]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/rcu/tree.c
rcu: Refine diagnostics for lacking kthread for no-CBs callbacks
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
2723249a 94DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 95struct rcu_state sname##_state = { \
6c90cc7b 96 .level = { &sname##_state.node[0] }, \
2723249a 97 .rda = &sname##_data, \
037b64ed 98 .call = cr, \
af446b70 99 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
100 .gpnum = 0UL - 300UL, \
101 .completed = 0UL - 300UL, \
7b2e6011 102 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
103 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
104 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 105 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 106 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
a8a29b3b 107 .name = RCU_STATE_NAME(sname), \
a4889858 108 .abbr = sabbr, \
2723249a 109}
64db4cff 110
a41bfeb2
SRRH
111RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
112RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 113
e534165b 114static struct rcu_state *rcu_state_p;
6ce75a23 115LIST_HEAD(rcu_struct_flavors);
27f4d280 116
f885b7f2
PM
117/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
118static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 119module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
120int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
121static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
122 NUM_RCU_LVL_0,
123 NUM_RCU_LVL_1,
124 NUM_RCU_LVL_2,
125 NUM_RCU_LVL_3,
126 NUM_RCU_LVL_4,
127};
128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129
b0d30417
PM
130/*
131 * The rcu_scheduler_active variable transitions from zero to one just
132 * before the first task is spawned. So when this variable is zero, RCU
133 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 134 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
135 * is one, RCU must actually do all the hard work required to detect real
136 * grace periods. This variable is also used to suppress boot-time false
137 * positives from lockdep-RCU error checking.
138 */
bbad9379
PM
139int rcu_scheduler_active __read_mostly;
140EXPORT_SYMBOL_GPL(rcu_scheduler_active);
141
b0d30417
PM
142/*
143 * The rcu_scheduler_fully_active variable transitions from zero to one
144 * during the early_initcall() processing, which is after the scheduler
145 * is capable of creating new tasks. So RCU processing (for example,
146 * creating tasks for RCU priority boosting) must be delayed until after
147 * rcu_scheduler_fully_active transitions from zero to one. We also
148 * currently delay invocation of any RCU callbacks until after this point.
149 *
150 * It might later prove better for people registering RCU callbacks during
151 * early boot to take responsibility for these callbacks, but one step at
152 * a time.
153 */
154static int rcu_scheduler_fully_active __read_mostly;
155
5d01bbd1 156static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
157static void invoke_rcu_core(void);
158static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 159
a94844b2
PM
160/* rcuc/rcub kthread realtime priority */
161static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
162module_param(kthread_prio, int, 0644);
163
4a298656
PM
164/*
165 * Track the rcutorture test sequence number and the update version
166 * number within a given test. The rcutorture_testseq is incremented
167 * on every rcutorture module load and unload, so has an odd value
168 * when a test is running. The rcutorture_vernum is set to zero
169 * when rcutorture starts and is incremented on each rcutorture update.
170 * These variables enable correlating rcutorture output with the
171 * RCU tracing information.
172 */
173unsigned long rcutorture_testseq;
174unsigned long rcutorture_vernum;
175
fc2219d4
PM
176/*
177 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
178 * permit this function to be invoked without holding the root rcu_node
179 * structure's ->lock, but of course results can be subject to change.
180 */
181static int rcu_gp_in_progress(struct rcu_state *rsp)
182{
183 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
184}
185
b1f77b05 186/*
d6714c22 187 * Note a quiescent state. Because we do not need to know
b1f77b05 188 * how many quiescent states passed, just if there was at least
d6714c22 189 * one since the start of the grace period, this just sets a flag.
e4cc1f22 190 * The caller must have disabled preemption.
b1f77b05 191 */
284a8c93 192void rcu_sched_qs(void)
b1f77b05 193{
284a8c93
PM
194 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
195 trace_rcu_grace_period(TPS("rcu_sched"),
196 __this_cpu_read(rcu_sched_data.gpnum),
197 TPS("cpuqs"));
198 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
199 }
b1f77b05
IM
200}
201
284a8c93 202void rcu_bh_qs(void)
b1f77b05 203{
284a8c93
PM
204 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
205 trace_rcu_grace_period(TPS("rcu_bh"),
206 __this_cpu_read(rcu_bh_data.gpnum),
207 TPS("cpuqs"));
208 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
209 }
b1f77b05 210}
64db4cff 211
4a81e832
PM
212static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
213
214static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
215 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
216 .dynticks = ATOMIC_INIT(1),
217#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
218 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
219 .dynticks_idle = ATOMIC_INIT(1),
220#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
221};
222
5cd37193
PM
223DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
224EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
225
4a81e832
PM
226/*
227 * Let the RCU core know that this CPU has gone through the scheduler,
228 * which is a quiescent state. This is called when the need for a
229 * quiescent state is urgent, so we burn an atomic operation and full
230 * memory barriers to let the RCU core know about it, regardless of what
231 * this CPU might (or might not) do in the near future.
232 *
233 * We inform the RCU core by emulating a zero-duration dyntick-idle
234 * period, which we in turn do by incrementing the ->dynticks counter
235 * by two.
236 */
237static void rcu_momentary_dyntick_idle(void)
238{
239 unsigned long flags;
240 struct rcu_data *rdp;
241 struct rcu_dynticks *rdtp;
242 int resched_mask;
243 struct rcu_state *rsp;
244
245 local_irq_save(flags);
246
247 /*
248 * Yes, we can lose flag-setting operations. This is OK, because
249 * the flag will be set again after some delay.
250 */
251 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
252 raw_cpu_write(rcu_sched_qs_mask, 0);
253
254 /* Find the flavor that needs a quiescent state. */
255 for_each_rcu_flavor(rsp) {
256 rdp = raw_cpu_ptr(rsp->rda);
257 if (!(resched_mask & rsp->flavor_mask))
258 continue;
259 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
260 if (ACCESS_ONCE(rdp->mynode->completed) !=
261 ACCESS_ONCE(rdp->cond_resched_completed))
262 continue;
263
264 /*
265 * Pretend to be momentarily idle for the quiescent state.
266 * This allows the grace-period kthread to record the
267 * quiescent state, with no need for this CPU to do anything
268 * further.
269 */
270 rdtp = this_cpu_ptr(&rcu_dynticks);
271 smp_mb__before_atomic(); /* Earlier stuff before QS. */
272 atomic_add(2, &rdtp->dynticks); /* QS. */
273 smp_mb__after_atomic(); /* Later stuff after QS. */
274 break;
275 }
276 local_irq_restore(flags);
277}
278
25502a6c
PM
279/*
280 * Note a context switch. This is a quiescent state for RCU-sched,
281 * and requires special handling for preemptible RCU.
e4cc1f22 282 * The caller must have disabled preemption.
25502a6c 283 */
38200cf2 284void rcu_note_context_switch(void)
25502a6c 285{
f7f7bac9 286 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 287 rcu_sched_qs();
38200cf2 288 rcu_preempt_note_context_switch();
4a81e832
PM
289 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
290 rcu_momentary_dyntick_idle();
f7f7bac9 291 trace_rcu_utilization(TPS("End context switch"));
25502a6c 292}
29ce8310 293EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 294
5cd37193
PM
295/*
296 * Register a quiesecent state for all RCU flavors. If there is an
297 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
298 * dyntick-idle quiescent state visible to other CPUs (but only for those
299 * RCU flavors in desparate need of a quiescent state, which will normally
300 * be none of them). Either way, do a lightweight quiescent state for
301 * all RCU flavors.
302 */
303void rcu_all_qs(void)
304{
305 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
306 rcu_momentary_dyntick_idle();
307 this_cpu_inc(rcu_qs_ctr);
308}
309EXPORT_SYMBOL_GPL(rcu_all_qs);
310
878d7439
ED
311static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
312static long qhimark = 10000; /* If this many pending, ignore blimit. */
313static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 314
878d7439
ED
315module_param(blimit, long, 0444);
316module_param(qhimark, long, 0444);
317module_param(qlowmark, long, 0444);
3d76c082 318
026ad283
PM
319static ulong jiffies_till_first_fqs = ULONG_MAX;
320static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
321
322module_param(jiffies_till_first_fqs, ulong, 0644);
323module_param(jiffies_till_next_fqs, ulong, 0644);
324
4a81e832
PM
325/*
326 * How long the grace period must be before we start recruiting
327 * quiescent-state help from rcu_note_context_switch().
328 */
329static ulong jiffies_till_sched_qs = HZ / 20;
330module_param(jiffies_till_sched_qs, ulong, 0644);
331
48a7639c 332static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 333 struct rcu_data *rdp);
217af2a2
PM
334static void force_qs_rnp(struct rcu_state *rsp,
335 int (*f)(struct rcu_data *rsp, bool *isidle,
336 unsigned long *maxj),
337 bool *isidle, unsigned long *maxj);
4cdfc175 338static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 339static int rcu_pending(void);
64db4cff
PM
340
341/*
917963d0 342 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 343 */
917963d0
PM
344unsigned long rcu_batches_started(void)
345{
346 return rcu_state_p->gpnum;
347}
348EXPORT_SYMBOL_GPL(rcu_batches_started);
349
350/*
351 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 352 */
917963d0
PM
353unsigned long rcu_batches_started_sched(void)
354{
355 return rcu_sched_state.gpnum;
356}
357EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
358
359/*
360 * Return the number of RCU BH batches started thus far for debug & stats.
361 */
362unsigned long rcu_batches_started_bh(void)
363{
364 return rcu_bh_state.gpnum;
365}
366EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
367
368/*
369 * Return the number of RCU batches completed thus far for debug & stats.
370 */
371unsigned long rcu_batches_completed(void)
372{
373 return rcu_state_p->completed;
374}
375EXPORT_SYMBOL_GPL(rcu_batches_completed);
376
377/*
378 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 379 */
9733e4f0 380unsigned long rcu_batches_completed_sched(void)
64db4cff 381{
d6714c22 382 return rcu_sched_state.completed;
64db4cff 383}
d6714c22 384EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
385
386/*
917963d0 387 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 388 */
9733e4f0 389unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
390{
391 return rcu_bh_state.completed;
392}
393EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
394
a381d757
ACB
395/*
396 * Force a quiescent state.
397 */
398void rcu_force_quiescent_state(void)
399{
e534165b 400 force_quiescent_state(rcu_state_p);
a381d757
ACB
401}
402EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
403
bf66f18e
PM
404/*
405 * Force a quiescent state for RCU BH.
406 */
407void rcu_bh_force_quiescent_state(void)
408{
4cdfc175 409 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
410}
411EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
412
afea227f
PM
413/*
414 * Show the state of the grace-period kthreads.
415 */
416void show_rcu_gp_kthreads(void)
417{
418 struct rcu_state *rsp;
419
420 for_each_rcu_flavor(rsp) {
421 pr_info("%s: wait state: %d ->state: %#lx\n",
422 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
423 /* sched_show_task(rsp->gp_kthread); */
424 }
425}
426EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
427
4a298656
PM
428/*
429 * Record the number of times rcutorture tests have been initiated and
430 * terminated. This information allows the debugfs tracing stats to be
431 * correlated to the rcutorture messages, even when the rcutorture module
432 * is being repeatedly loaded and unloaded. In other words, we cannot
433 * store this state in rcutorture itself.
434 */
435void rcutorture_record_test_transition(void)
436{
437 rcutorture_testseq++;
438 rcutorture_vernum = 0;
439}
440EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
441
ad0dc7f9
PM
442/*
443 * Send along grace-period-related data for rcutorture diagnostics.
444 */
445void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
446 unsigned long *gpnum, unsigned long *completed)
447{
448 struct rcu_state *rsp = NULL;
449
450 switch (test_type) {
451 case RCU_FLAVOR:
e534165b 452 rsp = rcu_state_p;
ad0dc7f9
PM
453 break;
454 case RCU_BH_FLAVOR:
455 rsp = &rcu_bh_state;
456 break;
457 case RCU_SCHED_FLAVOR:
458 rsp = &rcu_sched_state;
459 break;
460 default:
461 break;
462 }
463 if (rsp != NULL) {
464 *flags = ACCESS_ONCE(rsp->gp_flags);
465 *gpnum = ACCESS_ONCE(rsp->gpnum);
466 *completed = ACCESS_ONCE(rsp->completed);
467 return;
468 }
469 *flags = 0;
470 *gpnum = 0;
471 *completed = 0;
472}
473EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
474
4a298656
PM
475/*
476 * Record the number of writer passes through the current rcutorture test.
477 * This is also used to correlate debugfs tracing stats with the rcutorture
478 * messages.
479 */
480void rcutorture_record_progress(unsigned long vernum)
481{
482 rcutorture_vernum++;
483}
484EXPORT_SYMBOL_GPL(rcutorture_record_progress);
485
bf66f18e
PM
486/*
487 * Force a quiescent state for RCU-sched.
488 */
489void rcu_sched_force_quiescent_state(void)
490{
4cdfc175 491 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
492}
493EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
494
64db4cff
PM
495/*
496 * Does the CPU have callbacks ready to be invoked?
497 */
498static int
499cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
500{
3fbfbf7a
PM
501 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
502 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
503}
504
365187fb
PM
505/*
506 * Return the root node of the specified rcu_state structure.
507 */
508static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
509{
510 return &rsp->node[0];
511}
512
513/*
514 * Is there any need for future grace periods?
515 * Interrupts must be disabled. If the caller does not hold the root
516 * rnp_node structure's ->lock, the results are advisory only.
517 */
518static int rcu_future_needs_gp(struct rcu_state *rsp)
519{
520 struct rcu_node *rnp = rcu_get_root(rsp);
521 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
522 int *fp = &rnp->need_future_gp[idx];
523
524 return ACCESS_ONCE(*fp);
525}
526
64db4cff 527/*
dc35c893
PM
528 * Does the current CPU require a not-yet-started grace period?
529 * The caller must have disabled interrupts to prevent races with
530 * normal callback registry.
64db4cff
PM
531 */
532static int
533cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
534{
dc35c893 535 int i;
3fbfbf7a 536
dc35c893
PM
537 if (rcu_gp_in_progress(rsp))
538 return 0; /* No, a grace period is already in progress. */
365187fb 539 if (rcu_future_needs_gp(rsp))
34ed6246 540 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
541 if (!rdp->nxttail[RCU_NEXT_TAIL])
542 return 0; /* No, this is a no-CBs (or offline) CPU. */
543 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
544 return 1; /* Yes, this CPU has newly registered callbacks. */
545 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
546 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
547 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
548 rdp->nxtcompleted[i]))
549 return 1; /* Yes, CBs for future grace period. */
550 return 0; /* No grace period needed. */
64db4cff
PM
551}
552
9b2e4f18 553/*
adf5091e 554 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
555 *
556 * If the new value of the ->dynticks_nesting counter now is zero,
557 * we really have entered idle, and must do the appropriate accounting.
558 * The caller must have disabled interrupts.
559 */
28ced795 560static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 561{
96d3fd0d
PM
562 struct rcu_state *rsp;
563 struct rcu_data *rdp;
28ced795 564 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 565
f7f7bac9 566 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 567 if (!user && !is_idle_task(current)) {
289828e6
PM
568 struct task_struct *idle __maybe_unused =
569 idle_task(smp_processor_id());
0989cb46 570
f7f7bac9 571 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 572 ftrace_dump(DUMP_ORIG);
0989cb46
PM
573 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
574 current->pid, current->comm,
575 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 576 }
96d3fd0d
PM
577 for_each_rcu_flavor(rsp) {
578 rdp = this_cpu_ptr(rsp->rda);
579 do_nocb_deferred_wakeup(rdp);
580 }
198bbf81 581 rcu_prepare_for_idle();
9b2e4f18 582 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 583 smp_mb__before_atomic(); /* See above. */
9b2e4f18 584 atomic_inc(&rdtp->dynticks);
4e857c58 585 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 586 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 587 rcu_dynticks_task_enter();
c44e2cdd
PM
588
589 /*
adf5091e 590 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
591 * in an RCU read-side critical section.
592 */
593 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
594 "Illegal idle entry in RCU read-side critical section.");
595 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
596 "Illegal idle entry in RCU-bh read-side critical section.");
597 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
598 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 599}
64db4cff 600
adf5091e
FW
601/*
602 * Enter an RCU extended quiescent state, which can be either the
603 * idle loop or adaptive-tickless usermode execution.
64db4cff 604 */
adf5091e 605static void rcu_eqs_enter(bool user)
64db4cff 606{
4145fa7f 607 long long oldval;
64db4cff
PM
608 struct rcu_dynticks *rdtp;
609
c9d4b0af 610 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 611 oldval = rdtp->dynticks_nesting;
29e37d81 612 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 613 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 614 rdtp->dynticks_nesting = 0;
28ced795 615 rcu_eqs_enter_common(oldval, user);
3a592405 616 } else {
29e37d81 617 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 618 }
64db4cff 619}
adf5091e
FW
620
621/**
622 * rcu_idle_enter - inform RCU that current CPU is entering idle
623 *
624 * Enter idle mode, in other words, -leave- the mode in which RCU
625 * read-side critical sections can occur. (Though RCU read-side
626 * critical sections can occur in irq handlers in idle, a possibility
627 * handled by irq_enter() and irq_exit().)
628 *
629 * We crowbar the ->dynticks_nesting field to zero to allow for
630 * the possibility of usermode upcalls having messed up our count
631 * of interrupt nesting level during the prior busy period.
632 */
633void rcu_idle_enter(void)
634{
c5d900bf
FW
635 unsigned long flags;
636
637 local_irq_save(flags);
cb349ca9 638 rcu_eqs_enter(false);
28ced795 639 rcu_sysidle_enter(0);
c5d900bf 640 local_irq_restore(flags);
adf5091e 641}
8a2ecf47 642EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 643
2b1d5024 644#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
645/**
646 * rcu_user_enter - inform RCU that we are resuming userspace.
647 *
648 * Enter RCU idle mode right before resuming userspace. No use of RCU
649 * is permitted between this call and rcu_user_exit(). This way the
650 * CPU doesn't need to maintain the tick for RCU maintenance purposes
651 * when the CPU runs in userspace.
652 */
653void rcu_user_enter(void)
654{
91d1aa43 655 rcu_eqs_enter(1);
adf5091e 656}
2b1d5024 657#endif /* CONFIG_RCU_USER_QS */
19dd1591 658
9b2e4f18
PM
659/**
660 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
661 *
662 * Exit from an interrupt handler, which might possibly result in entering
663 * idle mode, in other words, leaving the mode in which read-side critical
664 * sections can occur.
64db4cff 665 *
9b2e4f18
PM
666 * This code assumes that the idle loop never does anything that might
667 * result in unbalanced calls to irq_enter() and irq_exit(). If your
668 * architecture violates this assumption, RCU will give you what you
669 * deserve, good and hard. But very infrequently and irreproducibly.
670 *
671 * Use things like work queues to work around this limitation.
672 *
673 * You have been warned.
64db4cff 674 */
9b2e4f18 675void rcu_irq_exit(void)
64db4cff
PM
676{
677 unsigned long flags;
4145fa7f 678 long long oldval;
64db4cff
PM
679 struct rcu_dynticks *rdtp;
680
681 local_irq_save(flags);
c9d4b0af 682 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 683 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
684 rdtp->dynticks_nesting--;
685 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 686 if (rdtp->dynticks_nesting)
f7f7bac9 687 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 688 else
28ced795
CL
689 rcu_eqs_enter_common(oldval, true);
690 rcu_sysidle_enter(1);
9b2e4f18
PM
691 local_irq_restore(flags);
692}
693
694/*
adf5091e 695 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
696 *
697 * If the new value of the ->dynticks_nesting counter was previously zero,
698 * we really have exited idle, and must do the appropriate accounting.
699 * The caller must have disabled interrupts.
700 */
28ced795 701static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 702{
28ced795
CL
703 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
704
176f8f7a 705 rcu_dynticks_task_exit();
4e857c58 706 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
707 atomic_inc(&rdtp->dynticks);
708 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 709 smp_mb__after_atomic(); /* See above. */
23b5c8fa 710 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 711 rcu_cleanup_after_idle();
f7f7bac9 712 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 713 if (!user && !is_idle_task(current)) {
289828e6
PM
714 struct task_struct *idle __maybe_unused =
715 idle_task(smp_processor_id());
0989cb46 716
f7f7bac9 717 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 718 oldval, rdtp->dynticks_nesting);
bf1304e9 719 ftrace_dump(DUMP_ORIG);
0989cb46
PM
720 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
721 current->pid, current->comm,
722 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
723 }
724}
725
adf5091e
FW
726/*
727 * Exit an RCU extended quiescent state, which can be either the
728 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 729 */
adf5091e 730static void rcu_eqs_exit(bool user)
9b2e4f18 731{
9b2e4f18
PM
732 struct rcu_dynticks *rdtp;
733 long long oldval;
734
c9d4b0af 735 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 736 oldval = rdtp->dynticks_nesting;
29e37d81 737 WARN_ON_ONCE(oldval < 0);
3a592405 738 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 739 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 740 } else {
29e37d81 741 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 742 rcu_eqs_exit_common(oldval, user);
3a592405 743 }
9b2e4f18 744}
adf5091e
FW
745
746/**
747 * rcu_idle_exit - inform RCU that current CPU is leaving idle
748 *
749 * Exit idle mode, in other words, -enter- the mode in which RCU
750 * read-side critical sections can occur.
751 *
752 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
753 * allow for the possibility of usermode upcalls messing up our count
754 * of interrupt nesting level during the busy period that is just
755 * now starting.
756 */
757void rcu_idle_exit(void)
758{
c5d900bf
FW
759 unsigned long flags;
760
761 local_irq_save(flags);
cb349ca9 762 rcu_eqs_exit(false);
28ced795 763 rcu_sysidle_exit(0);
c5d900bf 764 local_irq_restore(flags);
adf5091e 765}
8a2ecf47 766EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 767
2b1d5024 768#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
769/**
770 * rcu_user_exit - inform RCU that we are exiting userspace.
771 *
772 * Exit RCU idle mode while entering the kernel because it can
773 * run a RCU read side critical section anytime.
774 */
775void rcu_user_exit(void)
776{
91d1aa43 777 rcu_eqs_exit(1);
adf5091e 778}
2b1d5024 779#endif /* CONFIG_RCU_USER_QS */
19dd1591 780
9b2e4f18
PM
781/**
782 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
783 *
784 * Enter an interrupt handler, which might possibly result in exiting
785 * idle mode, in other words, entering the mode in which read-side critical
786 * sections can occur.
787 *
788 * Note that the Linux kernel is fully capable of entering an interrupt
789 * handler that it never exits, for example when doing upcalls to
790 * user mode! This code assumes that the idle loop never does upcalls to
791 * user mode. If your architecture does do upcalls from the idle loop (or
792 * does anything else that results in unbalanced calls to the irq_enter()
793 * and irq_exit() functions), RCU will give you what you deserve, good
794 * and hard. But very infrequently and irreproducibly.
795 *
796 * Use things like work queues to work around this limitation.
797 *
798 * You have been warned.
799 */
800void rcu_irq_enter(void)
801{
802 unsigned long flags;
803 struct rcu_dynticks *rdtp;
804 long long oldval;
805
806 local_irq_save(flags);
c9d4b0af 807 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
808 oldval = rdtp->dynticks_nesting;
809 rdtp->dynticks_nesting++;
810 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 811 if (oldval)
f7f7bac9 812 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 813 else
28ced795
CL
814 rcu_eqs_exit_common(oldval, true);
815 rcu_sysidle_exit(1);
64db4cff 816 local_irq_restore(flags);
64db4cff
PM
817}
818
819/**
820 * rcu_nmi_enter - inform RCU of entry to NMI context
821 *
734d1680
PM
822 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
823 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
824 * that the CPU is active. This implementation permits nested NMIs, as
825 * long as the nesting level does not overflow an int. (You will probably
826 * run out of stack space first.)
64db4cff
PM
827 */
828void rcu_nmi_enter(void)
829{
c9d4b0af 830 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 831 int incby = 2;
64db4cff 832
734d1680
PM
833 /* Complain about underflow. */
834 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
835
836 /*
837 * If idle from RCU viewpoint, atomically increment ->dynticks
838 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
839 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
840 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
841 * to be in the outermost NMI handler that interrupted an RCU-idle
842 * period (observation due to Andy Lutomirski).
843 */
844 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
845 smp_mb__before_atomic(); /* Force delay from prior write. */
846 atomic_inc(&rdtp->dynticks);
847 /* atomic_inc() before later RCU read-side crit sects */
848 smp_mb__after_atomic(); /* See above. */
849 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
850 incby = 1;
851 }
852 rdtp->dynticks_nmi_nesting += incby;
853 barrier();
64db4cff
PM
854}
855
856/**
857 * rcu_nmi_exit - inform RCU of exit from NMI context
858 *
734d1680
PM
859 * If we are returning from the outermost NMI handler that interrupted an
860 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
861 * to let the RCU grace-period handling know that the CPU is back to
862 * being RCU-idle.
64db4cff
PM
863 */
864void rcu_nmi_exit(void)
865{
c9d4b0af 866 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 867
734d1680
PM
868 /*
869 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
870 * (We are exiting an NMI handler, so RCU better be paying attention
871 * to us!)
872 */
873 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
874 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
875
876 /*
877 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
878 * leave it in non-RCU-idle state.
879 */
880 if (rdtp->dynticks_nmi_nesting != 1) {
881 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 882 return;
734d1680
PM
883 }
884
885 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
886 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 887 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 888 smp_mb__before_atomic(); /* See above. */
23b5c8fa 889 atomic_inc(&rdtp->dynticks);
4e857c58 890 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 891 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
892}
893
894/**
5c173eb8
PM
895 * __rcu_is_watching - are RCU read-side critical sections safe?
896 *
897 * Return true if RCU is watching the running CPU, which means that
898 * this CPU can safely enter RCU read-side critical sections. Unlike
899 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
900 * least disabled preemption.
901 */
9418fb20 902bool notrace __rcu_is_watching(void)
5c173eb8
PM
903{
904 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
905}
906
907/**
908 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 909 *
9b2e4f18 910 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 911 * or NMI handler, return true.
64db4cff 912 */
9418fb20 913bool notrace rcu_is_watching(void)
64db4cff 914{
f534ed1f 915 bool ret;
34240697
PM
916
917 preempt_disable();
5c173eb8 918 ret = __rcu_is_watching();
34240697
PM
919 preempt_enable();
920 return ret;
64db4cff 921}
5c173eb8 922EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 923
62fde6ed 924#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
925
926/*
927 * Is the current CPU online? Disable preemption to avoid false positives
928 * that could otherwise happen due to the current CPU number being sampled,
929 * this task being preempted, its old CPU being taken offline, resuming
930 * on some other CPU, then determining that its old CPU is now offline.
931 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
932 * the check for rcu_scheduler_fully_active. Note also that it is OK
933 * for a CPU coming online to use RCU for one jiffy prior to marking itself
934 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
935 * offline to continue to use RCU for one jiffy after marking itself
936 * offline in the cpu_online_mask. This leniency is necessary given the
937 * non-atomic nature of the online and offline processing, for example,
938 * the fact that a CPU enters the scheduler after completing the CPU_DYING
939 * notifiers.
940 *
941 * This is also why RCU internally marks CPUs online during the
942 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
943 *
944 * Disable checking if in an NMI handler because we cannot safely report
945 * errors from NMI handlers anyway.
946 */
947bool rcu_lockdep_current_cpu_online(void)
948{
2036d94a
PM
949 struct rcu_data *rdp;
950 struct rcu_node *rnp;
c0d6d01b
PM
951 bool ret;
952
953 if (in_nmi())
f6f7ee9a 954 return true;
c0d6d01b 955 preempt_disable();
c9d4b0af 956 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
957 rnp = rdp->mynode;
958 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
959 !rcu_scheduler_fully_active;
960 preempt_enable();
961 return ret;
962}
963EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
964
62fde6ed 965#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 966
64db4cff 967/**
9b2e4f18 968 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 969 *
9b2e4f18
PM
970 * If the current CPU is idle or running at a first-level (not nested)
971 * interrupt from idle, return true. The caller must have at least
972 * disabled preemption.
64db4cff 973 */
62e3cb14 974static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 975{
c9d4b0af 976 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
977}
978
64db4cff
PM
979/*
980 * Snapshot the specified CPU's dynticks counter so that we can later
981 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 982 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 983 */
217af2a2
PM
984static int dyntick_save_progress_counter(struct rcu_data *rdp,
985 bool *isidle, unsigned long *maxj)
64db4cff 986{
23b5c8fa 987 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 988 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
989 if ((rdp->dynticks_snap & 0x1) == 0) {
990 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
991 return 1;
992 } else {
e3663b10
PM
993 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
994 rdp->mynode->gpnum))
995 ACCESS_ONCE(rdp->gpwrap) = true;
7941dbde
ACB
996 return 0;
997 }
64db4cff
PM
998}
999
1000/*
1001 * Return true if the specified CPU has passed through a quiescent
1002 * state by virtue of being in or having passed through an dynticks
1003 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1004 * for this same CPU, or by virtue of having been offline.
64db4cff 1005 */
217af2a2
PM
1006static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1007 bool *isidle, unsigned long *maxj)
64db4cff 1008{
7eb4f455 1009 unsigned int curr;
4a81e832 1010 int *rcrmp;
7eb4f455 1011 unsigned int snap;
64db4cff 1012
7eb4f455
PM
1013 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1014 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1015
1016 /*
1017 * If the CPU passed through or entered a dynticks idle phase with
1018 * no active irq/NMI handlers, then we can safely pretend that the CPU
1019 * already acknowledged the request to pass through a quiescent
1020 * state. Either way, that CPU cannot possibly be in an RCU
1021 * read-side critical section that started before the beginning
1022 * of the current RCU grace period.
1023 */
7eb4f455 1024 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1025 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1026 rdp->dynticks_fqs++;
1027 return 1;
1028 }
1029
a82dcc76
PM
1030 /*
1031 * Check for the CPU being offline, but only if the grace period
1032 * is old enough. We don't need to worry about the CPU changing
1033 * state: If we see it offline even once, it has been through a
1034 * quiescent state.
1035 *
1036 * The reason for insisting that the grace period be at least
1037 * one jiffy old is that CPUs that are not quite online and that
1038 * have just gone offline can still execute RCU read-side critical
1039 * sections.
1040 */
1041 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1042 return 0; /* Grace period is not old enough. */
1043 barrier();
1044 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1045 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1046 rdp->offline_fqs++;
1047 return 1;
1048 }
65d798f0
PM
1049
1050 /*
4a81e832
PM
1051 * A CPU running for an extended time within the kernel can
1052 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1053 * even context-switching back and forth between a pair of
1054 * in-kernel CPU-bound tasks cannot advance grace periods.
1055 * So if the grace period is old enough, make the CPU pay attention.
1056 * Note that the unsynchronized assignments to the per-CPU
1057 * rcu_sched_qs_mask variable are safe. Yes, setting of
1058 * bits can be lost, but they will be set again on the next
1059 * force-quiescent-state pass. So lost bit sets do not result
1060 * in incorrect behavior, merely in a grace period lasting
1061 * a few jiffies longer than it might otherwise. Because
1062 * there are at most four threads involved, and because the
1063 * updates are only once every few jiffies, the probability of
1064 * lossage (and thus of slight grace-period extension) is
1065 * quite low.
1066 *
1067 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1068 * is set too high, we override with half of the RCU CPU stall
1069 * warning delay.
6193c76a 1070 */
4a81e832
PM
1071 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1072 if (ULONG_CMP_GE(jiffies,
1073 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1074 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
1075 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1076 ACCESS_ONCE(rdp->cond_resched_completed) =
1077 ACCESS_ONCE(rdp->mynode->completed);
1078 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1079 ACCESS_ONCE(*rcrmp) =
1080 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1081 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1082 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1083 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1084 /* Time to beat on that CPU again! */
1085 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1086 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1087 }
6193c76a
PM
1088 }
1089
a82dcc76 1090 return 0;
64db4cff
PM
1091}
1092
64db4cff
PM
1093static void record_gp_stall_check_time(struct rcu_state *rsp)
1094{
cb1e78cf 1095 unsigned long j = jiffies;
6193c76a 1096 unsigned long j1;
26cdfedf
PM
1097
1098 rsp->gp_start = j;
1099 smp_wmb(); /* Record start time before stall time. */
6193c76a 1100 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1101 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1102 rsp->jiffies_resched = j + j1 / 2;
fc908ed3 1103 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
64db4cff
PM
1104}
1105
fb81a44b
PM
1106/*
1107 * Complain about starvation of grace-period kthread.
1108 */
1109static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1110{
1111 unsigned long gpa;
1112 unsigned long j;
1113
1114 j = jiffies;
1115 gpa = ACCESS_ONCE(rsp->gp_activity);
1116 if (j - gpa > 2 * HZ)
1117 pr_err("%s kthread starved for %ld jiffies!\n",
1118 rsp->name, j - gpa);
64db4cff
PM
1119}
1120
b637a328 1121/*
bc1dce51 1122 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1123 */
1124static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1125{
1126 int cpu;
1127 unsigned long flags;
1128 struct rcu_node *rnp;
1129
1130 rcu_for_each_leaf_node(rsp, rnp) {
1131 raw_spin_lock_irqsave(&rnp->lock, flags);
1132 if (rnp->qsmask != 0) {
1133 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1134 if (rnp->qsmask & (1UL << cpu))
1135 dump_cpu_task(rnp->grplo + cpu);
1136 }
1137 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1138 }
1139}
1140
6ccd2ecd 1141static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1142{
1143 int cpu;
1144 long delta;
1145 unsigned long flags;
6ccd2ecd
PM
1146 unsigned long gpa;
1147 unsigned long j;
285fe294 1148 int ndetected = 0;
64db4cff 1149 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1150 long totqlen = 0;
64db4cff
PM
1151
1152 /* Only let one CPU complain about others per time interval. */
1153
1304afb2 1154 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1155 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1156 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1157 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1158 return;
1159 }
4fc5b755 1160 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1161 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1162
8cdd32a9
PM
1163 /*
1164 * OK, time to rat on our buddy...
1165 * See Documentation/RCU/stallwarn.txt for info on how to debug
1166 * RCU CPU stall warnings.
1167 */
d7f3e207 1168 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1169 rsp->name);
a858af28 1170 print_cpu_stall_info_begin();
a0b6c9a7 1171 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1172 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1173 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1174 if (rnp->qsmask != 0) {
1175 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1176 if (rnp->qsmask & (1UL << cpu)) {
1177 print_cpu_stall_info(rsp,
1178 rnp->grplo + cpu);
1179 ndetected++;
1180 }
1181 }
3acd9eb3 1182 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1183 }
a858af28 1184
a858af28 1185 print_cpu_stall_info_end();
53bb857c
PM
1186 for_each_possible_cpu(cpu)
1187 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1188 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1189 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1190 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1191 if (ndetected) {
b637a328 1192 rcu_dump_cpu_stacks(rsp);
6ccd2ecd
PM
1193 } else {
1194 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1195 ACCESS_ONCE(rsp->completed) == gpnum) {
1196 pr_err("INFO: Stall ended before state dump start\n");
1197 } else {
1198 j = jiffies;
1199 gpa = ACCESS_ONCE(rsp->gp_activity);
1200 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n",
1201 rsp->name, j - gpa, j, gpa,
1202 jiffies_till_next_fqs);
1203 /* In this case, the current CPU might be at fault. */
1204 sched_show_task(current);
1205 }
1206 }
c1dc0b9c 1207
4cdfc175 1208 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1209 rcu_print_detail_task_stall(rsp);
1210
fb81a44b
PM
1211 rcu_check_gp_kthread_starvation(rsp);
1212
4cdfc175 1213 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1214}
1215
1216static void print_cpu_stall(struct rcu_state *rsp)
1217{
53bb857c 1218 int cpu;
64db4cff
PM
1219 unsigned long flags;
1220 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1221 long totqlen = 0;
64db4cff 1222
8cdd32a9
PM
1223 /*
1224 * OK, time to rat on ourselves...
1225 * See Documentation/RCU/stallwarn.txt for info on how to debug
1226 * RCU CPU stall warnings.
1227 */
d7f3e207 1228 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1229 print_cpu_stall_info_begin();
1230 print_cpu_stall_info(rsp, smp_processor_id());
1231 print_cpu_stall_info_end();
53bb857c
PM
1232 for_each_possible_cpu(cpu)
1233 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1234 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1235 jiffies - rsp->gp_start,
1236 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1237
1238 rcu_check_gp_kthread_starvation(rsp);
1239
bc1dce51 1240 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1241
1304afb2 1242 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1243 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1244 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1245 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1246 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1247
b021fe3e
PZ
1248 /*
1249 * Attempt to revive the RCU machinery by forcing a context switch.
1250 *
1251 * A context switch would normally allow the RCU state machine to make
1252 * progress and it could be we're stuck in kernel space without context
1253 * switches for an entirely unreasonable amount of time.
1254 */
1255 resched_cpu(smp_processor_id());
64db4cff
PM
1256}
1257
1258static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1259{
26cdfedf
PM
1260 unsigned long completed;
1261 unsigned long gpnum;
1262 unsigned long gps;
bad6e139
PM
1263 unsigned long j;
1264 unsigned long js;
64db4cff
PM
1265 struct rcu_node *rnp;
1266
26cdfedf 1267 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1268 return;
cb1e78cf 1269 j = jiffies;
26cdfedf
PM
1270
1271 /*
1272 * Lots of memory barriers to reject false positives.
1273 *
1274 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1275 * then rsp->gp_start, and finally rsp->completed. These values
1276 * are updated in the opposite order with memory barriers (or
1277 * equivalent) during grace-period initialization and cleanup.
1278 * Now, a false positive can occur if we get an new value of
1279 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1280 * the memory barriers, the only way that this can happen is if one
1281 * grace period ends and another starts between these two fetches.
1282 * Detect this by comparing rsp->completed with the previous fetch
1283 * from rsp->gpnum.
1284 *
1285 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1286 * and rsp->gp_start suffice to forestall false positives.
1287 */
1288 gpnum = ACCESS_ONCE(rsp->gpnum);
1289 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1290 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1291 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1292 gps = ACCESS_ONCE(rsp->gp_start);
1293 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1294 completed = ACCESS_ONCE(rsp->completed);
1295 if (ULONG_CMP_GE(completed, gpnum) ||
1296 ULONG_CMP_LT(j, js) ||
1297 ULONG_CMP_GE(gps, js))
1298 return; /* No stall or GP completed since entering function. */
64db4cff 1299 rnp = rdp->mynode;
c96ea7cf 1300 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1301 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1302
1303 /* We haven't checked in, so go dump stack. */
1304 print_cpu_stall(rsp);
1305
bad6e139
PM
1306 } else if (rcu_gp_in_progress(rsp) &&
1307 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1308
bad6e139 1309 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1310 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1311 }
1312}
1313
53d84e00
PM
1314/**
1315 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1316 *
1317 * Set the stall-warning timeout way off into the future, thus preventing
1318 * any RCU CPU stall-warning messages from appearing in the current set of
1319 * RCU grace periods.
1320 *
1321 * The caller must disable hard irqs.
1322 */
1323void rcu_cpu_stall_reset(void)
1324{
6ce75a23
PM
1325 struct rcu_state *rsp;
1326
1327 for_each_rcu_flavor(rsp)
4fc5b755 1328 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1329}
1330
3f5d3ea6 1331/*
d3f3f3f2
PM
1332 * Initialize the specified rcu_data structure's default callback list
1333 * to empty. The default callback list is the one that is not used by
1334 * no-callbacks CPUs.
3f5d3ea6 1335 */
d3f3f3f2 1336static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1337{
1338 int i;
1339
1340 rdp->nxtlist = NULL;
1341 for (i = 0; i < RCU_NEXT_SIZE; i++)
1342 rdp->nxttail[i] = &rdp->nxtlist;
1343}
1344
d3f3f3f2
PM
1345/*
1346 * Initialize the specified rcu_data structure's callback list to empty.
1347 */
1348static void init_callback_list(struct rcu_data *rdp)
1349{
1350 if (init_nocb_callback_list(rdp))
1351 return;
1352 init_default_callback_list(rdp);
1353}
1354
dc35c893
PM
1355/*
1356 * Determine the value that ->completed will have at the end of the
1357 * next subsequent grace period. This is used to tag callbacks so that
1358 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1359 * been dyntick-idle for an extended period with callbacks under the
1360 * influence of RCU_FAST_NO_HZ.
1361 *
1362 * The caller must hold rnp->lock with interrupts disabled.
1363 */
1364static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1365 struct rcu_node *rnp)
1366{
1367 /*
1368 * If RCU is idle, we just wait for the next grace period.
1369 * But we can only be sure that RCU is idle if we are looking
1370 * at the root rcu_node structure -- otherwise, a new grace
1371 * period might have started, but just not yet gotten around
1372 * to initializing the current non-root rcu_node structure.
1373 */
1374 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1375 return rnp->completed + 1;
1376
1377 /*
1378 * Otherwise, wait for a possible partial grace period and
1379 * then the subsequent full grace period.
1380 */
1381 return rnp->completed + 2;
1382}
1383
0446be48
PM
1384/*
1385 * Trace-event helper function for rcu_start_future_gp() and
1386 * rcu_nocb_wait_gp().
1387 */
1388static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1389 unsigned long c, const char *s)
0446be48
PM
1390{
1391 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1392 rnp->completed, c, rnp->level,
1393 rnp->grplo, rnp->grphi, s);
1394}
1395
1396/*
1397 * Start some future grace period, as needed to handle newly arrived
1398 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1399 * rcu_node structure's ->need_future_gp field. Returns true if there
1400 * is reason to awaken the grace-period kthread.
0446be48
PM
1401 *
1402 * The caller must hold the specified rcu_node structure's ->lock.
1403 */
48a7639c
PM
1404static bool __maybe_unused
1405rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1406 unsigned long *c_out)
0446be48
PM
1407{
1408 unsigned long c;
1409 int i;
48a7639c 1410 bool ret = false;
0446be48
PM
1411 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1412
1413 /*
1414 * Pick up grace-period number for new callbacks. If this
1415 * grace period is already marked as needed, return to the caller.
1416 */
1417 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1418 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1419 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1420 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1421 goto out;
0446be48
PM
1422 }
1423
1424 /*
1425 * If either this rcu_node structure or the root rcu_node structure
1426 * believe that a grace period is in progress, then we must wait
1427 * for the one following, which is in "c". Because our request
1428 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1429 * need to explicitly start one. We only do the lockless check
1430 * of rnp_root's fields if the current rcu_node structure thinks
1431 * there is no grace period in flight, and because we hold rnp->lock,
1432 * the only possible change is when rnp_root's two fields are
1433 * equal, in which case rnp_root->gpnum might be concurrently
1434 * incremented. But that is OK, as it will just result in our
1435 * doing some extra useless work.
0446be48
PM
1436 */
1437 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1438 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1439 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1440 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1441 goto out;
0446be48
PM
1442 }
1443
1444 /*
1445 * There might be no grace period in progress. If we don't already
1446 * hold it, acquire the root rcu_node structure's lock in order to
1447 * start one (if needed).
1448 */
6303b9c8 1449 if (rnp != rnp_root) {
0446be48 1450 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1451 smp_mb__after_unlock_lock();
1452 }
0446be48
PM
1453
1454 /*
1455 * Get a new grace-period number. If there really is no grace
1456 * period in progress, it will be smaller than the one we obtained
1457 * earlier. Adjust callbacks as needed. Note that even no-CBs
1458 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1459 */
1460 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1461 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1462 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1463 rdp->nxtcompleted[i] = c;
1464
1465 /*
1466 * If the needed for the required grace period is already
1467 * recorded, trace and leave.
1468 */
1469 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1470 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1471 goto unlock_out;
1472 }
1473
1474 /* Record the need for the future grace period. */
1475 rnp_root->need_future_gp[c & 0x1]++;
1476
1477 /* If a grace period is not already in progress, start one. */
1478 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1479 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1480 } else {
f7f7bac9 1481 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1482 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1483 }
1484unlock_out:
1485 if (rnp != rnp_root)
1486 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1487out:
1488 if (c_out != NULL)
1489 *c_out = c;
1490 return ret;
0446be48
PM
1491}
1492
1493/*
1494 * Clean up any old requests for the just-ended grace period. Also return
1495 * whether any additional grace periods have been requested. Also invoke
1496 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1497 * waiting for this grace period to complete.
1498 */
1499static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1500{
1501 int c = rnp->completed;
1502 int needmore;
1503 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1504
1505 rcu_nocb_gp_cleanup(rsp, rnp);
1506 rnp->need_future_gp[c & 0x1] = 0;
1507 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1508 trace_rcu_future_gp(rnp, rdp, c,
1509 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1510 return needmore;
1511}
1512
48a7639c
PM
1513/*
1514 * Awaken the grace-period kthread for the specified flavor of RCU.
1515 * Don't do a self-awaken, and don't bother awakening when there is
1516 * nothing for the grace-period kthread to do (as in several CPUs
1517 * raced to awaken, and we lost), and finally don't try to awaken
1518 * a kthread that has not yet been created.
1519 */
1520static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1521{
1522 if (current == rsp->gp_kthread ||
1523 !ACCESS_ONCE(rsp->gp_flags) ||
1524 !rsp->gp_kthread)
1525 return;
1526 wake_up(&rsp->gp_wq);
1527}
1528
dc35c893
PM
1529/*
1530 * If there is room, assign a ->completed number to any callbacks on
1531 * this CPU that have not already been assigned. Also accelerate any
1532 * callbacks that were previously assigned a ->completed number that has
1533 * since proven to be too conservative, which can happen if callbacks get
1534 * assigned a ->completed number while RCU is idle, but with reference to
1535 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1536 * not hurt to call it repeatedly. Returns an flag saying that we should
1537 * awaken the RCU grace-period kthread.
dc35c893
PM
1538 *
1539 * The caller must hold rnp->lock with interrupts disabled.
1540 */
48a7639c 1541static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1542 struct rcu_data *rdp)
1543{
1544 unsigned long c;
1545 int i;
48a7639c 1546 bool ret;
dc35c893
PM
1547
1548 /* If the CPU has no callbacks, nothing to do. */
1549 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1550 return false;
dc35c893
PM
1551
1552 /*
1553 * Starting from the sublist containing the callbacks most
1554 * recently assigned a ->completed number and working down, find the
1555 * first sublist that is not assignable to an upcoming grace period.
1556 * Such a sublist has something in it (first two tests) and has
1557 * a ->completed number assigned that will complete sooner than
1558 * the ->completed number for newly arrived callbacks (last test).
1559 *
1560 * The key point is that any later sublist can be assigned the
1561 * same ->completed number as the newly arrived callbacks, which
1562 * means that the callbacks in any of these later sublist can be
1563 * grouped into a single sublist, whether or not they have already
1564 * been assigned a ->completed number.
1565 */
1566 c = rcu_cbs_completed(rsp, rnp);
1567 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1568 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1569 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1570 break;
1571
1572 /*
1573 * If there are no sublist for unassigned callbacks, leave.
1574 * At the same time, advance "i" one sublist, so that "i" will
1575 * index into the sublist where all the remaining callbacks should
1576 * be grouped into.
1577 */
1578 if (++i >= RCU_NEXT_TAIL)
48a7639c 1579 return false;
dc35c893
PM
1580
1581 /*
1582 * Assign all subsequent callbacks' ->completed number to the next
1583 * full grace period and group them all in the sublist initially
1584 * indexed by "i".
1585 */
1586 for (; i <= RCU_NEXT_TAIL; i++) {
1587 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1588 rdp->nxtcompleted[i] = c;
1589 }
910ee45d 1590 /* Record any needed additional grace periods. */
48a7639c 1591 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1592
1593 /* Trace depending on how much we were able to accelerate. */
1594 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1595 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1596 else
f7f7bac9 1597 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1598 return ret;
dc35c893
PM
1599}
1600
1601/*
1602 * Move any callbacks whose grace period has completed to the
1603 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1604 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1605 * sublist. This function is idempotent, so it does not hurt to
1606 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1607 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1608 *
1609 * The caller must hold rnp->lock with interrupts disabled.
1610 */
48a7639c 1611static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1612 struct rcu_data *rdp)
1613{
1614 int i, j;
1615
1616 /* If the CPU has no callbacks, nothing to do. */
1617 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1618 return false;
dc35c893
PM
1619
1620 /*
1621 * Find all callbacks whose ->completed numbers indicate that they
1622 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1623 */
1624 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1625 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1626 break;
1627 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1628 }
1629 /* Clean up any sublist tail pointers that were misordered above. */
1630 for (j = RCU_WAIT_TAIL; j < i; j++)
1631 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1632
1633 /* Copy down callbacks to fill in empty sublists. */
1634 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1635 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1636 break;
1637 rdp->nxttail[j] = rdp->nxttail[i];
1638 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1639 }
1640
1641 /* Classify any remaining callbacks. */
48a7639c 1642 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1643}
1644
d09b62df 1645/*
ba9fbe95
PM
1646 * Update CPU-local rcu_data state to record the beginnings and ends of
1647 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1648 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1649 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1650 */
48a7639c
PM
1651static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1652 struct rcu_data *rdp)
d09b62df 1653{
48a7639c
PM
1654 bool ret;
1655
ba9fbe95 1656 /* Handle the ends of any preceding grace periods first. */
e3663b10
PM
1657 if (rdp->completed == rnp->completed &&
1658 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
d09b62df 1659
ba9fbe95 1660 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1661 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1662
dc35c893
PM
1663 } else {
1664
1665 /* Advance callbacks. */
48a7639c 1666 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1667
1668 /* Remember that we saw this grace-period completion. */
1669 rdp->completed = rnp->completed;
f7f7bac9 1670 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1671 }
398ebe60 1672
e3663b10 1673 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
6eaef633
PM
1674 /*
1675 * If the current grace period is waiting for this CPU,
1676 * set up to detect a quiescent state, otherwise don't
1677 * go looking for one.
1678 */
1679 rdp->gpnum = rnp->gpnum;
f7f7bac9 1680 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633 1681 rdp->passed_quiesce = 0;
5cd37193 1682 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
6eaef633
PM
1683 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1684 zero_cpu_stall_ticks(rdp);
e3663b10 1685 ACCESS_ONCE(rdp->gpwrap) = false;
6eaef633 1686 }
48a7639c 1687 return ret;
6eaef633
PM
1688}
1689
d34ea322 1690static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1691{
1692 unsigned long flags;
48a7639c 1693 bool needwake;
6eaef633
PM
1694 struct rcu_node *rnp;
1695
1696 local_irq_save(flags);
1697 rnp = rdp->mynode;
d34ea322 1698 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
e3663b10
PM
1699 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1700 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1701 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1702 local_irq_restore(flags);
1703 return;
1704 }
6303b9c8 1705 smp_mb__after_unlock_lock();
48a7639c 1706 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1707 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1708 if (needwake)
1709 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1710}
1711
b3dbec76 1712/*
f7be8209 1713 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1714 */
7fdefc10 1715static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1716{
1717 struct rcu_data *rdp;
7fdefc10 1718 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1719
6ccd2ecd 1720 ACCESS_ONCE(rsp->gp_activity) = jiffies;
eb75767b 1721 rcu_bind_gp_kthread();
7fdefc10 1722 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1723 smp_mb__after_unlock_lock();
91dc9542 1724 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1725 /* Spurious wakeup, tell caller to go back to sleep. */
1726 raw_spin_unlock_irq(&rnp->lock);
1727 return 0;
1728 }
91dc9542 1729 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1730
f7be8209
PM
1731 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1732 /*
1733 * Grace period already in progress, don't start another.
1734 * Not supposed to be able to happen.
1735 */
7fdefc10
PM
1736 raw_spin_unlock_irq(&rnp->lock);
1737 return 0;
1738 }
1739
7fdefc10 1740 /* Advance to a new grace period and initialize state. */
26cdfedf 1741 record_gp_stall_check_time(rsp);
765a3f4f
PM
1742 /* Record GP times before starting GP, hence smp_store_release(). */
1743 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1744 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1745 raw_spin_unlock_irq(&rnp->lock);
1746
1747 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1748 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1749 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1750
1751 /*
1752 * Set the quiescent-state-needed bits in all the rcu_node
1753 * structures for all currently online CPUs in breadth-first order,
1754 * starting from the root rcu_node structure, relying on the layout
1755 * of the tree within the rsp->node[] array. Note that other CPUs
1756 * will access only the leaves of the hierarchy, thus seeing that no
1757 * grace period is in progress, at least until the corresponding
1758 * leaf node has been initialized. In addition, we have excluded
1759 * CPU-hotplug operations.
1760 *
1761 * The grace period cannot complete until the initialization
1762 * process finishes, because this kthread handles both.
1763 */
1764 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1765 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1766 smp_mb__after_unlock_lock();
b3dbec76 1767 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1768 rcu_preempt_check_blocked_tasks(rnp);
1769 rnp->qsmask = rnp->qsmaskinit;
0446be48 1770 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1771 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1772 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1773 if (rnp == rdp->mynode)
48a7639c 1774 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1775 rcu_preempt_boost_start_gp(rnp);
1776 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1777 rnp->level, rnp->grplo,
1778 rnp->grphi, rnp->qsmask);
1779 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1780 cond_resched_rcu_qs();
6ccd2ecd 1781 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1782 }
b3dbec76 1783
a4fbe35a 1784 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1785 return 1;
1786}
b3dbec76 1787
4cdfc175
PM
1788/*
1789 * Do one round of quiescent-state forcing.
1790 */
01896f7e 1791static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1792{
1793 int fqs_state = fqs_state_in;
217af2a2
PM
1794 bool isidle = false;
1795 unsigned long maxj;
4cdfc175
PM
1796 struct rcu_node *rnp = rcu_get_root(rsp);
1797
6ccd2ecd 1798 ACCESS_ONCE(rsp->gp_activity) = jiffies;
4cdfc175
PM
1799 rsp->n_force_qs++;
1800 if (fqs_state == RCU_SAVE_DYNTICK) {
1801 /* Collect dyntick-idle snapshots. */
0edd1b17 1802 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1803 isidle = true;
0edd1b17
PM
1804 maxj = jiffies - ULONG_MAX / 4;
1805 }
217af2a2
PM
1806 force_qs_rnp(rsp, dyntick_save_progress_counter,
1807 &isidle, &maxj);
0edd1b17 1808 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1809 fqs_state = RCU_FORCE_QS;
1810 } else {
1811 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1812 isidle = false;
217af2a2 1813 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1814 }
1815 /* Clear flag to prevent immediate re-entry. */
1816 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1817 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1818 smp_mb__after_unlock_lock();
4de376a1
PK
1819 ACCESS_ONCE(rsp->gp_flags) =
1820 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1821 raw_spin_unlock_irq(&rnp->lock);
1822 }
1823 return fqs_state;
1824}
1825
7fdefc10
PM
1826/*
1827 * Clean up after the old grace period.
1828 */
4cdfc175 1829static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1830{
1831 unsigned long gp_duration;
48a7639c 1832 bool needgp = false;
dae6e64d 1833 int nocb = 0;
7fdefc10
PM
1834 struct rcu_data *rdp;
1835 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1836
6ccd2ecd 1837 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1838 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1839 smp_mb__after_unlock_lock();
7fdefc10
PM
1840 gp_duration = jiffies - rsp->gp_start;
1841 if (gp_duration > rsp->gp_max)
1842 rsp->gp_max = gp_duration;
b3dbec76 1843
7fdefc10
PM
1844 /*
1845 * We know the grace period is complete, but to everyone else
1846 * it appears to still be ongoing. But it is also the case
1847 * that to everyone else it looks like there is nothing that
1848 * they can do to advance the grace period. It is therefore
1849 * safe for us to drop the lock in order to mark the grace
1850 * period as completed in all of the rcu_node structures.
7fdefc10 1851 */
5d4b8659 1852 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1853
5d4b8659
PM
1854 /*
1855 * Propagate new ->completed value to rcu_node structures so
1856 * that other CPUs don't have to wait until the start of the next
1857 * grace period to process their callbacks. This also avoids
1858 * some nasty RCU grace-period initialization races by forcing
1859 * the end of the current grace period to be completely recorded in
1860 * all of the rcu_node structures before the beginning of the next
1861 * grace period is recorded in any of the rcu_node structures.
1862 */
1863 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1864 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1865 smp_mb__after_unlock_lock();
0446be48 1866 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1867 rdp = this_cpu_ptr(rsp->rda);
1868 if (rnp == rdp->mynode)
48a7639c 1869 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1870 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1871 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1872 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1873 cond_resched_rcu_qs();
6ccd2ecd 1874 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1875 }
5d4b8659
PM
1876 rnp = rcu_get_root(rsp);
1877 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1878 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1879 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1880
765a3f4f
PM
1881 /* Declare grace period done. */
1882 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1883 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1884 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1885 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1886 /* Advance CBs to reduce false positives below. */
1887 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1888 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1889 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1890 trace_rcu_grace_period(rsp->name,
1891 ACCESS_ONCE(rsp->gpnum),
1892 TPS("newreq"));
1893 }
7fdefc10 1894 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1895}
1896
1897/*
1898 * Body of kthread that handles grace periods.
1899 */
1900static int __noreturn rcu_gp_kthread(void *arg)
1901{
4cdfc175 1902 int fqs_state;
88d6df61 1903 int gf;
d40011f6 1904 unsigned long j;
4cdfc175 1905 int ret;
7fdefc10
PM
1906 struct rcu_state *rsp = arg;
1907 struct rcu_node *rnp = rcu_get_root(rsp);
1908
1909 for (;;) {
1910
1911 /* Handle grace-period start. */
1912 for (;;) {
63c4db78
PM
1913 trace_rcu_grace_period(rsp->name,
1914 ACCESS_ONCE(rsp->gpnum),
1915 TPS("reqwait"));
afea227f 1916 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1917 wait_event_interruptible(rsp->gp_wq,
591c6d17 1918 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1919 RCU_GP_FLAG_INIT);
78e4bc34 1920 /* Locking provides needed memory barrier. */
f7be8209 1921 if (rcu_gp_init(rsp))
7fdefc10 1922 break;
bde6c3aa 1923 cond_resched_rcu_qs();
6ccd2ecd 1924 ACCESS_ONCE(rsp->gp_activity) = jiffies;
73a860cd 1925 WARN_ON(signal_pending(current));
63c4db78
PM
1926 trace_rcu_grace_period(rsp->name,
1927 ACCESS_ONCE(rsp->gpnum),
1928 TPS("reqwaitsig"));
7fdefc10 1929 }
cabc49c1 1930
4cdfc175
PM
1931 /* Handle quiescent-state forcing. */
1932 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1933 j = jiffies_till_first_fqs;
1934 if (j > HZ) {
1935 j = HZ;
1936 jiffies_till_first_fqs = HZ;
1937 }
88d6df61 1938 ret = 0;
cabc49c1 1939 for (;;) {
88d6df61
PM
1940 if (!ret)
1941 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1942 trace_rcu_grace_period(rsp->name,
1943 ACCESS_ONCE(rsp->gpnum),
1944 TPS("fqswait"));
afea227f 1945 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1946 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1947 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1948 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1949 (!ACCESS_ONCE(rnp->qsmask) &&
1950 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1951 j);
78e4bc34 1952 /* Locking provides needed memory barriers. */
4cdfc175 1953 /* If grace period done, leave loop. */
cabc49c1 1954 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1955 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1956 break;
4cdfc175 1957 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1958 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1959 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1960 trace_rcu_grace_period(rsp->name,
1961 ACCESS_ONCE(rsp->gpnum),
1962 TPS("fqsstart"));
4cdfc175 1963 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1964 trace_rcu_grace_period(rsp->name,
1965 ACCESS_ONCE(rsp->gpnum),
1966 TPS("fqsend"));
bde6c3aa 1967 cond_resched_rcu_qs();
6ccd2ecd 1968 ACCESS_ONCE(rsp->gp_activity) = jiffies;
4cdfc175
PM
1969 } else {
1970 /* Deal with stray signal. */
bde6c3aa 1971 cond_resched_rcu_qs();
6ccd2ecd 1972 ACCESS_ONCE(rsp->gp_activity) = jiffies;
73a860cd 1973 WARN_ON(signal_pending(current));
63c4db78
PM
1974 trace_rcu_grace_period(rsp->name,
1975 ACCESS_ONCE(rsp->gpnum),
1976 TPS("fqswaitsig"));
4cdfc175 1977 }
d40011f6
PM
1978 j = jiffies_till_next_fqs;
1979 if (j > HZ) {
1980 j = HZ;
1981 jiffies_till_next_fqs = HZ;
1982 } else if (j < 1) {
1983 j = 1;
1984 jiffies_till_next_fqs = 1;
1985 }
cabc49c1 1986 }
4cdfc175
PM
1987
1988 /* Handle grace-period end. */
1989 rcu_gp_cleanup(rsp);
b3dbec76 1990 }
b3dbec76
PM
1991}
1992
64db4cff
PM
1993/*
1994 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1995 * in preparation for detecting the next grace period. The caller must hold
b8462084 1996 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1997 *
1998 * Note that it is legal for a dying CPU (which is marked as offline) to
1999 * invoke this function. This can happen when the dying CPU reports its
2000 * quiescent state.
48a7639c
PM
2001 *
2002 * Returns true if the grace-period kthread must be awakened.
64db4cff 2003 */
48a7639c 2004static bool
910ee45d
PM
2005rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2006 struct rcu_data *rdp)
64db4cff 2007{
b8462084 2008 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2009 /*
b3dbec76 2010 * Either we have not yet spawned the grace-period
62da1921
PM
2011 * task, this CPU does not need another grace period,
2012 * or a grace period is already in progress.
b3dbec76 2013 * Either way, don't start a new grace period.
afe24b12 2014 */
48a7639c 2015 return false;
afe24b12 2016 }
91dc9542 2017 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
2018 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
2019 TPS("newreq"));
62da1921 2020
016a8d5b
SR
2021 /*
2022 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2023 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2024 * the wakeup to our caller.
016a8d5b 2025 */
48a7639c 2026 return true;
64db4cff
PM
2027}
2028
910ee45d
PM
2029/*
2030 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2031 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2032 * is invoked indirectly from rcu_advance_cbs(), which would result in
2033 * endless recursion -- or would do so if it wasn't for the self-deadlock
2034 * that is encountered beforehand.
48a7639c
PM
2035 *
2036 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2037 */
48a7639c 2038static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2039{
2040 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2041 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2042 bool ret = false;
910ee45d
PM
2043
2044 /*
2045 * If there is no grace period in progress right now, any
2046 * callbacks we have up to this point will be satisfied by the
2047 * next grace period. Also, advancing the callbacks reduces the
2048 * probability of false positives from cpu_needs_another_gp()
2049 * resulting in pointless grace periods. So, advance callbacks
2050 * then start the grace period!
2051 */
48a7639c
PM
2052 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2053 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2054 return ret;
910ee45d
PM
2055}
2056
f41d911f 2057/*
d3f6bad3
PM
2058 * Report a full set of quiescent states to the specified rcu_state
2059 * data structure. This involves cleaning up after the prior grace
2060 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2061 * if one is needed. Note that the caller must hold rnp->lock, which
2062 * is released before return.
f41d911f 2063 */
d3f6bad3 2064static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2065 __releases(rcu_get_root(rsp)->lock)
f41d911f 2066{
fc2219d4 2067 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 2068 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2069 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2070}
2071
64db4cff 2072/*
d3f6bad3
PM
2073 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2074 * Allows quiescent states for a group of CPUs to be reported at one go
2075 * to the specified rcu_node structure, though all the CPUs in the group
2076 * must be represented by the same rcu_node structure (which need not be
2077 * a leaf rcu_node structure, though it often will be). That structure's
2078 * lock must be held upon entry, and it is released before return.
64db4cff
PM
2079 */
2080static void
d3f6bad3
PM
2081rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2082 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
2083 __releases(rnp->lock)
2084{
28ecd580
PM
2085 struct rcu_node *rnp_c;
2086
64db4cff
PM
2087 /* Walk up the rcu_node hierarchy. */
2088 for (;;) {
2089 if (!(rnp->qsmask & mask)) {
2090
2091 /* Our bit has already been cleared, so done. */
1304afb2 2092 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2093 return;
2094 }
2095 rnp->qsmask &= ~mask;
d4c08f2a
PM
2096 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2097 mask, rnp->qsmask, rnp->level,
2098 rnp->grplo, rnp->grphi,
2099 !!rnp->gp_tasks);
27f4d280 2100 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2101
2102 /* Other bits still set at this level, so done. */
1304afb2 2103 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2104 return;
2105 }
2106 mask = rnp->grpmask;
2107 if (rnp->parent == NULL) {
2108
2109 /* No more levels. Exit loop holding root lock. */
2110
2111 break;
2112 }
1304afb2 2113 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2114 rnp_c = rnp;
64db4cff 2115 rnp = rnp->parent;
1304afb2 2116 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2117 smp_mb__after_unlock_lock();
28ecd580 2118 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
2119 }
2120
2121 /*
2122 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2123 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2124 * to clean up and start the next grace period if one is needed.
64db4cff 2125 */
d3f6bad3 2126 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2127}
2128
2129/*
d3f6bad3
PM
2130 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2131 * structure. This must be either called from the specified CPU, or
2132 * called when the specified CPU is known to be offline (and when it is
2133 * also known that no other CPU is concurrently trying to help the offline
2134 * CPU). The lastcomp argument is used to make sure we are still in the
2135 * grace period of interest. We don't want to end the current grace period
2136 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2137 */
2138static void
d7d6a11e 2139rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2140{
2141 unsigned long flags;
2142 unsigned long mask;
48a7639c 2143 bool needwake;
64db4cff
PM
2144 struct rcu_node *rnp;
2145
2146 rnp = rdp->mynode;
1304afb2 2147 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2148 smp_mb__after_unlock_lock();
5cd37193
PM
2149 if ((rdp->passed_quiesce == 0 &&
2150 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2151 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2152 rdp->gpwrap) {
64db4cff
PM
2153
2154 /*
e4cc1f22
PM
2155 * The grace period in which this quiescent state was
2156 * recorded has ended, so don't report it upwards.
2157 * We will instead need a new quiescent state that lies
2158 * within the current grace period.
64db4cff 2159 */
e4cc1f22 2160 rdp->passed_quiesce = 0; /* need qs for new gp. */
5cd37193 2161 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2162 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2163 return;
2164 }
2165 mask = rdp->grpmask;
2166 if ((rnp->qsmask & mask) == 0) {
1304afb2 2167 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2168 } else {
2169 rdp->qs_pending = 0;
2170
2171 /*
2172 * This GP can't end until cpu checks in, so all of our
2173 * callbacks can be processed during the next GP.
2174 */
48a7639c 2175 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2176
d3f6bad3 2177 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2178 if (needwake)
2179 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2180 }
2181}
2182
2183/*
2184 * Check to see if there is a new grace period of which this CPU
2185 * is not yet aware, and if so, set up local rcu_data state for it.
2186 * Otherwise, see if this CPU has just passed through its first
2187 * quiescent state for this grace period, and record that fact if so.
2188 */
2189static void
2190rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2191{
05eb552b
PM
2192 /* Check for grace-period ends and beginnings. */
2193 note_gp_changes(rsp, rdp);
64db4cff
PM
2194
2195 /*
2196 * Does this CPU still need to do its part for current grace period?
2197 * If no, return and let the other CPUs do their part as well.
2198 */
2199 if (!rdp->qs_pending)
2200 return;
2201
2202 /*
2203 * Was there a quiescent state since the beginning of the grace
2204 * period? If no, then exit and wait for the next call.
2205 */
5cd37193
PM
2206 if (!rdp->passed_quiesce &&
2207 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2208 return;
2209
d3f6bad3
PM
2210 /*
2211 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2212 * judge of that).
2213 */
d7d6a11e 2214 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2215}
2216
2217#ifdef CONFIG_HOTPLUG_CPU
2218
e74f4c45 2219/*
b1420f1c
PM
2220 * Send the specified CPU's RCU callbacks to the orphanage. The
2221 * specified CPU must be offline, and the caller must hold the
7b2e6011 2222 * ->orphan_lock.
e74f4c45 2223 */
b1420f1c
PM
2224static void
2225rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2226 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2227{
3fbfbf7a 2228 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2229 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2230 return;
2231
b1420f1c
PM
2232 /*
2233 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2234 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2235 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2236 */
a50c3af9 2237 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2238 rsp->qlen_lazy += rdp->qlen_lazy;
2239 rsp->qlen += rdp->qlen;
2240 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2241 rdp->qlen_lazy = 0;
1d1fb395 2242 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2243 }
2244
2245 /*
b1420f1c
PM
2246 * Next, move those callbacks still needing a grace period to
2247 * the orphanage, where some other CPU will pick them up.
2248 * Some of the callbacks might have gone partway through a grace
2249 * period, but that is too bad. They get to start over because we
2250 * cannot assume that grace periods are synchronized across CPUs.
2251 * We don't bother updating the ->nxttail[] array yet, instead
2252 * we just reset the whole thing later on.
a50c3af9 2253 */
b1420f1c
PM
2254 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2255 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2256 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2257 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2258 }
2259
2260 /*
b1420f1c
PM
2261 * Then move the ready-to-invoke callbacks to the orphanage,
2262 * where some other CPU will pick them up. These will not be
2263 * required to pass though another grace period: They are done.
a50c3af9 2264 */
e5601400 2265 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2266 *rsp->orphan_donetail = rdp->nxtlist;
2267 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2268 }
e74f4c45 2269
b1420f1c 2270 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2271 init_callback_list(rdp);
b1420f1c
PM
2272}
2273
2274/*
2275 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2276 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2277 */
96d3fd0d 2278static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2279{
2280 int i;
fa07a58f 2281 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2282
3fbfbf7a 2283 /* No-CBs CPUs are handled specially. */
96d3fd0d 2284 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2285 return;
2286
b1420f1c
PM
2287 /* Do the accounting first. */
2288 rdp->qlen_lazy += rsp->qlen_lazy;
2289 rdp->qlen += rsp->qlen;
2290 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2291 if (rsp->qlen_lazy != rsp->qlen)
2292 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2293 rsp->qlen_lazy = 0;
2294 rsp->qlen = 0;
2295
2296 /*
2297 * We do not need a memory barrier here because the only way we
2298 * can get here if there is an rcu_barrier() in flight is if
2299 * we are the task doing the rcu_barrier().
2300 */
2301
2302 /* First adopt the ready-to-invoke callbacks. */
2303 if (rsp->orphan_donelist != NULL) {
2304 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2305 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2306 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2307 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2308 rdp->nxttail[i] = rsp->orphan_donetail;
2309 rsp->orphan_donelist = NULL;
2310 rsp->orphan_donetail = &rsp->orphan_donelist;
2311 }
2312
2313 /* And then adopt the callbacks that still need a grace period. */
2314 if (rsp->orphan_nxtlist != NULL) {
2315 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2316 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2317 rsp->orphan_nxtlist = NULL;
2318 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2319 }
2320}
2321
2322/*
2323 * Trace the fact that this CPU is going offline.
2324 */
2325static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2326{
2327 RCU_TRACE(unsigned long mask);
2328 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2329 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2330
2331 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2332 trace_rcu_grace_period(rsp->name,
2333 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2334 TPS("cpuofl"));
64db4cff
PM
2335}
2336
8af3a5e7
PM
2337/*
2338 * All CPUs for the specified rcu_node structure have gone offline,
2339 * and all tasks that were preempted within an RCU read-side critical
2340 * section while running on one of those CPUs have since exited their RCU
2341 * read-side critical section. Some other CPU is reporting this fact with
2342 * the specified rcu_node structure's ->lock held and interrupts disabled.
2343 * This function therefore goes up the tree of rcu_node structures,
2344 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2345 * the leaf rcu_node structure's ->qsmaskinit field has already been
2346 * updated
2347 *
2348 * This function does check that the specified rcu_node structure has
2349 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2350 * prematurely. That said, invoking it after the fact will cost you
2351 * a needless lock acquisition. So once it has done its work, don't
2352 * invoke it again.
2353 */
2354static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2355{
2356 long mask;
2357 struct rcu_node *rnp = rnp_leaf;
2358
2359 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2360 return;
2361 for (;;) {
2362 mask = rnp->grpmask;
2363 rnp = rnp->parent;
2364 if (!rnp)
2365 break;
2366 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2367 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2368 rnp->qsmaskinit &= ~mask;
2369 if (rnp->qsmaskinit) {
2370 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2371 return;
2372 }
2373 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2374 }
2375}
2376
64db4cff 2377/*
e5601400 2378 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2379 * this fact from process context. Do the remainder of the cleanup,
2380 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2381 * adopting them. There can only be one CPU hotplug operation at a time,
2382 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2383 */
e5601400 2384static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2385{
2036d94a 2386 unsigned long flags;
e5601400 2387 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2388 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2389
2036d94a 2390 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2391 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2392
2036d94a 2393 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2394 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2395 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2396
b1420f1c
PM
2397 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2398 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2399 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2400 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2401
8af3a5e7 2402 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
a8f4cbad 2403 raw_spin_lock_irqsave(&rnp->lock, flags);
8af3a5e7
PM
2404 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2405 rnp->qsmaskinit &= ~rdp->grpmask;
d19fb8d1 2406 if (rnp->qsmaskinit == 0 && !rcu_preempt_has_tasks(rnp))
8af3a5e7 2407 rcu_cleanup_dead_rnp(rnp);
3ba4d0e0 2408 rcu_report_qs_rnp(rdp->grpmask, rsp, rnp, flags); /* Rlses rnp->lock. */
cf01537e
PM
2409 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2410 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2411 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2412 init_callback_list(rdp);
2413 /* Disallow further callbacks on this CPU. */
2414 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2415 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2416}
2417
2418#else /* #ifdef CONFIG_HOTPLUG_CPU */
2419
e5601400 2420static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2421{
2422}
2423
b6a932d1
PM
2424static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2425{
2426}
2427
e5601400 2428static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2429{
2430}
2431
2432#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2433
2434/*
2435 * Invoke any RCU callbacks that have made it to the end of their grace
2436 * period. Thottle as specified by rdp->blimit.
2437 */
37c72e56 2438static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2439{
2440 unsigned long flags;
2441 struct rcu_head *next, *list, **tail;
878d7439
ED
2442 long bl, count, count_lazy;
2443 int i;
64db4cff 2444
dc35c893 2445 /* If no callbacks are ready, just return. */
29c00b4a 2446 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2447 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2448 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2449 need_resched(), is_idle_task(current),
2450 rcu_is_callbacks_kthread());
64db4cff 2451 return;
29c00b4a 2452 }
64db4cff
PM
2453
2454 /*
2455 * Extract the list of ready callbacks, disabling to prevent
2456 * races with call_rcu() from interrupt handlers.
2457 */
2458 local_irq_save(flags);
8146c4e2 2459 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2460 bl = rdp->blimit;
486e2593 2461 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2462 list = rdp->nxtlist;
2463 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2464 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2465 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2466 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2467 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2468 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2469 local_irq_restore(flags);
2470
2471 /* Invoke callbacks. */
486e2593 2472 count = count_lazy = 0;
64db4cff
PM
2473 while (list) {
2474 next = list->next;
2475 prefetch(next);
551d55a9 2476 debug_rcu_head_unqueue(list);
486e2593
PM
2477 if (__rcu_reclaim(rsp->name, list))
2478 count_lazy++;
64db4cff 2479 list = next;
dff1672d
PM
2480 /* Stop only if limit reached and CPU has something to do. */
2481 if (++count >= bl &&
2482 (need_resched() ||
2483 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2484 break;
2485 }
2486
2487 local_irq_save(flags);
4968c300
PM
2488 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2489 is_idle_task(current),
2490 rcu_is_callbacks_kthread());
64db4cff
PM
2491
2492 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2493 if (list != NULL) {
2494 *tail = rdp->nxtlist;
2495 rdp->nxtlist = list;
b41772ab
PM
2496 for (i = 0; i < RCU_NEXT_SIZE; i++)
2497 if (&rdp->nxtlist == rdp->nxttail[i])
2498 rdp->nxttail[i] = tail;
64db4cff
PM
2499 else
2500 break;
2501 }
b1420f1c
PM
2502 smp_mb(); /* List handling before counting for rcu_barrier(). */
2503 rdp->qlen_lazy -= count_lazy;
a792563b 2504 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2505 rdp->n_cbs_invoked += count;
64db4cff
PM
2506
2507 /* Reinstate batch limit if we have worked down the excess. */
2508 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2509 rdp->blimit = blimit;
2510
37c72e56
PM
2511 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2512 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2513 rdp->qlen_last_fqs_check = 0;
2514 rdp->n_force_qs_snap = rsp->n_force_qs;
2515 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2516 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2517 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2518
64db4cff
PM
2519 local_irq_restore(flags);
2520
e0f23060 2521 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2522 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2523 invoke_rcu_core();
64db4cff
PM
2524}
2525
2526/*
2527 * Check to see if this CPU is in a non-context-switch quiescent state
2528 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2529 * Also schedule RCU core processing.
64db4cff 2530 *
9b2e4f18 2531 * This function must be called from hardirq context. It is normally
64db4cff
PM
2532 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2533 * false, there is no point in invoking rcu_check_callbacks().
2534 */
c3377c2d 2535void rcu_check_callbacks(int user)
64db4cff 2536{
f7f7bac9 2537 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2538 increment_cpu_stall_ticks();
9b2e4f18 2539 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2540
2541 /*
2542 * Get here if this CPU took its interrupt from user
2543 * mode or from the idle loop, and if this is not a
2544 * nested interrupt. In this case, the CPU is in
d6714c22 2545 * a quiescent state, so note it.
64db4cff
PM
2546 *
2547 * No memory barrier is required here because both
d6714c22
PM
2548 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2549 * variables that other CPUs neither access nor modify,
2550 * at least not while the corresponding CPU is online.
64db4cff
PM
2551 */
2552
284a8c93
PM
2553 rcu_sched_qs();
2554 rcu_bh_qs();
64db4cff
PM
2555
2556 } else if (!in_softirq()) {
2557
2558 /*
2559 * Get here if this CPU did not take its interrupt from
2560 * softirq, in other words, if it is not interrupting
2561 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2562 * critical section, so note it.
64db4cff
PM
2563 */
2564
284a8c93 2565 rcu_bh_qs();
64db4cff 2566 }
86aea0e6 2567 rcu_preempt_check_callbacks();
e3950ecd 2568 if (rcu_pending())
a46e0899 2569 invoke_rcu_core();
8315f422
PM
2570 if (user)
2571 rcu_note_voluntary_context_switch(current);
f7f7bac9 2572 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2573}
2574
64db4cff
PM
2575/*
2576 * Scan the leaf rcu_node structures, processing dyntick state for any that
2577 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2578 * Also initiate boosting for any threads blocked on the root rcu_node.
2579 *
ee47eb9f 2580 * The caller must have suppressed start of new grace periods.
64db4cff 2581 */
217af2a2
PM
2582static void force_qs_rnp(struct rcu_state *rsp,
2583 int (*f)(struct rcu_data *rsp, bool *isidle,
2584 unsigned long *maxj),
2585 bool *isidle, unsigned long *maxj)
64db4cff
PM
2586{
2587 unsigned long bit;
2588 int cpu;
2589 unsigned long flags;
2590 unsigned long mask;
a0b6c9a7 2591 struct rcu_node *rnp;
64db4cff 2592
a0b6c9a7 2593 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2594 cond_resched_rcu_qs();
64db4cff 2595 mask = 0;
1304afb2 2596 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2597 smp_mb__after_unlock_lock();
ee47eb9f 2598 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2599 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2600 return;
64db4cff 2601 }
a0b6c9a7 2602 if (rnp->qsmask == 0) {
1217ed1b 2603 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2604 continue;
2605 }
a0b6c9a7 2606 cpu = rnp->grplo;
64db4cff 2607 bit = 1;
a0b6c9a7 2608 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2609 if ((rnp->qsmask & bit) != 0) {
2610 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2611 *isidle = false;
0edd1b17
PM
2612 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2613 mask |= bit;
2614 }
64db4cff 2615 }
45f014c5 2616 if (mask != 0) {
64db4cff 2617
d3f6bad3
PM
2618 /* rcu_report_qs_rnp() releases rnp->lock. */
2619 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2620 continue;
2621 }
1304afb2 2622 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2623 }
64db4cff
PM
2624}
2625
2626/*
2627 * Force quiescent states on reluctant CPUs, and also detect which
2628 * CPUs are in dyntick-idle mode.
2629 */
4cdfc175 2630static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2631{
2632 unsigned long flags;
394f2769
PM
2633 bool ret;
2634 struct rcu_node *rnp;
2635 struct rcu_node *rnp_old = NULL;
2636
2637 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2638 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2639 for (; rnp != NULL; rnp = rnp->parent) {
2640 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2641 !raw_spin_trylock(&rnp->fqslock);
2642 if (rnp_old != NULL)
2643 raw_spin_unlock(&rnp_old->fqslock);
2644 if (ret) {
a792563b 2645 rsp->n_force_qs_lh++;
394f2769
PM
2646 return;
2647 }
2648 rnp_old = rnp;
2649 }
2650 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2651
394f2769
PM
2652 /* Reached the root of the rcu_node tree, acquire lock. */
2653 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2654 smp_mb__after_unlock_lock();
394f2769
PM
2655 raw_spin_unlock(&rnp_old->fqslock);
2656 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2657 rsp->n_force_qs_lh++;
394f2769 2658 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2659 return; /* Someone beat us to it. */
46a1e34e 2660 }
4de376a1
PK
2661 ACCESS_ONCE(rsp->gp_flags) =
2662 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2663 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2664 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2665}
2666
64db4cff 2667/*
e0f23060
PM
2668 * This does the RCU core processing work for the specified rcu_state
2669 * and rcu_data structures. This may be called only from the CPU to
2670 * whom the rdp belongs.
64db4cff
PM
2671 */
2672static void
1bca8cf1 2673__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2674{
2675 unsigned long flags;
48a7639c 2676 bool needwake;
fa07a58f 2677 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2678
2e597558
PM
2679 WARN_ON_ONCE(rdp->beenonline == 0);
2680
64db4cff
PM
2681 /* Update RCU state based on any recent quiescent states. */
2682 rcu_check_quiescent_state(rsp, rdp);
2683
2684 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2685 local_irq_save(flags);
64db4cff 2686 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2687 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2688 needwake = rcu_start_gp(rsp);
b8462084 2689 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2690 if (needwake)
2691 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2692 } else {
2693 local_irq_restore(flags);
64db4cff
PM
2694 }
2695
2696 /* If there are callbacks ready, invoke them. */
09223371 2697 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2698 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2699
2700 /* Do any needed deferred wakeups of rcuo kthreads. */
2701 do_nocb_deferred_wakeup(rdp);
09223371
SL
2702}
2703
64db4cff 2704/*
e0f23060 2705 * Do RCU core processing for the current CPU.
64db4cff 2706 */
09223371 2707static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2708{
6ce75a23
PM
2709 struct rcu_state *rsp;
2710
bfa00b4c
PM
2711 if (cpu_is_offline(smp_processor_id()))
2712 return;
f7f7bac9 2713 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2714 for_each_rcu_flavor(rsp)
2715 __rcu_process_callbacks(rsp);
f7f7bac9 2716 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2717}
2718
a26ac245 2719/*
e0f23060
PM
2720 * Schedule RCU callback invocation. If the specified type of RCU
2721 * does not support RCU priority boosting, just do a direct call,
2722 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2723 * are running on the current CPU with softirqs disabled, the
e0f23060 2724 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2725 */
a46e0899 2726static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2727{
b0d30417
PM
2728 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2729 return;
a46e0899
PM
2730 if (likely(!rsp->boost)) {
2731 rcu_do_batch(rsp, rdp);
a26ac245
PM
2732 return;
2733 }
a46e0899 2734 invoke_rcu_callbacks_kthread();
a26ac245
PM
2735}
2736
a46e0899 2737static void invoke_rcu_core(void)
09223371 2738{
b0f74036
PM
2739 if (cpu_online(smp_processor_id()))
2740 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2741}
2742
29154c57
PM
2743/*
2744 * Handle any core-RCU processing required by a call_rcu() invocation.
2745 */
2746static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2747 struct rcu_head *head, unsigned long flags)
64db4cff 2748{
48a7639c
PM
2749 bool needwake;
2750
62fde6ed
PM
2751 /*
2752 * If called from an extended quiescent state, invoke the RCU
2753 * core in order to force a re-evaluation of RCU's idleness.
2754 */
5c173eb8 2755 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2756 invoke_rcu_core();
2757
a16b7a69 2758 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2759 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2760 return;
64db4cff 2761
37c72e56
PM
2762 /*
2763 * Force the grace period if too many callbacks or too long waiting.
2764 * Enforce hysteresis, and don't invoke force_quiescent_state()
2765 * if some other CPU has recently done so. Also, don't bother
2766 * invoking force_quiescent_state() if the newly enqueued callback
2767 * is the only one waiting for a grace period to complete.
2768 */
2655d57e 2769 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2770
2771 /* Are we ignoring a completed grace period? */
470716fc 2772 note_gp_changes(rsp, rdp);
b52573d2
PM
2773
2774 /* Start a new grace period if one not already started. */
2775 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2776 struct rcu_node *rnp_root = rcu_get_root(rsp);
2777
b8462084 2778 raw_spin_lock(&rnp_root->lock);
6303b9c8 2779 smp_mb__after_unlock_lock();
48a7639c 2780 needwake = rcu_start_gp(rsp);
b8462084 2781 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2782 if (needwake)
2783 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2784 } else {
2785 /* Give the grace period a kick. */
2786 rdp->blimit = LONG_MAX;
2787 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2788 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2789 force_quiescent_state(rsp);
b52573d2
PM
2790 rdp->n_force_qs_snap = rsp->n_force_qs;
2791 rdp->qlen_last_fqs_check = rdp->qlen;
2792 }
4cdfc175 2793 }
29154c57
PM
2794}
2795
ae150184
PM
2796/*
2797 * RCU callback function to leak a callback.
2798 */
2799static void rcu_leak_callback(struct rcu_head *rhp)
2800{
2801}
2802
3fbfbf7a
PM
2803/*
2804 * Helper function for call_rcu() and friends. The cpu argument will
2805 * normally be -1, indicating "currently running CPU". It may specify
2806 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2807 * is expected to specify a CPU.
2808 */
64db4cff
PM
2809static void
2810__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2811 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2812{
2813 unsigned long flags;
2814 struct rcu_data *rdp;
2815
1146edcb 2816 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2817 if (debug_rcu_head_queue(head)) {
2818 /* Probable double call_rcu(), so leak the callback. */
2819 ACCESS_ONCE(head->func) = rcu_leak_callback;
2820 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2821 return;
2822 }
64db4cff
PM
2823 head->func = func;
2824 head->next = NULL;
2825
64db4cff
PM
2826 /*
2827 * Opportunistically note grace-period endings and beginnings.
2828 * Note that we might see a beginning right after we see an
2829 * end, but never vice versa, since this CPU has to pass through
2830 * a quiescent state betweentimes.
2831 */
2832 local_irq_save(flags);
394f99a9 2833 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2834
2835 /* Add the callback to our list. */
3fbfbf7a
PM
2836 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2837 int offline;
2838
2839 if (cpu != -1)
2840 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
2841 if (likely(rdp->mynode)) {
2842 /* Post-boot, so this should be for a no-CBs CPU. */
2843 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2844 WARN_ON_ONCE(offline);
2845 /* Offline CPU, _call_rcu() illegal, leak callback. */
2846 local_irq_restore(flags);
2847 return;
2848 }
2849 /*
2850 * Very early boot, before rcu_init(). Initialize if needed
2851 * and then drop through to queue the callback.
2852 */
2853 BUG_ON(cpu != -1);
2854 if (!likely(rdp->nxtlist))
2855 init_default_callback_list(rdp);
0d8ee37e 2856 }
a792563b 2857 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2858 if (lazy)
2859 rdp->qlen_lazy++;
c57afe80
PM
2860 else
2861 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2862 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2863 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2864 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2865
d4c08f2a
PM
2866 if (__is_kfree_rcu_offset((unsigned long)func))
2867 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2868 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2869 else
486e2593 2870 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2871
29154c57
PM
2872 /* Go handle any RCU core processing required. */
2873 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2874 local_irq_restore(flags);
2875}
2876
2877/*
d6714c22 2878 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2879 */
d6714c22 2880void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2881{
3fbfbf7a 2882 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2883}
d6714c22 2884EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2885
2886/*
486e2593 2887 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2888 */
2889void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2890{
3fbfbf7a 2891 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2892}
2893EXPORT_SYMBOL_GPL(call_rcu_bh);
2894
495aa969
ACB
2895/*
2896 * Queue an RCU callback for lazy invocation after a grace period.
2897 * This will likely be later named something like "call_rcu_lazy()",
2898 * but this change will require some way of tagging the lazy RCU
2899 * callbacks in the list of pending callbacks. Until then, this
2900 * function may only be called from __kfree_rcu().
2901 */
2902void kfree_call_rcu(struct rcu_head *head,
2903 void (*func)(struct rcu_head *rcu))
2904{
e534165b 2905 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2906}
2907EXPORT_SYMBOL_GPL(kfree_call_rcu);
2908
6d813391
PM
2909/*
2910 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2911 * any blocking grace-period wait automatically implies a grace period
2912 * if there is only one CPU online at any point time during execution
2913 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2914 * occasionally incorrectly indicate that there are multiple CPUs online
2915 * when there was in fact only one the whole time, as this just adds
2916 * some overhead: RCU still operates correctly.
6d813391
PM
2917 */
2918static inline int rcu_blocking_is_gp(void)
2919{
95f0c1de
PM
2920 int ret;
2921
6d813391 2922 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2923 preempt_disable();
2924 ret = num_online_cpus() <= 1;
2925 preempt_enable();
2926 return ret;
6d813391
PM
2927}
2928
6ebb237b
PM
2929/**
2930 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2931 *
2932 * Control will return to the caller some time after a full rcu-sched
2933 * grace period has elapsed, in other words after all currently executing
2934 * rcu-sched read-side critical sections have completed. These read-side
2935 * critical sections are delimited by rcu_read_lock_sched() and
2936 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2937 * local_irq_disable(), and so on may be used in place of
2938 * rcu_read_lock_sched().
2939 *
2940 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2941 * non-threaded hardware-interrupt handlers, in progress on entry will
2942 * have completed before this primitive returns. However, this does not
2943 * guarantee that softirq handlers will have completed, since in some
2944 * kernels, these handlers can run in process context, and can block.
2945 *
2946 * Note that this guarantee implies further memory-ordering guarantees.
2947 * On systems with more than one CPU, when synchronize_sched() returns,
2948 * each CPU is guaranteed to have executed a full memory barrier since the
2949 * end of its last RCU-sched read-side critical section whose beginning
2950 * preceded the call to synchronize_sched(). In addition, each CPU having
2951 * an RCU read-side critical section that extends beyond the return from
2952 * synchronize_sched() is guaranteed to have executed a full memory barrier
2953 * after the beginning of synchronize_sched() and before the beginning of
2954 * that RCU read-side critical section. Note that these guarantees include
2955 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2956 * that are executing in the kernel.
2957 *
2958 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2959 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2960 * to have executed a full memory barrier during the execution of
2961 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2962 * again only if the system has more than one CPU).
6ebb237b
PM
2963 *
2964 * This primitive provides the guarantees made by the (now removed)
2965 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2966 * guarantees that rcu_read_lock() sections will have completed.
2967 * In "classic RCU", these two guarantees happen to be one and
2968 * the same, but can differ in realtime RCU implementations.
2969 */
2970void synchronize_sched(void)
2971{
fe15d706
PM
2972 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2973 !lock_is_held(&rcu_lock_map) &&
2974 !lock_is_held(&rcu_sched_lock_map),
2975 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2976 if (rcu_blocking_is_gp())
2977 return;
3705b88d
AM
2978 if (rcu_expedited)
2979 synchronize_sched_expedited();
2980 else
2981 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2982}
2983EXPORT_SYMBOL_GPL(synchronize_sched);
2984
2985/**
2986 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2987 *
2988 * Control will return to the caller some time after a full rcu_bh grace
2989 * period has elapsed, in other words after all currently executing rcu_bh
2990 * read-side critical sections have completed. RCU read-side critical
2991 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2992 * and may be nested.
f0a0e6f2
PM
2993 *
2994 * See the description of synchronize_sched() for more detailed information
2995 * on memory ordering guarantees.
6ebb237b
PM
2996 */
2997void synchronize_rcu_bh(void)
2998{
fe15d706
PM
2999 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
3000 !lock_is_held(&rcu_lock_map) &&
3001 !lock_is_held(&rcu_sched_lock_map),
3002 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3003 if (rcu_blocking_is_gp())
3004 return;
3705b88d
AM
3005 if (rcu_expedited)
3006 synchronize_rcu_bh_expedited();
3007 else
3008 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3009}
3010EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3011
765a3f4f
PM
3012/**
3013 * get_state_synchronize_rcu - Snapshot current RCU state
3014 *
3015 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3016 * to determine whether or not a full grace period has elapsed in the
3017 * meantime.
3018 */
3019unsigned long get_state_synchronize_rcu(void)
3020{
3021 /*
3022 * Any prior manipulation of RCU-protected data must happen
3023 * before the load from ->gpnum.
3024 */
3025 smp_mb(); /* ^^^ */
3026
3027 /*
3028 * Make sure this load happens before the purportedly
3029 * time-consuming work between get_state_synchronize_rcu()
3030 * and cond_synchronize_rcu().
3031 */
e534165b 3032 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3033}
3034EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3035
3036/**
3037 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3038 *
3039 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3040 *
3041 * If a full RCU grace period has elapsed since the earlier call to
3042 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3043 * synchronize_rcu() to wait for a full grace period.
3044 *
3045 * Yes, this function does not take counter wrap into account. But
3046 * counter wrap is harmless. If the counter wraps, we have waited for
3047 * more than 2 billion grace periods (and way more on a 64-bit system!),
3048 * so waiting for one additional grace period should be just fine.
3049 */
3050void cond_synchronize_rcu(unsigned long oldstate)
3051{
3052 unsigned long newstate;
3053
3054 /*
3055 * Ensure that this load happens before any RCU-destructive
3056 * actions the caller might carry out after we return.
3057 */
e534165b 3058 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3059 if (ULONG_CMP_GE(oldstate, newstate))
3060 synchronize_rcu();
3061}
3062EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3063
3d3b7db0
PM
3064static int synchronize_sched_expedited_cpu_stop(void *data)
3065{
3066 /*
3067 * There must be a full memory barrier on each affected CPU
3068 * between the time that try_stop_cpus() is called and the
3069 * time that it returns.
3070 *
3071 * In the current initial implementation of cpu_stop, the
3072 * above condition is already met when the control reaches
3073 * this point and the following smp_mb() is not strictly
3074 * necessary. Do smp_mb() anyway for documentation and
3075 * robustness against future implementation changes.
3076 */
3077 smp_mb(); /* See above comment block. */
3078 return 0;
3079}
3080
236fefaf
PM
3081/**
3082 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3083 *
3084 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3085 * approach to force the grace period to end quickly. This consumes
3086 * significant time on all CPUs and is unfriendly to real-time workloads,
3087 * so is thus not recommended for any sort of common-case code. In fact,
3088 * if you are using synchronize_sched_expedited() in a loop, please
3089 * restructure your code to batch your updates, and then use a single
3090 * synchronize_sched() instead.
3d3b7db0 3091 *
3d3b7db0
PM
3092 * This implementation can be thought of as an application of ticket
3093 * locking to RCU, with sync_sched_expedited_started and
3094 * sync_sched_expedited_done taking on the roles of the halves
3095 * of the ticket-lock word. Each task atomically increments
3096 * sync_sched_expedited_started upon entry, snapshotting the old value,
3097 * then attempts to stop all the CPUs. If this succeeds, then each
3098 * CPU will have executed a context switch, resulting in an RCU-sched
3099 * grace period. We are then done, so we use atomic_cmpxchg() to
3100 * update sync_sched_expedited_done to match our snapshot -- but
3101 * only if someone else has not already advanced past our snapshot.
3102 *
3103 * On the other hand, if try_stop_cpus() fails, we check the value
3104 * of sync_sched_expedited_done. If it has advanced past our
3105 * initial snapshot, then someone else must have forced a grace period
3106 * some time after we took our snapshot. In this case, our work is
3107 * done for us, and we can simply return. Otherwise, we try again,
3108 * but keep our initial snapshot for purposes of checking for someone
3109 * doing our work for us.
3110 *
3111 * If we fail too many times in a row, we fall back to synchronize_sched().
3112 */
3113void synchronize_sched_expedited(void)
3114{
e0775cef
PM
3115 cpumask_var_t cm;
3116 bool cma = false;
3117 int cpu;
1924bcb0
PM
3118 long firstsnap, s, snap;
3119 int trycount = 0;
40694d66 3120 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3121
1924bcb0
PM
3122 /*
3123 * If we are in danger of counter wrap, just do synchronize_sched().
3124 * By allowing sync_sched_expedited_started to advance no more than
3125 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3126 * that more than 3.5 billion CPUs would be required to force a
3127 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3128 * course be required on a 64-bit system.
3129 */
40694d66
PM
3130 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3131 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
3132 ULONG_MAX / 8)) {
3133 synchronize_sched();
a30489c5 3134 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
3135 return;
3136 }
3d3b7db0 3137
1924bcb0
PM
3138 /*
3139 * Take a ticket. Note that atomic_inc_return() implies a
3140 * full memory barrier.
3141 */
40694d66 3142 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 3143 firstsnap = snap;
dd56af42
PM
3144 if (!try_get_online_cpus()) {
3145 /* CPU hotplug operation in flight, fall back to normal GP. */
3146 wait_rcu_gp(call_rcu_sched);
3147 atomic_long_inc(&rsp->expedited_normal);
3148 return;
3149 }
1cc85961 3150 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3151
e0775cef
PM
3152 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3153 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3154 if (cma) {
3155 cpumask_copy(cm, cpu_online_mask);
3156 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3157 for_each_cpu(cpu, cm) {
3158 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3159
3160 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3161 cpumask_clear_cpu(cpu, cm);
3162 }
3163 if (cpumask_weight(cm) == 0)
3164 goto all_cpus_idle;
3165 }
3166
3d3b7db0
PM
3167 /*
3168 * Each pass through the following loop attempts to force a
3169 * context switch on each CPU.
3170 */
e0775cef 3171 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3172 synchronize_sched_expedited_cpu_stop,
3173 NULL) == -EAGAIN) {
3174 put_online_cpus();
a30489c5 3175 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3176
1924bcb0 3177 /* Check to see if someone else did our work for us. */
40694d66 3178 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3179 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3180 /* ensure test happens before caller kfree */
4e857c58 3181 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3182 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3183 free_cpumask_var(cm);
1924bcb0
PM
3184 return;
3185 }
3d3b7db0
PM
3186
3187 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3188 if (trycount++ < 10) {
3d3b7db0 3189 udelay(trycount * num_online_cpus());
c701d5d9 3190 } else {
3705b88d 3191 wait_rcu_gp(call_rcu_sched);
a30489c5 3192 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3193 free_cpumask_var(cm);
3d3b7db0
PM
3194 return;
3195 }
3196
1924bcb0 3197 /* Recheck to see if someone else did our work for us. */
40694d66 3198 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3199 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3200 /* ensure test happens before caller kfree */
4e857c58 3201 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3202 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3203 free_cpumask_var(cm);
3d3b7db0
PM
3204 return;
3205 }
3206
3207 /*
3208 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3209 * callers to piggyback on our grace period. We retry
3210 * after they started, so our grace period works for them,
3211 * and they started after our first try, so their grace
3212 * period works for us.
3d3b7db0 3213 */
dd56af42
PM
3214 if (!try_get_online_cpus()) {
3215 /* CPU hotplug operation in flight, use normal GP. */
3216 wait_rcu_gp(call_rcu_sched);
3217 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3218 free_cpumask_var(cm);
dd56af42
PM
3219 return;
3220 }
40694d66 3221 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3222 smp_mb(); /* ensure read is before try_stop_cpus(). */
3223 }
a30489c5 3224 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3225
e0775cef
PM
3226all_cpus_idle:
3227 free_cpumask_var(cm);
3228
3d3b7db0
PM
3229 /*
3230 * Everyone up to our most recent fetch is covered by our grace
3231 * period. Update the counter, but only if our work is still
3232 * relevant -- which it won't be if someone who started later
1924bcb0 3233 * than we did already did their update.
3d3b7db0
PM
3234 */
3235 do {
a30489c5 3236 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3237 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3238 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3239 /* ensure test happens before caller kfree */
4e857c58 3240 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3241 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3242 break;
3243 }
40694d66 3244 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3245 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3246
3247 put_online_cpus();
3248}
3249EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3250
64db4cff
PM
3251/*
3252 * Check to see if there is any immediate RCU-related work to be done
3253 * by the current CPU, for the specified type of RCU, returning 1 if so.
3254 * The checks are in order of increasing expense: checks that can be
3255 * carried out against CPU-local state are performed first. However,
3256 * we must check for CPU stalls first, else we might not get a chance.
3257 */
3258static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3259{
2f51f988
PM
3260 struct rcu_node *rnp = rdp->mynode;
3261
64db4cff
PM
3262 rdp->n_rcu_pending++;
3263
3264 /* Check for CPU stalls, if enabled. */
3265 check_cpu_stall(rsp, rdp);
3266
a096932f
PM
3267 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3268 if (rcu_nohz_full_cpu(rsp))
3269 return 0;
3270
64db4cff 3271 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3272 if (rcu_scheduler_fully_active &&
5cd37193
PM
3273 rdp->qs_pending && !rdp->passed_quiesce &&
3274 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
d21670ac 3275 rdp->n_rp_qs_pending++;
5cd37193
PM
3276 } else if (rdp->qs_pending &&
3277 (rdp->passed_quiesce ||
3278 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3279 rdp->n_rp_report_qs++;
64db4cff 3280 return 1;
7ba5c840 3281 }
64db4cff
PM
3282
3283 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3284 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3285 rdp->n_rp_cb_ready++;
64db4cff 3286 return 1;
7ba5c840 3287 }
64db4cff
PM
3288
3289 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3290 if (cpu_needs_another_gp(rsp, rdp)) {
3291 rdp->n_rp_cpu_needs_gp++;
64db4cff 3292 return 1;
7ba5c840 3293 }
64db4cff
PM
3294
3295 /* Has another RCU grace period completed? */
2f51f988 3296 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3297 rdp->n_rp_gp_completed++;
64db4cff 3298 return 1;
7ba5c840 3299 }
64db4cff
PM
3300
3301 /* Has a new RCU grace period started? */
e3663b10
PM
3302 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3303 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3304 rdp->n_rp_gp_started++;
64db4cff 3305 return 1;
7ba5c840 3306 }
64db4cff 3307
96d3fd0d
PM
3308 /* Does this CPU need a deferred NOCB wakeup? */
3309 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3310 rdp->n_rp_nocb_defer_wakeup++;
3311 return 1;
3312 }
3313
64db4cff 3314 /* nothing to do */
7ba5c840 3315 rdp->n_rp_need_nothing++;
64db4cff
PM
3316 return 0;
3317}
3318
3319/*
3320 * Check to see if there is any immediate RCU-related work to be done
3321 * by the current CPU, returning 1 if so. This function is part of the
3322 * RCU implementation; it is -not- an exported member of the RCU API.
3323 */
e3950ecd 3324static int rcu_pending(void)
64db4cff 3325{
6ce75a23
PM
3326 struct rcu_state *rsp;
3327
3328 for_each_rcu_flavor(rsp)
e3950ecd 3329 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3330 return 1;
3331 return 0;
64db4cff
PM
3332}
3333
3334/*
c0f4dfd4
PM
3335 * Return true if the specified CPU has any callback. If all_lazy is
3336 * non-NULL, store an indication of whether all callbacks are lazy.
3337 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3338 */
aa6da514 3339static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3340{
c0f4dfd4
PM
3341 bool al = true;
3342 bool hc = false;
3343 struct rcu_data *rdp;
6ce75a23
PM
3344 struct rcu_state *rsp;
3345
c0f4dfd4 3346 for_each_rcu_flavor(rsp) {
aa6da514 3347 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3348 if (!rdp->nxtlist)
3349 continue;
3350 hc = true;
3351 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3352 al = false;
69c8d28c
PM
3353 break;
3354 }
c0f4dfd4
PM
3355 }
3356 if (all_lazy)
3357 *all_lazy = al;
3358 return hc;
64db4cff
PM
3359}
3360
a83eff0a
PM
3361/*
3362 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3363 * the compiler is expected to optimize this away.
3364 */
e66c33d5 3365static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3366 int cpu, unsigned long done)
3367{
3368 trace_rcu_barrier(rsp->name, s, cpu,
3369 atomic_read(&rsp->barrier_cpu_count), done);
3370}
3371
b1420f1c
PM
3372/*
3373 * RCU callback function for _rcu_barrier(). If we are last, wake
3374 * up the task executing _rcu_barrier().
3375 */
24ebbca8 3376static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3377{
24ebbca8
PM
3378 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3379 struct rcu_state *rsp = rdp->rsp;
3380
a83eff0a
PM
3381 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3382 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3383 complete(&rsp->barrier_completion);
a83eff0a
PM
3384 } else {
3385 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3386 }
d0ec774c
PM
3387}
3388
3389/*
3390 * Called with preemption disabled, and from cross-cpu IRQ context.
3391 */
3392static void rcu_barrier_func(void *type)
3393{
037b64ed 3394 struct rcu_state *rsp = type;
fa07a58f 3395 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3396
a83eff0a 3397 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3398 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3399 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3400}
3401
d0ec774c
PM
3402/*
3403 * Orchestrate the specified type of RCU barrier, waiting for all
3404 * RCU callbacks of the specified type to complete.
3405 */
037b64ed 3406static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3407{
b1420f1c 3408 int cpu;
b1420f1c 3409 struct rcu_data *rdp;
cf3a9c48
PM
3410 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3411 unsigned long snap_done;
b1420f1c 3412
a83eff0a 3413 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3414
e74f4c45 3415 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3416 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3417
cf3a9c48
PM
3418 /*
3419 * Ensure that all prior references, including to ->n_barrier_done,
3420 * are ordered before the _rcu_barrier() machinery.
3421 */
3422 smp_mb(); /* See above block comment. */
3423
3424 /*
3425 * Recheck ->n_barrier_done to see if others did our work for us.
3426 * This means checking ->n_barrier_done for an even-to-odd-to-even
3427 * transition. The "if" expression below therefore rounds the old
3428 * value up to the next even number and adds two before comparing.
3429 */
458fb381 3430 snap_done = rsp->n_barrier_done;
a83eff0a 3431 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3432
3433 /*
3434 * If the value in snap is odd, we needed to wait for the current
3435 * rcu_barrier() to complete, then wait for the next one, in other
3436 * words, we need the value of snap_done to be three larger than
3437 * the value of snap. On the other hand, if the value in snap is
3438 * even, we only had to wait for the next rcu_barrier() to complete,
3439 * in other words, we need the value of snap_done to be only two
3440 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3441 * this for us (thank you, Linus!).
3442 */
3443 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3444 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3445 smp_mb(); /* caller's subsequent code after above check. */
3446 mutex_unlock(&rsp->barrier_mutex);
3447 return;
3448 }
3449
3450 /*
3451 * Increment ->n_barrier_done to avoid duplicate work. Use
3452 * ACCESS_ONCE() to prevent the compiler from speculating
3453 * the increment to precede the early-exit check.
3454 */
a792563b 3455 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3456 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3457 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3458 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3459
d0ec774c 3460 /*
b1420f1c
PM
3461 * Initialize the count to one rather than to zero in order to
3462 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3463 * (or preemption of this task). Exclude CPU-hotplug operations
3464 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3465 */
7db74df8 3466 init_completion(&rsp->barrier_completion);
24ebbca8 3467 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3468 get_online_cpus();
b1420f1c
PM
3469
3470 /*
1331e7a1
PM
3471 * Force each CPU with callbacks to register a new callback.
3472 * When that callback is invoked, we will know that all of the
3473 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3474 */
3fbfbf7a 3475 for_each_possible_cpu(cpu) {
d1e43fa5 3476 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3477 continue;
b1420f1c 3478 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3479 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3480 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3481 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3482 rsp->n_barrier_done);
3483 } else {
3484 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3485 rsp->n_barrier_done);
41050a00 3486 smp_mb__before_atomic();
d7e29933
PM
3487 atomic_inc(&rsp->barrier_cpu_count);
3488 __call_rcu(&rdp->barrier_head,
3489 rcu_barrier_callback, rsp, cpu, 0);
3490 }
3fbfbf7a 3491 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3492 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3493 rsp->n_barrier_done);
037b64ed 3494 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3495 } else {
a83eff0a
PM
3496 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3497 rsp->n_barrier_done);
b1420f1c
PM
3498 }
3499 }
1331e7a1 3500 put_online_cpus();
b1420f1c
PM
3501
3502 /*
3503 * Now that we have an rcu_barrier_callback() callback on each
3504 * CPU, and thus each counted, remove the initial count.
3505 */
24ebbca8 3506 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3507 complete(&rsp->barrier_completion);
b1420f1c 3508
cf3a9c48
PM
3509 /* Increment ->n_barrier_done to prevent duplicate work. */
3510 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3511 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3512 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3513 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3514 smp_mb(); /* Keep increment before caller's subsequent code. */
3515
b1420f1c 3516 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3517 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3518
3519 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3520 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3521}
d0ec774c
PM
3522
3523/**
3524 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3525 */
3526void rcu_barrier_bh(void)
3527{
037b64ed 3528 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3529}
3530EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3531
3532/**
3533 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3534 */
3535void rcu_barrier_sched(void)
3536{
037b64ed 3537 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3538}
3539EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3540
64db4cff 3541/*
27569620 3542 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3543 */
27569620
PM
3544static void __init
3545rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3546{
3547 unsigned long flags;
394f99a9 3548 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3549 struct rcu_node *rnp = rcu_get_root(rsp);
3550
3551 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3552 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3553 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 3554 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3555 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3556 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3557 rdp->cpu = cpu;
d4c08f2a 3558 rdp->rsp = rsp;
3fbfbf7a 3559 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3560 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3561}
3562
3563/*
3564 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3565 * offline event can be happening at a given time. Note also that we
3566 * can accept some slop in the rsp->completed access due to the fact
3567 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3568 */
49fb4c62 3569static void
9b67122a 3570rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3571{
3572 unsigned long flags;
64db4cff 3573 unsigned long mask;
394f99a9 3574 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3575 struct rcu_node *rnp = rcu_get_root(rsp);
3576
a4fbe35a
PM
3577 /* Exclude new grace periods. */
3578 mutex_lock(&rsp->onoff_mutex);
3579
64db4cff 3580 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3581 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3582 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3583 rdp->qlen_last_fqs_check = 0;
3584 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3585 rdp->blimit = blimit;
0d8ee37e 3586 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3587 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3588 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3589 atomic_set(&rdp->dynticks->dynticks,
3590 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3591 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3592
64db4cff
PM
3593 /* Add CPU to rcu_node bitmasks. */
3594 rnp = rdp->mynode;
3595 mask = rdp->grpmask;
3596 do {
3597 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3598 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3599 rnp->qsmaskinit |= mask;
3600 mask = rnp->grpmask;
d09b62df 3601 if (rnp == rdp->mynode) {
06ae115a
PM
3602 /*
3603 * If there is a grace period in progress, we will
3604 * set up to wait for it next time we run the
3605 * RCU core code.
3606 */
3607 rdp->gpnum = rnp->completed;
d09b62df 3608 rdp->completed = rnp->completed;
06ae115a 3609 rdp->passed_quiesce = 0;
5cd37193 3610 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
06ae115a 3611 rdp->qs_pending = 0;
f7f7bac9 3612 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3613 }
1304afb2 3614 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3615 rnp = rnp->parent;
3616 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3617 local_irq_restore(flags);
64db4cff 3618
a4fbe35a 3619 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3620}
3621
49fb4c62 3622static void rcu_prepare_cpu(int cpu)
64db4cff 3623{
6ce75a23
PM
3624 struct rcu_state *rsp;
3625
3626 for_each_rcu_flavor(rsp)
9b67122a 3627 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3628}
3629
3630/*
f41d911f 3631 * Handle CPU online/offline notification events.
64db4cff 3632 */
49fb4c62 3633static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3634 unsigned long action, void *hcpu)
64db4cff
PM
3635{
3636 long cpu = (long)hcpu;
e534165b 3637 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3638 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3639 struct rcu_state *rsp;
64db4cff 3640
f7f7bac9 3641 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3642 switch (action) {
3643 case CPU_UP_PREPARE:
3644 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3645 rcu_prepare_cpu(cpu);
3646 rcu_prepare_kthreads(cpu);
35ce7f29 3647 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3648 break;
3649 case CPU_ONLINE:
0f962a5e 3650 case CPU_DOWN_FAILED:
5d01bbd1 3651 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3652 break;
3653 case CPU_DOWN_PREPARE:
34ed6246 3654 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3655 break;
d0ec774c
PM
3656 case CPU_DYING:
3657 case CPU_DYING_FROZEN:
6ce75a23
PM
3658 for_each_rcu_flavor(rsp)
3659 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3660 break;
64db4cff
PM
3661 case CPU_DEAD:
3662 case CPU_DEAD_FROZEN:
3663 case CPU_UP_CANCELED:
3664 case CPU_UP_CANCELED_FROZEN:
776d6807 3665 for_each_rcu_flavor(rsp) {
6ce75a23 3666 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3667 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3668 }
64db4cff
PM
3669 break;
3670 default:
3671 break;
3672 }
f7f7bac9 3673 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3674 return NOTIFY_OK;
64db4cff
PM
3675}
3676
d1d74d14
BP
3677static int rcu_pm_notify(struct notifier_block *self,
3678 unsigned long action, void *hcpu)
3679{
3680 switch (action) {
3681 case PM_HIBERNATION_PREPARE:
3682 case PM_SUSPEND_PREPARE:
3683 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3684 rcu_expedited = 1;
3685 break;
3686 case PM_POST_HIBERNATION:
3687 case PM_POST_SUSPEND:
3688 rcu_expedited = 0;
3689 break;
3690 default:
3691 break;
3692 }
3693 return NOTIFY_OK;
3694}
3695
b3dbec76 3696/*
9386c0b7 3697 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3698 */
3699static int __init rcu_spawn_gp_kthread(void)
3700{
3701 unsigned long flags;
a94844b2 3702 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3703 struct rcu_node *rnp;
3704 struct rcu_state *rsp;
a94844b2 3705 struct sched_param sp;
b3dbec76
PM
3706 struct task_struct *t;
3707
a94844b2
PM
3708 /* Force priority into range. */
3709 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3710 kthread_prio = 1;
3711 else if (kthread_prio < 0)
3712 kthread_prio = 0;
3713 else if (kthread_prio > 99)
3714 kthread_prio = 99;
3715 if (kthread_prio != kthread_prio_in)
3716 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3717 kthread_prio, kthread_prio_in);
3718
9386c0b7 3719 rcu_scheduler_fully_active = 1;
b3dbec76 3720 for_each_rcu_flavor(rsp) {
a94844b2 3721 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3722 BUG_ON(IS_ERR(t));
3723 rnp = rcu_get_root(rsp);
3724 raw_spin_lock_irqsave(&rnp->lock, flags);
3725 rsp->gp_kthread = t;
a94844b2
PM
3726 if (kthread_prio) {
3727 sp.sched_priority = kthread_prio;
3728 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3729 }
3730 wake_up_process(t);
b3dbec76
PM
3731 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3732 }
35ce7f29 3733 rcu_spawn_nocb_kthreads();
9386c0b7 3734 rcu_spawn_boost_kthreads();
b3dbec76
PM
3735 return 0;
3736}
3737early_initcall(rcu_spawn_gp_kthread);
3738
bbad9379
PM
3739/*
3740 * This function is invoked towards the end of the scheduler's initialization
3741 * process. Before this is called, the idle task might contain
3742 * RCU read-side critical sections (during which time, this idle
3743 * task is booting the system). After this function is called, the
3744 * idle tasks are prohibited from containing RCU read-side critical
3745 * sections. This function also enables RCU lockdep checking.
3746 */
3747void rcu_scheduler_starting(void)
3748{
3749 WARN_ON(num_online_cpus() != 1);
3750 WARN_ON(nr_context_switches() > 0);
3751 rcu_scheduler_active = 1;
3752}
3753
64db4cff
PM
3754/*
3755 * Compute the per-level fanout, either using the exact fanout specified
3756 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3757 */
3758#ifdef CONFIG_RCU_FANOUT_EXACT
3759static void __init rcu_init_levelspread(struct rcu_state *rsp)
3760{
3761 int i;
3762
04f34650
PM
3763 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3764 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3765 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3766}
3767#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3768static void __init rcu_init_levelspread(struct rcu_state *rsp)
3769{
3770 int ccur;
3771 int cprv;
3772 int i;
3773
4dbd6bb3 3774 cprv = nr_cpu_ids;
f885b7f2 3775 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3776 ccur = rsp->levelcnt[i];
3777 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3778 cprv = ccur;
3779 }
3780}
3781#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3782
3783/*
3784 * Helper function for rcu_init() that initializes one rcu_state structure.
3785 */
394f99a9
LJ
3786static void __init rcu_init_one(struct rcu_state *rsp,
3787 struct rcu_data __percpu *rda)
64db4cff 3788{
b4426b49
FF
3789 static const char * const buf[] = {
3790 "rcu_node_0",
3791 "rcu_node_1",
3792 "rcu_node_2",
3793 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3794 static const char * const fqs[] = {
3795 "rcu_node_fqs_0",
3796 "rcu_node_fqs_1",
3797 "rcu_node_fqs_2",
3798 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3799 static u8 fl_mask = 0x1;
64db4cff
PM
3800 int cpustride = 1;
3801 int i;
3802 int j;
3803 struct rcu_node *rnp;
3804
b6407e86
PM
3805 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3806
4930521a
PM
3807 /* Silence gcc 4.8 warning about array index out of range. */
3808 if (rcu_num_lvls > RCU_NUM_LVLS)
3809 panic("rcu_init_one: rcu_num_lvls overflow");
3810
64db4cff
PM
3811 /* Initialize the level-tracking arrays. */
3812
f885b7f2
PM
3813 for (i = 0; i < rcu_num_lvls; i++)
3814 rsp->levelcnt[i] = num_rcu_lvl[i];
3815 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3816 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3817 rcu_init_levelspread(rsp);
4a81e832
PM
3818 rsp->flavor_mask = fl_mask;
3819 fl_mask <<= 1;
64db4cff
PM
3820
3821 /* Initialize the elements themselves, starting from the leaves. */
3822
f885b7f2 3823 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3824 cpustride *= rsp->levelspread[i];
3825 rnp = rsp->level[i];
3826 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3827 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3828 lockdep_set_class_and_name(&rnp->lock,
3829 &rcu_node_class[i], buf[i]);
394f2769
PM
3830 raw_spin_lock_init(&rnp->fqslock);
3831 lockdep_set_class_and_name(&rnp->fqslock,
3832 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3833 rnp->gpnum = rsp->gpnum;
3834 rnp->completed = rsp->completed;
64db4cff
PM
3835 rnp->qsmask = 0;
3836 rnp->qsmaskinit = 0;
3837 rnp->grplo = j * cpustride;
3838 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3839 if (rnp->grphi >= nr_cpu_ids)
3840 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3841 if (i == 0) {
3842 rnp->grpnum = 0;
3843 rnp->grpmask = 0;
3844 rnp->parent = NULL;
3845 } else {
3846 rnp->grpnum = j % rsp->levelspread[i - 1];
3847 rnp->grpmask = 1UL << rnp->grpnum;
3848 rnp->parent = rsp->level[i - 1] +
3849 j / rsp->levelspread[i - 1];
3850 }
3851 rnp->level = i;
12f5f524 3852 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3853 rcu_init_one_nocb(rnp);
64db4cff
PM
3854 }
3855 }
0c34029a 3856
b3dbec76 3857 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3858 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3859 for_each_possible_cpu(i) {
4a90a068 3860 while (i > rnp->grphi)
0c34029a 3861 rnp++;
394f99a9 3862 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3863 rcu_boot_init_percpu_data(i, rsp);
3864 }
6ce75a23 3865 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3866}
3867
f885b7f2
PM
3868/*
3869 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3870 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3871 * the ->node array in the rcu_state structure.
3872 */
3873static void __init rcu_init_geometry(void)
3874{
026ad283 3875 ulong d;
f885b7f2
PM
3876 int i;
3877 int j;
cca6f393 3878 int n = nr_cpu_ids;
f885b7f2
PM
3879 int rcu_capacity[MAX_RCU_LVLS + 1];
3880
026ad283
PM
3881 /*
3882 * Initialize any unspecified boot parameters.
3883 * The default values of jiffies_till_first_fqs and
3884 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3885 * value, which is a function of HZ, then adding one for each
3886 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3887 */
3888 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3889 if (jiffies_till_first_fqs == ULONG_MAX)
3890 jiffies_till_first_fqs = d;
3891 if (jiffies_till_next_fqs == ULONG_MAX)
3892 jiffies_till_next_fqs = d;
3893
f885b7f2 3894 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3895 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3896 nr_cpu_ids == NR_CPUS)
f885b7f2 3897 return;
39479098
PM
3898 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3899 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3900
3901 /*
3902 * Compute number of nodes that can be handled an rcu_node tree
3903 * with the given number of levels. Setting rcu_capacity[0] makes
3904 * some of the arithmetic easier.
3905 */
3906 rcu_capacity[0] = 1;
3907 rcu_capacity[1] = rcu_fanout_leaf;
3908 for (i = 2; i <= MAX_RCU_LVLS; i++)
3909 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3910
3911 /*
3912 * The boot-time rcu_fanout_leaf parameter is only permitted
3913 * to increase the leaf-level fanout, not decrease it. Of course,
3914 * the leaf-level fanout cannot exceed the number of bits in
3915 * the rcu_node masks. Finally, the tree must be able to accommodate
3916 * the configured number of CPUs. Complain and fall back to the
3917 * compile-time values if these limits are exceeded.
3918 */
3919 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3920 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3921 n > rcu_capacity[MAX_RCU_LVLS]) {
3922 WARN_ON(1);
3923 return;
3924 }
3925
3926 /* Calculate the number of rcu_nodes at each level of the tree. */
3927 for (i = 1; i <= MAX_RCU_LVLS; i++)
3928 if (n <= rcu_capacity[i]) {
3929 for (j = 0; j <= i; j++)
3930 num_rcu_lvl[j] =
3931 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3932 rcu_num_lvls = i;
3933 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3934 num_rcu_lvl[j] = 0;
3935 break;
3936 }
3937
3938 /* Calculate the total number of rcu_node structures. */
3939 rcu_num_nodes = 0;
3940 for (i = 0; i <= MAX_RCU_LVLS; i++)
3941 rcu_num_nodes += num_rcu_lvl[i];
3942 rcu_num_nodes -= n;
3943}
3944
9f680ab4 3945void __init rcu_init(void)
64db4cff 3946{
017c4261 3947 int cpu;
9f680ab4 3948
f41d911f 3949 rcu_bootup_announce();
f885b7f2 3950 rcu_init_geometry();
394f99a9 3951 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3952 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3953 __rcu_init_preempt();
b5b39360 3954 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3955
3956 /*
3957 * We don't need protection against CPU-hotplug here because
3958 * this is called early in boot, before either interrupts
3959 * or the scheduler are operational.
3960 */
3961 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3962 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3963 for_each_online_cpu(cpu)
3964 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
aa23c6fb
PK
3965
3966 rcu_early_boot_tests();
64db4cff
PM
3967}
3968
4102adab 3969#include "tree_plugin.h"