]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/rcu/tree.c
rcu: Prepare for consolidating expedited CPU selection
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
af658dca 57#include <linux/trace_events.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
385b73c0 73static struct lock_class_key rcu_exp_class[RCU_NUM_LVLS];
88b91c7c 74
f7f7bac9
SRRH
75/*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
a8a29b3b
AB
83#ifdef CONFIG_TRACING
84# define DEFINE_RCU_TPS(sname) \
f7f7bac9 85static char sname##_varname[] = #sname; \
a8a29b3b
AB
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87# define RCU_STATE_NAME(sname) sname##_varname
88#else
89# define DEFINE_RCU_TPS(sname)
90# define RCU_STATE_NAME(sname) __stringify(sname)
91#endif
92
93#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94DEFINE_RCU_TPS(sname) \
c92fb057 95static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 96struct rcu_state sname##_state = { \
6c90cc7b 97 .level = { &sname##_state.node[0] }, \
2723249a 98 .rda = &sname##_data, \
037b64ed 99 .call = cr, \
af446b70 100 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
101 .gpnum = 0UL - 300UL, \
102 .completed = 0UL - 300UL, \
7b2e6011 103 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
104 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
105 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 106 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 107 .name = RCU_STATE_NAME(sname), \
a4889858 108 .abbr = sabbr, \
2723249a 109}
64db4cff 110
a41bfeb2
SRRH
111RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
112RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 113
b28a7c01 114static struct rcu_state *const rcu_state_p;
2927a689 115static struct rcu_data __percpu *const rcu_data_p;
6ce75a23 116LIST_HEAD(rcu_struct_flavors);
27f4d280 117
a3dc2948
PM
118/* Dump rcu_node combining tree at boot to verify correct setup. */
119static bool dump_tree;
120module_param(dump_tree, bool, 0444);
7fa27001
PM
121/* Control rcu_node-tree auto-balancing at boot time. */
122static bool rcu_fanout_exact;
123module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
124/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
125static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 126module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 127int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102
AG
128/* Number of rcu_nodes at specified level. */
129static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
130int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
131
b0d30417
PM
132/*
133 * The rcu_scheduler_active variable transitions from zero to one just
134 * before the first task is spawned. So when this variable is zero, RCU
135 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 136 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
137 * is one, RCU must actually do all the hard work required to detect real
138 * grace periods. This variable is also used to suppress boot-time false
139 * positives from lockdep-RCU error checking.
140 */
bbad9379
PM
141int rcu_scheduler_active __read_mostly;
142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143
b0d30417
PM
144/*
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
151 *
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
154 * a time.
155 */
156static int rcu_scheduler_fully_active __read_mostly;
157
0aa04b05
PM
158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
161static void invoke_rcu_core(void);
162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
163static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
a26ac245 165
a94844b2 166/* rcuc/rcub kthread realtime priority */
26730f55 167#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 168static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
169#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
170static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
171#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
172module_param(kthread_prio, int, 0644);
173
8d7dc928 174/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
175
176#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
177static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
178module_param(gp_preinit_delay, int, 0644);
179#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180static const int gp_preinit_delay;
181#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
182
8d7dc928
PM
183#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
184static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 185module_param(gp_init_delay, int, 0644);
8d7dc928
PM
186#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187static const int gp_init_delay;
188#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 189
0f41c0dd
PM
190#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
191static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
192module_param(gp_cleanup_delay, int, 0644);
193#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194static const int gp_cleanup_delay;
195#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
196
eab128e8
PM
197/*
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
205 */
206#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 207
4a298656
PM
208/*
209 * Track the rcutorture test sequence number and the update version
210 * number within a given test. The rcutorture_testseq is incremented
211 * on every rcutorture module load and unload, so has an odd value
212 * when a test is running. The rcutorture_vernum is set to zero
213 * when rcutorture starts and is incremented on each rcutorture update.
214 * These variables enable correlating rcutorture output with the
215 * RCU tracing information.
216 */
217unsigned long rcutorture_testseq;
218unsigned long rcutorture_vernum;
219
0aa04b05
PM
220/*
221 * Compute the mask of online CPUs for the specified rcu_node structure.
222 * This will not be stable unless the rcu_node structure's ->lock is
223 * held, but the bit corresponding to the current CPU will be stable
224 * in most contexts.
225 */
226unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
227{
7d0ae808 228 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
229}
230
fc2219d4 231/*
7d0ae808 232 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
233 * permit this function to be invoked without holding the root rcu_node
234 * structure's ->lock, but of course results can be subject to change.
235 */
236static int rcu_gp_in_progress(struct rcu_state *rsp)
237{
7d0ae808 238 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
239}
240
b1f77b05 241/*
d6714c22 242 * Note a quiescent state. Because we do not need to know
b1f77b05 243 * how many quiescent states passed, just if there was at least
d6714c22 244 * one since the start of the grace period, this just sets a flag.
e4cc1f22 245 * The caller must have disabled preemption.
b1f77b05 246 */
284a8c93 247void rcu_sched_qs(void)
b1f77b05 248{
5b74c458 249 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) {
284a8c93
PM
250 trace_rcu_grace_period(TPS("rcu_sched"),
251 __this_cpu_read(rcu_sched_data.gpnum),
252 TPS("cpuqs"));
5b74c458 253 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
6587a23b
PM
254 if (__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) {
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
256 rcu_report_exp_rdp(&rcu_sched_state,
257 this_cpu_ptr(&rcu_sched_data),
258 true);
259 }
284a8c93 260 }
b1f77b05
IM
261}
262
284a8c93 263void rcu_bh_qs(void)
b1f77b05 264{
5b74c458 265 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
266 trace_rcu_grace_period(TPS("rcu_bh"),
267 __this_cpu_read(rcu_bh_data.gpnum),
268 TPS("cpuqs"));
5b74c458 269 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 270 }
b1f77b05 271}
64db4cff 272
4a81e832
PM
273static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274
275static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 .dynticks = ATOMIC_INIT(1),
278#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 .dynticks_idle = ATOMIC_INIT(1),
281#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282};
283
5cd37193
PM
284DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
285EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
286
4a81e832
PM
287/*
288 * Let the RCU core know that this CPU has gone through the scheduler,
289 * which is a quiescent state. This is called when the need for a
290 * quiescent state is urgent, so we burn an atomic operation and full
291 * memory barriers to let the RCU core know about it, regardless of what
292 * this CPU might (or might not) do in the near future.
293 *
294 * We inform the RCU core by emulating a zero-duration dyntick-idle
295 * period, which we in turn do by incrementing the ->dynticks counter
296 * by two.
297 */
298static void rcu_momentary_dyntick_idle(void)
299{
300 unsigned long flags;
301 struct rcu_data *rdp;
302 struct rcu_dynticks *rdtp;
303 int resched_mask;
304 struct rcu_state *rsp;
305
306 local_irq_save(flags);
307
308 /*
309 * Yes, we can lose flag-setting operations. This is OK, because
310 * the flag will be set again after some delay.
311 */
312 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
313 raw_cpu_write(rcu_sched_qs_mask, 0);
314
315 /* Find the flavor that needs a quiescent state. */
316 for_each_rcu_flavor(rsp) {
317 rdp = raw_cpu_ptr(rsp->rda);
318 if (!(resched_mask & rsp->flavor_mask))
319 continue;
320 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
7d0ae808
PM
321 if (READ_ONCE(rdp->mynode->completed) !=
322 READ_ONCE(rdp->cond_resched_completed))
4a81e832
PM
323 continue;
324
325 /*
326 * Pretend to be momentarily idle for the quiescent state.
327 * This allows the grace-period kthread to record the
328 * quiescent state, with no need for this CPU to do anything
329 * further.
330 */
331 rdtp = this_cpu_ptr(&rcu_dynticks);
332 smp_mb__before_atomic(); /* Earlier stuff before QS. */
333 atomic_add(2, &rdtp->dynticks); /* QS. */
334 smp_mb__after_atomic(); /* Later stuff after QS. */
335 break;
336 }
337 local_irq_restore(flags);
338}
339
25502a6c
PM
340/*
341 * Note a context switch. This is a quiescent state for RCU-sched,
342 * and requires special handling for preemptible RCU.
e4cc1f22 343 * The caller must have disabled preemption.
25502a6c 344 */
38200cf2 345void rcu_note_context_switch(void)
25502a6c 346{
f7f7bac9 347 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 348 rcu_sched_qs();
38200cf2 349 rcu_preempt_note_context_switch();
4a81e832
PM
350 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
351 rcu_momentary_dyntick_idle();
f7f7bac9 352 trace_rcu_utilization(TPS("End context switch"));
25502a6c 353}
29ce8310 354EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 355
5cd37193 356/*
1925d196 357 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
358 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 360 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
361 * be none of them). Either way, do a lightweight quiescent state for
362 * all RCU flavors.
363 */
364void rcu_all_qs(void)
365{
366 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
367 rcu_momentary_dyntick_idle();
368 this_cpu_inc(rcu_qs_ctr);
369}
370EXPORT_SYMBOL_GPL(rcu_all_qs);
371
878d7439
ED
372static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
373static long qhimark = 10000; /* If this many pending, ignore blimit. */
374static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 375
878d7439
ED
376module_param(blimit, long, 0444);
377module_param(qhimark, long, 0444);
378module_param(qlowmark, long, 0444);
3d76c082 379
026ad283
PM
380static ulong jiffies_till_first_fqs = ULONG_MAX;
381static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
382
383module_param(jiffies_till_first_fqs, ulong, 0644);
384module_param(jiffies_till_next_fqs, ulong, 0644);
385
4a81e832
PM
386/*
387 * How long the grace period must be before we start recruiting
388 * quiescent-state help from rcu_note_context_switch().
389 */
390static ulong jiffies_till_sched_qs = HZ / 20;
391module_param(jiffies_till_sched_qs, ulong, 0644);
392
48a7639c 393static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 394 struct rcu_data *rdp);
217af2a2
PM
395static void force_qs_rnp(struct rcu_state *rsp,
396 int (*f)(struct rcu_data *rsp, bool *isidle,
397 unsigned long *maxj),
398 bool *isidle, unsigned long *maxj);
4cdfc175 399static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 400static int rcu_pending(void);
64db4cff
PM
401
402/*
917963d0 403 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 404 */
917963d0
PM
405unsigned long rcu_batches_started(void)
406{
407 return rcu_state_p->gpnum;
408}
409EXPORT_SYMBOL_GPL(rcu_batches_started);
410
411/*
412 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 413 */
917963d0
PM
414unsigned long rcu_batches_started_sched(void)
415{
416 return rcu_sched_state.gpnum;
417}
418EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
419
420/*
421 * Return the number of RCU BH batches started thus far for debug & stats.
422 */
423unsigned long rcu_batches_started_bh(void)
424{
425 return rcu_bh_state.gpnum;
426}
427EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
428
429/*
430 * Return the number of RCU batches completed thus far for debug & stats.
431 */
432unsigned long rcu_batches_completed(void)
433{
434 return rcu_state_p->completed;
435}
436EXPORT_SYMBOL_GPL(rcu_batches_completed);
437
438/*
439 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 440 */
9733e4f0 441unsigned long rcu_batches_completed_sched(void)
64db4cff 442{
d6714c22 443 return rcu_sched_state.completed;
64db4cff 444}
d6714c22 445EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
446
447/*
917963d0 448 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 449 */
9733e4f0 450unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
451{
452 return rcu_bh_state.completed;
453}
454EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
455
a381d757
ACB
456/*
457 * Force a quiescent state.
458 */
459void rcu_force_quiescent_state(void)
460{
e534165b 461 force_quiescent_state(rcu_state_p);
a381d757
ACB
462}
463EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
464
bf66f18e
PM
465/*
466 * Force a quiescent state for RCU BH.
467 */
468void rcu_bh_force_quiescent_state(void)
469{
4cdfc175 470 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
471}
472EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
473
e7580f33
PM
474/*
475 * Force a quiescent state for RCU-sched.
476 */
477void rcu_sched_force_quiescent_state(void)
478{
479 force_quiescent_state(&rcu_sched_state);
480}
481EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
482
afea227f
PM
483/*
484 * Show the state of the grace-period kthreads.
485 */
486void show_rcu_gp_kthreads(void)
487{
488 struct rcu_state *rsp;
489
490 for_each_rcu_flavor(rsp) {
491 pr_info("%s: wait state: %d ->state: %#lx\n",
492 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
493 /* sched_show_task(rsp->gp_kthread); */
494 }
495}
496EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
497
4a298656
PM
498/*
499 * Record the number of times rcutorture tests have been initiated and
500 * terminated. This information allows the debugfs tracing stats to be
501 * correlated to the rcutorture messages, even when the rcutorture module
502 * is being repeatedly loaded and unloaded. In other words, we cannot
503 * store this state in rcutorture itself.
504 */
505void rcutorture_record_test_transition(void)
506{
507 rcutorture_testseq++;
508 rcutorture_vernum = 0;
509}
510EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
511
ad0dc7f9
PM
512/*
513 * Send along grace-period-related data for rcutorture diagnostics.
514 */
515void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
516 unsigned long *gpnum, unsigned long *completed)
517{
518 struct rcu_state *rsp = NULL;
519
520 switch (test_type) {
521 case RCU_FLAVOR:
e534165b 522 rsp = rcu_state_p;
ad0dc7f9
PM
523 break;
524 case RCU_BH_FLAVOR:
525 rsp = &rcu_bh_state;
526 break;
527 case RCU_SCHED_FLAVOR:
528 rsp = &rcu_sched_state;
529 break;
530 default:
531 break;
532 }
533 if (rsp != NULL) {
7d0ae808
PM
534 *flags = READ_ONCE(rsp->gp_flags);
535 *gpnum = READ_ONCE(rsp->gpnum);
536 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
537 return;
538 }
539 *flags = 0;
540 *gpnum = 0;
541 *completed = 0;
542}
543EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
544
4a298656
PM
545/*
546 * Record the number of writer passes through the current rcutorture test.
547 * This is also used to correlate debugfs tracing stats with the rcutorture
548 * messages.
549 */
550void rcutorture_record_progress(unsigned long vernum)
551{
552 rcutorture_vernum++;
553}
554EXPORT_SYMBOL_GPL(rcutorture_record_progress);
555
64db4cff
PM
556/*
557 * Does the CPU have callbacks ready to be invoked?
558 */
559static int
560cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
561{
3fbfbf7a
PM
562 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
563 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
564}
565
365187fb
PM
566/*
567 * Return the root node of the specified rcu_state structure.
568 */
569static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
570{
571 return &rsp->node[0];
572}
573
574/*
575 * Is there any need for future grace periods?
576 * Interrupts must be disabled. If the caller does not hold the root
577 * rnp_node structure's ->lock, the results are advisory only.
578 */
579static int rcu_future_needs_gp(struct rcu_state *rsp)
580{
581 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 582 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
583 int *fp = &rnp->need_future_gp[idx];
584
7d0ae808 585 return READ_ONCE(*fp);
365187fb
PM
586}
587
64db4cff 588/*
dc35c893
PM
589 * Does the current CPU require a not-yet-started grace period?
590 * The caller must have disabled interrupts to prevent races with
591 * normal callback registry.
64db4cff
PM
592 */
593static int
594cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
595{
dc35c893 596 int i;
3fbfbf7a 597
dc35c893
PM
598 if (rcu_gp_in_progress(rsp))
599 return 0; /* No, a grace period is already in progress. */
365187fb 600 if (rcu_future_needs_gp(rsp))
34ed6246 601 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
602 if (!rdp->nxttail[RCU_NEXT_TAIL])
603 return 0; /* No, this is a no-CBs (or offline) CPU. */
604 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
605 return 1; /* Yes, this CPU has newly registered callbacks. */
606 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
607 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
7d0ae808 608 ULONG_CMP_LT(READ_ONCE(rsp->completed),
dc35c893
PM
609 rdp->nxtcompleted[i]))
610 return 1; /* Yes, CBs for future grace period. */
611 return 0; /* No grace period needed. */
64db4cff
PM
612}
613
9b2e4f18 614/*
adf5091e 615 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
616 *
617 * If the new value of the ->dynticks_nesting counter now is zero,
618 * we really have entered idle, and must do the appropriate accounting.
619 * The caller must have disabled interrupts.
620 */
28ced795 621static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 622{
96d3fd0d
PM
623 struct rcu_state *rsp;
624 struct rcu_data *rdp;
28ced795 625 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 626
f7f7bac9 627 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
628 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
629 !user && !is_idle_task(current)) {
289828e6
PM
630 struct task_struct *idle __maybe_unused =
631 idle_task(smp_processor_id());
0989cb46 632
f7f7bac9 633 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 634 ftrace_dump(DUMP_ORIG);
0989cb46
PM
635 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
636 current->pid, current->comm,
637 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 638 }
96d3fd0d
PM
639 for_each_rcu_flavor(rsp) {
640 rdp = this_cpu_ptr(rsp->rda);
641 do_nocb_deferred_wakeup(rdp);
642 }
198bbf81 643 rcu_prepare_for_idle();
9b2e4f18 644 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 645 smp_mb__before_atomic(); /* See above. */
9b2e4f18 646 atomic_inc(&rdtp->dynticks);
4e857c58 647 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
1ce46ee5
PM
648 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
649 atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 650 rcu_dynticks_task_enter();
c44e2cdd
PM
651
652 /*
adf5091e 653 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
654 * in an RCU read-side critical section.
655 */
f78f5b90
PM
656 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
657 "Illegal idle entry in RCU read-side critical section.");
658 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
659 "Illegal idle entry in RCU-bh read-side critical section.");
660 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
661 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 662}
64db4cff 663
adf5091e
FW
664/*
665 * Enter an RCU extended quiescent state, which can be either the
666 * idle loop or adaptive-tickless usermode execution.
64db4cff 667 */
adf5091e 668static void rcu_eqs_enter(bool user)
64db4cff 669{
4145fa7f 670 long long oldval;
64db4cff
PM
671 struct rcu_dynticks *rdtp;
672
c9d4b0af 673 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 674 oldval = rdtp->dynticks_nesting;
1ce46ee5
PM
675 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
676 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 677 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 678 rdtp->dynticks_nesting = 0;
28ced795 679 rcu_eqs_enter_common(oldval, user);
3a592405 680 } else {
29e37d81 681 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 682 }
64db4cff 683}
adf5091e
FW
684
685/**
686 * rcu_idle_enter - inform RCU that current CPU is entering idle
687 *
688 * Enter idle mode, in other words, -leave- the mode in which RCU
689 * read-side critical sections can occur. (Though RCU read-side
690 * critical sections can occur in irq handlers in idle, a possibility
691 * handled by irq_enter() and irq_exit().)
692 *
693 * We crowbar the ->dynticks_nesting field to zero to allow for
694 * the possibility of usermode upcalls having messed up our count
695 * of interrupt nesting level during the prior busy period.
696 */
697void rcu_idle_enter(void)
698{
c5d900bf
FW
699 unsigned long flags;
700
701 local_irq_save(flags);
cb349ca9 702 rcu_eqs_enter(false);
28ced795 703 rcu_sysidle_enter(0);
c5d900bf 704 local_irq_restore(flags);
adf5091e 705}
8a2ecf47 706EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 707
d1ec4c34 708#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
709/**
710 * rcu_user_enter - inform RCU that we are resuming userspace.
711 *
712 * Enter RCU idle mode right before resuming userspace. No use of RCU
713 * is permitted between this call and rcu_user_exit(). This way the
714 * CPU doesn't need to maintain the tick for RCU maintenance purposes
715 * when the CPU runs in userspace.
716 */
717void rcu_user_enter(void)
718{
91d1aa43 719 rcu_eqs_enter(1);
adf5091e 720}
d1ec4c34 721#endif /* CONFIG_NO_HZ_FULL */
19dd1591 722
9b2e4f18
PM
723/**
724 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
725 *
726 * Exit from an interrupt handler, which might possibly result in entering
727 * idle mode, in other words, leaving the mode in which read-side critical
728 * sections can occur.
64db4cff 729 *
9b2e4f18
PM
730 * This code assumes that the idle loop never does anything that might
731 * result in unbalanced calls to irq_enter() and irq_exit(). If your
732 * architecture violates this assumption, RCU will give you what you
733 * deserve, good and hard. But very infrequently and irreproducibly.
734 *
735 * Use things like work queues to work around this limitation.
736 *
737 * You have been warned.
64db4cff 738 */
9b2e4f18 739void rcu_irq_exit(void)
64db4cff
PM
740{
741 unsigned long flags;
4145fa7f 742 long long oldval;
64db4cff
PM
743 struct rcu_dynticks *rdtp;
744
745 local_irq_save(flags);
c9d4b0af 746 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 747 oldval = rdtp->dynticks_nesting;
9b2e4f18 748 rdtp->dynticks_nesting--;
1ce46ee5
PM
749 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
750 rdtp->dynticks_nesting < 0);
b6fc6020 751 if (rdtp->dynticks_nesting)
f7f7bac9 752 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 753 else
28ced795
CL
754 rcu_eqs_enter_common(oldval, true);
755 rcu_sysidle_enter(1);
9b2e4f18
PM
756 local_irq_restore(flags);
757}
758
759/*
adf5091e 760 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
761 *
762 * If the new value of the ->dynticks_nesting counter was previously zero,
763 * we really have exited idle, and must do the appropriate accounting.
764 * The caller must have disabled interrupts.
765 */
28ced795 766static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 767{
28ced795
CL
768 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
769
176f8f7a 770 rcu_dynticks_task_exit();
4e857c58 771 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
772 atomic_inc(&rdtp->dynticks);
773 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 774 smp_mb__after_atomic(); /* See above. */
1ce46ee5
PM
775 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
776 !(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 777 rcu_cleanup_after_idle();
f7f7bac9 778 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
779 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
780 !user && !is_idle_task(current)) {
289828e6
PM
781 struct task_struct *idle __maybe_unused =
782 idle_task(smp_processor_id());
0989cb46 783
f7f7bac9 784 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 785 oldval, rdtp->dynticks_nesting);
bf1304e9 786 ftrace_dump(DUMP_ORIG);
0989cb46
PM
787 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
788 current->pid, current->comm,
789 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
790 }
791}
792
adf5091e
FW
793/*
794 * Exit an RCU extended quiescent state, which can be either the
795 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 796 */
adf5091e 797static void rcu_eqs_exit(bool user)
9b2e4f18 798{
9b2e4f18
PM
799 struct rcu_dynticks *rdtp;
800 long long oldval;
801
c9d4b0af 802 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 803 oldval = rdtp->dynticks_nesting;
1ce46ee5 804 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 805 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 806 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 807 } else {
29e37d81 808 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 809 rcu_eqs_exit_common(oldval, user);
3a592405 810 }
9b2e4f18 811}
adf5091e
FW
812
813/**
814 * rcu_idle_exit - inform RCU that current CPU is leaving idle
815 *
816 * Exit idle mode, in other words, -enter- the mode in which RCU
817 * read-side critical sections can occur.
818 *
819 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
820 * allow for the possibility of usermode upcalls messing up our count
821 * of interrupt nesting level during the busy period that is just
822 * now starting.
823 */
824void rcu_idle_exit(void)
825{
c5d900bf
FW
826 unsigned long flags;
827
828 local_irq_save(flags);
cb349ca9 829 rcu_eqs_exit(false);
28ced795 830 rcu_sysidle_exit(0);
c5d900bf 831 local_irq_restore(flags);
adf5091e 832}
8a2ecf47 833EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 834
d1ec4c34 835#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
836/**
837 * rcu_user_exit - inform RCU that we are exiting userspace.
838 *
839 * Exit RCU idle mode while entering the kernel because it can
840 * run a RCU read side critical section anytime.
841 */
842void rcu_user_exit(void)
843{
91d1aa43 844 rcu_eqs_exit(1);
adf5091e 845}
d1ec4c34 846#endif /* CONFIG_NO_HZ_FULL */
19dd1591 847
9b2e4f18
PM
848/**
849 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
850 *
851 * Enter an interrupt handler, which might possibly result in exiting
852 * idle mode, in other words, entering the mode in which read-side critical
853 * sections can occur.
854 *
855 * Note that the Linux kernel is fully capable of entering an interrupt
856 * handler that it never exits, for example when doing upcalls to
857 * user mode! This code assumes that the idle loop never does upcalls to
858 * user mode. If your architecture does do upcalls from the idle loop (or
859 * does anything else that results in unbalanced calls to the irq_enter()
860 * and irq_exit() functions), RCU will give you what you deserve, good
861 * and hard. But very infrequently and irreproducibly.
862 *
863 * Use things like work queues to work around this limitation.
864 *
865 * You have been warned.
866 */
867void rcu_irq_enter(void)
868{
869 unsigned long flags;
870 struct rcu_dynticks *rdtp;
871 long long oldval;
872
873 local_irq_save(flags);
c9d4b0af 874 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
875 oldval = rdtp->dynticks_nesting;
876 rdtp->dynticks_nesting++;
1ce46ee5
PM
877 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
878 rdtp->dynticks_nesting == 0);
b6fc6020 879 if (oldval)
f7f7bac9 880 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 881 else
28ced795
CL
882 rcu_eqs_exit_common(oldval, true);
883 rcu_sysidle_exit(1);
64db4cff 884 local_irq_restore(flags);
64db4cff
PM
885}
886
887/**
888 * rcu_nmi_enter - inform RCU of entry to NMI context
889 *
734d1680
PM
890 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
891 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
892 * that the CPU is active. This implementation permits nested NMIs, as
893 * long as the nesting level does not overflow an int. (You will probably
894 * run out of stack space first.)
64db4cff
PM
895 */
896void rcu_nmi_enter(void)
897{
c9d4b0af 898 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 899 int incby = 2;
64db4cff 900
734d1680
PM
901 /* Complain about underflow. */
902 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
903
904 /*
905 * If idle from RCU viewpoint, atomically increment ->dynticks
906 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
907 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
908 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
909 * to be in the outermost NMI handler that interrupted an RCU-idle
910 * period (observation due to Andy Lutomirski).
911 */
912 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
913 smp_mb__before_atomic(); /* Force delay from prior write. */
914 atomic_inc(&rdtp->dynticks);
915 /* atomic_inc() before later RCU read-side crit sects */
916 smp_mb__after_atomic(); /* See above. */
917 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
918 incby = 1;
919 }
920 rdtp->dynticks_nmi_nesting += incby;
921 barrier();
64db4cff
PM
922}
923
924/**
925 * rcu_nmi_exit - inform RCU of exit from NMI context
926 *
734d1680
PM
927 * If we are returning from the outermost NMI handler that interrupted an
928 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
929 * to let the RCU grace-period handling know that the CPU is back to
930 * being RCU-idle.
64db4cff
PM
931 */
932void rcu_nmi_exit(void)
933{
c9d4b0af 934 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 935
734d1680
PM
936 /*
937 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
938 * (We are exiting an NMI handler, so RCU better be paying attention
939 * to us!)
940 */
941 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
942 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
943
944 /*
945 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
946 * leave it in non-RCU-idle state.
947 */
948 if (rdtp->dynticks_nmi_nesting != 1) {
949 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 950 return;
734d1680
PM
951 }
952
953 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
954 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 955 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 956 smp_mb__before_atomic(); /* See above. */
23b5c8fa 957 atomic_inc(&rdtp->dynticks);
4e857c58 958 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 959 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
960}
961
962/**
5c173eb8
PM
963 * __rcu_is_watching - are RCU read-side critical sections safe?
964 *
965 * Return true if RCU is watching the running CPU, which means that
966 * this CPU can safely enter RCU read-side critical sections. Unlike
967 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
968 * least disabled preemption.
969 */
9418fb20 970bool notrace __rcu_is_watching(void)
5c173eb8
PM
971{
972 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
973}
974
975/**
976 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 977 *
9b2e4f18 978 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 979 * or NMI handler, return true.
64db4cff 980 */
9418fb20 981bool notrace rcu_is_watching(void)
64db4cff 982{
f534ed1f 983 bool ret;
34240697 984
46f00d18 985 preempt_disable_notrace();
5c173eb8 986 ret = __rcu_is_watching();
46f00d18 987 preempt_enable_notrace();
34240697 988 return ret;
64db4cff 989}
5c173eb8 990EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 991
62fde6ed 992#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
993
994/*
995 * Is the current CPU online? Disable preemption to avoid false positives
996 * that could otherwise happen due to the current CPU number being sampled,
997 * this task being preempted, its old CPU being taken offline, resuming
998 * on some other CPU, then determining that its old CPU is now offline.
999 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1000 * the check for rcu_scheduler_fully_active. Note also that it is OK
1001 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1002 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1003 * offline to continue to use RCU for one jiffy after marking itself
1004 * offline in the cpu_online_mask. This leniency is necessary given the
1005 * non-atomic nature of the online and offline processing, for example,
1006 * the fact that a CPU enters the scheduler after completing the CPU_DYING
1007 * notifiers.
1008 *
1009 * This is also why RCU internally marks CPUs online during the
1010 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
1011 *
1012 * Disable checking if in an NMI handler because we cannot safely report
1013 * errors from NMI handlers anyway.
1014 */
1015bool rcu_lockdep_current_cpu_online(void)
1016{
2036d94a
PM
1017 struct rcu_data *rdp;
1018 struct rcu_node *rnp;
c0d6d01b
PM
1019 bool ret;
1020
1021 if (in_nmi())
f6f7ee9a 1022 return true;
c0d6d01b 1023 preempt_disable();
c9d4b0af 1024 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1025 rnp = rdp->mynode;
0aa04b05 1026 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1027 !rcu_scheduler_fully_active;
1028 preempt_enable();
1029 return ret;
1030}
1031EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1032
62fde6ed 1033#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1034
64db4cff 1035/**
9b2e4f18 1036 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1037 *
9b2e4f18
PM
1038 * If the current CPU is idle or running at a first-level (not nested)
1039 * interrupt from idle, return true. The caller must have at least
1040 * disabled preemption.
64db4cff 1041 */
62e3cb14 1042static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1043{
c9d4b0af 1044 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1045}
1046
64db4cff
PM
1047/*
1048 * Snapshot the specified CPU's dynticks counter so that we can later
1049 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1050 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1051 */
217af2a2
PM
1052static int dyntick_save_progress_counter(struct rcu_data *rdp,
1053 bool *isidle, unsigned long *maxj)
64db4cff 1054{
23b5c8fa 1055 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 1056 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
1057 if ((rdp->dynticks_snap & 0x1) == 0) {
1058 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1059 return 1;
1060 } else {
7d0ae808 1061 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1062 rdp->mynode->gpnum))
7d0ae808 1063 WRITE_ONCE(rdp->gpwrap, true);
7941dbde
ACB
1064 return 0;
1065 }
64db4cff
PM
1066}
1067
1068/*
1069 * Return true if the specified CPU has passed through a quiescent
1070 * state by virtue of being in or having passed through an dynticks
1071 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1072 * for this same CPU, or by virtue of having been offline.
64db4cff 1073 */
217af2a2
PM
1074static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1075 bool *isidle, unsigned long *maxj)
64db4cff 1076{
7eb4f455 1077 unsigned int curr;
4a81e832 1078 int *rcrmp;
7eb4f455 1079 unsigned int snap;
64db4cff 1080
7eb4f455
PM
1081 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1082 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
1083
1084 /*
1085 * If the CPU passed through or entered a dynticks idle phase with
1086 * no active irq/NMI handlers, then we can safely pretend that the CPU
1087 * already acknowledged the request to pass through a quiescent
1088 * state. Either way, that CPU cannot possibly be in an RCU
1089 * read-side critical section that started before the beginning
1090 * of the current RCU grace period.
1091 */
7eb4f455 1092 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 1093 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1094 rdp->dynticks_fqs++;
1095 return 1;
1096 }
1097
a82dcc76
PM
1098 /*
1099 * Check for the CPU being offline, but only if the grace period
1100 * is old enough. We don't need to worry about the CPU changing
1101 * state: If we see it offline even once, it has been through a
1102 * quiescent state.
1103 *
1104 * The reason for insisting that the grace period be at least
1105 * one jiffy old is that CPUs that are not quite online and that
1106 * have just gone offline can still execute RCU read-side critical
1107 * sections.
1108 */
1109 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1110 return 0; /* Grace period is not old enough. */
1111 barrier();
1112 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 1113 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1114 rdp->offline_fqs++;
1115 return 1;
1116 }
65d798f0
PM
1117
1118 /*
4a81e832
PM
1119 * A CPU running for an extended time within the kernel can
1120 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1121 * even context-switching back and forth between a pair of
1122 * in-kernel CPU-bound tasks cannot advance grace periods.
1123 * So if the grace period is old enough, make the CPU pay attention.
1124 * Note that the unsynchronized assignments to the per-CPU
1125 * rcu_sched_qs_mask variable are safe. Yes, setting of
1126 * bits can be lost, but they will be set again on the next
1127 * force-quiescent-state pass. So lost bit sets do not result
1128 * in incorrect behavior, merely in a grace period lasting
1129 * a few jiffies longer than it might otherwise. Because
1130 * there are at most four threads involved, and because the
1131 * updates are only once every few jiffies, the probability of
1132 * lossage (and thus of slight grace-period extension) is
1133 * quite low.
1134 *
1135 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1136 * is set too high, we override with half of the RCU CPU stall
1137 * warning delay.
6193c76a 1138 */
4a81e832
PM
1139 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1140 if (ULONG_CMP_GE(jiffies,
1141 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1142 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
7d0ae808
PM
1143 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1144 WRITE_ONCE(rdp->cond_resched_completed,
1145 READ_ONCE(rdp->mynode->completed));
4a81e832 1146 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
7d0ae808
PM
1147 WRITE_ONCE(*rcrmp,
1148 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
4a81e832
PM
1149 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1150 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1151 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1152 /* Time to beat on that CPU again! */
1153 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1154 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1155 }
6193c76a
PM
1156 }
1157
a82dcc76 1158 return 0;
64db4cff
PM
1159}
1160
64db4cff
PM
1161static void record_gp_stall_check_time(struct rcu_state *rsp)
1162{
cb1e78cf 1163 unsigned long j = jiffies;
6193c76a 1164 unsigned long j1;
26cdfedf
PM
1165
1166 rsp->gp_start = j;
1167 smp_wmb(); /* Record start time before stall time. */
6193c76a 1168 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1169 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1170 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1171 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1172}
1173
fb81a44b
PM
1174/*
1175 * Complain about starvation of grace-period kthread.
1176 */
1177static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1178{
1179 unsigned long gpa;
1180 unsigned long j;
1181
1182 j = jiffies;
7d0ae808 1183 gpa = READ_ONCE(rsp->gp_activity);
fb81a44b 1184 if (j - gpa > 2 * HZ)
319362c9 1185 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x s%d ->state=%#lx\n",
81e701e4 1186 rsp->name, j - gpa,
319362c9
PM
1187 rsp->gpnum, rsp->completed,
1188 rsp->gp_flags, rsp->gp_state,
1189 rsp->gp_kthread ? rsp->gp_kthread->state : 0);
64db4cff
PM
1190}
1191
b637a328 1192/*
bc1dce51 1193 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1194 */
1195static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1196{
1197 int cpu;
1198 unsigned long flags;
1199 struct rcu_node *rnp;
1200
1201 rcu_for_each_leaf_node(rsp, rnp) {
1202 raw_spin_lock_irqsave(&rnp->lock, flags);
1203 if (rnp->qsmask != 0) {
1204 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1205 if (rnp->qsmask & (1UL << cpu))
1206 dump_cpu_task(rnp->grplo + cpu);
1207 }
1208 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1209 }
1210}
1211
6ccd2ecd 1212static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1213{
1214 int cpu;
1215 long delta;
1216 unsigned long flags;
6ccd2ecd
PM
1217 unsigned long gpa;
1218 unsigned long j;
285fe294 1219 int ndetected = 0;
64db4cff 1220 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1221 long totqlen = 0;
64db4cff
PM
1222
1223 /* Only let one CPU complain about others per time interval. */
1224
1304afb2 1225 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808 1226 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1227 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1228 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1229 return;
1230 }
7d0ae808
PM
1231 WRITE_ONCE(rsp->jiffies_stall,
1232 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1233 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1234
8cdd32a9
PM
1235 /*
1236 * OK, time to rat on our buddy...
1237 * See Documentation/RCU/stallwarn.txt for info on how to debug
1238 * RCU CPU stall warnings.
1239 */
d7f3e207 1240 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1241 rsp->name);
a858af28 1242 print_cpu_stall_info_begin();
a0b6c9a7 1243 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1244 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1245 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1246 if (rnp->qsmask != 0) {
1247 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1248 if (rnp->qsmask & (1UL << cpu)) {
1249 print_cpu_stall_info(rsp,
1250 rnp->grplo + cpu);
1251 ndetected++;
1252 }
1253 }
3acd9eb3 1254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1255 }
a858af28 1256
a858af28 1257 print_cpu_stall_info_end();
53bb857c
PM
1258 for_each_possible_cpu(cpu)
1259 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1260 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1261 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1262 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1263 if (ndetected) {
b637a328 1264 rcu_dump_cpu_stacks(rsp);
6ccd2ecd 1265 } else {
7d0ae808
PM
1266 if (READ_ONCE(rsp->gpnum) != gpnum ||
1267 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1268 pr_err("INFO: Stall ended before state dump start\n");
1269 } else {
1270 j = jiffies;
7d0ae808 1271 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1272 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1273 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1274 jiffies_till_next_fqs,
1275 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1276 /* In this case, the current CPU might be at fault. */
1277 sched_show_task(current);
1278 }
1279 }
c1dc0b9c 1280
4cdfc175 1281 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1282 rcu_print_detail_task_stall(rsp);
1283
fb81a44b
PM
1284 rcu_check_gp_kthread_starvation(rsp);
1285
4cdfc175 1286 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1287}
1288
1289static void print_cpu_stall(struct rcu_state *rsp)
1290{
53bb857c 1291 int cpu;
64db4cff
PM
1292 unsigned long flags;
1293 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1294 long totqlen = 0;
64db4cff 1295
8cdd32a9
PM
1296 /*
1297 * OK, time to rat on ourselves...
1298 * See Documentation/RCU/stallwarn.txt for info on how to debug
1299 * RCU CPU stall warnings.
1300 */
d7f3e207 1301 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1302 print_cpu_stall_info_begin();
1303 print_cpu_stall_info(rsp, smp_processor_id());
1304 print_cpu_stall_info_end();
53bb857c
PM
1305 for_each_possible_cpu(cpu)
1306 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1307 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1308 jiffies - rsp->gp_start,
1309 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1310
1311 rcu_check_gp_kthread_starvation(rsp);
1312
bc1dce51 1313 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1314
1304afb2 1315 raw_spin_lock_irqsave(&rnp->lock, flags);
7d0ae808
PM
1316 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1317 WRITE_ONCE(rsp->jiffies_stall,
1318 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1304afb2 1319 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1320
b021fe3e
PZ
1321 /*
1322 * Attempt to revive the RCU machinery by forcing a context switch.
1323 *
1324 * A context switch would normally allow the RCU state machine to make
1325 * progress and it could be we're stuck in kernel space without context
1326 * switches for an entirely unreasonable amount of time.
1327 */
1328 resched_cpu(smp_processor_id());
64db4cff
PM
1329}
1330
1331static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1332{
26cdfedf
PM
1333 unsigned long completed;
1334 unsigned long gpnum;
1335 unsigned long gps;
bad6e139
PM
1336 unsigned long j;
1337 unsigned long js;
64db4cff
PM
1338 struct rcu_node *rnp;
1339
26cdfedf 1340 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1341 return;
cb1e78cf 1342 j = jiffies;
26cdfedf
PM
1343
1344 /*
1345 * Lots of memory barriers to reject false positives.
1346 *
1347 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1348 * then rsp->gp_start, and finally rsp->completed. These values
1349 * are updated in the opposite order with memory barriers (or
1350 * equivalent) during grace-period initialization and cleanup.
1351 * Now, a false positive can occur if we get an new value of
1352 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1353 * the memory barriers, the only way that this can happen is if one
1354 * grace period ends and another starts between these two fetches.
1355 * Detect this by comparing rsp->completed with the previous fetch
1356 * from rsp->gpnum.
1357 *
1358 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1359 * and rsp->gp_start suffice to forestall false positives.
1360 */
7d0ae808 1361 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1362 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1363 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1364 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1365 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1366 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1367 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1368 if (ULONG_CMP_GE(completed, gpnum) ||
1369 ULONG_CMP_LT(j, js) ||
1370 ULONG_CMP_GE(gps, js))
1371 return; /* No stall or GP completed since entering function. */
64db4cff 1372 rnp = rdp->mynode;
c96ea7cf 1373 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1374 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1375
1376 /* We haven't checked in, so go dump stack. */
1377 print_cpu_stall(rsp);
1378
bad6e139
PM
1379 } else if (rcu_gp_in_progress(rsp) &&
1380 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1381
bad6e139 1382 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1383 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1384 }
1385}
1386
53d84e00
PM
1387/**
1388 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1389 *
1390 * Set the stall-warning timeout way off into the future, thus preventing
1391 * any RCU CPU stall-warning messages from appearing in the current set of
1392 * RCU grace periods.
1393 *
1394 * The caller must disable hard irqs.
1395 */
1396void rcu_cpu_stall_reset(void)
1397{
6ce75a23
PM
1398 struct rcu_state *rsp;
1399
1400 for_each_rcu_flavor(rsp)
7d0ae808 1401 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1402}
1403
3f5d3ea6 1404/*
d3f3f3f2
PM
1405 * Initialize the specified rcu_data structure's default callback list
1406 * to empty. The default callback list is the one that is not used by
1407 * no-callbacks CPUs.
3f5d3ea6 1408 */
d3f3f3f2 1409static void init_default_callback_list(struct rcu_data *rdp)
3f5d3ea6
PM
1410{
1411 int i;
1412
1413 rdp->nxtlist = NULL;
1414 for (i = 0; i < RCU_NEXT_SIZE; i++)
1415 rdp->nxttail[i] = &rdp->nxtlist;
1416}
1417
d3f3f3f2
PM
1418/*
1419 * Initialize the specified rcu_data structure's callback list to empty.
1420 */
1421static void init_callback_list(struct rcu_data *rdp)
1422{
1423 if (init_nocb_callback_list(rdp))
1424 return;
1425 init_default_callback_list(rdp);
1426}
1427
dc35c893
PM
1428/*
1429 * Determine the value that ->completed will have at the end of the
1430 * next subsequent grace period. This is used to tag callbacks so that
1431 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1432 * been dyntick-idle for an extended period with callbacks under the
1433 * influence of RCU_FAST_NO_HZ.
1434 *
1435 * The caller must hold rnp->lock with interrupts disabled.
1436 */
1437static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1438 struct rcu_node *rnp)
1439{
1440 /*
1441 * If RCU is idle, we just wait for the next grace period.
1442 * But we can only be sure that RCU is idle if we are looking
1443 * at the root rcu_node structure -- otherwise, a new grace
1444 * period might have started, but just not yet gotten around
1445 * to initializing the current non-root rcu_node structure.
1446 */
1447 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1448 return rnp->completed + 1;
1449
1450 /*
1451 * Otherwise, wait for a possible partial grace period and
1452 * then the subsequent full grace period.
1453 */
1454 return rnp->completed + 2;
1455}
1456
0446be48
PM
1457/*
1458 * Trace-event helper function for rcu_start_future_gp() and
1459 * rcu_nocb_wait_gp().
1460 */
1461static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1462 unsigned long c, const char *s)
0446be48
PM
1463{
1464 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1465 rnp->completed, c, rnp->level,
1466 rnp->grplo, rnp->grphi, s);
1467}
1468
1469/*
1470 * Start some future grace period, as needed to handle newly arrived
1471 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1472 * rcu_node structure's ->need_future_gp field. Returns true if there
1473 * is reason to awaken the grace-period kthread.
0446be48
PM
1474 *
1475 * The caller must hold the specified rcu_node structure's ->lock.
1476 */
48a7639c
PM
1477static bool __maybe_unused
1478rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1479 unsigned long *c_out)
0446be48
PM
1480{
1481 unsigned long c;
1482 int i;
48a7639c 1483 bool ret = false;
0446be48
PM
1484 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1485
1486 /*
1487 * Pick up grace-period number for new callbacks. If this
1488 * grace period is already marked as needed, return to the caller.
1489 */
1490 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1491 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1492 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1493 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1494 goto out;
0446be48
PM
1495 }
1496
1497 /*
1498 * If either this rcu_node structure or the root rcu_node structure
1499 * believe that a grace period is in progress, then we must wait
1500 * for the one following, which is in "c". Because our request
1501 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1502 * need to explicitly start one. We only do the lockless check
1503 * of rnp_root's fields if the current rcu_node structure thinks
1504 * there is no grace period in flight, and because we hold rnp->lock,
1505 * the only possible change is when rnp_root's two fields are
1506 * equal, in which case rnp_root->gpnum might be concurrently
1507 * incremented. But that is OK, as it will just result in our
1508 * doing some extra useless work.
0446be48
PM
1509 */
1510 if (rnp->gpnum != rnp->completed ||
7d0ae808 1511 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1512 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1513 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1514 goto out;
0446be48
PM
1515 }
1516
1517 /*
1518 * There might be no grace period in progress. If we don't already
1519 * hold it, acquire the root rcu_node structure's lock in order to
1520 * start one (if needed).
1521 */
6303b9c8 1522 if (rnp != rnp_root) {
0446be48 1523 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1524 smp_mb__after_unlock_lock();
1525 }
0446be48
PM
1526
1527 /*
1528 * Get a new grace-period number. If there really is no grace
1529 * period in progress, it will be smaller than the one we obtained
1530 * earlier. Adjust callbacks as needed. Note that even no-CBs
1531 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1532 */
1533 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1534 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1535 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1536 rdp->nxtcompleted[i] = c;
1537
1538 /*
1539 * If the needed for the required grace period is already
1540 * recorded, trace and leave.
1541 */
1542 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1543 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1544 goto unlock_out;
1545 }
1546
1547 /* Record the need for the future grace period. */
1548 rnp_root->need_future_gp[c & 0x1]++;
1549
1550 /* If a grace period is not already in progress, start one. */
1551 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1552 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1553 } else {
f7f7bac9 1554 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1555 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1556 }
1557unlock_out:
1558 if (rnp != rnp_root)
1559 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1560out:
1561 if (c_out != NULL)
1562 *c_out = c;
1563 return ret;
0446be48
PM
1564}
1565
1566/*
1567 * Clean up any old requests for the just-ended grace period. Also return
1568 * whether any additional grace periods have been requested. Also invoke
1569 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1570 * waiting for this grace period to complete.
1571 */
1572static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1573{
1574 int c = rnp->completed;
1575 int needmore;
1576 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1577
1578 rcu_nocb_gp_cleanup(rsp, rnp);
1579 rnp->need_future_gp[c & 0x1] = 0;
1580 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1581 trace_rcu_future_gp(rnp, rdp, c,
1582 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1583 return needmore;
1584}
1585
48a7639c
PM
1586/*
1587 * Awaken the grace-period kthread for the specified flavor of RCU.
1588 * Don't do a self-awaken, and don't bother awakening when there is
1589 * nothing for the grace-period kthread to do (as in several CPUs
1590 * raced to awaken, and we lost), and finally don't try to awaken
1591 * a kthread that has not yet been created.
1592 */
1593static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1594{
1595 if (current == rsp->gp_kthread ||
7d0ae808 1596 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1597 !rsp->gp_kthread)
1598 return;
1599 wake_up(&rsp->gp_wq);
1600}
1601
dc35c893
PM
1602/*
1603 * If there is room, assign a ->completed number to any callbacks on
1604 * this CPU that have not already been assigned. Also accelerate any
1605 * callbacks that were previously assigned a ->completed number that has
1606 * since proven to be too conservative, which can happen if callbacks get
1607 * assigned a ->completed number while RCU is idle, but with reference to
1608 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1609 * not hurt to call it repeatedly. Returns an flag saying that we should
1610 * awaken the RCU grace-period kthread.
dc35c893
PM
1611 *
1612 * The caller must hold rnp->lock with interrupts disabled.
1613 */
48a7639c 1614static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1615 struct rcu_data *rdp)
1616{
1617 unsigned long c;
1618 int i;
48a7639c 1619 bool ret;
dc35c893
PM
1620
1621 /* If the CPU has no callbacks, nothing to do. */
1622 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1623 return false;
dc35c893
PM
1624
1625 /*
1626 * Starting from the sublist containing the callbacks most
1627 * recently assigned a ->completed number and working down, find the
1628 * first sublist that is not assignable to an upcoming grace period.
1629 * Such a sublist has something in it (first two tests) and has
1630 * a ->completed number assigned that will complete sooner than
1631 * the ->completed number for newly arrived callbacks (last test).
1632 *
1633 * The key point is that any later sublist can be assigned the
1634 * same ->completed number as the newly arrived callbacks, which
1635 * means that the callbacks in any of these later sublist can be
1636 * grouped into a single sublist, whether or not they have already
1637 * been assigned a ->completed number.
1638 */
1639 c = rcu_cbs_completed(rsp, rnp);
1640 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1641 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1642 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1643 break;
1644
1645 /*
1646 * If there are no sublist for unassigned callbacks, leave.
1647 * At the same time, advance "i" one sublist, so that "i" will
1648 * index into the sublist where all the remaining callbacks should
1649 * be grouped into.
1650 */
1651 if (++i >= RCU_NEXT_TAIL)
48a7639c 1652 return false;
dc35c893
PM
1653
1654 /*
1655 * Assign all subsequent callbacks' ->completed number to the next
1656 * full grace period and group them all in the sublist initially
1657 * indexed by "i".
1658 */
1659 for (; i <= RCU_NEXT_TAIL; i++) {
1660 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1661 rdp->nxtcompleted[i] = c;
1662 }
910ee45d 1663 /* Record any needed additional grace periods. */
48a7639c 1664 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1665
1666 /* Trace depending on how much we were able to accelerate. */
1667 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1668 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1669 else
f7f7bac9 1670 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1671 return ret;
dc35c893
PM
1672}
1673
1674/*
1675 * Move any callbacks whose grace period has completed to the
1676 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1677 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1678 * sublist. This function is idempotent, so it does not hurt to
1679 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1680 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1681 *
1682 * The caller must hold rnp->lock with interrupts disabled.
1683 */
48a7639c 1684static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1685 struct rcu_data *rdp)
1686{
1687 int i, j;
1688
1689 /* If the CPU has no callbacks, nothing to do. */
1690 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1691 return false;
dc35c893
PM
1692
1693 /*
1694 * Find all callbacks whose ->completed numbers indicate that they
1695 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1696 */
1697 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1698 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1699 break;
1700 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1701 }
1702 /* Clean up any sublist tail pointers that were misordered above. */
1703 for (j = RCU_WAIT_TAIL; j < i; j++)
1704 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1705
1706 /* Copy down callbacks to fill in empty sublists. */
1707 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1708 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1709 break;
1710 rdp->nxttail[j] = rdp->nxttail[i];
1711 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1712 }
1713
1714 /* Classify any remaining callbacks. */
48a7639c 1715 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1716}
1717
d09b62df 1718/*
ba9fbe95
PM
1719 * Update CPU-local rcu_data state to record the beginnings and ends of
1720 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1721 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1722 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1723 */
48a7639c
PM
1724static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1725 struct rcu_data *rdp)
d09b62df 1726{
48a7639c
PM
1727 bool ret;
1728
ba9fbe95 1729 /* Handle the ends of any preceding grace periods first. */
e3663b10 1730 if (rdp->completed == rnp->completed &&
7d0ae808 1731 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1732
ba9fbe95 1733 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1734 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1735
dc35c893
PM
1736 } else {
1737
1738 /* Advance callbacks. */
48a7639c 1739 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1740
1741 /* Remember that we saw this grace-period completion. */
1742 rdp->completed = rnp->completed;
f7f7bac9 1743 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1744 }
398ebe60 1745
7d0ae808 1746 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1747 /*
1748 * If the current grace period is waiting for this CPU,
1749 * set up to detect a quiescent state, otherwise don't
1750 * go looking for one.
1751 */
1752 rdp->gpnum = rnp->gpnum;
f7f7bac9 1753 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
5b74c458 1754 rdp->cpu_no_qs.b.norm = true;
5cd37193 1755 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
97c668b8 1756 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
6eaef633 1757 zero_cpu_stall_ticks(rdp);
7d0ae808 1758 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1759 }
48a7639c 1760 return ret;
6eaef633
PM
1761}
1762
d34ea322 1763static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1764{
1765 unsigned long flags;
48a7639c 1766 bool needwake;
6eaef633
PM
1767 struct rcu_node *rnp;
1768
1769 local_irq_save(flags);
1770 rnp = rdp->mynode;
7d0ae808
PM
1771 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1772 rdp->completed == READ_ONCE(rnp->completed) &&
1773 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1774 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1775 local_irq_restore(flags);
1776 return;
1777 }
6303b9c8 1778 smp_mb__after_unlock_lock();
48a7639c 1779 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1780 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1781 if (needwake)
1782 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1783}
1784
0f41c0dd
PM
1785static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1786{
1787 if (delay > 0 &&
1788 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1789 schedule_timeout_uninterruptible(delay);
1790}
1791
b3dbec76 1792/*
f7be8209 1793 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1794 */
7fdefc10 1795static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1796{
0aa04b05 1797 unsigned long oldmask;
b3dbec76 1798 struct rcu_data *rdp;
7fdefc10 1799 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1800
7d0ae808 1801 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1802 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1803 smp_mb__after_unlock_lock();
7d0ae808 1804 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209
PM
1805 /* Spurious wakeup, tell caller to go back to sleep. */
1806 raw_spin_unlock_irq(&rnp->lock);
1807 return 0;
1808 }
7d0ae808 1809 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1810
f7be8209
PM
1811 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1812 /*
1813 * Grace period already in progress, don't start another.
1814 * Not supposed to be able to happen.
1815 */
7fdefc10
PM
1816 raw_spin_unlock_irq(&rnp->lock);
1817 return 0;
1818 }
1819
7fdefc10 1820 /* Advance to a new grace period and initialize state. */
26cdfedf 1821 record_gp_stall_check_time(rsp);
765a3f4f
PM
1822 /* Record GP times before starting GP, hence smp_store_release(). */
1823 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1824 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1825 raw_spin_unlock_irq(&rnp->lock);
1826
0aa04b05
PM
1827 /*
1828 * Apply per-leaf buffered online and offline operations to the
1829 * rcu_node tree. Note that this new grace period need not wait
1830 * for subsequent online CPUs, and that quiescent-state forcing
1831 * will handle subsequent offline CPUs.
1832 */
1833 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 1834 rcu_gp_slow(rsp, gp_preinit_delay);
0aa04b05
PM
1835 raw_spin_lock_irq(&rnp->lock);
1836 smp_mb__after_unlock_lock();
1837 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1838 !rnp->wait_blkd_tasks) {
1839 /* Nothing to do on this leaf rcu_node structure. */
1840 raw_spin_unlock_irq(&rnp->lock);
1841 continue;
1842 }
1843
1844 /* Record old state, apply changes to ->qsmaskinit field. */
1845 oldmask = rnp->qsmaskinit;
1846 rnp->qsmaskinit = rnp->qsmaskinitnext;
1847
1848 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1849 if (!oldmask != !rnp->qsmaskinit) {
1850 if (!oldmask) /* First online CPU for this rcu_node. */
1851 rcu_init_new_rnp(rnp);
1852 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1853 rnp->wait_blkd_tasks = true;
1854 else /* Last offline CPU and can propagate. */
1855 rcu_cleanup_dead_rnp(rnp);
1856 }
1857
1858 /*
1859 * If all waited-on tasks from prior grace period are
1860 * done, and if all this rcu_node structure's CPUs are
1861 * still offline, propagate up the rcu_node tree and
1862 * clear ->wait_blkd_tasks. Otherwise, if one of this
1863 * rcu_node structure's CPUs has since come back online,
1864 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1865 * checks for this, so just call it unconditionally).
1866 */
1867 if (rnp->wait_blkd_tasks &&
1868 (!rcu_preempt_has_tasks(rnp) ||
1869 rnp->qsmaskinit)) {
1870 rnp->wait_blkd_tasks = false;
1871 rcu_cleanup_dead_rnp(rnp);
1872 }
1873
1874 raw_spin_unlock_irq(&rnp->lock);
1875 }
7fdefc10
PM
1876
1877 /*
1878 * Set the quiescent-state-needed bits in all the rcu_node
1879 * structures for all currently online CPUs in breadth-first order,
1880 * starting from the root rcu_node structure, relying on the layout
1881 * of the tree within the rsp->node[] array. Note that other CPUs
1882 * will access only the leaves of the hierarchy, thus seeing that no
1883 * grace period is in progress, at least until the corresponding
1884 * leaf node has been initialized. In addition, we have excluded
1885 * CPU-hotplug operations.
1886 *
1887 * The grace period cannot complete until the initialization
1888 * process finishes, because this kthread handles both.
1889 */
1890 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 1891 rcu_gp_slow(rsp, gp_init_delay);
b3dbec76 1892 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1893 smp_mb__after_unlock_lock();
b3dbec76 1894 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1895 rcu_preempt_check_blocked_tasks(rnp);
1896 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 1897 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 1898 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 1899 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 1900 if (rnp == rdp->mynode)
48a7639c 1901 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1902 rcu_preempt_boost_start_gp(rnp);
1903 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1904 rnp->level, rnp->grplo,
1905 rnp->grphi, rnp->qsmask);
1906 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1907 cond_resched_rcu_qs();
7d0ae808 1908 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1909 }
b3dbec76 1910
7fdefc10
PM
1911 return 1;
1912}
b3dbec76 1913
b9a425cf
PM
1914/*
1915 * Helper function for wait_event_interruptible_timeout() wakeup
1916 * at force-quiescent-state time.
1917 */
1918static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
1919{
1920 struct rcu_node *rnp = rcu_get_root(rsp);
1921
1922 /* Someone like call_rcu() requested a force-quiescent-state scan. */
1923 *gfp = READ_ONCE(rsp->gp_flags);
1924 if (*gfp & RCU_GP_FLAG_FQS)
1925 return true;
1926
1927 /* The current grace period has completed. */
1928 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1929 return true;
1930
1931 return false;
1932}
1933
4cdfc175
PM
1934/*
1935 * Do one round of quiescent-state forcing.
1936 */
01896f7e 1937static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1938{
1939 int fqs_state = fqs_state_in;
217af2a2
PM
1940 bool isidle = false;
1941 unsigned long maxj;
4cdfc175
PM
1942 struct rcu_node *rnp = rcu_get_root(rsp);
1943
7d0ae808 1944 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
1945 rsp->n_force_qs++;
1946 if (fqs_state == RCU_SAVE_DYNTICK) {
1947 /* Collect dyntick-idle snapshots. */
0edd1b17 1948 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1949 isidle = true;
0edd1b17
PM
1950 maxj = jiffies - ULONG_MAX / 4;
1951 }
217af2a2
PM
1952 force_qs_rnp(rsp, dyntick_save_progress_counter,
1953 &isidle, &maxj);
0edd1b17 1954 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1955 fqs_state = RCU_FORCE_QS;
1956 } else {
1957 /* Handle dyntick-idle and offline CPUs. */
675da67f 1958 isidle = true;
217af2a2 1959 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1960 }
1961 /* Clear flag to prevent immediate re-entry. */
7d0ae808 1962 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
4cdfc175 1963 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1964 smp_mb__after_unlock_lock();
7d0ae808
PM
1965 WRITE_ONCE(rsp->gp_flags,
1966 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
4cdfc175
PM
1967 raw_spin_unlock_irq(&rnp->lock);
1968 }
1969 return fqs_state;
1970}
1971
7fdefc10
PM
1972/*
1973 * Clean up after the old grace period.
1974 */
4cdfc175 1975static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1976{
1977 unsigned long gp_duration;
48a7639c 1978 bool needgp = false;
dae6e64d 1979 int nocb = 0;
7fdefc10
PM
1980 struct rcu_data *rdp;
1981 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1982
7d0ae808 1983 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 1984 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1985 smp_mb__after_unlock_lock();
7fdefc10
PM
1986 gp_duration = jiffies - rsp->gp_start;
1987 if (gp_duration > rsp->gp_max)
1988 rsp->gp_max = gp_duration;
b3dbec76 1989
7fdefc10
PM
1990 /*
1991 * We know the grace period is complete, but to everyone else
1992 * it appears to still be ongoing. But it is also the case
1993 * that to everyone else it looks like there is nothing that
1994 * they can do to advance the grace period. It is therefore
1995 * safe for us to drop the lock in order to mark the grace
1996 * period as completed in all of the rcu_node structures.
7fdefc10 1997 */
5d4b8659 1998 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1999
5d4b8659
PM
2000 /*
2001 * Propagate new ->completed value to rcu_node structures so
2002 * that other CPUs don't have to wait until the start of the next
2003 * grace period to process their callbacks. This also avoids
2004 * some nasty RCU grace-period initialization races by forcing
2005 * the end of the current grace period to be completely recorded in
2006 * all of the rcu_node structures before the beginning of the next
2007 * grace period is recorded in any of the rcu_node structures.
2008 */
2009 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 2010 raw_spin_lock_irq(&rnp->lock);
6303b9c8 2011 smp_mb__after_unlock_lock();
5c60d25f
PM
2012 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2013 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2014 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2015 rdp = this_cpu_ptr(rsp->rda);
2016 if (rnp == rdp->mynode)
48a7639c 2017 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2018 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2019 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 2020 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 2021 cond_resched_rcu_qs();
7d0ae808 2022 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2023 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2024 }
5d4b8659
PM
2025 rnp = rcu_get_root(rsp);
2026 raw_spin_lock_irq(&rnp->lock);
765a3f4f 2027 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 2028 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2029
765a3f4f 2030 /* Declare grace period done. */
7d0ae808 2031 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2032 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 2033 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 2034 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2035 /* Advance CBs to reduce false positives below. */
2036 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2037 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2038 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2039 trace_rcu_grace_period(rsp->name,
7d0ae808 2040 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2041 TPS("newreq"));
2042 }
7fdefc10 2043 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
2044}
2045
2046/*
2047 * Body of kthread that handles grace periods.
2048 */
2049static int __noreturn rcu_gp_kthread(void *arg)
2050{
4cdfc175 2051 int fqs_state;
88d6df61 2052 int gf;
d40011f6 2053 unsigned long j;
4cdfc175 2054 int ret;
7fdefc10
PM
2055 struct rcu_state *rsp = arg;
2056 struct rcu_node *rnp = rcu_get_root(rsp);
2057
5871968d 2058 rcu_bind_gp_kthread();
7fdefc10
PM
2059 for (;;) {
2060
2061 /* Handle grace-period start. */
2062 for (;;) {
63c4db78 2063 trace_rcu_grace_period(rsp->name,
7d0ae808 2064 READ_ONCE(rsp->gpnum),
63c4db78 2065 TPS("reqwait"));
afea227f 2066 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 2067 wait_event_interruptible(rsp->gp_wq,
7d0ae808 2068 READ_ONCE(rsp->gp_flags) &
4cdfc175 2069 RCU_GP_FLAG_INIT);
319362c9 2070 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2071 /* Locking provides needed memory barrier. */
f7be8209 2072 if (rcu_gp_init(rsp))
7fdefc10 2073 break;
bde6c3aa 2074 cond_resched_rcu_qs();
7d0ae808 2075 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2076 WARN_ON(signal_pending(current));
63c4db78 2077 trace_rcu_grace_period(rsp->name,
7d0ae808 2078 READ_ONCE(rsp->gpnum),
63c4db78 2079 TPS("reqwaitsig"));
7fdefc10 2080 }
cabc49c1 2081
4cdfc175
PM
2082 /* Handle quiescent-state forcing. */
2083 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
2084 j = jiffies_till_first_fqs;
2085 if (j > HZ) {
2086 j = HZ;
2087 jiffies_till_first_fqs = HZ;
2088 }
88d6df61 2089 ret = 0;
cabc49c1 2090 for (;;) {
88d6df61
PM
2091 if (!ret)
2092 rsp->jiffies_force_qs = jiffies + j;
63c4db78 2093 trace_rcu_grace_period(rsp->name,
7d0ae808 2094 READ_ONCE(rsp->gpnum),
63c4db78 2095 TPS("fqswait"));
afea227f 2096 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 2097 ret = wait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2098 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2099 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2100 /* Locking provides needed memory barriers. */
4cdfc175 2101 /* If grace period done, leave loop. */
7d0ae808 2102 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2103 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2104 break;
4cdfc175 2105 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2106 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2107 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2108 trace_rcu_grace_period(rsp->name,
7d0ae808 2109 READ_ONCE(rsp->gpnum),
63c4db78 2110 TPS("fqsstart"));
4cdfc175 2111 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78 2112 trace_rcu_grace_period(rsp->name,
7d0ae808 2113 READ_ONCE(rsp->gpnum),
63c4db78 2114 TPS("fqsend"));
bde6c3aa 2115 cond_resched_rcu_qs();
7d0ae808 2116 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175
PM
2117 } else {
2118 /* Deal with stray signal. */
bde6c3aa 2119 cond_resched_rcu_qs();
7d0ae808 2120 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2121 WARN_ON(signal_pending(current));
63c4db78 2122 trace_rcu_grace_period(rsp->name,
7d0ae808 2123 READ_ONCE(rsp->gpnum),
63c4db78 2124 TPS("fqswaitsig"));
4cdfc175 2125 }
d40011f6
PM
2126 j = jiffies_till_next_fqs;
2127 if (j > HZ) {
2128 j = HZ;
2129 jiffies_till_next_fqs = HZ;
2130 } else if (j < 1) {
2131 j = 1;
2132 jiffies_till_next_fqs = 1;
2133 }
cabc49c1 2134 }
4cdfc175
PM
2135
2136 /* Handle grace-period end. */
319362c9 2137 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2138 rcu_gp_cleanup(rsp);
319362c9 2139 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2140 }
b3dbec76
PM
2141}
2142
64db4cff
PM
2143/*
2144 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2145 * in preparation for detecting the next grace period. The caller must hold
b8462084 2146 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2147 *
2148 * Note that it is legal for a dying CPU (which is marked as offline) to
2149 * invoke this function. This can happen when the dying CPU reports its
2150 * quiescent state.
48a7639c
PM
2151 *
2152 * Returns true if the grace-period kthread must be awakened.
64db4cff 2153 */
48a7639c 2154static bool
910ee45d
PM
2155rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2156 struct rcu_data *rdp)
64db4cff 2157{
b8462084 2158 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2159 /*
b3dbec76 2160 * Either we have not yet spawned the grace-period
62da1921
PM
2161 * task, this CPU does not need another grace period,
2162 * or a grace period is already in progress.
b3dbec76 2163 * Either way, don't start a new grace period.
afe24b12 2164 */
48a7639c 2165 return false;
afe24b12 2166 }
7d0ae808
PM
2167 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2168 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2169 TPS("newreq"));
62da1921 2170
016a8d5b
SR
2171 /*
2172 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2173 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2174 * the wakeup to our caller.
016a8d5b 2175 */
48a7639c 2176 return true;
64db4cff
PM
2177}
2178
910ee45d
PM
2179/*
2180 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2181 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2182 * is invoked indirectly from rcu_advance_cbs(), which would result in
2183 * endless recursion -- or would do so if it wasn't for the self-deadlock
2184 * that is encountered beforehand.
48a7639c
PM
2185 *
2186 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2187 */
48a7639c 2188static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2189{
2190 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2191 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2192 bool ret = false;
910ee45d
PM
2193
2194 /*
2195 * If there is no grace period in progress right now, any
2196 * callbacks we have up to this point will be satisfied by the
2197 * next grace period. Also, advancing the callbacks reduces the
2198 * probability of false positives from cpu_needs_another_gp()
2199 * resulting in pointless grace periods. So, advance callbacks
2200 * then start the grace period!
2201 */
48a7639c
PM
2202 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2203 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2204 return ret;
910ee45d
PM
2205}
2206
f41d911f 2207/*
d3f6bad3
PM
2208 * Report a full set of quiescent states to the specified rcu_state
2209 * data structure. This involves cleaning up after the prior grace
2210 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
2211 * if one is needed. Note that the caller must hold rnp->lock, which
2212 * is released before return.
f41d911f 2213 */
d3f6bad3 2214static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2215 __releases(rcu_get_root(rsp)->lock)
f41d911f 2216{
fc2219d4 2217 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2218 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
cabc49c1 2219 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 2220 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2221}
2222
64db4cff 2223/*
d3f6bad3
PM
2224 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2225 * Allows quiescent states for a group of CPUs to be reported at one go
2226 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2227 * must be represented by the same rcu_node structure (which need not be a
2228 * leaf rcu_node structure, though it often will be). The gps parameter
2229 * is the grace-period snapshot, which means that the quiescent states
2230 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2231 * must be held upon entry, and it is released before return.
64db4cff
PM
2232 */
2233static void
d3f6bad3 2234rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2235 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2236 __releases(rnp->lock)
2237{
654e9533 2238 unsigned long oldmask = 0;
28ecd580
PM
2239 struct rcu_node *rnp_c;
2240
64db4cff
PM
2241 /* Walk up the rcu_node hierarchy. */
2242 for (;;) {
654e9533 2243 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2244
654e9533
PM
2245 /*
2246 * Our bit has already been cleared, or the
2247 * relevant grace period is already over, so done.
2248 */
1304afb2 2249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2250 return;
2251 }
654e9533 2252 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2253 rnp->qsmask &= ~mask;
d4c08f2a
PM
2254 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2255 mask, rnp->qsmask, rnp->level,
2256 rnp->grplo, rnp->grphi,
2257 !!rnp->gp_tasks);
27f4d280 2258 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2259
2260 /* Other bits still set at this level, so done. */
1304afb2 2261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2262 return;
2263 }
2264 mask = rnp->grpmask;
2265 if (rnp->parent == NULL) {
2266
2267 /* No more levels. Exit loop holding root lock. */
2268
2269 break;
2270 }
1304afb2 2271 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2272 rnp_c = rnp;
64db4cff 2273 rnp = rnp->parent;
1304afb2 2274 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2275 smp_mb__after_unlock_lock();
654e9533 2276 oldmask = rnp_c->qsmask;
64db4cff
PM
2277 }
2278
2279 /*
2280 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2281 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2282 * to clean up and start the next grace period if one is needed.
64db4cff 2283 */
d3f6bad3 2284 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2285}
2286
cc99a310
PM
2287/*
2288 * Record a quiescent state for all tasks that were previously queued
2289 * on the specified rcu_node structure and that were blocking the current
2290 * RCU grace period. The caller must hold the specified rnp->lock with
2291 * irqs disabled, and this lock is released upon return, but irqs remain
2292 * disabled.
2293 */
0aa04b05 2294static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2295 struct rcu_node *rnp, unsigned long flags)
2296 __releases(rnp->lock)
2297{
654e9533 2298 unsigned long gps;
cc99a310
PM
2299 unsigned long mask;
2300 struct rcu_node *rnp_p;
2301
a77da14c
PM
2302 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2303 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
cc99a310
PM
2304 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2305 return; /* Still need more quiescent states! */
2306 }
2307
2308 rnp_p = rnp->parent;
2309 if (rnp_p == NULL) {
2310 /*
a77da14c
PM
2311 * Only one rcu_node structure in the tree, so don't
2312 * try to report up to its nonexistent parent!
cc99a310
PM
2313 */
2314 rcu_report_qs_rsp(rsp, flags);
2315 return;
2316 }
2317
654e9533
PM
2318 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2319 gps = rnp->gpnum;
cc99a310
PM
2320 mask = rnp->grpmask;
2321 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2322 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
2323 smp_mb__after_unlock_lock();
654e9533 2324 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2325}
2326
64db4cff 2327/*
d3f6bad3
PM
2328 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2329 * structure. This must be either called from the specified CPU, or
2330 * called when the specified CPU is known to be offline (and when it is
2331 * also known that no other CPU is concurrently trying to help the offline
2332 * CPU). The lastcomp argument is used to make sure we are still in the
2333 * grace period of interest. We don't want to end the current grace period
2334 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2335 */
2336static void
d7d6a11e 2337rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2338{
2339 unsigned long flags;
2340 unsigned long mask;
48a7639c 2341 bool needwake;
64db4cff
PM
2342 struct rcu_node *rnp;
2343
2344 rnp = rdp->mynode;
1304afb2 2345 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2346 smp_mb__after_unlock_lock();
5b74c458 2347 if ((rdp->cpu_no_qs.b.norm &&
5cd37193
PM
2348 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2349 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2350 rdp->gpwrap) {
64db4cff
PM
2351
2352 /*
e4cc1f22
PM
2353 * The grace period in which this quiescent state was
2354 * recorded has ended, so don't report it upwards.
2355 * We will instead need a new quiescent state that lies
2356 * within the current grace period.
64db4cff 2357 */
5b74c458 2358 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
5cd37193 2359 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1304afb2 2360 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2361 return;
2362 }
2363 mask = rdp->grpmask;
2364 if ((rnp->qsmask & mask) == 0) {
1304afb2 2365 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2366 } else {
97c668b8 2367 rdp->core_needs_qs = 0;
64db4cff
PM
2368
2369 /*
2370 * This GP can't end until cpu checks in, so all of our
2371 * callbacks can be processed during the next GP.
2372 */
48a7639c 2373 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2374
654e9533
PM
2375 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2376 /* ^^^ Released rnp->lock */
48a7639c
PM
2377 if (needwake)
2378 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2379 }
2380}
2381
2382/*
2383 * Check to see if there is a new grace period of which this CPU
2384 * is not yet aware, and if so, set up local rcu_data state for it.
2385 * Otherwise, see if this CPU has just passed through its first
2386 * quiescent state for this grace period, and record that fact if so.
2387 */
2388static void
2389rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2390{
05eb552b
PM
2391 /* Check for grace-period ends and beginnings. */
2392 note_gp_changes(rsp, rdp);
64db4cff
PM
2393
2394 /*
2395 * Does this CPU still need to do its part for current grace period?
2396 * If no, return and let the other CPUs do their part as well.
2397 */
97c668b8 2398 if (!rdp->core_needs_qs)
64db4cff
PM
2399 return;
2400
2401 /*
2402 * Was there a quiescent state since the beginning of the grace
2403 * period? If no, then exit and wait for the next call.
2404 */
5b74c458 2405 if (rdp->cpu_no_qs.b.norm &&
5cd37193 2406 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
64db4cff
PM
2407 return;
2408
d3f6bad3
PM
2409 /*
2410 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2411 * judge of that).
2412 */
d7d6a11e 2413 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2414}
2415
e74f4c45 2416/*
b1420f1c
PM
2417 * Send the specified CPU's RCU callbacks to the orphanage. The
2418 * specified CPU must be offline, and the caller must hold the
7b2e6011 2419 * ->orphan_lock.
e74f4c45 2420 */
b1420f1c
PM
2421static void
2422rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2423 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2424{
3fbfbf7a 2425 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2426 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2427 return;
2428
b1420f1c
PM
2429 /*
2430 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2431 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2432 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2433 */
a50c3af9 2434 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2435 rsp->qlen_lazy += rdp->qlen_lazy;
2436 rsp->qlen += rdp->qlen;
2437 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2438 rdp->qlen_lazy = 0;
7d0ae808 2439 WRITE_ONCE(rdp->qlen, 0);
a50c3af9
PM
2440 }
2441
2442 /*
b1420f1c
PM
2443 * Next, move those callbacks still needing a grace period to
2444 * the orphanage, where some other CPU will pick them up.
2445 * Some of the callbacks might have gone partway through a grace
2446 * period, but that is too bad. They get to start over because we
2447 * cannot assume that grace periods are synchronized across CPUs.
2448 * We don't bother updating the ->nxttail[] array yet, instead
2449 * we just reset the whole thing later on.
a50c3af9 2450 */
b1420f1c
PM
2451 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2452 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2453 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2454 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2455 }
2456
2457 /*
b1420f1c
PM
2458 * Then move the ready-to-invoke callbacks to the orphanage,
2459 * where some other CPU will pick them up. These will not be
2460 * required to pass though another grace period: They are done.
a50c3af9 2461 */
e5601400 2462 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2463 *rsp->orphan_donetail = rdp->nxtlist;
2464 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2465 }
e74f4c45 2466
b33078b6
PM
2467 /*
2468 * Finally, initialize the rcu_data structure's list to empty and
2469 * disallow further callbacks on this CPU.
2470 */
3f5d3ea6 2471 init_callback_list(rdp);
b33078b6 2472 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
b1420f1c
PM
2473}
2474
2475/*
2476 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2477 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2478 */
96d3fd0d 2479static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2480{
2481 int i;
fa07a58f 2482 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2483
3fbfbf7a 2484 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2485 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2486 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2487 return;
2488
b1420f1c
PM
2489 /* Do the accounting first. */
2490 rdp->qlen_lazy += rsp->qlen_lazy;
2491 rdp->qlen += rsp->qlen;
2492 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2493 if (rsp->qlen_lazy != rsp->qlen)
2494 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2495 rsp->qlen_lazy = 0;
2496 rsp->qlen = 0;
2497
2498 /*
2499 * We do not need a memory barrier here because the only way we
2500 * can get here if there is an rcu_barrier() in flight is if
2501 * we are the task doing the rcu_barrier().
2502 */
2503
2504 /* First adopt the ready-to-invoke callbacks. */
2505 if (rsp->orphan_donelist != NULL) {
2506 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2507 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2508 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2509 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2510 rdp->nxttail[i] = rsp->orphan_donetail;
2511 rsp->orphan_donelist = NULL;
2512 rsp->orphan_donetail = &rsp->orphan_donelist;
2513 }
2514
2515 /* And then adopt the callbacks that still need a grace period. */
2516 if (rsp->orphan_nxtlist != NULL) {
2517 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2518 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2519 rsp->orphan_nxtlist = NULL;
2520 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2521 }
2522}
2523
2524/*
2525 * Trace the fact that this CPU is going offline.
2526 */
2527static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2528{
2529 RCU_TRACE(unsigned long mask);
2530 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2531 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2532
ea46351c
PM
2533 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2534 return;
2535
b1420f1c 2536 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2537 trace_rcu_grace_period(rsp->name,
2538 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2539 TPS("cpuofl"));
64db4cff
PM
2540}
2541
8af3a5e7
PM
2542/*
2543 * All CPUs for the specified rcu_node structure have gone offline,
2544 * and all tasks that were preempted within an RCU read-side critical
2545 * section while running on one of those CPUs have since exited their RCU
2546 * read-side critical section. Some other CPU is reporting this fact with
2547 * the specified rcu_node structure's ->lock held and interrupts disabled.
2548 * This function therefore goes up the tree of rcu_node structures,
2549 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2550 * the leaf rcu_node structure's ->qsmaskinit field has already been
2551 * updated
2552 *
2553 * This function does check that the specified rcu_node structure has
2554 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2555 * prematurely. That said, invoking it after the fact will cost you
2556 * a needless lock acquisition. So once it has done its work, don't
2557 * invoke it again.
2558 */
2559static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2560{
2561 long mask;
2562 struct rcu_node *rnp = rnp_leaf;
2563
ea46351c
PM
2564 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2565 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2566 return;
2567 for (;;) {
2568 mask = rnp->grpmask;
2569 rnp = rnp->parent;
2570 if (!rnp)
2571 break;
2572 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2573 smp_mb__after_unlock_lock(); /* GP memory ordering. */
2574 rnp->qsmaskinit &= ~mask;
0aa04b05 2575 rnp->qsmask &= ~mask;
8af3a5e7
PM
2576 if (rnp->qsmaskinit) {
2577 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2578 return;
2579 }
2580 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2581 }
2582}
2583
88428cc5
PM
2584/*
2585 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
2586 * function. We now remove it from the rcu_node tree's ->qsmaskinit
2587 * bit masks.
2588 */
2589static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
2590{
2591 unsigned long flags;
2592 unsigned long mask;
2593 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2594 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2595
ea46351c
PM
2596 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2597 return;
2598
88428cc5
PM
2599 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
2600 mask = rdp->grpmask;
2601 raw_spin_lock_irqsave(&rnp->lock, flags);
2602 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */
2603 rnp->qsmaskinitnext &= ~mask;
2604 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2605}
2606
64db4cff 2607/*
e5601400 2608 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2609 * this fact from process context. Do the remainder of the cleanup,
2610 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2611 * adopting them. There can only be one CPU hotplug operation at a time,
2612 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2613 */
e5601400 2614static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2615{
2036d94a 2616 unsigned long flags;
e5601400 2617 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2618 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2619
ea46351c
PM
2620 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2621 return;
2622
2036d94a 2623 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2624 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2625
b1420f1c 2626 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2627 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2628 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2629 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2630 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2631
cf01537e
PM
2632 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2633 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2634 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
2635}
2636
64db4cff
PM
2637/*
2638 * Invoke any RCU callbacks that have made it to the end of their grace
2639 * period. Thottle as specified by rdp->blimit.
2640 */
37c72e56 2641static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2642{
2643 unsigned long flags;
2644 struct rcu_head *next, *list, **tail;
878d7439
ED
2645 long bl, count, count_lazy;
2646 int i;
64db4cff 2647
dc35c893 2648 /* If no callbacks are ready, just return. */
29c00b4a 2649 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2650 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
7d0ae808 2651 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
4968c300
PM
2652 need_resched(), is_idle_task(current),
2653 rcu_is_callbacks_kthread());
64db4cff 2654 return;
29c00b4a 2655 }
64db4cff
PM
2656
2657 /*
2658 * Extract the list of ready callbacks, disabling to prevent
2659 * races with call_rcu() from interrupt handlers.
2660 */
2661 local_irq_save(flags);
8146c4e2 2662 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2663 bl = rdp->blimit;
486e2593 2664 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2665 list = rdp->nxtlist;
2666 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2667 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2668 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2669 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2670 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2671 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2672 local_irq_restore(flags);
2673
2674 /* Invoke callbacks. */
486e2593 2675 count = count_lazy = 0;
64db4cff
PM
2676 while (list) {
2677 next = list->next;
2678 prefetch(next);
551d55a9 2679 debug_rcu_head_unqueue(list);
486e2593
PM
2680 if (__rcu_reclaim(rsp->name, list))
2681 count_lazy++;
64db4cff 2682 list = next;
dff1672d
PM
2683 /* Stop only if limit reached and CPU has something to do. */
2684 if (++count >= bl &&
2685 (need_resched() ||
2686 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2687 break;
2688 }
2689
2690 local_irq_save(flags);
4968c300
PM
2691 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2692 is_idle_task(current),
2693 rcu_is_callbacks_kthread());
64db4cff
PM
2694
2695 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2696 if (list != NULL) {
2697 *tail = rdp->nxtlist;
2698 rdp->nxtlist = list;
b41772ab
PM
2699 for (i = 0; i < RCU_NEXT_SIZE; i++)
2700 if (&rdp->nxtlist == rdp->nxttail[i])
2701 rdp->nxttail[i] = tail;
64db4cff
PM
2702 else
2703 break;
2704 }
b1420f1c
PM
2705 smp_mb(); /* List handling before counting for rcu_barrier(). */
2706 rdp->qlen_lazy -= count_lazy;
7d0ae808 2707 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
b1420f1c 2708 rdp->n_cbs_invoked += count;
64db4cff
PM
2709
2710 /* Reinstate batch limit if we have worked down the excess. */
2711 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2712 rdp->blimit = blimit;
2713
37c72e56
PM
2714 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2715 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2716 rdp->qlen_last_fqs_check = 0;
2717 rdp->n_force_qs_snap = rsp->n_force_qs;
2718 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2719 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2720 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2721
64db4cff
PM
2722 local_irq_restore(flags);
2723
e0f23060 2724 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2725 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2726 invoke_rcu_core();
64db4cff
PM
2727}
2728
2729/*
2730 * Check to see if this CPU is in a non-context-switch quiescent state
2731 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2732 * Also schedule RCU core processing.
64db4cff 2733 *
9b2e4f18 2734 * This function must be called from hardirq context. It is normally
64db4cff
PM
2735 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2736 * false, there is no point in invoking rcu_check_callbacks().
2737 */
c3377c2d 2738void rcu_check_callbacks(int user)
64db4cff 2739{
f7f7bac9 2740 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2741 increment_cpu_stall_ticks();
9b2e4f18 2742 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2743
2744 /*
2745 * Get here if this CPU took its interrupt from user
2746 * mode or from the idle loop, and if this is not a
2747 * nested interrupt. In this case, the CPU is in
d6714c22 2748 * a quiescent state, so note it.
64db4cff
PM
2749 *
2750 * No memory barrier is required here because both
d6714c22
PM
2751 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2752 * variables that other CPUs neither access nor modify,
2753 * at least not while the corresponding CPU is online.
64db4cff
PM
2754 */
2755
284a8c93
PM
2756 rcu_sched_qs();
2757 rcu_bh_qs();
64db4cff
PM
2758
2759 } else if (!in_softirq()) {
2760
2761 /*
2762 * Get here if this CPU did not take its interrupt from
2763 * softirq, in other words, if it is not interrupting
2764 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2765 * critical section, so note it.
64db4cff
PM
2766 */
2767
284a8c93 2768 rcu_bh_qs();
64db4cff 2769 }
86aea0e6 2770 rcu_preempt_check_callbacks();
e3950ecd 2771 if (rcu_pending())
a46e0899 2772 invoke_rcu_core();
8315f422
PM
2773 if (user)
2774 rcu_note_voluntary_context_switch(current);
f7f7bac9 2775 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2776}
2777
64db4cff
PM
2778/*
2779 * Scan the leaf rcu_node structures, processing dyntick state for any that
2780 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2781 * Also initiate boosting for any threads blocked on the root rcu_node.
2782 *
ee47eb9f 2783 * The caller must have suppressed start of new grace periods.
64db4cff 2784 */
217af2a2
PM
2785static void force_qs_rnp(struct rcu_state *rsp,
2786 int (*f)(struct rcu_data *rsp, bool *isidle,
2787 unsigned long *maxj),
2788 bool *isidle, unsigned long *maxj)
64db4cff
PM
2789{
2790 unsigned long bit;
2791 int cpu;
2792 unsigned long flags;
2793 unsigned long mask;
a0b6c9a7 2794 struct rcu_node *rnp;
64db4cff 2795
a0b6c9a7 2796 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2797 cond_resched_rcu_qs();
64db4cff 2798 mask = 0;
1304afb2 2799 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2800 smp_mb__after_unlock_lock();
a0b6c9a7 2801 if (rnp->qsmask == 0) {
a77da14c
PM
2802 if (rcu_state_p == &rcu_sched_state ||
2803 rsp != rcu_state_p ||
2804 rcu_preempt_blocked_readers_cgp(rnp)) {
2805 /*
2806 * No point in scanning bits because they
2807 * are all zero. But we might need to
2808 * priority-boost blocked readers.
2809 */
2810 rcu_initiate_boost(rnp, flags);
2811 /* rcu_initiate_boost() releases rnp->lock */
2812 continue;
2813 }
2814 if (rnp->parent &&
2815 (rnp->parent->qsmask & rnp->grpmask)) {
2816 /*
2817 * Race between grace-period
2818 * initialization and task exiting RCU
2819 * read-side critical section: Report.
2820 */
2821 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2822 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2823 continue;
2824 }
64db4cff 2825 }
a0b6c9a7 2826 cpu = rnp->grplo;
64db4cff 2827 bit = 1;
a0b6c9a7 2828 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17 2829 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2830 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2831 mask |= bit;
2832 }
64db4cff 2833 }
45f014c5 2834 if (mask != 0) {
654e9533
PM
2835 /* Idle/offline CPUs, report (releases rnp->lock. */
2836 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2837 } else {
2838 /* Nothing to do here, so just drop the lock. */
2839 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2840 }
64db4cff 2841 }
64db4cff
PM
2842}
2843
2844/*
2845 * Force quiescent states on reluctant CPUs, and also detect which
2846 * CPUs are in dyntick-idle mode.
2847 */
4cdfc175 2848static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2849{
2850 unsigned long flags;
394f2769
PM
2851 bool ret;
2852 struct rcu_node *rnp;
2853 struct rcu_node *rnp_old = NULL;
2854
2855 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2856 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2857 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2858 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2859 !raw_spin_trylock(&rnp->fqslock);
2860 if (rnp_old != NULL)
2861 raw_spin_unlock(&rnp_old->fqslock);
2862 if (ret) {
a792563b 2863 rsp->n_force_qs_lh++;
394f2769
PM
2864 return;
2865 }
2866 rnp_old = rnp;
2867 }
2868 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2869
394f2769
PM
2870 /* Reached the root of the rcu_node tree, acquire lock. */
2871 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2872 smp_mb__after_unlock_lock();
394f2769 2873 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2874 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2875 rsp->n_force_qs_lh++;
394f2769 2876 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2877 return; /* Someone beat us to it. */
46a1e34e 2878 }
7d0ae808 2879 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
394f2769 2880 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2881 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2882}
2883
64db4cff 2884/*
e0f23060
PM
2885 * This does the RCU core processing work for the specified rcu_state
2886 * and rcu_data structures. This may be called only from the CPU to
2887 * whom the rdp belongs.
64db4cff
PM
2888 */
2889static void
1bca8cf1 2890__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2891{
2892 unsigned long flags;
48a7639c 2893 bool needwake;
fa07a58f 2894 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2895
2e597558
PM
2896 WARN_ON_ONCE(rdp->beenonline == 0);
2897
64db4cff
PM
2898 /* Update RCU state based on any recent quiescent states. */
2899 rcu_check_quiescent_state(rsp, rdp);
2900
2901 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2902 local_irq_save(flags);
64db4cff 2903 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2904 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2905 needwake = rcu_start_gp(rsp);
b8462084 2906 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2907 if (needwake)
2908 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2909 } else {
2910 local_irq_restore(flags);
64db4cff
PM
2911 }
2912
2913 /* If there are callbacks ready, invoke them. */
09223371 2914 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2915 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2916
2917 /* Do any needed deferred wakeups of rcuo kthreads. */
2918 do_nocb_deferred_wakeup(rdp);
09223371
SL
2919}
2920
64db4cff 2921/*
e0f23060 2922 * Do RCU core processing for the current CPU.
64db4cff 2923 */
09223371 2924static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2925{
6ce75a23
PM
2926 struct rcu_state *rsp;
2927
bfa00b4c
PM
2928 if (cpu_is_offline(smp_processor_id()))
2929 return;
f7f7bac9 2930 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2931 for_each_rcu_flavor(rsp)
2932 __rcu_process_callbacks(rsp);
f7f7bac9 2933 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2934}
2935
a26ac245 2936/*
e0f23060
PM
2937 * Schedule RCU callback invocation. If the specified type of RCU
2938 * does not support RCU priority boosting, just do a direct call,
2939 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 2940 * are running on the current CPU with softirqs disabled, the
e0f23060 2941 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2942 */
a46e0899 2943static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2944{
7d0ae808 2945 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 2946 return;
a46e0899
PM
2947 if (likely(!rsp->boost)) {
2948 rcu_do_batch(rsp, rdp);
a26ac245
PM
2949 return;
2950 }
a46e0899 2951 invoke_rcu_callbacks_kthread();
a26ac245
PM
2952}
2953
a46e0899 2954static void invoke_rcu_core(void)
09223371 2955{
b0f74036
PM
2956 if (cpu_online(smp_processor_id()))
2957 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2958}
2959
29154c57
PM
2960/*
2961 * Handle any core-RCU processing required by a call_rcu() invocation.
2962 */
2963static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2964 struct rcu_head *head, unsigned long flags)
64db4cff 2965{
48a7639c
PM
2966 bool needwake;
2967
62fde6ed
PM
2968 /*
2969 * If called from an extended quiescent state, invoke the RCU
2970 * core in order to force a re-evaluation of RCU's idleness.
2971 */
9910affa 2972 if (!rcu_is_watching())
62fde6ed
PM
2973 invoke_rcu_core();
2974
a16b7a69 2975 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2976 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2977 return;
64db4cff 2978
37c72e56
PM
2979 /*
2980 * Force the grace period if too many callbacks or too long waiting.
2981 * Enforce hysteresis, and don't invoke force_quiescent_state()
2982 * if some other CPU has recently done so. Also, don't bother
2983 * invoking force_quiescent_state() if the newly enqueued callback
2984 * is the only one waiting for a grace period to complete.
2985 */
2655d57e 2986 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2987
2988 /* Are we ignoring a completed grace period? */
470716fc 2989 note_gp_changes(rsp, rdp);
b52573d2
PM
2990
2991 /* Start a new grace period if one not already started. */
2992 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2993 struct rcu_node *rnp_root = rcu_get_root(rsp);
2994
b8462084 2995 raw_spin_lock(&rnp_root->lock);
6303b9c8 2996 smp_mb__after_unlock_lock();
48a7639c 2997 needwake = rcu_start_gp(rsp);
b8462084 2998 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3001 } else {
3002 /* Give the grace period a kick. */
3003 rdp->blimit = LONG_MAX;
3004 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3005 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 3006 force_quiescent_state(rsp);
b52573d2
PM
3007 rdp->n_force_qs_snap = rsp->n_force_qs;
3008 rdp->qlen_last_fqs_check = rdp->qlen;
3009 }
4cdfc175 3010 }
29154c57
PM
3011}
3012
ae150184
PM
3013/*
3014 * RCU callback function to leak a callback.
3015 */
3016static void rcu_leak_callback(struct rcu_head *rhp)
3017{
3018}
3019
3fbfbf7a
PM
3020/*
3021 * Helper function for call_rcu() and friends. The cpu argument will
3022 * normally be -1, indicating "currently running CPU". It may specify
3023 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3024 * is expected to specify a CPU.
3025 */
64db4cff
PM
3026static void
3027__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 3028 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3029{
3030 unsigned long flags;
3031 struct rcu_data *rdp;
3032
1146edcb 3033 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
3034 if (debug_rcu_head_queue(head)) {
3035 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3036 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3037 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3038 return;
3039 }
64db4cff
PM
3040 head->func = func;
3041 head->next = NULL;
3042
64db4cff
PM
3043 /*
3044 * Opportunistically note grace-period endings and beginnings.
3045 * Note that we might see a beginning right after we see an
3046 * end, but never vice versa, since this CPU has to pass through
3047 * a quiescent state betweentimes.
3048 */
3049 local_irq_save(flags);
394f99a9 3050 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3051
3052 /* Add the callback to our list. */
3fbfbf7a
PM
3053 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3054 int offline;
3055
3056 if (cpu != -1)
3057 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3058 if (likely(rdp->mynode)) {
3059 /* Post-boot, so this should be for a no-CBs CPU. */
3060 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3061 WARN_ON_ONCE(offline);
3062 /* Offline CPU, _call_rcu() illegal, leak callback. */
3063 local_irq_restore(flags);
3064 return;
3065 }
3066 /*
3067 * Very early boot, before rcu_init(). Initialize if needed
3068 * and then drop through to queue the callback.
3069 */
3070 BUG_ON(cpu != -1);
34404ca8 3071 WARN_ON_ONCE(!rcu_is_watching());
143da9c2
PM
3072 if (!likely(rdp->nxtlist))
3073 init_default_callback_list(rdp);
0d8ee37e 3074 }
7d0ae808 3075 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
486e2593
PM
3076 if (lazy)
3077 rdp->qlen_lazy++;
c57afe80
PM
3078 else
3079 rcu_idle_count_callbacks_posted();
b1420f1c
PM
3080 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3081 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3082 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 3083
d4c08f2a
PM
3084 if (__is_kfree_rcu_offset((unsigned long)func))
3085 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 3086 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3087 else
486e2593 3088 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 3089
29154c57
PM
3090 /* Go handle any RCU core processing required. */
3091 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3092 local_irq_restore(flags);
3093}
3094
3095/*
d6714c22 3096 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3097 */
d6714c22 3098void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 3099{
3fbfbf7a 3100 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3101}
d6714c22 3102EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3103
3104/*
486e2593 3105 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
3106 */
3107void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
3108{
3fbfbf7a 3109 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3110}
3111EXPORT_SYMBOL_GPL(call_rcu_bh);
3112
495aa969
ACB
3113/*
3114 * Queue an RCU callback for lazy invocation after a grace period.
3115 * This will likely be later named something like "call_rcu_lazy()",
3116 * but this change will require some way of tagging the lazy RCU
3117 * callbacks in the list of pending callbacks. Until then, this
3118 * function may only be called from __kfree_rcu().
3119 */
3120void kfree_call_rcu(struct rcu_head *head,
3121 void (*func)(struct rcu_head *rcu))
3122{
e534165b 3123 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3124}
3125EXPORT_SYMBOL_GPL(kfree_call_rcu);
3126
6d813391
PM
3127/*
3128 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3129 * any blocking grace-period wait automatically implies a grace period
3130 * if there is only one CPU online at any point time during execution
3131 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3132 * occasionally incorrectly indicate that there are multiple CPUs online
3133 * when there was in fact only one the whole time, as this just adds
3134 * some overhead: RCU still operates correctly.
6d813391
PM
3135 */
3136static inline int rcu_blocking_is_gp(void)
3137{
95f0c1de
PM
3138 int ret;
3139
6d813391 3140 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3141 preempt_disable();
3142 ret = num_online_cpus() <= 1;
3143 preempt_enable();
3144 return ret;
6d813391
PM
3145}
3146
6ebb237b
PM
3147/**
3148 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3149 *
3150 * Control will return to the caller some time after a full rcu-sched
3151 * grace period has elapsed, in other words after all currently executing
3152 * rcu-sched read-side critical sections have completed. These read-side
3153 * critical sections are delimited by rcu_read_lock_sched() and
3154 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3155 * local_irq_disable(), and so on may be used in place of
3156 * rcu_read_lock_sched().
3157 *
3158 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3159 * non-threaded hardware-interrupt handlers, in progress on entry will
3160 * have completed before this primitive returns. However, this does not
3161 * guarantee that softirq handlers will have completed, since in some
3162 * kernels, these handlers can run in process context, and can block.
3163 *
3164 * Note that this guarantee implies further memory-ordering guarantees.
3165 * On systems with more than one CPU, when synchronize_sched() returns,
3166 * each CPU is guaranteed to have executed a full memory barrier since the
3167 * end of its last RCU-sched read-side critical section whose beginning
3168 * preceded the call to synchronize_sched(). In addition, each CPU having
3169 * an RCU read-side critical section that extends beyond the return from
3170 * synchronize_sched() is guaranteed to have executed a full memory barrier
3171 * after the beginning of synchronize_sched() and before the beginning of
3172 * that RCU read-side critical section. Note that these guarantees include
3173 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3174 * that are executing in the kernel.
3175 *
3176 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3177 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3178 * to have executed a full memory barrier during the execution of
3179 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3180 * again only if the system has more than one CPU).
6ebb237b
PM
3181 *
3182 * This primitive provides the guarantees made by the (now removed)
3183 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3184 * guarantees that rcu_read_lock() sections will have completed.
3185 * In "classic RCU", these two guarantees happen to be one and
3186 * the same, but can differ in realtime RCU implementations.
3187 */
3188void synchronize_sched(void)
3189{
f78f5b90
PM
3190 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3191 lock_is_held(&rcu_lock_map) ||
3192 lock_is_held(&rcu_sched_lock_map),
3193 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3194 if (rcu_blocking_is_gp())
3195 return;
5afff48b 3196 if (rcu_gp_is_expedited())
3705b88d
AM
3197 synchronize_sched_expedited();
3198 else
3199 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3200}
3201EXPORT_SYMBOL_GPL(synchronize_sched);
3202
3203/**
3204 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3205 *
3206 * Control will return to the caller some time after a full rcu_bh grace
3207 * period has elapsed, in other words after all currently executing rcu_bh
3208 * read-side critical sections have completed. RCU read-side critical
3209 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3210 * and may be nested.
f0a0e6f2
PM
3211 *
3212 * See the description of synchronize_sched() for more detailed information
3213 * on memory ordering guarantees.
6ebb237b
PM
3214 */
3215void synchronize_rcu_bh(void)
3216{
f78f5b90
PM
3217 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3218 lock_is_held(&rcu_lock_map) ||
3219 lock_is_held(&rcu_sched_lock_map),
3220 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3221 if (rcu_blocking_is_gp())
3222 return;
5afff48b 3223 if (rcu_gp_is_expedited())
3705b88d
AM
3224 synchronize_rcu_bh_expedited();
3225 else
3226 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3227}
3228EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3229
765a3f4f
PM
3230/**
3231 * get_state_synchronize_rcu - Snapshot current RCU state
3232 *
3233 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3234 * to determine whether or not a full grace period has elapsed in the
3235 * meantime.
3236 */
3237unsigned long get_state_synchronize_rcu(void)
3238{
3239 /*
3240 * Any prior manipulation of RCU-protected data must happen
3241 * before the load from ->gpnum.
3242 */
3243 smp_mb(); /* ^^^ */
3244
3245 /*
3246 * Make sure this load happens before the purportedly
3247 * time-consuming work between get_state_synchronize_rcu()
3248 * and cond_synchronize_rcu().
3249 */
e534165b 3250 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3251}
3252EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3253
3254/**
3255 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3256 *
3257 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3258 *
3259 * If a full RCU grace period has elapsed since the earlier call to
3260 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3261 * synchronize_rcu() to wait for a full grace period.
3262 *
3263 * Yes, this function does not take counter wrap into account. But
3264 * counter wrap is harmless. If the counter wraps, we have waited for
3265 * more than 2 billion grace periods (and way more on a 64-bit system!),
3266 * so waiting for one additional grace period should be just fine.
3267 */
3268void cond_synchronize_rcu(unsigned long oldstate)
3269{
3270 unsigned long newstate;
3271
3272 /*
3273 * Ensure that this load happens before any RCU-destructive
3274 * actions the caller might carry out after we return.
3275 */
e534165b 3276 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3277 if (ULONG_CMP_GE(oldstate, newstate))
3278 synchronize_rcu();
3279}
3280EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3281
24560056
PM
3282/**
3283 * get_state_synchronize_sched - Snapshot current RCU-sched state
3284 *
3285 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3286 * to determine whether or not a full grace period has elapsed in the
3287 * meantime.
3288 */
3289unsigned long get_state_synchronize_sched(void)
3290{
3291 /*
3292 * Any prior manipulation of RCU-protected data must happen
3293 * before the load from ->gpnum.
3294 */
3295 smp_mb(); /* ^^^ */
3296
3297 /*
3298 * Make sure this load happens before the purportedly
3299 * time-consuming work between get_state_synchronize_sched()
3300 * and cond_synchronize_sched().
3301 */
3302 return smp_load_acquire(&rcu_sched_state.gpnum);
3303}
3304EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3305
3306/**
3307 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3308 *
3309 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3310 *
3311 * If a full RCU-sched grace period has elapsed since the earlier call to
3312 * get_state_synchronize_sched(), just return. Otherwise, invoke
3313 * synchronize_sched() to wait for a full grace period.
3314 *
3315 * Yes, this function does not take counter wrap into account. But
3316 * counter wrap is harmless. If the counter wraps, we have waited for
3317 * more than 2 billion grace periods (and way more on a 64-bit system!),
3318 * so waiting for one additional grace period should be just fine.
3319 */
3320void cond_synchronize_sched(unsigned long oldstate)
3321{
3322 unsigned long newstate;
3323
3324 /*
3325 * Ensure that this load happens before any RCU-destructive
3326 * actions the caller might carry out after we return.
3327 */
3328 newstate = smp_load_acquire(&rcu_sched_state.completed);
3329 if (ULONG_CMP_GE(oldstate, newstate))
3330 synchronize_sched();
3331}
3332EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3333
28f00767
PM
3334/* Adjust sequence number for start of update-side operation. */
3335static void rcu_seq_start(unsigned long *sp)
3336{
3337 WRITE_ONCE(*sp, *sp + 1);
3338 smp_mb(); /* Ensure update-side operation after counter increment. */
3339 WARN_ON_ONCE(!(*sp & 0x1));
3340}
3341
3342/* Adjust sequence number for end of update-side operation. */
3343static void rcu_seq_end(unsigned long *sp)
3344{
3345 smp_mb(); /* Ensure update-side operation before counter increment. */
3346 WRITE_ONCE(*sp, *sp + 1);
3347 WARN_ON_ONCE(*sp & 0x1);
3348}
3349
3350/* Take a snapshot of the update side's sequence number. */
3351static unsigned long rcu_seq_snap(unsigned long *sp)
3352{
3353 unsigned long s;
3354
3355 smp_mb(); /* Caller's modifications seen first by other CPUs. */
3356 s = (READ_ONCE(*sp) + 3) & ~0x1;
3357 smp_mb(); /* Above access must not bleed into critical section. */
3358 return s;
3359}
3360
3361/*
3362 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3363 * full update-side operation has occurred.
3364 */
3365static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3366{
3367 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3368}
3369
3370/* Wrapper functions for expedited grace periods. */
3371static void rcu_exp_gp_seq_start(struct rcu_state *rsp)
3372{
3373 rcu_seq_start(&rsp->expedited_sequence);
3374}
3375static void rcu_exp_gp_seq_end(struct rcu_state *rsp)
3376{
3377 rcu_seq_end(&rsp->expedited_sequence);
704dd435 3378 smp_mb(); /* Ensure that consecutive grace periods serialize. */
28f00767
PM
3379}
3380static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp)
3381{
3382 return rcu_seq_snap(&rsp->expedited_sequence);
3383}
3384static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s)
3385{
3386 return rcu_seq_done(&rsp->expedited_sequence, s);
3387}
3388
b9585e94
PM
3389/*
3390 * Reset the ->expmaskinit values in the rcu_node tree to reflect any
3391 * recent CPU-online activity. Note that these masks are not cleared
3392 * when CPUs go offline, so they reflect the union of all CPUs that have
3393 * ever been online. This means that this function normally takes its
3394 * no-work-to-do fastpath.
3395 */
3396static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp)
3397{
3398 bool done;
3399 unsigned long flags;
3400 unsigned long mask;
3401 unsigned long oldmask;
3402 int ncpus = READ_ONCE(rsp->ncpus);
3403 struct rcu_node *rnp;
3404 struct rcu_node *rnp_up;
3405
3406 /* If no new CPUs onlined since last time, nothing to do. */
3407 if (likely(ncpus == rsp->ncpus_snap))
3408 return;
3409 rsp->ncpus_snap = ncpus;
3410
3411 /*
3412 * Each pass through the following loop propagates newly onlined
3413 * CPUs for the current rcu_node structure up the rcu_node tree.
3414 */
3415 rcu_for_each_leaf_node(rsp, rnp) {
3416 raw_spin_lock_irqsave(&rnp->lock, flags);
3417 smp_mb__after_unlock_lock();
3418 if (rnp->expmaskinit == rnp->expmaskinitnext) {
3419 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3420 continue; /* No new CPUs, nothing to do. */
3421 }
3422
3423 /* Update this node's mask, track old value for propagation. */
3424 oldmask = rnp->expmaskinit;
3425 rnp->expmaskinit = rnp->expmaskinitnext;
3426 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3427
3428 /* If was already nonzero, nothing to propagate. */
3429 if (oldmask)
3430 continue;
3431
3432 /* Propagate the new CPU up the tree. */
3433 mask = rnp->grpmask;
3434 rnp_up = rnp->parent;
3435 done = false;
3436 while (rnp_up) {
3437 raw_spin_lock_irqsave(&rnp_up->lock, flags);
3438 smp_mb__after_unlock_lock();
3439 if (rnp_up->expmaskinit)
3440 done = true;
3441 rnp_up->expmaskinit |= mask;
3442 raw_spin_unlock_irqrestore(&rnp_up->lock, flags);
3443 if (done)
3444 break;
3445 mask = rnp_up->grpmask;
3446 rnp_up = rnp_up->parent;
3447 }
3448 }
3449}
3450
3451/*
3452 * Reset the ->expmask values in the rcu_node tree in preparation for
3453 * a new expedited grace period.
3454 */
3455static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp)
3456{
3457 unsigned long flags;
3458 struct rcu_node *rnp;
3459
3460 sync_exp_reset_tree_hotplug(rsp);
3461 rcu_for_each_node_breadth_first(rsp, rnp) {
3462 raw_spin_lock_irqsave(&rnp->lock, flags);
3463 smp_mb__after_unlock_lock();
3464 WARN_ON_ONCE(rnp->expmask);
3465 rnp->expmask = rnp->expmaskinit;
3466 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3467 }
3468}
3469
7922cd0e 3470/*
8203d6d0 3471 * Return non-zero if there is no RCU expedited grace period in progress
7922cd0e
PM
3472 * for the specified rcu_node structure, in other words, if all CPUs and
3473 * tasks covered by the specified rcu_node structure have done their bit
3474 * for the current expedited grace period. Works only for preemptible
3475 * RCU -- other RCU implementation use other means.
3476 *
3477 * Caller must hold the root rcu_node's exp_funnel_mutex.
3478 */
3479static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
3480{
8203d6d0 3481 return rnp->exp_tasks == NULL &&
7922cd0e
PM
3482 READ_ONCE(rnp->expmask) == 0;
3483}
3484
3485/*
3486 * Report the exit from RCU read-side critical section for the last task
3487 * that queued itself during or before the current expedited preemptible-RCU
3488 * grace period. This event is reported either to the rcu_node structure on
3489 * which the task was queued or to one of that rcu_node structure's ancestors,
3490 * recursively up the tree. (Calm down, calm down, we do the recursion
3491 * iteratively!)
3492 *
8203d6d0
PM
3493 * Caller must hold the root rcu_node's exp_funnel_mutex and the
3494 * specified rcu_node structure's ->lock.
7922cd0e 3495 */
8203d6d0
PM
3496static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
3497 bool wake, unsigned long flags)
3498 __releases(rnp->lock)
7922cd0e 3499{
7922cd0e
PM
3500 unsigned long mask;
3501
7922cd0e
PM
3502 for (;;) {
3503 if (!sync_rcu_preempt_exp_done(rnp)) {
8203d6d0
PM
3504 if (!rnp->expmask)
3505 rcu_initiate_boost(rnp, flags);
3506 else
3507 raw_spin_unlock_irqrestore(&rnp->lock, flags);
7922cd0e
PM
3508 break;
3509 }
3510 if (rnp->parent == NULL) {
3511 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3512 if (wake) {
3513 smp_mb(); /* EGP done before wake_up(). */
3514 wake_up(&rsp->expedited_wq);
3515 }
3516 break;
3517 }
3518 mask = rnp->grpmask;
3519 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
3520 rnp = rnp->parent;
3521 raw_spin_lock(&rnp->lock); /* irqs already disabled */
3522 smp_mb__after_unlock_lock();
8203d6d0 3523 WARN_ON_ONCE(!(rnp->expmask & mask));
7922cd0e
PM
3524 rnp->expmask &= ~mask;
3525 }
3526}
3527
8203d6d0
PM
3528/*
3529 * Report expedited quiescent state for specified node. This is a
3530 * lock-acquisition wrapper function for __rcu_report_exp_rnp().
3531 *
3532 * Caller must hold the root rcu_node's exp_funnel_mutex.
3533 */
3534static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp,
3535 struct rcu_node *rnp, bool wake)
3536{
3537 unsigned long flags;
3538
3539 raw_spin_lock_irqsave(&rnp->lock, flags);
3540 smp_mb__after_unlock_lock();
3541 __rcu_report_exp_rnp(rsp, rnp, wake, flags);
3542}
3543
3544/*
3545 * Report expedited quiescent state for multiple CPUs, all covered by the
3546 * specified leaf rcu_node structure. Caller must hold the root
3547 * rcu_node's exp_funnel_mutex.
3548 */
3549static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp,
3550 unsigned long mask, bool wake)
3551{
3552 unsigned long flags;
3553
3554 raw_spin_lock_irqsave(&rnp->lock, flags);
3555 smp_mb__after_unlock_lock();
3556 WARN_ON_ONCE((rnp->expmask & mask) != mask);
3557 rnp->expmask &= ~mask;
3558 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */
3559}
3560
3561/*
3562 * Report expedited quiescent state for specified rcu_data (CPU).
3563 * Caller must hold the root rcu_node's exp_funnel_mutex.
3564 */
6587a23b
PM
3565static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp,
3566 bool wake)
8203d6d0
PM
3567{
3568 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake);
3569}
3570
29fd9309
PM
3571/* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */
3572static bool sync_exp_work_done(struct rcu_state *rsp, struct rcu_node *rnp,
2cd6ffaf 3573 struct rcu_data *rdp,
29fd9309 3574 atomic_long_t *stat, unsigned long s)
3d3b7db0 3575{
28f00767 3576 if (rcu_exp_gp_seq_done(rsp, s)) {
385b73c0
PM
3577 if (rnp)
3578 mutex_unlock(&rnp->exp_funnel_mutex);
2cd6ffaf
PM
3579 else if (rdp)
3580 mutex_unlock(&rdp->exp_funnel_mutex);
385b73c0
PM
3581 /* Ensure test happens before caller kfree(). */
3582 smp_mb__before_atomic(); /* ^^^ */
3583 atomic_long_inc(stat);
385b73c0
PM
3584 return true;
3585 }
3586 return false;
3587}
3588
b09e5f86
PM
3589/*
3590 * Funnel-lock acquisition for expedited grace periods. Returns a
3591 * pointer to the root rcu_node structure, or NULL if some other
3592 * task did the expedited grace period for us.
3593 */
3594static struct rcu_node *exp_funnel_lock(struct rcu_state *rsp, unsigned long s)
3595{
2cd6ffaf 3596 struct rcu_data *rdp;
b09e5f86
PM
3597 struct rcu_node *rnp0;
3598 struct rcu_node *rnp1 = NULL;
3599
3d3b7db0 3600 /*
cdacbe1f
PM
3601 * First try directly acquiring the root lock in order to reduce
3602 * latency in the common case where expedited grace periods are
3603 * rare. We check mutex_is_locked() to avoid pathological levels of
3604 * memory contention on ->exp_funnel_mutex in the heavy-load case.
3d3b7db0 3605 */
cdacbe1f
PM
3606 rnp0 = rcu_get_root(rsp);
3607 if (!mutex_is_locked(&rnp0->exp_funnel_mutex)) {
3608 if (mutex_trylock(&rnp0->exp_funnel_mutex)) {
3609 if (sync_exp_work_done(rsp, rnp0, NULL,
3610 &rsp->expedited_workdone0, s))
3611 return NULL;
3612 return rnp0;
3613 }
3614 }
3615
b09e5f86
PM
3616 /*
3617 * Each pass through the following loop works its way
3618 * up the rcu_node tree, returning if others have done the
3619 * work or otherwise falls through holding the root rnp's
3620 * ->exp_funnel_mutex. The mapping from CPU to rcu_node structure
3621 * can be inexact, as it is just promoting locality and is not
3622 * strictly needed for correctness.
3623 */
2cd6ffaf
PM
3624 rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id());
3625 if (sync_exp_work_done(rsp, NULL, NULL, &rsp->expedited_workdone1, s))
3626 return NULL;
3627 mutex_lock(&rdp->exp_funnel_mutex);
3628 rnp0 = rdp->mynode;
b09e5f86 3629 for (; rnp0 != NULL; rnp0 = rnp0->parent) {
2cd6ffaf
PM
3630 if (sync_exp_work_done(rsp, rnp1, rdp,
3631 &rsp->expedited_workdone2, s))
b09e5f86
PM
3632 return NULL;
3633 mutex_lock(&rnp0->exp_funnel_mutex);
3634 if (rnp1)
3635 mutex_unlock(&rnp1->exp_funnel_mutex);
2cd6ffaf
PM
3636 else
3637 mutex_unlock(&rdp->exp_funnel_mutex);
b09e5f86
PM
3638 rnp1 = rnp0;
3639 }
2cd6ffaf
PM
3640 if (sync_exp_work_done(rsp, rnp1, rdp,
3641 &rsp->expedited_workdone3, s))
b09e5f86
PM
3642 return NULL;
3643 return rnp1;
3644}
3645
cf3620a6 3646/* Invoked on each online non-idle CPU for expedited quiescent state. */
6587a23b 3647static void synchronize_sched_expedited_cpu_stop(void *data)
b09e5f86 3648{
6587a23b
PM
3649 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true);
3650 resched_cpu(smp_processor_id());
3d3b7db0
PM
3651}
3652
bce5fa12
PM
3653/*
3654 * Select the nodes that the upcoming expedited grace period needs
3655 * to wait for.
3656 */
3657static void sync_sched_exp_select_cpus(struct rcu_state *rsp)
3658{
3659 int cpu;
3660 unsigned long flags;
3661 unsigned long mask;
3662 unsigned long mask_ofl_test;
3663 unsigned long mask_ofl_ipi;
6587a23b 3664 int ret;
bce5fa12
PM
3665 struct rcu_node *rnp;
3666
3667 sync_exp_reset_tree(rsp);
3668 rcu_for_each_leaf_node(rsp, rnp) {
3669 raw_spin_lock_irqsave(&rnp->lock, flags);
3670 smp_mb__after_unlock_lock();
3671
3672 /* Each pass checks a CPU for identity, offline, and idle. */
3673 mask_ofl_test = 0;
3674 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
3675 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3676 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3677
3678 if (raw_smp_processor_id() == cpu ||
3679 cpu_is_offline(cpu) ||
3680 !(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3681 mask_ofl_test |= rdp->grpmask;
3682 }
3683 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test;
3684
3685 /*
3686 * Need to wait for any blocked tasks as well. Note that
3687 * additional blocking tasks will also block the expedited
3688 * GP until such time as the ->expmask bits are cleared.
3689 */
3690 if (rcu_preempt_has_tasks(rnp))
3691 rnp->exp_tasks = rnp->blkd_tasks.next;
3692 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3693
3694 /* IPI the remaining CPUs for expedited quiescent state. */
3695 mask = 1;
3696 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3697 if (!(mask_ofl_ipi & mask))
3698 continue;
6587a23b
PM
3699 ret = smp_call_function_single(cpu, synchronize_sched_expedited_cpu_stop, NULL, 0);
3700 if (!ret)
3701 mask_ofl_ipi &= ~mask;
bce5fa12
PM
3702 }
3703 /* Report quiescent states for those that went offline. */
3704 mask_ofl_test |= mask_ofl_ipi;
3705 if (mask_ofl_test)
3706 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false);
3707 }
3708}
3709
cf3620a6
PM
3710static void synchronize_sched_expedited_wait(struct rcu_state *rsp)
3711{
3712 int cpu;
3713 unsigned long jiffies_stall;
3714 unsigned long jiffies_start;
bce5fa12
PM
3715 unsigned long mask;
3716 struct rcu_node *rnp;
3717 struct rcu_node *rnp_root = rcu_get_root(rsp);
cf3620a6
PM
3718 int ret;
3719
3720 jiffies_stall = rcu_jiffies_till_stall_check();
3721 jiffies_start = jiffies;
3722
3723 for (;;) {
3724 ret = wait_event_interruptible_timeout(
3725 rsp->expedited_wq,
bce5fa12 3726 sync_rcu_preempt_exp_done(rnp_root),
cf3620a6
PM
3727 jiffies_stall);
3728 if (ret > 0)
3729 return;
3730 if (ret < 0) {
3731 /* Hit a signal, disable CPU stall warnings. */
3732 wait_event(rsp->expedited_wq,
bce5fa12 3733 sync_rcu_preempt_exp_done(rnp_root));
cf3620a6
PM
3734 return;
3735 }
3736 pr_err("INFO: %s detected expedited stalls on CPUs: {",
3737 rsp->name);
bce5fa12
PM
3738 rcu_for_each_leaf_node(rsp, rnp) {
3739 mask = 1;
3740 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3741 if (!(rnp->expmask & mask))
3742 continue;
3743 pr_cont(" %d", cpu);
3744 }
3745 mask <<= 1;
cf3620a6
PM
3746 }
3747 pr_cont(" } %lu jiffies s: %lu\n",
3748 jiffies - jiffies_start, rsp->expedited_sequence);
bce5fa12
PM
3749 rcu_for_each_leaf_node(rsp, rnp) {
3750 mask = 1;
3751 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) {
3752 if (!(rnp->expmask & mask))
3753 continue;
3754 dump_cpu_task(cpu);
3755 }
cf3620a6
PM
3756 }
3757 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3;
3758 }
3759}
3760
236fefaf
PM
3761/**
3762 * synchronize_sched_expedited - Brute-force RCU-sched grace period
3763 *
3764 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
3765 * approach to force the grace period to end quickly. This consumes
3766 * significant time on all CPUs and is unfriendly to real-time workloads,
3767 * so is thus not recommended for any sort of common-case code. In fact,
3768 * if you are using synchronize_sched_expedited() in a loop, please
3769 * restructure your code to batch your updates, and then use a single
3770 * synchronize_sched() instead.
3d3b7db0 3771 *
d6ada2cf
PM
3772 * This implementation can be thought of as an application of sequence
3773 * locking to expedited grace periods, but using the sequence counter to
3774 * determine when someone else has already done the work instead of for
385b73c0 3775 * retrying readers.
3d3b7db0
PM
3776 */
3777void synchronize_sched_expedited(void)
3778{
7fd0ddc5 3779 unsigned long s;
b09e5f86 3780 struct rcu_node *rnp;
40694d66 3781 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3782
d6ada2cf 3783 /* Take a snapshot of the sequence number. */
28f00767 3784 s = rcu_exp_gp_seq_snap(rsp);
3d3b7db0 3785
b09e5f86 3786 rnp = exp_funnel_lock(rsp, s);
807226e2 3787 if (rnp == NULL)
b09e5f86 3788 return; /* Someone else did our work for us. */
e0775cef 3789
28f00767 3790 rcu_exp_gp_seq_start(rsp);
bce5fa12
PM
3791 sync_sched_exp_select_cpus(rsp);
3792 synchronize_sched_expedited_wait(rsp);
e0775cef 3793
28f00767 3794 rcu_exp_gp_seq_end(rsp);
b09e5f86 3795 mutex_unlock(&rnp->exp_funnel_mutex);
3d3b7db0
PM
3796}
3797EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3798
64db4cff
PM
3799/*
3800 * Check to see if there is any immediate RCU-related work to be done
3801 * by the current CPU, for the specified type of RCU, returning 1 if so.
3802 * The checks are in order of increasing expense: checks that can be
3803 * carried out against CPU-local state are performed first. However,
3804 * we must check for CPU stalls first, else we might not get a chance.
3805 */
3806static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3807{
2f51f988
PM
3808 struct rcu_node *rnp = rdp->mynode;
3809
64db4cff
PM
3810 rdp->n_rcu_pending++;
3811
3812 /* Check for CPU stalls, if enabled. */
3813 check_cpu_stall(rsp, rdp);
3814
a096932f
PM
3815 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3816 if (rcu_nohz_full_cpu(rsp))
3817 return 0;
3818
64db4cff 3819 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3820 if (rcu_scheduler_fully_active &&
5b74c458 3821 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
5cd37193 3822 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
97c668b8
PM
3823 rdp->n_rp_core_needs_qs++;
3824 } else if (rdp->core_needs_qs &&
5b74c458 3825 (!rdp->cpu_no_qs.b.norm ||
5cd37193 3826 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
d21670ac 3827 rdp->n_rp_report_qs++;
64db4cff 3828 return 1;
7ba5c840 3829 }
64db4cff
PM
3830
3831 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3832 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3833 rdp->n_rp_cb_ready++;
64db4cff 3834 return 1;
7ba5c840 3835 }
64db4cff
PM
3836
3837 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3838 if (cpu_needs_another_gp(rsp, rdp)) {
3839 rdp->n_rp_cpu_needs_gp++;
64db4cff 3840 return 1;
7ba5c840 3841 }
64db4cff
PM
3842
3843 /* Has another RCU grace period completed? */
7d0ae808 3844 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3845 rdp->n_rp_gp_completed++;
64db4cff 3846 return 1;
7ba5c840 3847 }
64db4cff
PM
3848
3849 /* Has a new RCU grace period started? */
7d0ae808
PM
3850 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3851 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3852 rdp->n_rp_gp_started++;
64db4cff 3853 return 1;
7ba5c840 3854 }
64db4cff 3855
96d3fd0d
PM
3856 /* Does this CPU need a deferred NOCB wakeup? */
3857 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3858 rdp->n_rp_nocb_defer_wakeup++;
3859 return 1;
3860 }
3861
64db4cff 3862 /* nothing to do */
7ba5c840 3863 rdp->n_rp_need_nothing++;
64db4cff
PM
3864 return 0;
3865}
3866
3867/*
3868 * Check to see if there is any immediate RCU-related work to be done
3869 * by the current CPU, returning 1 if so. This function is part of the
3870 * RCU implementation; it is -not- an exported member of the RCU API.
3871 */
e3950ecd 3872static int rcu_pending(void)
64db4cff 3873{
6ce75a23
PM
3874 struct rcu_state *rsp;
3875
3876 for_each_rcu_flavor(rsp)
e3950ecd 3877 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3878 return 1;
3879 return 0;
64db4cff
PM
3880}
3881
3882/*
c0f4dfd4
PM
3883 * Return true if the specified CPU has any callback. If all_lazy is
3884 * non-NULL, store an indication of whether all callbacks are lazy.
3885 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3886 */
82072c4f 3887static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3888{
c0f4dfd4
PM
3889 bool al = true;
3890 bool hc = false;
3891 struct rcu_data *rdp;
6ce75a23
PM
3892 struct rcu_state *rsp;
3893
c0f4dfd4 3894 for_each_rcu_flavor(rsp) {
aa6da514 3895 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3896 if (!rdp->nxtlist)
3897 continue;
3898 hc = true;
3899 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3900 al = false;
69c8d28c
PM
3901 break;
3902 }
c0f4dfd4
PM
3903 }
3904 if (all_lazy)
3905 *all_lazy = al;
3906 return hc;
64db4cff
PM
3907}
3908
a83eff0a
PM
3909/*
3910 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3911 * the compiler is expected to optimize this away.
3912 */
e66c33d5 3913static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3914 int cpu, unsigned long done)
3915{
3916 trace_rcu_barrier(rsp->name, s, cpu,
3917 atomic_read(&rsp->barrier_cpu_count), done);
3918}
3919
b1420f1c
PM
3920/*
3921 * RCU callback function for _rcu_barrier(). If we are last, wake
3922 * up the task executing _rcu_barrier().
3923 */
24ebbca8 3924static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3925{
24ebbca8
PM
3926 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3927 struct rcu_state *rsp = rdp->rsp;
3928
a83eff0a 3929 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3930 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3931 complete(&rsp->barrier_completion);
a83eff0a 3932 } else {
4f525a52 3933 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3934 }
d0ec774c
PM
3935}
3936
3937/*
3938 * Called with preemption disabled, and from cross-cpu IRQ context.
3939 */
3940static void rcu_barrier_func(void *type)
3941{
037b64ed 3942 struct rcu_state *rsp = type;
fa07a58f 3943 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3944
4f525a52 3945 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
24ebbca8 3946 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3947 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3948}
3949
d0ec774c
PM
3950/*
3951 * Orchestrate the specified type of RCU barrier, waiting for all
3952 * RCU callbacks of the specified type to complete.
3953 */
037b64ed 3954static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3955{
b1420f1c 3956 int cpu;
b1420f1c 3957 struct rcu_data *rdp;
4f525a52 3958 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3959
4f525a52 3960 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3961
e74f4c45 3962 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3963 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3964
4f525a52
PM
3965 /* Did someone else do our work for us? */
3966 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3967 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3968 smp_mb(); /* caller's subsequent code after above check. */
3969 mutex_unlock(&rsp->barrier_mutex);
3970 return;
3971 }
3972
4f525a52
PM
3973 /* Mark the start of the barrier operation. */
3974 rcu_seq_start(&rsp->barrier_sequence);
3975 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3976
d0ec774c 3977 /*
b1420f1c
PM
3978 * Initialize the count to one rather than to zero in order to
3979 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3980 * (or preemption of this task). Exclude CPU-hotplug operations
3981 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3982 */
7db74df8 3983 init_completion(&rsp->barrier_completion);
24ebbca8 3984 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3985 get_online_cpus();
b1420f1c
PM
3986
3987 /*
1331e7a1
PM
3988 * Force each CPU with callbacks to register a new callback.
3989 * When that callback is invoked, we will know that all of the
3990 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3991 */
3fbfbf7a 3992 for_each_possible_cpu(cpu) {
d1e43fa5 3993 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3994 continue;
b1420f1c 3995 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3996 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3997 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3998 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3999 rsp->barrier_sequence);
d7e29933
PM
4000 } else {
4001 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 4002 rsp->barrier_sequence);
41050a00 4003 smp_mb__before_atomic();
d7e29933
PM
4004 atomic_inc(&rsp->barrier_cpu_count);
4005 __call_rcu(&rdp->barrier_head,
4006 rcu_barrier_callback, rsp, cpu, 0);
4007 }
7d0ae808 4008 } else if (READ_ONCE(rdp->qlen)) {
a83eff0a 4009 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 4010 rsp->barrier_sequence);
037b64ed 4011 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 4012 } else {
a83eff0a 4013 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 4014 rsp->barrier_sequence);
b1420f1c
PM
4015 }
4016 }
1331e7a1 4017 put_online_cpus();
b1420f1c
PM
4018
4019 /*
4020 * Now that we have an rcu_barrier_callback() callback on each
4021 * CPU, and thus each counted, remove the initial count.
4022 */
24ebbca8 4023 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 4024 complete(&rsp->barrier_completion);
b1420f1c
PM
4025
4026 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 4027 wait_for_completion(&rsp->barrier_completion);
b1420f1c 4028
4f525a52
PM
4029 /* Mark the end of the barrier operation. */
4030 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
4031 rcu_seq_end(&rsp->barrier_sequence);
4032
b1420f1c 4033 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 4034 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 4035}
d0ec774c
PM
4036
4037/**
4038 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
4039 */
4040void rcu_barrier_bh(void)
4041{
037b64ed 4042 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
4043}
4044EXPORT_SYMBOL_GPL(rcu_barrier_bh);
4045
4046/**
4047 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
4048 */
4049void rcu_barrier_sched(void)
4050{
037b64ed 4051 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
4052}
4053EXPORT_SYMBOL_GPL(rcu_barrier_sched);
4054
0aa04b05
PM
4055/*
4056 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4057 * first CPU in a given leaf rcu_node structure coming online. The caller
4058 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4059 * disabled.
4060 */
4061static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4062{
4063 long mask;
4064 struct rcu_node *rnp = rnp_leaf;
4065
4066 for (;;) {
4067 mask = rnp->grpmask;
4068 rnp = rnp->parent;
4069 if (rnp == NULL)
4070 return;
4071 raw_spin_lock(&rnp->lock); /* Interrupts already disabled. */
4072 rnp->qsmaskinit |= mask;
4073 raw_spin_unlock(&rnp->lock); /* Interrupts remain disabled. */
4074 }
4075}
4076
64db4cff 4077/*
27569620 4078 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 4079 */
27569620
PM
4080static void __init
4081rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4082{
4083 unsigned long flags;
394f99a9 4084 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
4085 struct rcu_node *rnp = rcu_get_root(rsp);
4086
4087 /* Set up local state, ensuring consistent view of global state. */
1304afb2 4088 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 4089 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
27569620 4090 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 4091 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 4092 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 4093 rdp->cpu = cpu;
d4c08f2a 4094 rdp->rsp = rsp;
2cd6ffaf 4095 mutex_init(&rdp->exp_funnel_mutex);
3fbfbf7a 4096 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 4097 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
4098}
4099
4100/*
4101 * Initialize a CPU's per-CPU RCU data. Note that only one online or
4102 * offline event can be happening at a given time. Note also that we
4103 * can accept some slop in the rsp->completed access due to the fact
4104 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 4105 */
49fb4c62 4106static void
9b67122a 4107rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
4108{
4109 unsigned long flags;
64db4cff 4110 unsigned long mask;
394f99a9 4111 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
4112 struct rcu_node *rnp = rcu_get_root(rsp);
4113
4114 /* Set up local state, ensuring consistent view of global state. */
1304afb2 4115 raw_spin_lock_irqsave(&rnp->lock, flags);
37c72e56
PM
4116 rdp->qlen_last_fqs_check = 0;
4117 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 4118 rdp->blimit = blimit;
39c8d313
PM
4119 if (!rdp->nxtlist)
4120 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 4121 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 4122 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
4123 atomic_set(&rdp->dynticks->dynticks,
4124 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 4125 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 4126
0aa04b05
PM
4127 /*
4128 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4129 * propagation up the rcu_node tree will happen at the beginning
4130 * of the next grace period.
4131 */
64db4cff
PM
4132 rnp = rdp->mynode;
4133 mask = rdp->grpmask;
0aa04b05
PM
4134 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
4135 smp_mb__after_unlock_lock();
4136 rnp->qsmaskinitnext |= mask;
b9585e94
PM
4137 rnp->expmaskinitnext |= mask;
4138 if (!rdp->beenonline)
4139 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
4140 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
4141 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
4142 rdp->completed = rnp->completed;
5b74c458 4143 rdp->cpu_no_qs.b.norm = true;
a738eec6 4144 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
97c668b8 4145 rdp->core_needs_qs = false;
0aa04b05
PM
4146 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
4147 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
4148}
4149
49fb4c62 4150static void rcu_prepare_cpu(int cpu)
64db4cff 4151{
6ce75a23
PM
4152 struct rcu_state *rsp;
4153
4154 for_each_rcu_flavor(rsp)
9b67122a 4155 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
4156}
4157
4158/*
f41d911f 4159 * Handle CPU online/offline notification events.
64db4cff 4160 */
88428cc5
PM
4161int rcu_cpu_notify(struct notifier_block *self,
4162 unsigned long action, void *hcpu)
64db4cff
PM
4163{
4164 long cpu = (long)hcpu;
e534165b 4165 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 4166 struct rcu_node *rnp = rdp->mynode;
6ce75a23 4167 struct rcu_state *rsp;
64db4cff
PM
4168
4169 switch (action) {
4170 case CPU_UP_PREPARE:
4171 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
4172 rcu_prepare_cpu(cpu);
4173 rcu_prepare_kthreads(cpu);
35ce7f29 4174 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
4175 break;
4176 case CPU_ONLINE:
0f962a5e 4177 case CPU_DOWN_FAILED:
5d01bbd1 4178 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
4179 break;
4180 case CPU_DOWN_PREPARE:
34ed6246 4181 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 4182 break;
d0ec774c
PM
4183 case CPU_DYING:
4184 case CPU_DYING_FROZEN:
6ce75a23
PM
4185 for_each_rcu_flavor(rsp)
4186 rcu_cleanup_dying_cpu(rsp);
d0ec774c 4187 break;
88428cc5 4188 case CPU_DYING_IDLE:
6587a23b
PM
4189 /* QS for any half-done expedited RCU-sched GP. */
4190 rcu_sched_qs();
4191
88428cc5
PM
4192 for_each_rcu_flavor(rsp) {
4193 rcu_cleanup_dying_idle_cpu(cpu, rsp);
4194 }
4195 break;
64db4cff
PM
4196 case CPU_DEAD:
4197 case CPU_DEAD_FROZEN:
4198 case CPU_UP_CANCELED:
4199 case CPU_UP_CANCELED_FROZEN:
776d6807 4200 for_each_rcu_flavor(rsp) {
6ce75a23 4201 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
4202 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
4203 }
64db4cff
PM
4204 break;
4205 default:
4206 break;
4207 }
34ed6246 4208 return NOTIFY_OK;
64db4cff
PM
4209}
4210
d1d74d14
BP
4211static int rcu_pm_notify(struct notifier_block *self,
4212 unsigned long action, void *hcpu)
4213{
4214 switch (action) {
4215 case PM_HIBERNATION_PREPARE:
4216 case PM_SUSPEND_PREPARE:
4217 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4218 rcu_expedite_gp();
d1d74d14
BP
4219 break;
4220 case PM_POST_HIBERNATION:
4221 case PM_POST_SUSPEND:
5afff48b
PM
4222 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4223 rcu_unexpedite_gp();
d1d74d14
BP
4224 break;
4225 default:
4226 break;
4227 }
4228 return NOTIFY_OK;
4229}
4230
b3dbec76 4231/*
9386c0b7 4232 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4233 */
4234static int __init rcu_spawn_gp_kthread(void)
4235{
4236 unsigned long flags;
a94844b2 4237 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4238 struct rcu_node *rnp;
4239 struct rcu_state *rsp;
a94844b2 4240 struct sched_param sp;
b3dbec76
PM
4241 struct task_struct *t;
4242
a94844b2
PM
4243 /* Force priority into range. */
4244 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4245 kthread_prio = 1;
4246 else if (kthread_prio < 0)
4247 kthread_prio = 0;
4248 else if (kthread_prio > 99)
4249 kthread_prio = 99;
4250 if (kthread_prio != kthread_prio_in)
4251 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4252 kthread_prio, kthread_prio_in);
4253
9386c0b7 4254 rcu_scheduler_fully_active = 1;
b3dbec76 4255 for_each_rcu_flavor(rsp) {
a94844b2 4256 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4257 BUG_ON(IS_ERR(t));
4258 rnp = rcu_get_root(rsp);
4259 raw_spin_lock_irqsave(&rnp->lock, flags);
4260 rsp->gp_kthread = t;
a94844b2
PM
4261 if (kthread_prio) {
4262 sp.sched_priority = kthread_prio;
4263 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4264 }
4265 wake_up_process(t);
b3dbec76
PM
4266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
4267 }
35ce7f29 4268 rcu_spawn_nocb_kthreads();
9386c0b7 4269 rcu_spawn_boost_kthreads();
b3dbec76
PM
4270 return 0;
4271}
4272early_initcall(rcu_spawn_gp_kthread);
4273
bbad9379
PM
4274/*
4275 * This function is invoked towards the end of the scheduler's initialization
4276 * process. Before this is called, the idle task might contain
4277 * RCU read-side critical sections (during which time, this idle
4278 * task is booting the system). After this function is called, the
4279 * idle tasks are prohibited from containing RCU read-side critical
4280 * sections. This function also enables RCU lockdep checking.
4281 */
4282void rcu_scheduler_starting(void)
4283{
4284 WARN_ON(num_online_cpus() != 1);
4285 WARN_ON(nr_context_switches() > 0);
4286 rcu_scheduler_active = 1;
4287}
4288
64db4cff
PM
4289/*
4290 * Compute the per-level fanout, either using the exact fanout specified
7fa27001 4291 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
64db4cff 4292 */
199977bf 4293static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
64db4cff 4294{
64db4cff
PM
4295 int i;
4296
7fa27001 4297 if (rcu_fanout_exact) {
199977bf 4298 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
66292405 4299 for (i = rcu_num_lvls - 2; i >= 0; i--)
199977bf 4300 levelspread[i] = RCU_FANOUT;
66292405
PM
4301 } else {
4302 int ccur;
4303 int cprv;
4304
4305 cprv = nr_cpu_ids;
4306 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf
AG
4307 ccur = levelcnt[i];
4308 levelspread[i] = (cprv + ccur - 1) / ccur;
66292405
PM
4309 cprv = ccur;
4310 }
64db4cff
PM
4311 }
4312}
64db4cff
PM
4313
4314/*
4315 * Helper function for rcu_init() that initializes one rcu_state structure.
4316 */
394f99a9
LJ
4317static void __init rcu_init_one(struct rcu_state *rsp,
4318 struct rcu_data __percpu *rda)
64db4cff 4319{
cb007102
AG
4320 static const char * const buf[] = RCU_NODE_NAME_INIT;
4321 static const char * const fqs[] = RCU_FQS_NAME_INIT;
385b73c0 4322 static const char * const exp[] = RCU_EXP_NAME_INIT;
4a81e832 4323 static u8 fl_mask = 0x1;
199977bf
AG
4324
4325 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4326 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4327 int cpustride = 1;
4328 int i;
4329 int j;
4330 struct rcu_node *rnp;
4331
05b84aec 4332 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4333
3eaaaf6c
PM
4334 /* Silence gcc 4.8 false positive about array index out of range. */
4335 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4336 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4337
64db4cff
PM
4338 /* Initialize the level-tracking arrays. */
4339
f885b7f2 4340 for (i = 0; i < rcu_num_lvls; i++)
199977bf 4341 levelcnt[i] = num_rcu_lvl[i];
f885b7f2 4342 for (i = 1; i < rcu_num_lvls; i++)
199977bf
AG
4343 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4344 rcu_init_levelspread(levelspread, levelcnt);
4a81e832
PM
4345 rsp->flavor_mask = fl_mask;
4346 fl_mask <<= 1;
64db4cff
PM
4347
4348 /* Initialize the elements themselves, starting from the leaves. */
4349
f885b7f2 4350 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4351 cpustride *= levelspread[i];
64db4cff 4352 rnp = rsp->level[i];
199977bf 4353 for (j = 0; j < levelcnt[i]; j++, rnp++) {
1304afb2 4354 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
4355 lockdep_set_class_and_name(&rnp->lock,
4356 &rcu_node_class[i], buf[i]);
394f2769
PM
4357 raw_spin_lock_init(&rnp->fqslock);
4358 lockdep_set_class_and_name(&rnp->fqslock,
4359 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4360 rnp->gpnum = rsp->gpnum;
4361 rnp->completed = rsp->completed;
64db4cff
PM
4362 rnp->qsmask = 0;
4363 rnp->qsmaskinit = 0;
4364 rnp->grplo = j * cpustride;
4365 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4366 if (rnp->grphi >= nr_cpu_ids)
4367 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4368 if (i == 0) {
4369 rnp->grpnum = 0;
4370 rnp->grpmask = 0;
4371 rnp->parent = NULL;
4372 } else {
199977bf 4373 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4374 rnp->grpmask = 1UL << rnp->grpnum;
4375 rnp->parent = rsp->level[i - 1] +
199977bf 4376 j / levelspread[i - 1];
64db4cff
PM
4377 }
4378 rnp->level = i;
12f5f524 4379 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4380 rcu_init_one_nocb(rnp);
385b73c0 4381 mutex_init(&rnp->exp_funnel_mutex);
83c2c735
PM
4382 lockdep_set_class_and_name(&rnp->exp_funnel_mutex,
4383 &rcu_exp_class[i], exp[i]);
64db4cff
PM
4384 }
4385 }
0c34029a 4386
b3dbec76 4387 init_waitqueue_head(&rsp->gp_wq);
f4ecea30 4388 init_waitqueue_head(&rsp->expedited_wq);
f885b7f2 4389 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4390 for_each_possible_cpu(i) {
4a90a068 4391 while (i > rnp->grphi)
0c34029a 4392 rnp++;
394f99a9 4393 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4394 rcu_boot_init_percpu_data(i, rsp);
4395 }
6ce75a23 4396 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4397}
4398
f885b7f2
PM
4399/*
4400 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4401 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4402 * the ->node array in the rcu_state structure.
4403 */
4404static void __init rcu_init_geometry(void)
4405{
026ad283 4406 ulong d;
f885b7f2 4407 int i;
05b84aec 4408 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4409
026ad283
PM
4410 /*
4411 * Initialize any unspecified boot parameters.
4412 * The default values of jiffies_till_first_fqs and
4413 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4414 * value, which is a function of HZ, then adding one for each
4415 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4416 */
4417 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4418 if (jiffies_till_first_fqs == ULONG_MAX)
4419 jiffies_till_first_fqs = d;
4420 if (jiffies_till_next_fqs == ULONG_MAX)
4421 jiffies_till_next_fqs = d;
4422
f885b7f2 4423 /* If the compile-time values are accurate, just leave. */
47d631af 4424 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4425 nr_cpu_ids == NR_CPUS)
f885b7f2 4426 return;
39479098
PM
4427 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4428 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4429
f885b7f2
PM
4430 /*
4431 * The boot-time rcu_fanout_leaf parameter is only permitted
4432 * to increase the leaf-level fanout, not decrease it. Of course,
4433 * the leaf-level fanout cannot exceed the number of bits in
75cf15a4
AG
4434 * the rcu_node masks. Complain and fall back to the compile-
4435 * time values if these limits are exceeded.
f885b7f2 4436 */
47d631af 4437 if (rcu_fanout_leaf < RCU_FANOUT_LEAF ||
75cf15a4 4438 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4439 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4440 WARN_ON(1);
4441 return;
4442 }
4443
f885b7f2
PM
4444 /*
4445 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4446 * with the given number of levels.
f885b7f2 4447 */
9618138b 4448 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4449 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4450 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4451
4452 /*
75cf15a4
AG
4453 * The tree must be able to accommodate the configured number of CPUs.
4454 * If this limit is exceeded than we have a serious problem elsewhere.
f885b7f2 4455 */
05b84aec 4456 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1])
75cf15a4 4457 panic("rcu_init_geometry: rcu_capacity[] is too small");
f885b7f2 4458
679f9858 4459 /* Calculate the number of levels in the tree. */
9618138b 4460 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4461 }
9618138b 4462 rcu_num_lvls = i + 1;
679f9858 4463
f885b7f2 4464 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4465 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4466 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4467 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4468 }
f885b7f2
PM
4469
4470 /* Calculate the total number of rcu_node structures. */
4471 rcu_num_nodes = 0;
679f9858 4472 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4473 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4474}
4475
a3dc2948
PM
4476/*
4477 * Dump out the structure of the rcu_node combining tree associated
4478 * with the rcu_state structure referenced by rsp.
4479 */
4480static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4481{
4482 int level = 0;
4483 struct rcu_node *rnp;
4484
4485 pr_info("rcu_node tree layout dump\n");
4486 pr_info(" ");
4487 rcu_for_each_node_breadth_first(rsp, rnp) {
4488 if (rnp->level != level) {
4489 pr_cont("\n");
4490 pr_info(" ");
4491 level = rnp->level;
4492 }
4493 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4494 }
4495 pr_cont("\n");
4496}
4497
9f680ab4 4498void __init rcu_init(void)
64db4cff 4499{
017c4261 4500 int cpu;
9f680ab4 4501
47627678
PM
4502 rcu_early_boot_tests();
4503
f41d911f 4504 rcu_bootup_announce();
f885b7f2 4505 rcu_init_geometry();
394f99a9 4506 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 4507 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
a3dc2948
PM
4508 if (dump_tree)
4509 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4510 __rcu_init_preempt();
b5b39360 4511 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4512
4513 /*
4514 * We don't need protection against CPU-hotplug here because
4515 * this is called early in boot, before either interrupts
4516 * or the scheduler are operational.
4517 */
4518 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 4519 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
4520 for_each_online_cpu(cpu)
4521 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
4522}
4523
4102adab 4524#include "tree_plugin.h"