]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree.c
rcutorture: Export RCU grace-period kthread wait state to rcutorture
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
4102adab 44#include <linux/module.h>
64db4cff
PM
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
268bb0ce 53#include <linux/prefetch.h>
3d3b7db0
PM
54#include <linux/delay.h>
55#include <linux/stop_machine.h>
661a85dc 56#include <linux/random.h>
f7f7bac9 57#include <linux/ftrace_event.h>
d1d74d14 58#include <linux/suspend.h>
64db4cff 59
4102adab 60#include "tree.h"
29c00b4a 61#include "rcu.h"
9f77da9f 62
4102adab
PM
63MODULE_ALIAS("rcutree");
64#ifdef MODULE_PARAM_PREFIX
65#undef MODULE_PARAM_PREFIX
66#endif
67#define MODULE_PARAM_PREFIX "rcutree."
68
64db4cff
PM
69/* Data structures. */
70
f885b7f2 71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 73
f7f7bac9
SRRH
74/*
75 * In order to export the rcu_state name to the tracing tools, it
76 * needs to be added in the __tracepoint_string section.
77 * This requires defining a separate variable tp_<sname>_varname
78 * that points to the string being used, and this will allow
79 * the tracing userspace tools to be able to decipher the string
80 * address to the matching string.
81 */
a41bfeb2 82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
83static char sname##_varname[] = #sname; \
84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 85struct rcu_state sname##_state = { \
6c90cc7b 86 .level = { &sname##_state.node[0] }, \
037b64ed 87 .call = cr, \
af446b70 88 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
89 .gpnum = 0UL - 300UL, \
90 .completed = 0UL - 300UL, \
7b2e6011 91 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
92 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
93 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 94 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 95 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 96 .name = sname##_varname, \
a4889858 97 .abbr = sabbr, \
a41bfeb2
SRRH
98}; \
99DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 100
a41bfeb2
SRRH
101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 103
27f4d280 104static struct rcu_state *rcu_state;
6ce75a23 105LIST_HEAD(rcu_struct_flavors);
27f4d280 106
f885b7f2
PM
107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 109module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
111static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
112 NUM_RCU_LVL_0,
113 NUM_RCU_LVL_1,
114 NUM_RCU_LVL_2,
115 NUM_RCU_LVL_3,
116 NUM_RCU_LVL_4,
117};
118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
119
b0d30417
PM
120/*
121 * The rcu_scheduler_active variable transitions from zero to one just
122 * before the first task is spawned. So when this variable is zero, RCU
123 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 124 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
125 * is one, RCU must actually do all the hard work required to detect real
126 * grace periods. This variable is also used to suppress boot-time false
127 * positives from lockdep-RCU error checking.
128 */
bbad9379
PM
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
b0d30417
PM
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
a46e0899
PM
146#ifdef CONFIG_RCU_BOOST
147
a26ac245
PM
148/*
149 * Control variables for per-CPU and per-rcu_node kthreads. These
150 * handle all flavors of RCU.
151 */
152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 156
a46e0899
PM
157#endif /* #ifdef CONFIG_RCU_BOOST */
158
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
160static void invoke_rcu_core(void);
161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 162
4a298656
PM
163/*
164 * Track the rcutorture test sequence number and the update version
165 * number within a given test. The rcutorture_testseq is incremented
166 * on every rcutorture module load and unload, so has an odd value
167 * when a test is running. The rcutorture_vernum is set to zero
168 * when rcutorture starts and is incremented on each rcutorture update.
169 * These variables enable correlating rcutorture output with the
170 * RCU tracing information.
171 */
172unsigned long rcutorture_testseq;
173unsigned long rcutorture_vernum;
174
fc2219d4
PM
175/*
176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
177 * permit this function to be invoked without holding the root rcu_node
178 * structure's ->lock, but of course results can be subject to change.
179 */
180static int rcu_gp_in_progress(struct rcu_state *rsp)
181{
182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
183}
184
b1f77b05 185/*
d6714c22 186 * Note a quiescent state. Because we do not need to know
b1f77b05 187 * how many quiescent states passed, just if there was at least
d6714c22 188 * one since the start of the grace period, this just sets a flag.
e4cc1f22 189 * The caller must have disabled preemption.
b1f77b05 190 */
d6714c22 191void rcu_sched_qs(int cpu)
b1f77b05 192{
25502a6c 193 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 194
e4cc1f22 195 if (rdp->passed_quiesce == 0)
f7f7bac9 196 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05
IM
198}
199
d6714c22 200void rcu_bh_qs(int cpu)
b1f77b05 201{
25502a6c 202 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 203
e4cc1f22 204 if (rdp->passed_quiesce == 0)
f7f7bac9 205 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 206 rdp->passed_quiesce = 1;
b1f77b05 207}
64db4cff 208
25502a6c
PM
209/*
210 * Note a context switch. This is a quiescent state for RCU-sched,
211 * and requires special handling for preemptible RCU.
e4cc1f22 212 * The caller must have disabled preemption.
25502a6c
PM
213 */
214void rcu_note_context_switch(int cpu)
215{
f7f7bac9 216 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 217 rcu_sched_qs(cpu);
cba6d0d6 218 rcu_preempt_note_context_switch(cpu);
f7f7bac9 219 trace_rcu_utilization(TPS("End context switch"));
25502a6c 220}
29ce8310 221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 222
01896f7e 223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 224 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 225 .dynticks = ATOMIC_INIT(1),
2333210b
PM
226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
227 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
228 .dynticks_idle = ATOMIC_INIT(1),
229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
90a4d2c0 230};
64db4cff 231
878d7439
ED
232static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
233static long qhimark = 10000; /* If this many pending, ignore blimit. */
234static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 235
878d7439
ED
236module_param(blimit, long, 0444);
237module_param(qhimark, long, 0444);
238module_param(qlowmark, long, 0444);
3d76c082 239
026ad283
PM
240static ulong jiffies_till_first_fqs = ULONG_MAX;
241static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
242
243module_param(jiffies_till_first_fqs, ulong, 0644);
244module_param(jiffies_till_next_fqs, ulong, 0644);
245
910ee45d
PM
246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
247 struct rcu_data *rdp);
217af2a2
PM
248static void force_qs_rnp(struct rcu_state *rsp,
249 int (*f)(struct rcu_data *rsp, bool *isidle,
250 unsigned long *maxj),
251 bool *isidle, unsigned long *maxj);
4cdfc175 252static void force_quiescent_state(struct rcu_state *rsp);
a157229c 253static int rcu_pending(int cpu);
64db4cff
PM
254
255/*
d6714c22 256 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 257 */
d6714c22 258long rcu_batches_completed_sched(void)
64db4cff 259{
d6714c22 260 return rcu_sched_state.completed;
64db4cff 261}
d6714c22 262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
263
264/*
265 * Return the number of RCU BH batches processed thus far for debug & stats.
266 */
267long rcu_batches_completed_bh(void)
268{
269 return rcu_bh_state.completed;
270}
271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
272
bf66f18e
PM
273/*
274 * Force a quiescent state for RCU BH.
275 */
276void rcu_bh_force_quiescent_state(void)
277{
4cdfc175 278 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
279}
280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
281
afea227f
PM
282/*
283 * Show the state of the grace-period kthreads.
284 */
285void show_rcu_gp_kthreads(void)
286{
287 struct rcu_state *rsp;
288
289 for_each_rcu_flavor(rsp) {
290 pr_info("%s: wait state: %d ->state: %#lx\n",
291 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
292 /* sched_show_task(rsp->gp_kthread); */
293 }
294}
295EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
296
4a298656
PM
297/*
298 * Record the number of times rcutorture tests have been initiated and
299 * terminated. This information allows the debugfs tracing stats to be
300 * correlated to the rcutorture messages, even when the rcutorture module
301 * is being repeatedly loaded and unloaded. In other words, we cannot
302 * store this state in rcutorture itself.
303 */
304void rcutorture_record_test_transition(void)
305{
306 rcutorture_testseq++;
307 rcutorture_vernum = 0;
308}
309EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
310
ad0dc7f9
PM
311/*
312 * Send along grace-period-related data for rcutorture diagnostics.
313 */
314void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
315 unsigned long *gpnum, unsigned long *completed)
316{
317 struct rcu_state *rsp = NULL;
318
319 switch (test_type) {
320 case RCU_FLAVOR:
321 rsp = rcu_state;
322 break;
323 case RCU_BH_FLAVOR:
324 rsp = &rcu_bh_state;
325 break;
326 case RCU_SCHED_FLAVOR:
327 rsp = &rcu_sched_state;
328 break;
329 default:
330 break;
331 }
332 if (rsp != NULL) {
333 *flags = ACCESS_ONCE(rsp->gp_flags);
334 *gpnum = ACCESS_ONCE(rsp->gpnum);
335 *completed = ACCESS_ONCE(rsp->completed);
336 return;
337 }
338 *flags = 0;
339 *gpnum = 0;
340 *completed = 0;
341}
342EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
343
4a298656
PM
344/*
345 * Record the number of writer passes through the current rcutorture test.
346 * This is also used to correlate debugfs tracing stats with the rcutorture
347 * messages.
348 */
349void rcutorture_record_progress(unsigned long vernum)
350{
351 rcutorture_vernum++;
352}
353EXPORT_SYMBOL_GPL(rcutorture_record_progress);
354
bf66f18e
PM
355/*
356 * Force a quiescent state for RCU-sched.
357 */
358void rcu_sched_force_quiescent_state(void)
359{
4cdfc175 360 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
361}
362EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
363
64db4cff
PM
364/*
365 * Does the CPU have callbacks ready to be invoked?
366 */
367static int
368cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
369{
3fbfbf7a
PM
370 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
371 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
372}
373
374/*
dc35c893
PM
375 * Does the current CPU require a not-yet-started grace period?
376 * The caller must have disabled interrupts to prevent races with
377 * normal callback registry.
64db4cff
PM
378 */
379static int
380cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
381{
dc35c893 382 int i;
3fbfbf7a 383
dc35c893
PM
384 if (rcu_gp_in_progress(rsp))
385 return 0; /* No, a grace period is already in progress. */
dae6e64d 386 if (rcu_nocb_needs_gp(rsp))
34ed6246 387 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
388 if (!rdp->nxttail[RCU_NEXT_TAIL])
389 return 0; /* No, this is a no-CBs (or offline) CPU. */
390 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
391 return 1; /* Yes, this CPU has newly registered callbacks. */
392 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
393 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
394 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
395 rdp->nxtcompleted[i]))
396 return 1; /* Yes, CBs for future grace period. */
397 return 0; /* No grace period needed. */
64db4cff
PM
398}
399
400/*
401 * Return the root node of the specified rcu_state structure.
402 */
403static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
404{
405 return &rsp->node[0];
406}
407
9b2e4f18 408/*
adf5091e 409 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
410 *
411 * If the new value of the ->dynticks_nesting counter now is zero,
412 * we really have entered idle, and must do the appropriate accounting.
413 * The caller must have disabled interrupts.
414 */
adf5091e
FW
415static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
416 bool user)
9b2e4f18 417{
96d3fd0d
PM
418 struct rcu_state *rsp;
419 struct rcu_data *rdp;
420
f7f7bac9 421 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 422 if (!user && !is_idle_task(current)) {
289828e6
PM
423 struct task_struct *idle __maybe_unused =
424 idle_task(smp_processor_id());
0989cb46 425
f7f7bac9 426 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 427 ftrace_dump(DUMP_ORIG);
0989cb46
PM
428 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
429 current->pid, current->comm,
430 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 431 }
96d3fd0d
PM
432 for_each_rcu_flavor(rsp) {
433 rdp = this_cpu_ptr(rsp->rda);
434 do_nocb_deferred_wakeup(rdp);
435 }
aea1b35e 436 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
437 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
438 smp_mb__before_atomic_inc(); /* See above. */
439 atomic_inc(&rdtp->dynticks);
440 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
441 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
442
443 /*
adf5091e 444 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
445 * in an RCU read-side critical section.
446 */
447 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
448 "Illegal idle entry in RCU read-side critical section.");
449 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
450 "Illegal idle entry in RCU-bh read-side critical section.");
451 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
452 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 453}
64db4cff 454
adf5091e
FW
455/*
456 * Enter an RCU extended quiescent state, which can be either the
457 * idle loop or adaptive-tickless usermode execution.
64db4cff 458 */
adf5091e 459static void rcu_eqs_enter(bool user)
64db4cff 460{
4145fa7f 461 long long oldval;
64db4cff
PM
462 struct rcu_dynticks *rdtp;
463
c9d4b0af 464 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 465 oldval = rdtp->dynticks_nesting;
29e37d81 466 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
3a592405 467 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
29e37d81 468 rdtp->dynticks_nesting = 0;
3a592405
PM
469 rcu_eqs_enter_common(rdtp, oldval, user);
470 } else {
29e37d81 471 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
3a592405 472 }
64db4cff 473}
adf5091e
FW
474
475/**
476 * rcu_idle_enter - inform RCU that current CPU is entering idle
477 *
478 * Enter idle mode, in other words, -leave- the mode in which RCU
479 * read-side critical sections can occur. (Though RCU read-side
480 * critical sections can occur in irq handlers in idle, a possibility
481 * handled by irq_enter() and irq_exit().)
482 *
483 * We crowbar the ->dynticks_nesting field to zero to allow for
484 * the possibility of usermode upcalls having messed up our count
485 * of interrupt nesting level during the prior busy period.
486 */
487void rcu_idle_enter(void)
488{
c5d900bf
FW
489 unsigned long flags;
490
491 local_irq_save(flags);
cb349ca9 492 rcu_eqs_enter(false);
c9d4b0af 493 rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 494 local_irq_restore(flags);
adf5091e 495}
8a2ecf47 496EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 497
2b1d5024 498#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
499/**
500 * rcu_user_enter - inform RCU that we are resuming userspace.
501 *
502 * Enter RCU idle mode right before resuming userspace. No use of RCU
503 * is permitted between this call and rcu_user_exit(). This way the
504 * CPU doesn't need to maintain the tick for RCU maintenance purposes
505 * when the CPU runs in userspace.
506 */
507void rcu_user_enter(void)
508{
91d1aa43 509 rcu_eqs_enter(1);
adf5091e 510}
2b1d5024 511#endif /* CONFIG_RCU_USER_QS */
19dd1591 512
9b2e4f18
PM
513/**
514 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
515 *
516 * Exit from an interrupt handler, which might possibly result in entering
517 * idle mode, in other words, leaving the mode in which read-side critical
518 * sections can occur.
64db4cff 519 *
9b2e4f18
PM
520 * This code assumes that the idle loop never does anything that might
521 * result in unbalanced calls to irq_enter() and irq_exit(). If your
522 * architecture violates this assumption, RCU will give you what you
523 * deserve, good and hard. But very infrequently and irreproducibly.
524 *
525 * Use things like work queues to work around this limitation.
526 *
527 * You have been warned.
64db4cff 528 */
9b2e4f18 529void rcu_irq_exit(void)
64db4cff
PM
530{
531 unsigned long flags;
4145fa7f 532 long long oldval;
64db4cff
PM
533 struct rcu_dynticks *rdtp;
534
535 local_irq_save(flags);
c9d4b0af 536 rdtp = this_cpu_ptr(&rcu_dynticks);
4145fa7f 537 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
538 rdtp->dynticks_nesting--;
539 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 540 if (rdtp->dynticks_nesting)
f7f7bac9 541 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 542 else
cb349ca9 543 rcu_eqs_enter_common(rdtp, oldval, true);
eb348b89 544 rcu_sysidle_enter(rdtp, 1);
9b2e4f18
PM
545 local_irq_restore(flags);
546}
547
548/*
adf5091e 549 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
550 *
551 * If the new value of the ->dynticks_nesting counter was previously zero,
552 * we really have exited idle, and must do the appropriate accounting.
553 * The caller must have disabled interrupts.
554 */
adf5091e
FW
555static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
556 int user)
9b2e4f18 557{
23b5c8fa
PM
558 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
559 atomic_inc(&rdtp->dynticks);
560 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
561 smp_mb__after_atomic_inc(); /* See above. */
562 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 563 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 564 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 565 if (!user && !is_idle_task(current)) {
289828e6
PM
566 struct task_struct *idle __maybe_unused =
567 idle_task(smp_processor_id());
0989cb46 568
f7f7bac9 569 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 570 oldval, rdtp->dynticks_nesting);
bf1304e9 571 ftrace_dump(DUMP_ORIG);
0989cb46
PM
572 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
573 current->pid, current->comm,
574 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
575 }
576}
577
adf5091e
FW
578/*
579 * Exit an RCU extended quiescent state, which can be either the
580 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 581 */
adf5091e 582static void rcu_eqs_exit(bool user)
9b2e4f18 583{
9b2e4f18
PM
584 struct rcu_dynticks *rdtp;
585 long long oldval;
586
c9d4b0af 587 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 588 oldval = rdtp->dynticks_nesting;
29e37d81 589 WARN_ON_ONCE(oldval < 0);
3a592405 590 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 591 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 592 } else {
29e37d81 593 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3a592405
PM
594 rcu_eqs_exit_common(rdtp, oldval, user);
595 }
9b2e4f18 596}
adf5091e
FW
597
598/**
599 * rcu_idle_exit - inform RCU that current CPU is leaving idle
600 *
601 * Exit idle mode, in other words, -enter- the mode in which RCU
602 * read-side critical sections can occur.
603 *
604 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
605 * allow for the possibility of usermode upcalls messing up our count
606 * of interrupt nesting level during the busy period that is just
607 * now starting.
608 */
609void rcu_idle_exit(void)
610{
c5d900bf
FW
611 unsigned long flags;
612
613 local_irq_save(flags);
cb349ca9 614 rcu_eqs_exit(false);
c9d4b0af 615 rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
c5d900bf 616 local_irq_restore(flags);
adf5091e 617}
8a2ecf47 618EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 619
2b1d5024 620#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
621/**
622 * rcu_user_exit - inform RCU that we are exiting userspace.
623 *
624 * Exit RCU idle mode while entering the kernel because it can
625 * run a RCU read side critical section anytime.
626 */
627void rcu_user_exit(void)
628{
91d1aa43 629 rcu_eqs_exit(1);
adf5091e 630}
2b1d5024 631#endif /* CONFIG_RCU_USER_QS */
19dd1591 632
9b2e4f18
PM
633/**
634 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
635 *
636 * Enter an interrupt handler, which might possibly result in exiting
637 * idle mode, in other words, entering the mode in which read-side critical
638 * sections can occur.
639 *
640 * Note that the Linux kernel is fully capable of entering an interrupt
641 * handler that it never exits, for example when doing upcalls to
642 * user mode! This code assumes that the idle loop never does upcalls to
643 * user mode. If your architecture does do upcalls from the idle loop (or
644 * does anything else that results in unbalanced calls to the irq_enter()
645 * and irq_exit() functions), RCU will give you what you deserve, good
646 * and hard. But very infrequently and irreproducibly.
647 *
648 * Use things like work queues to work around this limitation.
649 *
650 * You have been warned.
651 */
652void rcu_irq_enter(void)
653{
654 unsigned long flags;
655 struct rcu_dynticks *rdtp;
656 long long oldval;
657
658 local_irq_save(flags);
c9d4b0af 659 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
660 oldval = rdtp->dynticks_nesting;
661 rdtp->dynticks_nesting++;
662 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 663 if (oldval)
f7f7bac9 664 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 665 else
cb349ca9 666 rcu_eqs_exit_common(rdtp, oldval, true);
eb348b89 667 rcu_sysidle_exit(rdtp, 1);
64db4cff 668 local_irq_restore(flags);
64db4cff
PM
669}
670
671/**
672 * rcu_nmi_enter - inform RCU of entry to NMI context
673 *
674 * If the CPU was idle with dynamic ticks active, and there is no
675 * irq handler running, this updates rdtp->dynticks_nmi to let the
676 * RCU grace-period handling know that the CPU is active.
677 */
678void rcu_nmi_enter(void)
679{
c9d4b0af 680 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 681
23b5c8fa
PM
682 if (rdtp->dynticks_nmi_nesting == 0 &&
683 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 684 return;
23b5c8fa
PM
685 rdtp->dynticks_nmi_nesting++;
686 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
687 atomic_inc(&rdtp->dynticks);
688 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
689 smp_mb__after_atomic_inc(); /* See above. */
690 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
691}
692
693/**
694 * rcu_nmi_exit - inform RCU of exit from NMI context
695 *
696 * If the CPU was idle with dynamic ticks active, and there is no
697 * irq handler running, this updates rdtp->dynticks_nmi to let the
698 * RCU grace-period handling know that the CPU is no longer active.
699 */
700void rcu_nmi_exit(void)
701{
c9d4b0af 702 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 703
23b5c8fa
PM
704 if (rdtp->dynticks_nmi_nesting == 0 ||
705 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 706 return;
23b5c8fa
PM
707 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
708 smp_mb__before_atomic_inc(); /* See above. */
709 atomic_inc(&rdtp->dynticks);
710 smp_mb__after_atomic_inc(); /* Force delay to next write. */
711 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
712}
713
714/**
5c173eb8
PM
715 * __rcu_is_watching - are RCU read-side critical sections safe?
716 *
717 * Return true if RCU is watching the running CPU, which means that
718 * this CPU can safely enter RCU read-side critical sections. Unlike
719 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
720 * least disabled preemption.
721 */
9418fb20 722bool notrace __rcu_is_watching(void)
5c173eb8
PM
723{
724 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
725}
726
727/**
728 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 729 *
9b2e4f18 730 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 731 * or NMI handler, return true.
64db4cff 732 */
9418fb20 733bool notrace rcu_is_watching(void)
64db4cff 734{
34240697
PM
735 int ret;
736
737 preempt_disable();
5c173eb8 738 ret = __rcu_is_watching();
34240697
PM
739 preempt_enable();
740 return ret;
64db4cff 741}
5c173eb8 742EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 743
62fde6ed 744#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
745
746/*
747 * Is the current CPU online? Disable preemption to avoid false positives
748 * that could otherwise happen due to the current CPU number being sampled,
749 * this task being preempted, its old CPU being taken offline, resuming
750 * on some other CPU, then determining that its old CPU is now offline.
751 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
752 * the check for rcu_scheduler_fully_active. Note also that it is OK
753 * for a CPU coming online to use RCU for one jiffy prior to marking itself
754 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
755 * offline to continue to use RCU for one jiffy after marking itself
756 * offline in the cpu_online_mask. This leniency is necessary given the
757 * non-atomic nature of the online and offline processing, for example,
758 * the fact that a CPU enters the scheduler after completing the CPU_DYING
759 * notifiers.
760 *
761 * This is also why RCU internally marks CPUs online during the
762 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
763 *
764 * Disable checking if in an NMI handler because we cannot safely report
765 * errors from NMI handlers anyway.
766 */
767bool rcu_lockdep_current_cpu_online(void)
768{
2036d94a
PM
769 struct rcu_data *rdp;
770 struct rcu_node *rnp;
c0d6d01b
PM
771 bool ret;
772
773 if (in_nmi())
f6f7ee9a 774 return true;
c0d6d01b 775 preempt_disable();
c9d4b0af 776 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a
PM
777 rnp = rdp->mynode;
778 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
779 !rcu_scheduler_fully_active;
780 preempt_enable();
781 return ret;
782}
783EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
784
62fde6ed 785#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 786
64db4cff 787/**
9b2e4f18 788 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 789 *
9b2e4f18
PM
790 * If the current CPU is idle or running at a first-level (not nested)
791 * interrupt from idle, return true. The caller must have at least
792 * disabled preemption.
64db4cff 793 */
62e3cb14 794static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 795{
c9d4b0af 796 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
797}
798
64db4cff
PM
799/*
800 * Snapshot the specified CPU's dynticks counter so that we can later
801 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 802 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 803 */
217af2a2
PM
804static int dyntick_save_progress_counter(struct rcu_data *rdp,
805 bool *isidle, unsigned long *maxj)
64db4cff 806{
23b5c8fa 807 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
0edd1b17 808 rcu_sysidle_check_cpu(rdp, isidle, maxj);
f0e7c19d 809 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
810}
811
6193c76a
PM
812/*
813 * This function really isn't for public consumption, but RCU is special in
814 * that context switches can allow the state machine to make progress.
815 */
816extern void resched_cpu(int cpu);
817
64db4cff
PM
818/*
819 * Return true if the specified CPU has passed through a quiescent
820 * state by virtue of being in or having passed through an dynticks
821 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 822 * for this same CPU, or by virtue of having been offline.
64db4cff 823 */
217af2a2
PM
824static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
825 bool *isidle, unsigned long *maxj)
64db4cff 826{
7eb4f455
PM
827 unsigned int curr;
828 unsigned int snap;
64db4cff 829
7eb4f455
PM
830 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
831 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
832
833 /*
834 * If the CPU passed through or entered a dynticks idle phase with
835 * no active irq/NMI handlers, then we can safely pretend that the CPU
836 * already acknowledged the request to pass through a quiescent
837 * state. Either way, that CPU cannot possibly be in an RCU
838 * read-side critical section that started before the beginning
839 * of the current RCU grace period.
840 */
7eb4f455 841 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 842 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
843 rdp->dynticks_fqs++;
844 return 1;
845 }
846
a82dcc76
PM
847 /*
848 * Check for the CPU being offline, but only if the grace period
849 * is old enough. We don't need to worry about the CPU changing
850 * state: If we see it offline even once, it has been through a
851 * quiescent state.
852 *
853 * The reason for insisting that the grace period be at least
854 * one jiffy old is that CPUs that are not quite online and that
855 * have just gone offline can still execute RCU read-side critical
856 * sections.
857 */
858 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
859 return 0; /* Grace period is not old enough. */
860 barrier();
861 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 862 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
863 rdp->offline_fqs++;
864 return 1;
865 }
65d798f0
PM
866
867 /*
868 * There is a possibility that a CPU in adaptive-ticks state
869 * might run in the kernel with the scheduling-clock tick disabled
870 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
871 * force the CPU to restart the scheduling-clock tick in this
872 * CPU is in this state.
873 */
874 rcu_kick_nohz_cpu(rdp->cpu);
875
6193c76a
PM
876 /*
877 * Alternatively, the CPU might be running in the kernel
878 * for an extended period of time without a quiescent state.
879 * Attempt to force the CPU through the scheduler to gain the
880 * needed quiescent state, but only if the grace period has gone
881 * on for an uncommonly long time. If there are many stuck CPUs,
882 * we will beat on the first one until it gets unstuck, then move
883 * to the next. Only do this for the primary flavor of RCU.
884 */
885 if (rdp->rsp == rcu_state &&
cb1e78cf 886 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
6193c76a
PM
887 rdp->rsp->jiffies_resched += 5;
888 resched_cpu(rdp->cpu);
889 }
890
a82dcc76 891 return 0;
64db4cff
PM
892}
893
64db4cff
PM
894static void record_gp_stall_check_time(struct rcu_state *rsp)
895{
cb1e78cf 896 unsigned long j = jiffies;
6193c76a 897 unsigned long j1;
26cdfedf
PM
898
899 rsp->gp_start = j;
900 smp_wmb(); /* Record start time before stall time. */
6193c76a
PM
901 j1 = rcu_jiffies_till_stall_check();
902 rsp->jiffies_stall = j + j1;
903 rsp->jiffies_resched = j + j1 / 2;
64db4cff
PM
904}
905
b637a328
PM
906/*
907 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
908 * for architectures that do not implement trigger_all_cpu_backtrace().
909 * The NMI-triggered stack traces are more accurate because they are
910 * printed by the target CPU.
911 */
912static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
913{
914 int cpu;
915 unsigned long flags;
916 struct rcu_node *rnp;
917
918 rcu_for_each_leaf_node(rsp, rnp) {
919 raw_spin_lock_irqsave(&rnp->lock, flags);
920 if (rnp->qsmask != 0) {
921 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
922 if (rnp->qsmask & (1UL << cpu))
923 dump_cpu_task(rnp->grplo + cpu);
924 }
925 raw_spin_unlock_irqrestore(&rnp->lock, flags);
926 }
927}
928
64db4cff
PM
929static void print_other_cpu_stall(struct rcu_state *rsp)
930{
931 int cpu;
932 long delta;
933 unsigned long flags;
285fe294 934 int ndetected = 0;
64db4cff 935 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 936 long totqlen = 0;
64db4cff
PM
937
938 /* Only let one CPU complain about others per time interval. */
939
1304afb2 940 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 941 delta = jiffies - rsp->jiffies_stall;
fc2219d4 942 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 943 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
944 return;
945 }
6bfc09e2 946 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 948
8cdd32a9
PM
949 /*
950 * OK, time to rat on our buddy...
951 * See Documentation/RCU/stallwarn.txt for info on how to debug
952 * RCU CPU stall warnings.
953 */
d7f3e207 954 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 955 rsp->name);
a858af28 956 print_cpu_stall_info_begin();
a0b6c9a7 957 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 958 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 959 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
960 if (rnp->qsmask != 0) {
961 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
962 if (rnp->qsmask & (1UL << cpu)) {
963 print_cpu_stall_info(rsp,
964 rnp->grplo + cpu);
965 ndetected++;
966 }
967 }
3acd9eb3 968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 969 }
a858af28
PM
970
971 /*
972 * Now rat on any tasks that got kicked up to the root rcu_node
973 * due to CPU offlining.
974 */
975 rnp = rcu_get_root(rsp);
976 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 977 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
978 raw_spin_unlock_irqrestore(&rnp->lock, flags);
979
980 print_cpu_stall_info_end();
53bb857c
PM
981 for_each_possible_cpu(cpu)
982 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
983 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 984 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 985 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 986 if (ndetected == 0)
d7f3e207 987 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 988 else if (!trigger_all_cpu_backtrace())
b637a328 989 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 990
4cdfc175 991 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
992
993 rcu_print_detail_task_stall(rsp);
994
4cdfc175 995 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
996}
997
b021fe3e
PZ
998/*
999 * This function really isn't for public consumption, but RCU is special in
1000 * that context switches can allow the state machine to make progress.
1001 */
1002extern void resched_cpu(int cpu);
1003
64db4cff
PM
1004static void print_cpu_stall(struct rcu_state *rsp)
1005{
53bb857c 1006 int cpu;
64db4cff
PM
1007 unsigned long flags;
1008 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1009 long totqlen = 0;
64db4cff 1010
8cdd32a9
PM
1011 /*
1012 * OK, time to rat on ourselves...
1013 * See Documentation/RCU/stallwarn.txt for info on how to debug
1014 * RCU CPU stall warnings.
1015 */
d7f3e207 1016 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1017 print_cpu_stall_info_begin();
1018 print_cpu_stall_info(rsp, smp_processor_id());
1019 print_cpu_stall_info_end();
53bb857c
PM
1020 for_each_possible_cpu(cpu)
1021 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1022 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
1023 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
1024 if (!trigger_all_cpu_backtrace())
1025 dump_stack();
c1dc0b9c 1026
1304afb2 1027 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 1028 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 1029 rsp->jiffies_stall = jiffies +
6bfc09e2 1030 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 1031 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 1032
b021fe3e
PZ
1033 /*
1034 * Attempt to revive the RCU machinery by forcing a context switch.
1035 *
1036 * A context switch would normally allow the RCU state machine to make
1037 * progress and it could be we're stuck in kernel space without context
1038 * switches for an entirely unreasonable amount of time.
1039 */
1040 resched_cpu(smp_processor_id());
64db4cff
PM
1041}
1042
1043static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1044{
26cdfedf
PM
1045 unsigned long completed;
1046 unsigned long gpnum;
1047 unsigned long gps;
bad6e139
PM
1048 unsigned long j;
1049 unsigned long js;
64db4cff
PM
1050 struct rcu_node *rnp;
1051
26cdfedf 1052 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
c68de209 1053 return;
cb1e78cf 1054 j = jiffies;
26cdfedf
PM
1055
1056 /*
1057 * Lots of memory barriers to reject false positives.
1058 *
1059 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1060 * then rsp->gp_start, and finally rsp->completed. These values
1061 * are updated in the opposite order with memory barriers (or
1062 * equivalent) during grace-period initialization and cleanup.
1063 * Now, a false positive can occur if we get an new value of
1064 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1065 * the memory barriers, the only way that this can happen is if one
1066 * grace period ends and another starts between these two fetches.
1067 * Detect this by comparing rsp->completed with the previous fetch
1068 * from rsp->gpnum.
1069 *
1070 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1071 * and rsp->gp_start suffice to forestall false positives.
1072 */
1073 gpnum = ACCESS_ONCE(rsp->gpnum);
1074 smp_rmb(); /* Pick up ->gpnum first... */
bad6e139 1075 js = ACCESS_ONCE(rsp->jiffies_stall);
26cdfedf
PM
1076 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1077 gps = ACCESS_ONCE(rsp->gp_start);
1078 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1079 completed = ACCESS_ONCE(rsp->completed);
1080 if (ULONG_CMP_GE(completed, gpnum) ||
1081 ULONG_CMP_LT(j, js) ||
1082 ULONG_CMP_GE(gps, js))
1083 return; /* No stall or GP completed since entering function. */
64db4cff 1084 rnp = rdp->mynode;
c96ea7cf 1085 if (rcu_gp_in_progress(rsp) &&
26cdfedf 1086 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1087
1088 /* We haven't checked in, so go dump stack. */
1089 print_cpu_stall(rsp);
1090
bad6e139
PM
1091 } else if (rcu_gp_in_progress(rsp) &&
1092 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1093
bad6e139 1094 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
1095 print_other_cpu_stall(rsp);
1096 }
1097}
1098
53d84e00
PM
1099/**
1100 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1101 *
1102 * Set the stall-warning timeout way off into the future, thus preventing
1103 * any RCU CPU stall-warning messages from appearing in the current set of
1104 * RCU grace periods.
1105 *
1106 * The caller must disable hard irqs.
1107 */
1108void rcu_cpu_stall_reset(void)
1109{
6ce75a23
PM
1110 struct rcu_state *rsp;
1111
1112 for_each_rcu_flavor(rsp)
1113 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1114}
1115
3f5d3ea6
PM
1116/*
1117 * Initialize the specified rcu_data structure's callback list to empty.
1118 */
1119static void init_callback_list(struct rcu_data *rdp)
1120{
1121 int i;
1122
34ed6246
PM
1123 if (init_nocb_callback_list(rdp))
1124 return;
3f5d3ea6
PM
1125 rdp->nxtlist = NULL;
1126 for (i = 0; i < RCU_NEXT_SIZE; i++)
1127 rdp->nxttail[i] = &rdp->nxtlist;
1128}
1129
dc35c893
PM
1130/*
1131 * Determine the value that ->completed will have at the end of the
1132 * next subsequent grace period. This is used to tag callbacks so that
1133 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1134 * been dyntick-idle for an extended period with callbacks under the
1135 * influence of RCU_FAST_NO_HZ.
1136 *
1137 * The caller must hold rnp->lock with interrupts disabled.
1138 */
1139static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1140 struct rcu_node *rnp)
1141{
1142 /*
1143 * If RCU is idle, we just wait for the next grace period.
1144 * But we can only be sure that RCU is idle if we are looking
1145 * at the root rcu_node structure -- otherwise, a new grace
1146 * period might have started, but just not yet gotten around
1147 * to initializing the current non-root rcu_node structure.
1148 */
1149 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1150 return rnp->completed + 1;
1151
1152 /*
1153 * Otherwise, wait for a possible partial grace period and
1154 * then the subsequent full grace period.
1155 */
1156 return rnp->completed + 2;
1157}
1158
0446be48
PM
1159/*
1160 * Trace-event helper function for rcu_start_future_gp() and
1161 * rcu_nocb_wait_gp().
1162 */
1163static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1164 unsigned long c, const char *s)
0446be48
PM
1165{
1166 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1167 rnp->completed, c, rnp->level,
1168 rnp->grplo, rnp->grphi, s);
1169}
1170
1171/*
1172 * Start some future grace period, as needed to handle newly arrived
1173 * callbacks. The required future grace periods are recorded in each
1174 * rcu_node structure's ->need_future_gp field.
1175 *
1176 * The caller must hold the specified rcu_node structure's ->lock.
1177 */
1178static unsigned long __maybe_unused
1179rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1180{
1181 unsigned long c;
1182 int i;
1183 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1184
1185 /*
1186 * Pick up grace-period number for new callbacks. If this
1187 * grace period is already marked as needed, return to the caller.
1188 */
1189 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1190 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1191 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1192 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1193 return c;
1194 }
1195
1196 /*
1197 * If either this rcu_node structure or the root rcu_node structure
1198 * believe that a grace period is in progress, then we must wait
1199 * for the one following, which is in "c". Because our request
1200 * will be noticed at the end of the current grace period, we don't
1201 * need to explicitly start one.
1202 */
1203 if (rnp->gpnum != rnp->completed ||
1204 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1205 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1206 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1207 return c;
1208 }
1209
1210 /*
1211 * There might be no grace period in progress. If we don't already
1212 * hold it, acquire the root rcu_node structure's lock in order to
1213 * start one (if needed).
1214 */
6303b9c8 1215 if (rnp != rnp_root) {
0446be48 1216 raw_spin_lock(&rnp_root->lock);
6303b9c8
PM
1217 smp_mb__after_unlock_lock();
1218 }
0446be48
PM
1219
1220 /*
1221 * Get a new grace-period number. If there really is no grace
1222 * period in progress, it will be smaller than the one we obtained
1223 * earlier. Adjust callbacks as needed. Note that even no-CBs
1224 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1225 */
1226 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1227 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1228 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1229 rdp->nxtcompleted[i] = c;
1230
1231 /*
1232 * If the needed for the required grace period is already
1233 * recorded, trace and leave.
1234 */
1235 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1236 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1237 goto unlock_out;
1238 }
1239
1240 /* Record the need for the future grace period. */
1241 rnp_root->need_future_gp[c & 0x1]++;
1242
1243 /* If a grace period is not already in progress, start one. */
1244 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1245 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1246 } else {
f7f7bac9 1247 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1248 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1249 }
1250unlock_out:
1251 if (rnp != rnp_root)
1252 raw_spin_unlock(&rnp_root->lock);
1253 return c;
1254}
1255
1256/*
1257 * Clean up any old requests for the just-ended grace period. Also return
1258 * whether any additional grace periods have been requested. Also invoke
1259 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1260 * waiting for this grace period to complete.
1261 */
1262static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1263{
1264 int c = rnp->completed;
1265 int needmore;
1266 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1267
1268 rcu_nocb_gp_cleanup(rsp, rnp);
1269 rnp->need_future_gp[c & 0x1] = 0;
1270 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1271 trace_rcu_future_gp(rnp, rdp, c,
1272 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1273 return needmore;
1274}
1275
dc35c893
PM
1276/*
1277 * If there is room, assign a ->completed number to any callbacks on
1278 * this CPU that have not already been assigned. Also accelerate any
1279 * callbacks that were previously assigned a ->completed number that has
1280 * since proven to be too conservative, which can happen if callbacks get
1281 * assigned a ->completed number while RCU is idle, but with reference to
1282 * a non-root rcu_node structure. This function is idempotent, so it does
1283 * not hurt to call it repeatedly.
1284 *
1285 * The caller must hold rnp->lock with interrupts disabled.
1286 */
1287static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1288 struct rcu_data *rdp)
1289{
1290 unsigned long c;
1291 int i;
1292
1293 /* If the CPU has no callbacks, nothing to do. */
1294 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1295 return;
1296
1297 /*
1298 * Starting from the sublist containing the callbacks most
1299 * recently assigned a ->completed number and working down, find the
1300 * first sublist that is not assignable to an upcoming grace period.
1301 * Such a sublist has something in it (first two tests) and has
1302 * a ->completed number assigned that will complete sooner than
1303 * the ->completed number for newly arrived callbacks (last test).
1304 *
1305 * The key point is that any later sublist can be assigned the
1306 * same ->completed number as the newly arrived callbacks, which
1307 * means that the callbacks in any of these later sublist can be
1308 * grouped into a single sublist, whether or not they have already
1309 * been assigned a ->completed number.
1310 */
1311 c = rcu_cbs_completed(rsp, rnp);
1312 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1313 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1314 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1315 break;
1316
1317 /*
1318 * If there are no sublist for unassigned callbacks, leave.
1319 * At the same time, advance "i" one sublist, so that "i" will
1320 * index into the sublist where all the remaining callbacks should
1321 * be grouped into.
1322 */
1323 if (++i >= RCU_NEXT_TAIL)
1324 return;
1325
1326 /*
1327 * Assign all subsequent callbacks' ->completed number to the next
1328 * full grace period and group them all in the sublist initially
1329 * indexed by "i".
1330 */
1331 for (; i <= RCU_NEXT_TAIL; i++) {
1332 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1333 rdp->nxtcompleted[i] = c;
1334 }
910ee45d
PM
1335 /* Record any needed additional grace periods. */
1336 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1337
1338 /* Trace depending on how much we were able to accelerate. */
1339 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1340 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1341 else
f7f7bac9 1342 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1343}
1344
1345/*
1346 * Move any callbacks whose grace period has completed to the
1347 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1348 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1349 * sublist. This function is idempotent, so it does not hurt to
1350 * invoke it repeatedly. As long as it is not invoked -too- often...
1351 *
1352 * The caller must hold rnp->lock with interrupts disabled.
1353 */
1354static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1355 struct rcu_data *rdp)
1356{
1357 int i, j;
1358
1359 /* If the CPU has no callbacks, nothing to do. */
1360 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1361 return;
1362
1363 /*
1364 * Find all callbacks whose ->completed numbers indicate that they
1365 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1366 */
1367 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1368 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1369 break;
1370 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1371 }
1372 /* Clean up any sublist tail pointers that were misordered above. */
1373 for (j = RCU_WAIT_TAIL; j < i; j++)
1374 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1375
1376 /* Copy down callbacks to fill in empty sublists. */
1377 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1378 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1379 break;
1380 rdp->nxttail[j] = rdp->nxttail[i];
1381 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1382 }
1383
1384 /* Classify any remaining callbacks. */
1385 rcu_accelerate_cbs(rsp, rnp, rdp);
1386}
1387
d09b62df 1388/*
ba9fbe95
PM
1389 * Update CPU-local rcu_data state to record the beginnings and ends of
1390 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1391 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1392 */
ba9fbe95 1393static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1394{
ba9fbe95 1395 /* Handle the ends of any preceding grace periods first. */
dc35c893 1396 if (rdp->completed == rnp->completed) {
d09b62df 1397
ba9fbe95 1398 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1399 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1400
dc35c893
PM
1401 } else {
1402
1403 /* Advance callbacks. */
1404 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1405
1406 /* Remember that we saw this grace-period completion. */
1407 rdp->completed = rnp->completed;
f7f7bac9 1408 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1409 }
398ebe60 1410
6eaef633
PM
1411 if (rdp->gpnum != rnp->gpnum) {
1412 /*
1413 * If the current grace period is waiting for this CPU,
1414 * set up to detect a quiescent state, otherwise don't
1415 * go looking for one.
1416 */
1417 rdp->gpnum = rnp->gpnum;
f7f7bac9 1418 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1419 rdp->passed_quiesce = 0;
1420 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1421 zero_cpu_stall_ticks(rdp);
1422 }
1423}
1424
d34ea322 1425static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1426{
1427 unsigned long flags;
1428 struct rcu_node *rnp;
1429
1430 local_irq_save(flags);
1431 rnp = rdp->mynode;
d34ea322
PM
1432 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1433 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1434 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1435 local_irq_restore(flags);
1436 return;
1437 }
6303b9c8 1438 smp_mb__after_unlock_lock();
d34ea322 1439 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1440 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1441}
1442
b3dbec76 1443/*
f7be8209 1444 * Initialize a new grace period. Return 0 if no grace period required.
b3dbec76 1445 */
7fdefc10 1446static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1447{
1448 struct rcu_data *rdp;
7fdefc10 1449 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1450
eb75767b 1451 rcu_bind_gp_kthread();
7fdefc10 1452 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1453 smp_mb__after_unlock_lock();
f7be8209
PM
1454 if (rsp->gp_flags == 0) {
1455 /* Spurious wakeup, tell caller to go back to sleep. */
1456 raw_spin_unlock_irq(&rnp->lock);
1457 return 0;
1458 }
4cdfc175 1459 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1460
f7be8209
PM
1461 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1462 /*
1463 * Grace period already in progress, don't start another.
1464 * Not supposed to be able to happen.
1465 */
7fdefc10
PM
1466 raw_spin_unlock_irq(&rnp->lock);
1467 return 0;
1468 }
1469
7fdefc10 1470 /* Advance to a new grace period and initialize state. */
26cdfedf 1471 record_gp_stall_check_time(rsp);
765a3f4f
PM
1472 /* Record GP times before starting GP, hence smp_store_release(). */
1473 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 1474 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1475 raw_spin_unlock_irq(&rnp->lock);
1476
1477 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1478 mutex_lock(&rsp->onoff_mutex);
765a3f4f 1479 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
7fdefc10
PM
1480
1481 /*
1482 * Set the quiescent-state-needed bits in all the rcu_node
1483 * structures for all currently online CPUs in breadth-first order,
1484 * starting from the root rcu_node structure, relying on the layout
1485 * of the tree within the rsp->node[] array. Note that other CPUs
1486 * will access only the leaves of the hierarchy, thus seeing that no
1487 * grace period is in progress, at least until the corresponding
1488 * leaf node has been initialized. In addition, we have excluded
1489 * CPU-hotplug operations.
1490 *
1491 * The grace period cannot complete until the initialization
1492 * process finishes, because this kthread handles both.
1493 */
1494 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1495 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1496 smp_mb__after_unlock_lock();
b3dbec76 1497 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1498 rcu_preempt_check_blocked_tasks(rnp);
1499 rnp->qsmask = rnp->qsmaskinit;
0446be48 1500 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1501 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1502 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1503 if (rnp == rdp->mynode)
ce3d9c03 1504 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1505 rcu_preempt_boost_start_gp(rnp);
1506 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1507 rnp->level, rnp->grplo,
1508 rnp->grphi, rnp->qsmask);
1509 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1510#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1511 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1512 system_state == SYSTEM_RUNNING)
971394f3 1513 udelay(200);
661a85dc 1514#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1515 cond_resched();
1516 }
b3dbec76 1517
a4fbe35a 1518 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1519 return 1;
1520}
b3dbec76 1521
4cdfc175
PM
1522/*
1523 * Do one round of quiescent-state forcing.
1524 */
01896f7e 1525static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
4cdfc175
PM
1526{
1527 int fqs_state = fqs_state_in;
217af2a2
PM
1528 bool isidle = false;
1529 unsigned long maxj;
4cdfc175
PM
1530 struct rcu_node *rnp = rcu_get_root(rsp);
1531
1532 rsp->n_force_qs++;
1533 if (fqs_state == RCU_SAVE_DYNTICK) {
1534 /* Collect dyntick-idle snapshots. */
0edd1b17
PM
1535 if (is_sysidle_rcu_state(rsp)) {
1536 isidle = 1;
1537 maxj = jiffies - ULONG_MAX / 4;
1538 }
217af2a2
PM
1539 force_qs_rnp(rsp, dyntick_save_progress_counter,
1540 &isidle, &maxj);
0edd1b17 1541 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
1542 fqs_state = RCU_FORCE_QS;
1543 } else {
1544 /* Handle dyntick-idle and offline CPUs. */
0edd1b17 1545 isidle = 0;
217af2a2 1546 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
1547 }
1548 /* Clear flag to prevent immediate re-entry. */
1549 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1550 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1551 smp_mb__after_unlock_lock();
4cdfc175
PM
1552 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1553 raw_spin_unlock_irq(&rnp->lock);
1554 }
1555 return fqs_state;
1556}
1557
7fdefc10
PM
1558/*
1559 * Clean up after the old grace period.
1560 */
4cdfc175 1561static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1562{
1563 unsigned long gp_duration;
dae6e64d 1564 int nocb = 0;
7fdefc10
PM
1565 struct rcu_data *rdp;
1566 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1567
7fdefc10 1568 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1569 smp_mb__after_unlock_lock();
7fdefc10
PM
1570 gp_duration = jiffies - rsp->gp_start;
1571 if (gp_duration > rsp->gp_max)
1572 rsp->gp_max = gp_duration;
b3dbec76 1573
7fdefc10
PM
1574 /*
1575 * We know the grace period is complete, but to everyone else
1576 * it appears to still be ongoing. But it is also the case
1577 * that to everyone else it looks like there is nothing that
1578 * they can do to advance the grace period. It is therefore
1579 * safe for us to drop the lock in order to mark the grace
1580 * period as completed in all of the rcu_node structures.
7fdefc10 1581 */
5d4b8659 1582 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1583
5d4b8659
PM
1584 /*
1585 * Propagate new ->completed value to rcu_node structures so
1586 * that other CPUs don't have to wait until the start of the next
1587 * grace period to process their callbacks. This also avoids
1588 * some nasty RCU grace-period initialization races by forcing
1589 * the end of the current grace period to be completely recorded in
1590 * all of the rcu_node structures before the beginning of the next
1591 * grace period is recorded in any of the rcu_node structures.
1592 */
1593 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1594 raw_spin_lock_irq(&rnp->lock);
6303b9c8 1595 smp_mb__after_unlock_lock();
0446be48 1596 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1597 rdp = this_cpu_ptr(rsp->rda);
1598 if (rnp == rdp->mynode)
470716fc 1599 __note_gp_changes(rsp, rnp, rdp);
78e4bc34 1600 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 1601 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1602 raw_spin_unlock_irq(&rnp->lock);
1603 cond_resched();
7fdefc10 1604 }
5d4b8659
PM
1605 rnp = rcu_get_root(rsp);
1606 raw_spin_lock_irq(&rnp->lock);
765a3f4f 1607 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
dae6e64d 1608 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 1609
765a3f4f
PM
1610 /* Declare grace period done. */
1611 ACCESS_ONCE(rsp->completed) = rsp->gpnum;
f7f7bac9 1612 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1613 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1614 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1615 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
bb311ecc 1616 if (cpu_needs_another_gp(rsp, rdp)) {
b3f2d025 1617 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1618 trace_rcu_grace_period(rsp->name,
1619 ACCESS_ONCE(rsp->gpnum),
1620 TPS("newreq"));
1621 }
7fdefc10 1622 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1623}
1624
1625/*
1626 * Body of kthread that handles grace periods.
1627 */
1628static int __noreturn rcu_gp_kthread(void *arg)
1629{
4cdfc175 1630 int fqs_state;
88d6df61 1631 int gf;
d40011f6 1632 unsigned long j;
4cdfc175 1633 int ret;
7fdefc10
PM
1634 struct rcu_state *rsp = arg;
1635 struct rcu_node *rnp = rcu_get_root(rsp);
1636
1637 for (;;) {
1638
1639 /* Handle grace-period start. */
1640 for (;;) {
63c4db78
PM
1641 trace_rcu_grace_period(rsp->name,
1642 ACCESS_ONCE(rsp->gpnum),
1643 TPS("reqwait"));
afea227f 1644 rsp->gp_state = RCU_GP_WAIT_GPS;
4cdfc175 1645 wait_event_interruptible(rsp->gp_wq,
591c6d17 1646 ACCESS_ONCE(rsp->gp_flags) &
4cdfc175 1647 RCU_GP_FLAG_INIT);
78e4bc34 1648 /* Locking provides needed memory barrier. */
f7be8209 1649 if (rcu_gp_init(rsp))
7fdefc10
PM
1650 break;
1651 cond_resched();
1652 flush_signals(current);
63c4db78
PM
1653 trace_rcu_grace_period(rsp->name,
1654 ACCESS_ONCE(rsp->gpnum),
1655 TPS("reqwaitsig"));
7fdefc10 1656 }
cabc49c1 1657
4cdfc175
PM
1658 /* Handle quiescent-state forcing. */
1659 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1660 j = jiffies_till_first_fqs;
1661 if (j > HZ) {
1662 j = HZ;
1663 jiffies_till_first_fqs = HZ;
1664 }
88d6df61 1665 ret = 0;
cabc49c1 1666 for (;;) {
88d6df61
PM
1667 if (!ret)
1668 rsp->jiffies_force_qs = jiffies + j;
63c4db78
PM
1669 trace_rcu_grace_period(rsp->name,
1670 ACCESS_ONCE(rsp->gpnum),
1671 TPS("fqswait"));
afea227f 1672 rsp->gp_state = RCU_GP_WAIT_FQS;
4cdfc175 1673 ret = wait_event_interruptible_timeout(rsp->gp_wq,
88d6df61
PM
1674 ((gf = ACCESS_ONCE(rsp->gp_flags)) &
1675 RCU_GP_FLAG_FQS) ||
4cdfc175
PM
1676 (!ACCESS_ONCE(rnp->qsmask) &&
1677 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1678 j);
78e4bc34 1679 /* Locking provides needed memory barriers. */
4cdfc175 1680 /* If grace period done, leave loop. */
cabc49c1 1681 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1682 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1683 break;
4cdfc175 1684 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
1685 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1686 (gf & RCU_GP_FLAG_FQS)) {
63c4db78
PM
1687 trace_rcu_grace_period(rsp->name,
1688 ACCESS_ONCE(rsp->gpnum),
1689 TPS("fqsstart"));
4cdfc175 1690 fqs_state = rcu_gp_fqs(rsp, fqs_state);
63c4db78
PM
1691 trace_rcu_grace_period(rsp->name,
1692 ACCESS_ONCE(rsp->gpnum),
1693 TPS("fqsend"));
4cdfc175
PM
1694 cond_resched();
1695 } else {
1696 /* Deal with stray signal. */
1697 cond_resched();
1698 flush_signals(current);
63c4db78
PM
1699 trace_rcu_grace_period(rsp->name,
1700 ACCESS_ONCE(rsp->gpnum),
1701 TPS("fqswaitsig"));
4cdfc175 1702 }
d40011f6
PM
1703 j = jiffies_till_next_fqs;
1704 if (j > HZ) {
1705 j = HZ;
1706 jiffies_till_next_fqs = HZ;
1707 } else if (j < 1) {
1708 j = 1;
1709 jiffies_till_next_fqs = 1;
1710 }
cabc49c1 1711 }
4cdfc175
PM
1712
1713 /* Handle grace-period end. */
1714 rcu_gp_cleanup(rsp);
b3dbec76 1715 }
b3dbec76
PM
1716}
1717
016a8d5b
SR
1718static void rsp_wakeup(struct irq_work *work)
1719{
1720 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1721
1722 /* Wake up rcu_gp_kthread() to start the grace period. */
1723 wake_up(&rsp->gp_wq);
1724}
1725
64db4cff
PM
1726/*
1727 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1728 * in preparation for detecting the next grace period. The caller must hold
b8462084 1729 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1730 *
1731 * Note that it is legal for a dying CPU (which is marked as offline) to
1732 * invoke this function. This can happen when the dying CPU reports its
1733 * quiescent state.
64db4cff
PM
1734 */
1735static void
910ee45d
PM
1736rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1737 struct rcu_data *rdp)
64db4cff 1738{
b8462084 1739 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1740 /*
b3dbec76 1741 * Either we have not yet spawned the grace-period
62da1921
PM
1742 * task, this CPU does not need another grace period,
1743 * or a grace period is already in progress.
b3dbec76 1744 * Either way, don't start a new grace period.
afe24b12 1745 */
afe24b12
PM
1746 return;
1747 }
4cdfc175 1748 rsp->gp_flags = RCU_GP_FLAG_INIT;
bb311ecc
PM
1749 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1750 TPS("newreq"));
62da1921 1751
016a8d5b
SR
1752 /*
1753 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c
PM
1754 * could cause possible deadlocks with the rq->lock. Defer
1755 * the wakeup to interrupt context. And don't bother waking
1756 * up the running kthread.
016a8d5b 1757 */
1eafd31c
PM
1758 if (current != rsp->gp_kthread)
1759 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1760}
1761
910ee45d
PM
1762/*
1763 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1764 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1765 * is invoked indirectly from rcu_advance_cbs(), which would result in
1766 * endless recursion -- or would do so if it wasn't for the self-deadlock
1767 * that is encountered beforehand.
1768 */
1769static void
1770rcu_start_gp(struct rcu_state *rsp)
1771{
1772 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1773 struct rcu_node *rnp = rcu_get_root(rsp);
1774
1775 /*
1776 * If there is no grace period in progress right now, any
1777 * callbacks we have up to this point will be satisfied by the
1778 * next grace period. Also, advancing the callbacks reduces the
1779 * probability of false positives from cpu_needs_another_gp()
1780 * resulting in pointless grace periods. So, advance callbacks
1781 * then start the grace period!
1782 */
1783 rcu_advance_cbs(rsp, rnp, rdp);
1784 rcu_start_gp_advanced(rsp, rnp, rdp);
1785}
1786
f41d911f 1787/*
d3f6bad3
PM
1788 * Report a full set of quiescent states to the specified rcu_state
1789 * data structure. This involves cleaning up after the prior grace
1790 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1791 * if one is needed. Note that the caller must hold rnp->lock, which
1792 * is released before return.
f41d911f 1793 */
d3f6bad3 1794static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1795 __releases(rcu_get_root(rsp)->lock)
f41d911f 1796{
fc2219d4 1797 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1798 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1799 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1800}
1801
64db4cff 1802/*
d3f6bad3
PM
1803 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1804 * Allows quiescent states for a group of CPUs to be reported at one go
1805 * to the specified rcu_node structure, though all the CPUs in the group
1806 * must be represented by the same rcu_node structure (which need not be
1807 * a leaf rcu_node structure, though it often will be). That structure's
1808 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1809 */
1810static void
d3f6bad3
PM
1811rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1812 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1813 __releases(rnp->lock)
1814{
28ecd580
PM
1815 struct rcu_node *rnp_c;
1816
64db4cff
PM
1817 /* Walk up the rcu_node hierarchy. */
1818 for (;;) {
1819 if (!(rnp->qsmask & mask)) {
1820
1821 /* Our bit has already been cleared, so done. */
1304afb2 1822 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1823 return;
1824 }
1825 rnp->qsmask &= ~mask;
d4c08f2a
PM
1826 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1827 mask, rnp->qsmask, rnp->level,
1828 rnp->grplo, rnp->grphi,
1829 !!rnp->gp_tasks);
27f4d280 1830 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1831
1832 /* Other bits still set at this level, so done. */
1304afb2 1833 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1834 return;
1835 }
1836 mask = rnp->grpmask;
1837 if (rnp->parent == NULL) {
1838
1839 /* No more levels. Exit loop holding root lock. */
1840
1841 break;
1842 }
1304afb2 1843 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1844 rnp_c = rnp;
64db4cff 1845 rnp = rnp->parent;
1304afb2 1846 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1847 smp_mb__after_unlock_lock();
28ecd580 1848 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1849 }
1850
1851 /*
1852 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1853 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1854 * to clean up and start the next grace period if one is needed.
64db4cff 1855 */
d3f6bad3 1856 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1857}
1858
1859/*
d3f6bad3
PM
1860 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1861 * structure. This must be either called from the specified CPU, or
1862 * called when the specified CPU is known to be offline (and when it is
1863 * also known that no other CPU is concurrently trying to help the offline
1864 * CPU). The lastcomp argument is used to make sure we are still in the
1865 * grace period of interest. We don't want to end the current grace period
1866 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1867 */
1868static void
d7d6a11e 1869rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1870{
1871 unsigned long flags;
1872 unsigned long mask;
1873 struct rcu_node *rnp;
1874
1875 rnp = rdp->mynode;
1304afb2 1876 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1877 smp_mb__after_unlock_lock();
d7d6a11e
PM
1878 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1879 rnp->completed == rnp->gpnum) {
64db4cff
PM
1880
1881 /*
e4cc1f22
PM
1882 * The grace period in which this quiescent state was
1883 * recorded has ended, so don't report it upwards.
1884 * We will instead need a new quiescent state that lies
1885 * within the current grace period.
64db4cff 1886 */
e4cc1f22 1887 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1888 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1889 return;
1890 }
1891 mask = rdp->grpmask;
1892 if ((rnp->qsmask & mask) == 0) {
1304afb2 1893 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1894 } else {
1895 rdp->qs_pending = 0;
1896
1897 /*
1898 * This GP can't end until cpu checks in, so all of our
1899 * callbacks can be processed during the next GP.
1900 */
dc35c893 1901 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1902
d3f6bad3 1903 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1904 }
1905}
1906
1907/*
1908 * Check to see if there is a new grace period of which this CPU
1909 * is not yet aware, and if so, set up local rcu_data state for it.
1910 * Otherwise, see if this CPU has just passed through its first
1911 * quiescent state for this grace period, and record that fact if so.
1912 */
1913static void
1914rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1915{
05eb552b
PM
1916 /* Check for grace-period ends and beginnings. */
1917 note_gp_changes(rsp, rdp);
64db4cff
PM
1918
1919 /*
1920 * Does this CPU still need to do its part for current grace period?
1921 * If no, return and let the other CPUs do their part as well.
1922 */
1923 if (!rdp->qs_pending)
1924 return;
1925
1926 /*
1927 * Was there a quiescent state since the beginning of the grace
1928 * period? If no, then exit and wait for the next call.
1929 */
e4cc1f22 1930 if (!rdp->passed_quiesce)
64db4cff
PM
1931 return;
1932
d3f6bad3
PM
1933 /*
1934 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1935 * judge of that).
1936 */
d7d6a11e 1937 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1938}
1939
1940#ifdef CONFIG_HOTPLUG_CPU
1941
e74f4c45 1942/*
b1420f1c
PM
1943 * Send the specified CPU's RCU callbacks to the orphanage. The
1944 * specified CPU must be offline, and the caller must hold the
7b2e6011 1945 * ->orphan_lock.
e74f4c45 1946 */
b1420f1c
PM
1947static void
1948rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1949 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1950{
3fbfbf7a 1951 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1952 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1953 return;
1954
b1420f1c
PM
1955 /*
1956 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1957 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1958 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1959 */
a50c3af9 1960 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1961 rsp->qlen_lazy += rdp->qlen_lazy;
1962 rsp->qlen += rdp->qlen;
1963 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1964 rdp->qlen_lazy = 0;
1d1fb395 1965 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1966 }
1967
1968 /*
b1420f1c
PM
1969 * Next, move those callbacks still needing a grace period to
1970 * the orphanage, where some other CPU will pick them up.
1971 * Some of the callbacks might have gone partway through a grace
1972 * period, but that is too bad. They get to start over because we
1973 * cannot assume that grace periods are synchronized across CPUs.
1974 * We don't bother updating the ->nxttail[] array yet, instead
1975 * we just reset the whole thing later on.
a50c3af9 1976 */
b1420f1c
PM
1977 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1978 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1979 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1980 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1981 }
1982
1983 /*
b1420f1c
PM
1984 * Then move the ready-to-invoke callbacks to the orphanage,
1985 * where some other CPU will pick them up. These will not be
1986 * required to pass though another grace period: They are done.
a50c3af9 1987 */
e5601400 1988 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1989 *rsp->orphan_donetail = rdp->nxtlist;
1990 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1991 }
e74f4c45 1992
b1420f1c 1993 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1994 init_callback_list(rdp);
b1420f1c
PM
1995}
1996
1997/*
1998 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1999 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2000 */
96d3fd0d 2001static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c
PM
2002{
2003 int i;
2004 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2005
3fbfbf7a 2006 /* No-CBs CPUs are handled specially. */
96d3fd0d 2007 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2008 return;
2009
b1420f1c
PM
2010 /* Do the accounting first. */
2011 rdp->qlen_lazy += rsp->qlen_lazy;
2012 rdp->qlen += rsp->qlen;
2013 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
2014 if (rsp->qlen_lazy != rsp->qlen)
2015 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2016 rsp->qlen_lazy = 0;
2017 rsp->qlen = 0;
2018
2019 /*
2020 * We do not need a memory barrier here because the only way we
2021 * can get here if there is an rcu_barrier() in flight is if
2022 * we are the task doing the rcu_barrier().
2023 */
2024
2025 /* First adopt the ready-to-invoke callbacks. */
2026 if (rsp->orphan_donelist != NULL) {
2027 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2028 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2029 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2030 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2031 rdp->nxttail[i] = rsp->orphan_donetail;
2032 rsp->orphan_donelist = NULL;
2033 rsp->orphan_donetail = &rsp->orphan_donelist;
2034 }
2035
2036 /* And then adopt the callbacks that still need a grace period. */
2037 if (rsp->orphan_nxtlist != NULL) {
2038 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2039 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2040 rsp->orphan_nxtlist = NULL;
2041 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2042 }
2043}
2044
2045/*
2046 * Trace the fact that this CPU is going offline.
2047 */
2048static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2049{
2050 RCU_TRACE(unsigned long mask);
2051 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2052 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2053
2054 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
2055 trace_rcu_grace_period(rsp->name,
2056 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2057 TPS("cpuofl"));
64db4cff
PM
2058}
2059
2060/*
e5601400 2061 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2062 * this fact from process context. Do the remainder of the cleanup,
2063 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2064 * adopting them. There can only be one CPU hotplug operation at a time,
2065 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2066 */
e5601400 2067static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2068{
2036d94a
PM
2069 unsigned long flags;
2070 unsigned long mask;
2071 int need_report = 0;
e5601400 2072 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2073 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2074
2036d94a 2075 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2076 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2077
b1420f1c 2078 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
2079
2080 /* Exclude any attempts to start a new grace period. */
a4fbe35a 2081 mutex_lock(&rsp->onoff_mutex);
7b2e6011 2082 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 2083
b1420f1c
PM
2084 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2085 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2086 rcu_adopt_orphan_cbs(rsp, flags);
b1420f1c 2087
2036d94a
PM
2088 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2089 mask = rdp->grpmask; /* rnp->grplo is constant. */
2090 do {
2091 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 2092 smp_mb__after_unlock_lock();
2036d94a
PM
2093 rnp->qsmaskinit &= ~mask;
2094 if (rnp->qsmaskinit != 0) {
2095 if (rnp != rdp->mynode)
2096 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2097 break;
2098 }
2099 if (rnp == rdp->mynode)
2100 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2101 else
2102 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2103 mask = rnp->grpmask;
2104 rnp = rnp->parent;
2105 } while (rnp != NULL);
2106
2107 /*
2108 * We still hold the leaf rcu_node structure lock here, and
2109 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 2110 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
2111 * held leads to deadlock.
2112 */
7b2e6011 2113 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
2114 rnp = rdp->mynode;
2115 if (need_report & RCU_OFL_TASKS_NORM_GP)
2116 rcu_report_unblock_qs_rnp(rnp, flags);
2117 else
2118 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2119 if (need_report & RCU_OFL_TASKS_EXP_GP)
2120 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
2121 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2122 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2123 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
2124 init_callback_list(rdp);
2125 /* Disallow further callbacks on this CPU. */
2126 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 2127 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2128}
2129
2130#else /* #ifdef CONFIG_HOTPLUG_CPU */
2131
e5601400 2132static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
2133{
2134}
2135
e5601400 2136static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
2137{
2138}
2139
2140#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2141
2142/*
2143 * Invoke any RCU callbacks that have made it to the end of their grace
2144 * period. Thottle as specified by rdp->blimit.
2145 */
37c72e56 2146static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2147{
2148 unsigned long flags;
2149 struct rcu_head *next, *list, **tail;
878d7439
ED
2150 long bl, count, count_lazy;
2151 int i;
64db4cff 2152
dc35c893 2153 /* If no callbacks are ready, just return. */
29c00b4a 2154 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 2155 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
2156 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
2157 need_resched(), is_idle_task(current),
2158 rcu_is_callbacks_kthread());
64db4cff 2159 return;
29c00b4a 2160 }
64db4cff
PM
2161
2162 /*
2163 * Extract the list of ready callbacks, disabling to prevent
2164 * races with call_rcu() from interrupt handlers.
2165 */
2166 local_irq_save(flags);
8146c4e2 2167 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2168 bl = rdp->blimit;
486e2593 2169 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
2170 list = rdp->nxtlist;
2171 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2172 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2173 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
2174 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2175 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2176 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
2177 local_irq_restore(flags);
2178
2179 /* Invoke callbacks. */
486e2593 2180 count = count_lazy = 0;
64db4cff
PM
2181 while (list) {
2182 next = list->next;
2183 prefetch(next);
551d55a9 2184 debug_rcu_head_unqueue(list);
486e2593
PM
2185 if (__rcu_reclaim(rsp->name, list))
2186 count_lazy++;
64db4cff 2187 list = next;
dff1672d
PM
2188 /* Stop only if limit reached and CPU has something to do. */
2189 if (++count >= bl &&
2190 (need_resched() ||
2191 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2192 break;
2193 }
2194
2195 local_irq_save(flags);
4968c300
PM
2196 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2197 is_idle_task(current),
2198 rcu_is_callbacks_kthread());
64db4cff
PM
2199
2200 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2201 if (list != NULL) {
2202 *tail = rdp->nxtlist;
2203 rdp->nxtlist = list;
b41772ab
PM
2204 for (i = 0; i < RCU_NEXT_SIZE; i++)
2205 if (&rdp->nxtlist == rdp->nxttail[i])
2206 rdp->nxttail[i] = tail;
64db4cff
PM
2207 else
2208 break;
2209 }
b1420f1c
PM
2210 smp_mb(); /* List handling before counting for rcu_barrier(). */
2211 rdp->qlen_lazy -= count_lazy;
1d1fb395 2212 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2213 rdp->n_cbs_invoked += count;
64db4cff
PM
2214
2215 /* Reinstate batch limit if we have worked down the excess. */
2216 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2217 rdp->blimit = blimit;
2218
37c72e56
PM
2219 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2220 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2221 rdp->qlen_last_fqs_check = 0;
2222 rdp->n_force_qs_snap = rsp->n_force_qs;
2223 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2224 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2225 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2226
64db4cff
PM
2227 local_irq_restore(flags);
2228
e0f23060 2229 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2230 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2231 invoke_rcu_core();
64db4cff
PM
2232}
2233
2234/*
2235 * Check to see if this CPU is in a non-context-switch quiescent state
2236 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2237 * Also schedule RCU core processing.
64db4cff 2238 *
9b2e4f18 2239 * This function must be called from hardirq context. It is normally
64db4cff
PM
2240 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2241 * false, there is no point in invoking rcu_check_callbacks().
2242 */
2243void rcu_check_callbacks(int cpu, int user)
2244{
f7f7bac9 2245 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2246 increment_cpu_stall_ticks();
9b2e4f18 2247 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2248
2249 /*
2250 * Get here if this CPU took its interrupt from user
2251 * mode or from the idle loop, and if this is not a
2252 * nested interrupt. In this case, the CPU is in
d6714c22 2253 * a quiescent state, so note it.
64db4cff
PM
2254 *
2255 * No memory barrier is required here because both
d6714c22
PM
2256 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2257 * variables that other CPUs neither access nor modify,
2258 * at least not while the corresponding CPU is online.
64db4cff
PM
2259 */
2260
d6714c22
PM
2261 rcu_sched_qs(cpu);
2262 rcu_bh_qs(cpu);
64db4cff
PM
2263
2264 } else if (!in_softirq()) {
2265
2266 /*
2267 * Get here if this CPU did not take its interrupt from
2268 * softirq, in other words, if it is not interrupting
2269 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2270 * critical section, so note it.
64db4cff
PM
2271 */
2272
d6714c22 2273 rcu_bh_qs(cpu);
64db4cff 2274 }
f41d911f 2275 rcu_preempt_check_callbacks(cpu);
d21670ac 2276 if (rcu_pending(cpu))
a46e0899 2277 invoke_rcu_core();
f7f7bac9 2278 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2279}
2280
64db4cff
PM
2281/*
2282 * Scan the leaf rcu_node structures, processing dyntick state for any that
2283 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2284 * Also initiate boosting for any threads blocked on the root rcu_node.
2285 *
ee47eb9f 2286 * The caller must have suppressed start of new grace periods.
64db4cff 2287 */
217af2a2
PM
2288static void force_qs_rnp(struct rcu_state *rsp,
2289 int (*f)(struct rcu_data *rsp, bool *isidle,
2290 unsigned long *maxj),
2291 bool *isidle, unsigned long *maxj)
64db4cff
PM
2292{
2293 unsigned long bit;
2294 int cpu;
2295 unsigned long flags;
2296 unsigned long mask;
a0b6c9a7 2297 struct rcu_node *rnp;
64db4cff 2298
a0b6c9a7 2299 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2300 cond_resched();
64db4cff 2301 mask = 0;
1304afb2 2302 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2303 smp_mb__after_unlock_lock();
ee47eb9f 2304 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2305 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2306 return;
64db4cff 2307 }
a0b6c9a7 2308 if (rnp->qsmask == 0) {
1217ed1b 2309 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2310 continue;
2311 }
a0b6c9a7 2312 cpu = rnp->grplo;
64db4cff 2313 bit = 1;
a0b6c9a7 2314 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
0edd1b17
PM
2315 if ((rnp->qsmask & bit) != 0) {
2316 if ((rnp->qsmaskinit & bit) != 0)
2317 *isidle = 0;
2318 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2319 mask |= bit;
2320 }
64db4cff 2321 }
45f014c5 2322 if (mask != 0) {
64db4cff 2323
d3f6bad3
PM
2324 /* rcu_report_qs_rnp() releases rnp->lock. */
2325 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2326 continue;
2327 }
1304afb2 2328 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2329 }
27f4d280 2330 rnp = rcu_get_root(rsp);
1217ed1b
PM
2331 if (rnp->qsmask == 0) {
2332 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2333 smp_mb__after_unlock_lock();
1217ed1b
PM
2334 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2335 }
64db4cff
PM
2336}
2337
2338/*
2339 * Force quiescent states on reluctant CPUs, and also detect which
2340 * CPUs are in dyntick-idle mode.
2341 */
4cdfc175 2342static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2343{
2344 unsigned long flags;
394f2769
PM
2345 bool ret;
2346 struct rcu_node *rnp;
2347 struct rcu_node *rnp_old = NULL;
2348
2349 /* Funnel through hierarchy to reduce memory contention. */
2350 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2351 for (; rnp != NULL; rnp = rnp->parent) {
2352 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2353 !raw_spin_trylock(&rnp->fqslock);
2354 if (rnp_old != NULL)
2355 raw_spin_unlock(&rnp_old->fqslock);
2356 if (ret) {
3660c281 2357 ACCESS_ONCE(rsp->n_force_qs_lh)++;
394f2769
PM
2358 return;
2359 }
2360 rnp_old = rnp;
2361 }
2362 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2363
394f2769
PM
2364 /* Reached the root of the rcu_node tree, acquire lock. */
2365 raw_spin_lock_irqsave(&rnp_old->lock, flags);
6303b9c8 2366 smp_mb__after_unlock_lock();
394f2769
PM
2367 raw_spin_unlock(&rnp_old->fqslock);
2368 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
3660c281 2369 ACCESS_ONCE(rsp->n_force_qs_lh)++;
394f2769 2370 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2371 return; /* Someone beat us to it. */
46a1e34e 2372 }
4cdfc175 2373 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2374 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2375 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2376}
2377
64db4cff 2378/*
e0f23060
PM
2379 * This does the RCU core processing work for the specified rcu_state
2380 * and rcu_data structures. This may be called only from the CPU to
2381 * whom the rdp belongs.
64db4cff
PM
2382 */
2383static void
1bca8cf1 2384__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2385{
2386 unsigned long flags;
1bca8cf1 2387 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2388
2e597558
PM
2389 WARN_ON_ONCE(rdp->beenonline == 0);
2390
64db4cff
PM
2391 /* Update RCU state based on any recent quiescent states. */
2392 rcu_check_quiescent_state(rsp, rdp);
2393
2394 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2395 local_irq_save(flags);
64db4cff 2396 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2397 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2398 rcu_start_gp(rsp);
2399 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2400 } else {
2401 local_irq_restore(flags);
64db4cff
PM
2402 }
2403
2404 /* If there are callbacks ready, invoke them. */
09223371 2405 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2406 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
2407
2408 /* Do any needed deferred wakeups of rcuo kthreads. */
2409 do_nocb_deferred_wakeup(rdp);
09223371
SL
2410}
2411
64db4cff 2412/*
e0f23060 2413 * Do RCU core processing for the current CPU.
64db4cff 2414 */
09223371 2415static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2416{
6ce75a23
PM
2417 struct rcu_state *rsp;
2418
bfa00b4c
PM
2419 if (cpu_is_offline(smp_processor_id()))
2420 return;
f7f7bac9 2421 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2422 for_each_rcu_flavor(rsp)
2423 __rcu_process_callbacks(rsp);
f7f7bac9 2424 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2425}
2426
a26ac245 2427/*
e0f23060
PM
2428 * Schedule RCU callback invocation. If the specified type of RCU
2429 * does not support RCU priority boosting, just do a direct call,
2430 * otherwise wake up the per-CPU kernel kthread. Note that because we
2431 * are running on the current CPU with interrupts disabled, the
2432 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2433 */
a46e0899 2434static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2435{
b0d30417
PM
2436 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2437 return;
a46e0899
PM
2438 if (likely(!rsp->boost)) {
2439 rcu_do_batch(rsp, rdp);
a26ac245
PM
2440 return;
2441 }
a46e0899 2442 invoke_rcu_callbacks_kthread();
a26ac245
PM
2443}
2444
a46e0899 2445static void invoke_rcu_core(void)
09223371 2446{
b0f74036
PM
2447 if (cpu_online(smp_processor_id()))
2448 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2449}
2450
29154c57
PM
2451/*
2452 * Handle any core-RCU processing required by a call_rcu() invocation.
2453 */
2454static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2455 struct rcu_head *head, unsigned long flags)
64db4cff 2456{
62fde6ed
PM
2457 /*
2458 * If called from an extended quiescent state, invoke the RCU
2459 * core in order to force a re-evaluation of RCU's idleness.
2460 */
5c173eb8 2461 if (!rcu_is_watching() && cpu_online(smp_processor_id()))
62fde6ed
PM
2462 invoke_rcu_core();
2463
a16b7a69 2464 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2465 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2466 return;
64db4cff 2467
37c72e56
PM
2468 /*
2469 * Force the grace period if too many callbacks or too long waiting.
2470 * Enforce hysteresis, and don't invoke force_quiescent_state()
2471 * if some other CPU has recently done so. Also, don't bother
2472 * invoking force_quiescent_state() if the newly enqueued callback
2473 * is the only one waiting for a grace period to complete.
2474 */
2655d57e 2475 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2476
2477 /* Are we ignoring a completed grace period? */
470716fc 2478 note_gp_changes(rsp, rdp);
b52573d2
PM
2479
2480 /* Start a new grace period if one not already started. */
2481 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2482 struct rcu_node *rnp_root = rcu_get_root(rsp);
2483
b8462084 2484 raw_spin_lock(&rnp_root->lock);
6303b9c8 2485 smp_mb__after_unlock_lock();
b8462084
PM
2486 rcu_start_gp(rsp);
2487 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2488 } else {
2489 /* Give the grace period a kick. */
2490 rdp->blimit = LONG_MAX;
2491 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2492 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2493 force_quiescent_state(rsp);
b52573d2
PM
2494 rdp->n_force_qs_snap = rsp->n_force_qs;
2495 rdp->qlen_last_fqs_check = rdp->qlen;
2496 }
4cdfc175 2497 }
29154c57
PM
2498}
2499
ae150184
PM
2500/*
2501 * RCU callback function to leak a callback.
2502 */
2503static void rcu_leak_callback(struct rcu_head *rhp)
2504{
2505}
2506
3fbfbf7a
PM
2507/*
2508 * Helper function for call_rcu() and friends. The cpu argument will
2509 * normally be -1, indicating "currently running CPU". It may specify
2510 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2511 * is expected to specify a CPU.
2512 */
64db4cff
PM
2513static void
2514__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2515 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2516{
2517 unsigned long flags;
2518 struct rcu_data *rdp;
2519
0bb7b59d 2520 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2521 if (debug_rcu_head_queue(head)) {
2522 /* Probable double call_rcu(), so leak the callback. */
2523 ACCESS_ONCE(head->func) = rcu_leak_callback;
2524 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2525 return;
2526 }
64db4cff
PM
2527 head->func = func;
2528 head->next = NULL;
2529
64db4cff
PM
2530 /*
2531 * Opportunistically note grace-period endings and beginnings.
2532 * Note that we might see a beginning right after we see an
2533 * end, but never vice versa, since this CPU has to pass through
2534 * a quiescent state betweentimes.
2535 */
2536 local_irq_save(flags);
394f99a9 2537 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2538
2539 /* Add the callback to our list. */
3fbfbf7a
PM
2540 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2541 int offline;
2542
2543 if (cpu != -1)
2544 rdp = per_cpu_ptr(rsp->rda, cpu);
96d3fd0d 2545 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3fbfbf7a 2546 WARN_ON_ONCE(offline);
0d8ee37e 2547 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2548 local_irq_restore(flags);
2549 return;
2550 }
29154c57 2551 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2552 if (lazy)
2553 rdp->qlen_lazy++;
c57afe80
PM
2554 else
2555 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2556 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2557 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2558 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2559
d4c08f2a
PM
2560 if (__is_kfree_rcu_offset((unsigned long)func))
2561 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2562 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2563 else
486e2593 2564 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2565
29154c57
PM
2566 /* Go handle any RCU core processing required. */
2567 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2568 local_irq_restore(flags);
2569}
2570
2571/*
d6714c22 2572 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2573 */
d6714c22 2574void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2575{
3fbfbf7a 2576 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2577}
d6714c22 2578EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2579
2580/*
486e2593 2581 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2582 */
2583void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2584{
3fbfbf7a 2585 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2586}
2587EXPORT_SYMBOL_GPL(call_rcu_bh);
2588
6d813391
PM
2589/*
2590 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2591 * any blocking grace-period wait automatically implies a grace period
2592 * if there is only one CPU online at any point time during execution
2593 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2594 * occasionally incorrectly indicate that there are multiple CPUs online
2595 * when there was in fact only one the whole time, as this just adds
2596 * some overhead: RCU still operates correctly.
6d813391
PM
2597 */
2598static inline int rcu_blocking_is_gp(void)
2599{
95f0c1de
PM
2600 int ret;
2601
6d813391 2602 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2603 preempt_disable();
2604 ret = num_online_cpus() <= 1;
2605 preempt_enable();
2606 return ret;
6d813391
PM
2607}
2608
6ebb237b
PM
2609/**
2610 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2611 *
2612 * Control will return to the caller some time after a full rcu-sched
2613 * grace period has elapsed, in other words after all currently executing
2614 * rcu-sched read-side critical sections have completed. These read-side
2615 * critical sections are delimited by rcu_read_lock_sched() and
2616 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2617 * local_irq_disable(), and so on may be used in place of
2618 * rcu_read_lock_sched().
2619 *
2620 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2621 * non-threaded hardware-interrupt handlers, in progress on entry will
2622 * have completed before this primitive returns. However, this does not
2623 * guarantee that softirq handlers will have completed, since in some
2624 * kernels, these handlers can run in process context, and can block.
2625 *
2626 * Note that this guarantee implies further memory-ordering guarantees.
2627 * On systems with more than one CPU, when synchronize_sched() returns,
2628 * each CPU is guaranteed to have executed a full memory barrier since the
2629 * end of its last RCU-sched read-side critical section whose beginning
2630 * preceded the call to synchronize_sched(). In addition, each CPU having
2631 * an RCU read-side critical section that extends beyond the return from
2632 * synchronize_sched() is guaranteed to have executed a full memory barrier
2633 * after the beginning of synchronize_sched() and before the beginning of
2634 * that RCU read-side critical section. Note that these guarantees include
2635 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2636 * that are executing in the kernel.
2637 *
2638 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2639 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2640 * to have executed a full memory barrier during the execution of
2641 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2642 * again only if the system has more than one CPU).
6ebb237b
PM
2643 *
2644 * This primitive provides the guarantees made by the (now removed)
2645 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2646 * guarantees that rcu_read_lock() sections will have completed.
2647 * In "classic RCU", these two guarantees happen to be one and
2648 * the same, but can differ in realtime RCU implementations.
2649 */
2650void synchronize_sched(void)
2651{
fe15d706
PM
2652 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2653 !lock_is_held(&rcu_lock_map) &&
2654 !lock_is_held(&rcu_sched_lock_map),
2655 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2656 if (rcu_blocking_is_gp())
2657 return;
3705b88d
AM
2658 if (rcu_expedited)
2659 synchronize_sched_expedited();
2660 else
2661 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2662}
2663EXPORT_SYMBOL_GPL(synchronize_sched);
2664
2665/**
2666 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2667 *
2668 * Control will return to the caller some time after a full rcu_bh grace
2669 * period has elapsed, in other words after all currently executing rcu_bh
2670 * read-side critical sections have completed. RCU read-side critical
2671 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2672 * and may be nested.
f0a0e6f2
PM
2673 *
2674 * See the description of synchronize_sched() for more detailed information
2675 * on memory ordering guarantees.
6ebb237b
PM
2676 */
2677void synchronize_rcu_bh(void)
2678{
fe15d706
PM
2679 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2680 !lock_is_held(&rcu_lock_map) &&
2681 !lock_is_held(&rcu_sched_lock_map),
2682 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2683 if (rcu_blocking_is_gp())
2684 return;
3705b88d
AM
2685 if (rcu_expedited)
2686 synchronize_rcu_bh_expedited();
2687 else
2688 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2689}
2690EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2691
765a3f4f
PM
2692/**
2693 * get_state_synchronize_rcu - Snapshot current RCU state
2694 *
2695 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2696 * to determine whether or not a full grace period has elapsed in the
2697 * meantime.
2698 */
2699unsigned long get_state_synchronize_rcu(void)
2700{
2701 /*
2702 * Any prior manipulation of RCU-protected data must happen
2703 * before the load from ->gpnum.
2704 */
2705 smp_mb(); /* ^^^ */
2706
2707 /*
2708 * Make sure this load happens before the purportedly
2709 * time-consuming work between get_state_synchronize_rcu()
2710 * and cond_synchronize_rcu().
2711 */
2712 return smp_load_acquire(&rcu_state->gpnum);
2713}
2714EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2715
2716/**
2717 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2718 *
2719 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2720 *
2721 * If a full RCU grace period has elapsed since the earlier call to
2722 * get_state_synchronize_rcu(), just return. Otherwise, invoke
2723 * synchronize_rcu() to wait for a full grace period.
2724 *
2725 * Yes, this function does not take counter wrap into account. But
2726 * counter wrap is harmless. If the counter wraps, we have waited for
2727 * more than 2 billion grace periods (and way more on a 64-bit system!),
2728 * so waiting for one additional grace period should be just fine.
2729 */
2730void cond_synchronize_rcu(unsigned long oldstate)
2731{
2732 unsigned long newstate;
2733
2734 /*
2735 * Ensure that this load happens before any RCU-destructive
2736 * actions the caller might carry out after we return.
2737 */
2738 newstate = smp_load_acquire(&rcu_state->completed);
2739 if (ULONG_CMP_GE(oldstate, newstate))
2740 synchronize_rcu();
2741}
2742EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2743
3d3b7db0
PM
2744static int synchronize_sched_expedited_cpu_stop(void *data)
2745{
2746 /*
2747 * There must be a full memory barrier on each affected CPU
2748 * between the time that try_stop_cpus() is called and the
2749 * time that it returns.
2750 *
2751 * In the current initial implementation of cpu_stop, the
2752 * above condition is already met when the control reaches
2753 * this point and the following smp_mb() is not strictly
2754 * necessary. Do smp_mb() anyway for documentation and
2755 * robustness against future implementation changes.
2756 */
2757 smp_mb(); /* See above comment block. */
2758 return 0;
2759}
2760
236fefaf
PM
2761/**
2762 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2763 *
2764 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2765 * approach to force the grace period to end quickly. This consumes
2766 * significant time on all CPUs and is unfriendly to real-time workloads,
2767 * so is thus not recommended for any sort of common-case code. In fact,
2768 * if you are using synchronize_sched_expedited() in a loop, please
2769 * restructure your code to batch your updates, and then use a single
2770 * synchronize_sched() instead.
3d3b7db0 2771 *
236fefaf
PM
2772 * Note that it is illegal to call this function while holding any lock
2773 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2774 * to call this function from a CPU-hotplug notifier. Failing to observe
2775 * these restriction will result in deadlock.
3d3b7db0
PM
2776 *
2777 * This implementation can be thought of as an application of ticket
2778 * locking to RCU, with sync_sched_expedited_started and
2779 * sync_sched_expedited_done taking on the roles of the halves
2780 * of the ticket-lock word. Each task atomically increments
2781 * sync_sched_expedited_started upon entry, snapshotting the old value,
2782 * then attempts to stop all the CPUs. If this succeeds, then each
2783 * CPU will have executed a context switch, resulting in an RCU-sched
2784 * grace period. We are then done, so we use atomic_cmpxchg() to
2785 * update sync_sched_expedited_done to match our snapshot -- but
2786 * only if someone else has not already advanced past our snapshot.
2787 *
2788 * On the other hand, if try_stop_cpus() fails, we check the value
2789 * of sync_sched_expedited_done. If it has advanced past our
2790 * initial snapshot, then someone else must have forced a grace period
2791 * some time after we took our snapshot. In this case, our work is
2792 * done for us, and we can simply return. Otherwise, we try again,
2793 * but keep our initial snapshot for purposes of checking for someone
2794 * doing our work for us.
2795 *
2796 * If we fail too many times in a row, we fall back to synchronize_sched().
2797 */
2798void synchronize_sched_expedited(void)
2799{
1924bcb0
PM
2800 long firstsnap, s, snap;
2801 int trycount = 0;
40694d66 2802 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2803
1924bcb0
PM
2804 /*
2805 * If we are in danger of counter wrap, just do synchronize_sched().
2806 * By allowing sync_sched_expedited_started to advance no more than
2807 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2808 * that more than 3.5 billion CPUs would be required to force a
2809 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2810 * course be required on a 64-bit system.
2811 */
40694d66
PM
2812 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2813 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2814 ULONG_MAX / 8)) {
2815 synchronize_sched();
a30489c5 2816 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2817 return;
2818 }
3d3b7db0 2819
1924bcb0
PM
2820 /*
2821 * Take a ticket. Note that atomic_inc_return() implies a
2822 * full memory barrier.
2823 */
40694d66 2824 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2825 firstsnap = snap;
3d3b7db0 2826 get_online_cpus();
1cc85961 2827 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2828
2829 /*
2830 * Each pass through the following loop attempts to force a
2831 * context switch on each CPU.
2832 */
2833 while (try_stop_cpus(cpu_online_mask,
2834 synchronize_sched_expedited_cpu_stop,
2835 NULL) == -EAGAIN) {
2836 put_online_cpus();
a30489c5 2837 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2838
1924bcb0 2839 /* Check to see if someone else did our work for us. */
40694d66 2840 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2841 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2842 /* ensure test happens before caller kfree */
2843 smp_mb__before_atomic_inc(); /* ^^^ */
2844 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2845 return;
2846 }
3d3b7db0
PM
2847
2848 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2849 if (trycount++ < 10) {
3d3b7db0 2850 udelay(trycount * num_online_cpus());
c701d5d9 2851 } else {
3705b88d 2852 wait_rcu_gp(call_rcu_sched);
a30489c5 2853 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2854 return;
2855 }
2856
1924bcb0 2857 /* Recheck to see if someone else did our work for us. */
40694d66 2858 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2859 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2860 /* ensure test happens before caller kfree */
2861 smp_mb__before_atomic_inc(); /* ^^^ */
2862 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2863 return;
2864 }
2865
2866 /*
2867 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2868 * callers to piggyback on our grace period. We retry
2869 * after they started, so our grace period works for them,
2870 * and they started after our first try, so their grace
2871 * period works for us.
3d3b7db0
PM
2872 */
2873 get_online_cpus();
40694d66 2874 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2875 smp_mb(); /* ensure read is before try_stop_cpus(). */
2876 }
a30489c5 2877 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2878
2879 /*
2880 * Everyone up to our most recent fetch is covered by our grace
2881 * period. Update the counter, but only if our work is still
2882 * relevant -- which it won't be if someone who started later
1924bcb0 2883 * than we did already did their update.
3d3b7db0
PM
2884 */
2885 do {
a30489c5 2886 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2887 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2888 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2889 /* ensure test happens before caller kfree */
2890 smp_mb__before_atomic_inc(); /* ^^^ */
2891 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2892 break;
2893 }
40694d66 2894 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2895 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2896
2897 put_online_cpus();
2898}
2899EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2900
64db4cff
PM
2901/*
2902 * Check to see if there is any immediate RCU-related work to be done
2903 * by the current CPU, for the specified type of RCU, returning 1 if so.
2904 * The checks are in order of increasing expense: checks that can be
2905 * carried out against CPU-local state are performed first. However,
2906 * we must check for CPU stalls first, else we might not get a chance.
2907 */
2908static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2909{
2f51f988
PM
2910 struct rcu_node *rnp = rdp->mynode;
2911
64db4cff
PM
2912 rdp->n_rcu_pending++;
2913
2914 /* Check for CPU stalls, if enabled. */
2915 check_cpu_stall(rsp, rdp);
2916
a096932f
PM
2917 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2918 if (rcu_nohz_full_cpu(rsp))
2919 return 0;
2920
64db4cff 2921 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2922 if (rcu_scheduler_fully_active &&
2923 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2924 rdp->n_rp_qs_pending++;
e4cc1f22 2925 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2926 rdp->n_rp_report_qs++;
64db4cff 2927 return 1;
7ba5c840 2928 }
64db4cff
PM
2929
2930 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2931 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2932 rdp->n_rp_cb_ready++;
64db4cff 2933 return 1;
7ba5c840 2934 }
64db4cff
PM
2935
2936 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2937 if (cpu_needs_another_gp(rsp, rdp)) {
2938 rdp->n_rp_cpu_needs_gp++;
64db4cff 2939 return 1;
7ba5c840 2940 }
64db4cff
PM
2941
2942 /* Has another RCU grace period completed? */
2f51f988 2943 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2944 rdp->n_rp_gp_completed++;
64db4cff 2945 return 1;
7ba5c840 2946 }
64db4cff
PM
2947
2948 /* Has a new RCU grace period started? */
2f51f988 2949 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2950 rdp->n_rp_gp_started++;
64db4cff 2951 return 1;
7ba5c840 2952 }
64db4cff 2953
96d3fd0d
PM
2954 /* Does this CPU need a deferred NOCB wakeup? */
2955 if (rcu_nocb_need_deferred_wakeup(rdp)) {
2956 rdp->n_rp_nocb_defer_wakeup++;
2957 return 1;
2958 }
2959
64db4cff 2960 /* nothing to do */
7ba5c840 2961 rdp->n_rp_need_nothing++;
64db4cff
PM
2962 return 0;
2963}
2964
2965/*
2966 * Check to see if there is any immediate RCU-related work to be done
2967 * by the current CPU, returning 1 if so. This function is part of the
2968 * RCU implementation; it is -not- an exported member of the RCU API.
2969 */
a157229c 2970static int rcu_pending(int cpu)
64db4cff 2971{
6ce75a23
PM
2972 struct rcu_state *rsp;
2973
2974 for_each_rcu_flavor(rsp)
2975 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2976 return 1;
2977 return 0;
64db4cff
PM
2978}
2979
2980/*
c0f4dfd4
PM
2981 * Return true if the specified CPU has any callback. If all_lazy is
2982 * non-NULL, store an indication of whether all callbacks are lazy.
2983 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2984 */
ffa83fb5 2985static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2986{
c0f4dfd4
PM
2987 bool al = true;
2988 bool hc = false;
2989 struct rcu_data *rdp;
6ce75a23
PM
2990 struct rcu_state *rsp;
2991
c0f4dfd4
PM
2992 for_each_rcu_flavor(rsp) {
2993 rdp = per_cpu_ptr(rsp->rda, cpu);
69c8d28c
PM
2994 if (!rdp->nxtlist)
2995 continue;
2996 hc = true;
2997 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
c0f4dfd4 2998 al = false;
69c8d28c
PM
2999 break;
3000 }
c0f4dfd4
PM
3001 }
3002 if (all_lazy)
3003 *all_lazy = al;
3004 return hc;
64db4cff
PM
3005}
3006
a83eff0a
PM
3007/*
3008 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3009 * the compiler is expected to optimize this away.
3010 */
e66c33d5 3011static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3012 int cpu, unsigned long done)
3013{
3014 trace_rcu_barrier(rsp->name, s, cpu,
3015 atomic_read(&rsp->barrier_cpu_count), done);
3016}
3017
b1420f1c
PM
3018/*
3019 * RCU callback function for _rcu_barrier(). If we are last, wake
3020 * up the task executing _rcu_barrier().
3021 */
24ebbca8 3022static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3023{
24ebbca8
PM
3024 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3025 struct rcu_state *rsp = rdp->rsp;
3026
a83eff0a
PM
3027 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3028 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 3029 complete(&rsp->barrier_completion);
a83eff0a
PM
3030 } else {
3031 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
3032 }
d0ec774c
PM
3033}
3034
3035/*
3036 * Called with preemption disabled, and from cross-cpu IRQ context.
3037 */
3038static void rcu_barrier_func(void *type)
3039{
037b64ed 3040 struct rcu_state *rsp = type;
06668efa 3041 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 3042
a83eff0a 3043 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 3044 atomic_inc(&rsp->barrier_cpu_count);
06668efa 3045 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
3046}
3047
d0ec774c
PM
3048/*
3049 * Orchestrate the specified type of RCU barrier, waiting for all
3050 * RCU callbacks of the specified type to complete.
3051 */
037b64ed 3052static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3053{
b1420f1c 3054 int cpu;
b1420f1c 3055 struct rcu_data *rdp;
cf3a9c48
PM
3056 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3057 unsigned long snap_done;
b1420f1c 3058
a83eff0a 3059 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 3060
e74f4c45 3061 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3062 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3063
cf3a9c48
PM
3064 /*
3065 * Ensure that all prior references, including to ->n_barrier_done,
3066 * are ordered before the _rcu_barrier() machinery.
3067 */
3068 smp_mb(); /* See above block comment. */
3069
3070 /*
3071 * Recheck ->n_barrier_done to see if others did our work for us.
3072 * This means checking ->n_barrier_done for an even-to-odd-to-even
3073 * transition. The "if" expression below therefore rounds the old
3074 * value up to the next even number and adds two before comparing.
3075 */
458fb381 3076 snap_done = rsp->n_barrier_done;
a83eff0a 3077 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
458fb381
PM
3078
3079 /*
3080 * If the value in snap is odd, we needed to wait for the current
3081 * rcu_barrier() to complete, then wait for the next one, in other
3082 * words, we need the value of snap_done to be three larger than
3083 * the value of snap. On the other hand, if the value in snap is
3084 * even, we only had to wait for the next rcu_barrier() to complete,
3085 * in other words, we need the value of snap_done to be only two
3086 * greater than the value of snap. The "(snap + 3) & ~0x1" computes
3087 * this for us (thank you, Linus!).
3088 */
3089 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
a83eff0a 3090 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
3091 smp_mb(); /* caller's subsequent code after above check. */
3092 mutex_unlock(&rsp->barrier_mutex);
3093 return;
3094 }
3095
3096 /*
3097 * Increment ->n_barrier_done to avoid duplicate work. Use
3098 * ACCESS_ONCE() to prevent the compiler from speculating
3099 * the increment to precede the early-exit check.
3100 */
3101 ACCESS_ONCE(rsp->n_barrier_done)++;
3102 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 3103 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 3104 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 3105
d0ec774c 3106 /*
b1420f1c
PM
3107 * Initialize the count to one rather than to zero in order to
3108 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3109 * (or preemption of this task). Exclude CPU-hotplug operations
3110 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3111 */
7db74df8 3112 init_completion(&rsp->barrier_completion);
24ebbca8 3113 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3114 get_online_cpus();
b1420f1c
PM
3115
3116 /*
1331e7a1
PM
3117 * Force each CPU with callbacks to register a new callback.
3118 * When that callback is invoked, we will know that all of the
3119 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3120 */
3fbfbf7a 3121 for_each_possible_cpu(cpu) {
d1e43fa5 3122 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3123 continue;
b1420f1c 3124 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3125 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
3126 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3127 rsp->n_barrier_done);
3128 atomic_inc(&rsp->barrier_cpu_count);
3129 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3130 rsp, cpu, 0);
3131 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
3132 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3133 rsp->n_barrier_done);
037b64ed 3134 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3135 } else {
a83eff0a
PM
3136 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3137 rsp->n_barrier_done);
b1420f1c
PM
3138 }
3139 }
1331e7a1 3140 put_online_cpus();
b1420f1c
PM
3141
3142 /*
3143 * Now that we have an rcu_barrier_callback() callback on each
3144 * CPU, and thus each counted, remove the initial count.
3145 */
24ebbca8 3146 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3147 complete(&rsp->barrier_completion);
b1420f1c 3148
cf3a9c48
PM
3149 /* Increment ->n_barrier_done to prevent duplicate work. */
3150 smp_mb(); /* Keep increment after above mechanism. */
3151 ACCESS_ONCE(rsp->n_barrier_done)++;
3152 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 3153 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
3154 smp_mb(); /* Keep increment before caller's subsequent code. */
3155
b1420f1c 3156 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3157 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
3158
3159 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3160 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3161}
d0ec774c
PM
3162
3163/**
3164 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3165 */
3166void rcu_barrier_bh(void)
3167{
037b64ed 3168 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3169}
3170EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3171
3172/**
3173 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3174 */
3175void rcu_barrier_sched(void)
3176{
037b64ed 3177 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3178}
3179EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3180
64db4cff 3181/*
27569620 3182 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3183 */
27569620
PM
3184static void __init
3185rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3186{
3187 unsigned long flags;
394f99a9 3188 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3189 struct rcu_node *rnp = rcu_get_root(rsp);
3190
3191 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3192 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 3193 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 3194 init_callback_list(rdp);
486e2593 3195 rdp->qlen_lazy = 0;
1d1fb395 3196 ACCESS_ONCE(rdp->qlen) = 0;
27569620 3197 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3198 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 3199 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 3200 rdp->cpu = cpu;
d4c08f2a 3201 rdp->rsp = rsp;
3fbfbf7a 3202 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 3203 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
3204}
3205
3206/*
3207 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3208 * offline event can be happening at a given time. Note also that we
3209 * can accept some slop in the rsp->completed access due to the fact
3210 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3211 */
49fb4c62 3212static void
6cc68793 3213rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
3214{
3215 unsigned long flags;
64db4cff 3216 unsigned long mask;
394f99a9 3217 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3218 struct rcu_node *rnp = rcu_get_root(rsp);
3219
a4fbe35a
PM
3220 /* Exclude new grace periods. */
3221 mutex_lock(&rsp->onoff_mutex);
3222
64db4cff 3223 /* Set up local state, ensuring consistent view of global state. */
1304afb2 3224 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 3225 rdp->beenonline = 1; /* We have now been online. */
6cc68793 3226 rdp->preemptible = preemptible;
37c72e56
PM
3227 rdp->qlen_last_fqs_check = 0;
3228 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3229 rdp->blimit = blimit;
0d8ee37e 3230 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 3231 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3232 rcu_sysidle_init_percpu_data(rdp->dynticks);
c92b131b
PM
3233 atomic_set(&rdp->dynticks->dynticks,
3234 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 3235 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 3236
64db4cff
PM
3237 /* Add CPU to rcu_node bitmasks. */
3238 rnp = rdp->mynode;
3239 mask = rdp->grpmask;
3240 do {
3241 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 3242 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3243 rnp->qsmaskinit |= mask;
3244 mask = rnp->grpmask;
d09b62df 3245 if (rnp == rdp->mynode) {
06ae115a
PM
3246 /*
3247 * If there is a grace period in progress, we will
3248 * set up to wait for it next time we run the
3249 * RCU core code.
3250 */
3251 rdp->gpnum = rnp->completed;
d09b62df 3252 rdp->completed = rnp->completed;
06ae115a
PM
3253 rdp->passed_quiesce = 0;
3254 rdp->qs_pending = 0;
f7f7bac9 3255 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 3256 }
1304afb2 3257 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
3258 rnp = rnp->parent;
3259 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 3260 local_irq_restore(flags);
64db4cff 3261
a4fbe35a 3262 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
3263}
3264
49fb4c62 3265static void rcu_prepare_cpu(int cpu)
64db4cff 3266{
6ce75a23
PM
3267 struct rcu_state *rsp;
3268
3269 for_each_rcu_flavor(rsp)
3270 rcu_init_percpu_data(cpu, rsp,
3271 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3272}
3273
3274/*
f41d911f 3275 * Handle CPU online/offline notification events.
64db4cff 3276 */
49fb4c62 3277static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3278 unsigned long action, void *hcpu)
64db4cff
PM
3279{
3280 long cpu = (long)hcpu;
27f4d280 3281 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3282 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3283 struct rcu_state *rsp;
64db4cff 3284
f7f7bac9 3285 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3286 switch (action) {
3287 case CPU_UP_PREPARE:
3288 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3289 rcu_prepare_cpu(cpu);
3290 rcu_prepare_kthreads(cpu);
a26ac245
PM
3291 break;
3292 case CPU_ONLINE:
0f962a5e 3293 case CPU_DOWN_FAILED:
5d01bbd1 3294 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3295 break;
3296 case CPU_DOWN_PREPARE:
34ed6246 3297 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3298 break;
d0ec774c
PM
3299 case CPU_DYING:
3300 case CPU_DYING_FROZEN:
6ce75a23
PM
3301 for_each_rcu_flavor(rsp)
3302 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3303 break;
64db4cff
PM
3304 case CPU_DEAD:
3305 case CPU_DEAD_FROZEN:
3306 case CPU_UP_CANCELED:
3307 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3308 for_each_rcu_flavor(rsp)
3309 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3310 break;
3311 default:
3312 break;
3313 }
f7f7bac9 3314 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3315 return NOTIFY_OK;
64db4cff
PM
3316}
3317
d1d74d14
BP
3318static int rcu_pm_notify(struct notifier_block *self,
3319 unsigned long action, void *hcpu)
3320{
3321 switch (action) {
3322 case PM_HIBERNATION_PREPARE:
3323 case PM_SUSPEND_PREPARE:
3324 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3325 rcu_expedited = 1;
3326 break;
3327 case PM_POST_HIBERNATION:
3328 case PM_POST_SUSPEND:
3329 rcu_expedited = 0;
3330 break;
3331 default:
3332 break;
3333 }
3334 return NOTIFY_OK;
3335}
3336
b3dbec76
PM
3337/*
3338 * Spawn the kthread that handles this RCU flavor's grace periods.
3339 */
3340static int __init rcu_spawn_gp_kthread(void)
3341{
3342 unsigned long flags;
3343 struct rcu_node *rnp;
3344 struct rcu_state *rsp;
3345 struct task_struct *t;
3346
3347 for_each_rcu_flavor(rsp) {
f170168b 3348 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3349 BUG_ON(IS_ERR(t));
3350 rnp = rcu_get_root(rsp);
3351 raw_spin_lock_irqsave(&rnp->lock, flags);
3352 rsp->gp_kthread = t;
3353 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3354 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3355 }
3356 return 0;
3357}
3358early_initcall(rcu_spawn_gp_kthread);
3359
bbad9379
PM
3360/*
3361 * This function is invoked towards the end of the scheduler's initialization
3362 * process. Before this is called, the idle task might contain
3363 * RCU read-side critical sections (during which time, this idle
3364 * task is booting the system). After this function is called, the
3365 * idle tasks are prohibited from containing RCU read-side critical
3366 * sections. This function also enables RCU lockdep checking.
3367 */
3368void rcu_scheduler_starting(void)
3369{
3370 WARN_ON(num_online_cpus() != 1);
3371 WARN_ON(nr_context_switches() > 0);
3372 rcu_scheduler_active = 1;
3373}
3374
64db4cff
PM
3375/*
3376 * Compute the per-level fanout, either using the exact fanout specified
3377 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3378 */
3379#ifdef CONFIG_RCU_FANOUT_EXACT
3380static void __init rcu_init_levelspread(struct rcu_state *rsp)
3381{
3382 int i;
3383
04f34650
PM
3384 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3385 for (i = rcu_num_lvls - 2; i >= 0; i--)
64db4cff
PM
3386 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3387}
3388#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3389static void __init rcu_init_levelspread(struct rcu_state *rsp)
3390{
3391 int ccur;
3392 int cprv;
3393 int i;
3394
4dbd6bb3 3395 cprv = nr_cpu_ids;
f885b7f2 3396 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3397 ccur = rsp->levelcnt[i];
3398 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3399 cprv = ccur;
3400 }
3401}
3402#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3403
3404/*
3405 * Helper function for rcu_init() that initializes one rcu_state structure.
3406 */
394f99a9
LJ
3407static void __init rcu_init_one(struct rcu_state *rsp,
3408 struct rcu_data __percpu *rda)
64db4cff 3409{
394f2769
PM
3410 static char *buf[] = { "rcu_node_0",
3411 "rcu_node_1",
3412 "rcu_node_2",
3413 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3414 static char *fqs[] = { "rcu_node_fqs_0",
3415 "rcu_node_fqs_1",
3416 "rcu_node_fqs_2",
3417 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3418 int cpustride = 1;
3419 int i;
3420 int j;
3421 struct rcu_node *rnp;
3422
b6407e86
PM
3423 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3424
4930521a
PM
3425 /* Silence gcc 4.8 warning about array index out of range. */
3426 if (rcu_num_lvls > RCU_NUM_LVLS)
3427 panic("rcu_init_one: rcu_num_lvls overflow");
3428
64db4cff
PM
3429 /* Initialize the level-tracking arrays. */
3430
f885b7f2
PM
3431 for (i = 0; i < rcu_num_lvls; i++)
3432 rsp->levelcnt[i] = num_rcu_lvl[i];
3433 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3434 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3435 rcu_init_levelspread(rsp);
3436
3437 /* Initialize the elements themselves, starting from the leaves. */
3438
f885b7f2 3439 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3440 cpustride *= rsp->levelspread[i];
3441 rnp = rsp->level[i];
3442 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3443 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3444 lockdep_set_class_and_name(&rnp->lock,
3445 &rcu_node_class[i], buf[i]);
394f2769
PM
3446 raw_spin_lock_init(&rnp->fqslock);
3447 lockdep_set_class_and_name(&rnp->fqslock,
3448 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3449 rnp->gpnum = rsp->gpnum;
3450 rnp->completed = rsp->completed;
64db4cff
PM
3451 rnp->qsmask = 0;
3452 rnp->qsmaskinit = 0;
3453 rnp->grplo = j * cpustride;
3454 rnp->grphi = (j + 1) * cpustride - 1;
3455 if (rnp->grphi >= NR_CPUS)
3456 rnp->grphi = NR_CPUS - 1;
3457 if (i == 0) {
3458 rnp->grpnum = 0;
3459 rnp->grpmask = 0;
3460 rnp->parent = NULL;
3461 } else {
3462 rnp->grpnum = j % rsp->levelspread[i - 1];
3463 rnp->grpmask = 1UL << rnp->grpnum;
3464 rnp->parent = rsp->level[i - 1] +
3465 j / rsp->levelspread[i - 1];
3466 }
3467 rnp->level = i;
12f5f524 3468 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3469 rcu_init_one_nocb(rnp);
64db4cff
PM
3470 }
3471 }
0c34029a 3472
394f99a9 3473 rsp->rda = rda;
b3dbec76 3474 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3475 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3476 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3477 for_each_possible_cpu(i) {
4a90a068 3478 while (i > rnp->grphi)
0c34029a 3479 rnp++;
394f99a9 3480 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3481 rcu_boot_init_percpu_data(i, rsp);
3482 }
6ce75a23 3483 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3484}
3485
f885b7f2
PM
3486/*
3487 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 3488 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
3489 * the ->node array in the rcu_state structure.
3490 */
3491static void __init rcu_init_geometry(void)
3492{
026ad283 3493 ulong d;
f885b7f2
PM
3494 int i;
3495 int j;
cca6f393 3496 int n = nr_cpu_ids;
f885b7f2
PM
3497 int rcu_capacity[MAX_RCU_LVLS + 1];
3498
026ad283
PM
3499 /*
3500 * Initialize any unspecified boot parameters.
3501 * The default values of jiffies_till_first_fqs and
3502 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3503 * value, which is a function of HZ, then adding one for each
3504 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3505 */
3506 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3507 if (jiffies_till_first_fqs == ULONG_MAX)
3508 jiffies_till_first_fqs = d;
3509 if (jiffies_till_next_fqs == ULONG_MAX)
3510 jiffies_till_next_fqs = d;
3511
f885b7f2 3512 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3513 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3514 nr_cpu_ids == NR_CPUS)
f885b7f2 3515 return;
39479098
PM
3516 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3517 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2
PM
3518
3519 /*
3520 * Compute number of nodes that can be handled an rcu_node tree
3521 * with the given number of levels. Setting rcu_capacity[0] makes
3522 * some of the arithmetic easier.
3523 */
3524 rcu_capacity[0] = 1;
3525 rcu_capacity[1] = rcu_fanout_leaf;
3526 for (i = 2; i <= MAX_RCU_LVLS; i++)
3527 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3528
3529 /*
3530 * The boot-time rcu_fanout_leaf parameter is only permitted
3531 * to increase the leaf-level fanout, not decrease it. Of course,
3532 * the leaf-level fanout cannot exceed the number of bits in
3533 * the rcu_node masks. Finally, the tree must be able to accommodate
3534 * the configured number of CPUs. Complain and fall back to the
3535 * compile-time values if these limits are exceeded.
3536 */
3537 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3538 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3539 n > rcu_capacity[MAX_RCU_LVLS]) {
3540 WARN_ON(1);
3541 return;
3542 }
3543
3544 /* Calculate the number of rcu_nodes at each level of the tree. */
3545 for (i = 1; i <= MAX_RCU_LVLS; i++)
3546 if (n <= rcu_capacity[i]) {
3547 for (j = 0; j <= i; j++)
3548 num_rcu_lvl[j] =
3549 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3550 rcu_num_lvls = i;
3551 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3552 num_rcu_lvl[j] = 0;
3553 break;
3554 }
3555
3556 /* Calculate the total number of rcu_node structures. */
3557 rcu_num_nodes = 0;
3558 for (i = 0; i <= MAX_RCU_LVLS; i++)
3559 rcu_num_nodes += num_rcu_lvl[i];
3560 rcu_num_nodes -= n;
3561}
3562
9f680ab4 3563void __init rcu_init(void)
64db4cff 3564{
017c4261 3565 int cpu;
9f680ab4 3566
f41d911f 3567 rcu_bootup_announce();
f885b7f2 3568 rcu_init_geometry();
394f99a9 3569 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
69c8d28c 3570 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
f41d911f 3571 __rcu_init_preempt();
b5b39360 3572 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3573
3574 /*
3575 * We don't need protection against CPU-hotplug here because
3576 * this is called early in boot, before either interrupts
3577 * or the scheduler are operational.
3578 */
3579 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3580 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3581 for_each_online_cpu(cpu)
3582 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3583}
3584
4102adab 3585#include "tree_plugin.h"