]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree.c
rcu: Update rcu_bootup_announce_oddness()
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
15fecf89
PM
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 104 .name = RCU_STATE_NAME(sname), \
a4889858 105 .abbr = sabbr, \
f6a12f34 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
b28a7c01 113static struct rcu_state *const rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
a3dc2948
PM
116/* Dump rcu_node combining tree at boot to verify correct setup. */
117static bool dump_tree;
118module_param(dump_tree, bool, 0444);
7fa27001
PM
119/* Control rcu_node-tree auto-balancing at boot time. */
120static bool rcu_fanout_exact;
121module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 124module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 126/* Number of rcu_nodes at specified level. */
e95d68d2 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
129/* panic() on RCU Stall sysctl. */
130int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 131
b0d30417 132/*
52d7e48b
PM
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 137 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 143 */
bbad9379
PM
144int rcu_scheduler_active __read_mostly;
145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
b0d30417
PM
147/*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159static int rcu_scheduler_fully_active __read_mostly;
160
0aa04b05
PM
161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
164static void invoke_rcu_core(void);
165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
166static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
3549c2bc 168static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 169
a94844b2 170/* rcuc/rcub kthread realtime priority */
26730f55 171#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 172static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
173#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
174static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
176module_param(kthread_prio, int, 0644);
177
8d7dc928 178/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
179
180#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
181static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
182module_param(gp_preinit_delay, int, 0644);
183#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184static const int gp_preinit_delay;
185#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186
8d7dc928
PM
187#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
188static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 189module_param(gp_init_delay, int, 0644);
8d7dc928
PM
190#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191static const int gp_init_delay;
192#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 193
0f41c0dd
PM
194#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
195static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
196module_param(gp_cleanup_delay, int, 0644);
197#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198static const int gp_cleanup_delay;
199#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
200
eab128e8
PM
201/*
202 * Number of grace periods between delays, normalized by the duration of
bfd090be 203 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
204 * each delay. The reason for this normalization is that it means that,
205 * for non-zero delays, the overall slowdown of grace periods is constant
206 * regardless of the duration of the delay. This arrangement balances
207 * the need for long delays to increase some race probabilities with the
208 * need for fast grace periods to increase other race probabilities.
209 */
210#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 211
4a298656
PM
212/*
213 * Track the rcutorture test sequence number and the update version
214 * number within a given test. The rcutorture_testseq is incremented
215 * on every rcutorture module load and unload, so has an odd value
216 * when a test is running. The rcutorture_vernum is set to zero
217 * when rcutorture starts and is incremented on each rcutorture update.
218 * These variables enable correlating rcutorture output with the
219 * RCU tracing information.
220 */
221unsigned long rcutorture_testseq;
222unsigned long rcutorture_vernum;
223
0aa04b05
PM
224/*
225 * Compute the mask of online CPUs for the specified rcu_node structure.
226 * This will not be stable unless the rcu_node structure's ->lock is
227 * held, but the bit corresponding to the current CPU will be stable
228 * in most contexts.
229 */
230unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231{
7d0ae808 232 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
233}
234
fc2219d4 235/*
7d0ae808 236 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
237 * permit this function to be invoked without holding the root rcu_node
238 * structure's ->lock, but of course results can be subject to change.
239 */
240static int rcu_gp_in_progress(struct rcu_state *rsp)
241{
7d0ae808 242 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
243}
244
b1f77b05 245/*
d6714c22 246 * Note a quiescent state. Because we do not need to know
b1f77b05 247 * how many quiescent states passed, just if there was at least
d6714c22 248 * one since the start of the grace period, this just sets a flag.
e4cc1f22 249 * The caller must have disabled preemption.
b1f77b05 250 */
284a8c93 251void rcu_sched_qs(void)
b1f77b05 252{
f4687d26 253 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
254 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
255 return;
256 trace_rcu_grace_period(TPS("rcu_sched"),
257 __this_cpu_read(rcu_sched_data.gpnum),
258 TPS("cpuqs"));
259 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
260 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
261 return;
46a5d164
PM
262 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
263 rcu_report_exp_rdp(&rcu_sched_state,
264 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
265}
266
284a8c93 267void rcu_bh_qs(void)
b1f77b05 268{
f4687d26 269 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 270 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
271 trace_rcu_grace_period(TPS("rcu_bh"),
272 __this_cpu_read(rcu_bh_data.gpnum),
273 TPS("cpuqs"));
5b74c458 274 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 275 }
b1f77b05 276}
64db4cff 277
b8c17e66
PM
278/*
279 * Steal a bit from the bottom of ->dynticks for idle entry/exit
280 * control. Initially this is for TLB flushing.
281 */
282#define RCU_DYNTICK_CTRL_MASK 0x1
283#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
284#ifndef rcu_eqs_special_exit
285#define rcu_eqs_special_exit() do { } while (0)
286#endif
4a81e832
PM
287
288static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
289 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 290 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
291#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
292 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
293 .dynticks_idle = ATOMIC_INIT(1),
294#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
295};
296
03ecd3f4
SRV
297/*
298 * There's a few places, currently just in the tracing infrastructure,
299 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
300 * a small location where that will not even work. In those cases
301 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
302 * can be called.
303 */
304static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
305
306bool rcu_irq_enter_disabled(void)
307{
308 return this_cpu_read(disable_rcu_irq_enter);
309}
310
2625d469
PM
311/*
312 * Record entry into an extended quiescent state. This is only to be
313 * called when not already in an extended quiescent state.
314 */
315static void rcu_dynticks_eqs_enter(void)
316{
317 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 318 int seq;
2625d469
PM
319
320 /*
b8c17e66 321 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
322 * critical sections, and we also must force ordering with the
323 * next idle sojourn.
324 */
b8c17e66
PM
325 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
326 /* Better be in an extended quiescent state! */
327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 (seq & RCU_DYNTICK_CTRL_CTR));
329 /* Better not have special action (TLB flush) pending! */
330 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
331 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
332}
333
334/*
335 * Record exit from an extended quiescent state. This is only to be
336 * called from an extended quiescent state.
337 */
338static void rcu_dynticks_eqs_exit(void)
339{
340 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 341 int seq;
2625d469
PM
342
343 /*
b8c17e66 344 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
345 * and we also must force ordering with the next RCU read-side
346 * critical section.
347 */
b8c17e66
PM
348 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
349 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
350 !(seq & RCU_DYNTICK_CTRL_CTR));
351 if (seq & RCU_DYNTICK_CTRL_MASK) {
352 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
353 smp_mb__after_atomic(); /* _exit after clearing mask. */
354 /* Prefer duplicate flushes to losing a flush. */
355 rcu_eqs_special_exit();
356 }
2625d469
PM
357}
358
359/*
360 * Reset the current CPU's ->dynticks counter to indicate that the
361 * newly onlined CPU is no longer in an extended quiescent state.
362 * This will either leave the counter unchanged, or increment it
363 * to the next non-quiescent value.
364 *
365 * The non-atomic test/increment sequence works because the upper bits
366 * of the ->dynticks counter are manipulated only by the corresponding CPU,
367 * or when the corresponding CPU is offline.
368 */
369static void rcu_dynticks_eqs_online(void)
370{
371 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
372
b8c17e66 373 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 374 return;
b8c17e66 375 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
376}
377
02a5c550
PM
378/*
379 * Is the current CPU in an extended quiescent state?
380 *
381 * No ordering, as we are sampling CPU-local information.
382 */
383bool rcu_dynticks_curr_cpu_in_eqs(void)
384{
385 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
386
b8c17e66 387 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
388}
389
8b2f63ab
PM
390/*
391 * Snapshot the ->dynticks counter with full ordering so as to allow
392 * stable comparison of this counter with past and future snapshots.
393 */
02a5c550 394int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
395{
396 int snap = atomic_add_return(0, &rdtp->dynticks);
397
b8c17e66 398 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
399}
400
02a5c550
PM
401/*
402 * Return true if the snapshot returned from rcu_dynticks_snap()
403 * indicates that RCU is in an extended quiescent state.
404 */
405static bool rcu_dynticks_in_eqs(int snap)
406{
b8c17e66 407 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
408}
409
410/*
411 * Return true if the CPU corresponding to the specified rcu_dynticks
412 * structure has spent some time in an extended quiescent state since
413 * rcu_dynticks_snap() returned the specified snapshot.
414 */
415static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
416{
417 return snap != rcu_dynticks_snap(rdtp);
418}
419
6563de9d
PM
420/*
421 * Do a double-increment of the ->dynticks counter to emulate a
422 * momentary idle-CPU quiescent state.
423 */
424static void rcu_dynticks_momentary_idle(void)
425{
426 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
427 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
428 &rdtp->dynticks);
6563de9d
PM
429
430 /* It is illegal to call this from idle state. */
b8c17e66 431 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
432}
433
b8c17e66
PM
434/*
435 * Set the special (bottom) bit of the specified CPU so that it
436 * will take special action (such as flushing its TLB) on the
437 * next exit from an extended quiescent state. Returns true if
438 * the bit was successfully set, or false if the CPU was not in
439 * an extended quiescent state.
440 */
441bool rcu_eqs_special_set(int cpu)
442{
443 int old;
444 int new;
445 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
446
447 do {
448 old = atomic_read(&rdtp->dynticks);
449 if (old & RCU_DYNTICK_CTRL_CTR)
450 return false;
451 new = old | RCU_DYNTICK_CTRL_MASK;
452 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
453 return true;
6563de9d 454}
5cd37193 455
4a81e832
PM
456/*
457 * Let the RCU core know that this CPU has gone through the scheduler,
458 * which is a quiescent state. This is called when the need for a
459 * quiescent state is urgent, so we burn an atomic operation and full
460 * memory barriers to let the RCU core know about it, regardless of what
461 * this CPU might (or might not) do in the near future.
462 *
0f9be8ca 463 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
464 *
465 * The caller must have disabled interrupts.
4a81e832
PM
466 */
467static void rcu_momentary_dyntick_idle(void)
468{
0f9be8ca
PM
469 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
470 rcu_dynticks_momentary_idle();
4a81e832
PM
471}
472
25502a6c
PM
473/*
474 * Note a context switch. This is a quiescent state for RCU-sched,
475 * and requires special handling for preemptible RCU.
46a5d164 476 * The caller must have disabled interrupts.
25502a6c 477 */
bcbfdd01 478void rcu_note_context_switch(bool preempt)
25502a6c 479{
bb73c52b 480 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 481 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 482 rcu_sched_qs();
5b72f964 483 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
484 /* Load rcu_urgent_qs before other flags. */
485 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
486 goto out;
487 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 489 rcu_momentary_dyntick_idle();
9226b10d 490 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
491 if (!preempt)
492 rcu_note_voluntary_context_switch_lite(current);
9226b10d 493out:
f7f7bac9 494 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 495 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 496}
29ce8310 497EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 498
5cd37193 499/*
1925d196 500 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
501 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
502 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 503 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
504 * be none of them). Either way, do a lightweight quiescent state for
505 * all RCU flavors.
bb73c52b
BF
506 *
507 * The barrier() calls are redundant in the common case when this is
508 * called externally, but just in case this is called from within this
509 * file.
510 *
5cd37193
PM
511 */
512void rcu_all_qs(void)
513{
46a5d164
PM
514 unsigned long flags;
515
9226b10d
PM
516 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
517 return;
518 preempt_disable();
519 /* Load rcu_urgent_qs before other flags. */
520 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
521 preempt_enable();
522 return;
523 }
524 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 525 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 526 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 527 local_irq_save(flags);
5cd37193 528 rcu_momentary_dyntick_idle();
46a5d164
PM
529 local_irq_restore(flags);
530 }
9226b10d 531 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 532 rcu_sched_qs();
9577df9a 533 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 534 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 535 preempt_enable();
5cd37193
PM
536}
537EXPORT_SYMBOL_GPL(rcu_all_qs);
538
17c7798b
PM
539#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
540static long blimit = DEFAULT_RCU_BLIMIT;
541#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
542static long qhimark = DEFAULT_RCU_QHIMARK;
543#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
544static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 545
878d7439
ED
546module_param(blimit, long, 0444);
547module_param(qhimark, long, 0444);
548module_param(qlowmark, long, 0444);
3d76c082 549
026ad283
PM
550static ulong jiffies_till_first_fqs = ULONG_MAX;
551static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 552static bool rcu_kick_kthreads;
d40011f6
PM
553
554module_param(jiffies_till_first_fqs, ulong, 0644);
555module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 556module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 557
4a81e832
PM
558/*
559 * How long the grace period must be before we start recruiting
560 * quiescent-state help from rcu_note_context_switch().
561 */
562static ulong jiffies_till_sched_qs = HZ / 20;
563module_param(jiffies_till_sched_qs, ulong, 0644);
564
48a7639c 565static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 566 struct rcu_data *rdp);
217af2a2
PM
567static void force_qs_rnp(struct rcu_state *rsp,
568 int (*f)(struct rcu_data *rsp, bool *isidle,
569 unsigned long *maxj),
570 bool *isidle, unsigned long *maxj);
4cdfc175 571static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 572static int rcu_pending(void);
64db4cff
PM
573
574/*
917963d0 575 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 576 */
917963d0
PM
577unsigned long rcu_batches_started(void)
578{
579 return rcu_state_p->gpnum;
580}
581EXPORT_SYMBOL_GPL(rcu_batches_started);
582
583/*
584 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 585 */
917963d0
PM
586unsigned long rcu_batches_started_sched(void)
587{
588 return rcu_sched_state.gpnum;
589}
590EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
591
592/*
593 * Return the number of RCU BH batches started thus far for debug & stats.
594 */
595unsigned long rcu_batches_started_bh(void)
596{
597 return rcu_bh_state.gpnum;
598}
599EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
600
601/*
602 * Return the number of RCU batches completed thus far for debug & stats.
603 */
604unsigned long rcu_batches_completed(void)
605{
606 return rcu_state_p->completed;
607}
608EXPORT_SYMBOL_GPL(rcu_batches_completed);
609
610/*
611 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 612 */
9733e4f0 613unsigned long rcu_batches_completed_sched(void)
64db4cff 614{
d6714c22 615 return rcu_sched_state.completed;
64db4cff 616}
d6714c22 617EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
618
619/*
917963d0 620 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 621 */
9733e4f0 622unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
623{
624 return rcu_bh_state.completed;
625}
626EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
627
291783b8
PM
628/*
629 * Return the number of RCU expedited batches completed thus far for
630 * debug & stats. Odd numbers mean that a batch is in progress, even
631 * numbers mean idle. The value returned will thus be roughly double
632 * the cumulative batches since boot.
633 */
634unsigned long rcu_exp_batches_completed(void)
635{
636 return rcu_state_p->expedited_sequence;
637}
638EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
639
640/*
641 * Return the number of RCU-sched expedited batches completed thus far
642 * for debug & stats. Similar to rcu_exp_batches_completed().
643 */
644unsigned long rcu_exp_batches_completed_sched(void)
645{
646 return rcu_sched_state.expedited_sequence;
647}
648EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
649
a381d757
ACB
650/*
651 * Force a quiescent state.
652 */
653void rcu_force_quiescent_state(void)
654{
e534165b 655 force_quiescent_state(rcu_state_p);
a381d757
ACB
656}
657EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
658
bf66f18e
PM
659/*
660 * Force a quiescent state for RCU BH.
661 */
662void rcu_bh_force_quiescent_state(void)
663{
4cdfc175 664 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
665}
666EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
667
e7580f33
PM
668/*
669 * Force a quiescent state for RCU-sched.
670 */
671void rcu_sched_force_quiescent_state(void)
672{
673 force_quiescent_state(&rcu_sched_state);
674}
675EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
676
afea227f
PM
677/*
678 * Show the state of the grace-period kthreads.
679 */
680void show_rcu_gp_kthreads(void)
681{
682 struct rcu_state *rsp;
683
684 for_each_rcu_flavor(rsp) {
685 pr_info("%s: wait state: %d ->state: %#lx\n",
686 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
687 /* sched_show_task(rsp->gp_kthread); */
688 }
689}
690EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
691
4a298656
PM
692/*
693 * Record the number of times rcutorture tests have been initiated and
694 * terminated. This information allows the debugfs tracing stats to be
695 * correlated to the rcutorture messages, even when the rcutorture module
696 * is being repeatedly loaded and unloaded. In other words, we cannot
697 * store this state in rcutorture itself.
698 */
699void rcutorture_record_test_transition(void)
700{
701 rcutorture_testseq++;
702 rcutorture_vernum = 0;
703}
704EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
705
ad0dc7f9
PM
706/*
707 * Send along grace-period-related data for rcutorture diagnostics.
708 */
709void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
710 unsigned long *gpnum, unsigned long *completed)
711{
712 struct rcu_state *rsp = NULL;
713
714 switch (test_type) {
715 case RCU_FLAVOR:
e534165b 716 rsp = rcu_state_p;
ad0dc7f9
PM
717 break;
718 case RCU_BH_FLAVOR:
719 rsp = &rcu_bh_state;
720 break;
721 case RCU_SCHED_FLAVOR:
722 rsp = &rcu_sched_state;
723 break;
724 default:
725 break;
726 }
7f6733c3 727 if (rsp == NULL)
ad0dc7f9 728 return;
7f6733c3
PM
729 *flags = READ_ONCE(rsp->gp_flags);
730 *gpnum = READ_ONCE(rsp->gpnum);
731 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
732}
733EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
734
4a298656
PM
735/*
736 * Record the number of writer passes through the current rcutorture test.
737 * This is also used to correlate debugfs tracing stats with the rcutorture
738 * messages.
739 */
740void rcutorture_record_progress(unsigned long vernum)
741{
742 rcutorture_vernum++;
743}
744EXPORT_SYMBOL_GPL(rcutorture_record_progress);
745
365187fb
PM
746/*
747 * Return the root node of the specified rcu_state structure.
748 */
749static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
750{
751 return &rsp->node[0];
752}
753
754/*
755 * Is there any need for future grace periods?
756 * Interrupts must be disabled. If the caller does not hold the root
757 * rnp_node structure's ->lock, the results are advisory only.
758 */
759static int rcu_future_needs_gp(struct rcu_state *rsp)
760{
761 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 762 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
763 int *fp = &rnp->need_future_gp[idx];
764
7d0ae808 765 return READ_ONCE(*fp);
365187fb
PM
766}
767
64db4cff 768/*
dc35c893
PM
769 * Does the current CPU require a not-yet-started grace period?
770 * The caller must have disabled interrupts to prevent races with
771 * normal callback registry.
64db4cff 772 */
d117c8aa 773static bool
64db4cff
PM
774cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
775{
dc35c893 776 if (rcu_gp_in_progress(rsp))
d117c8aa 777 return false; /* No, a grace period is already in progress. */
365187fb 778 if (rcu_future_needs_gp(rsp))
d117c8aa 779 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 780 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 781 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 782 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 783 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
784 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
785 READ_ONCE(rsp->completed)))
786 return true; /* Yes, CBs for future grace period. */
d117c8aa 787 return false; /* No grace period needed. */
64db4cff
PM
788}
789
9b2e4f18 790/*
a278d471 791 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 792 *
a278d471
PM
793 * Enter idle, doing appropriate accounting. The caller must have
794 * disabled interrupts.
9b2e4f18 795 */
a278d471 796static void rcu_eqs_enter_common(bool user)
9b2e4f18 797{
96d3fd0d
PM
798 struct rcu_state *rsp;
799 struct rcu_data *rdp;
a278d471 800 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 801
a278d471 802 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
803 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
804 !user && !is_idle_task(current)) {
289828e6
PM
805 struct task_struct *idle __maybe_unused =
806 idle_task(smp_processor_id());
0989cb46 807
a278d471 808 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 809 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
810 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
811 current->pid, current->comm,
812 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 813 }
96d3fd0d
PM
814 for_each_rcu_flavor(rsp) {
815 rdp = this_cpu_ptr(rsp->rda);
816 do_nocb_deferred_wakeup(rdp);
817 }
198bbf81 818 rcu_prepare_for_idle();
03ecd3f4 819 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
820 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
821 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 822 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 823 rcu_dynticks_task_enter();
c44e2cdd
PM
824
825 /*
adf5091e 826 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
827 * in an RCU read-side critical section.
828 */
f78f5b90
PM
829 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
830 "Illegal idle entry in RCU read-side critical section.");
831 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
832 "Illegal idle entry in RCU-bh read-side critical section.");
833 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
834 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 835}
64db4cff 836
adf5091e
FW
837/*
838 * Enter an RCU extended quiescent state, which can be either the
839 * idle loop or adaptive-tickless usermode execution.
64db4cff 840 */
adf5091e 841static void rcu_eqs_enter(bool user)
64db4cff 842{
64db4cff
PM
843 struct rcu_dynticks *rdtp;
844
c9d4b0af 845 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 846 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
847 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
848 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
849 rcu_eqs_enter_common(user);
850 else
29e37d81 851 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 852}
adf5091e
FW
853
854/**
855 * rcu_idle_enter - inform RCU that current CPU is entering idle
856 *
857 * Enter idle mode, in other words, -leave- the mode in which RCU
858 * read-side critical sections can occur. (Though RCU read-side
859 * critical sections can occur in irq handlers in idle, a possibility
860 * handled by irq_enter() and irq_exit().)
861 *
862 * We crowbar the ->dynticks_nesting field to zero to allow for
863 * the possibility of usermode upcalls having messed up our count
864 * of interrupt nesting level during the prior busy period.
865 */
866void rcu_idle_enter(void)
867{
c5d900bf
FW
868 unsigned long flags;
869
870 local_irq_save(flags);
cb349ca9 871 rcu_eqs_enter(false);
28ced795 872 rcu_sysidle_enter(0);
c5d900bf 873 local_irq_restore(flags);
adf5091e 874}
8a2ecf47 875EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 876
d1ec4c34 877#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
878/**
879 * rcu_user_enter - inform RCU that we are resuming userspace.
880 *
881 * Enter RCU idle mode right before resuming userspace. No use of RCU
882 * is permitted between this call and rcu_user_exit(). This way the
883 * CPU doesn't need to maintain the tick for RCU maintenance purposes
884 * when the CPU runs in userspace.
885 */
886void rcu_user_enter(void)
887{
91d1aa43 888 rcu_eqs_enter(1);
adf5091e 889}
d1ec4c34 890#endif /* CONFIG_NO_HZ_FULL */
19dd1591 891
9b2e4f18
PM
892/**
893 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
894 *
895 * Exit from an interrupt handler, which might possibly result in entering
896 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 897 * sections can occur. The caller must have disabled interrupts.
64db4cff 898 *
9b2e4f18
PM
899 * This code assumes that the idle loop never does anything that might
900 * result in unbalanced calls to irq_enter() and irq_exit(). If your
901 * architecture violates this assumption, RCU will give you what you
902 * deserve, good and hard. But very infrequently and irreproducibly.
903 *
904 * Use things like work queues to work around this limitation.
905 *
906 * You have been warned.
64db4cff 907 */
9b2e4f18 908void rcu_irq_exit(void)
64db4cff 909{
64db4cff
PM
910 struct rcu_dynticks *rdtp;
911
7c9906ca 912 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 913 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 914 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
915 rdtp->dynticks_nesting < 1);
916 if (rdtp->dynticks_nesting <= 1) {
917 rcu_eqs_enter_common(true);
918 } else {
919 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
920 rdtp->dynticks_nesting--;
921 }
28ced795 922 rcu_sysidle_enter(1);
7c9906ca
PM
923}
924
925/*
926 * Wrapper for rcu_irq_exit() where interrupts are enabled.
927 */
928void rcu_irq_exit_irqson(void)
929{
930 unsigned long flags;
931
932 local_irq_save(flags);
933 rcu_irq_exit();
9b2e4f18
PM
934 local_irq_restore(flags);
935}
936
937/*
adf5091e 938 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
939 *
940 * If the new value of the ->dynticks_nesting counter was previously zero,
941 * we really have exited idle, and must do the appropriate accounting.
942 * The caller must have disabled interrupts.
943 */
28ced795 944static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 945{
2625d469 946 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 947
176f8f7a 948 rcu_dynticks_task_exit();
2625d469 949 rcu_dynticks_eqs_exit();
8fa7845d 950 rcu_cleanup_after_idle();
f7f7bac9 951 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
952 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
953 !user && !is_idle_task(current)) {
289828e6
PM
954 struct task_struct *idle __maybe_unused =
955 idle_task(smp_processor_id());
0989cb46 956
f7f7bac9 957 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 958 oldval, rdtp->dynticks_nesting);
274529ba 959 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
960 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
961 current->pid, current->comm,
962 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
963 }
964}
965
adf5091e
FW
966/*
967 * Exit an RCU extended quiescent state, which can be either the
968 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 969 */
adf5091e 970static void rcu_eqs_exit(bool user)
9b2e4f18 971{
9b2e4f18
PM
972 struct rcu_dynticks *rdtp;
973 long long oldval;
974
c9d4b0af 975 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 976 oldval = rdtp->dynticks_nesting;
1ce46ee5 977 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 978 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 979 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 980 } else {
29e37d81 981 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 982 rcu_eqs_exit_common(oldval, user);
3a592405 983 }
9b2e4f18 984}
adf5091e
FW
985
986/**
987 * rcu_idle_exit - inform RCU that current CPU is leaving idle
988 *
989 * Exit idle mode, in other words, -enter- the mode in which RCU
990 * read-side critical sections can occur.
991 *
992 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
993 * allow for the possibility of usermode upcalls messing up our count
994 * of interrupt nesting level during the busy period that is just
995 * now starting.
996 */
997void rcu_idle_exit(void)
998{
c5d900bf
FW
999 unsigned long flags;
1000
1001 local_irq_save(flags);
cb349ca9 1002 rcu_eqs_exit(false);
28ced795 1003 rcu_sysidle_exit(0);
c5d900bf 1004 local_irq_restore(flags);
adf5091e 1005}
8a2ecf47 1006EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 1007
d1ec4c34 1008#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
1009/**
1010 * rcu_user_exit - inform RCU that we are exiting userspace.
1011 *
1012 * Exit RCU idle mode while entering the kernel because it can
1013 * run a RCU read side critical section anytime.
1014 */
1015void rcu_user_exit(void)
1016{
91d1aa43 1017 rcu_eqs_exit(1);
adf5091e 1018}
d1ec4c34 1019#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1020
9b2e4f18
PM
1021/**
1022 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1023 *
1024 * Enter an interrupt handler, which might possibly result in exiting
1025 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1026 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1027 *
1028 * Note that the Linux kernel is fully capable of entering an interrupt
1029 * handler that it never exits, for example when doing upcalls to
1030 * user mode! This code assumes that the idle loop never does upcalls to
1031 * user mode. If your architecture does do upcalls from the idle loop (or
1032 * does anything else that results in unbalanced calls to the irq_enter()
1033 * and irq_exit() functions), RCU will give you what you deserve, good
1034 * and hard. But very infrequently and irreproducibly.
1035 *
1036 * Use things like work queues to work around this limitation.
1037 *
1038 * You have been warned.
1039 */
1040void rcu_irq_enter(void)
1041{
9b2e4f18
PM
1042 struct rcu_dynticks *rdtp;
1043 long long oldval;
1044
7c9906ca 1045 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1046 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1047 oldval = rdtp->dynticks_nesting;
1048 rdtp->dynticks_nesting++;
1ce46ee5
PM
1049 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1050 rdtp->dynticks_nesting == 0);
b6fc6020 1051 if (oldval)
f7f7bac9 1052 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1053 else
28ced795
CL
1054 rcu_eqs_exit_common(oldval, true);
1055 rcu_sysidle_exit(1);
7c9906ca
PM
1056}
1057
1058/*
1059 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1060 */
1061void rcu_irq_enter_irqson(void)
1062{
1063 unsigned long flags;
1064
1065 local_irq_save(flags);
1066 rcu_irq_enter();
64db4cff 1067 local_irq_restore(flags);
64db4cff
PM
1068}
1069
1070/**
1071 * rcu_nmi_enter - inform RCU of entry to NMI context
1072 *
734d1680
PM
1073 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1074 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1075 * that the CPU is active. This implementation permits nested NMIs, as
1076 * long as the nesting level does not overflow an int. (You will probably
1077 * run out of stack space first.)
64db4cff
PM
1078 */
1079void rcu_nmi_enter(void)
1080{
c9d4b0af 1081 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1082 int incby = 2;
64db4cff 1083
734d1680
PM
1084 /* Complain about underflow. */
1085 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1086
1087 /*
1088 * If idle from RCU viewpoint, atomically increment ->dynticks
1089 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1090 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1091 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1092 * to be in the outermost NMI handler that interrupted an RCU-idle
1093 * period (observation due to Andy Lutomirski).
1094 */
02a5c550 1095 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1096 rcu_dynticks_eqs_exit();
734d1680
PM
1097 incby = 1;
1098 }
1099 rdtp->dynticks_nmi_nesting += incby;
1100 barrier();
64db4cff
PM
1101}
1102
1103/**
1104 * rcu_nmi_exit - inform RCU of exit from NMI context
1105 *
734d1680
PM
1106 * If we are returning from the outermost NMI handler that interrupted an
1107 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1108 * to let the RCU grace-period handling know that the CPU is back to
1109 * being RCU-idle.
64db4cff
PM
1110 */
1111void rcu_nmi_exit(void)
1112{
c9d4b0af 1113 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1114
734d1680
PM
1115 /*
1116 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1117 * (We are exiting an NMI handler, so RCU better be paying attention
1118 * to us!)
1119 */
1120 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1121 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1122
1123 /*
1124 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1125 * leave it in non-RCU-idle state.
1126 */
1127 if (rdtp->dynticks_nmi_nesting != 1) {
1128 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1129 return;
734d1680
PM
1130 }
1131
1132 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1133 rdtp->dynticks_nmi_nesting = 0;
2625d469 1134 rcu_dynticks_eqs_enter();
64db4cff
PM
1135}
1136
1137/**
5c173eb8
PM
1138 * __rcu_is_watching - are RCU read-side critical sections safe?
1139 *
1140 * Return true if RCU is watching the running CPU, which means that
1141 * this CPU can safely enter RCU read-side critical sections. Unlike
1142 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1143 * least disabled preemption.
1144 */
9418fb20 1145bool notrace __rcu_is_watching(void)
5c173eb8 1146{
02a5c550 1147 return !rcu_dynticks_curr_cpu_in_eqs();
5c173eb8
PM
1148}
1149
1150/**
1151 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1152 *
9b2e4f18 1153 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1154 * or NMI handler, return true.
64db4cff 1155 */
9418fb20 1156bool notrace rcu_is_watching(void)
64db4cff 1157{
f534ed1f 1158 bool ret;
34240697 1159
46f00d18 1160 preempt_disable_notrace();
5c173eb8 1161 ret = __rcu_is_watching();
46f00d18 1162 preempt_enable_notrace();
34240697 1163 return ret;
64db4cff 1164}
5c173eb8 1165EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1166
bcbfdd01
PM
1167/*
1168 * If a holdout task is actually running, request an urgent quiescent
1169 * state from its CPU. This is unsynchronized, so migrations can cause
1170 * the request to go to the wrong CPU. Which is OK, all that will happen
1171 * is that the CPU's next context switch will be a bit slower and next
1172 * time around this task will generate another request.
1173 */
1174void rcu_request_urgent_qs_task(struct task_struct *t)
1175{
1176 int cpu;
1177
1178 barrier();
1179 cpu = task_cpu(t);
1180 if (!task_curr(t))
1181 return; /* This task is not running on that CPU. */
1182 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1183}
1184
62fde6ed 1185#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1186
1187/*
1188 * Is the current CPU online? Disable preemption to avoid false positives
1189 * that could otherwise happen due to the current CPU number being sampled,
1190 * this task being preempted, its old CPU being taken offline, resuming
1191 * on some other CPU, then determining that its old CPU is now offline.
1192 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1193 * the check for rcu_scheduler_fully_active. Note also that it is OK
1194 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1195 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1196 * offline to continue to use RCU for one jiffy after marking itself
1197 * offline in the cpu_online_mask. This leniency is necessary given the
1198 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1199 * the fact that a CPU enters the scheduler after completing the teardown
1200 * of the CPU.
2036d94a 1201 *
4df83742
TG
1202 * This is also why RCU internally marks CPUs online during in the
1203 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1204 *
1205 * Disable checking if in an NMI handler because we cannot safely report
1206 * errors from NMI handlers anyway.
1207 */
1208bool rcu_lockdep_current_cpu_online(void)
1209{
2036d94a
PM
1210 struct rcu_data *rdp;
1211 struct rcu_node *rnp;
c0d6d01b
PM
1212 bool ret;
1213
1214 if (in_nmi())
f6f7ee9a 1215 return true;
c0d6d01b 1216 preempt_disable();
c9d4b0af 1217 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1218 rnp = rdp->mynode;
0aa04b05 1219 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1220 !rcu_scheduler_fully_active;
1221 preempt_enable();
1222 return ret;
1223}
1224EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1225
62fde6ed 1226#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1227
64db4cff 1228/**
9b2e4f18 1229 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1230 *
9b2e4f18
PM
1231 * If the current CPU is idle or running at a first-level (not nested)
1232 * interrupt from idle, return true. The caller must have at least
1233 * disabled preemption.
64db4cff 1234 */
62e3cb14 1235static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1236{
c9d4b0af 1237 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1238}
1239
64db4cff
PM
1240/*
1241 * Snapshot the specified CPU's dynticks counter so that we can later
1242 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1243 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1244 */
217af2a2
PM
1245static int dyntick_save_progress_counter(struct rcu_data *rdp,
1246 bool *isidle, unsigned long *maxj)
64db4cff 1247{
8b2f63ab 1248 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
0edd1b17 1249 rcu_sysidle_check_cpu(rdp, isidle, maxj);
02a5c550 1250 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1251 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1252 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1253 rdp->mynode->gpnum))
7d0ae808 1254 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1255 return 1;
7941dbde 1256 }
23a9bacd 1257 return 0;
64db4cff
PM
1258}
1259
1260/*
1261 * Return true if the specified CPU has passed through a quiescent
1262 * state by virtue of being in or having passed through an dynticks
1263 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1264 * for this same CPU, or by virtue of having been offline.
64db4cff 1265 */
217af2a2
PM
1266static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1267 bool *isidle, unsigned long *maxj)
64db4cff 1268{
3a19b46a 1269 unsigned long jtsq;
0f9be8ca 1270 bool *rnhqp;
9226b10d 1271 bool *ruqp;
3a19b46a
PM
1272 unsigned long rjtsc;
1273 struct rcu_node *rnp;
64db4cff
PM
1274
1275 /*
1276 * If the CPU passed through or entered a dynticks idle phase with
1277 * no active irq/NMI handlers, then we can safely pretend that the CPU
1278 * already acknowledged the request to pass through a quiescent
1279 * state. Either way, that CPU cannot possibly be in an RCU
1280 * read-side critical section that started before the beginning
1281 * of the current RCU grace period.
1282 */
02a5c550 1283 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1284 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1285 rdp->dynticks_fqs++;
1286 return 1;
1287 }
1288
3a19b46a
PM
1289 /* Compute and saturate jiffies_till_sched_qs. */
1290 jtsq = jiffies_till_sched_qs;
1291 rjtsc = rcu_jiffies_till_stall_check();
1292 if (jtsq > rjtsc / 2) {
1293 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1294 jtsq = rjtsc / 2;
1295 } else if (jtsq < 1) {
1296 WRITE_ONCE(jiffies_till_sched_qs, 1);
1297 jtsq = 1;
1298 }
1299
a82dcc76 1300 /*
3a19b46a
PM
1301 * Has this CPU encountered a cond_resched_rcu_qs() since the
1302 * beginning of the grace period? For this to be the case,
1303 * the CPU has to have noticed the current grace period. This
1304 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1305 */
3a19b46a 1306 rnp = rdp->mynode;
9226b10d 1307 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1308 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1309 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1310 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1311 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1312 return 1;
9226b10d
PM
1313 } else {
1314 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1315 smp_store_release(ruqp, true);
3a19b46a
PM
1316 }
1317
38d30b33
PM
1318 /* Check for the CPU being offline. */
1319 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1320 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1321 rdp->offline_fqs++;
1322 return 1;
1323 }
65d798f0
PM
1324
1325 /*
4a81e832
PM
1326 * A CPU running for an extended time within the kernel can
1327 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1328 * even context-switching back and forth between a pair of
1329 * in-kernel CPU-bound tasks cannot advance grace periods.
1330 * So if the grace period is old enough, make the CPU pay attention.
1331 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1332 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1333 * bits can be lost, but they will be set again on the next
1334 * force-quiescent-state pass. So lost bit sets do not result
1335 * in incorrect behavior, merely in a grace period lasting
1336 * a few jiffies longer than it might otherwise. Because
1337 * there are at most four threads involved, and because the
1338 * updates are only once every few jiffies, the probability of
1339 * lossage (and thus of slight grace-period extension) is
1340 * quite low.
1341 *
1342 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1343 * is set too high, we override with half of the RCU CPU stall
1344 * warning delay.
6193c76a 1345 */
0f9be8ca
PM
1346 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1347 if (!READ_ONCE(*rnhqp) &&
1348 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1349 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1350 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1351 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1352 smp_store_release(ruqp, true);
4914950a 1353 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1354 }
1355
28053bc7
PM
1356 /*
1357 * If more than halfway to RCU CPU stall-warning time, do
1358 * a resched_cpu() to try to loosen things up a bit.
1359 */
1360 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1361 resched_cpu(rdp->cpu);
4914950a 1362
a82dcc76 1363 return 0;
64db4cff
PM
1364}
1365
64db4cff
PM
1366static void record_gp_stall_check_time(struct rcu_state *rsp)
1367{
cb1e78cf 1368 unsigned long j = jiffies;
6193c76a 1369 unsigned long j1;
26cdfedf
PM
1370
1371 rsp->gp_start = j;
1372 smp_wmb(); /* Record start time before stall time. */
6193c76a 1373 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1374 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1375 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1376 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1377}
1378
6b50e119
PM
1379/*
1380 * Convert a ->gp_state value to a character string.
1381 */
1382static const char *gp_state_getname(short gs)
1383{
1384 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1385 return "???";
1386 return gp_state_names[gs];
1387}
1388
fb81a44b
PM
1389/*
1390 * Complain about starvation of grace-period kthread.
1391 */
1392static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1393{
1394 unsigned long gpa;
1395 unsigned long j;
1396
1397 j = jiffies;
7d0ae808 1398 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1399 if (j - gpa > 2 * HZ) {
6b50e119 1400 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1401 rsp->name, j - gpa,
319362c9 1402 rsp->gpnum, rsp->completed,
6b50e119
PM
1403 rsp->gp_flags,
1404 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1405 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1406 if (rsp->gp_kthread) {
b1adb3e2 1407 sched_show_task(rsp->gp_kthread);
86057b80
PM
1408 wake_up_process(rsp->gp_kthread);
1409 }
b1adb3e2 1410 }
64db4cff
PM
1411}
1412
b637a328 1413/*
7aa92230
PM
1414 * Dump stacks of all tasks running on stalled CPUs. First try using
1415 * NMIs, but fall back to manual remote stack tracing on architectures
1416 * that don't support NMI-based stack dumps. The NMI-triggered stack
1417 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1418 */
1419static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1420{
1421 int cpu;
1422 unsigned long flags;
1423 struct rcu_node *rnp;
1424
1425 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1426 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1427 for_each_leaf_node_possible_cpu(rnp, cpu)
1428 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1429 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1430 dump_cpu_task(cpu);
67c583a7 1431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1432 }
1433}
1434
8c7c4829
PM
1435/*
1436 * If too much time has passed in the current grace period, and if
1437 * so configured, go kick the relevant kthreads.
1438 */
1439static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1440{
1441 unsigned long j;
1442
1443 if (!rcu_kick_kthreads)
1444 return;
1445 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1446 if (time_after(jiffies, j) && rsp->gp_kthread &&
1447 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1448 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1449 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1450 wake_up_process(rsp->gp_kthread);
1451 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1452 }
1453}
1454
088e9d25
DBO
1455static inline void panic_on_rcu_stall(void)
1456{
1457 if (sysctl_panic_on_rcu_stall)
1458 panic("RCU Stall\n");
1459}
1460
6ccd2ecd 1461static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1462{
1463 int cpu;
1464 long delta;
1465 unsigned long flags;
6ccd2ecd
PM
1466 unsigned long gpa;
1467 unsigned long j;
285fe294 1468 int ndetected = 0;
64db4cff 1469 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1470 long totqlen = 0;
64db4cff 1471
8c7c4829
PM
1472 /* Kick and suppress, if so configured. */
1473 rcu_stall_kick_kthreads(rsp);
1474 if (rcu_cpu_stall_suppress)
1475 return;
1476
64db4cff
PM
1477 /* Only let one CPU complain about others per time interval. */
1478
6cf10081 1479 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1480 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1481 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1483 return;
1484 }
7d0ae808
PM
1485 WRITE_ONCE(rsp->jiffies_stall,
1486 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1487 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1488
8cdd32a9
PM
1489 /*
1490 * OK, time to rat on our buddy...
1491 * See Documentation/RCU/stallwarn.txt for info on how to debug
1492 * RCU CPU stall warnings.
1493 */
d7f3e207 1494 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1495 rsp->name);
a858af28 1496 print_cpu_stall_info_begin();
a0b6c9a7 1497 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1498 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1499 ndetected += rcu_print_task_stall(rnp);
c8020a67 1500 if (rnp->qsmask != 0) {
bc75e999
MR
1501 for_each_leaf_node_possible_cpu(rnp, cpu)
1502 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1503 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1504 ndetected++;
1505 }
1506 }
67c583a7 1507 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1508 }
a858af28 1509
a858af28 1510 print_cpu_stall_info_end();
53bb857c 1511 for_each_possible_cpu(cpu)
15fecf89
PM
1512 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1513 cpu)->cblist);
83ebe63e 1514 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1515 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1516 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1517 if (ndetected) {
b637a328 1518 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1519
1520 /* Complain about tasks blocking the grace period. */
1521 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1522 } else {
7d0ae808
PM
1523 if (READ_ONCE(rsp->gpnum) != gpnum ||
1524 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1525 pr_err("INFO: Stall ended before state dump start\n");
1526 } else {
1527 j = jiffies;
7d0ae808 1528 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1529 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1530 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1531 jiffies_till_next_fqs,
1532 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1533 /* In this case, the current CPU might be at fault. */
1534 sched_show_task(current);
1535 }
1536 }
c1dc0b9c 1537
fb81a44b
PM
1538 rcu_check_gp_kthread_starvation(rsp);
1539
088e9d25
DBO
1540 panic_on_rcu_stall();
1541
4cdfc175 1542 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1543}
1544
1545static void print_cpu_stall(struct rcu_state *rsp)
1546{
53bb857c 1547 int cpu;
64db4cff
PM
1548 unsigned long flags;
1549 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1550 long totqlen = 0;
64db4cff 1551
8c7c4829
PM
1552 /* Kick and suppress, if so configured. */
1553 rcu_stall_kick_kthreads(rsp);
1554 if (rcu_cpu_stall_suppress)
1555 return;
1556
8cdd32a9
PM
1557 /*
1558 * OK, time to rat on ourselves...
1559 * See Documentation/RCU/stallwarn.txt for info on how to debug
1560 * RCU CPU stall warnings.
1561 */
d7f3e207 1562 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1563 print_cpu_stall_info_begin();
1564 print_cpu_stall_info(rsp, smp_processor_id());
1565 print_cpu_stall_info_end();
53bb857c 1566 for_each_possible_cpu(cpu)
15fecf89
PM
1567 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1568 cpu)->cblist);
83ebe63e
PM
1569 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1570 jiffies - rsp->gp_start,
1571 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1572
1573 rcu_check_gp_kthread_starvation(rsp);
1574
bc1dce51 1575 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1576
6cf10081 1577 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1578 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1579 WRITE_ONCE(rsp->jiffies_stall,
1580 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1581 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1582
088e9d25
DBO
1583 panic_on_rcu_stall();
1584
b021fe3e
PZ
1585 /*
1586 * Attempt to revive the RCU machinery by forcing a context switch.
1587 *
1588 * A context switch would normally allow the RCU state machine to make
1589 * progress and it could be we're stuck in kernel space without context
1590 * switches for an entirely unreasonable amount of time.
1591 */
1592 resched_cpu(smp_processor_id());
64db4cff
PM
1593}
1594
1595static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1596{
26cdfedf
PM
1597 unsigned long completed;
1598 unsigned long gpnum;
1599 unsigned long gps;
bad6e139
PM
1600 unsigned long j;
1601 unsigned long js;
64db4cff
PM
1602 struct rcu_node *rnp;
1603
8c7c4829
PM
1604 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1605 !rcu_gp_in_progress(rsp))
c68de209 1606 return;
8c7c4829 1607 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1608 j = jiffies;
26cdfedf
PM
1609
1610 /*
1611 * Lots of memory barriers to reject false positives.
1612 *
1613 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1614 * then rsp->gp_start, and finally rsp->completed. These values
1615 * are updated in the opposite order with memory barriers (or
1616 * equivalent) during grace-period initialization and cleanup.
1617 * Now, a false positive can occur if we get an new value of
1618 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1619 * the memory barriers, the only way that this can happen is if one
1620 * grace period ends and another starts between these two fetches.
1621 * Detect this by comparing rsp->completed with the previous fetch
1622 * from rsp->gpnum.
1623 *
1624 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1625 * and rsp->gp_start suffice to forestall false positives.
1626 */
7d0ae808 1627 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1628 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1629 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1630 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1631 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1632 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1633 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1634 if (ULONG_CMP_GE(completed, gpnum) ||
1635 ULONG_CMP_LT(j, js) ||
1636 ULONG_CMP_GE(gps, js))
1637 return; /* No stall or GP completed since entering function. */
64db4cff 1638 rnp = rdp->mynode;
c96ea7cf 1639 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1640 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1641
1642 /* We haven't checked in, so go dump stack. */
1643 print_cpu_stall(rsp);
1644
bad6e139
PM
1645 } else if (rcu_gp_in_progress(rsp) &&
1646 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1647
bad6e139 1648 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1649 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1650 }
1651}
1652
53d84e00
PM
1653/**
1654 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1655 *
1656 * Set the stall-warning timeout way off into the future, thus preventing
1657 * any RCU CPU stall-warning messages from appearing in the current set of
1658 * RCU grace periods.
1659 *
1660 * The caller must disable hard irqs.
1661 */
1662void rcu_cpu_stall_reset(void)
1663{
6ce75a23
PM
1664 struct rcu_state *rsp;
1665
1666 for_each_rcu_flavor(rsp)
7d0ae808 1667 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1668}
1669
dc35c893
PM
1670/*
1671 * Determine the value that ->completed will have at the end of the
1672 * next subsequent grace period. This is used to tag callbacks so that
1673 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1674 * been dyntick-idle for an extended period with callbacks under the
1675 * influence of RCU_FAST_NO_HZ.
1676 *
1677 * The caller must hold rnp->lock with interrupts disabled.
1678 */
1679static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1680 struct rcu_node *rnp)
1681{
1682 /*
1683 * If RCU is idle, we just wait for the next grace period.
1684 * But we can only be sure that RCU is idle if we are looking
1685 * at the root rcu_node structure -- otherwise, a new grace
1686 * period might have started, but just not yet gotten around
1687 * to initializing the current non-root rcu_node structure.
1688 */
1689 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1690 return rnp->completed + 1;
1691
1692 /*
1693 * Otherwise, wait for a possible partial grace period and
1694 * then the subsequent full grace period.
1695 */
1696 return rnp->completed + 2;
1697}
1698
0446be48
PM
1699/*
1700 * Trace-event helper function for rcu_start_future_gp() and
1701 * rcu_nocb_wait_gp().
1702 */
1703static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1704 unsigned long c, const char *s)
0446be48
PM
1705{
1706 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1707 rnp->completed, c, rnp->level,
1708 rnp->grplo, rnp->grphi, s);
1709}
1710
1711/*
1712 * Start some future grace period, as needed to handle newly arrived
1713 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1714 * rcu_node structure's ->need_future_gp field. Returns true if there
1715 * is reason to awaken the grace-period kthread.
0446be48
PM
1716 *
1717 * The caller must hold the specified rcu_node structure's ->lock.
1718 */
48a7639c
PM
1719static bool __maybe_unused
1720rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1721 unsigned long *c_out)
0446be48
PM
1722{
1723 unsigned long c;
48a7639c 1724 bool ret = false;
0446be48
PM
1725 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1726
1727 /*
1728 * Pick up grace-period number for new callbacks. If this
1729 * grace period is already marked as needed, return to the caller.
1730 */
1731 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1732 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1733 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1734 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1735 goto out;
0446be48
PM
1736 }
1737
1738 /*
1739 * If either this rcu_node structure or the root rcu_node structure
1740 * believe that a grace period is in progress, then we must wait
1741 * for the one following, which is in "c". Because our request
1742 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1743 * need to explicitly start one. We only do the lockless check
1744 * of rnp_root's fields if the current rcu_node structure thinks
1745 * there is no grace period in flight, and because we hold rnp->lock,
1746 * the only possible change is when rnp_root's two fields are
1747 * equal, in which case rnp_root->gpnum might be concurrently
1748 * incremented. But that is OK, as it will just result in our
1749 * doing some extra useless work.
0446be48
PM
1750 */
1751 if (rnp->gpnum != rnp->completed ||
7d0ae808 1752 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1753 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1754 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1755 goto out;
0446be48
PM
1756 }
1757
1758 /*
1759 * There might be no grace period in progress. If we don't already
1760 * hold it, acquire the root rcu_node structure's lock in order to
1761 * start one (if needed).
1762 */
2a67e741
PZ
1763 if (rnp != rnp_root)
1764 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1765
1766 /*
1767 * Get a new grace-period number. If there really is no grace
1768 * period in progress, it will be smaller than the one we obtained
15fecf89 1769 * earlier. Adjust callbacks as needed.
0446be48
PM
1770 */
1771 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1772 if (!rcu_is_nocb_cpu(rdp->cpu))
1773 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1774
1775 /*
1776 * If the needed for the required grace period is already
1777 * recorded, trace and leave.
1778 */
1779 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1780 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1781 goto unlock_out;
1782 }
1783
1784 /* Record the need for the future grace period. */
1785 rnp_root->need_future_gp[c & 0x1]++;
1786
1787 /* If a grace period is not already in progress, start one. */
1788 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1789 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1790 } else {
f7f7bac9 1791 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1792 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1793 }
1794unlock_out:
1795 if (rnp != rnp_root)
67c583a7 1796 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1797out:
1798 if (c_out != NULL)
1799 *c_out = c;
1800 return ret;
0446be48
PM
1801}
1802
1803/*
1804 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1805 * whether any additional grace periods have been requested.
0446be48
PM
1806 */
1807static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1808{
1809 int c = rnp->completed;
1810 int needmore;
1811 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1812
0446be48
PM
1813 rnp->need_future_gp[c & 0x1] = 0;
1814 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1815 trace_rcu_future_gp(rnp, rdp, c,
1816 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1817 return needmore;
1818}
1819
48a7639c
PM
1820/*
1821 * Awaken the grace-period kthread for the specified flavor of RCU.
1822 * Don't do a self-awaken, and don't bother awakening when there is
1823 * nothing for the grace-period kthread to do (as in several CPUs
1824 * raced to awaken, and we lost), and finally don't try to awaken
1825 * a kthread that has not yet been created.
1826 */
1827static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1828{
1829 if (current == rsp->gp_kthread ||
7d0ae808 1830 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1831 !rsp->gp_kthread)
1832 return;
abedf8e2 1833 swake_up(&rsp->gp_wq);
48a7639c
PM
1834}
1835
dc35c893
PM
1836/*
1837 * If there is room, assign a ->completed number to any callbacks on
1838 * this CPU that have not already been assigned. Also accelerate any
1839 * callbacks that were previously assigned a ->completed number that has
1840 * since proven to be too conservative, which can happen if callbacks get
1841 * assigned a ->completed number while RCU is idle, but with reference to
1842 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1843 * not hurt to call it repeatedly. Returns an flag saying that we should
1844 * awaken the RCU grace-period kthread.
dc35c893
PM
1845 *
1846 * The caller must hold rnp->lock with interrupts disabled.
1847 */
48a7639c 1848static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1849 struct rcu_data *rdp)
1850{
15fecf89 1851 bool ret = false;
dc35c893 1852
15fecf89
PM
1853 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1854 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1855 return false;
dc35c893
PM
1856
1857 /*
15fecf89
PM
1858 * Callbacks are often registered with incomplete grace-period
1859 * information. Something about the fact that getting exact
1860 * information requires acquiring a global lock... RCU therefore
1861 * makes a conservative estimate of the grace period number at which
1862 * a given callback will become ready to invoke. The following
1863 * code checks this estimate and improves it when possible, thus
1864 * accelerating callback invocation to an earlier grace-period
1865 * number.
dc35c893 1866 */
15fecf89
PM
1867 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1868 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1869
1870 /* Trace depending on how much we were able to accelerate. */
15fecf89 1871 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1872 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1873 else
f7f7bac9 1874 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1875 return ret;
dc35c893
PM
1876}
1877
1878/*
1879 * Move any callbacks whose grace period has completed to the
1880 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1881 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1882 * sublist. This function is idempotent, so it does not hurt to
1883 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1884 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1885 *
1886 * The caller must hold rnp->lock with interrupts disabled.
1887 */
48a7639c 1888static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1889 struct rcu_data *rdp)
1890{
15fecf89
PM
1891 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1892 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1893 return false;
dc35c893
PM
1894
1895 /*
1896 * Find all callbacks whose ->completed numbers indicate that they
1897 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1898 */
15fecf89 1899 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1900
1901 /* Classify any remaining callbacks. */
48a7639c 1902 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1903}
1904
d09b62df 1905/*
ba9fbe95
PM
1906 * Update CPU-local rcu_data state to record the beginnings and ends of
1907 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1908 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1909 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1910 */
48a7639c
PM
1911static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1912 struct rcu_data *rdp)
d09b62df 1913{
48a7639c 1914 bool ret;
3563a438 1915 bool need_gp;
48a7639c 1916
ba9fbe95 1917 /* Handle the ends of any preceding grace periods first. */
e3663b10 1918 if (rdp->completed == rnp->completed &&
7d0ae808 1919 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1920
ba9fbe95 1921 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1922 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1923
dc35c893
PM
1924 } else {
1925
1926 /* Advance callbacks. */
48a7639c 1927 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1928
1929 /* Remember that we saw this grace-period completion. */
1930 rdp->completed = rnp->completed;
f7f7bac9 1931 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1932 }
398ebe60 1933
7d0ae808 1934 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1935 /*
1936 * If the current grace period is waiting for this CPU,
1937 * set up to detect a quiescent state, otherwise don't
1938 * go looking for one.
1939 */
1940 rdp->gpnum = rnp->gpnum;
f7f7bac9 1941 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1942 need_gp = !!(rnp->qsmask & rdp->grpmask);
1943 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1944 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1945 rdp->core_needs_qs = need_gp;
6eaef633 1946 zero_cpu_stall_ticks(rdp);
7d0ae808 1947 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1948 }
48a7639c 1949 return ret;
6eaef633
PM
1950}
1951
d34ea322 1952static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1953{
1954 unsigned long flags;
48a7639c 1955 bool needwake;
6eaef633
PM
1956 struct rcu_node *rnp;
1957
1958 local_irq_save(flags);
1959 rnp = rdp->mynode;
7d0ae808
PM
1960 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1961 rdp->completed == READ_ONCE(rnp->completed) &&
1962 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1963 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1964 local_irq_restore(flags);
1965 return;
1966 }
48a7639c 1967 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1968 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1969 if (needwake)
1970 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1971}
1972
0f41c0dd
PM
1973static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1974{
1975 if (delay > 0 &&
1976 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1977 schedule_timeout_uninterruptible(delay);
1978}
1979
b3dbec76 1980/*
45fed3e7 1981 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1982 */
45fed3e7 1983static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1984{
0aa04b05 1985 unsigned long oldmask;
b3dbec76 1986 struct rcu_data *rdp;
7fdefc10 1987 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1988
7d0ae808 1989 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1990 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1991 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1992 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1993 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1994 return false;
f7be8209 1995 }
7d0ae808 1996 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1997
f7be8209
PM
1998 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1999 /*
2000 * Grace period already in progress, don't start another.
2001 * Not supposed to be able to happen.
2002 */
67c583a7 2003 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2004 return false;
7fdefc10
PM
2005 }
2006
7fdefc10 2007 /* Advance to a new grace period and initialize state. */
26cdfedf 2008 record_gp_stall_check_time(rsp);
765a3f4f
PM
2009 /* Record GP times before starting GP, hence smp_store_release(). */
2010 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2011 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2012 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2013
0aa04b05
PM
2014 /*
2015 * Apply per-leaf buffered online and offline operations to the
2016 * rcu_node tree. Note that this new grace period need not wait
2017 * for subsequent online CPUs, and that quiescent-state forcing
2018 * will handle subsequent offline CPUs.
2019 */
2020 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2021 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2022 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2023 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2024 !rnp->wait_blkd_tasks) {
2025 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2026 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2027 continue;
2028 }
2029
2030 /* Record old state, apply changes to ->qsmaskinit field. */
2031 oldmask = rnp->qsmaskinit;
2032 rnp->qsmaskinit = rnp->qsmaskinitnext;
2033
2034 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2035 if (!oldmask != !rnp->qsmaskinit) {
2036 if (!oldmask) /* First online CPU for this rcu_node. */
2037 rcu_init_new_rnp(rnp);
2038 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2039 rnp->wait_blkd_tasks = true;
2040 else /* Last offline CPU and can propagate. */
2041 rcu_cleanup_dead_rnp(rnp);
2042 }
2043
2044 /*
2045 * If all waited-on tasks from prior grace period are
2046 * done, and if all this rcu_node structure's CPUs are
2047 * still offline, propagate up the rcu_node tree and
2048 * clear ->wait_blkd_tasks. Otherwise, if one of this
2049 * rcu_node structure's CPUs has since come back online,
2050 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2051 * checks for this, so just call it unconditionally).
2052 */
2053 if (rnp->wait_blkd_tasks &&
2054 (!rcu_preempt_has_tasks(rnp) ||
2055 rnp->qsmaskinit)) {
2056 rnp->wait_blkd_tasks = false;
2057 rcu_cleanup_dead_rnp(rnp);
2058 }
2059
67c583a7 2060 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2061 }
7fdefc10
PM
2062
2063 /*
2064 * Set the quiescent-state-needed bits in all the rcu_node
2065 * structures for all currently online CPUs in breadth-first order,
2066 * starting from the root rcu_node structure, relying on the layout
2067 * of the tree within the rsp->node[] array. Note that other CPUs
2068 * will access only the leaves of the hierarchy, thus seeing that no
2069 * grace period is in progress, at least until the corresponding
590d1757 2070 * leaf node has been initialized.
7fdefc10
PM
2071 *
2072 * The grace period cannot complete until the initialization
2073 * process finishes, because this kthread handles both.
2074 */
2075 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2076 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2077 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2078 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2079 rcu_preempt_check_blocked_tasks(rnp);
2080 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2081 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2082 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2083 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2084 if (rnp == rdp->mynode)
48a7639c 2085 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2086 rcu_preempt_boost_start_gp(rnp);
2087 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2088 rnp->level, rnp->grplo,
2089 rnp->grphi, rnp->qsmask);
67c583a7 2090 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2091 cond_resched_rcu_qs();
7d0ae808 2092 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2093 }
b3dbec76 2094
45fed3e7 2095 return true;
7fdefc10 2096}
b3dbec76 2097
b9a425cf
PM
2098/*
2099 * Helper function for wait_event_interruptible_timeout() wakeup
2100 * at force-quiescent-state time.
2101 */
2102static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2103{
2104 struct rcu_node *rnp = rcu_get_root(rsp);
2105
2106 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2107 *gfp = READ_ONCE(rsp->gp_flags);
2108 if (*gfp & RCU_GP_FLAG_FQS)
2109 return true;
2110
2111 /* The current grace period has completed. */
2112 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2113 return true;
2114
2115 return false;
2116}
2117
4cdfc175
PM
2118/*
2119 * Do one round of quiescent-state forcing.
2120 */
77f81fe0 2121static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2122{
217af2a2
PM
2123 bool isidle = false;
2124 unsigned long maxj;
4cdfc175
PM
2125 struct rcu_node *rnp = rcu_get_root(rsp);
2126
7d0ae808 2127 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2128 rsp->n_force_qs++;
77f81fe0 2129 if (first_time) {
4cdfc175 2130 /* Collect dyntick-idle snapshots. */
0edd1b17 2131 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2132 isidle = true;
0edd1b17
PM
2133 maxj = jiffies - ULONG_MAX / 4;
2134 }
217af2a2
PM
2135 force_qs_rnp(rsp, dyntick_save_progress_counter,
2136 &isidle, &maxj);
0edd1b17 2137 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2138 } else {
2139 /* Handle dyntick-idle and offline CPUs. */
675da67f 2140 isidle = true;
217af2a2 2141 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2142 }
2143 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2144 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2145 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2146 WRITE_ONCE(rsp->gp_flags,
2147 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2148 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2149 }
4cdfc175
PM
2150}
2151
7fdefc10
PM
2152/*
2153 * Clean up after the old grace period.
2154 */
4cdfc175 2155static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2156{
2157 unsigned long gp_duration;
48a7639c 2158 bool needgp = false;
dae6e64d 2159 int nocb = 0;
7fdefc10
PM
2160 struct rcu_data *rdp;
2161 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2162 struct swait_queue_head *sq;
b3dbec76 2163
7d0ae808 2164 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2165 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2166 gp_duration = jiffies - rsp->gp_start;
2167 if (gp_duration > rsp->gp_max)
2168 rsp->gp_max = gp_duration;
b3dbec76 2169
7fdefc10
PM
2170 /*
2171 * We know the grace period is complete, but to everyone else
2172 * it appears to still be ongoing. But it is also the case
2173 * that to everyone else it looks like there is nothing that
2174 * they can do to advance the grace period. It is therefore
2175 * safe for us to drop the lock in order to mark the grace
2176 * period as completed in all of the rcu_node structures.
7fdefc10 2177 */
67c583a7 2178 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2179
5d4b8659
PM
2180 /*
2181 * Propagate new ->completed value to rcu_node structures so
2182 * that other CPUs don't have to wait until the start of the next
2183 * grace period to process their callbacks. This also avoids
2184 * some nasty RCU grace-period initialization races by forcing
2185 * the end of the current grace period to be completely recorded in
2186 * all of the rcu_node structures before the beginning of the next
2187 * grace period is recorded in any of the rcu_node structures.
2188 */
2189 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2190 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2191 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2192 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2193 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2194 rdp = this_cpu_ptr(rsp->rda);
2195 if (rnp == rdp->mynode)
48a7639c 2196 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2197 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2198 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2199 sq = rcu_nocb_gp_get(rnp);
67c583a7 2200 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2201 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2202 cond_resched_rcu_qs();
7d0ae808 2203 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2204 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2205 }
5d4b8659 2206 rnp = rcu_get_root(rsp);
2a67e741 2207 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2208 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2209
765a3f4f 2210 /* Declare grace period done. */
7d0ae808 2211 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2212 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2213 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2214 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2215 /* Advance CBs to reduce false positives below. */
2216 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2217 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2218 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2219 trace_rcu_grace_period(rsp->name,
7d0ae808 2220 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2221 TPS("newreq"));
2222 }
67c583a7 2223 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2224}
2225
2226/*
2227 * Body of kthread that handles grace periods.
2228 */
2229static int __noreturn rcu_gp_kthread(void *arg)
2230{
77f81fe0 2231 bool first_gp_fqs;
88d6df61 2232 int gf;
d40011f6 2233 unsigned long j;
4cdfc175 2234 int ret;
7fdefc10
PM
2235 struct rcu_state *rsp = arg;
2236 struct rcu_node *rnp = rcu_get_root(rsp);
2237
5871968d 2238 rcu_bind_gp_kthread();
7fdefc10
PM
2239 for (;;) {
2240
2241 /* Handle grace-period start. */
2242 for (;;) {
63c4db78 2243 trace_rcu_grace_period(rsp->name,
7d0ae808 2244 READ_ONCE(rsp->gpnum),
63c4db78 2245 TPS("reqwait"));
afea227f 2246 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2247 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2248 READ_ONCE(rsp->gp_flags) &
4cdfc175 2249 RCU_GP_FLAG_INIT);
319362c9 2250 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2251 /* Locking provides needed memory barrier. */
f7be8209 2252 if (rcu_gp_init(rsp))
7fdefc10 2253 break;
bde6c3aa 2254 cond_resched_rcu_qs();
7d0ae808 2255 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2256 WARN_ON(signal_pending(current));
63c4db78 2257 trace_rcu_grace_period(rsp->name,
7d0ae808 2258 READ_ONCE(rsp->gpnum),
63c4db78 2259 TPS("reqwaitsig"));
7fdefc10 2260 }
cabc49c1 2261
4cdfc175 2262 /* Handle quiescent-state forcing. */
77f81fe0 2263 first_gp_fqs = true;
d40011f6
PM
2264 j = jiffies_till_first_fqs;
2265 if (j > HZ) {
2266 j = HZ;
2267 jiffies_till_first_fqs = HZ;
2268 }
88d6df61 2269 ret = 0;
cabc49c1 2270 for (;;) {
8c7c4829 2271 if (!ret) {
88d6df61 2272 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2273 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2274 jiffies + 3 * j);
2275 }
63c4db78 2276 trace_rcu_grace_period(rsp->name,
7d0ae808 2277 READ_ONCE(rsp->gpnum),
63c4db78 2278 TPS("fqswait"));
afea227f 2279 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2280 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2281 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2282 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2283 /* Locking provides needed memory barriers. */
4cdfc175 2284 /* If grace period done, leave loop. */
7d0ae808 2285 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2286 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2287 break;
4cdfc175 2288 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2289 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2290 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2291 trace_rcu_grace_period(rsp->name,
7d0ae808 2292 READ_ONCE(rsp->gpnum),
63c4db78 2293 TPS("fqsstart"));
77f81fe0
PM
2294 rcu_gp_fqs(rsp, first_gp_fqs);
2295 first_gp_fqs = false;
63c4db78 2296 trace_rcu_grace_period(rsp->name,
7d0ae808 2297 READ_ONCE(rsp->gpnum),
63c4db78 2298 TPS("fqsend"));
bde6c3aa 2299 cond_resched_rcu_qs();
7d0ae808 2300 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2301 ret = 0; /* Force full wait till next FQS. */
2302 j = jiffies_till_next_fqs;
2303 if (j > HZ) {
2304 j = HZ;
2305 jiffies_till_next_fqs = HZ;
2306 } else if (j < 1) {
2307 j = 1;
2308 jiffies_till_next_fqs = 1;
2309 }
4cdfc175
PM
2310 } else {
2311 /* Deal with stray signal. */
bde6c3aa 2312 cond_resched_rcu_qs();
7d0ae808 2313 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2314 WARN_ON(signal_pending(current));
63c4db78 2315 trace_rcu_grace_period(rsp->name,
7d0ae808 2316 READ_ONCE(rsp->gpnum),
63c4db78 2317 TPS("fqswaitsig"));
fcfd0a23
PM
2318 ret = 1; /* Keep old FQS timing. */
2319 j = jiffies;
2320 if (time_after(jiffies, rsp->jiffies_force_qs))
2321 j = 1;
2322 else
2323 j = rsp->jiffies_force_qs - j;
d40011f6 2324 }
cabc49c1 2325 }
4cdfc175
PM
2326
2327 /* Handle grace-period end. */
319362c9 2328 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2329 rcu_gp_cleanup(rsp);
319362c9 2330 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2331 }
b3dbec76
PM
2332}
2333
64db4cff
PM
2334/*
2335 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2336 * in preparation for detecting the next grace period. The caller must hold
b8462084 2337 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2338 *
2339 * Note that it is legal for a dying CPU (which is marked as offline) to
2340 * invoke this function. This can happen when the dying CPU reports its
2341 * quiescent state.
48a7639c
PM
2342 *
2343 * Returns true if the grace-period kthread must be awakened.
64db4cff 2344 */
48a7639c 2345static bool
910ee45d
PM
2346rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2347 struct rcu_data *rdp)
64db4cff 2348{
b8462084 2349 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2350 /*
b3dbec76 2351 * Either we have not yet spawned the grace-period
62da1921
PM
2352 * task, this CPU does not need another grace period,
2353 * or a grace period is already in progress.
b3dbec76 2354 * Either way, don't start a new grace period.
afe24b12 2355 */
48a7639c 2356 return false;
afe24b12 2357 }
7d0ae808
PM
2358 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2359 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2360 TPS("newreq"));
62da1921 2361
016a8d5b
SR
2362 /*
2363 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2364 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2365 * the wakeup to our caller.
016a8d5b 2366 */
48a7639c 2367 return true;
64db4cff
PM
2368}
2369
910ee45d
PM
2370/*
2371 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2372 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2373 * is invoked indirectly from rcu_advance_cbs(), which would result in
2374 * endless recursion -- or would do so if it wasn't for the self-deadlock
2375 * that is encountered beforehand.
48a7639c
PM
2376 *
2377 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2378 */
48a7639c 2379static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2380{
2381 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2382 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2383 bool ret = false;
910ee45d
PM
2384
2385 /*
2386 * If there is no grace period in progress right now, any
2387 * callbacks we have up to this point will be satisfied by the
2388 * next grace period. Also, advancing the callbacks reduces the
2389 * probability of false positives from cpu_needs_another_gp()
2390 * resulting in pointless grace periods. So, advance callbacks
2391 * then start the grace period!
2392 */
48a7639c
PM
2393 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2394 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2395 return ret;
910ee45d
PM
2396}
2397
f41d911f 2398/*
8994515c
PM
2399 * Report a full set of quiescent states to the specified rcu_state data
2400 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2401 * kthread if another grace period is required. Whether we wake
2402 * the grace-period kthread or it awakens itself for the next round
2403 * of quiescent-state forcing, that kthread will clean up after the
2404 * just-completed grace period. Note that the caller must hold rnp->lock,
2405 * which is released before return.
f41d911f 2406 */
d3f6bad3 2407static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2408 __releases(rcu_get_root(rsp)->lock)
f41d911f 2409{
fc2219d4 2410 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2411 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2412 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2413 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2414}
2415
64db4cff 2416/*
d3f6bad3
PM
2417 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2418 * Allows quiescent states for a group of CPUs to be reported at one go
2419 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2420 * must be represented by the same rcu_node structure (which need not be a
2421 * leaf rcu_node structure, though it often will be). The gps parameter
2422 * is the grace-period snapshot, which means that the quiescent states
2423 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2424 * must be held upon entry, and it is released before return.
64db4cff
PM
2425 */
2426static void
d3f6bad3 2427rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2428 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2429 __releases(rnp->lock)
2430{
654e9533 2431 unsigned long oldmask = 0;
28ecd580
PM
2432 struct rcu_node *rnp_c;
2433
64db4cff
PM
2434 /* Walk up the rcu_node hierarchy. */
2435 for (;;) {
654e9533 2436 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2437
654e9533
PM
2438 /*
2439 * Our bit has already been cleared, or the
2440 * relevant grace period is already over, so done.
2441 */
67c583a7 2442 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2443 return;
2444 }
654e9533 2445 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2446 rnp->qsmask &= ~mask;
d4c08f2a
PM
2447 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2448 mask, rnp->qsmask, rnp->level,
2449 rnp->grplo, rnp->grphi,
2450 !!rnp->gp_tasks);
27f4d280 2451 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2452
2453 /* Other bits still set at this level, so done. */
67c583a7 2454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2455 return;
2456 }
2457 mask = rnp->grpmask;
2458 if (rnp->parent == NULL) {
2459
2460 /* No more levels. Exit loop holding root lock. */
2461
2462 break;
2463 }
67c583a7 2464 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2465 rnp_c = rnp;
64db4cff 2466 rnp = rnp->parent;
2a67e741 2467 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2468 oldmask = rnp_c->qsmask;
64db4cff
PM
2469 }
2470
2471 /*
2472 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2473 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2474 * to clean up and start the next grace period if one is needed.
64db4cff 2475 */
d3f6bad3 2476 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2477}
2478
cc99a310
PM
2479/*
2480 * Record a quiescent state for all tasks that were previously queued
2481 * on the specified rcu_node structure and that were blocking the current
2482 * RCU grace period. The caller must hold the specified rnp->lock with
2483 * irqs disabled, and this lock is released upon return, but irqs remain
2484 * disabled.
2485 */
0aa04b05 2486static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2487 struct rcu_node *rnp, unsigned long flags)
2488 __releases(rnp->lock)
2489{
654e9533 2490 unsigned long gps;
cc99a310
PM
2491 unsigned long mask;
2492 struct rcu_node *rnp_p;
2493
a77da14c
PM
2494 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2495 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2496 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2497 return; /* Still need more quiescent states! */
2498 }
2499
2500 rnp_p = rnp->parent;
2501 if (rnp_p == NULL) {
2502 /*
a77da14c
PM
2503 * Only one rcu_node structure in the tree, so don't
2504 * try to report up to its nonexistent parent!
cc99a310
PM
2505 */
2506 rcu_report_qs_rsp(rsp, flags);
2507 return;
2508 }
2509
654e9533
PM
2510 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2511 gps = rnp->gpnum;
cc99a310 2512 mask = rnp->grpmask;
67c583a7 2513 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2514 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2515 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2516}
2517
64db4cff 2518/*
d3f6bad3 2519 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2520 * structure. This must be called from the specified CPU.
64db4cff
PM
2521 */
2522static void
d7d6a11e 2523rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2524{
2525 unsigned long flags;
2526 unsigned long mask;
48a7639c 2527 bool needwake;
64db4cff
PM
2528 struct rcu_node *rnp;
2529
2530 rnp = rdp->mynode;
2a67e741 2531 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2532 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2533 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2534
2535 /*
e4cc1f22
PM
2536 * The grace period in which this quiescent state was
2537 * recorded has ended, so don't report it upwards.
2538 * We will instead need a new quiescent state that lies
2539 * within the current grace period.
64db4cff 2540 */
5b74c458 2541 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2542 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2543 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2544 return;
2545 }
2546 mask = rdp->grpmask;
2547 if ((rnp->qsmask & mask) == 0) {
67c583a7 2548 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2549 } else {
bb53e416 2550 rdp->core_needs_qs = false;
64db4cff
PM
2551
2552 /*
2553 * This GP can't end until cpu checks in, so all of our
2554 * callbacks can be processed during the next GP.
2555 */
48a7639c 2556 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2557
654e9533
PM
2558 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2559 /* ^^^ Released rnp->lock */
48a7639c
PM
2560 if (needwake)
2561 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2562 }
2563}
2564
2565/*
2566 * Check to see if there is a new grace period of which this CPU
2567 * is not yet aware, and if so, set up local rcu_data state for it.
2568 * Otherwise, see if this CPU has just passed through its first
2569 * quiescent state for this grace period, and record that fact if so.
2570 */
2571static void
2572rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2573{
05eb552b
PM
2574 /* Check for grace-period ends and beginnings. */
2575 note_gp_changes(rsp, rdp);
64db4cff
PM
2576
2577 /*
2578 * Does this CPU still need to do its part for current grace period?
2579 * If no, return and let the other CPUs do their part as well.
2580 */
97c668b8 2581 if (!rdp->core_needs_qs)
64db4cff
PM
2582 return;
2583
2584 /*
2585 * Was there a quiescent state since the beginning of the grace
2586 * period? If no, then exit and wait for the next call.
2587 */
3a19b46a 2588 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2589 return;
2590
d3f6bad3
PM
2591 /*
2592 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2593 * judge of that).
2594 */
d7d6a11e 2595 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2596}
2597
e74f4c45 2598/*
b1420f1c
PM
2599 * Send the specified CPU's RCU callbacks to the orphanage. The
2600 * specified CPU must be offline, and the caller must hold the
7b2e6011 2601 * ->orphan_lock.
e74f4c45 2602 */
b1420f1c
PM
2603static void
2604rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2605 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2606{
3fbfbf7a 2607 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2608 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2609 return;
2610
b1420f1c
PM
2611 /*
2612 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2613 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2614 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2615 */
15fecf89
PM
2616 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2617 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
a50c3af9
PM
2618
2619 /*
b1420f1c
PM
2620 * Next, move those callbacks still needing a grace period to
2621 * the orphanage, where some other CPU will pick them up.
2622 * Some of the callbacks might have gone partway through a grace
2623 * period, but that is too bad. They get to start over because we
2624 * cannot assume that grace periods are synchronized across CPUs.
a50c3af9 2625 */
15fecf89 2626 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
a50c3af9
PM
2627
2628 /*
b1420f1c
PM
2629 * Then move the ready-to-invoke callbacks to the orphanage,
2630 * where some other CPU will pick them up. These will not be
2631 * required to pass though another grace period: They are done.
a50c3af9 2632 */
15fecf89 2633 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
e74f4c45 2634
15fecf89
PM
2635 /* Finally, disallow further callbacks on this CPU. */
2636 rcu_segcblist_disable(&rdp->cblist);
b1420f1c
PM
2637}
2638
2639/*
2640 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2641 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2642 */
96d3fd0d 2643static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c 2644{
fa07a58f 2645 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2646
3fbfbf7a 2647 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2648 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2649 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2650 return;
2651
b1420f1c 2652 /* Do the accounting first. */
4b27f20b 2653 rdp->n_cbs_adopted += rsp->orphan_done.len;
933dfbd7 2654 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
8f5af6f1 2655 rcu_idle_count_callbacks_posted();
15fecf89 2656 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
b1420f1c
PM
2657
2658 /*
2659 * We do not need a memory barrier here because the only way we
2660 * can get here if there is an rcu_barrier() in flight is if
2661 * we are the task doing the rcu_barrier().
2662 */
2663
15fecf89
PM
2664 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2665 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
8ef0f37e 2666 WARN_ON_ONCE(rsp->orphan_done.head);
15fecf89 2667 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
8ef0f37e 2668 WARN_ON_ONCE(rsp->orphan_pend.head);
15fecf89
PM
2669 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2670 !rcu_segcblist_n_cbs(&rdp->cblist));
b1420f1c
PM
2671}
2672
2673/*
2674 * Trace the fact that this CPU is going offline.
2675 */
2676static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2677{
88a4976d
PM
2678 RCU_TRACE(unsigned long mask;)
2679 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2680 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2681
ea46351c
PM
2682 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2683 return;
2684
88a4976d 2685 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2686 trace_rcu_grace_period(rsp->name,
2687 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2688 TPS("cpuofl"));
64db4cff
PM
2689}
2690
8af3a5e7
PM
2691/*
2692 * All CPUs for the specified rcu_node structure have gone offline,
2693 * and all tasks that were preempted within an RCU read-side critical
2694 * section while running on one of those CPUs have since exited their RCU
2695 * read-side critical section. Some other CPU is reporting this fact with
2696 * the specified rcu_node structure's ->lock held and interrupts disabled.
2697 * This function therefore goes up the tree of rcu_node structures,
2698 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2699 * the leaf rcu_node structure's ->qsmaskinit field has already been
2700 * updated
2701 *
2702 * This function does check that the specified rcu_node structure has
2703 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2704 * prematurely. That said, invoking it after the fact will cost you
2705 * a needless lock acquisition. So once it has done its work, don't
2706 * invoke it again.
2707 */
2708static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2709{
2710 long mask;
2711 struct rcu_node *rnp = rnp_leaf;
2712
ea46351c
PM
2713 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2714 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2715 return;
2716 for (;;) {
2717 mask = rnp->grpmask;
2718 rnp = rnp->parent;
2719 if (!rnp)
2720 break;
2a67e741 2721 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2722 rnp->qsmaskinit &= ~mask;
0aa04b05 2723 rnp->qsmask &= ~mask;
8af3a5e7 2724 if (rnp->qsmaskinit) {
67c583a7
BF
2725 raw_spin_unlock_rcu_node(rnp);
2726 /* irqs remain disabled. */
8af3a5e7
PM
2727 return;
2728 }
67c583a7 2729 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2730 }
2731}
2732
64db4cff 2733/*
e5601400 2734 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2735 * this fact from process context. Do the remainder of the cleanup,
2736 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2737 * adopting them. There can only be one CPU hotplug operation at a time,
2738 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2739 */
e5601400 2740static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2741{
2036d94a 2742 unsigned long flags;
e5601400 2743 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2744 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2745
ea46351c
PM
2746 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2747 return;
2748
2036d94a 2749 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2750 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2751
b1420f1c 2752 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2753 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2754 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2755 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2756 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2757
15fecf89
PM
2758 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2759 !rcu_segcblist_empty(&rdp->cblist),
2760 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2761 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2762 rcu_segcblist_first_cb(&rdp->cblist));
64db4cff
PM
2763}
2764
64db4cff
PM
2765/*
2766 * Invoke any RCU callbacks that have made it to the end of their grace
2767 * period. Thottle as specified by rdp->blimit.
2768 */
37c72e56 2769static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2770{
2771 unsigned long flags;
15fecf89
PM
2772 struct rcu_head *rhp;
2773 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2774 long bl, count;
64db4cff 2775
dc35c893 2776 /* If no callbacks are ready, just return. */
15fecf89
PM
2777 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2778 trace_rcu_batch_start(rsp->name,
2779 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2780 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2781 trace_rcu_batch_end(rsp->name, 0,
2782 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2783 need_resched(), is_idle_task(current),
2784 rcu_is_callbacks_kthread());
64db4cff 2785 return;
29c00b4a 2786 }
64db4cff
PM
2787
2788 /*
2789 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2790 * races with call_rcu() from interrupt handlers. Leave the
2791 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2792 */
2793 local_irq_save(flags);
8146c4e2 2794 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2795 bl = rdp->blimit;
15fecf89
PM
2796 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2797 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2798 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2799 local_irq_restore(flags);
2800
2801 /* Invoke callbacks. */
15fecf89
PM
2802 rhp = rcu_cblist_dequeue(&rcl);
2803 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2804 debug_rcu_head_unqueue(rhp);
2805 if (__rcu_reclaim(rsp->name, rhp))
2806 rcu_cblist_dequeued_lazy(&rcl);
2807 /*
2808 * Stop only if limit reached and CPU has something to do.
2809 * Note: The rcl structure counts down from zero.
2810 */
4b27f20b 2811 if (-rcl.len >= bl &&
dff1672d
PM
2812 (need_resched() ||
2813 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2814 break;
2815 }
2816
2817 local_irq_save(flags);
4b27f20b 2818 count = -rcl.len;
8ef0f37e
PM
2819 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2820 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2821
15fecf89
PM
2822 /* Update counts and requeue any remaining callbacks. */
2823 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2824 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2825 rdp->n_cbs_invoked += count;
15fecf89 2826 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2827
2828 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2829 count = rcu_segcblist_n_cbs(&rdp->cblist);
2830 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2831 rdp->blimit = blimit;
2832
37c72e56 2833 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2834 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2835 rdp->qlen_last_fqs_check = 0;
2836 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2837 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2838 rdp->qlen_last_fqs_check = count;
2839 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2840
64db4cff
PM
2841 local_irq_restore(flags);
2842
e0f23060 2843 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2844 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2845 invoke_rcu_core();
64db4cff
PM
2846}
2847
2848/*
2849 * Check to see if this CPU is in a non-context-switch quiescent state
2850 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2851 * Also schedule RCU core processing.
64db4cff 2852 *
9b2e4f18 2853 * This function must be called from hardirq context. It is normally
5403d367 2854 * invoked from the scheduling-clock interrupt.
64db4cff 2855 */
c3377c2d 2856void rcu_check_callbacks(int user)
64db4cff 2857{
f7f7bac9 2858 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2859 increment_cpu_stall_ticks();
9b2e4f18 2860 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2861
2862 /*
2863 * Get here if this CPU took its interrupt from user
2864 * mode or from the idle loop, and if this is not a
2865 * nested interrupt. In this case, the CPU is in
d6714c22 2866 * a quiescent state, so note it.
64db4cff
PM
2867 *
2868 * No memory barrier is required here because both
d6714c22
PM
2869 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2870 * variables that other CPUs neither access nor modify,
2871 * at least not while the corresponding CPU is online.
64db4cff
PM
2872 */
2873
284a8c93
PM
2874 rcu_sched_qs();
2875 rcu_bh_qs();
64db4cff
PM
2876
2877 } else if (!in_softirq()) {
2878
2879 /*
2880 * Get here if this CPU did not take its interrupt from
2881 * softirq, in other words, if it is not interrupting
2882 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2883 * critical section, so note it.
64db4cff
PM
2884 */
2885
284a8c93 2886 rcu_bh_qs();
64db4cff 2887 }
86aea0e6 2888 rcu_preempt_check_callbacks();
e3950ecd 2889 if (rcu_pending())
a46e0899 2890 invoke_rcu_core();
8315f422
PM
2891 if (user)
2892 rcu_note_voluntary_context_switch(current);
f7f7bac9 2893 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2894}
2895
64db4cff
PM
2896/*
2897 * Scan the leaf rcu_node structures, processing dyntick state for any that
2898 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2899 * Also initiate boosting for any threads blocked on the root rcu_node.
2900 *
ee47eb9f 2901 * The caller must have suppressed start of new grace periods.
64db4cff 2902 */
217af2a2
PM
2903static void force_qs_rnp(struct rcu_state *rsp,
2904 int (*f)(struct rcu_data *rsp, bool *isidle,
2905 unsigned long *maxj),
2906 bool *isidle, unsigned long *maxj)
64db4cff 2907{
64db4cff
PM
2908 int cpu;
2909 unsigned long flags;
2910 unsigned long mask;
a0b6c9a7 2911 struct rcu_node *rnp;
64db4cff 2912
a0b6c9a7 2913 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2914 cond_resched_rcu_qs();
64db4cff 2915 mask = 0;
2a67e741 2916 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2917 if (rnp->qsmask == 0) {
a77da14c
PM
2918 if (rcu_state_p == &rcu_sched_state ||
2919 rsp != rcu_state_p ||
2920 rcu_preempt_blocked_readers_cgp(rnp)) {
2921 /*
2922 * No point in scanning bits because they
2923 * are all zero. But we might need to
2924 * priority-boost blocked readers.
2925 */
2926 rcu_initiate_boost(rnp, flags);
2927 /* rcu_initiate_boost() releases rnp->lock */
2928 continue;
2929 }
2930 if (rnp->parent &&
2931 (rnp->parent->qsmask & rnp->grpmask)) {
2932 /*
2933 * Race between grace-period
2934 * initialization and task exiting RCU
2935 * read-side critical section: Report.
2936 */
2937 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2938 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2939 continue;
2940 }
64db4cff 2941 }
bc75e999
MR
2942 for_each_leaf_node_possible_cpu(rnp, cpu) {
2943 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2944 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2945 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2946 mask |= bit;
2947 }
64db4cff 2948 }
45f014c5 2949 if (mask != 0) {
654e9533
PM
2950 /* Idle/offline CPUs, report (releases rnp->lock. */
2951 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2952 } else {
2953 /* Nothing to do here, so just drop the lock. */
67c583a7 2954 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2955 }
64db4cff 2956 }
64db4cff
PM
2957}
2958
2959/*
2960 * Force quiescent states on reluctant CPUs, and also detect which
2961 * CPUs are in dyntick-idle mode.
2962 */
4cdfc175 2963static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2964{
2965 unsigned long flags;
394f2769
PM
2966 bool ret;
2967 struct rcu_node *rnp;
2968 struct rcu_node *rnp_old = NULL;
2969
2970 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2971 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2972 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2973 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2974 !raw_spin_trylock(&rnp->fqslock);
2975 if (rnp_old != NULL)
2976 raw_spin_unlock(&rnp_old->fqslock);
2977 if (ret) {
a792563b 2978 rsp->n_force_qs_lh++;
394f2769
PM
2979 return;
2980 }
2981 rnp_old = rnp;
2982 }
2983 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2984
394f2769 2985 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2986 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2987 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2988 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2989 rsp->n_force_qs_lh++;
67c583a7 2990 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2991 return; /* Someone beat us to it. */
46a1e34e 2992 }
7d0ae808 2993 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2994 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2995 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2996}
2997
64db4cff 2998/*
e0f23060
PM
2999 * This does the RCU core processing work for the specified rcu_state
3000 * and rcu_data structures. This may be called only from the CPU to
3001 * whom the rdp belongs.
64db4cff
PM
3002 */
3003static void
1bca8cf1 3004__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
3005{
3006 unsigned long flags;
48a7639c 3007 bool needwake;
fa07a58f 3008 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 3009
50dc7def 3010 WARN_ON_ONCE(!rdp->beenonline);
2e597558 3011
64db4cff
PM
3012 /* Update RCU state based on any recent quiescent states. */
3013 rcu_check_quiescent_state(rsp, rdp);
3014
3015 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3016 local_irq_save(flags);
64db4cff 3017 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3018 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3019 needwake = rcu_start_gp(rsp);
67c583a7 3020 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3021 if (needwake)
3022 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3023 } else {
3024 local_irq_restore(flags);
64db4cff
PM
3025 }
3026
3027 /* If there are callbacks ready, invoke them. */
15fecf89 3028 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 3029 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3030
3031 /* Do any needed deferred wakeups of rcuo kthreads. */
3032 do_nocb_deferred_wakeup(rdp);
09223371
SL
3033}
3034
64db4cff 3035/*
e0f23060 3036 * Do RCU core processing for the current CPU.
64db4cff 3037 */
0766f788 3038static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3039{
6ce75a23
PM
3040 struct rcu_state *rsp;
3041
bfa00b4c
PM
3042 if (cpu_is_offline(smp_processor_id()))
3043 return;
f7f7bac9 3044 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3045 for_each_rcu_flavor(rsp)
3046 __rcu_process_callbacks(rsp);
f7f7bac9 3047 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3048}
3049
a26ac245 3050/*
e0f23060
PM
3051 * Schedule RCU callback invocation. If the specified type of RCU
3052 * does not support RCU priority boosting, just do a direct call,
3053 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3054 * are running on the current CPU with softirqs disabled, the
e0f23060 3055 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3056 */
a46e0899 3057static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3058{
7d0ae808 3059 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3060 return;
a46e0899
PM
3061 if (likely(!rsp->boost)) {
3062 rcu_do_batch(rsp, rdp);
a26ac245
PM
3063 return;
3064 }
a46e0899 3065 invoke_rcu_callbacks_kthread();
a26ac245
PM
3066}
3067
a46e0899 3068static void invoke_rcu_core(void)
09223371 3069{
b0f74036
PM
3070 if (cpu_online(smp_processor_id()))
3071 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3072}
3073
29154c57
PM
3074/*
3075 * Handle any core-RCU processing required by a call_rcu() invocation.
3076 */
3077static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3078 struct rcu_head *head, unsigned long flags)
64db4cff 3079{
48a7639c
PM
3080 bool needwake;
3081
62fde6ed
PM
3082 /*
3083 * If called from an extended quiescent state, invoke the RCU
3084 * core in order to force a re-evaluation of RCU's idleness.
3085 */
9910affa 3086 if (!rcu_is_watching())
62fde6ed
PM
3087 invoke_rcu_core();
3088
a16b7a69 3089 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3090 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3091 return;
64db4cff 3092
37c72e56
PM
3093 /*
3094 * Force the grace period if too many callbacks or too long waiting.
3095 * Enforce hysteresis, and don't invoke force_quiescent_state()
3096 * if some other CPU has recently done so. Also, don't bother
3097 * invoking force_quiescent_state() if the newly enqueued callback
3098 * is the only one waiting for a grace period to complete.
3099 */
15fecf89
PM
3100 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3101 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3102
3103 /* Are we ignoring a completed grace period? */
470716fc 3104 note_gp_changes(rsp, rdp);
b52573d2
PM
3105
3106 /* Start a new grace period if one not already started. */
3107 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3108 struct rcu_node *rnp_root = rcu_get_root(rsp);
3109
2a67e741 3110 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3111 needwake = rcu_start_gp(rsp);
67c583a7 3112 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3113 if (needwake)
3114 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3115 } else {
3116 /* Give the grace period a kick. */
3117 rdp->blimit = LONG_MAX;
3118 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3119 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3120 force_quiescent_state(rsp);
b52573d2 3121 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3122 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3123 }
4cdfc175 3124 }
29154c57
PM
3125}
3126
ae150184
PM
3127/*
3128 * RCU callback function to leak a callback.
3129 */
3130static void rcu_leak_callback(struct rcu_head *rhp)
3131{
3132}
3133
3fbfbf7a
PM
3134/*
3135 * Helper function for call_rcu() and friends. The cpu argument will
3136 * normally be -1, indicating "currently running CPU". It may specify
3137 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3138 * is expected to specify a CPU.
3139 */
64db4cff 3140static void
b6a4ae76 3141__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3142 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3143{
3144 unsigned long flags;
3145 struct rcu_data *rdp;
3146
b8f2ed53
PM
3147 /* Misaligned rcu_head! */
3148 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3149
ae150184
PM
3150 if (debug_rcu_head_queue(head)) {
3151 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3152 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3153 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3154 return;
3155 }
64db4cff
PM
3156 head->func = func;
3157 head->next = NULL;
64db4cff 3158 local_irq_save(flags);
394f99a9 3159 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3160
3161 /* Add the callback to our list. */
15fecf89 3162 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3163 int offline;
3164
3165 if (cpu != -1)
3166 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3167 if (likely(rdp->mynode)) {
3168 /* Post-boot, so this should be for a no-CBs CPU. */
3169 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3170 WARN_ON_ONCE(offline);
3171 /* Offline CPU, _call_rcu() illegal, leak callback. */
3172 local_irq_restore(flags);
3173 return;
3174 }
3175 /*
3176 * Very early boot, before rcu_init(). Initialize if needed
3177 * and then drop through to queue the callback.
3178 */
3179 BUG_ON(cpu != -1);
34404ca8 3180 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3181 if (rcu_segcblist_empty(&rdp->cblist))
3182 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3183 }
15fecf89
PM
3184 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3185 if (!lazy)
c57afe80 3186 rcu_idle_count_callbacks_posted();
2655d57e 3187
d4c08f2a
PM
3188 if (__is_kfree_rcu_offset((unsigned long)func))
3189 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3190 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3191 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3192 else
15fecf89
PM
3193 trace_rcu_callback(rsp->name, head,
3194 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3195 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3196
29154c57
PM
3197 /* Go handle any RCU core processing required. */
3198 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3199 local_irq_restore(flags);
3200}
3201
3202/*
d6714c22 3203 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3204 */
b6a4ae76 3205void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3206{
3fbfbf7a 3207 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3208}
d6714c22 3209EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3210
3211/*
486e2593 3212 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3213 */
b6a4ae76 3214void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3215{
3fbfbf7a 3216 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3217}
3218EXPORT_SYMBOL_GPL(call_rcu_bh);
3219
495aa969
ACB
3220/*
3221 * Queue an RCU callback for lazy invocation after a grace period.
3222 * This will likely be later named something like "call_rcu_lazy()",
3223 * but this change will require some way of tagging the lazy RCU
3224 * callbacks in the list of pending callbacks. Until then, this
3225 * function may only be called from __kfree_rcu().
3226 */
3227void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3228 rcu_callback_t func)
495aa969 3229{
e534165b 3230 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3231}
3232EXPORT_SYMBOL_GPL(kfree_call_rcu);
3233
6d813391
PM
3234/*
3235 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3236 * any blocking grace-period wait automatically implies a grace period
3237 * if there is only one CPU online at any point time during execution
3238 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3239 * occasionally incorrectly indicate that there are multiple CPUs online
3240 * when there was in fact only one the whole time, as this just adds
3241 * some overhead: RCU still operates correctly.
6d813391
PM
3242 */
3243static inline int rcu_blocking_is_gp(void)
3244{
95f0c1de
PM
3245 int ret;
3246
6d813391 3247 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3248 preempt_disable();
3249 ret = num_online_cpus() <= 1;
3250 preempt_enable();
3251 return ret;
6d813391
PM
3252}
3253
6ebb237b
PM
3254/**
3255 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3256 *
3257 * Control will return to the caller some time after a full rcu-sched
3258 * grace period has elapsed, in other words after all currently executing
3259 * rcu-sched read-side critical sections have completed. These read-side
3260 * critical sections are delimited by rcu_read_lock_sched() and
3261 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3262 * local_irq_disable(), and so on may be used in place of
3263 * rcu_read_lock_sched().
3264 *
3265 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3266 * non-threaded hardware-interrupt handlers, in progress on entry will
3267 * have completed before this primitive returns. However, this does not
3268 * guarantee that softirq handlers will have completed, since in some
3269 * kernels, these handlers can run in process context, and can block.
3270 *
3271 * Note that this guarantee implies further memory-ordering guarantees.
3272 * On systems with more than one CPU, when synchronize_sched() returns,
3273 * each CPU is guaranteed to have executed a full memory barrier since the
3274 * end of its last RCU-sched read-side critical section whose beginning
3275 * preceded the call to synchronize_sched(). In addition, each CPU having
3276 * an RCU read-side critical section that extends beyond the return from
3277 * synchronize_sched() is guaranteed to have executed a full memory barrier
3278 * after the beginning of synchronize_sched() and before the beginning of
3279 * that RCU read-side critical section. Note that these guarantees include
3280 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3281 * that are executing in the kernel.
3282 *
3283 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3284 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3285 * to have executed a full memory barrier during the execution of
3286 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3287 * again only if the system has more than one CPU).
6ebb237b
PM
3288 */
3289void synchronize_sched(void)
3290{
f78f5b90
PM
3291 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3292 lock_is_held(&rcu_lock_map) ||
3293 lock_is_held(&rcu_sched_lock_map),
3294 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3295 if (rcu_blocking_is_gp())
3296 return;
5afff48b 3297 if (rcu_gp_is_expedited())
3705b88d
AM
3298 synchronize_sched_expedited();
3299 else
3300 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3301}
3302EXPORT_SYMBOL_GPL(synchronize_sched);
3303
3304/**
3305 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3306 *
3307 * Control will return to the caller some time after a full rcu_bh grace
3308 * period has elapsed, in other words after all currently executing rcu_bh
3309 * read-side critical sections have completed. RCU read-side critical
3310 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3311 * and may be nested.
f0a0e6f2
PM
3312 *
3313 * See the description of synchronize_sched() for more detailed information
3314 * on memory ordering guarantees.
6ebb237b
PM
3315 */
3316void synchronize_rcu_bh(void)
3317{
f78f5b90
PM
3318 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3319 lock_is_held(&rcu_lock_map) ||
3320 lock_is_held(&rcu_sched_lock_map),
3321 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3322 if (rcu_blocking_is_gp())
3323 return;
5afff48b 3324 if (rcu_gp_is_expedited())
3705b88d
AM
3325 synchronize_rcu_bh_expedited();
3326 else
3327 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3328}
3329EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3330
765a3f4f
PM
3331/**
3332 * get_state_synchronize_rcu - Snapshot current RCU state
3333 *
3334 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3335 * to determine whether or not a full grace period has elapsed in the
3336 * meantime.
3337 */
3338unsigned long get_state_synchronize_rcu(void)
3339{
3340 /*
3341 * Any prior manipulation of RCU-protected data must happen
3342 * before the load from ->gpnum.
3343 */
3344 smp_mb(); /* ^^^ */
3345
3346 /*
3347 * Make sure this load happens before the purportedly
3348 * time-consuming work between get_state_synchronize_rcu()
3349 * and cond_synchronize_rcu().
3350 */
e534165b 3351 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3352}
3353EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3354
3355/**
3356 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3357 *
3358 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3359 *
3360 * If a full RCU grace period has elapsed since the earlier call to
3361 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3362 * synchronize_rcu() to wait for a full grace period.
3363 *
3364 * Yes, this function does not take counter wrap into account. But
3365 * counter wrap is harmless. If the counter wraps, we have waited for
3366 * more than 2 billion grace periods (and way more on a 64-bit system!),
3367 * so waiting for one additional grace period should be just fine.
3368 */
3369void cond_synchronize_rcu(unsigned long oldstate)
3370{
3371 unsigned long newstate;
3372
3373 /*
3374 * Ensure that this load happens before any RCU-destructive
3375 * actions the caller might carry out after we return.
3376 */
e534165b 3377 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3378 if (ULONG_CMP_GE(oldstate, newstate))
3379 synchronize_rcu();
3380}
3381EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3382
24560056
PM
3383/**
3384 * get_state_synchronize_sched - Snapshot current RCU-sched state
3385 *
3386 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3387 * to determine whether or not a full grace period has elapsed in the
3388 * meantime.
3389 */
3390unsigned long get_state_synchronize_sched(void)
3391{
3392 /*
3393 * Any prior manipulation of RCU-protected data must happen
3394 * before the load from ->gpnum.
3395 */
3396 smp_mb(); /* ^^^ */
3397
3398 /*
3399 * Make sure this load happens before the purportedly
3400 * time-consuming work between get_state_synchronize_sched()
3401 * and cond_synchronize_sched().
3402 */
3403 return smp_load_acquire(&rcu_sched_state.gpnum);
3404}
3405EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3406
3407/**
3408 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3409 *
3410 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3411 *
3412 * If a full RCU-sched grace period has elapsed since the earlier call to
3413 * get_state_synchronize_sched(), just return. Otherwise, invoke
3414 * synchronize_sched() to wait for a full grace period.
3415 *
3416 * Yes, this function does not take counter wrap into account. But
3417 * counter wrap is harmless. If the counter wraps, we have waited for
3418 * more than 2 billion grace periods (and way more on a 64-bit system!),
3419 * so waiting for one additional grace period should be just fine.
3420 */
3421void cond_synchronize_sched(unsigned long oldstate)
3422{
3423 unsigned long newstate;
3424
3425 /*
3426 * Ensure that this load happens before any RCU-destructive
3427 * actions the caller might carry out after we return.
3428 */
3429 newstate = smp_load_acquire(&rcu_sched_state.completed);
3430 if (ULONG_CMP_GE(oldstate, newstate))
3431 synchronize_sched();
3432}
3433EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3434
64db4cff
PM
3435/*
3436 * Check to see if there is any immediate RCU-related work to be done
3437 * by the current CPU, for the specified type of RCU, returning 1 if so.
3438 * The checks are in order of increasing expense: checks that can be
3439 * carried out against CPU-local state are performed first. However,
3440 * we must check for CPU stalls first, else we might not get a chance.
3441 */
3442static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3443{
2f51f988
PM
3444 struct rcu_node *rnp = rdp->mynode;
3445
64db4cff
PM
3446 rdp->n_rcu_pending++;
3447
3448 /* Check for CPU stalls, if enabled. */
3449 check_cpu_stall(rsp, rdp);
3450
a096932f
PM
3451 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3452 if (rcu_nohz_full_cpu(rsp))
3453 return 0;
3454
64db4cff 3455 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3456 if (rcu_scheduler_fully_active &&
5b74c458 3457 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3458 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3459 rdp->n_rp_core_needs_qs++;
3a19b46a 3460 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3461 rdp->n_rp_report_qs++;
64db4cff 3462 return 1;
7ba5c840 3463 }
64db4cff
PM
3464
3465 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3466 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3467 rdp->n_rp_cb_ready++;
64db4cff 3468 return 1;
7ba5c840 3469 }
64db4cff
PM
3470
3471 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3472 if (cpu_needs_another_gp(rsp, rdp)) {
3473 rdp->n_rp_cpu_needs_gp++;
64db4cff 3474 return 1;
7ba5c840 3475 }
64db4cff
PM
3476
3477 /* Has another RCU grace period completed? */
7d0ae808 3478 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3479 rdp->n_rp_gp_completed++;
64db4cff 3480 return 1;
7ba5c840 3481 }
64db4cff
PM
3482
3483 /* Has a new RCU grace period started? */
7d0ae808
PM
3484 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3485 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3486 rdp->n_rp_gp_started++;
64db4cff 3487 return 1;
7ba5c840 3488 }
64db4cff 3489
96d3fd0d
PM
3490 /* Does this CPU need a deferred NOCB wakeup? */
3491 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3492 rdp->n_rp_nocb_defer_wakeup++;
3493 return 1;
3494 }
3495
64db4cff 3496 /* nothing to do */
7ba5c840 3497 rdp->n_rp_need_nothing++;
64db4cff
PM
3498 return 0;
3499}
3500
3501/*
3502 * Check to see if there is any immediate RCU-related work to be done
3503 * by the current CPU, returning 1 if so. This function is part of the
3504 * RCU implementation; it is -not- an exported member of the RCU API.
3505 */
e3950ecd 3506static int rcu_pending(void)
64db4cff 3507{
6ce75a23
PM
3508 struct rcu_state *rsp;
3509
3510 for_each_rcu_flavor(rsp)
e3950ecd 3511 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3512 return 1;
3513 return 0;
64db4cff
PM
3514}
3515
3516/*
c0f4dfd4
PM
3517 * Return true if the specified CPU has any callback. If all_lazy is
3518 * non-NULL, store an indication of whether all callbacks are lazy.
3519 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3520 */
82072c4f 3521static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3522{
c0f4dfd4
PM
3523 bool al = true;
3524 bool hc = false;
3525 struct rcu_data *rdp;
6ce75a23
PM
3526 struct rcu_state *rsp;
3527
c0f4dfd4 3528 for_each_rcu_flavor(rsp) {
aa6da514 3529 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3530 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3531 continue;
3532 hc = true;
15fecf89 3533 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3534 al = false;
69c8d28c
PM
3535 break;
3536 }
c0f4dfd4
PM
3537 }
3538 if (all_lazy)
3539 *all_lazy = al;
3540 return hc;
64db4cff
PM
3541}
3542
a83eff0a
PM
3543/*
3544 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3545 * the compiler is expected to optimize this away.
3546 */
e66c33d5 3547static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3548 int cpu, unsigned long done)
3549{
3550 trace_rcu_barrier(rsp->name, s, cpu,
3551 atomic_read(&rsp->barrier_cpu_count), done);
3552}
3553
b1420f1c
PM
3554/*
3555 * RCU callback function for _rcu_barrier(). If we are last, wake
3556 * up the task executing _rcu_barrier().
3557 */
24ebbca8 3558static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3559{
24ebbca8
PM
3560 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3561 struct rcu_state *rsp = rdp->rsp;
3562
a83eff0a 3563 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3564 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3565 complete(&rsp->barrier_completion);
a83eff0a 3566 } else {
4f525a52 3567 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3568 }
d0ec774c
PM
3569}
3570
3571/*
3572 * Called with preemption disabled, and from cross-cpu IRQ context.
3573 */
3574static void rcu_barrier_func(void *type)
3575{
037b64ed 3576 struct rcu_state *rsp = type;
fa07a58f 3577 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3578
4f525a52 3579 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
f92c734f
PM
3580 rdp->barrier_head.func = rcu_barrier_callback;
3581 debug_rcu_head_queue(&rdp->barrier_head);
3582 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3583 atomic_inc(&rsp->barrier_cpu_count);
3584 } else {
3585 debug_rcu_head_unqueue(&rdp->barrier_head);
3586 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3587 }
d0ec774c
PM
3588}
3589
d0ec774c
PM
3590/*
3591 * Orchestrate the specified type of RCU barrier, waiting for all
3592 * RCU callbacks of the specified type to complete.
3593 */
037b64ed 3594static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3595{
b1420f1c 3596 int cpu;
b1420f1c 3597 struct rcu_data *rdp;
4f525a52 3598 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3599
4f525a52 3600 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3601
e74f4c45 3602 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3603 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3604
4f525a52
PM
3605 /* Did someone else do our work for us? */
3606 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3607 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3608 smp_mb(); /* caller's subsequent code after above check. */
3609 mutex_unlock(&rsp->barrier_mutex);
3610 return;
3611 }
3612
4f525a52
PM
3613 /* Mark the start of the barrier operation. */
3614 rcu_seq_start(&rsp->barrier_sequence);
3615 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3616
d0ec774c 3617 /*
b1420f1c
PM
3618 * Initialize the count to one rather than to zero in order to
3619 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3620 * (or preemption of this task). Exclude CPU-hotplug operations
3621 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3622 */
7db74df8 3623 init_completion(&rsp->barrier_completion);
24ebbca8 3624 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3625 get_online_cpus();
b1420f1c
PM
3626
3627 /*
1331e7a1
PM
3628 * Force each CPU with callbacks to register a new callback.
3629 * When that callback is invoked, we will know that all of the
3630 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3631 */
3fbfbf7a 3632 for_each_possible_cpu(cpu) {
d1e43fa5 3633 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3634 continue;
b1420f1c 3635 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3636 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3637 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3638 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3639 rsp->barrier_sequence);
d7e29933
PM
3640 } else {
3641 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3642 rsp->barrier_sequence);
41050a00 3643 smp_mb__before_atomic();
d7e29933
PM
3644 atomic_inc(&rsp->barrier_cpu_count);
3645 __call_rcu(&rdp->barrier_head,
3646 rcu_barrier_callback, rsp, cpu, 0);
3647 }
15fecf89 3648 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
a83eff0a 3649 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3650 rsp->barrier_sequence);
037b64ed 3651 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3652 } else {
a83eff0a 3653 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3654 rsp->barrier_sequence);
b1420f1c
PM
3655 }
3656 }
1331e7a1 3657 put_online_cpus();
b1420f1c
PM
3658
3659 /*
3660 * Now that we have an rcu_barrier_callback() callback on each
3661 * CPU, and thus each counted, remove the initial count.
3662 */
24ebbca8 3663 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3664 complete(&rsp->barrier_completion);
b1420f1c
PM
3665
3666 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3667 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3668
4f525a52
PM
3669 /* Mark the end of the barrier operation. */
3670 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3671 rcu_seq_end(&rsp->barrier_sequence);
3672
b1420f1c 3673 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3674 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3675}
d0ec774c
PM
3676
3677/**
3678 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3679 */
3680void rcu_barrier_bh(void)
3681{
037b64ed 3682 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3683}
3684EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3685
3686/**
3687 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3688 */
3689void rcu_barrier_sched(void)
3690{
037b64ed 3691 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3692}
3693EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3694
0aa04b05
PM
3695/*
3696 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3697 * first CPU in a given leaf rcu_node structure coming online. The caller
3698 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3699 * disabled.
3700 */
3701static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3702{
3703 long mask;
3704 struct rcu_node *rnp = rnp_leaf;
3705
3706 for (;;) {
3707 mask = rnp->grpmask;
3708 rnp = rnp->parent;
3709 if (rnp == NULL)
3710 return;
6cf10081 3711 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3712 rnp->qsmaskinit |= mask;
67c583a7 3713 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3714 }
3715}
3716
64db4cff 3717/*
27569620 3718 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3719 */
27569620
PM
3720static void __init
3721rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3722{
3723 unsigned long flags;
394f99a9 3724 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3725 struct rcu_node *rnp = rcu_get_root(rsp);
3726
3727 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3728 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3729 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3730 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3731 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3732 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3733 rdp->cpu = cpu;
d4c08f2a 3734 rdp->rsp = rsp;
3fbfbf7a 3735 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3736 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3737}
3738
3739/*
3740 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3741 * offline event can be happening at a given time. Note also that we
3742 * can accept some slop in the rsp->completed access due to the fact
3743 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3744 */
49fb4c62 3745static void
9b67122a 3746rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3747{
3748 unsigned long flags;
394f99a9 3749 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3750 struct rcu_node *rnp = rcu_get_root(rsp);
3751
3752 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3753 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3754 rdp->qlen_last_fqs_check = 0;
3755 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3756 rdp->blimit = blimit;
15fecf89
PM
3757 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3758 !init_nocb_callback_list(rdp))
3759 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3760 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3761 rcu_sysidle_init_percpu_data(rdp->dynticks);
2625d469 3762 rcu_dynticks_eqs_online();
67c583a7 3763 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3764
0aa04b05
PM
3765 /*
3766 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3767 * propagation up the rcu_node tree will happen at the beginning
3768 * of the next grace period.
3769 */
64db4cff 3770 rnp = rdp->mynode;
2a67e741 3771 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3772 if (!rdp->beenonline)
3773 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3774 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3775 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3776 rdp->completed = rnp->completed;
5b74c458 3777 rdp->cpu_no_qs.b.norm = true;
9577df9a 3778 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3779 rdp->core_needs_qs = false;
0aa04b05 3780 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3781 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3782}
3783
deb34f36
PM
3784/*
3785 * Invoked early in the CPU-online process, when pretty much all
3786 * services are available. The incoming CPU is not present.
3787 */
4df83742 3788int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3789{
6ce75a23
PM
3790 struct rcu_state *rsp;
3791
3792 for_each_rcu_flavor(rsp)
9b67122a 3793 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3794
3795 rcu_prepare_kthreads(cpu);
3796 rcu_spawn_all_nocb_kthreads(cpu);
3797
3798 return 0;
3799}
3800
deb34f36
PM
3801/*
3802 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3803 */
4df83742
TG
3804static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3805{
3806 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3807
3808 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3809}
3810
deb34f36
PM
3811/*
3812 * Near the end of the CPU-online process. Pretty much all services
3813 * enabled, and the CPU is now very much alive.
3814 */
4df83742
TG
3815int rcutree_online_cpu(unsigned int cpu)
3816{
3817 sync_sched_exp_online_cleanup(cpu);
3818 rcutree_affinity_setting(cpu, -1);
da915ad5
PM
3819 if (IS_ENABLED(CONFIG_TREE_SRCU))
3820 srcu_online_cpu(cpu);
4df83742
TG
3821 return 0;
3822}
3823
deb34f36
PM
3824/*
3825 * Near the beginning of the process. The CPU is still very much alive
3826 * with pretty much all services enabled.
3827 */
4df83742
TG
3828int rcutree_offline_cpu(unsigned int cpu)
3829{
3830 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3831 if (IS_ENABLED(CONFIG_TREE_SRCU))
3832 srcu_offline_cpu(cpu);
4df83742
TG
3833 return 0;
3834}
3835
deb34f36
PM
3836/*
3837 * Near the end of the offline process. We do only tracing here.
3838 */
4df83742
TG
3839int rcutree_dying_cpu(unsigned int cpu)
3840{
3841 struct rcu_state *rsp;
3842
3843 for_each_rcu_flavor(rsp)
3844 rcu_cleanup_dying_cpu(rsp);
3845 return 0;
3846}
3847
deb34f36
PM
3848/*
3849 * The outgoing CPU is gone and we are running elsewhere.
3850 */
4df83742
TG
3851int rcutree_dead_cpu(unsigned int cpu)
3852{
3853 struct rcu_state *rsp;
3854
3855 for_each_rcu_flavor(rsp) {
3856 rcu_cleanup_dead_cpu(cpu, rsp);
3857 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3858 }
3859 return 0;
64db4cff
PM
3860}
3861
7ec99de3
PM
3862/*
3863 * Mark the specified CPU as being online so that subsequent grace periods
3864 * (both expedited and normal) will wait on it. Note that this means that
3865 * incoming CPUs are not allowed to use RCU read-side critical sections
3866 * until this function is called. Failing to observe this restriction
3867 * will result in lockdep splats.
deb34f36
PM
3868 *
3869 * Note that this function is special in that it is invoked directly
3870 * from the incoming CPU rather than from the cpuhp_step mechanism.
3871 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3872 */
3873void rcu_cpu_starting(unsigned int cpu)
3874{
3875 unsigned long flags;
3876 unsigned long mask;
3877 struct rcu_data *rdp;
3878 struct rcu_node *rnp;
3879 struct rcu_state *rsp;
3880
3881 for_each_rcu_flavor(rsp) {
fdbb9b31 3882 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3883 rnp = rdp->mynode;
3884 mask = rdp->grpmask;
3885 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3886 rnp->qsmaskinitnext |= mask;
3887 rnp->expmaskinitnext |= mask;
3888 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3889 }
3890}
3891
27d50c7e
TG
3892#ifdef CONFIG_HOTPLUG_CPU
3893/*
3894 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3895 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3896 * bit masks.
3897 */
3898static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3899{
3900 unsigned long flags;
3901 unsigned long mask;
3902 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3903 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3904
27d50c7e
TG
3905 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3906 mask = rdp->grpmask;
3907 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3908 rnp->qsmaskinitnext &= ~mask;
710d60cb 3909 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3910}
3911
deb34f36
PM
3912/*
3913 * The outgoing function has no further need of RCU, so remove it from
3914 * the list of CPUs that RCU must track.
3915 *
3916 * Note that this function is special in that it is invoked directly
3917 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3918 * This is because this function must be invoked at a precise location.
3919 */
27d50c7e
TG
3920void rcu_report_dead(unsigned int cpu)
3921{
3922 struct rcu_state *rsp;
3923
3924 /* QS for any half-done expedited RCU-sched GP. */
3925 preempt_disable();
3926 rcu_report_exp_rdp(&rcu_sched_state,
3927 this_cpu_ptr(rcu_sched_state.rda), true);
3928 preempt_enable();
3929 for_each_rcu_flavor(rsp)
3930 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3931}
3932#endif
3933
deb34f36
PM
3934/*
3935 * On non-huge systems, use expedited RCU grace periods to make suspend
3936 * and hibernation run faster.
3937 */
d1d74d14
BP
3938static int rcu_pm_notify(struct notifier_block *self,
3939 unsigned long action, void *hcpu)
3940{
3941 switch (action) {
3942 case PM_HIBERNATION_PREPARE:
3943 case PM_SUSPEND_PREPARE:
3944 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3945 rcu_expedite_gp();
d1d74d14
BP
3946 break;
3947 case PM_POST_HIBERNATION:
3948 case PM_POST_SUSPEND:
5afff48b
PM
3949 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3950 rcu_unexpedite_gp();
d1d74d14
BP
3951 break;
3952 default:
3953 break;
3954 }
3955 return NOTIFY_OK;
3956}
3957
b3dbec76 3958/*
9386c0b7 3959 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3960 */
3961static int __init rcu_spawn_gp_kthread(void)
3962{
3963 unsigned long flags;
a94844b2 3964 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3965 struct rcu_node *rnp;
3966 struct rcu_state *rsp;
a94844b2 3967 struct sched_param sp;
b3dbec76
PM
3968 struct task_struct *t;
3969
a94844b2
PM
3970 /* Force priority into range. */
3971 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3972 kthread_prio = 1;
3973 else if (kthread_prio < 0)
3974 kthread_prio = 0;
3975 else if (kthread_prio > 99)
3976 kthread_prio = 99;
3977 if (kthread_prio != kthread_prio_in)
3978 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3979 kthread_prio, kthread_prio_in);
3980
9386c0b7 3981 rcu_scheduler_fully_active = 1;
b3dbec76 3982 for_each_rcu_flavor(rsp) {
a94844b2 3983 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3984 BUG_ON(IS_ERR(t));
3985 rnp = rcu_get_root(rsp);
6cf10081 3986 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3987 rsp->gp_kthread = t;
a94844b2
PM
3988 if (kthread_prio) {
3989 sp.sched_priority = kthread_prio;
3990 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3991 }
67c583a7 3992 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3993 wake_up_process(t);
b3dbec76 3994 }
35ce7f29 3995 rcu_spawn_nocb_kthreads();
9386c0b7 3996 rcu_spawn_boost_kthreads();
b3dbec76
PM
3997 return 0;
3998}
3999early_initcall(rcu_spawn_gp_kthread);
4000
bbad9379 4001/*
52d7e48b
PM
4002 * This function is invoked towards the end of the scheduler's
4003 * initialization process. Before this is called, the idle task might
4004 * contain synchronous grace-period primitives (during which time, this idle
4005 * task is booting the system, and such primitives are no-ops). After this
4006 * function is called, any synchronous grace-period primitives are run as
4007 * expedited, with the requesting task driving the grace period forward.
900b1028 4008 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4009 * runtime RCU functionality.
bbad9379
PM
4010 */
4011void rcu_scheduler_starting(void)
4012{
4013 WARN_ON(num_online_cpus() != 1);
4014 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4015 rcu_test_sync_prims();
4016 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4017 rcu_test_sync_prims();
bbad9379
PM
4018}
4019
64db4cff
PM
4020/*
4021 * Helper function for rcu_init() that initializes one rcu_state structure.
4022 */
a87f203e 4023static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4024{
cb007102
AG
4025 static const char * const buf[] = RCU_NODE_NAME_INIT;
4026 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4027 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4028 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4029
199977bf 4030 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4031 int cpustride = 1;
4032 int i;
4033 int j;
4034 struct rcu_node *rnp;
4035
05b84aec 4036 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4037
3eaaaf6c
PM
4038 /* Silence gcc 4.8 false positive about array index out of range. */
4039 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4040 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4041
64db4cff
PM
4042 /* Initialize the level-tracking arrays. */
4043
f885b7f2 4044 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4045 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4046 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4047
4048 /* Initialize the elements themselves, starting from the leaves. */
4049
f885b7f2 4050 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4051 cpustride *= levelspread[i];
64db4cff 4052 rnp = rsp->level[i];
41f5c631 4053 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4054 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4055 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4056 &rcu_node_class[i], buf[i]);
394f2769
PM
4057 raw_spin_lock_init(&rnp->fqslock);
4058 lockdep_set_class_and_name(&rnp->fqslock,
4059 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4060 rnp->gpnum = rsp->gpnum;
4061 rnp->completed = rsp->completed;
64db4cff
PM
4062 rnp->qsmask = 0;
4063 rnp->qsmaskinit = 0;
4064 rnp->grplo = j * cpustride;
4065 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4066 if (rnp->grphi >= nr_cpu_ids)
4067 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4068 if (i == 0) {
4069 rnp->grpnum = 0;
4070 rnp->grpmask = 0;
4071 rnp->parent = NULL;
4072 } else {
199977bf 4073 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4074 rnp->grpmask = 1UL << rnp->grpnum;
4075 rnp->parent = rsp->level[i - 1] +
199977bf 4076 j / levelspread[i - 1];
64db4cff
PM
4077 }
4078 rnp->level = i;
12f5f524 4079 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4080 rcu_init_one_nocb(rnp);
f6a12f34
PM
4081 init_waitqueue_head(&rnp->exp_wq[0]);
4082 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4083 init_waitqueue_head(&rnp->exp_wq[2]);
4084 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4085 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4086 }
4087 }
0c34029a 4088
abedf8e2
PG
4089 init_swait_queue_head(&rsp->gp_wq);
4090 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4091 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4092 for_each_possible_cpu(i) {
4a90a068 4093 while (i > rnp->grphi)
0c34029a 4094 rnp++;
394f99a9 4095 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4096 rcu_boot_init_percpu_data(i, rsp);
4097 }
6ce75a23 4098 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4099}
4100
f885b7f2
PM
4101/*
4102 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4103 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4104 * the ->node array in the rcu_state structure.
4105 */
4106static void __init rcu_init_geometry(void)
4107{
026ad283 4108 ulong d;
f885b7f2 4109 int i;
05b84aec 4110 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4111
026ad283
PM
4112 /*
4113 * Initialize any unspecified boot parameters.
4114 * The default values of jiffies_till_first_fqs and
4115 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4116 * value, which is a function of HZ, then adding one for each
4117 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4118 */
4119 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4120 if (jiffies_till_first_fqs == ULONG_MAX)
4121 jiffies_till_first_fqs = d;
4122 if (jiffies_till_next_fqs == ULONG_MAX)
4123 jiffies_till_next_fqs = d;
4124
f885b7f2 4125 /* If the compile-time values are accurate, just leave. */
47d631af 4126 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4127 nr_cpu_ids == NR_CPUS)
f885b7f2 4128 return;
39479098
PM
4129 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4130 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4131
f885b7f2 4132 /*
ee968ac6
PM
4133 * The boot-time rcu_fanout_leaf parameter must be at least two
4134 * and cannot exceed the number of bits in the rcu_node masks.
4135 * Complain and fall back to the compile-time values if this
4136 * limit is exceeded.
f885b7f2 4137 */
ee968ac6 4138 if (rcu_fanout_leaf < 2 ||
75cf15a4 4139 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4140 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4141 WARN_ON(1);
4142 return;
4143 }
4144
f885b7f2
PM
4145 /*
4146 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4147 * with the given number of levels.
f885b7f2 4148 */
9618138b 4149 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4150 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4151 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4152
4153 /*
75cf15a4 4154 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4155 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4156 */
ee968ac6
PM
4157 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4158 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4159 WARN_ON(1);
4160 return;
4161 }
f885b7f2 4162
679f9858 4163 /* Calculate the number of levels in the tree. */
9618138b 4164 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4165 }
9618138b 4166 rcu_num_lvls = i + 1;
679f9858 4167
f885b7f2 4168 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4169 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4170 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4171 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4172 }
f885b7f2
PM
4173
4174 /* Calculate the total number of rcu_node structures. */
4175 rcu_num_nodes = 0;
679f9858 4176 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4177 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4178}
4179
a3dc2948
PM
4180/*
4181 * Dump out the structure of the rcu_node combining tree associated
4182 * with the rcu_state structure referenced by rsp.
4183 */
4184static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4185{
4186 int level = 0;
4187 struct rcu_node *rnp;
4188
4189 pr_info("rcu_node tree layout dump\n");
4190 pr_info(" ");
4191 rcu_for_each_node_breadth_first(rsp, rnp) {
4192 if (rnp->level != level) {
4193 pr_cont("\n");
4194 pr_info(" ");
4195 level = rnp->level;
4196 }
4197 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4198 }
4199 pr_cont("\n");
4200}
4201
9f680ab4 4202void __init rcu_init(void)
64db4cff 4203{
017c4261 4204 int cpu;
9f680ab4 4205
47627678
PM
4206 rcu_early_boot_tests();
4207
f41d911f 4208 rcu_bootup_announce();
f885b7f2 4209 rcu_init_geometry();
a87f203e
PM
4210 rcu_init_one(&rcu_bh_state);
4211 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4212 if (dump_tree)
4213 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4214 __rcu_init_preempt();
b5b39360 4215 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4216
4217 /*
4218 * We don't need protection against CPU-hotplug here because
4219 * this is called early in boot, before either interrupts
4220 * or the scheduler are operational.
4221 */
d1d74d14 4222 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4223 for_each_online_cpu(cpu) {
4df83742 4224 rcutree_prepare_cpu(cpu);
7ec99de3 4225 rcu_cpu_starting(cpu);
da915ad5
PM
4226 if (IS_ENABLED(CONFIG_TREE_SRCU))
4227 srcu_online_cpu(cpu);
7ec99de3 4228 }
64db4cff
PM
4229}
4230
3549c2bc 4231#include "tree_exp.h"
4102adab 4232#include "tree_plugin.h"