7d0ae808 2295 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2296 ret = 0; /* Force full wait till next FQS. */
2297 j = jiffies_till_next_fqs;
2298 if (j > HZ) {
2299 j = HZ;
2300 jiffies_till_next_fqs = HZ;
2301 } else if (j < 1) {
2302 j = 1;
2303 jiffies_till_next_fqs = 1;
2304 }
4cdfc175
PM
2305 } else {
2306 /* Deal with stray signal. */
bde6c3aa 2307 cond_resched_rcu_qs();
7d0ae808 2308 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2309 WARN_ON(signal_pending(current));
63c4db78 2310 trace_rcu_grace_period(rsp->name,
7d0ae808 2311 READ_ONCE(rsp->gpnum),
63c4db78 2312 TPS("fqswaitsig"));
fcfd0a23
PM
2313 ret = 1; /* Keep old FQS timing. */
2314 j = jiffies;
2315 if (time_after(jiffies, rsp->jiffies_force_qs))
2316 j = 1;
2317 else
2318 j = rsp->jiffies_force_qs - j;
d40011f6 2319 }
cabc49c1 2320 }
4cdfc175
PM
2321
2322 /* Handle grace-period end. */
319362c9 2323 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2324 rcu_gp_cleanup(rsp);
319362c9 2325 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2326 }
b3dbec76
PM
2327}
2328
64db4cff
PM
2329/*
2330 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2331 * in preparation for detecting the next grace period. The caller must hold
b8462084 2332 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2333 *
2334 * Note that it is legal for a dying CPU (which is marked as offline) to
2335 * invoke this function. This can happen when the dying CPU reports its
2336 * quiescent state.
48a7639c
PM
2337 *
2338 * Returns true if the grace-period kthread must be awakened.
64db4cff 2339 */
48a7639c 2340static bool
910ee45d
PM
2341rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2342 struct rcu_data *rdp)
64db4cff 2343{
b8462084 2344 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2345 /*
b3dbec76 2346 * Either we have not yet spawned the grace-period
62da1921
PM
2347 * task, this CPU does not need another grace period,
2348 * or a grace period is already in progress.
b3dbec76 2349 * Either way, don't start a new grace period.
afe24b12 2350 */
48a7639c 2351 return false;
afe24b12 2352 }
7d0ae808
PM
2353 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2354 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2355 TPS("newreq"));
62da1921 2356
016a8d5b
SR
2357 /*
2358 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2359 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2360 * the wakeup to our caller.
016a8d5b 2361 */
48a7639c 2362 return true;
64db4cff
PM
2363}
2364
910ee45d
PM
2365/*
2366 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2367 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2368 * is invoked indirectly from rcu_advance_cbs(), which would result in
2369 * endless recursion -- or would do so if it wasn't for the self-deadlock
2370 * that is encountered beforehand.
48a7639c
PM
2371 *
2372 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2373 */
48a7639c 2374static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2375{
2376 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2377 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2378 bool ret = false;
910ee45d
PM
2379
2380 /*
2381 * If there is no grace period in progress right now, any
2382 * callbacks we have up to this point will be satisfied by the
2383 * next grace period. Also, advancing the callbacks reduces the
2384 * probability of false positives from cpu_needs_another_gp()
2385 * resulting in pointless grace periods. So, advance callbacks
2386 * then start the grace period!
2387 */
48a7639c
PM
2388 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2389 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2390 return ret;
910ee45d
PM
2391}
2392
f41d911f 2393/*
8994515c
PM
2394 * Report a full set of quiescent states to the specified rcu_state data
2395 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2396 * kthread if another grace period is required. Whether we wake
2397 * the grace-period kthread or it awakens itself for the next round
2398 * of quiescent-state forcing, that kthread will clean up after the
2399 * just-completed grace period. Note that the caller must hold rnp->lock,
2400 * which is released before return.
f41d911f 2401 */
d3f6bad3 2402static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2403 __releases(rcu_get_root(rsp)->lock)
f41d911f 2404{
fc2219d4 2405 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2406 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2407 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2408 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2409}
2410
64db4cff 2411/*
d3f6bad3
PM
2412 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2413 * Allows quiescent states for a group of CPUs to be reported at one go
2414 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2415 * must be represented by the same rcu_node structure (which need not be a
2416 * leaf rcu_node structure, though it often will be). The gps parameter
2417 * is the grace-period snapshot, which means that the quiescent states
2418 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2419 * must be held upon entry, and it is released before return.
64db4cff
PM
2420 */
2421static void
d3f6bad3 2422rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2423 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2424 __releases(rnp->lock)
2425{
654e9533 2426 unsigned long oldmask = 0;
28ecd580
PM
2427 struct rcu_node *rnp_c;
2428
64db4cff
PM
2429 /* Walk up the rcu_node hierarchy. */
2430 for (;;) {
654e9533 2431 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2432
654e9533
PM
2433 /*
2434 * Our bit has already been cleared, or the
2435 * relevant grace period is already over, so done.
2436 */
67c583a7 2437 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2438 return;
2439 }
654e9533 2440 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2441 rnp->qsmask &= ~mask;
d4c08f2a
PM
2442 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2443 mask, rnp->qsmask, rnp->level,
2444 rnp->grplo, rnp->grphi,
2445 !!rnp->gp_tasks);
27f4d280 2446 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2447
2448 /* Other bits still set at this level, so done. */
67c583a7 2449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2450 return;
2451 }
2452 mask = rnp->grpmask;
2453 if (rnp->parent == NULL) {
2454
2455 /* No more levels. Exit loop holding root lock. */
2456
2457 break;
2458 }
67c583a7 2459 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2460 rnp_c = rnp;
64db4cff 2461 rnp = rnp->parent;
2a67e741 2462 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2463 oldmask = rnp_c->qsmask;
64db4cff
PM
2464 }
2465
2466 /*
2467 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2468 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2469 * to clean up and start the next grace period if one is needed.
64db4cff 2470 */
d3f6bad3 2471 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2472}
2473
cc99a310
PM
2474/*
2475 * Record a quiescent state for all tasks that were previously queued
2476 * on the specified rcu_node structure and that were blocking the current
2477 * RCU grace period. The caller must hold the specified rnp->lock with
2478 * irqs disabled, and this lock is released upon return, but irqs remain
2479 * disabled.
2480 */
0aa04b05 2481static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2482 struct rcu_node *rnp, unsigned long flags)
2483 __releases(rnp->lock)
2484{
654e9533 2485 unsigned long gps;
cc99a310
PM
2486 unsigned long mask;
2487 struct rcu_node *rnp_p;
2488
a77da14c
PM
2489 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2490 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2492 return; /* Still need more quiescent states! */
2493 }
2494
2495 rnp_p = rnp->parent;
2496 if (rnp_p == NULL) {
2497 /*
a77da14c
PM
2498 * Only one rcu_node structure in the tree, so don't
2499 * try to report up to its nonexistent parent!
cc99a310
PM
2500 */
2501 rcu_report_qs_rsp(rsp, flags);
2502 return;
2503 }
2504
654e9533
PM
2505 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2506 gps = rnp->gpnum;
cc99a310 2507 mask = rnp->grpmask;
67c583a7 2508 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2509 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2510 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2511}
2512
64db4cff 2513/*
d3f6bad3 2514 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2515 * structure. This must be called from the specified CPU.
64db4cff
PM
2516 */
2517static void
d7d6a11e 2518rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2519{
2520 unsigned long flags;
2521 unsigned long mask;
48a7639c 2522 bool needwake;
64db4cff
PM
2523 struct rcu_node *rnp;
2524
2525 rnp = rdp->mynode;
2a67e741 2526 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2527 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2528 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2529
2530 /*
e4cc1f22
PM
2531 * The grace period in which this quiescent state was
2532 * recorded has ended, so don't report it upwards.
2533 * We will instead need a new quiescent state that lies
2534 * within the current grace period.
64db4cff 2535 */
5b74c458 2536 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2537 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2538 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2539 return;
2540 }
2541 mask = rdp->grpmask;
2542 if ((rnp->qsmask & mask) == 0) {
67c583a7 2543 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2544 } else {
bb53e416 2545 rdp->core_needs_qs = false;
64db4cff
PM
2546
2547 /*
2548 * This GP can't end until cpu checks in, so all of our
2549 * callbacks can be processed during the next GP.
2550 */
48a7639c 2551 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2552
654e9533
PM
2553 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2554 /* ^^^ Released rnp->lock */
48a7639c
PM
2555 if (needwake)
2556 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2557 }
2558}
2559
2560/*
2561 * Check to see if there is a new grace period of which this CPU
2562 * is not yet aware, and if so, set up local rcu_data state for it.
2563 * Otherwise, see if this CPU has just passed through its first
2564 * quiescent state for this grace period, and record that fact if so.
2565 */
2566static void
2567rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2568{
05eb552b
PM
2569 /* Check for grace-period ends and beginnings. */
2570 note_gp_changes(rsp, rdp);
64db4cff
PM
2571
2572 /*
2573 * Does this CPU still need to do its part for current grace period?
2574 * If no, return and let the other CPUs do their part as well.
2575 */
97c668b8 2576 if (!rdp->core_needs_qs)
64db4cff
PM
2577 return;
2578
2579 /*
2580 * Was there a quiescent state since the beginning of the grace
2581 * period? If no, then exit and wait for the next call.
2582 */
3a19b46a 2583 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2584 return;
2585
d3f6bad3
PM
2586 /*
2587 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2588 * judge of that).
2589 */
d7d6a11e 2590 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2591}
2592
e74f4c45 2593/*
b1420f1c
PM
2594 * Send the specified CPU's RCU callbacks to the orphanage. The
2595 * specified CPU must be offline, and the caller must hold the
7b2e6011 2596 * ->orphan_lock.
e74f4c45 2597 */
b1420f1c
PM
2598static void
2599rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2600 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2601{
3fbfbf7a 2602 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2603 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2604 return;
2605
b1420f1c
PM
2606 /*
2607 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2608 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2609 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2610 */
15fecf89
PM
2611 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2612 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
a50c3af9
PM
2613
2614 /*
b1420f1c
PM
2615 * Next, move those callbacks still needing a grace period to
2616 * the orphanage, where some other CPU will pick them up.
2617 * Some of the callbacks might have gone partway through a grace
2618 * period, but that is too bad. They get to start over because we
2619 * cannot assume that grace periods are synchronized across CPUs.
a50c3af9 2620 */
15fecf89 2621 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
a50c3af9
PM
2622
2623 /*
b1420f1c
PM
2624 * Then move the ready-to-invoke callbacks to the orphanage,
2625 * where some other CPU will pick them up. These will not be
2626 * required to pass though another grace period: They are done.
a50c3af9 2627 */
15fecf89 2628 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
e74f4c45 2629
15fecf89
PM
2630 /* Finally, disallow further callbacks on this CPU. */
2631 rcu_segcblist_disable(&rdp->cblist);
b1420f1c
PM
2632}
2633
2634/*
2635 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2636 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2637 */
96d3fd0d 2638static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c 2639{
fa07a58f 2640 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2641
3fbfbf7a 2642 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2643 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2644 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2645 return;
2646
b1420f1c 2647 /* Do the accounting first. */
4b27f20b 2648 rdp->n_cbs_adopted += rsp->orphan_done.len;
933dfbd7 2649 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
8f5af6f1 2650 rcu_idle_count_callbacks_posted();
15fecf89 2651 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
b1420f1c
PM
2652
2653 /*
2654 * We do not need a memory barrier here because the only way we
2655 * can get here if there is an rcu_barrier() in flight is if
2656 * we are the task doing the rcu_barrier().
2657 */
2658
15fecf89
PM
2659 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2660 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
8ef0f37e 2661 WARN_ON_ONCE(rsp->orphan_done.head);
15fecf89 2662 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
8ef0f37e 2663 WARN_ON_ONCE(rsp->orphan_pend.head);
15fecf89
PM
2664 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2665 !rcu_segcblist_n_cbs(&rdp->cblist));
b1420f1c
PM
2666}
2667
2668/*
2669 * Trace the fact that this CPU is going offline.
2670 */
2671static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2672{
88a4976d
PM
2673 RCU_TRACE(unsigned long mask;)
2674 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2675 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2676
ea46351c
PM
2677 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2678 return;
2679
88a4976d 2680 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2681 trace_rcu_grace_period(rsp->name,
2682 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2683 TPS("cpuofl"));
64db4cff
PM
2684}
2685
8af3a5e7
PM
2686/*
2687 * All CPUs for the specified rcu_node structure have gone offline,
2688 * and all tasks that were preempted within an RCU read-side critical
2689 * section while running on one of those CPUs have since exited their RCU
2690 * read-side critical section. Some other CPU is reporting this fact with
2691 * the specified rcu_node structure's ->lock held and interrupts disabled.
2692 * This function therefore goes up the tree of rcu_node structures,
2693 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2694 * the leaf rcu_node structure's ->qsmaskinit field has already been
2695 * updated
2696 *
2697 * This function does check that the specified rcu_node structure has
2698 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2699 * prematurely. That said, invoking it after the fact will cost you
2700 * a needless lock acquisition. So once it has done its work, don't
2701 * invoke it again.
2702 */
2703static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2704{
2705 long mask;
2706 struct rcu_node *rnp = rnp_leaf;
2707
ea46351c
PM
2708 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2709 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2710 return;
2711 for (;;) {
2712 mask = rnp->grpmask;
2713 rnp = rnp->parent;
2714 if (!rnp)
2715 break;
2a67e741 2716 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2717 rnp->qsmaskinit &= ~mask;
0aa04b05 2718 rnp->qsmask &= ~mask;
8af3a5e7 2719 if (rnp->qsmaskinit) {
67c583a7
BF
2720 raw_spin_unlock_rcu_node(rnp);
2721 /* irqs remain disabled. */
8af3a5e7
PM
2722 return;
2723 }
67c583a7 2724 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2725 }
2726}
2727
64db4cff 2728/*
e5601400 2729 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2730 * this fact from process context. Do the remainder of the cleanup,
2731 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2732 * adopting them. There can only be one CPU hotplug operation at a time,
2733 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2734 */
e5601400 2735static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2736{
2036d94a 2737 unsigned long flags;
e5601400 2738 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2739 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2740
ea46351c
PM
2741 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2742 return;
2743
2036d94a 2744 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2745 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2746
b1420f1c 2747 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2748 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2749 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2750 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2751 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2752
15fecf89
PM
2753 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2754 !rcu_segcblist_empty(&rdp->cblist),
2755 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2756 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2757 rcu_segcblist_first_cb(&rdp->cblist));
64db4cff
PM
2758}
2759
64db4cff
PM
2760/*
2761 * Invoke any RCU callbacks that have made it to the end of their grace
2762 * period. Thottle as specified by rdp->blimit.
2763 */
37c72e56 2764static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2765{
2766 unsigned long flags;
15fecf89
PM
2767 struct rcu_head *rhp;
2768 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2769 long bl, count;
64db4cff 2770
dc35c893 2771 /* If no callbacks are ready, just return. */
15fecf89
PM
2772 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2773 trace_rcu_batch_start(rsp->name,
2774 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2775 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2776 trace_rcu_batch_end(rsp->name, 0,
2777 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2778 need_resched(), is_idle_task(current),
2779 rcu_is_callbacks_kthread());
64db4cff 2780 return;
29c00b4a 2781 }
64db4cff
PM
2782
2783 /*
2784 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2785 * races with call_rcu() from interrupt handlers. Leave the
2786 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2787 */
2788 local_irq_save(flags);
8146c4e2 2789 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2790 bl = rdp->blimit;
15fecf89
PM
2791 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2792 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2793 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2794 local_irq_restore(flags);
2795
2796 /* Invoke callbacks. */
15fecf89
PM
2797 rhp = rcu_cblist_dequeue(&rcl);
2798 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2799 debug_rcu_head_unqueue(rhp);
2800 if (__rcu_reclaim(rsp->name, rhp))
2801 rcu_cblist_dequeued_lazy(&rcl);
2802 /*
2803 * Stop only if limit reached and CPU has something to do.
2804 * Note: The rcl structure counts down from zero.
2805 */
4b27f20b 2806 if (-rcl.len >= bl &&
dff1672d
PM
2807 (need_resched() ||
2808 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2809 break;
2810 }
2811
2812 local_irq_save(flags);
4b27f20b 2813 count = -rcl.len;
8ef0f37e
PM
2814 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2815 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2816
15fecf89
PM
2817 /* Update counts and requeue any remaining callbacks. */
2818 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2819 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2820 rdp->n_cbs_invoked += count;
15fecf89 2821 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2822
2823 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2824 count = rcu_segcblist_n_cbs(&rdp->cblist);
2825 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2826 rdp->blimit = blimit;
2827
37c72e56 2828 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2829 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2830 rdp->qlen_last_fqs_check = 0;
2831 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2832 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2833 rdp->qlen_last_fqs_check = count;
2834 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2835
64db4cff
PM
2836 local_irq_restore(flags);
2837
e0f23060 2838 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2839 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2840 invoke_rcu_core();
64db4cff
PM
2841}
2842
2843/*
2844 * Check to see if this CPU is in a non-context-switch quiescent state
2845 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2846 * Also schedule RCU core processing.
64db4cff 2847 *
9b2e4f18 2848 * This function must be called from hardirq context. It is normally
5403d367 2849 * invoked from the scheduling-clock interrupt.
64db4cff 2850 */
c3377c2d 2851void rcu_check_callbacks(int user)
64db4cff 2852{
f7f7bac9 2853 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2854 increment_cpu_stall_ticks();
9b2e4f18 2855 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2856
2857 /*
2858 * Get here if this CPU took its interrupt from user
2859 * mode or from the idle loop, and if this is not a
2860 * nested interrupt. In this case, the CPU is in
d6714c22 2861 * a quiescent state, so note it.
64db4cff
PM
2862 *
2863 * No memory barrier is required here because both
d6714c22
PM
2864 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2865 * variables that other CPUs neither access nor modify,
2866 * at least not while the corresponding CPU is online.
64db4cff
PM
2867 */
2868
284a8c93
PM
2869 rcu_sched_qs();
2870 rcu_bh_qs();
64db4cff
PM
2871
2872 } else if (!in_softirq()) {
2873
2874 /*
2875 * Get here if this CPU did not take its interrupt from
2876 * softirq, in other words, if it is not interrupting
2877 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2878 * critical section, so note it.
64db4cff
PM
2879 */
2880
284a8c93 2881 rcu_bh_qs();
64db4cff 2882 }
86aea0e6 2883 rcu_preempt_check_callbacks();
e3950ecd 2884 if (rcu_pending())
a46e0899 2885 invoke_rcu_core();
8315f422
PM
2886 if (user)
2887 rcu_note_voluntary_context_switch(current);
f7f7bac9 2888 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2889}
2890
64db4cff
PM
2891/*
2892 * Scan the leaf rcu_node structures, processing dyntick state for any that
2893 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2894 * Also initiate boosting for any threads blocked on the root rcu_node.
2895 *
ee47eb9f 2896 * The caller must have suppressed start of new grace periods.
64db4cff 2897 */
217af2a2
PM
2898static void force_qs_rnp(struct rcu_state *rsp,
2899 int (*f)(struct rcu_data *rsp, bool *isidle,
2900 unsigned long *maxj),
2901 bool *isidle, unsigned long *maxj)
64db4cff 2902{
64db4cff
PM
2903 int cpu;
2904 unsigned long flags;
2905 unsigned long mask;
a0b6c9a7 2906 struct rcu_node *rnp;
64db4cff 2907
a0b6c9a7 2908 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2909 cond_resched_rcu_qs();
64db4cff 2910 mask = 0;
2a67e741 2911 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2912 if (rnp->qsmask == 0) {
a77da14c
PM
2913 if (rcu_state_p == &rcu_sched_state ||
2914 rsp != rcu_state_p ||
2915 rcu_preempt_blocked_readers_cgp(rnp)) {
2916 /*
2917 * No point in scanning bits because they
2918 * are all zero. But we might need to
2919 * priority-boost blocked readers.
2920 */
2921 rcu_initiate_boost(rnp, flags);
2922 /* rcu_initiate_boost() releases rnp->lock */
2923 continue;
2924 }
2925 if (rnp->parent &&
2926 (rnp->parent->qsmask & rnp->grpmask)) {
2927 /*
2928 * Race between grace-period
2929 * initialization and task exiting RCU
2930 * read-side critical section: Report.
2931 */
2932 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2933 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2934 continue;
2935 }
64db4cff 2936 }
bc75e999
MR
2937 for_each_leaf_node_possible_cpu(rnp, cpu) {
2938 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2939 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2940 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2941 mask |= bit;
2942 }
64db4cff 2943 }
45f014c5 2944 if (mask != 0) {
654e9533
PM
2945 /* Idle/offline CPUs, report (releases rnp->lock. */
2946 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2947 } else {
2948 /* Nothing to do here, so just drop the lock. */
67c583a7 2949 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2950 }
64db4cff 2951 }
64db4cff
PM
2952}
2953
2954/*
2955 * Force quiescent states on reluctant CPUs, and also detect which
2956 * CPUs are in dyntick-idle mode.
2957 */
4cdfc175 2958static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2959{
2960 unsigned long flags;
394f2769
PM
2961 bool ret;
2962 struct rcu_node *rnp;
2963 struct rcu_node *rnp_old = NULL;
2964
2965 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2966 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2967 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2968 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2969 !raw_spin_trylock(&rnp->fqslock);
2970 if (rnp_old != NULL)
2971 raw_spin_unlock(&rnp_old->fqslock);
2972 if (ret) {
a792563b 2973 rsp->n_force_qs_lh++;
394f2769
PM
2974 return;
2975 }
2976 rnp_old = rnp;
2977 }
2978 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2979
394f2769 2980 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2981 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2982 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2983 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2984 rsp->n_force_qs_lh++;
67c583a7 2985 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2986 return; /* Someone beat us to it. */
46a1e34e 2987 }
7d0ae808 2988 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2989 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2990 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2991}
2992
64db4cff 2993/*
e0f23060
PM
2994 * This does the RCU core processing work for the specified rcu_state
2995 * and rcu_data structures. This may be called only from the CPU to
2996 * whom the rdp belongs.
64db4cff
PM
2997 */
2998static void
1bca8cf1 2999__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
3000{
3001 unsigned long flags;
48a7639c 3002 bool needwake;
fa07a58f 3003 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 3004
50dc7def 3005 WARN_ON_ONCE(!rdp->beenonline);
2e597558 3006
64db4cff
PM
3007 /* Update RCU state based on any recent quiescent states. */
3008 rcu_check_quiescent_state(rsp, rdp);
3009
3010 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3011 local_irq_save(flags);
64db4cff 3012 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3013 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3014 needwake = rcu_start_gp(rsp);
67c583a7 3015 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3016 if (needwake)
3017 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3018 } else {
3019 local_irq_restore(flags);
64db4cff
PM
3020 }
3021
3022 /* If there are callbacks ready, invoke them. */
15fecf89 3023 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 3024 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3025
3026 /* Do any needed deferred wakeups of rcuo kthreads. */
3027 do_nocb_deferred_wakeup(rdp);
09223371
SL
3028}
3029
64db4cff 3030/*
e0f23060 3031 * Do RCU core processing for the current CPU.
64db4cff 3032 */
0766f788 3033static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3034{
6ce75a23
PM
3035 struct rcu_state *rsp;
3036
bfa00b4c
PM
3037 if (cpu_is_offline(smp_processor_id()))
3038 return;
f7f7bac9 3039 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3040 for_each_rcu_flavor(rsp)
3041 __rcu_process_callbacks(rsp);
f7f7bac9 3042 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3043}
3044
a26ac245 3045/*
e0f23060
PM
3046 * Schedule RCU callback invocation. If the specified type of RCU
3047 * does not support RCU priority boosting, just do a direct call,
3048 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3049 * are running on the current CPU with softirqs disabled, the
e0f23060 3050 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3051 */
a46e0899 3052static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3053{
7d0ae808 3054 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3055 return;
a46e0899
PM
3056 if (likely(!rsp->boost)) {
3057 rcu_do_batch(rsp, rdp);
a26ac245
PM
3058 return;
3059 }
a46e0899 3060 invoke_rcu_callbacks_kthread();
a26ac245
PM
3061}
3062
a46e0899 3063static void invoke_rcu_core(void)
09223371 3064{
b0f74036
PM
3065 if (cpu_online(smp_processor_id()))
3066 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3067}
3068
29154c57
PM
3069/*
3070 * Handle any core-RCU processing required by a call_rcu() invocation.
3071 */
3072static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3073 struct rcu_head *head, unsigned long flags)
64db4cff 3074{
48a7639c
PM
3075 bool needwake;
3076
62fde6ed
PM
3077 /*
3078 * If called from an extended quiescent state, invoke the RCU
3079 * core in order to force a re-evaluation of RCU's idleness.
3080 */
9910affa 3081 if (!rcu_is_watching())
62fde6ed
PM
3082 invoke_rcu_core();
3083
a16b7a69 3084 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3085 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3086 return;
64db4cff 3087
37c72e56
PM
3088 /*
3089 * Force the grace period if too many callbacks or too long waiting.
3090 * Enforce hysteresis, and don't invoke force_quiescent_state()
3091 * if some other CPU has recently done so. Also, don't bother
3092 * invoking force_quiescent_state() if the newly enqueued callback
3093 * is the only one waiting for a grace period to complete.
3094 */
15fecf89
PM
3095 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3096 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3097
3098 /* Are we ignoring a completed grace period? */
470716fc 3099 note_gp_changes(rsp, rdp);
b52573d2
PM
3100
3101 /* Start a new grace period if one not already started. */
3102 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3103 struct rcu_node *rnp_root = rcu_get_root(rsp);
3104
2a67e741 3105 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3106 needwake = rcu_start_gp(rsp);
67c583a7 3107 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3108 if (needwake)
3109 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3110 } else {
3111 /* Give the grace period a kick. */
3112 rdp->blimit = LONG_MAX;
3113 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3114 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3115 force_quiescent_state(rsp);
b52573d2 3116 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3117 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3118 }
4cdfc175 3119 }
29154c57
PM
3120}
3121
ae150184
PM
3122/*
3123 * RCU callback function to leak a callback.
3124 */
3125static void rcu_leak_callback(struct rcu_head *rhp)
3126{
3127}
3128
3fbfbf7a
PM
3129/*
3130 * Helper function for call_rcu() and friends. The cpu argument will
3131 * normally be -1, indicating "currently running CPU". It may specify
3132 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3133 * is expected to specify a CPU.
3134 */
64db4cff 3135static void
b6a4ae76 3136__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3137 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3138{
3139 unsigned long flags;
3140 struct rcu_data *rdp;
3141
b8f2ed53
PM
3142 /* Misaligned rcu_head! */
3143 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3144
ae150184
PM
3145 if (debug_rcu_head_queue(head)) {
3146 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3147 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3148 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3149 return;
3150 }
64db4cff
PM
3151 head->func = func;
3152 head->next = NULL;
64db4cff 3153 local_irq_save(flags);
394f99a9 3154 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3155
3156 /* Add the callback to our list. */
15fecf89 3157 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3158 int offline;
3159
3160 if (cpu != -1)
3161 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3162 if (likely(rdp->mynode)) {
3163 /* Post-boot, so this should be for a no-CBs CPU. */
3164 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3165 WARN_ON_ONCE(offline);
3166 /* Offline CPU, _call_rcu() illegal, leak callback. */
3167 local_irq_restore(flags);
3168 return;
3169 }
3170 /*
3171 * Very early boot, before rcu_init(). Initialize if needed
3172 * and then drop through to queue the callback.
3173 */
3174 BUG_ON(cpu != -1);
34404ca8 3175 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3176 if (rcu_segcblist_empty(&rdp->cblist))
3177 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3178 }
15fecf89
PM
3179 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3180 if (!lazy)
c57afe80 3181 rcu_idle_count_callbacks_posted();
2655d57e 3182
d4c08f2a
PM
3183 if (__is_kfree_rcu_offset((unsigned long)func))
3184 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3185 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3186 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3187 else
15fecf89
PM
3188 trace_rcu_callback(rsp->name, head,
3189 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3190 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3191
29154c57
PM
3192 /* Go handle any RCU core processing required. */
3193 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3194 local_irq_restore(flags);
3195}
3196
3197/*
d6714c22 3198 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3199 */
b6a4ae76 3200void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3201{
3fbfbf7a 3202 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3203}
d6714c22 3204EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3205
3206/*
486e2593 3207 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3208 */
b6a4ae76 3209void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3210{
3fbfbf7a 3211 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3212}
3213EXPORT_SYMBOL_GPL(call_rcu_bh);
3214
495aa969
ACB
3215/*
3216 * Queue an RCU callback for lazy invocation after a grace period.
3217 * This will likely be later named something like "call_rcu_lazy()",
3218 * but this change will require some way of tagging the lazy RCU
3219 * callbacks in the list of pending callbacks. Until then, this
3220 * function may only be called from __kfree_rcu().
3221 */
3222void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3223 rcu_callback_t func)
495aa969 3224{
e534165b 3225 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3226}
3227EXPORT_SYMBOL_GPL(kfree_call_rcu);
3228
6d813391
PM
3229/*
3230 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3231 * any blocking grace-period wait automatically implies a grace period
3232 * if there is only one CPU online at any point time during execution
3233 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3234 * occasionally incorrectly indicate that there are multiple CPUs online
3235 * when there was in fact only one the whole time, as this just adds
3236 * some overhead: RCU still operates correctly.
6d813391
PM
3237 */
3238static inline int rcu_blocking_is_gp(void)
3239{
95f0c1de
PM
3240 int ret;
3241
6d813391 3242 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3243 preempt_disable();
3244 ret = num_online_cpus() <= 1;
3245 preempt_enable();
3246 return ret;
6d813391
PM
3247}
3248
6ebb237b
PM
3249/**
3250 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3251 *
3252 * Control will return to the caller some time after a full rcu-sched
3253 * grace period has elapsed, in other words after all currently executing
3254 * rcu-sched read-side critical sections have completed. These read-side
3255 * critical sections are delimited by rcu_read_lock_sched() and
3256 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3257 * local_irq_disable(), and so on may be used in place of
3258 * rcu_read_lock_sched().
3259 *
3260 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3261 * non-threaded hardware-interrupt handlers, in progress on entry will
3262 * have completed before this primitive returns. However, this does not
3263 * guarantee that softirq handlers will have completed, since in some
3264 * kernels, these handlers can run in process context, and can block.
3265 *
3266 * Note that this guarantee implies further memory-ordering guarantees.
3267 * On systems with more than one CPU, when synchronize_sched() returns,
3268 * each CPU is guaranteed to have executed a full memory barrier since the
3269 * end of its last RCU-sched read-side critical section whose beginning
3270 * preceded the call to synchronize_sched(). In addition, each CPU having
3271 * an RCU read-side critical section that extends beyond the return from
3272 * synchronize_sched() is guaranteed to have executed a full memory barrier
3273 * after the beginning of synchronize_sched() and before the beginning of
3274 * that RCU read-side critical section. Note that these guarantees include
3275 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3276 * that are executing in the kernel.
3277 *
3278 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3279 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3280 * to have executed a full memory barrier during the execution of
3281 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3282 * again only if the system has more than one CPU).
6ebb237b
PM
3283 *
3284 * This primitive provides the guarantees made by the (now removed)
3285 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3286 * guarantees that rcu_read_lock() sections will have completed.
3287 * In "classic RCU", these two guarantees happen to be one and
3288 * the same, but can differ in realtime RCU implementations.
3289 */
3290void synchronize_sched(void)
3291{
f78f5b90
PM
3292 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3293 lock_is_held(&rcu_lock_map) ||
3294 lock_is_held(&rcu_sched_lock_map),
3295 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3296 if (rcu_blocking_is_gp())
3297 return;
5afff48b 3298 if (rcu_gp_is_expedited())
3705b88d
AM
3299 synchronize_sched_expedited();
3300 else
3301 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3302}
3303EXPORT_SYMBOL_GPL(synchronize_sched);
3304
3305/**
3306 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3307 *
3308 * Control will return to the caller some time after a full rcu_bh grace
3309 * period has elapsed, in other words after all currently executing rcu_bh
3310 * read-side critical sections have completed. RCU read-side critical
3311 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3312 * and may be nested.
f0a0e6f2
PM
3313 *
3314 * See the description of synchronize_sched() for more detailed information
3315 * on memory ordering guarantees.
6ebb237b
PM
3316 */
3317void synchronize_rcu_bh(void)
3318{
f78f5b90
PM
3319 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3320 lock_is_held(&rcu_lock_map) ||
3321 lock_is_held(&rcu_sched_lock_map),
3322 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3323 if (rcu_blocking_is_gp())
3324 return;
5afff48b 3325 if (rcu_gp_is_expedited())
3705b88d
AM
3326 synchronize_rcu_bh_expedited();
3327 else
3328 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3329}
3330EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3331
765a3f4f
PM
3332/**
3333 * get_state_synchronize_rcu - Snapshot current RCU state
3334 *
3335 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3336 * to determine whether or not a full grace period has elapsed in the
3337 * meantime.
3338 */
3339unsigned long get_state_synchronize_rcu(void)
3340{
3341 /*
3342 * Any prior manipulation of RCU-protected data must happen
3343 * before the load from ->gpnum.
3344 */
3345 smp_mb(); /* ^^^ */
3346
3347 /*
3348 * Make sure this load happens before the purportedly
3349 * time-consuming work between get_state_synchronize_rcu()
3350 * and cond_synchronize_rcu().
3351 */
e534165b 3352 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3353}
3354EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3355
3356/**
3357 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3358 *
3359 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3360 *
3361 * If a full RCU grace period has elapsed since the earlier call to
3362 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3363 * synchronize_rcu() to wait for a full grace period.
3364 *
3365 * Yes, this function does not take counter wrap into account. But
3366 * counter wrap is harmless. If the counter wraps, we have waited for
3367 * more than 2 billion grace periods (and way more on a 64-bit system!),
3368 * so waiting for one additional grace period should be just fine.
3369 */
3370void cond_synchronize_rcu(unsigned long oldstate)
3371{
3372 unsigned long newstate;
3373
3374 /*
3375 * Ensure that this load happens before any RCU-destructive
3376 * actions the caller might carry out after we return.
3377 */
e534165b 3378 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3379 if (ULONG_CMP_GE(oldstate, newstate))
3380 synchronize_rcu();
3381}
3382EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3383
24560056
PM
3384/**
3385 * get_state_synchronize_sched - Snapshot current RCU-sched state
3386 *
3387 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3388 * to determine whether or not a full grace period has elapsed in the
3389 * meantime.
3390 */
3391unsigned long get_state_synchronize_sched(void)
3392{
3393 /*
3394 * Any prior manipulation of RCU-protected data must happen
3395 * before the load from ->gpnum.
3396 */
3397 smp_mb(); /* ^^^ */
3398
3399 /*
3400 * Make sure this load happens before the purportedly
3401 * time-consuming work between get_state_synchronize_sched()
3402 * and cond_synchronize_sched().
3403 */
3404 return smp_load_acquire(&rcu_sched_state.gpnum);
3405}
3406EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3407
3408/**
3409 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3410 *
3411 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3412 *
3413 * If a full RCU-sched grace period has elapsed since the earlier call to
3414 * get_state_synchronize_sched(), just return. Otherwise, invoke
3415 * synchronize_sched() to wait for a full grace period.
3416 *
3417 * Yes, this function does not take counter wrap into account. But
3418 * counter wrap is harmless. If the counter wraps, we have waited for
3419 * more than 2 billion grace periods (and way more on a 64-bit system!),
3420 * so waiting for one additional grace period should be just fine.
3421 */
3422void cond_synchronize_sched(unsigned long oldstate)
3423{
3424 unsigned long newstate;
3425
3426 /*
3427 * Ensure that this load happens before any RCU-destructive
3428 * actions the caller might carry out after we return.
3429 */
3430 newstate = smp_load_acquire(&rcu_sched_state.completed);
3431 if (ULONG_CMP_GE(oldstate, newstate))
3432 synchronize_sched();
3433}
3434EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3435
64db4cff
PM
3436/*
3437 * Check to see if there is any immediate RCU-related work to be done
3438 * by the current CPU, for the specified type of RCU, returning 1 if so.
3439 * The checks are in order of increasing expense: checks that can be
3440 * carried out against CPU-local state are performed first. However,
3441 * we must check for CPU stalls first, else we might not get a chance.
3442 */
3443static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3444{
2f51f988
PM
3445 struct rcu_node *rnp = rdp->mynode;
3446
64db4cff
PM
3447 rdp->n_rcu_pending++;
3448
3449 /* Check for CPU stalls, if enabled. */
3450 check_cpu_stall(rsp, rdp);
3451
a096932f
PM
3452 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3453 if (rcu_nohz_full_cpu(rsp))
3454 return 0;
3455
64db4cff 3456 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3457 if (rcu_scheduler_fully_active &&
5b74c458 3458 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3459 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3460 rdp->n_rp_core_needs_qs++;
3a19b46a 3461 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3462 rdp->n_rp_report_qs++;
64db4cff 3463 return 1;
7ba5c840 3464 }
64db4cff
PM
3465
3466 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3467 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3468 rdp->n_rp_cb_ready++;
64db4cff 3469 return 1;
7ba5c840 3470 }
64db4cff
PM
3471
3472 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3473 if (cpu_needs_another_gp(rsp, rdp)) {
3474 rdp->n_rp_cpu_needs_gp++;
64db4cff 3475 return 1;
7ba5c840 3476 }
64db4cff
PM
3477
3478 /* Has another RCU grace period completed? */
7d0ae808 3479 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3480 rdp->n_rp_gp_completed++;
64db4cff 3481 return 1;
7ba5c840 3482 }
64db4cff
PM
3483
3484 /* Has a new RCU grace period started? */
7d0ae808
PM
3485 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3486 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3487 rdp->n_rp_gp_started++;
64db4cff 3488 return 1;
7ba5c840 3489 }
64db4cff 3490
96d3fd0d
PM
3491 /* Does this CPU need a deferred NOCB wakeup? */
3492 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3493 rdp->n_rp_nocb_defer_wakeup++;
3494 return 1;
3495 }
3496
64db4cff 3497 /* nothing to do */
7ba5c840 3498 rdp->n_rp_need_nothing++;
64db4cff
PM
3499 return 0;
3500}
3501
3502/*
3503 * Check to see if there is any immediate RCU-related work to be done
3504 * by the current CPU, returning 1 if so. This function is part of the
3505 * RCU implementation; it is -not- an exported member of the RCU API.
3506 */
e3950ecd 3507static int rcu_pending(void)
64db4cff 3508{
6ce75a23
PM
3509 struct rcu_state *rsp;
3510
3511 for_each_rcu_flavor(rsp)
e3950ecd 3512 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3513 return 1;
3514 return 0;
64db4cff
PM
3515}
3516
3517/*
c0f4dfd4
PM
3518 * Return true if the specified CPU has any callback. If all_lazy is
3519 * non-NULL, store an indication of whether all callbacks are lazy.
3520 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3521 */
82072c4f 3522static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3523{
c0f4dfd4
PM
3524 bool al = true;
3525 bool hc = false;
3526 struct rcu_data *rdp;
6ce75a23
PM
3527 struct rcu_state *rsp;
3528
c0f4dfd4 3529 for_each_rcu_flavor(rsp) {
aa6da514 3530 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3531 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3532 continue;
3533 hc = true;
15fecf89 3534 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3535 al = false;
69c8d28c
PM
3536 break;
3537 }
c0f4dfd4
PM
3538 }
3539 if (all_lazy)
3540 *all_lazy = al;
3541 return hc;
64db4cff
PM
3542}
3543
a83eff0a
PM
3544/*
3545 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3546 * the compiler is expected to optimize this away.
3547 */
e66c33d5 3548static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3549 int cpu, unsigned long done)
3550{
3551 trace_rcu_barrier(rsp->name, s, cpu,
3552 atomic_read(&rsp->barrier_cpu_count), done);
3553}
3554
b1420f1c
PM
3555/*
3556 * RCU callback function for _rcu_barrier(). If we are last, wake
3557 * up the task executing _rcu_barrier().
3558 */
24ebbca8 3559static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3560{
24ebbca8
PM
3561 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3562 struct rcu_state *rsp = rdp->rsp;
3563
a83eff0a 3564 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3565 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3566 complete(&rsp->barrier_completion);
a83eff0a 3567 } else {
4f525a52 3568 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3569 }
d0ec774c
PM
3570}
3571
3572/*
3573 * Called with preemption disabled, and from cross-cpu IRQ context.
3574 */
3575static void rcu_barrier_func(void *type)
3576{
037b64ed 3577 struct rcu_state *rsp = type;
fa07a58f 3578 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3579
4f525a52 3580 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3581 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3582 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3583}
3584
d0ec774c
PM
3585/*
3586 * Orchestrate the specified type of RCU barrier, waiting for all
3587 * RCU callbacks of the specified type to complete.
3588 */
037b64ed 3589static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3590{
b1420f1c 3591 int cpu;
b1420f1c 3592 struct rcu_data *rdp;
4f525a52 3593 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3594
4f525a52 3595 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3596
e74f4c45 3597 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3598 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3599
4f525a52
PM
3600 /* Did someone else do our work for us? */
3601 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3602 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3603 smp_mb(); /* caller's subsequent code after above check. */
3604 mutex_unlock(&rsp->barrier_mutex);
3605 return;
3606 }
3607
4f525a52
PM
3608 /* Mark the start of the barrier operation. */
3609 rcu_seq_start(&rsp->barrier_sequence);
3610 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3611
d0ec774c 3612 /*
b1420f1c
PM
3613 * Initialize the count to one rather than to zero in order to
3614 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3615 * (or preemption of this task). Exclude CPU-hotplug operations
3616 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3617 */
7db74df8 3618 init_completion(&rsp->barrier_completion);
24ebbca8 3619 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3620 get_online_cpus();
b1420f1c
PM
3621
3622 /*
1331e7a1
PM
3623 * Force each CPU with callbacks to register a new callback.
3624 * When that callback is invoked, we will know that all of the
3625 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3626 */
3fbfbf7a 3627 for_each_possible_cpu(cpu) {
d1e43fa5 3628 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3629 continue;
b1420f1c 3630 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3631 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3632 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3633 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3634 rsp->barrier_sequence);
d7e29933
PM
3635 } else {
3636 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3637 rsp->barrier_sequence);
41050a00 3638 smp_mb__before_atomic();
d7e29933
PM
3639 atomic_inc(&rsp->barrier_cpu_count);
3640 __call_rcu(&rdp->barrier_head,
3641 rcu_barrier_callback, rsp, cpu, 0);
3642 }
15fecf89 3643 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
a83eff0a 3644 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3645 rsp->barrier_sequence);
037b64ed 3646 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3647 } else {
a83eff0a 3648 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3649 rsp->barrier_sequence);
b1420f1c
PM
3650 }
3651 }
1331e7a1 3652 put_online_cpus();
b1420f1c
PM
3653
3654 /*
3655 * Now that we have an rcu_barrier_callback() callback on each
3656 * CPU, and thus each counted, remove the initial count.
3657 */
24ebbca8 3658 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3659 complete(&rsp->barrier_completion);
b1420f1c
PM
3660
3661 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3662 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3663
4f525a52
PM
3664 /* Mark the end of the barrier operation. */
3665 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3666 rcu_seq_end(&rsp->barrier_sequence);
3667
b1420f1c 3668 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3669 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3670}
d0ec774c
PM
3671
3672/**
3673 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3674 */
3675void rcu_barrier_bh(void)
3676{
037b64ed 3677 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3678}
3679EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3680
3681/**
3682 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3683 */
3684void rcu_barrier_sched(void)
3685{
037b64ed 3686 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3687}
3688EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3689
0aa04b05
PM
3690/*
3691 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3692 * first CPU in a given leaf rcu_node structure coming online. The caller
3693 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3694 * disabled.
3695 */
3696static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3697{
3698 long mask;
3699 struct rcu_node *rnp = rnp_leaf;
3700
3701 for (;;) {
3702 mask = rnp->grpmask;
3703 rnp = rnp->parent;
3704 if (rnp == NULL)
3705 return;
6cf10081 3706 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3707 rnp->qsmaskinit |= mask;
67c583a7 3708 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3709 }
3710}
3711
64db4cff 3712/*
27569620 3713 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3714 */
27569620
PM
3715static void __init
3716rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3717{
3718 unsigned long flags;
394f99a9 3719 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3720 struct rcu_node *rnp = rcu_get_root(rsp);
3721
3722 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3723 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3724 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3725 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3726 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3727 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3728 rdp->cpu = cpu;
d4c08f2a 3729 rdp->rsp = rsp;
3fbfbf7a 3730 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3731 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3732}
3733
3734/*
3735 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3736 * offline event can be happening at a given time. Note also that we
3737 * can accept some slop in the rsp->completed access due to the fact
3738 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3739 */
49fb4c62 3740static void
9b67122a 3741rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3742{
3743 unsigned long flags;
394f99a9 3744 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3745 struct rcu_node *rnp = rcu_get_root(rsp);
3746
3747 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3748 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3749 rdp->qlen_last_fqs_check = 0;
3750 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3751 rdp->blimit = blimit;
15fecf89
PM
3752 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3753 !init_nocb_callback_list(rdp))
3754 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3755 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3756 rcu_sysidle_init_percpu_data(rdp->dynticks);
2625d469 3757 rcu_dynticks_eqs_online();
67c583a7 3758 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3759
0aa04b05
PM
3760 /*
3761 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3762 * propagation up the rcu_node tree will happen at the beginning
3763 * of the next grace period.
3764 */
64db4cff 3765 rnp = rdp->mynode;
2a67e741 3766 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3767 if (!rdp->beenonline)
3768 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3769 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3770 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3771 rdp->completed = rnp->completed;
5b74c458 3772 rdp->cpu_no_qs.b.norm = true;
9577df9a 3773 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3774 rdp->core_needs_qs = false;
0aa04b05 3775 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3776 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3777}
3778
deb34f36
PM
3779/*
3780 * Invoked early in the CPU-online process, when pretty much all
3781 * services are available. The incoming CPU is not present.
3782 */
4df83742 3783int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3784{
6ce75a23
PM
3785 struct rcu_state *rsp;
3786
3787 for_each_rcu_flavor(rsp)
9b67122a 3788 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3789
3790 rcu_prepare_kthreads(cpu);
3791 rcu_spawn_all_nocb_kthreads(cpu);
3792
3793 return 0;
3794}
3795
deb34f36
PM
3796/*
3797 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3798 */
4df83742
TG
3799static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3800{
3801 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3802
3803 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3804}
3805
deb34f36
PM
3806/*
3807 * Near the end of the CPU-online process. Pretty much all services
3808 * enabled, and the CPU is now very much alive.
3809 */
4df83742
TG
3810int rcutree_online_cpu(unsigned int cpu)
3811{
3812 sync_sched_exp_online_cleanup(cpu);
3813 rcutree_affinity_setting(cpu, -1);
da915ad5
PM
3814 if (IS_ENABLED(CONFIG_TREE_SRCU))
3815 srcu_online_cpu(cpu);
4df83742
TG
3816 return 0;
3817}
3818
deb34f36
PM
3819/*
3820 * Near the beginning of the process. The CPU is still very much alive
3821 * with pretty much all services enabled.
3822 */
4df83742
TG
3823int rcutree_offline_cpu(unsigned int cpu)
3824{
3825 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3826 if (IS_ENABLED(CONFIG_TREE_SRCU))
3827 srcu_offline_cpu(cpu);
4df83742
TG
3828 return 0;
3829}
3830
deb34f36
PM
3831/*
3832 * Near the end of the offline process. We do only tracing here.
3833 */
4df83742
TG
3834int rcutree_dying_cpu(unsigned int cpu)
3835{
3836 struct rcu_state *rsp;
3837
3838 for_each_rcu_flavor(rsp)
3839 rcu_cleanup_dying_cpu(rsp);
3840 return 0;
3841}
3842
deb34f36
PM
3843/*
3844 * The outgoing CPU is gone and we are running elsewhere.
3845 */
4df83742
TG
3846int rcutree_dead_cpu(unsigned int cpu)
3847{
3848 struct rcu_state *rsp;
3849
3850 for_each_rcu_flavor(rsp) {
3851 rcu_cleanup_dead_cpu(cpu, rsp);
3852 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3853 }
3854 return 0;
64db4cff
PM
3855}
3856
7ec99de3
PM
3857/*
3858 * Mark the specified CPU as being online so that subsequent grace periods
3859 * (both expedited and normal) will wait on it. Note that this means that
3860 * incoming CPUs are not allowed to use RCU read-side critical sections
3861 * until this function is called. Failing to observe this restriction
3862 * will result in lockdep splats.
deb34f36
PM
3863 *
3864 * Note that this function is special in that it is invoked directly
3865 * from the incoming CPU rather than from the cpuhp_step mechanism.
3866 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3867 */
3868void rcu_cpu_starting(unsigned int cpu)
3869{
3870 unsigned long flags;
3871 unsigned long mask;
3872 struct rcu_data *rdp;
3873 struct rcu_node *rnp;
3874 struct rcu_state *rsp;
3875
3876 for_each_rcu_flavor(rsp) {
fdbb9b31 3877 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3878 rnp = rdp->mynode;
3879 mask = rdp->grpmask;
3880 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3881 rnp->qsmaskinitnext |= mask;
3882 rnp->expmaskinitnext |= mask;
3883 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3884 }
3885}
3886
27d50c7e
TG
3887#ifdef CONFIG_HOTPLUG_CPU
3888/*
3889 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3890 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3891 * bit masks.
3892 */
3893static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3894{
3895 unsigned long flags;
3896 unsigned long mask;
3897 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3898 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3899
27d50c7e
TG
3900 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3901 mask = rdp->grpmask;
3902 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3903 rnp->qsmaskinitnext &= ~mask;
710d60cb 3904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3905}
3906
deb34f36
PM
3907/*
3908 * The outgoing function has no further need of RCU, so remove it from
3909 * the list of CPUs that RCU must track.
3910 *
3911 * Note that this function is special in that it is invoked directly
3912 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3913 * This is because this function must be invoked at a precise location.
3914 */
27d50c7e
TG
3915void rcu_report_dead(unsigned int cpu)
3916{
3917 struct rcu_state *rsp;
3918
3919 /* QS for any half-done expedited RCU-sched GP. */
3920 preempt_disable();
3921 rcu_report_exp_rdp(&rcu_sched_state,
3922 this_cpu_ptr(rcu_sched_state.rda), true);
3923 preempt_enable();
3924 for_each_rcu_flavor(rsp)
3925 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3926}
3927#endif
3928
deb34f36
PM
3929/*
3930 * On non-huge systems, use expedited RCU grace periods to make suspend
3931 * and hibernation run faster.
3932 */
d1d74d14
BP
3933static int rcu_pm_notify(struct notifier_block *self,
3934 unsigned long action, void *hcpu)
3935{
3936 switch (action) {
3937 case PM_HIBERNATION_PREPARE:
3938 case PM_SUSPEND_PREPARE:
3939 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3940 rcu_expedite_gp();
d1d74d14
BP
3941 break;
3942 case PM_POST_HIBERNATION:
3943 case PM_POST_SUSPEND:
5afff48b
PM
3944 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3945 rcu_unexpedite_gp();
d1d74d14
BP
3946 break;
3947 default:
3948 break;
3949 }
3950 return NOTIFY_OK;
3951}
3952
b3dbec76 3953/*
9386c0b7 3954 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3955 */
3956static int __init rcu_spawn_gp_kthread(void)
3957{
3958 unsigned long flags;
a94844b2 3959 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3960 struct rcu_node *rnp;
3961 struct rcu_state *rsp;
a94844b2 3962 struct sched_param sp;
b3dbec76
PM
3963 struct task_struct *t;
3964
a94844b2
PM
3965 /* Force priority into range. */
3966 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3967 kthread_prio = 1;
3968 else if (kthread_prio < 0)
3969 kthread_prio = 0;
3970 else if (kthread_prio > 99)
3971 kthread_prio = 99;
3972 if (kthread_prio != kthread_prio_in)
3973 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3974 kthread_prio, kthread_prio_in);
3975
9386c0b7 3976 rcu_scheduler_fully_active = 1;
b3dbec76 3977 for_each_rcu_flavor(rsp) {
a94844b2 3978 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3979 BUG_ON(IS_ERR(t));
3980 rnp = rcu_get_root(rsp);
6cf10081 3981 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3982 rsp->gp_kthread = t;
a94844b2
PM
3983 if (kthread_prio) {
3984 sp.sched_priority = kthread_prio;
3985 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3986 }
67c583a7 3987 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3988 wake_up_process(t);
b3dbec76 3989 }
35ce7f29 3990 rcu_spawn_nocb_kthreads();
9386c0b7 3991 rcu_spawn_boost_kthreads();
b3dbec76
PM
3992 return 0;
3993}
3994early_initcall(rcu_spawn_gp_kthread);
3995
bbad9379 3996/*
52d7e48b
PM
3997 * This function is invoked towards the end of the scheduler's
3998 * initialization process. Before this is called, the idle task might
3999 * contain synchronous grace-period primitives (during which time, this idle
4000 * task is booting the system, and such primitives are no-ops). After this
4001 * function is called, any synchronous grace-period primitives are run as
4002 * expedited, with the requesting task driving the grace period forward.
900b1028 4003 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4004 * runtime RCU functionality.
bbad9379
PM
4005 */
4006void rcu_scheduler_starting(void)
4007{
4008 WARN_ON(num_online_cpus() != 1);
4009 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4010 rcu_test_sync_prims();
4011 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4012 rcu_test_sync_prims();
bbad9379
PM
4013}
4014
64db4cff
PM
4015/*
4016 * Helper function for rcu_init() that initializes one rcu_state structure.
4017 */
a87f203e 4018static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4019{
cb007102
AG
4020 static const char * const buf[] = RCU_NODE_NAME_INIT;
4021 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4022 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4023 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4024
199977bf 4025 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4026 int cpustride = 1;
4027 int i;
4028 int j;
4029 struct rcu_node *rnp;
4030
05b84aec 4031 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4032
3eaaaf6c
PM
4033 /* Silence gcc 4.8 false positive about array index out of range. */
4034 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4035 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4036
64db4cff
PM
4037 /* Initialize the level-tracking arrays. */
4038
f885b7f2 4039 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4040 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4041 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4042
4043 /* Initialize the elements themselves, starting from the leaves. */
4044
f885b7f2 4045 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4046 cpustride *= levelspread[i];
64db4cff 4047 rnp = rsp->level[i];
41f5c631 4048 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4049 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4050 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4051 &rcu_node_class[i], buf[i]);
394f2769
PM
4052 raw_spin_lock_init(&rnp->fqslock);
4053 lockdep_set_class_and_name(&rnp->fqslock,
4054 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4055 rnp->gpnum = rsp->gpnum;
4056 rnp->completed = rsp->completed;
64db4cff
PM
4057 rnp->qsmask = 0;
4058 rnp->qsmaskinit = 0;
4059 rnp->grplo = j * cpustride;
4060 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4061 if (rnp->grphi >= nr_cpu_ids)
4062 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4063 if (i == 0) {
4064 rnp->grpnum = 0;
4065 rnp->grpmask = 0;
4066 rnp->parent = NULL;
4067 } else {
199977bf 4068 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4069 rnp->grpmask = 1UL << rnp->grpnum;
4070 rnp->parent = rsp->level[i - 1] +
199977bf 4071 j / levelspread[i - 1];
64db4cff
PM
4072 }
4073 rnp->level = i;
12f5f524 4074 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4075 rcu_init_one_nocb(rnp);
f6a12f34
PM
4076 init_waitqueue_head(&rnp->exp_wq[0]);
4077 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4078 init_waitqueue_head(&rnp->exp_wq[2]);
4079 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4080 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4081 }
4082 }
0c34029a 4083
abedf8e2
PG
4084 init_swait_queue_head(&rsp->gp_wq);
4085 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4086 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4087 for_each_possible_cpu(i) {
4a90a068 4088 while (i > rnp->grphi)
0c34029a 4089 rnp++;
394f99a9 4090 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4091 rcu_boot_init_percpu_data(i, rsp);
4092 }
6ce75a23 4093 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4094}
4095
f885b7f2
PM
4096/*
4097 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4098 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4099 * the ->node array in the rcu_state structure.
4100 */
4101static void __init rcu_init_geometry(void)
4102{
026ad283 4103 ulong d;
f885b7f2 4104 int i;
05b84aec 4105 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4106
026ad283
PM
4107 /*
4108 * Initialize any unspecified boot parameters.
4109 * The default values of jiffies_till_first_fqs and
4110 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4111 * value, which is a function of HZ, then adding one for each
4112 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4113 */
4114 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4115 if (jiffies_till_first_fqs == ULONG_MAX)
4116 jiffies_till_first_fqs = d;
4117 if (jiffies_till_next_fqs == ULONG_MAX)
4118 jiffies_till_next_fqs = d;
4119
f885b7f2 4120 /* If the compile-time values are accurate, just leave. */
47d631af 4121 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4122 nr_cpu_ids == NR_CPUS)
f885b7f2 4123 return;
39479098
PM
4124 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4125 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4126
f885b7f2 4127 /*
ee968ac6
PM
4128 * The boot-time rcu_fanout_leaf parameter must be at least two
4129 * and cannot exceed the number of bits in the rcu_node masks.
4130 * Complain and fall back to the compile-time values if this
4131 * limit is exceeded.
f885b7f2 4132 */
ee968ac6 4133 if (rcu_fanout_leaf < 2 ||
75cf15a4 4134 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4135 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4136 WARN_ON(1);
4137 return;
4138 }
4139
f885b7f2
PM
4140 /*
4141 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4142 * with the given number of levels.
f885b7f2 4143 */
9618138b 4144 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4145 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4146 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4147
4148 /*
75cf15a4 4149 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4150 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4151 */
ee968ac6
PM
4152 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4153 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4154 WARN_ON(1);
4155 return;
4156 }
f885b7f2 4157
679f9858 4158 /* Calculate the number of levels in the tree. */
9618138b 4159 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4160 }
9618138b 4161 rcu_num_lvls = i + 1;
679f9858 4162
f885b7f2 4163 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4164 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4165 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4166 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4167 }
f885b7f2
PM
4168
4169 /* Calculate the total number of rcu_node structures. */
4170 rcu_num_nodes = 0;
679f9858 4171 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4172 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4173}
4174
a3dc2948
PM
4175/*
4176 * Dump out the structure of the rcu_node combining tree associated
4177 * with the rcu_state structure referenced by rsp.
4178 */
4179static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4180{
4181 int level = 0;
4182 struct rcu_node *rnp;
4183
4184 pr_info("rcu_node tree layout dump\n");
4185 pr_info(" ");
4186 rcu_for_each_node_breadth_first(rsp, rnp) {
4187 if (rnp->level != level) {
4188 pr_cont("\n");
4189 pr_info(" ");
4190 level = rnp->level;
4191 }
4192 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4193 }
4194 pr_cont("\n");
4195}
4196
9f680ab4 4197void __init rcu_init(void)
64db4cff 4198{
017c4261 4199 int cpu;
9f680ab4 4200
47627678
PM
4201 rcu_early_boot_tests();
4202
f41d911f 4203 rcu_bootup_announce();
f885b7f2 4204 rcu_init_geometry();
a87f203e
PM
4205 rcu_init_one(&rcu_bh_state);
4206 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4207 if (dump_tree)
4208 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4209 __rcu_init_preempt();
b5b39360 4210 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4211
4212 /*
4213 * We don't need protection against CPU-hotplug here because
4214 * this is called early in boot, before either interrupts
4215 * or the scheduler are operational.
4216 */
d1d74d14 4217 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4218 for_each_online_cpu(cpu) {
4df83742 4219 rcutree_prepare_cpu(cpu);
7ec99de3 4220 rcu_cpu_starting(cpu);
da915ad5
PM
4221 if (IS_ENABLED(CONFIG_TREE_SRCU))
4222 srcu_online_cpu(cpu);
7ec99de3 4223 }
64db4cff
PM
4224}
4225
3549c2bc 4226#include "tree_exp.h"
4102adab 4227#include "tree_plugin.h"