]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/rcu/tree.c
rcu: Optionally run grace-period kthreads at real-time priority
[mirror_ubuntu-zesty-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a8a29b3b
AB
82#ifdef CONFIG_TRACING
83# define DEFINE_RCU_TPS(sname) \
f7f7bac9 84static char sname##_varname[] = #sname; \
a8a29b3b
AB
85static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
86# define RCU_STATE_NAME(sname) sname##_varname
87#else
88# define DEFINE_RCU_TPS(sname)
89# define RCU_STATE_NAME(sname) __stringify(sname)
90#endif
91
92#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
93DEFINE_RCU_TPS(sname) \
a41bfeb2 94struct rcu_state sname##_state = { \
6c90cc7b 95 .level = { &sname##_state.node[0] }, \
037b64ed 96 .call = cr, \
af446b70 97 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
102 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
a8a29b3b 105 .name = RCU_STATE_NAME(sname), \
a4889858 106 .abbr = sabbr, \
a41bfeb2 107}; \
11bbb235 108DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data)
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
e534165b 113static struct rcu_state *rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
f885b7f2
PM
116/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
117static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 118module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
119int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
120static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
121 NUM_RCU_LVL_0,
122 NUM_RCU_LVL_1,
123 NUM_RCU_LVL_2,
124 NUM_RCU_LVL_3,
125 NUM_RCU_LVL_4,
126};
127int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
128
b0d30417
PM
129/*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 133 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
5d01bbd1 155static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
156static void invoke_rcu_core(void);
157static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 158
a94844b2
PM
159/* rcuc/rcub kthread realtime priority */
160static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
161module_param(kthread_prio, int, 0644);
162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
284a8c93 191void rcu_sched_qs(void)
b1f77b05 192{
284a8c93
PM
193 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) {
194 trace_rcu_grace_period(TPS("rcu_sched"),
195 __this_cpu_read(rcu_sched_data.gpnum),
196 TPS("cpuqs"));
197 __this_cpu_write(rcu_sched_data.passed_quiesce, 1);
198 }
b1f77b05
IM
199}
200
284a8c93 201void rcu_bh_qs(void)
b1f77b05 202{
284a8c93
PM
203 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) {
204 trace_rcu_grace_period(TPS("rcu_bh"),
205 __this_cpu_read(rcu_bh_data.gpnum),
206 TPS("cpuqs"));
207 __this_cpu_write(rcu_bh_data.passed_quiesce, 1);
208 }
b1f77b05 209}
64db4cff 210
4a81e832
PM
211static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
212
213static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
214 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
215 .dynticks = ATOMIC_INIT(1),
216#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
217 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
218 .dynticks_idle = ATOMIC_INIT(1),
219#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
220};
221
222/*
223 * Let the RCU core know that this CPU has gone through the scheduler,
224 * which is a quiescent state. This is called when the need for a
225 * quiescent state is urgent, so we burn an atomic operation and full
226 * memory barriers to let the RCU core know about it, regardless of what
227 * this CPU might (or might not) do in the near future.
228 *
229 * We inform the RCU core by emulating a zero-duration dyntick-idle
230 * period, which we in turn do by incrementing the ->dynticks counter
231 * by two.
232 */
233static void rcu_momentary_dyntick_idle(void)
234{
235 unsigned long flags;
236 struct rcu_data *rdp;
237 struct rcu_dynticks *rdtp;
238 int resched_mask;
239 struct rcu_state *rsp;
240
241 local_irq_save(flags);
242
243 /*
244 * Yes, we can lose flag-setting operations. This is OK, because
245 * the flag will be set again after some delay.
246 */
247 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
248 raw_cpu_write(rcu_sched_qs_mask, 0);
249
250 /* Find the flavor that needs a quiescent state. */
251 for_each_rcu_flavor(rsp) {
252 rdp = raw_cpu_ptr(rsp->rda);
253 if (!(resched_mask & rsp->flavor_mask))
254 continue;
255 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
256 if (ACCESS_ONCE(rdp->mynode->completed) !=
257 ACCESS_ONCE(rdp->cond_resched_completed))
258 continue;
259
260 /*
261 * Pretend to be momentarily idle for the quiescent state.
262 * This allows the grace-period kthread to record the
263 * quiescent state, with no need for this CPU to do anything
264 * further.
265 */
266 rdtp = this_cpu_ptr(&rcu_dynticks);
267 smp_mb__before_atomic(); /* Earlier stuff before QS. */
268 atomic_add(2, &rdtp->dynticks); /* QS. */
269 smp_mb__after_atomic(); /* Later stuff after QS. */
270 break;
271 }
272 local_irq_restore(flags);
273}
274
25502a6c
PM
275/*
276 * Note a context switch. This is a quiescent state for RCU-sched,
277 * and requires special handling for preemptible RCU.
e4cc1f22 278 * The caller must have disabled preemption.
25502a6c 279 */
38200cf2 280void rcu_note_context_switch(void)
25502a6c 281{
f7f7bac9 282 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 283 rcu_sched_qs();
38200cf2 284 rcu_preempt_note_context_switch();
4a81e832
PM
285 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
286 rcu_momentary_dyntick_idle();
f7f7bac9 287 trace_rcu_utilization(TPS("End context switch"));
25502a6c 288}
29ce8310 289EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 290
878d7439
ED
291static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
292static long qhimark = 10000; /* If this many pending, ignore blimit. */
293static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 294
878d7439
ED
295module_param(blimit, long, 0444);
296module_param(qhimark, long, 0444);
297module_param(qlowmark, long, 0444);
3d76c082 298
026ad283
PM
299static ulong jiffies_till_first_fqs = ULONG_MAX;
300static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
301
302module_param(jiffies_till_first_fqs, ulong, 0644);
303module_param(jiffies_till_next_fqs, ulong, 0644);
304
4a81e832
PM
305/*
306 * How long the grace period must be before we start recruiting
307 * quiescent-state help from rcu_note_context_switch().
308 */
309static ulong jiffies_till_sched_qs = HZ / 20;
310module_param(jiffies_till_sched_qs, ulong, 0644);
311
48a7639c 312static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 313 struct rcu_data *rdp);
217af2a2
PM
314static void force_qs_rnp(struct rcu_state *rsp,
315 int (*f)(struct rcu_data *rsp, bool *isidle,
316 unsigned long *maxj),
317 bool *isidle, unsigned long *maxj);
4cdfc175 318static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 319static int rcu_pending(void);
64db4cff
PM
320
321/*
d6714c22 322 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 323 */
d6714c22 324long rcu_batches_completed_sched(void)
64db4cff 325{
d6714c22 326 return rcu_sched_state.completed;
64db4cff 327}
d6714c22 328EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
329
330/*
331 * Return the number of RCU BH batches processed thus far for debug & stats.
332 */
333long rcu_batches_completed_bh(void)
334{
335 return rcu_bh_state.completed;
336}
337EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
338
a381d757
ACB
339/*
340 * Force a quiescent state.
341 */
342void rcu_force_quiescent_state(void)
343{
e534165b 344 force_quiescent_state(rcu_state_p);
a381d757
ACB
345}
346EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
347
bf66f18e
PM
348/*
349 * Force a quiescent state for RCU BH.
350 */
351void rcu_bh_force_quiescent_state(void)
352{
4cdfc175 353 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
354}
355EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
356
afea227f
PM
357/*
358 * Show the state of the grace-period kthreads.
359 */
360void show_rcu_gp_kthreads(void)
361{
362 struct rcu_state *rsp;
363
364 for_each_rcu_flavor(rsp) {
365 pr_info("%s: wait state: %d ->state: %#lx\n",
366 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
367 /* sched_show_task(rsp->gp_kthread); */
368 }
369}
370EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
371
4a298656
PM
372/*
373 * Record the number of times rcutorture tests have been initiated and
374 * terminated. This information allows the debugfs tracing stats to be
375 * correlated to the rcutorture messages, even when the rcutorture module
376 * is being repeatedly loaded and unloaded. In other words, we cannot
377 * store this state in rcutorture itself.
378 */
379void rcutorture_record_test_transition(void)
380{
381 rcutorture_testseq++;
382 rcutorture_vernum = 0;
383}
384EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
385
ad0dc7f9
PM
386/*
387 * Send along grace-period-related data for rcutorture diagnostics.
388 */
389void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
390 unsigned long *gpnum, unsigned long *completed)
391{
392 struct rcu_state *rsp = NULL;
393
394 switch (test_type) {
395 case RCU_FLAVOR:
e534165b 396 rsp = rcu_state_p;
ad0dc7f9
PM
397 break;
398 case RCU_BH_FLAVOR:
399 rsp = &rcu_bh_state;
400 break;
401 case RCU_SCHED_FLAVOR:
402 rsp = &rcu_sched_state;
403 break;
404 default:
405 break;
406 }
407 if (rsp != NULL) {
408 *flags = ACCESS_ONCE(rsp->gp_flags);
409 *gpnum = ACCESS_ONCE(rsp->gpnum);
410 *completed = ACCESS_ONCE(rsp->completed);
411 return;
412 }
413 *flags = 0;
414 *gpnum = 0;
415 *completed = 0;
416}
417EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
418
4a298656
PM
419/*
420 * Record the number of writer passes through the current rcutorture test.
421 * This is also used to correlate debugfs tracing stats with the rcutorture
422 * messages.
423 */
424void rcutorture_record_progress(unsigned long vernum)
425{
426 rcutorture_vernum++;
427}
428EXPORT_SYMBOL_GPL(rcutorture_record_progress);
429
bf66f18e
PM
430/*
431 * Force a quiescent state for RCU-sched.
432 */
433void rcu_sched_force_quiescent_state(void)
434{
4cdfc175 435 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
436}
437EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
438
64db4cff
PM
439/*
440 * Does the CPU have callbacks ready to be invoked?
441 */
442static int
443cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
444{
3fbfbf7a
PM
445 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
446 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
447}
448
365187fb
PM
449/*
450 * Return the root node of the specified rcu_state structure.
451 */
452static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
453{
454 return &rsp->node[0];
455}
456
457/*
458 * Is there any need for future grace periods?
459 * Interrupts must be disabled. If the caller does not hold the root
460 * rnp_node structure's ->lock, the results are advisory only.
461 */
462static int rcu_future_needs_gp(struct rcu_state *rsp)
463{
464 struct rcu_node *rnp = rcu_get_root(rsp);
465 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
466 int *fp = &rnp->need_future_gp[idx];
467
468 return ACCESS_ONCE(*fp);
469}
470
64db4cff 471/*
dc35c893
PM
472 * Does the current CPU require a not-yet-started grace period?
473 * The caller must have disabled interrupts to prevent races with
474 * normal callback registry.
64db4cff
PM
475 */
476static int
477cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
478{
dc35c893 479 int i;
3fbfbf7a 480
dc35c893
PM
481 if (rcu_gp_in_progress(rsp))
482 return 0; /* No, a grace period is already in progress. */
365187fb 483 if (rcu_future_needs_gp(rsp))
34ed6246 484 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
485 if (!rdp->nxttail[RCU_NEXT_TAIL])
486 return 0; /* No, this is a no-CBs (or offline) CPU. */
487 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
488 return 1; /* Yes, this CPU has newly registered callbacks. */
489 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
490 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
491 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
492 rdp->nxtcompleted[i]))
493 return 1; /* Yes, CBs for future grace period. */
494 return 0; /* No grace period needed. */
64db4cff
PM
495}
496
9b2e4f18 497/*
adf5091e 498 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
499 *
500 * If the new value of the ->dynticks_nesting counter now is zero,
501 * we really have entered idle, and must do the appropriate accounting.
502 * The caller must have disabled interrupts.
503 */
28ced795 504static void rcu_eqs_enter_common(long long oldval, bool user)
9b2e4f18 505{
96d3fd0d
PM
506 struct rcu_state *rsp;
507 struct rcu_data *rdp;
28ced795 508 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 509
f7f7bac9 510 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 511 if (!user && !is_idle_task(current)) {
289828e6
PM
512 struct task_struct *idle __maybe_unused =
513 idle_task(smp_processor_id());
0989cb46 514
f7f7bac9 515 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 516 ftrace_dump(DUMP_ORIG);
0989cb46
PM
517 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
518 current->pid, current->comm,
519 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 520 }
96d3fd0d
PM
521 for_each_rcu_flavor(rsp) {
522 rdp = this_cpu_ptr(rsp->rda);
523 do_nocb_deferred_wakeup(rdp);
524 }
198bbf81 525 rcu_prepare_for_idle();
9b2e4f18 526 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 527 smp_mb__before_atomic(); /* See above. */
9b2e4f18 528 atomic_inc(&rdtp->dynticks);
4e857c58 529 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
9b2e4f18 530 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
176f8f7a 531 rcu_dynticks_task_enter();
c44e2cdd
PM
532
533 /*
adf5091e 534 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
535 * in an RCU read-side critical section.
536 */
537 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
538 "Illegal idle entry in RCU read-side critical section.");
539 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
540 "Illegal idle entry in RCU-bh read-side critical section.");
541 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
542 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 543}
64db4cff 544
adf5091e
FW
545/*
546 * Enter an RCU extended quiescent state, which can be either the
547 * idle loop or adaptive-tickless usermode execution.
64db4cff 548 */
adf5091e 549static void rcu_eqs_enter(bool user)
64db4cff 550{
4145fa7f 551 long long oldval;
64db4cff
PM
552 struct rcu_dynticks *rdtp;
553
c9d4b0af 554 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 555 oldval = rdtp->dynticks_nesting;
29e37d81 556 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 557 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 558 rdtp->dynticks_nesting = 0;
28ced795 559 rcu_eqs_enter_common(oldval, user);
3a592405 560 } else {
29e37d81 561 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 562 }
64db4cff 563}
adf5091e
FW
564
565/**
566 * rcu_idle_enter - inform RCU that current CPU is entering idle
567 *
568 * Enter idle mode, in other words, -leave- the mode in which RCU
569 * read-side critical sections can occur. (Though RCU read-side
570 * critical sections can occur in irq handlers in idle, a possibility
571 * handled by irq_enter() and irq_exit().)
572 *
573 * We crowbar the ->dynticks_nesting field to zero to allow for
574 * the possibility of usermode upcalls having messed up our count
575 * of interrupt nesting level during the prior busy period.
576 */
577void rcu_idle_enter(void)
578{
c5d900bf
FW
579 unsigned long flags;
580
581 local_irq_save(flags);
cb349ca9 582 rcu_eqs_enter(false);
28ced795 583 rcu_sysidle_enter(0);
c5d900bf 584 local_irq_restore(flags);
adf5091e 585}
8a2ecf47 586EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 587
2b1d5024 588#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
589/**
590 * rcu_user_enter - inform RCU that we are resuming userspace.
591 *
592 * Enter RCU idle mode right before resuming userspace. No use of RCU
593 * is permitted between this call and rcu_user_exit(). This way the
594 * CPU doesn't need to maintain the tick for RCU maintenance purposes
595 * when the CPU runs in userspace.
596 */
597void rcu_user_enter(void)
598{
91d1aa43 599 rcu_eqs_enter(1);
adf5091e 600}
2b1d5024 601#endif /* CONFIG_RCU_USER_QS */
19dd1591 602
9b2e4f18
PM
603/**
604 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
605 *
606 * Exit from an interrupt handler, which might possibly result in entering
607 * idle mode, in other words, leaving the mode in which read-side critical
608 * sections can occur.
64db4cff 609 *
9b2e4f18
PM
610 * This code assumes that the idle loop never does anything that might
611 * result in unbalanced calls to irq_enter() and irq_exit(). If your
612 * architecture violates this assumption, RCU will give you what you
613 * deserve, good and hard. But very infrequently and irreproducibly.
614 *
615 * Use things like work queues to work around this limitation.
616 *
617 * You have been warned.
64db4cff 618 */
9b2e4f18 619void rcu_irq_exit(void)
64db4cff
PM
620{
621 unsigned long flags;
4145fa7f 622 long long oldval;
64db4cff
PM
623 struct rcu_dynticks *rdtp;
624
625 local_irq_save(flags);
c9d4b0af 626 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 627 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
628 rdtp->dynticks_nesting--;
629 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 630 if (rdtp->dynticks_nesting)
f7f7bac9 631 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 632 else
28ced795
CL
633 rcu_eqs_enter_common(oldval, true);
634 rcu_sysidle_enter(1);
9b2e4f18
PM
635 local_irq_restore(flags);
636}
637
638/*
adf5091e 639 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
640 *
641 * If the new value of the ->dynticks_nesting counter was previously zero,
642 * we really have exited idle, and must do the appropriate accounting.
643 * The caller must have disabled interrupts.
644 */
28ced795 645static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 646{
28ced795
CL
647 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
648
176f8f7a 649 rcu_dynticks_task_exit();
4e857c58 650 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
23b5c8fa
PM
651 atomic_inc(&rdtp->dynticks);
652 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
4e857c58 653 smp_mb__after_atomic(); /* See above. */
23b5c8fa 654 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
8fa7845d 655 rcu_cleanup_after_idle();
f7f7bac9 656 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 657 if (!user && !is_idle_task(current)) {
289828e6
PM
658 struct task_struct *idle __maybe_unused =
659 idle_task(smp_processor_id());
0989cb46 660
f7f7bac9 661 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 662 oldval, rdtp->dynticks_nesting);
bf1304e9 663 ftrace_dump(DUMP_ORIG);
0989cb46
PM
664 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
665 current->pid, current->comm,
666 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
667 }
668}
669
adf5091e
FW
670/*
671 * Exit an RCU extended quiescent state, which can be either the
672 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 673 */
adf5091e 674static void rcu_eqs_exit(bool user)
9b2e4f18 675{
9b2e4f18
PM
676 struct rcu_dynticks *rdtp;
677 long long oldval;
678
c9d4b0af 679 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 680 oldval = rdtp->dynticks_nesting;
29e37d81 681 WARN_ON_ONCE(oldval < 0);
3a592405 682 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 683 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 684 } else {
29e37d81 685 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 686 rcu_eqs_exit_common(oldval, user);
3a592405 687 }
9b2e4f18 688}
adf5091e
FW
689
690/**
691 * rcu_idle_exit - inform RCU that current CPU is leaving idle
692 *
693 * Exit idle mode, in other words, -enter- the mode in which RCU
694 * read-side critical sections can occur.
695 *
696 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
697 * allow for the possibility of usermode upcalls messing up our count
698 * of interrupt nesting level during the busy period that is just
699 * now starting.
700 */
701void rcu_idle_exit(void)
702{
c5d900bf
FW
703 unsigned long flags;
704
705 local_irq_save(flags);
cb349ca9 706 rcu_eqs_exit(false);
28ced795 707 rcu_sysidle_exit(0);
c5d900bf 708 local_irq_restore(flags);
adf5091e 709}
8a2ecf47 710EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 711
2b1d5024 712#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
713/**
714 * rcu_user_exit - inform RCU that we are exiting userspace.
715 *
716 * Exit RCU idle mode while entering the kernel because it can
717 * run a RCU read side critical section anytime.
718 */
719void rcu_user_exit(void)
720{
91d1aa43 721 rcu_eqs_exit(1);
adf5091e 722}
2b1d5024 723#endif /* CONFIG_RCU_USER_QS */
19dd1591 724
9b2e4f18
PM
725/**
726 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
727 *
728 * Enter an interrupt handler, which might possibly result in exiting
729 * idle mode, in other words, entering the mode in which read-side critical
730 * sections can occur.
731 *
732 * Note that the Linux kernel is fully capable of entering an interrupt
733 * handler that it never exits, for example when doing upcalls to
734 * user mode! This code assumes that the idle loop never does upcalls to
735 * user mode. If your architecture does do upcalls from the idle loop (or
736 * does anything else that results in unbalanced calls to the irq_enter()
737 * and irq_exit() functions), RCU will give you what you deserve, good
738 * and hard. But very infrequently and irreproducibly.
739 *
740 * Use things like work queues to work around this limitation.
741 *
742 * You have been warned.
743 */
744void rcu_irq_enter(void)
745{
746 unsigned long flags;
747 struct rcu_dynticks *rdtp;
748 long long oldval;
749
750 local_irq_save(flags);
c9d4b0af 751 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
752 oldval = rdtp->dynticks_nesting;
753 rdtp->dynticks_nesting++;
754 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 755 if (oldval)
f7f7bac9 756 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 757 else
28ced795
CL
758 rcu_eqs_exit_common(oldval, true);
759 rcu_sysidle_exit(1);
64db4cff 760 local_irq_restore(flags);
64db4cff
PM
761}
762
763/**
764 * rcu_nmi_enter - inform RCU of entry to NMI context
765 *
734d1680
PM
766 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
767 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
768 * that the CPU is active. This implementation permits nested NMIs, as
769 * long as the nesting level does not overflow an int. (You will probably
770 * run out of stack space first.)
64db4cff
PM
771 */
772void rcu_nmi_enter(void)
773{
c9d4b0af 774 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 775 int incby = 2;
64db4cff 776
734d1680
PM
777 /* Complain about underflow. */
778 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
779
780 /*
781 * If idle from RCU viewpoint, atomically increment ->dynticks
782 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
783 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
784 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
785 * to be in the outermost NMI handler that interrupted an RCU-idle
786 * period (observation due to Andy Lutomirski).
787 */
788 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
789 smp_mb__before_atomic(); /* Force delay from prior write. */
790 atomic_inc(&rdtp->dynticks);
791 /* atomic_inc() before later RCU read-side crit sects */
792 smp_mb__after_atomic(); /* See above. */
793 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
794 incby = 1;
795 }
796 rdtp->dynticks_nmi_nesting += incby;
797 barrier();
64db4cff
PM
798}
799
800/**
801 * rcu_nmi_exit - inform RCU of exit from NMI context
802 *
734d1680
PM
803 * If we are returning from the outermost NMI handler that interrupted an
804 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
805 * to let the RCU grace-period handling know that the CPU is back to
806 * being RCU-idle.
64db4cff
PM
807 */
808void rcu_nmi_exit(void)
809{
c9d4b0af 810 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 811
734d1680
PM
812 /*
813 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
814 * (We are exiting an NMI handler, so RCU better be paying attention
815 * to us!)
816 */
817 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
818 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
819
820 /*
821 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
822 * leave it in non-RCU-idle state.
823 */
824 if (rdtp->dynticks_nmi_nesting != 1) {
825 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 826 return;
734d1680
PM
827 }
828
829 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
830 rdtp->dynticks_nmi_nesting = 0;
23b5c8fa 831 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
4e857c58 832 smp_mb__before_atomic(); /* See above. */
23b5c8fa 833 atomic_inc(&rdtp->dynticks);
4e857c58 834 smp_mb__after_atomic(); /* Force delay to next write. */
23b5c8fa 835 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
836}
837
838/**
5c173eb8
PM
839 * __rcu_is_watching - are RCU read-side critical sections safe?
840 *
841 * Return true if RCU is watching the running CPU, which means that
842 * this CPU can safely enter RCU read-side critical sections. Unlike
843 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
844 * least disabled preemption.
845 */
9418fb20 846bool notrace __rcu_is_watching(void)
5c173eb8
PM
847{
848 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
849}
850
851/**
852 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 853 *
9b2e4f18 854 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 855 * or NMI handler, return true.
64db4cff 856 */
9418fb20 857bool notrace rcu_is_watching(void)
64db4cff 858{
f534ed1f 859 bool ret;
34240697
PM
860
861 preempt_disable();
5c173eb8 862 ret = __rcu_is_watching();
34240697
PM
863 preempt_enable();
864 return ret;
64db4cff 865}
5c173eb8 866EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 867
62fde6ed 868#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
869
870/*
871 * Is the current CPU online? Disable preemption to avoid false positives
872 * that could otherwise happen due to the current CPU number being sampled,
873 * this task being preempted, its old CPU being taken offline, resuming
874 * on some other CPU, then determining that its old CPU is now offline.
875 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
876 * the check for rcu_scheduler_fully_active. Note also that it is OK
877 * for a CPU coming online to use RCU for one jiffy prior to marking itself
878 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
879 * offline to continue to use RCU for one jiffy after marking itself
880 * offline in the cpu_online_mask. This leniency is necessary given the
881 * non-atomic nature of the online and offline processing, for example,
882 * the fact that a CPU enters the scheduler after completing the CPU_DYING
883 * notifiers.
884 *
885 * This is also why RCU internally marks CPUs online during the
886 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
887 *
888 * Disable checking if in an NMI handler because we cannot safely report
889 * errors from NMI handlers anyway.
890 */
891bool rcu_lockdep_current_cpu_online(void)
892{
2036d94a
PM
893 struct rcu_data *rdp;
894 struct rcu_node *rnp;
c0d6d01b
PM
895 bool ret;
896
897 if (in_nmi())
f6f7ee9a 898 return true;
c0d6d01b 899 preempt_disable();
c9d4b0af 900 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
901 rnp = rdp->mynode;
902 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
903 !rcu_scheduler_fully_active;
904 preempt_enable();
905 return ret;
906}
907EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
908
62fde6ed 909#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 910
64db4cff 911/**
9b2e4f18 912 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 913 *
9b2e4f18
PM
914 * If the current CPU is idle or running at a first-level (not nested)
915 * interrupt from idle, return true. The caller must have at least
916 * disabled preemption.
64db4cff 917 */
62e3cb14 918static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 919{
c9d4b0af 920 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
921}
922
64db4cff
PM
923/*
924 * Snapshot the specified CPU's dynticks counter so that we can later
925 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 926 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 927 */
217af2a2
PM
928static int dyntick_save_progress_counter(struct rcu_data *rdp,
929 bool *isidle, unsigned long *maxj)
64db4cff 930{
23b5c8fa 931 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 932 rcu_sysidle_check_cpu(rdp, isidle, maxj);
7941dbde
ACB
933 if ((rdp->dynticks_snap & 0x1) == 0) {
934 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
935 return 1;
936 } else {
e3663b10
PM
937 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4,
938 rdp->mynode->gpnum))
939 ACCESS_ONCE(rdp->gpwrap) = true;
7941dbde
ACB
940 return 0;
941 }
64db4cff
PM
942}
943
6193c76a
PM
944/*
945 * This function really isn't for public consumption, but RCU is special in
946 * that context switches can allow the state machine to make progress.
947 */
948extern void resched_cpu(int cpu);
949
64db4cff
PM
950/*
951 * Return true if the specified CPU has passed through a quiescent
952 * state by virtue of being in or having passed through an dynticks
953 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 954 * for this same CPU, or by virtue of having been offline.
64db4cff 955 */
217af2a2
PM
956static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
957 bool *isidle, unsigned long *maxj)
64db4cff 958{
7eb4f455 959 unsigned int curr;
4a81e832 960 int *rcrmp;
7eb4f455 961 unsigned int snap;
64db4cff 962
7eb4f455
PM
963 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
964 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
965
966 /*
967 * If the CPU passed through or entered a dynticks idle phase with
968 * no active irq/NMI handlers, then we can safely pretend that the CPU
969 * already acknowledged the request to pass through a quiescent
970 * state. Either way, that CPU cannot possibly be in an RCU
971 * read-side critical section that started before the beginning
972 * of the current RCU grace period.
973 */
7eb4f455 974 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 975 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
976 rdp->dynticks_fqs++;
977 return 1;
978 }
979
a82dcc76
PM
980 /*
981 * Check for the CPU being offline, but only if the grace period
982 * is old enough. We don't need to worry about the CPU changing
983 * state: If we see it offline even once, it has been through a
984 * quiescent state.
985 *
986 * The reason for insisting that the grace period be at least
987 * one jiffy old is that CPUs that are not quite online and that
988 * have just gone offline can still execute RCU read-side critical
989 * sections.
990 */
991 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
992 return 0; /* Grace period is not old enough. */
993 barrier();
994 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 995 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
996 rdp->offline_fqs++;
997 return 1;
998 }
65d798f0
PM
999
1000 /*
4a81e832
PM
1001 * A CPU running for an extended time within the kernel can
1002 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1003 * even context-switching back and forth between a pair of
1004 * in-kernel CPU-bound tasks cannot advance grace periods.
1005 * So if the grace period is old enough, make the CPU pay attention.
1006 * Note that the unsynchronized assignments to the per-CPU
1007 * rcu_sched_qs_mask variable are safe. Yes, setting of
1008 * bits can be lost, but they will be set again on the next
1009 * force-quiescent-state pass. So lost bit sets do not result
1010 * in incorrect behavior, merely in a grace period lasting
1011 * a few jiffies longer than it might otherwise. Because
1012 * there are at most four threads involved, and because the
1013 * updates are only once every few jiffies, the probability of
1014 * lossage (and thus of slight grace-period extension) is
1015 * quite low.
1016 *
1017 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1018 * is set too high, we override with half of the RCU CPU stall
1019 * warning delay.
6193c76a 1020 */
4a81e832
PM
1021 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1022 if (ULONG_CMP_GE(jiffies,
1023 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
cb1e78cf 1024 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
4a81e832
PM
1025 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1026 ACCESS_ONCE(rdp->cond_resched_completed) =
1027 ACCESS_ONCE(rdp->mynode->completed);
1028 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1029 ACCESS_ONCE(*rcrmp) =
1030 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
1031 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1032 rdp->rsp->jiffies_resched += 5; /* Enable beating. */
1033 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1034 /* Time to beat on that CPU again! */
1035 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1036 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1037 }
6193c76a
PM
1038 }
1039
a82dcc76 1040 return 0;
64db4cff
PM
1041}
1042
64db4cff
PM
1043static void record_gp_stall_check_time(struct rcu_state *rsp)
1044{
cb1e78cf 1045 unsigned long j = jiffies;
6193c76a 1046 unsigned long j1;
26cdfedf
PM
1047
1048 rsp->gp_start = j;
1049 smp_wmb(); /* Record start time before stall time. */
6193c76a 1050 j1 = rcu_jiffies_till_stall_check();
4fc5b755 1051 ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
6193c76a 1052 rsp->jiffies_resched = j + j1 / 2;
fc908ed3 1053 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs);
64db4cff
PM
1054}
1055
b637a328 1056/*
bc1dce51 1057 * Dump stacks of all tasks running on stalled CPUs.
b637a328
PM
1058 */
1059static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1060{
1061 int cpu;
1062 unsigned long flags;
1063 struct rcu_node *rnp;
1064
1065 rcu_for_each_leaf_node(rsp, rnp) {
1066 raw_spin_lock_irqsave(&rnp->lock, flags);
1067 if (rnp->qsmask != 0) {
1068 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1069 if (rnp->qsmask & (1UL << cpu))
1070 dump_cpu_task(rnp->grplo + cpu);
1071 }
1072 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1073 }
1074}
1075
6ccd2ecd 1076static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1077{
1078 int cpu;
1079 long delta;
1080 unsigned long flags;
6ccd2ecd
PM
1081 unsigned long gpa;
1082 unsigned long j;
285fe294 1083 int ndetected = 0;
64db4cff 1084 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1085 long totqlen = 0;
64db4cff
PM
1086
1087 /* Only let one CPU complain about others per time interval. */
1088
1304afb2 1089 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755 1090 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
fc2219d4 1091 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 1092 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1093 return;
1094 }
4fc5b755 1095 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1096 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1097
8cdd32a9
PM
1098 /*
1099 * OK, time to rat on our buddy...
1100 * See Documentation/RCU/stallwarn.txt for info on how to debug
1101 * RCU CPU stall warnings.
1102 */
d7f3e207 1103 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1104 rsp->name);
a858af28 1105 print_cpu_stall_info_begin();
a0b6c9a7 1106 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 1107 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 1108 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
1109 if (rnp->qsmask != 0) {
1110 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
1111 if (rnp->qsmask & (1UL << cpu)) {
1112 print_cpu_stall_info(rsp,
1113 rnp->grplo + cpu);
1114 ndetected++;
1115 }
1116 }
3acd9eb3 1117 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1118 }
a858af28
PM
1119
1120 /*
1121 * Now rat on any tasks that got kicked up to the root rcu_node
1122 * due to CPU offlining.
1123 */
1124 rnp = rcu_get_root(rsp);
1125 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 1126 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
1127 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1128
1129 print_cpu_stall_info_end();
53bb857c
PM
1130 for_each_possible_cpu(cpu)
1131 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e 1132 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1133 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1134 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1135 if (ndetected) {
b637a328 1136 rcu_dump_cpu_stacks(rsp);
6ccd2ecd
PM
1137 } else {
1138 if (ACCESS_ONCE(rsp->gpnum) != gpnum ||
1139 ACCESS_ONCE(rsp->completed) == gpnum) {
1140 pr_err("INFO: Stall ended before state dump start\n");
1141 } else {
1142 j = jiffies;
1143 gpa = ACCESS_ONCE(rsp->gp_activity);
1144 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n",
1145 rsp->name, j - gpa, j, gpa,
1146 jiffies_till_next_fqs);
1147 /* In this case, the current CPU might be at fault. */
1148 sched_show_task(current);
1149 }
1150 }
c1dc0b9c 1151
4cdfc175 1152 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
1153
1154 rcu_print_detail_task_stall(rsp);
1155
4cdfc175 1156 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1157}
1158
1159static void print_cpu_stall(struct rcu_state *rsp)
1160{
53bb857c 1161 int cpu;
64db4cff
PM
1162 unsigned long flags;
1163 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1164 long totqlen = 0;
64db4cff 1165
8cdd32a9
PM
1166 /*
1167 * OK, time to rat on ourselves...
1168 * See Documentation/RCU/stallwarn.txt for info on how to debug
1169 * RCU CPU stall warnings.
1170 */
d7f3e207 1171 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1172 print_cpu_stall_info_begin();
1173 print_cpu_stall_info(rsp, smp_processor_id());
1174 print_cpu_stall_info_end();
53bb857c
PM
1175 for_each_possible_cpu(cpu)
1176 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
83ebe63e
PM
1177 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1178 jiffies - rsp->gp_start,
1179 (long)rsp->gpnum, (long)rsp->completed, totqlen);
bc1dce51 1180 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1181
1304afb2 1182 raw_spin_lock_irqsave(&rnp->lock, flags);
4fc5b755
IM
1183 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
1184 ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
6bfc09e2 1185 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1186 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1187
b021fe3e
PZ
1188 /*
1189 * Attempt to revive the RCU machinery by forcing a context switch.
1190 *
1191 * A context switch would normally allow the RCU state machine to make
1192 * progress and it could be we're stuck in kernel space without context
1193 * switches for an entirely unreasonable amount of time.
1194 */
1195 resched_cpu(smp_processor_id());
64db4cff
PM
1196}
1197
1198static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1199{
26cdfedf
PM
1200 unsigned long completed;
1201 unsigned long gpnum;
1202 unsigned long gps;
bad6e139
PM
1203 unsigned long j;
1204 unsigned long js;
64db4cff
PM
1205 struct rcu_node *rnp;
1206
26cdfedf 1207 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1208 return;
cb1e78cf 1209 j = jiffies;
26cdfedf
PM
1210
1211 /*
1212 * Lots of memory barriers to reject false positives.
1213 *
1214 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1215 * then rsp->gp_start, and finally rsp->completed. These values
1216 * are updated in the opposite order with memory barriers (or
1217 * equivalent) during grace-period initialization and cleanup.
1218 * Now, a false positive can occur if we get an new value of
1219 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1220 * the memory barriers, the only way that this can happen is if one
1221 * grace period ends and another starts between these two fetches.
1222 * Detect this by comparing rsp->completed with the previous fetch
1223 * from rsp->gpnum.
1224 *
1225 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1226 * and rsp->gp_start suffice to forestall false positives.
1227 */
1228 gpnum = ACCESS_ONCE(rsp->gpnum);
1229 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1230 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1231 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1232 gps = ACCESS_ONCE(rsp->gp_start);
1233 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1234 completed = ACCESS_ONCE(rsp->completed);
1235 if (ULONG_CMP_GE(completed, gpnum) ||
1236 ULONG_CMP_LT(j, js) ||
1237 ULONG_CMP_GE(gps, js))
1238 return; /* No stall or GP completed since entering function. */
64db4cff 1239 rnp = rdp->mynode;
c96ea7cf 1240 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1241 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1242
1243 /* We haven't checked in, so go dump stack. */
1244 print_cpu_stall(rsp);
1245
bad6e139
PM
1246 } else if (rcu_gp_in_progress(rsp) &&
1247 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1248
bad6e139 1249 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1250 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1251 }
1252}
1253
53d84e00
PM
1254/**
1255 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1256 *
1257 * Set the stall-warning timeout way off into the future, thus preventing
1258 * any RCU CPU stall-warning messages from appearing in the current set of
1259 * RCU grace periods.
1260 *
1261 * The caller must disable hard irqs.
1262 */
1263void rcu_cpu_stall_reset(void)
1264{
6ce75a23
PM
1265 struct rcu_state *rsp;
1266
1267 for_each_rcu_flavor(rsp)
4fc5b755 1268 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
53d84e00
PM
1269}
1270
3f5d3ea6
PM
1271/*
1272 * Initialize the specified rcu_data structure's callback list to empty.
1273 */
1274static void init_callback_list(struct rcu_data *rdp)
1275{
1276 int i;
1277
34ed6246
PM
1278 if (init_nocb_callback_list(rdp))
1279 return;
3f5d3ea6
PM
1280 rdp->nxtlist = NULL;
1281 for (i = 0; i < RCU_NEXT_SIZE; i++)
1282 rdp->nxttail[i] = &rdp->nxtlist;
1283}
1284
dc35c893
PM
1285/*
1286 * Determine the value that ->completed will have at the end of the
1287 * next subsequent grace period. This is used to tag callbacks so that
1288 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1289 * been dyntick-idle for an extended period with callbacks under the
1290 * influence of RCU_FAST_NO_HZ.
1291 *
1292 * The caller must hold rnp->lock with interrupts disabled.
1293 */
1294static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1295 struct rcu_node *rnp)
1296{
1297 /*
1298 * If RCU is idle, we just wait for the next grace period.
1299 * But we can only be sure that RCU is idle if we are looking
1300 * at the root rcu_node structure -- otherwise, a new grace
1301 * period might have started, but just not yet gotten around
1302 * to initializing the current non-root rcu_node structure.
1303 */
1304 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1305 return rnp->completed + 1;
1306
1307 /*
1308 * Otherwise, wait for a possible partial grace period and
1309 * then the subsequent full grace period.
1310 */
1311 return rnp->completed + 2;
1312}
1313
0446be48
PM
1314/*
1315 * Trace-event helper function for rcu_start_future_gp() and
1316 * rcu_nocb_wait_gp().
1317 */
1318static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1319 unsigned long c, const char *s)
0446be48
PM
1320{
1321 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1322 rnp->completed, c, rnp->level,
1323 rnp->grplo, rnp->grphi, s);
1324}
1325
1326/*
1327 * Start some future grace period, as needed to handle newly arrived
1328 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1329 * rcu_node structure's ->need_future_gp field. Returns true if there
1330 * is reason to awaken the grace-period kthread.
0446be48
PM
1331 *
1332 * The caller must hold the specified rcu_node structure's ->lock.
1333 */
48a7639c
PM
1334static bool __maybe_unused
1335rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1336 unsigned long *c_out)
0446be48
PM
1337{
1338 unsigned long c;
1339 int i;
48a7639c 1340 bool ret = false;
0446be48
PM
1341 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1342
1343 /*
1344 * Pick up grace-period number for new callbacks. If this
1345 * grace period is already marked as needed, return to the caller.
1346 */
1347 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1348 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1349 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1350 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1351 goto out;
0446be48
PM
1352 }
1353
1354 /*
1355 * If either this rcu_node structure or the root rcu_node structure
1356 * believe that a grace period is in progress, then we must wait
1357 * for the one following, which is in "c". Because our request
1358 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1359 * need to explicitly start one. We only do the lockless check
1360 * of rnp_root's fields if the current rcu_node structure thinks
1361 * there is no grace period in flight, and because we hold rnp->lock,
1362 * the only possible change is when rnp_root's two fields are
1363 * equal, in which case rnp_root->gpnum might be concurrently
1364 * incremented. But that is OK, as it will just result in our
1365 * doing some extra useless work.
0446be48
PM
1366 */
1367 if (rnp->gpnum != rnp->completed ||
48bd8e9b 1368 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) {
0446be48 1369 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1370 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1371 goto out;
0446be48
PM
1372 }
1373
1374 /*
1375 * There might be no grace period in progress. If we don't already
1376 * hold it, acquire the root rcu_node structure's lock in order to
1377 * start one (if needed).
1378 */
6303b9c8 1379 if (rnp != rnp_root) {
0446be48 1380 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1381 smp_mb__after_unlock_lock();
1382 }
0446be48
PM
1383
1384 /*
1385 * Get a new grace-period number. If there really is no grace
1386 * period in progress, it will be smaller than the one we obtained
1387 * earlier. Adjust callbacks as needed. Note that even no-CBs
1388 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1389 */
1390 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1391 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1392 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1393 rdp->nxtcompleted[i] = c;
1394
1395 /*
1396 * If the needed for the required grace period is already
1397 * recorded, trace and leave.
1398 */
1399 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1400 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1401 goto unlock_out;
1402 }
1403
1404 /* Record the need for the future grace period. */
1405 rnp_root->need_future_gp[c & 0x1]++;
1406
1407 /* If a grace period is not already in progress, start one. */
1408 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1409 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1410 } else {
f7f7bac9 1411 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1412 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1413 }
1414unlock_out:
1415 if (rnp != rnp_root)
1416 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
1417out:
1418 if (c_out != NULL)
1419 *c_out = c;
1420 return ret;
0446be48
PM
1421}
1422
1423/*
1424 * Clean up any old requests for the just-ended grace period. Also return
1425 * whether any additional grace periods have been requested. Also invoke
1426 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1427 * waiting for this grace period to complete.
1428 */
1429static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1430{
1431 int c = rnp->completed;
1432 int needmore;
1433 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1434
1435 rcu_nocb_gp_cleanup(rsp, rnp);
1436 rnp->need_future_gp[c & 0x1] = 0;
1437 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1438 trace_rcu_future_gp(rnp, rdp, c,
1439 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1440 return needmore;
1441}
1442
48a7639c
PM
1443/*
1444 * Awaken the grace-period kthread for the specified flavor of RCU.
1445 * Don't do a self-awaken, and don't bother awakening when there is
1446 * nothing for the grace-period kthread to do (as in several CPUs
1447 * raced to awaken, and we lost), and finally don't try to awaken
1448 * a kthread that has not yet been created.
1449 */
1450static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1451{
1452 if (current == rsp->gp_kthread ||
1453 !ACCESS_ONCE(rsp->gp_flags) ||
1454 !rsp->gp_kthread)
1455 return;
1456 wake_up(&rsp->gp_wq);
1457}
1458
dc35c893
PM
1459/*
1460 * If there is room, assign a ->completed number to any callbacks on
1461 * this CPU that have not already been assigned. Also accelerate any
1462 * callbacks that were previously assigned a ->completed number that has
1463 * since proven to be too conservative, which can happen if callbacks get
1464 * assigned a ->completed number while RCU is idle, but with reference to
1465 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1466 * not hurt to call it repeatedly. Returns an flag saying that we should
1467 * awaken the RCU grace-period kthread.
dc35c893
PM
1468 *
1469 * The caller must hold rnp->lock with interrupts disabled.
1470 */
48a7639c 1471static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1472 struct rcu_data *rdp)
1473{
1474 unsigned long c;
1475 int i;
48a7639c 1476 bool ret;
dc35c893
PM
1477
1478 /* If the CPU has no callbacks, nothing to do. */
1479 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1480 return false;
dc35c893
PM
1481
1482 /*
1483 * Starting from the sublist containing the callbacks most
1484 * recently assigned a ->completed number and working down, find the
1485 * first sublist that is not assignable to an upcoming grace period.
1486 * Such a sublist has something in it (first two tests) and has
1487 * a ->completed number assigned that will complete sooner than
1488 * the ->completed number for newly arrived callbacks (last test).
1489 *
1490 * The key point is that any later sublist can be assigned the
1491 * same ->completed number as the newly arrived callbacks, which
1492 * means that the callbacks in any of these later sublist can be
1493 * grouped into a single sublist, whether or not they have already
1494 * been assigned a ->completed number.
1495 */
1496 c = rcu_cbs_completed(rsp, rnp);
1497 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1498 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1499 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1500 break;
1501
1502 /*
1503 * If there are no sublist for unassigned callbacks, leave.
1504 * At the same time, advance "i" one sublist, so that "i" will
1505 * index into the sublist where all the remaining callbacks should
1506 * be grouped into.
1507 */
1508 if (++i >= RCU_NEXT_TAIL)
48a7639c 1509 return false;
dc35c893
PM
1510
1511 /*
1512 * Assign all subsequent callbacks' ->completed number to the next
1513 * full grace period and group them all in the sublist initially
1514 * indexed by "i".
1515 */
1516 for (; i <= RCU_NEXT_TAIL; i++) {
1517 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1518 rdp->nxtcompleted[i] = c;
1519 }
910ee45d 1520 /* Record any needed additional grace periods. */
48a7639c 1521 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1522
1523 /* Trace depending on how much we were able to accelerate. */
1524 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1525 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1526 else
f7f7bac9 1527 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1528 return ret;
dc35c893
PM
1529}
1530
1531/*
1532 * Move any callbacks whose grace period has completed to the
1533 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1534 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1535 * sublist. This function is idempotent, so it does not hurt to
1536 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1537 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1538 *
1539 * The caller must hold rnp->lock with interrupts disabled.
1540 */
48a7639c 1541static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1542 struct rcu_data *rdp)
1543{
1544 int i, j;
1545
1546 /* If the CPU has no callbacks, nothing to do. */
1547 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
48a7639c 1548 return false;
dc35c893
PM
1549
1550 /*
1551 * Find all callbacks whose ->completed numbers indicate that they
1552 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1553 */
1554 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1555 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1556 break;
1557 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1558 }
1559 /* Clean up any sublist tail pointers that were misordered above. */
1560 for (j = RCU_WAIT_TAIL; j < i; j++)
1561 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1562
1563 /* Copy down callbacks to fill in empty sublists. */
1564 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1565 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1566 break;
1567 rdp->nxttail[j] = rdp->nxttail[i];
1568 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1569 }
1570
1571 /* Classify any remaining callbacks. */
48a7639c 1572 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1573}
1574
d09b62df 1575/*
ba9fbe95
PM
1576 * Update CPU-local rcu_data state to record the beginnings and ends of
1577 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1578 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1579 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1580 */
48a7639c
PM
1581static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1582 struct rcu_data *rdp)
d09b62df 1583{
48a7639c
PM
1584 bool ret;
1585
ba9fbe95 1586 /* Handle the ends of any preceding grace periods first. */
e3663b10
PM
1587 if (rdp->completed == rnp->completed &&
1588 !unlikely(ACCESS_ONCE(rdp->gpwrap))) {
d09b62df 1589
ba9fbe95 1590 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1591 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1592
dc35c893
PM
1593 } else {
1594
1595 /* Advance callbacks. */
48a7639c 1596 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1597
1598 /* Remember that we saw this grace-period completion. */
1599 rdp->completed = rnp->completed;
f7f7bac9 1600 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1601 }
398ebe60 1602
e3663b10 1603 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) {
6eaef633
PM
1604 /*
1605 * If the current grace period is waiting for this CPU,
1606 * set up to detect a quiescent state, otherwise don't
1607 * go looking for one.
1608 */
1609 rdp->gpnum = rnp->gpnum;
f7f7bac9 1610 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1611 rdp->passed_quiesce = 0;
1612 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1613 zero_cpu_stall_ticks(rdp);
e3663b10 1614 ACCESS_ONCE(rdp->gpwrap) = false;
6eaef633 1615 }
48a7639c 1616 return ret;
6eaef633
PM
1617}
1618
d34ea322 1619static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1620{
1621 unsigned long flags;
48a7639c 1622 bool needwake;
6eaef633
PM
1623 struct rcu_node *rnp;
1624
1625 local_irq_save(flags);
1626 rnp = rdp->mynode;
d34ea322 1627 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
e3663b10
PM
1628 rdp->completed == ACCESS_ONCE(rnp->completed) &&
1629 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */
6eaef633
PM
1630 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1631 local_irq_restore(flags);
1632 return;
1633 }
6303b9c8 1634 smp_mb__after_unlock_lock();
48a7639c 1635 needwake = __note_gp_changes(rsp, rnp, rdp);
6eaef633 1636 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
1637 if (needwake)
1638 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1639}
1640
b3dbec76 1641/*
f7be8209 1642 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1643 */
7fdefc10 1644static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1645{
1646 struct rcu_data *rdp;
7fdefc10 1647 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1648
6ccd2ecd 1649 ACCESS_ONCE(rsp->gp_activity) = jiffies;
eb75767b 1650 rcu_bind_gp_kthread();
7fdefc10 1651 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1652 smp_mb__after_unlock_lock();
91dc9542 1653 if (!ACCESS_ONCE(rsp->gp_flags)) {
f7be8209
PM
1654 /* Spurious wakeup, tell caller to go back to sleep. */
1655 raw_spin_unlock_irq(&rnp->lock);
1656 return 0;
1657 }
91dc9542 1658 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
b3dbec76 1659
f7be8209
PM
1660 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1661 /*
1662 * Grace period already in progress, don't start another.
1663 * Not supposed to be able to happen.
1664 */
7fdefc10
PM
1665 raw_spin_unlock_irq(&rnp->lock);
1666 return 0;
1667 }
1668
7fdefc10 1669 /* Advance to a new grace period and initialize state. */
26cdfedf 1670 record_gp_stall_check_time(rsp);
765a3f4f
PM
1671 /* Record GP times before starting GP, hence smp_store_release(). */
1672 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1673 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1674 raw_spin_unlock_irq(&rnp->lock);
1675
1676 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1677 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1678 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1679
1680 /*
1681 * Set the quiescent-state-needed bits in all the rcu_node
1682 * structures for all currently online CPUs in breadth-first order,
1683 * starting from the root rcu_node structure, relying on the layout
1684 * of the tree within the rsp->node[] array. Note that other CPUs
1685 * will access only the leaves of the hierarchy, thus seeing that no
1686 * grace period is in progress, at least until the corresponding
1687 * leaf node has been initialized. In addition, we have excluded
1688 * CPU-hotplug operations.
1689 *
1690 * The grace period cannot complete until the initialization
1691 * process finishes, because this kthread handles both.
1692 */
1693 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1694 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1695 smp_mb__after_unlock_lock();
b3dbec76 1696 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1697 rcu_preempt_check_blocked_tasks(rnp);
1698 rnp->qsmask = rnp->qsmaskinit;
0446be48 1699 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1700 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1701 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1702 if (rnp == rdp->mynode)
48a7639c 1703 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1704 rcu_preempt_boost_start_gp(rnp);
1705 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1706 rnp->level, rnp->grplo,
1707 rnp->grphi, rnp->qsmask);
1708 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1709 cond_resched_rcu_qs();
6ccd2ecd 1710 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1711 }
b3dbec76 1712
a4fbe35a 1713 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1714 return 1;
1715}
b3dbec76 1716
4cdfc175
PM
1717/*
1718 * Do one round of quiescent-state forcing.
1719 */
01896f7e 1720static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1721{
1722 int fqs_state = fqs_state_in;
217af2a2
PM
1723 bool isidle = false;
1724 unsigned long maxj;
4cdfc175
PM
1725 struct rcu_node *rnp = rcu_get_root(rsp);
1726
6ccd2ecd 1727 ACCESS_ONCE(rsp->gp_activity) = jiffies;
4cdfc175
PM
1728 rsp->n_force_qs++;
1729 if (fqs_state == RCU_SAVE_DYNTICK) {
1730 /* Collect dyntick-idle snapshots. */
0edd1b17 1731 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 1732 isidle = true;
0edd1b17
PM
1733 maxj = jiffies - ULONG_MAX / 4;
1734 }
217af2a2
PM
1735 force_qs_rnp(rsp, dyntick_save_progress_counter,
1736 &isidle, &maxj);
0edd1b17 1737 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1738 fqs_state = RCU_FORCE_QS;
1739 } else {
1740 /* Handle dyntick-idle and offline CPUs. */
e02b2edf 1741 isidle = false;
217af2a2 1742 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1743 }
1744 /* Clear flag to prevent immediate re-entry. */
1745 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1746 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1747 smp_mb__after_unlock_lock();
4de376a1
PK
1748 ACCESS_ONCE(rsp->gp_flags) =
1749 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS;
4cdfc175
PM
1750 raw_spin_unlock_irq(&rnp->lock);
1751 }
1752 return fqs_state;
1753}
1754
7fdefc10
PM
1755/*
1756 * Clean up after the old grace period.
1757 */
4cdfc175 1758static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1759{
1760 unsigned long gp_duration;
48a7639c 1761 bool needgp = false;
dae6e64d 1762 int nocb = 0;
7fdefc10
PM
1763 struct rcu_data *rdp;
1764 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1765
6ccd2ecd 1766 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1767 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1768 smp_mb__after_unlock_lock();
7fdefc10
PM
1769 gp_duration = jiffies - rsp->gp_start;
1770 if (gp_duration > rsp->gp_max)
1771 rsp->gp_max = gp_duration;
b3dbec76 1772
7fdefc10
PM
1773 /*
1774 * We know the grace period is complete, but to everyone else
1775 * it appears to still be ongoing. But it is also the case
1776 * that to everyone else it looks like there is nothing that
1777 * they can do to advance the grace period. It is therefore
1778 * safe for us to drop the lock in order to mark the grace
1779 * period as completed in all of the rcu_node structures.
7fdefc10 1780 */
5d4b8659 1781 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1782
5d4b8659
PM
1783 /*
1784 * Propagate new ->completed value to rcu_node structures so
1785 * that other CPUs don't have to wait until the start of the next
1786 * grace period to process their callbacks. This also avoids
1787 * some nasty RCU grace-period initialization races by forcing
1788 * the end of the current grace period to be completely recorded in
1789 * all of the rcu_node structures before the beginning of the next
1790 * grace period is recorded in any of the rcu_node structures.
1791 */
1792 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1793 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1794 smp_mb__after_unlock_lock();
0446be48 1795 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1796 rdp = this_cpu_ptr(rsp->rda);
1797 if (rnp == rdp->mynode)
48a7639c 1798 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 1799 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1800 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659 1801 raw_spin_unlock_irq(&rnp->lock);
bde6c3aa 1802 cond_resched_rcu_qs();
6ccd2ecd 1803 ACCESS_ONCE(rsp->gp_activity) = jiffies;
7fdefc10 1804 }
5d4b8659
PM
1805 rnp = rcu_get_root(rsp);
1806 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1807 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1808 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1809
765a3f4f
PM
1810 /* Declare grace period done. */
1811 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1812 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1813 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1814 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
1815 /* Advance CBs to reduce false positives below. */
1816 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
1817 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
91dc9542 1818 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1819 trace_rcu_grace_period(rsp->name,
1820 ACCESS_ONCE(rsp->gpnum),
1821 TPS("newreq"));
1822 }
7fdefc10 1823 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1824}
1825
1826/*
1827 * Body of kthread that handles grace periods.
1828 */
1829static int __noreturn rcu_gp_kthread(void *arg)
1830{
4cdfc175 1831 int fqs_state;
88d6df61 1832 int gf;
d40011f6 1833 unsigned long j;
4cdfc175 1834 int ret;
7fdefc10
PM
1835 struct rcu_state *rsp = arg;
1836 struct rcu_node *rnp = rcu_get_root(rsp);
1837
1838 for (;;) {
1839
1840 /* Handle grace-period start. */
1841 for (;;) {
63c4db78
PM
1842 trace_rcu_grace_period(rsp->name,
1843 ACCESS_ONCE(rsp->gpnum),
1844 TPS("reqwait"));
afea227f 1845 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1846 wait_event_interruptible(rsp->gp_wq,
591c6d17 1847 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1848 RCU_GP_FLAG_INIT);
78e4bc34 1849 /* Locking provides needed memory barrier. */
f7be8209 1850 if (rcu_gp_init(rsp))
7fdefc10 1851 break;
bde6c3aa 1852 cond_resched_rcu_qs();
6ccd2ecd 1853 ACCESS_ONCE(rsp->gp_activity) = jiffies;
73a860cd 1854 WARN_ON(signal_pending(current));
63c4db78
PM
1855 trace_rcu_grace_period(rsp->name,
1856 ACCESS_ONCE(rsp->gpnum),
1857 TPS("reqwaitsig"));
7fdefc10 1858 }
cabc49c1 1859
4cdfc175
PM
1860 /* Handle quiescent-state forcing. */
1861 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1862 j = jiffies_till_first_fqs;
1863 if (j > HZ) {
1864 j = HZ;
1865 jiffies_till_first_fqs = HZ;
1866 }
88d6df61 1867 ret = 0;
cabc49c1 1868 for (;;) {
88d6df61
PM
1869 if (!ret)
1870 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1871 trace_rcu_grace_period(rsp->name,
1872 ACCESS_ONCE(rsp->gpnum),
1873 TPS("fqswait"));
afea227f 1874 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1875 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1876 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1877 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1878 (!ACCESS_ONCE(rnp->qsmask) &&
1879 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1880 j);
78e4bc34 1881 /* Locking provides needed memory barriers. */
4cdfc175 1882 /* If grace period done, leave loop. */
cabc49c1 1883 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1884 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1885 break;
4cdfc175 1886 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1887 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1888 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1889 trace_rcu_grace_period(rsp->name,
1890 ACCESS_ONCE(rsp->gpnum),
1891 TPS("fqsstart"));
4cdfc175 1892 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1893 trace_rcu_grace_period(rsp->name,
1894 ACCESS_ONCE(rsp->gpnum),
1895 TPS("fqsend"));
bde6c3aa 1896 cond_resched_rcu_qs();
6ccd2ecd 1897 ACCESS_ONCE(rsp->gp_activity) = jiffies;
4cdfc175
PM
1898 } else {
1899 /* Deal with stray signal. */
bde6c3aa 1900 cond_resched_rcu_qs();
6ccd2ecd 1901 ACCESS_ONCE(rsp->gp_activity) = jiffies;
73a860cd 1902 WARN_ON(signal_pending(current));
63c4db78
PM
1903 trace_rcu_grace_period(rsp->name,
1904 ACCESS_ONCE(rsp->gpnum),
1905 TPS("fqswaitsig"));
4cdfc175 1906 }
d40011f6
PM
1907 j = jiffies_till_next_fqs;
1908 if (j > HZ) {
1909 j = HZ;
1910 jiffies_till_next_fqs = HZ;
1911 } else if (j < 1) {
1912 j = 1;
1913 jiffies_till_next_fqs = 1;
1914 }
cabc49c1 1915 }
4cdfc175
PM
1916
1917 /* Handle grace-period end. */
1918 rcu_gp_cleanup(rsp);
b3dbec76 1919 }
b3dbec76
PM
1920}
1921
64db4cff
PM
1922/*
1923 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1924 * in preparation for detecting the next grace period. The caller must hold
b8462084 1925 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1926 *
1927 * Note that it is legal for a dying CPU (which is marked as offline) to
1928 * invoke this function. This can happen when the dying CPU reports its
1929 * quiescent state.
48a7639c
PM
1930 *
1931 * Returns true if the grace-period kthread must be awakened.
64db4cff 1932 */
48a7639c 1933static bool
910ee45d
PM
1934rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1935 struct rcu_data *rdp)
64db4cff 1936{
b8462084 1937 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1938 /*
b3dbec76 1939 * Either we have not yet spawned the grace-period
62da1921
PM
1940 * task, this CPU does not need another grace period,
1941 * or a grace period is already in progress.
b3dbec76 1942 * Either way, don't start a new grace period.
afe24b12 1943 */
48a7639c 1944 return false;
afe24b12 1945 }
91dc9542 1946 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
bb311ecc
PM
1947 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1948 TPS("newreq"));
62da1921 1949
016a8d5b
SR
1950 /*
1951 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 1952 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 1953 * the wakeup to our caller.
016a8d5b 1954 */
48a7639c 1955 return true;
64db4cff
PM
1956}
1957
910ee45d
PM
1958/*
1959 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1960 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1961 * is invoked indirectly from rcu_advance_cbs(), which would result in
1962 * endless recursion -- or would do so if it wasn't for the self-deadlock
1963 * that is encountered beforehand.
48a7639c
PM
1964 *
1965 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 1966 */
48a7639c 1967static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
1968{
1969 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1970 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 1971 bool ret = false;
910ee45d
PM
1972
1973 /*
1974 * If there is no grace period in progress right now, any
1975 * callbacks we have up to this point will be satisfied by the
1976 * next grace period. Also, advancing the callbacks reduces the
1977 * probability of false positives from cpu_needs_another_gp()
1978 * resulting in pointless grace periods. So, advance callbacks
1979 * then start the grace period!
1980 */
48a7639c
PM
1981 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
1982 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
1983 return ret;
910ee45d
PM
1984}
1985
f41d911f 1986/*
d3f6bad3
PM
1987 * Report a full set of quiescent states to the specified rcu_state
1988 * data structure. This involves cleaning up after the prior grace
1989 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1990 * if one is needed. Note that the caller must hold rnp->lock, which
1991 * is released before return.
f41d911f 1992 */
d3f6bad3 1993static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1994 __releases(rcu_get_root(rsp)->lock)
f41d911f 1995{
fc2219d4 1996 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1 1997 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2aa792e6 1998 rcu_gp_kthread_wake(rsp);
f41d911f
PM
1999}
2000
64db4cff 2001/*
d3f6bad3
PM
2002 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2003 * Allows quiescent states for a group of CPUs to be reported at one go
2004 * to the specified rcu_node structure, though all the CPUs in the group
2005 * must be represented by the same rcu_node structure (which need not be
2006 * a leaf rcu_node structure, though it often will be). That structure's
2007 * lock must be held upon entry, and it is released before return.
64db4cff
PM
2008 */
2009static void
d3f6bad3
PM
2010rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2011 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
2012 __releases(rnp->lock)
2013{
28ecd580
PM
2014 struct rcu_node *rnp_c;
2015
64db4cff
PM
2016 /* Walk up the rcu_node hierarchy. */
2017 for (;;) {
2018 if (!(rnp->qsmask & mask)) {
2019
2020 /* Our bit has already been cleared, so done. */
1304afb2 2021 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2022 return;
2023 }
2024 rnp->qsmask &= ~mask;
d4c08f2a
PM
2025 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2026 mask, rnp->qsmask, rnp->level,
2027 rnp->grplo, rnp->grphi,
2028 !!rnp->gp_tasks);
27f4d280 2029 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2030
2031 /* Other bits still set at this level, so done. */
1304afb2 2032 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2033 return;
2034 }
2035 mask = rnp->grpmask;
2036 if (rnp->parent == NULL) {
2037
2038 /* No more levels. Exit loop holding root lock. */
2039
2040 break;
2041 }
1304afb2 2042 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 2043 rnp_c = rnp;
64db4cff 2044 rnp = rnp->parent;
1304afb2 2045 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2046 smp_mb__after_unlock_lock();
28ecd580 2047 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
2048 }
2049
2050 /*
2051 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2052 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2053 * to clean up and start the next grace period if one is needed.
64db4cff 2054 */
d3f6bad3 2055 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2056}
2057
2058/*
d3f6bad3
PM
2059 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2060 * structure. This must be either called from the specified CPU, or
2061 * called when the specified CPU is known to be offline (and when it is
2062 * also known that no other CPU is concurrently trying to help the offline
2063 * CPU). The lastcomp argument is used to make sure we are still in the
2064 * grace period of interest. We don't want to end the current grace period
2065 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
2066 */
2067static void
d7d6a11e 2068rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2069{
2070 unsigned long flags;
2071 unsigned long mask;
48a7639c 2072 bool needwake;
64db4cff
PM
2073 struct rcu_node *rnp;
2074
2075 rnp = rdp->mynode;
1304afb2 2076 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2077 smp_mb__after_unlock_lock();
d7d6a11e 2078 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
e3663b10 2079 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2080
2081 /*
e4cc1f22
PM
2082 * The grace period in which this quiescent state was
2083 * recorded has ended, so don't report it upwards.
2084 * We will instead need a new quiescent state that lies
2085 * within the current grace period.
64db4cff 2086 */
e4cc1f22 2087 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 2088 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2089 return;
2090 }
2091 mask = rdp->grpmask;
2092 if ((rnp->qsmask & mask) == 0) {
1304afb2 2093 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
2094 } else {
2095 rdp->qs_pending = 0;
2096
2097 /*
2098 * This GP can't end until cpu checks in, so all of our
2099 * callbacks can be processed during the next GP.
2100 */
48a7639c 2101 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2102
d3f6bad3 2103 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
48a7639c
PM
2104 if (needwake)
2105 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2106 }
2107}
2108
2109/*
2110 * Check to see if there is a new grace period of which this CPU
2111 * is not yet aware, and if so, set up local rcu_data state for it.
2112 * Otherwise, see if this CPU has just passed through its first
2113 * quiescent state for this grace period, and record that fact if so.
2114 */
2115static void
2116rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2117{
05eb552b
PM
2118 /* Check for grace-period ends and beginnings. */
2119 note_gp_changes(rsp, rdp);
64db4cff
PM
2120
2121 /*
2122 * Does this CPU still need to do its part for current grace period?
2123 * If no, return and let the other CPUs do their part as well.
2124 */
2125 if (!rdp->qs_pending)
2126 return;
2127
2128 /*
2129 * Was there a quiescent state since the beginning of the grace
2130 * period? If no, then exit and wait for the next call.
2131 */
e4cc1f22 2132 if (!rdp->passed_quiesce)
64db4cff
PM
2133 return;
2134
d3f6bad3
PM
2135 /*
2136 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2137 * judge of that).
2138 */
d7d6a11e 2139 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2140}
2141
2142#ifdef CONFIG_HOTPLUG_CPU
2143
e74f4c45 2144/*
b1420f1c
PM
2145 * Send the specified CPU's RCU callbacks to the orphanage. The
2146 * specified CPU must be offline, and the caller must hold the
7b2e6011 2147 * ->orphan_lock.
e74f4c45 2148 */
b1420f1c
PM
2149static void
2150rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2151 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2152{
3fbfbf7a 2153 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 2154 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2155 return;
2156
b1420f1c
PM
2157 /*
2158 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2159 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2160 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2161 */
a50c3af9 2162 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2163 rsp->qlen_lazy += rdp->qlen_lazy;
2164 rsp->qlen += rdp->qlen;
2165 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 2166 rdp->qlen_lazy = 0;
1d1fb395 2167 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
2168 }
2169
2170 /*
b1420f1c
PM
2171 * Next, move those callbacks still needing a grace period to
2172 * the orphanage, where some other CPU will pick them up.
2173 * Some of the callbacks might have gone partway through a grace
2174 * period, but that is too bad. They get to start over because we
2175 * cannot assume that grace periods are synchronized across CPUs.
2176 * We don't bother updating the ->nxttail[] array yet, instead
2177 * we just reset the whole thing later on.
a50c3af9 2178 */
b1420f1c
PM
2179 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2180 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2181 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2182 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
2183 }
2184
2185 /*
b1420f1c
PM
2186 * Then move the ready-to-invoke callbacks to the orphanage,
2187 * where some other CPU will pick them up. These will not be
2188 * required to pass though another grace period: They are done.
a50c3af9 2189 */
e5601400 2190 if (rdp->nxtlist != NULL) {
b1420f1c
PM
2191 *rsp->orphan_donetail = rdp->nxtlist;
2192 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 2193 }
e74f4c45 2194
b1420f1c 2195 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 2196 init_callback_list(rdp);
b1420f1c
PM
2197}
2198
2199/*
2200 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2201 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2202 */
96d3fd0d 2203static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2204{
2205 int i;
fa07a58f 2206 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2207
3fbfbf7a 2208 /* No-CBs CPUs are handled specially. */
96d3fd0d 2209 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2210 return;
2211
b1420f1c
PM
2212 /* Do the accounting first. */
2213 rdp->qlen_lazy += rsp->qlen_lazy;
2214 rdp->qlen += rsp->qlen;
2215 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2216 if (rsp->qlen_lazy != rsp->qlen)
2217 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2218 rsp->qlen_lazy = 0;
2219 rsp->qlen = 0;
2220
2221 /*
2222 * We do not need a memory barrier here because the only way we
2223 * can get here if there is an rcu_barrier() in flight is if
2224 * we are the task doing the rcu_barrier().
2225 */
2226
2227 /* First adopt the ready-to-invoke callbacks. */
2228 if (rsp->orphan_donelist != NULL) {
2229 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2230 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2231 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2232 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2233 rdp->nxttail[i] = rsp->orphan_donetail;
2234 rsp->orphan_donelist = NULL;
2235 rsp->orphan_donetail = &rsp->orphan_donelist;
2236 }
2237
2238 /* And then adopt the callbacks that still need a grace period. */
2239 if (rsp->orphan_nxtlist != NULL) {
2240 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2241 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2242 rsp->orphan_nxtlist = NULL;
2243 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2244 }
2245}
2246
2247/*
2248 * Trace the fact that this CPU is going offline.
2249 */
2250static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2251{
2252 RCU_TRACE(unsigned long mask);
2253 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2254 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2255
2256 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2257 trace_rcu_grace_period(rsp->name,
2258 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2259 TPS("cpuofl"));
64db4cff
PM
2260}
2261
2262/*
e5601400 2263 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2264 * this fact from process context. Do the remainder of the cleanup,
2265 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2266 * adopting them. There can only be one CPU hotplug operation at a time,
2267 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2268 */
e5601400 2269static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2270{
2036d94a
PM
2271 unsigned long flags;
2272 unsigned long mask;
2273 int need_report = 0;
e5601400 2274 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2275 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2276
2036d94a 2277 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2278 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2279
2036d94a 2280 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2281 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2282 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2283
b1420f1c
PM
2284 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2285 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2286 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2287
2036d94a
PM
2288 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2289 mask = rdp->grpmask; /* rnp->grplo is constant. */
2290 do {
2291 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2292 smp_mb__after_unlock_lock();
2036d94a
PM
2293 rnp->qsmaskinit &= ~mask;
2294 if (rnp->qsmaskinit != 0) {
2295 if (rnp != rdp->mynode)
2296 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2297 break;
2298 }
2299 if (rnp == rdp->mynode)
2300 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2301 else
2302 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2303 mask = rnp->grpmask;
2304 rnp = rnp->parent;
2305 } while (rnp != NULL);
2306
2307 /*
2308 * We still hold the leaf rcu_node structure lock here, and
2309 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2310 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2311 * held leads to deadlock.
2312 */
7b2e6011 2313 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2314 rnp = rdp->mynode;
2315 if (need_report & RCU_OFL_TASKS_NORM_GP)
2316 rcu_report_unblock_qs_rnp(rnp, flags);
2317 else
2318 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2319 if (need_report & RCU_OFL_TASKS_EXP_GP)
2320 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2321 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2322 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2323 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2324 init_callback_list(rdp);
2325 /* Disallow further callbacks on this CPU. */
2326 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2327 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2328}
2329
2330#else /* #ifdef CONFIG_HOTPLUG_CPU */
2331
e5601400 2332static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2333{
2334}
2335
e5601400 2336static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2337{
2338}
2339
2340#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2341
2342/*
2343 * Invoke any RCU callbacks that have made it to the end of their grace
2344 * period. Thottle as specified by rdp->blimit.
2345 */
37c72e56 2346static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2347{
2348 unsigned long flags;
2349 struct rcu_head *next, *list, **tail;
878d7439
ED
2350 long bl, count, count_lazy;
2351 int i;
64db4cff 2352
dc35c893 2353 /* If no callbacks are ready, just return. */
29c00b4a 2354 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2355 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2356 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2357 need_resched(), is_idle_task(current),
2358 rcu_is_callbacks_kthread());
64db4cff 2359 return;
29c00b4a 2360 }
64db4cff
PM
2361
2362 /*
2363 * Extract the list of ready callbacks, disabling to prevent
2364 * races with call_rcu() from interrupt handlers.
2365 */
2366 local_irq_save(flags);
8146c4e2 2367 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2368 bl = rdp->blimit;
486e2593 2369 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2370 list = rdp->nxtlist;
2371 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2372 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2373 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2374 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2375 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2376 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2377 local_irq_restore(flags);
2378
2379 /* Invoke callbacks. */
486e2593 2380 count = count_lazy = 0;
64db4cff
PM
2381 while (list) {
2382 next = list->next;
2383 prefetch(next);
551d55a9 2384 debug_rcu_head_unqueue(list);
486e2593
PM
2385 if (__rcu_reclaim(rsp->name, list))
2386 count_lazy++;
64db4cff 2387 list = next;
dff1672d
PM
2388 /* Stop only if limit reached and CPU has something to do. */
2389 if (++count >= bl &&
2390 (need_resched() ||
2391 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2392 break;
2393 }
2394
2395 local_irq_save(flags);
4968c300
PM
2396 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2397 is_idle_task(current),
2398 rcu_is_callbacks_kthread());
64db4cff
PM
2399
2400 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2401 if (list != NULL) {
2402 *tail = rdp->nxtlist;
2403 rdp->nxtlist = list;
b41772ab
PM
2404 for (i = 0; i < RCU_NEXT_SIZE; i++)
2405 if (&rdp->nxtlist == rdp->nxttail[i])
2406 rdp->nxttail[i] = tail;
64db4cff
PM
2407 else
2408 break;
2409 }
b1420f1c
PM
2410 smp_mb(); /* List handling before counting for rcu_barrier(). */
2411 rdp->qlen_lazy -= count_lazy;
a792563b 2412 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count;
b1420f1c 2413 rdp->n_cbs_invoked += count;
64db4cff
PM
2414
2415 /* Reinstate batch limit if we have worked down the excess. */
2416 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2417 rdp->blimit = blimit;
2418
37c72e56
PM
2419 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2420 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2421 rdp->qlen_last_fqs_check = 0;
2422 rdp->n_force_qs_snap = rsp->n_force_qs;
2423 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2424 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2425 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2426
64db4cff
PM
2427 local_irq_restore(flags);
2428
e0f23060 2429 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2430 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2431 invoke_rcu_core();
64db4cff
PM
2432}
2433
2434/*
2435 * Check to see if this CPU is in a non-context-switch quiescent state
2436 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2437 * Also schedule RCU core processing.
64db4cff 2438 *
9b2e4f18 2439 * This function must be called from hardirq context. It is normally
64db4cff
PM
2440 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2441 * false, there is no point in invoking rcu_check_callbacks().
2442 */
c3377c2d 2443void rcu_check_callbacks(int user)
64db4cff 2444{
f7f7bac9 2445 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2446 increment_cpu_stall_ticks();
9b2e4f18 2447 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2448
2449 /*
2450 * Get here if this CPU took its interrupt from user
2451 * mode or from the idle loop, and if this is not a
2452 * nested interrupt. In this case, the CPU is in
d6714c22 2453 * a quiescent state, so note it.
64db4cff
PM
2454 *
2455 * No memory barrier is required here because both
d6714c22
PM
2456 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2457 * variables that other CPUs neither access nor modify,
2458 * at least not while the corresponding CPU is online.
64db4cff
PM
2459 */
2460
284a8c93
PM
2461 rcu_sched_qs();
2462 rcu_bh_qs();
64db4cff
PM
2463
2464 } else if (!in_softirq()) {
2465
2466 /*
2467 * Get here if this CPU did not take its interrupt from
2468 * softirq, in other words, if it is not interrupting
2469 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2470 * critical section, so note it.
64db4cff
PM
2471 */
2472
284a8c93 2473 rcu_bh_qs();
64db4cff 2474 }
86aea0e6 2475 rcu_preempt_check_callbacks();
e3950ecd 2476 if (rcu_pending())
a46e0899 2477 invoke_rcu_core();
8315f422
PM
2478 if (user)
2479 rcu_note_voluntary_context_switch(current);
f7f7bac9 2480 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2481}
2482
64db4cff
PM
2483/*
2484 * Scan the leaf rcu_node structures, processing dyntick state for any that
2485 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2486 * Also initiate boosting for any threads blocked on the root rcu_node.
2487 *
ee47eb9f 2488 * The caller must have suppressed start of new grace periods.
64db4cff 2489 */
217af2a2
PM
2490static void force_qs_rnp(struct rcu_state *rsp,
2491 int (*f)(struct rcu_data *rsp, bool *isidle,
2492 unsigned long *maxj),
2493 bool *isidle, unsigned long *maxj)
64db4cff
PM
2494{
2495 unsigned long bit;
2496 int cpu;
2497 unsigned long flags;
2498 unsigned long mask;
a0b6c9a7 2499 struct rcu_node *rnp;
64db4cff 2500
a0b6c9a7 2501 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2502 cond_resched_rcu_qs();
64db4cff 2503 mask = 0;
1304afb2 2504 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2505 smp_mb__after_unlock_lock();
ee47eb9f 2506 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2507 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2508 return;
64db4cff 2509 }
a0b6c9a7 2510 if (rnp->qsmask == 0) {
1217ed1b 2511 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2512 continue;
2513 }
a0b6c9a7 2514 cpu = rnp->grplo;
64db4cff 2515 bit = 1;
a0b6c9a7 2516 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2517 if ((rnp->qsmask & bit) != 0) {
2518 if ((rnp->qsmaskinit & bit) != 0)
e02b2edf 2519 *isidle = false;
0edd1b17
PM
2520 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2521 mask |= bit;
2522 }
64db4cff 2523 }
45f014c5 2524 if (mask != 0) {
64db4cff 2525
d3f6bad3
PM
2526 /* rcu_report_qs_rnp() releases rnp->lock. */
2527 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2528 continue;
2529 }
1304afb2 2530 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2531 }
27f4d280 2532 rnp = rcu_get_root(rsp);
1217ed1b
PM
2533 if (rnp->qsmask == 0) {
2534 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2535 smp_mb__after_unlock_lock();
1217ed1b
PM
2536 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2537 }
64db4cff
PM
2538}
2539
2540/*
2541 * Force quiescent states on reluctant CPUs, and also detect which
2542 * CPUs are in dyntick-idle mode.
2543 */
4cdfc175 2544static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2545{
2546 unsigned long flags;
394f2769
PM
2547 bool ret;
2548 struct rcu_node *rnp;
2549 struct rcu_node *rnp_old = NULL;
2550
2551 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2552 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769
PM
2553 for (; rnp != NULL; rnp = rnp->parent) {
2554 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2555 !raw_spin_trylock(&rnp->fqslock);
2556 if (rnp_old != NULL)
2557 raw_spin_unlock(&rnp_old->fqslock);
2558 if (ret) {
a792563b 2559 rsp->n_force_qs_lh++;
394f2769
PM
2560 return;
2561 }
2562 rnp_old = rnp;
2563 }
2564 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2565
394f2769
PM
2566 /* Reached the root of the rcu_node tree, acquire lock. */
2567 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2568 smp_mb__after_unlock_lock();
394f2769
PM
2569 raw_spin_unlock(&rnp_old->fqslock);
2570 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2571 rsp->n_force_qs_lh++;
394f2769 2572 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2573 return; /* Someone beat us to it. */
46a1e34e 2574 }
4de376a1
PK
2575 ACCESS_ONCE(rsp->gp_flags) =
2576 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS;
394f2769 2577 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2aa792e6 2578 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2579}
2580
64db4cff 2581/*
e0f23060
PM
2582 * This does the RCU core processing work for the specified rcu_state
2583 * and rcu_data structures. This may be called only from the CPU to
2584 * whom the rdp belongs.
64db4cff
PM
2585 */
2586static void
1bca8cf1 2587__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2588{
2589 unsigned long flags;
48a7639c 2590 bool needwake;
fa07a58f 2591 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 2592
2e597558
PM
2593 WARN_ON_ONCE(rdp->beenonline == 0);
2594
64db4cff
PM
2595 /* Update RCU state based on any recent quiescent states. */
2596 rcu_check_quiescent_state(rsp, rdp);
2597
2598 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2599 local_irq_save(flags);
64db4cff 2600 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2601 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
48a7639c 2602 needwake = rcu_start_gp(rsp);
b8462084 2603 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
48a7639c
PM
2604 if (needwake)
2605 rcu_gp_kthread_wake(rsp);
dc35c893
PM
2606 } else {
2607 local_irq_restore(flags);
64db4cff
PM
2608 }
2609
2610 /* If there are callbacks ready, invoke them. */
09223371 2611 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2612 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2613
2614 /* Do any needed deferred wakeups of rcuo kthreads. */
2615 do_nocb_deferred_wakeup(rdp);
09223371
SL
2616}
2617
64db4cff 2618/*
e0f23060 2619 * Do RCU core processing for the current CPU.
64db4cff 2620 */
09223371 2621static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2622{
6ce75a23
PM
2623 struct rcu_state *rsp;
2624
bfa00b4c
PM
2625 if (cpu_is_offline(smp_processor_id()))
2626 return;
f7f7bac9 2627 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2628 for_each_rcu_flavor(rsp)
2629 __rcu_process_callbacks(rsp);
f7f7bac9 2630 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2631}
2632
a26ac245 2633/*
e0f23060
PM
2634 * Schedule RCU callback invocation. If the specified type of RCU
2635 * does not support RCU priority boosting, just do a direct call,
2636 * otherwise wake up the per-CPU kernel kthread. Note that because we
2637 * are running on the current CPU with interrupts disabled, the
2638 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2639 */
a46e0899 2640static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2641{
b0d30417
PM
2642 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2643 return;
a46e0899
PM
2644 if (likely(!rsp->boost)) {
2645 rcu_do_batch(rsp, rdp);
a26ac245
PM
2646 return;
2647 }
a46e0899 2648 invoke_rcu_callbacks_kthread();
a26ac245
PM
2649}
2650
a46e0899 2651static void invoke_rcu_core(void)
09223371 2652{
b0f74036
PM
2653 if (cpu_online(smp_processor_id()))
2654 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2655}
2656
29154c57
PM
2657/*
2658 * Handle any core-RCU processing required by a call_rcu() invocation.
2659 */
2660static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2661 struct rcu_head *head, unsigned long flags)
64db4cff 2662{
48a7639c
PM
2663 bool needwake;
2664
62fde6ed
PM
2665 /*
2666 * If called from an extended quiescent state, invoke the RCU
2667 * core in order to force a re-evaluation of RCU's idleness.
2668 */
5c173eb8 2669 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2670 invoke_rcu_core();
2671
a16b7a69 2672 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2673 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2674 return;
64db4cff 2675
37c72e56
PM
2676 /*
2677 * Force the grace period if too many callbacks or too long waiting.
2678 * Enforce hysteresis, and don't invoke force_quiescent_state()
2679 * if some other CPU has recently done so. Also, don't bother
2680 * invoking force_quiescent_state() if the newly enqueued callback
2681 * is the only one waiting for a grace period to complete.
2682 */
2655d57e 2683 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2684
2685 /* Are we ignoring a completed grace period? */
470716fc 2686 note_gp_changes(rsp, rdp);
b52573d2
PM
2687
2688 /* Start a new grace period if one not already started. */
2689 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2690 struct rcu_node *rnp_root = rcu_get_root(rsp);
2691
b8462084 2692 raw_spin_lock(&rnp_root->lock);
6303b9c8 2693 smp_mb__after_unlock_lock();
48a7639c 2694 needwake = rcu_start_gp(rsp);
b8462084 2695 raw_spin_unlock(&rnp_root->lock);
48a7639c
PM
2696 if (needwake)
2697 rcu_gp_kthread_wake(rsp);
b52573d2
PM
2698 } else {
2699 /* Give the grace period a kick. */
2700 rdp->blimit = LONG_MAX;
2701 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2702 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2703 force_quiescent_state(rsp);
b52573d2
PM
2704 rdp->n_force_qs_snap = rsp->n_force_qs;
2705 rdp->qlen_last_fqs_check = rdp->qlen;
2706 }
4cdfc175 2707 }
29154c57
PM
2708}
2709
ae150184
PM
2710/*
2711 * RCU callback function to leak a callback.
2712 */
2713static void rcu_leak_callback(struct rcu_head *rhp)
2714{
2715}
2716
3fbfbf7a
PM
2717/*
2718 * Helper function for call_rcu() and friends. The cpu argument will
2719 * normally be -1, indicating "currently running CPU". It may specify
2720 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2721 * is expected to specify a CPU.
2722 */
64db4cff
PM
2723static void
2724__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2725 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2726{
2727 unsigned long flags;
2728 struct rcu_data *rdp;
2729
1146edcb 2730 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
ae150184
PM
2731 if (debug_rcu_head_queue(head)) {
2732 /* Probable double call_rcu(), so leak the callback. */
2733 ACCESS_ONCE(head->func) = rcu_leak_callback;
2734 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2735 return;
2736 }
64db4cff
PM
2737 head->func = func;
2738 head->next = NULL;
2739
64db4cff
PM
2740 /*
2741 * Opportunistically note grace-period endings and beginnings.
2742 * Note that we might see a beginning right after we see an
2743 * end, but never vice versa, since this CPU has to pass through
2744 * a quiescent state betweentimes.
2745 */
2746 local_irq_save(flags);
394f99a9 2747 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2748
2749 /* Add the callback to our list. */
3fbfbf7a
PM
2750 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2751 int offline;
2752
2753 if (cpu != -1)
2754 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2755 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2756 WARN_ON_ONCE(offline);
0d8ee37e 2757 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2758 local_irq_restore(flags);
2759 return;
2760 }
a792563b 2761 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1;
486e2593
PM
2762 if (lazy)
2763 rdp->qlen_lazy++;
c57afe80
PM
2764 else
2765 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2766 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2767 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2768 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2769
d4c08f2a
PM
2770 if (__is_kfree_rcu_offset((unsigned long)func))
2771 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2772 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2773 else
486e2593 2774 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2775
29154c57
PM
2776 /* Go handle any RCU core processing required. */
2777 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2778 local_irq_restore(flags);
2779}
2780
2781/*
d6714c22 2782 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2783 */
d6714c22 2784void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2785{
3fbfbf7a 2786 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2787}
d6714c22 2788EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2789
2790/*
486e2593 2791 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2792 */
2793void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2794{
3fbfbf7a 2795 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2796}
2797EXPORT_SYMBOL_GPL(call_rcu_bh);
2798
495aa969
ACB
2799/*
2800 * Queue an RCU callback for lazy invocation after a grace period.
2801 * This will likely be later named something like "call_rcu_lazy()",
2802 * but this change will require some way of tagging the lazy RCU
2803 * callbacks in the list of pending callbacks. Until then, this
2804 * function may only be called from __kfree_rcu().
2805 */
2806void kfree_call_rcu(struct rcu_head *head,
2807 void (*func)(struct rcu_head *rcu))
2808{
e534165b 2809 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
2810}
2811EXPORT_SYMBOL_GPL(kfree_call_rcu);
2812
6d813391
PM
2813/*
2814 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2815 * any blocking grace-period wait automatically implies a grace period
2816 * if there is only one CPU online at any point time during execution
2817 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2818 * occasionally incorrectly indicate that there are multiple CPUs online
2819 * when there was in fact only one the whole time, as this just adds
2820 * some overhead: RCU still operates correctly.
6d813391
PM
2821 */
2822static inline int rcu_blocking_is_gp(void)
2823{
95f0c1de
PM
2824 int ret;
2825
6d813391 2826 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2827 preempt_disable();
2828 ret = num_online_cpus() <= 1;
2829 preempt_enable();
2830 return ret;
6d813391
PM
2831}
2832
6ebb237b
PM
2833/**
2834 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2835 *
2836 * Control will return to the caller some time after a full rcu-sched
2837 * grace period has elapsed, in other words after all currently executing
2838 * rcu-sched read-side critical sections have completed. These read-side
2839 * critical sections are delimited by rcu_read_lock_sched() and
2840 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2841 * local_irq_disable(), and so on may be used in place of
2842 * rcu_read_lock_sched().
2843 *
2844 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2845 * non-threaded hardware-interrupt handlers, in progress on entry will
2846 * have completed before this primitive returns. However, this does not
2847 * guarantee that softirq handlers will have completed, since in some
2848 * kernels, these handlers can run in process context, and can block.
2849 *
2850 * Note that this guarantee implies further memory-ordering guarantees.
2851 * On systems with more than one CPU, when synchronize_sched() returns,
2852 * each CPU is guaranteed to have executed a full memory barrier since the
2853 * end of its last RCU-sched read-side critical section whose beginning
2854 * preceded the call to synchronize_sched(). In addition, each CPU having
2855 * an RCU read-side critical section that extends beyond the return from
2856 * synchronize_sched() is guaranteed to have executed a full memory barrier
2857 * after the beginning of synchronize_sched() and before the beginning of
2858 * that RCU read-side critical section. Note that these guarantees include
2859 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2860 * that are executing in the kernel.
2861 *
2862 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2863 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2864 * to have executed a full memory barrier during the execution of
2865 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2866 * again only if the system has more than one CPU).
6ebb237b
PM
2867 *
2868 * This primitive provides the guarantees made by the (now removed)
2869 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2870 * guarantees that rcu_read_lock() sections will have completed.
2871 * In "classic RCU", these two guarantees happen to be one and
2872 * the same, but can differ in realtime RCU implementations.
2873 */
2874void synchronize_sched(void)
2875{
fe15d706
PM
2876 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2877 !lock_is_held(&rcu_lock_map) &&
2878 !lock_is_held(&rcu_sched_lock_map),
2879 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2880 if (rcu_blocking_is_gp())
2881 return;
3705b88d
AM
2882 if (rcu_expedited)
2883 synchronize_sched_expedited();
2884 else
2885 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2886}
2887EXPORT_SYMBOL_GPL(synchronize_sched);
2888
2889/**
2890 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2891 *
2892 * Control will return to the caller some time after a full rcu_bh grace
2893 * period has elapsed, in other words after all currently executing rcu_bh
2894 * read-side critical sections have completed. RCU read-side critical
2895 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2896 * and may be nested.
f0a0e6f2
PM
2897 *
2898 * See the description of synchronize_sched() for more detailed information
2899 * on memory ordering guarantees.
6ebb237b
PM
2900 */
2901void synchronize_rcu_bh(void)
2902{
fe15d706
PM
2903 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2904 !lock_is_held(&rcu_lock_map) &&
2905 !lock_is_held(&rcu_sched_lock_map),
2906 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2907 if (rcu_blocking_is_gp())
2908 return;
3705b88d
AM
2909 if (rcu_expedited)
2910 synchronize_rcu_bh_expedited();
2911 else
2912 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2913}
2914EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2915
765a3f4f
PM
2916/**
2917 * get_state_synchronize_rcu - Snapshot current RCU state
2918 *
2919 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2920 * to determine whether or not a full grace period has elapsed in the
2921 * meantime.
2922 */
2923unsigned long get_state_synchronize_rcu(void)
2924{
2925 /*
2926 * Any prior manipulation of RCU-protected data must happen
2927 * before the load from ->gpnum.
2928 */
2929 smp_mb(); /* ^^^ */
2930
2931 /*
2932 * Make sure this load happens before the purportedly
2933 * time-consuming work between get_state_synchronize_rcu()
2934 * and cond_synchronize_rcu().
2935 */
e534165b 2936 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
2937}
2938EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2939
2940/**
2941 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2942 *
2943 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2944 *
2945 * If a full RCU grace period has elapsed since the earlier call to
2946 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2947 * synchronize_rcu() to wait for a full grace period.
2948 *
2949 * Yes, this function does not take counter wrap into account. But
2950 * counter wrap is harmless. If the counter wraps, we have waited for
2951 * more than 2 billion grace periods (and way more on a 64-bit system!),
2952 * so waiting for one additional grace period should be just fine.
2953 */
2954void cond_synchronize_rcu(unsigned long oldstate)
2955{
2956 unsigned long newstate;
2957
2958 /*
2959 * Ensure that this load happens before any RCU-destructive
2960 * actions the caller might carry out after we return.
2961 */
e534165b 2962 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
2963 if (ULONG_CMP_GE(oldstate, newstate))
2964 synchronize_rcu();
2965}
2966EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2967
3d3b7db0
PM
2968static int synchronize_sched_expedited_cpu_stop(void *data)
2969{
2970 /*
2971 * There must be a full memory barrier on each affected CPU
2972 * between the time that try_stop_cpus() is called and the
2973 * time that it returns.
2974 *
2975 * In the current initial implementation of cpu_stop, the
2976 * above condition is already met when the control reaches
2977 * this point and the following smp_mb() is not strictly
2978 * necessary. Do smp_mb() anyway for documentation and
2979 * robustness against future implementation changes.
2980 */
2981 smp_mb(); /* See above comment block. */
2982 return 0;
2983}
2984
236fefaf
PM
2985/**
2986 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2987 *
2988 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2989 * approach to force the grace period to end quickly. This consumes
2990 * significant time on all CPUs and is unfriendly to real-time workloads,
2991 * so is thus not recommended for any sort of common-case code. In fact,
2992 * if you are using synchronize_sched_expedited() in a loop, please
2993 * restructure your code to batch your updates, and then use a single
2994 * synchronize_sched() instead.
3d3b7db0 2995 *
3d3b7db0
PM
2996 * This implementation can be thought of as an application of ticket
2997 * locking to RCU, with sync_sched_expedited_started and
2998 * sync_sched_expedited_done taking on the roles of the halves
2999 * of the ticket-lock word. Each task atomically increments
3000 * sync_sched_expedited_started upon entry, snapshotting the old value,
3001 * then attempts to stop all the CPUs. If this succeeds, then each
3002 * CPU will have executed a context switch, resulting in an RCU-sched
3003 * grace period. We are then done, so we use atomic_cmpxchg() to
3004 * update sync_sched_expedited_done to match our snapshot -- but
3005 * only if someone else has not already advanced past our snapshot.
3006 *
3007 * On the other hand, if try_stop_cpus() fails, we check the value
3008 * of sync_sched_expedited_done. If it has advanced past our
3009 * initial snapshot, then someone else must have forced a grace period
3010 * some time after we took our snapshot. In this case, our work is
3011 * done for us, and we can simply return. Otherwise, we try again,
3012 * but keep our initial snapshot for purposes of checking for someone
3013 * doing our work for us.
3014 *
3015 * If we fail too many times in a row, we fall back to synchronize_sched().
3016 */
3017void synchronize_sched_expedited(void)
3018{
e0775cef
PM
3019 cpumask_var_t cm;
3020 bool cma = false;
3021 int cpu;
1924bcb0
PM
3022 long firstsnap, s, snap;
3023 int trycount = 0;
40694d66 3024 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 3025
1924bcb0
PM
3026 /*
3027 * If we are in danger of counter wrap, just do synchronize_sched().
3028 * By allowing sync_sched_expedited_started to advance no more than
3029 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
3030 * that more than 3.5 billion CPUs would be required to force a
3031 * counter wrap on a 32-bit system. Quite a few more CPUs would of
3032 * course be required on a 64-bit system.
3033 */
40694d66
PM
3034 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
3035 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
3036 ULONG_MAX / 8)) {
3037 synchronize_sched();
a30489c5 3038 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
3039 return;
3040 }
3d3b7db0 3041
1924bcb0
PM
3042 /*
3043 * Take a ticket. Note that atomic_inc_return() implies a
3044 * full memory barrier.
3045 */
40694d66 3046 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 3047 firstsnap = snap;
dd56af42
PM
3048 if (!try_get_online_cpus()) {
3049 /* CPU hotplug operation in flight, fall back to normal GP. */
3050 wait_rcu_gp(call_rcu_sched);
3051 atomic_long_inc(&rsp->expedited_normal);
3052 return;
3053 }
1cc85961 3054 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0 3055
e0775cef
PM
3056 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */
3057 cma = zalloc_cpumask_var(&cm, GFP_KERNEL);
3058 if (cma) {
3059 cpumask_copy(cm, cpu_online_mask);
3060 cpumask_clear_cpu(raw_smp_processor_id(), cm);
3061 for_each_cpu(cpu, cm) {
3062 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
3063
3064 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1))
3065 cpumask_clear_cpu(cpu, cm);
3066 }
3067 if (cpumask_weight(cm) == 0)
3068 goto all_cpus_idle;
3069 }
3070
3d3b7db0
PM
3071 /*
3072 * Each pass through the following loop attempts to force a
3073 * context switch on each CPU.
3074 */
e0775cef 3075 while (try_stop_cpus(cma ? cm : cpu_online_mask,
3d3b7db0
PM
3076 synchronize_sched_expedited_cpu_stop,
3077 NULL) == -EAGAIN) {
3078 put_online_cpus();
a30489c5 3079 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 3080
1924bcb0 3081 /* Check to see if someone else did our work for us. */
40694d66 3082 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3083 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3084 /* ensure test happens before caller kfree */
4e857c58 3085 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3086 atomic_long_inc(&rsp->expedited_workdone1);
e0775cef 3087 free_cpumask_var(cm);
1924bcb0
PM
3088 return;
3089 }
3d3b7db0
PM
3090
3091 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 3092 if (trycount++ < 10) {
3d3b7db0 3093 udelay(trycount * num_online_cpus());
c701d5d9 3094 } else {
3705b88d 3095 wait_rcu_gp(call_rcu_sched);
a30489c5 3096 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3097 free_cpumask_var(cm);
3d3b7db0
PM
3098 return;
3099 }
3100
1924bcb0 3101 /* Recheck to see if someone else did our work for us. */
40694d66 3102 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3103 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5 3104 /* ensure test happens before caller kfree */
4e857c58 3105 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3106 atomic_long_inc(&rsp->expedited_workdone2);
e0775cef 3107 free_cpumask_var(cm);
3d3b7db0
PM
3108 return;
3109 }
3110
3111 /*
3112 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
3113 * callers to piggyback on our grace period. We retry
3114 * after they started, so our grace period works for them,
3115 * and they started after our first try, so their grace
3116 * period works for us.
3d3b7db0 3117 */
dd56af42
PM
3118 if (!try_get_online_cpus()) {
3119 /* CPU hotplug operation in flight, use normal GP. */
3120 wait_rcu_gp(call_rcu_sched);
3121 atomic_long_inc(&rsp->expedited_normal);
e0775cef 3122 free_cpumask_var(cm);
dd56af42
PM
3123 return;
3124 }
40694d66 3125 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
3126 smp_mb(); /* ensure read is before try_stop_cpus(). */
3127 }
a30489c5 3128 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0 3129
e0775cef
PM
3130all_cpus_idle:
3131 free_cpumask_var(cm);
3132
3d3b7db0
PM
3133 /*
3134 * Everyone up to our most recent fetch is covered by our grace
3135 * period. Update the counter, but only if our work is still
3136 * relevant -- which it won't be if someone who started later
1924bcb0 3137 * than we did already did their update.
3d3b7db0
PM
3138 */
3139 do {
a30489c5 3140 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 3141 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 3142 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5 3143 /* ensure test happens before caller kfree */
4e857c58 3144 smp_mb__before_atomic(); /* ^^^ */
a30489c5 3145 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
3146 break;
3147 }
40694d66 3148 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 3149 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
3150
3151 put_online_cpus();
3152}
3153EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
3154
64db4cff
PM
3155/*
3156 * Check to see if there is any immediate RCU-related work to be done
3157 * by the current CPU, for the specified type of RCU, returning 1 if so.
3158 * The checks are in order of increasing expense: checks that can be
3159 * carried out against CPU-local state are performed first. However,
3160 * we must check for CPU stalls first, else we might not get a chance.
3161 */
3162static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3163{
2f51f988
PM
3164 struct rcu_node *rnp = rdp->mynode;
3165
64db4cff
PM
3166 rdp->n_rcu_pending++;
3167
3168 /* Check for CPU stalls, if enabled. */
3169 check_cpu_stall(rsp, rdp);
3170
a096932f
PM
3171 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3172 if (rcu_nohz_full_cpu(rsp))
3173 return 0;
3174
64db4cff 3175 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
3176 if (rcu_scheduler_fully_active &&
3177 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 3178 rdp->n_rp_qs_pending++;
e4cc1f22 3179 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 3180 rdp->n_rp_report_qs++;
64db4cff 3181 return 1;
7ba5c840 3182 }
64db4cff
PM
3183
3184 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
3185 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3186 rdp->n_rp_cb_ready++;
64db4cff 3187 return 1;
7ba5c840 3188 }
64db4cff
PM
3189
3190 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3191 if (cpu_needs_another_gp(rsp, rdp)) {
3192 rdp->n_rp_cpu_needs_gp++;
64db4cff 3193 return 1;
7ba5c840 3194 }
64db4cff
PM
3195
3196 /* Has another RCU grace period completed? */
2f51f988 3197 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3198 rdp->n_rp_gp_completed++;
64db4cff 3199 return 1;
7ba5c840 3200 }
64db4cff
PM
3201
3202 /* Has a new RCU grace period started? */
e3663b10
PM
3203 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum ||
3204 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3205 rdp->n_rp_gp_started++;
64db4cff 3206 return 1;
7ba5c840 3207 }
64db4cff 3208
96d3fd0d
PM
3209 /* Does this CPU need a deferred NOCB wakeup? */
3210 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3211 rdp->n_rp_nocb_defer_wakeup++;
3212 return 1;
3213 }
3214
64db4cff 3215 /* nothing to do */
7ba5c840 3216 rdp->n_rp_need_nothing++;
64db4cff
PM
3217 return 0;
3218}
3219
3220/*
3221 * Check to see if there is any immediate RCU-related work to be done
3222 * by the current CPU, returning 1 if so. This function is part of the
3223 * RCU implementation; it is -not- an exported member of the RCU API.
3224 */
e3950ecd 3225static int rcu_pending(void)
64db4cff 3226{
6ce75a23
PM
3227 struct rcu_state *rsp;
3228
3229 for_each_rcu_flavor(rsp)
e3950ecd 3230 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3231 return 1;
3232 return 0;
64db4cff
PM
3233}
3234
3235/*
c0f4dfd4
PM
3236 * Return true if the specified CPU has any callback. If all_lazy is
3237 * non-NULL, store an indication of whether all callbacks are lazy.
3238 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3239 */
aa6da514 3240static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3241{
c0f4dfd4
PM
3242 bool al = true;
3243 bool hc = false;
3244 struct rcu_data *rdp;
6ce75a23
PM
3245 struct rcu_state *rsp;
3246
c0f4dfd4 3247 for_each_rcu_flavor(rsp) {
aa6da514 3248 rdp = this_cpu_ptr(rsp->rda);
69c8d28c
PM
3249 if (!rdp->nxtlist)
3250 continue;
3251 hc = true;
3252 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 3253 al = false;
69c8d28c
PM
3254 break;
3255 }
c0f4dfd4
PM
3256 }
3257 if (all_lazy)
3258 *all_lazy = al;
3259 return hc;
64db4cff
PM
3260}
3261
a83eff0a
PM
3262/*
3263 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3264 * the compiler is expected to optimize this away.
3265 */
e66c33d5 3266static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3267 int cpu, unsigned long done)
3268{
3269 trace_rcu_barrier(rsp->name, s, cpu,
3270 atomic_read(&rsp->barrier_cpu_count), done);
3271}
3272
b1420f1c
PM
3273/*
3274 * RCU callback function for _rcu_barrier(). If we are last, wake
3275 * up the task executing _rcu_barrier().
3276 */
24ebbca8 3277static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3278{
24ebbca8
PM
3279 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3280 struct rcu_state *rsp = rdp->rsp;
3281
a83eff0a
PM
3282 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3283 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3284 complete(&rsp->barrier_completion);
a83eff0a
PM
3285 } else {
3286 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3287 }
d0ec774c
PM
3288}
3289
3290/*
3291 * Called with preemption disabled, and from cross-cpu IRQ context.
3292 */
3293static void rcu_barrier_func(void *type)
3294{
037b64ed 3295 struct rcu_state *rsp = type;
fa07a58f 3296 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3297
a83eff0a 3298 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3299 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3300 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3301}
3302
d0ec774c
PM
3303/*
3304 * Orchestrate the specified type of RCU barrier, waiting for all
3305 * RCU callbacks of the specified type to complete.
3306 */
037b64ed 3307static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3308{
b1420f1c 3309 int cpu;
b1420f1c 3310 struct rcu_data *rdp;
cf3a9c48
PM
3311 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3312 unsigned long snap_done;
b1420f1c 3313
a83eff0a 3314 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3315
e74f4c45 3316 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3317 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3318
cf3a9c48
PM
3319 /*
3320 * Ensure that all prior references, including to ->n_barrier_done,
3321 * are ordered before the _rcu_barrier() machinery.
3322 */
3323 smp_mb(); /* See above block comment. */
3324
3325 /*
3326 * Recheck ->n_barrier_done to see if others did our work for us.
3327 * This means checking ->n_barrier_done for an even-to-odd-to-even
3328 * transition. The "if" expression below therefore rounds the old
3329 * value up to the next even number and adds two before comparing.
3330 */
458fb381 3331 snap_done = rsp->n_barrier_done;
a83eff0a 3332 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3333
3334 /*
3335 * If the value in snap is odd, we needed to wait for the current
3336 * rcu_barrier() to complete, then wait for the next one, in other
3337 * words, we need the value of snap_done to be three larger than
3338 * the value of snap. On the other hand, if the value in snap is
3339 * even, we only had to wait for the next rcu_barrier() to complete,
3340 * in other words, we need the value of snap_done to be only two
3341 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3342 * this for us (thank you, Linus!).
3343 */
3344 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3345 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3346 smp_mb(); /* caller's subsequent code after above check. */
3347 mutex_unlock(&rsp->barrier_mutex);
3348 return;
3349 }
3350
3351 /*
3352 * Increment ->n_barrier_done to avoid duplicate work. Use
3353 * ACCESS_ONCE() to prevent the compiler from speculating
3354 * the increment to precede the early-exit check.
3355 */
a792563b 3356 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3357 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3358 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3359 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3360
d0ec774c 3361 /*
b1420f1c
PM
3362 * Initialize the count to one rather than to zero in order to
3363 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3364 * (or preemption of this task). Exclude CPU-hotplug operations
3365 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3366 */
7db74df8 3367 init_completion(&rsp->barrier_completion);
24ebbca8 3368 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3369 get_online_cpus();
b1420f1c
PM
3370
3371 /*
1331e7a1
PM
3372 * Force each CPU with callbacks to register a new callback.
3373 * When that callback is invoked, we will know that all of the
3374 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3375 */
3fbfbf7a 3376 for_each_possible_cpu(cpu) {
d1e43fa5 3377 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3378 continue;
b1420f1c 3379 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3380 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3381 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3382 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3383 rsp->n_barrier_done);
3384 } else {
3385 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3386 rsp->n_barrier_done);
3387 atomic_inc(&rsp->barrier_cpu_count);
3388 __call_rcu(&rdp->barrier_head,
3389 rcu_barrier_callback, rsp, cpu, 0);
3390 }
3fbfbf7a 3391 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3392 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3393 rsp->n_barrier_done);
037b64ed 3394 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3395 } else {
a83eff0a
PM
3396 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3397 rsp->n_barrier_done);
b1420f1c
PM
3398 }
3399 }
1331e7a1 3400 put_online_cpus();
b1420f1c
PM
3401
3402 /*
3403 * Now that we have an rcu_barrier_callback() callback on each
3404 * CPU, and thus each counted, remove the initial count.
3405 */
24ebbca8 3406 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3407 complete(&rsp->barrier_completion);
b1420f1c 3408
cf3a9c48
PM
3409 /* Increment ->n_barrier_done to prevent duplicate work. */
3410 smp_mb(); /* Keep increment after above mechanism. */
a792563b 3411 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1;
cf3a9c48 3412 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3413 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3414 smp_mb(); /* Keep increment before caller's subsequent code. */
3415
b1420f1c 3416 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3417 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3418
3419 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3420 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3421}
d0ec774c
PM
3422
3423/**
3424 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3425 */
3426void rcu_barrier_bh(void)
3427{
037b64ed 3428 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3429}
3430EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3431
3432/**
3433 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3434 */
3435void rcu_barrier_sched(void)
3436{
037b64ed 3437 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3438}
3439EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3440
64db4cff 3441/*
27569620 3442 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3443 */
27569620
PM
3444static void __init
3445rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3446{
3447 unsigned long flags;
394f99a9 3448 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3449 struct rcu_node *rnp = rcu_get_root(rsp);
3450
3451 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3452 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3453 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3454 init_callback_list(rdp);
486e2593 3455 rdp->qlen_lazy = 0;
1d1fb395 3456 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3457 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3458 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3459 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3460 rdp->cpu = cpu;
d4c08f2a 3461 rdp->rsp = rsp;
3fbfbf7a 3462 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3463 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3464}
3465
3466/*
3467 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3468 * offline event can be happening at a given time. Note also that we
3469 * can accept some slop in the rsp->completed access due to the fact
3470 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3471 */
49fb4c62 3472static void
9b67122a 3473rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3474{
3475 unsigned long flags;
64db4cff 3476 unsigned long mask;
394f99a9 3477 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3478 struct rcu_node *rnp = rcu_get_root(rsp);
3479
a4fbe35a
PM
3480 /* Exclude new grace periods. */
3481 mutex_lock(&rsp->onoff_mutex);
3482
64db4cff 3483 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3484 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3485 rdp->beenonline = 1; /* We have now been online. */
37c72e56
PM
3486 rdp->qlen_last_fqs_check = 0;
3487 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3488 rdp->blimit = blimit;
0d8ee37e 3489 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3490 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3491 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3492 atomic_set(&rdp->dynticks->dynticks,
3493 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3494 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3495
64db4cff
PM
3496 /* Add CPU to rcu_node bitmasks. */
3497 rnp = rdp->mynode;
3498 mask = rdp->grpmask;
3499 do {
3500 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3501 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3502 rnp->qsmaskinit |= mask;
3503 mask = rnp->grpmask;
d09b62df 3504 if (rnp == rdp->mynode) {
06ae115a
PM
3505 /*
3506 * If there is a grace period in progress, we will
3507 * set up to wait for it next time we run the
3508 * RCU core code.
3509 */
3510 rdp->gpnum = rnp->completed;
d09b62df 3511 rdp->completed = rnp->completed;
06ae115a
PM
3512 rdp->passed_quiesce = 0;
3513 rdp->qs_pending = 0;
f7f7bac9 3514 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3515 }
1304afb2 3516 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3517 rnp = rnp->parent;
3518 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3519 local_irq_restore(flags);
64db4cff 3520
a4fbe35a 3521 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3522}
3523
49fb4c62 3524static void rcu_prepare_cpu(int cpu)
64db4cff 3525{
6ce75a23
PM
3526 struct rcu_state *rsp;
3527
3528 for_each_rcu_flavor(rsp)
9b67122a 3529 rcu_init_percpu_data(cpu, rsp);
64db4cff
PM
3530}
3531
3532/*
f41d911f 3533 * Handle CPU online/offline notification events.
64db4cff 3534 */
49fb4c62 3535static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3536 unsigned long action, void *hcpu)
64db4cff
PM
3537{
3538 long cpu = (long)hcpu;
e534165b 3539 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
a26ac245 3540 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3541 struct rcu_state *rsp;
64db4cff 3542
f7f7bac9 3543 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3544 switch (action) {
3545 case CPU_UP_PREPARE:
3546 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3547 rcu_prepare_cpu(cpu);
3548 rcu_prepare_kthreads(cpu);
35ce7f29 3549 rcu_spawn_all_nocb_kthreads(cpu);
a26ac245
PM
3550 break;
3551 case CPU_ONLINE:
0f962a5e 3552 case CPU_DOWN_FAILED:
5d01bbd1 3553 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3554 break;
3555 case CPU_DOWN_PREPARE:
34ed6246 3556 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3557 break;
d0ec774c
PM
3558 case CPU_DYING:
3559 case CPU_DYING_FROZEN:
6ce75a23
PM
3560 for_each_rcu_flavor(rsp)
3561 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3562 break;
64db4cff
PM
3563 case CPU_DEAD:
3564 case CPU_DEAD_FROZEN:
3565 case CPU_UP_CANCELED:
3566 case CPU_UP_CANCELED_FROZEN:
776d6807 3567 for_each_rcu_flavor(rsp) {
6ce75a23 3568 rcu_cleanup_dead_cpu(cpu, rsp);
776d6807
PM
3569 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3570 }
64db4cff
PM
3571 break;
3572 default:
3573 break;
3574 }
f7f7bac9 3575 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3576 return NOTIFY_OK;
64db4cff
PM
3577}
3578
d1d74d14
BP
3579static int rcu_pm_notify(struct notifier_block *self,
3580 unsigned long action, void *hcpu)
3581{
3582 switch (action) {
3583 case PM_HIBERNATION_PREPARE:
3584 case PM_SUSPEND_PREPARE:
3585 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3586 rcu_expedited = 1;
3587 break;
3588 case PM_POST_HIBERNATION:
3589 case PM_POST_SUSPEND:
3590 rcu_expedited = 0;
3591 break;
3592 default:
3593 break;
3594 }
3595 return NOTIFY_OK;
3596}
3597
b3dbec76 3598/*
9386c0b7 3599 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3600 */
3601static int __init rcu_spawn_gp_kthread(void)
3602{
3603 unsigned long flags;
a94844b2 3604 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3605 struct rcu_node *rnp;
3606 struct rcu_state *rsp;
a94844b2 3607 struct sched_param sp;
b3dbec76
PM
3608 struct task_struct *t;
3609
a94844b2
PM
3610 /* Force priority into range. */
3611 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3612 kthread_prio = 1;
3613 else if (kthread_prio < 0)
3614 kthread_prio = 0;
3615 else if (kthread_prio > 99)
3616 kthread_prio = 99;
3617 if (kthread_prio != kthread_prio_in)
3618 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3619 kthread_prio, kthread_prio_in);
3620
9386c0b7 3621 rcu_scheduler_fully_active = 1;
b3dbec76 3622 for_each_rcu_flavor(rsp) {
a94844b2 3623 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3624 BUG_ON(IS_ERR(t));
3625 rnp = rcu_get_root(rsp);
3626 raw_spin_lock_irqsave(&rnp->lock, flags);
3627 rsp->gp_kthread = t;
a94844b2
PM
3628 if (kthread_prio) {
3629 sp.sched_priority = kthread_prio;
3630 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3631 }
3632 wake_up_process(t);
b3dbec76
PM
3633 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3634 }
35ce7f29 3635 rcu_spawn_nocb_kthreads();
9386c0b7 3636 rcu_spawn_boost_kthreads();
b3dbec76
PM
3637 return 0;
3638}
3639early_initcall(rcu_spawn_gp_kthread);
3640
bbad9379
PM
3641/*
3642 * This function is invoked towards the end of the scheduler's initialization
3643 * process. Before this is called, the idle task might contain
3644 * RCU read-side critical sections (during which time, this idle
3645 * task is booting the system). After this function is called, the
3646 * idle tasks are prohibited from containing RCU read-side critical
3647 * sections. This function also enables RCU lockdep checking.
3648 */
3649void rcu_scheduler_starting(void)
3650{
3651 WARN_ON(num_online_cpus() != 1);
3652 WARN_ON(nr_context_switches() > 0);
3653 rcu_scheduler_active = 1;
3654}
3655
64db4cff
PM
3656/*
3657 * Compute the per-level fanout, either using the exact fanout specified
3658 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3659 */
3660#ifdef CONFIG_RCU_FANOUT_EXACT
3661static void __init rcu_init_levelspread(struct rcu_state *rsp)
3662{
3663 int i;
3664
04f34650
PM
3665 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3666 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3667 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3668}
3669#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3670static void __init rcu_init_levelspread(struct rcu_state *rsp)
3671{
3672 int ccur;
3673 int cprv;
3674 int i;
3675
4dbd6bb3 3676 cprv = nr_cpu_ids;
f885b7f2 3677 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3678 ccur = rsp->levelcnt[i];
3679 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3680 cprv = ccur;
3681 }
3682}
3683#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3684
3685/*
3686 * Helper function for rcu_init() that initializes one rcu_state structure.
3687 */
394f99a9
LJ
3688static void __init rcu_init_one(struct rcu_state *rsp,
3689 struct rcu_data __percpu *rda)
64db4cff 3690{
b4426b49
FF
3691 static const char * const buf[] = {
3692 "rcu_node_0",
3693 "rcu_node_1",
3694 "rcu_node_2",
3695 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3696 static const char * const fqs[] = {
3697 "rcu_node_fqs_0",
3698 "rcu_node_fqs_1",
3699 "rcu_node_fqs_2",
3700 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
4a81e832 3701 static u8 fl_mask = 0x1;
64db4cff
PM
3702 int cpustride = 1;
3703 int i;
3704 int j;
3705 struct rcu_node *rnp;
3706
b6407e86
PM
3707 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3708
4930521a
PM
3709 /* Silence gcc 4.8 warning about array index out of range. */
3710 if (rcu_num_lvls > RCU_NUM_LVLS)
3711 panic("rcu_init_one: rcu_num_lvls overflow");
3712
64db4cff
PM
3713 /* Initialize the level-tracking arrays. */
3714
f885b7f2
PM
3715 for (i = 0; i < rcu_num_lvls; i++)
3716 rsp->levelcnt[i] = num_rcu_lvl[i];
3717 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3718 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3719 rcu_init_levelspread(rsp);
4a81e832
PM
3720 rsp->flavor_mask = fl_mask;
3721 fl_mask <<= 1;
64db4cff
PM
3722
3723 /* Initialize the elements themselves, starting from the leaves. */
3724
f885b7f2 3725 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3726 cpustride *= rsp->levelspread[i];
3727 rnp = rsp->level[i];
3728 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3729 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3730 lockdep_set_class_and_name(&rnp->lock,
3731 &rcu_node_class[i], buf[i]);
394f2769
PM
3732 raw_spin_lock_init(&rnp->fqslock);
3733 lockdep_set_class_and_name(&rnp->fqslock,
3734 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3735 rnp->gpnum = rsp->gpnum;
3736 rnp->completed = rsp->completed;
64db4cff
PM
3737 rnp->qsmask = 0;
3738 rnp->qsmaskinit = 0;
3739 rnp->grplo = j * cpustride;
3740 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
3741 if (rnp->grphi >= nr_cpu_ids)
3742 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
3743 if (i == 0) {
3744 rnp->grpnum = 0;
3745 rnp->grpmask = 0;
3746 rnp->parent = NULL;
3747 } else {
3748 rnp->grpnum = j % rsp->levelspread[i - 1];
3749 rnp->grpmask = 1UL << rnp->grpnum;
3750 rnp->parent = rsp->level[i - 1] +
3751 j / rsp->levelspread[i - 1];
3752 }
3753 rnp->level = i;
12f5f524 3754 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3755 rcu_init_one_nocb(rnp);
64db4cff
PM
3756 }
3757 }
0c34029a 3758
394f99a9 3759 rsp->rda = rda;
b3dbec76 3760 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 3761 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3762 for_each_possible_cpu(i) {
4a90a068 3763 while (i > rnp->grphi)
0c34029a 3764 rnp++;
394f99a9 3765 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3766 rcu_boot_init_percpu_data(i, rsp);
3767 }
6ce75a23 3768 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3769}
3770
f885b7f2
PM
3771/*
3772 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3773 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3774 * the ->node array in the rcu_state structure.
3775 */
3776static void __init rcu_init_geometry(void)
3777{
026ad283 3778 ulong d;
f885b7f2
PM
3779 int i;
3780 int j;
cca6f393 3781 int n = nr_cpu_ids;
f885b7f2
PM
3782 int rcu_capacity[MAX_RCU_LVLS + 1];
3783
026ad283
PM
3784 /*
3785 * Initialize any unspecified boot parameters.
3786 * The default values of jiffies_till_first_fqs and
3787 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3788 * value, which is a function of HZ, then adding one for each
3789 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3790 */
3791 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3792 if (jiffies_till_first_fqs == ULONG_MAX)
3793 jiffies_till_first_fqs = d;
3794 if (jiffies_till_next_fqs == ULONG_MAX)
3795 jiffies_till_next_fqs = d;
3796
f885b7f2 3797 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3798 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3799 nr_cpu_ids == NR_CPUS)
f885b7f2 3800 return;
39479098
PM
3801 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3802 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3803
3804 /*
3805 * Compute number of nodes that can be handled an rcu_node tree
3806 * with the given number of levels. Setting rcu_capacity[0] makes
3807 * some of the arithmetic easier.
3808 */
3809 rcu_capacity[0] = 1;
3810 rcu_capacity[1] = rcu_fanout_leaf;
3811 for (i = 2; i <= MAX_RCU_LVLS; i++)
3812 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3813
3814 /*
3815 * The boot-time rcu_fanout_leaf parameter is only permitted
3816 * to increase the leaf-level fanout, not decrease it. Of course,
3817 * the leaf-level fanout cannot exceed the number of bits in
3818 * the rcu_node masks. Finally, the tree must be able to accommodate
3819 * the configured number of CPUs. Complain and fall back to the
3820 * compile-time values if these limits are exceeded.
3821 */
3822 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3823 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3824 n > rcu_capacity[MAX_RCU_LVLS]) {
3825 WARN_ON(1);
3826 return;
3827 }
3828
3829 /* Calculate the number of rcu_nodes at each level of the tree. */
3830 for (i = 1; i <= MAX_RCU_LVLS; i++)
3831 if (n <= rcu_capacity[i]) {
3832 for (j = 0; j <= i; j++)
3833 num_rcu_lvl[j] =
3834 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3835 rcu_num_lvls = i;
3836 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3837 num_rcu_lvl[j] = 0;
3838 break;
3839 }
3840
3841 /* Calculate the total number of rcu_node structures. */
3842 rcu_num_nodes = 0;
3843 for (i = 0; i <= MAX_RCU_LVLS; i++)
3844 rcu_num_nodes += num_rcu_lvl[i];
3845 rcu_num_nodes -= n;
3846}
3847
9f680ab4 3848void __init rcu_init(void)
64db4cff 3849{
017c4261 3850 int cpu;
9f680ab4 3851
f41d911f 3852 rcu_bootup_announce();
f885b7f2 3853 rcu_init_geometry();
394f99a9 3854 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3855 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3856 __rcu_init_preempt();
b5b39360 3857 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3858
3859 /*
3860 * We don't need protection against CPU-hotplug here because
3861 * this is called early in boot, before either interrupts
3862 * or the scheduler are operational.
3863 */
3864 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3865 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3866 for_each_online_cpu(cpu)
3867 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
aa23c6fb
PK
3868
3869 rcu_early_boot_tests();
64db4cff
PM
3870}
3871
4102adab 3872#include "tree_plugin.h"