]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree.c
rcu: Move rcupdate.h to new empty-function style
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
15fecf89
PM
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 104 .name = RCU_STATE_NAME(sname), \
a4889858 105 .abbr = sabbr, \
f6a12f34 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
b28a7c01 113static struct rcu_state *const rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
a3dc2948
PM
116/* Dump rcu_node combining tree at boot to verify correct setup. */
117static bool dump_tree;
118module_param(dump_tree, bool, 0444);
7fa27001
PM
119/* Control rcu_node-tree auto-balancing at boot time. */
120static bool rcu_fanout_exact;
121module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 124module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 126/* Number of rcu_nodes at specified level. */
e95d68d2 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
129/* panic() on RCU Stall sysctl. */
130int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 131
b0d30417 132/*
52d7e48b
PM
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 137 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 143 */
bbad9379
PM
144int rcu_scheduler_active __read_mostly;
145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
b0d30417
PM
147/*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159static int rcu_scheduler_fully_active __read_mostly;
160
0aa04b05
PM
161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
164static void invoke_rcu_core(void);
165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
166static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
3549c2bc 168static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 169
a94844b2 170/* rcuc/rcub kthread realtime priority */
26730f55 171#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 172static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
173#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
174static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
176module_param(kthread_prio, int, 0644);
177
8d7dc928 178/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
179
180#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
181static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
182module_param(gp_preinit_delay, int, 0644);
183#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184static const int gp_preinit_delay;
185#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186
8d7dc928
PM
187#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
188static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 189module_param(gp_init_delay, int, 0644);
8d7dc928
PM
190#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191static const int gp_init_delay;
192#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 193
0f41c0dd
PM
194#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
195static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
196module_param(gp_cleanup_delay, int, 0644);
197#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198static const int gp_cleanup_delay;
199#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
200
eab128e8
PM
201/*
202 * Number of grace periods between delays, normalized by the duration of
bfd090be 203 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
204 * each delay. The reason for this normalization is that it means that,
205 * for non-zero delays, the overall slowdown of grace periods is constant
206 * regardless of the duration of the delay. This arrangement balances
207 * the need for long delays to increase some race probabilities with the
208 * need for fast grace periods to increase other race probabilities.
209 */
210#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 211
4a298656
PM
212/*
213 * Track the rcutorture test sequence number and the update version
214 * number within a given test. The rcutorture_testseq is incremented
215 * on every rcutorture module load and unload, so has an odd value
216 * when a test is running. The rcutorture_vernum is set to zero
217 * when rcutorture starts and is incremented on each rcutorture update.
218 * These variables enable correlating rcutorture output with the
219 * RCU tracing information.
220 */
221unsigned long rcutorture_testseq;
222unsigned long rcutorture_vernum;
223
0aa04b05
PM
224/*
225 * Compute the mask of online CPUs for the specified rcu_node structure.
226 * This will not be stable unless the rcu_node structure's ->lock is
227 * held, but the bit corresponding to the current CPU will be stable
228 * in most contexts.
229 */
230unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231{
7d0ae808 232 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
233}
234
fc2219d4 235/*
7d0ae808 236 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
237 * permit this function to be invoked without holding the root rcu_node
238 * structure's ->lock, but of course results can be subject to change.
239 */
240static int rcu_gp_in_progress(struct rcu_state *rsp)
241{
7d0ae808 242 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
243}
244
b1f77b05 245/*
d6714c22 246 * Note a quiescent state. Because we do not need to know
b1f77b05 247 * how many quiescent states passed, just if there was at least
d6714c22 248 * one since the start of the grace period, this just sets a flag.
e4cc1f22 249 * The caller must have disabled preemption.
b1f77b05 250 */
284a8c93 251void rcu_sched_qs(void)
b1f77b05 252{
f4687d26 253 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
254 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
255 return;
256 trace_rcu_grace_period(TPS("rcu_sched"),
257 __this_cpu_read(rcu_sched_data.gpnum),
258 TPS("cpuqs"));
259 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
260 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
261 return;
46a5d164
PM
262 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
263 rcu_report_exp_rdp(&rcu_sched_state,
264 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
265}
266
284a8c93 267void rcu_bh_qs(void)
b1f77b05 268{
f4687d26 269 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 270 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
271 trace_rcu_grace_period(TPS("rcu_bh"),
272 __this_cpu_read(rcu_bh_data.gpnum),
273 TPS("cpuqs"));
5b74c458 274 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 275 }
b1f77b05 276}
64db4cff 277
b8c17e66
PM
278/*
279 * Steal a bit from the bottom of ->dynticks for idle entry/exit
280 * control. Initially this is for TLB flushing.
281 */
282#define RCU_DYNTICK_CTRL_MASK 0x1
283#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
284#ifndef rcu_eqs_special_exit
285#define rcu_eqs_special_exit() do { } while (0)
286#endif
4a81e832
PM
287
288static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
289 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 290 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
291#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
292 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
293 .dynticks_idle = ATOMIC_INIT(1),
294#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
295};
296
03ecd3f4
SRV
297/*
298 * There's a few places, currently just in the tracing infrastructure,
299 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
300 * a small location where that will not even work. In those cases
301 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
302 * can be called.
303 */
304static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
305
306bool rcu_irq_enter_disabled(void)
307{
308 return this_cpu_read(disable_rcu_irq_enter);
309}
310
2625d469
PM
311/*
312 * Record entry into an extended quiescent state. This is only to be
313 * called when not already in an extended quiescent state.
314 */
315static void rcu_dynticks_eqs_enter(void)
316{
317 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 318 int seq;
2625d469
PM
319
320 /*
b8c17e66 321 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
322 * critical sections, and we also must force ordering with the
323 * next idle sojourn.
324 */
b8c17e66
PM
325 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
326 /* Better be in an extended quiescent state! */
327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 (seq & RCU_DYNTICK_CTRL_CTR));
329 /* Better not have special action (TLB flush) pending! */
330 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
331 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
332}
333
334/*
335 * Record exit from an extended quiescent state. This is only to be
336 * called from an extended quiescent state.
337 */
338static void rcu_dynticks_eqs_exit(void)
339{
340 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 341 int seq;
2625d469
PM
342
343 /*
b8c17e66 344 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
345 * and we also must force ordering with the next RCU read-side
346 * critical section.
347 */
b8c17e66
PM
348 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
349 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
350 !(seq & RCU_DYNTICK_CTRL_CTR));
351 if (seq & RCU_DYNTICK_CTRL_MASK) {
352 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
353 smp_mb__after_atomic(); /* _exit after clearing mask. */
354 /* Prefer duplicate flushes to losing a flush. */
355 rcu_eqs_special_exit();
356 }
2625d469
PM
357}
358
359/*
360 * Reset the current CPU's ->dynticks counter to indicate that the
361 * newly onlined CPU is no longer in an extended quiescent state.
362 * This will either leave the counter unchanged, or increment it
363 * to the next non-quiescent value.
364 *
365 * The non-atomic test/increment sequence works because the upper bits
366 * of the ->dynticks counter are manipulated only by the corresponding CPU,
367 * or when the corresponding CPU is offline.
368 */
369static void rcu_dynticks_eqs_online(void)
370{
371 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
372
b8c17e66 373 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 374 return;
b8c17e66 375 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
376}
377
02a5c550
PM
378/*
379 * Is the current CPU in an extended quiescent state?
380 *
381 * No ordering, as we are sampling CPU-local information.
382 */
383bool rcu_dynticks_curr_cpu_in_eqs(void)
384{
385 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
386
b8c17e66 387 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
388}
389
8b2f63ab
PM
390/*
391 * Snapshot the ->dynticks counter with full ordering so as to allow
392 * stable comparison of this counter with past and future snapshots.
393 */
02a5c550 394int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
395{
396 int snap = atomic_add_return(0, &rdtp->dynticks);
397
b8c17e66 398 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
399}
400
02a5c550
PM
401/*
402 * Return true if the snapshot returned from rcu_dynticks_snap()
403 * indicates that RCU is in an extended quiescent state.
404 */
405static bool rcu_dynticks_in_eqs(int snap)
406{
b8c17e66 407 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
408}
409
410/*
411 * Return true if the CPU corresponding to the specified rcu_dynticks
412 * structure has spent some time in an extended quiescent state since
413 * rcu_dynticks_snap() returned the specified snapshot.
414 */
415static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
416{
417 return snap != rcu_dynticks_snap(rdtp);
418}
419
6563de9d
PM
420/*
421 * Do a double-increment of the ->dynticks counter to emulate a
422 * momentary idle-CPU quiescent state.
423 */
424static void rcu_dynticks_momentary_idle(void)
425{
426 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
427 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
428 &rdtp->dynticks);
6563de9d
PM
429
430 /* It is illegal to call this from idle state. */
b8c17e66 431 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
432}
433
b8c17e66
PM
434/*
435 * Set the special (bottom) bit of the specified CPU so that it
436 * will take special action (such as flushing its TLB) on the
437 * next exit from an extended quiescent state. Returns true if
438 * the bit was successfully set, or false if the CPU was not in
439 * an extended quiescent state.
440 */
441bool rcu_eqs_special_set(int cpu)
442{
443 int old;
444 int new;
445 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
446
447 do {
448 old = atomic_read(&rdtp->dynticks);
449 if (old & RCU_DYNTICK_CTRL_CTR)
450 return false;
451 new = old | RCU_DYNTICK_CTRL_MASK;
452 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
453 return true;
6563de9d 454}
5cd37193 455
4a81e832
PM
456/*
457 * Let the RCU core know that this CPU has gone through the scheduler,
458 * which is a quiescent state. This is called when the need for a
459 * quiescent state is urgent, so we burn an atomic operation and full
460 * memory barriers to let the RCU core know about it, regardless of what
461 * this CPU might (or might not) do in the near future.
462 *
0f9be8ca 463 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
464 *
465 * The caller must have disabled interrupts.
4a81e832
PM
466 */
467static void rcu_momentary_dyntick_idle(void)
468{
0f9be8ca
PM
469 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
470 rcu_dynticks_momentary_idle();
4a81e832
PM
471}
472
25502a6c
PM
473/*
474 * Note a context switch. This is a quiescent state for RCU-sched,
475 * and requires special handling for preemptible RCU.
46a5d164 476 * The caller must have disabled interrupts.
25502a6c 477 */
bcbfdd01 478void rcu_note_context_switch(bool preempt)
25502a6c 479{
bb73c52b 480 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 481 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 482 rcu_sched_qs();
5b72f964 483 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
484 /* Load rcu_urgent_qs before other flags. */
485 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
486 goto out;
487 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 489 rcu_momentary_dyntick_idle();
9226b10d 490 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
491 if (!preempt)
492 rcu_note_voluntary_context_switch_lite(current);
9226b10d 493out:
f7f7bac9 494 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 495 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 496}
29ce8310 497EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 498
5cd37193 499/*
1925d196 500 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
501 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
502 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 503 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
504 * be none of them). Either way, do a lightweight quiescent state for
505 * all RCU flavors.
bb73c52b
BF
506 *
507 * The barrier() calls are redundant in the common case when this is
508 * called externally, but just in case this is called from within this
509 * file.
510 *
5cd37193
PM
511 */
512void rcu_all_qs(void)
513{
46a5d164
PM
514 unsigned long flags;
515
9226b10d
PM
516 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
517 return;
518 preempt_disable();
519 /* Load rcu_urgent_qs before other flags. */
520 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
521 preempt_enable();
522 return;
523 }
524 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 525 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 526 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 527 local_irq_save(flags);
5cd37193 528 rcu_momentary_dyntick_idle();
46a5d164
PM
529 local_irq_restore(flags);
530 }
9226b10d 531 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 532 rcu_sched_qs();
9577df9a 533 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 534 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 535 preempt_enable();
5cd37193
PM
536}
537EXPORT_SYMBOL_GPL(rcu_all_qs);
538
17c7798b
PM
539#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
540static long blimit = DEFAULT_RCU_BLIMIT;
541#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
542static long qhimark = DEFAULT_RCU_QHIMARK;
543#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
544static long qlowmark = DEFAULT_RCU_QLOMARK;
64db4cff 545
878d7439
ED
546module_param(blimit, long, 0444);
547module_param(qhimark, long, 0444);
548module_param(qlowmark, long, 0444);
3d76c082 549
026ad283
PM
550static ulong jiffies_till_first_fqs = ULONG_MAX;
551static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 552static bool rcu_kick_kthreads;
d40011f6
PM
553
554module_param(jiffies_till_first_fqs, ulong, 0644);
555module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 556module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 557
4a81e832
PM
558/*
559 * How long the grace period must be before we start recruiting
560 * quiescent-state help from rcu_note_context_switch().
561 */
562static ulong jiffies_till_sched_qs = HZ / 20;
563module_param(jiffies_till_sched_qs, ulong, 0644);
564
48a7639c 565static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 566 struct rcu_data *rdp);
217af2a2
PM
567static void force_qs_rnp(struct rcu_state *rsp,
568 int (*f)(struct rcu_data *rsp, bool *isidle,
569 unsigned long *maxj),
570 bool *isidle, unsigned long *maxj);
4cdfc175 571static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 572static int rcu_pending(void);
64db4cff
PM
573
574/*
917963d0 575 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 576 */
917963d0
PM
577unsigned long rcu_batches_started(void)
578{
579 return rcu_state_p->gpnum;
580}
581EXPORT_SYMBOL_GPL(rcu_batches_started);
582
583/*
584 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 585 */
917963d0
PM
586unsigned long rcu_batches_started_sched(void)
587{
588 return rcu_sched_state.gpnum;
589}
590EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
591
592/*
593 * Return the number of RCU BH batches started thus far for debug & stats.
594 */
595unsigned long rcu_batches_started_bh(void)
596{
597 return rcu_bh_state.gpnum;
598}
599EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
600
601/*
602 * Return the number of RCU batches completed thus far for debug & stats.
603 */
604unsigned long rcu_batches_completed(void)
605{
606 return rcu_state_p->completed;
607}
608EXPORT_SYMBOL_GPL(rcu_batches_completed);
609
610/*
611 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 612 */
9733e4f0 613unsigned long rcu_batches_completed_sched(void)
64db4cff 614{
d6714c22 615 return rcu_sched_state.completed;
64db4cff 616}
d6714c22 617EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
618
619/*
917963d0 620 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 621 */
9733e4f0 622unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
623{
624 return rcu_bh_state.completed;
625}
626EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
627
291783b8
PM
628/*
629 * Return the number of RCU expedited batches completed thus far for
630 * debug & stats. Odd numbers mean that a batch is in progress, even
631 * numbers mean idle. The value returned will thus be roughly double
632 * the cumulative batches since boot.
633 */
634unsigned long rcu_exp_batches_completed(void)
635{
636 return rcu_state_p->expedited_sequence;
637}
638EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
639
640/*
641 * Return the number of RCU-sched expedited batches completed thus far
642 * for debug & stats. Similar to rcu_exp_batches_completed().
643 */
644unsigned long rcu_exp_batches_completed_sched(void)
645{
646 return rcu_sched_state.expedited_sequence;
647}
648EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
649
a381d757
ACB
650/*
651 * Force a quiescent state.
652 */
653void rcu_force_quiescent_state(void)
654{
e534165b 655 force_quiescent_state(rcu_state_p);
a381d757
ACB
656}
657EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
658
bf66f18e
PM
659/*
660 * Force a quiescent state for RCU BH.
661 */
662void rcu_bh_force_quiescent_state(void)
663{
4cdfc175 664 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
665}
666EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
667
e7580f33
PM
668/*
669 * Force a quiescent state for RCU-sched.
670 */
671void rcu_sched_force_quiescent_state(void)
672{
673 force_quiescent_state(&rcu_sched_state);
674}
675EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
676
afea227f
PM
677/*
678 * Show the state of the grace-period kthreads.
679 */
680void show_rcu_gp_kthreads(void)
681{
682 struct rcu_state *rsp;
683
684 for_each_rcu_flavor(rsp) {
685 pr_info("%s: wait state: %d ->state: %#lx\n",
686 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
687 /* sched_show_task(rsp->gp_kthread); */
688 }
689}
690EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
691
4a298656
PM
692/*
693 * Record the number of times rcutorture tests have been initiated and
694 * terminated. This information allows the debugfs tracing stats to be
695 * correlated to the rcutorture messages, even when the rcutorture module
696 * is being repeatedly loaded and unloaded. In other words, we cannot
697 * store this state in rcutorture itself.
698 */
699void rcutorture_record_test_transition(void)
700{
701 rcutorture_testseq++;
702 rcutorture_vernum = 0;
703}
704EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
705
ad0dc7f9
PM
706/*
707 * Send along grace-period-related data for rcutorture diagnostics.
708 */
709void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
710 unsigned long *gpnum, unsigned long *completed)
711{
712 struct rcu_state *rsp = NULL;
713
714 switch (test_type) {
715 case RCU_FLAVOR:
e534165b 716 rsp = rcu_state_p;
ad0dc7f9
PM
717 break;
718 case RCU_BH_FLAVOR:
719 rsp = &rcu_bh_state;
720 break;
721 case RCU_SCHED_FLAVOR:
722 rsp = &rcu_sched_state;
723 break;
724 default:
725 break;
726 }
7f6733c3 727 if (rsp == NULL)
ad0dc7f9 728 return;
7f6733c3
PM
729 *flags = READ_ONCE(rsp->gp_flags);
730 *gpnum = READ_ONCE(rsp->gpnum);
731 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
732}
733EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
734
4a298656
PM
735/*
736 * Record the number of writer passes through the current rcutorture test.
737 * This is also used to correlate debugfs tracing stats with the rcutorture
738 * messages.
739 */
740void rcutorture_record_progress(unsigned long vernum)
741{
742 rcutorture_vernum++;
743}
744EXPORT_SYMBOL_GPL(rcutorture_record_progress);
745
365187fb
PM
746/*
747 * Return the root node of the specified rcu_state structure.
748 */
749static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
750{
751 return &rsp->node[0];
752}
753
754/*
755 * Is there any need for future grace periods?
756 * Interrupts must be disabled. If the caller does not hold the root
757 * rnp_node structure's ->lock, the results are advisory only.
758 */
759static int rcu_future_needs_gp(struct rcu_state *rsp)
760{
761 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 762 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
763 int *fp = &rnp->need_future_gp[idx];
764
c0b334c5 765 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
7d0ae808 766 return READ_ONCE(*fp);
365187fb
PM
767}
768
64db4cff 769/*
dc35c893
PM
770 * Does the current CPU require a not-yet-started grace period?
771 * The caller must have disabled interrupts to prevent races with
772 * normal callback registry.
64db4cff 773 */
d117c8aa 774static bool
64db4cff
PM
775cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
776{
c0b334c5 777 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
dc35c893 778 if (rcu_gp_in_progress(rsp))
d117c8aa 779 return false; /* No, a grace period is already in progress. */
365187fb 780 if (rcu_future_needs_gp(rsp))
d117c8aa 781 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 782 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 783 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 784 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 785 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
786 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
787 READ_ONCE(rsp->completed)))
788 return true; /* Yes, CBs for future grace period. */
d117c8aa 789 return false; /* No grace period needed. */
64db4cff
PM
790}
791
9b2e4f18 792/*
a278d471 793 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 794 *
a278d471
PM
795 * Enter idle, doing appropriate accounting. The caller must have
796 * disabled interrupts.
9b2e4f18 797 */
a278d471 798static void rcu_eqs_enter_common(bool user)
9b2e4f18 799{
96d3fd0d
PM
800 struct rcu_state *rsp;
801 struct rcu_data *rdp;
a278d471 802 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 803
c0b334c5 804 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
a278d471 805 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
806 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
807 !user && !is_idle_task(current)) {
289828e6
PM
808 struct task_struct *idle __maybe_unused =
809 idle_task(smp_processor_id());
0989cb46 810
a278d471 811 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 812 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
813 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
814 current->pid, current->comm,
815 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 816 }
96d3fd0d
PM
817 for_each_rcu_flavor(rsp) {
818 rdp = this_cpu_ptr(rsp->rda);
819 do_nocb_deferred_wakeup(rdp);
820 }
198bbf81 821 rcu_prepare_for_idle();
03ecd3f4 822 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
823 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
824 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 825 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 826 rcu_dynticks_task_enter();
c44e2cdd
PM
827
828 /*
adf5091e 829 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
830 * in an RCU read-side critical section.
831 */
f78f5b90
PM
832 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
833 "Illegal idle entry in RCU read-side critical section.");
834 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
835 "Illegal idle entry in RCU-bh read-side critical section.");
836 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
837 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 838}
64db4cff 839
adf5091e
FW
840/*
841 * Enter an RCU extended quiescent state, which can be either the
842 * idle loop or adaptive-tickless usermode execution.
64db4cff 843 */
adf5091e 844static void rcu_eqs_enter(bool user)
64db4cff 845{
64db4cff
PM
846 struct rcu_dynticks *rdtp;
847
c9d4b0af 848 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 849 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
850 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
851 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
852 rcu_eqs_enter_common(user);
853 else
29e37d81 854 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 855}
adf5091e
FW
856
857/**
858 * rcu_idle_enter - inform RCU that current CPU is entering idle
859 *
860 * Enter idle mode, in other words, -leave- the mode in which RCU
861 * read-side critical sections can occur. (Though RCU read-side
862 * critical sections can occur in irq handlers in idle, a possibility
863 * handled by irq_enter() and irq_exit().)
864 *
865 * We crowbar the ->dynticks_nesting field to zero to allow for
866 * the possibility of usermode upcalls having messed up our count
867 * of interrupt nesting level during the prior busy period.
868 */
869void rcu_idle_enter(void)
870{
c5d900bf
FW
871 unsigned long flags;
872
873 local_irq_save(flags);
cb349ca9 874 rcu_eqs_enter(false);
28ced795 875 rcu_sysidle_enter(0);
c5d900bf 876 local_irq_restore(flags);
adf5091e 877}
8a2ecf47 878EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 879
d1ec4c34 880#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
881/**
882 * rcu_user_enter - inform RCU that we are resuming userspace.
883 *
884 * Enter RCU idle mode right before resuming userspace. No use of RCU
885 * is permitted between this call and rcu_user_exit(). This way the
886 * CPU doesn't need to maintain the tick for RCU maintenance purposes
887 * when the CPU runs in userspace.
888 */
889void rcu_user_enter(void)
890{
91d1aa43 891 rcu_eqs_enter(1);
adf5091e 892}
d1ec4c34 893#endif /* CONFIG_NO_HZ_FULL */
19dd1591 894
9b2e4f18
PM
895/**
896 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
897 *
898 * Exit from an interrupt handler, which might possibly result in entering
899 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 900 * sections can occur. The caller must have disabled interrupts.
64db4cff 901 *
9b2e4f18
PM
902 * This code assumes that the idle loop never does anything that might
903 * result in unbalanced calls to irq_enter() and irq_exit(). If your
904 * architecture violates this assumption, RCU will give you what you
905 * deserve, good and hard. But very infrequently and irreproducibly.
906 *
907 * Use things like work queues to work around this limitation.
908 *
909 * You have been warned.
64db4cff 910 */
9b2e4f18 911void rcu_irq_exit(void)
64db4cff 912{
64db4cff
PM
913 struct rcu_dynticks *rdtp;
914
7c9906ca 915 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 916 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 917 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
918 rdtp->dynticks_nesting < 1);
919 if (rdtp->dynticks_nesting <= 1) {
920 rcu_eqs_enter_common(true);
921 } else {
922 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
923 rdtp->dynticks_nesting--;
924 }
28ced795 925 rcu_sysidle_enter(1);
7c9906ca
PM
926}
927
928/*
929 * Wrapper for rcu_irq_exit() where interrupts are enabled.
930 */
931void rcu_irq_exit_irqson(void)
932{
933 unsigned long flags;
934
935 local_irq_save(flags);
936 rcu_irq_exit();
9b2e4f18
PM
937 local_irq_restore(flags);
938}
939
940/*
adf5091e 941 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
942 *
943 * If the new value of the ->dynticks_nesting counter was previously zero,
944 * we really have exited idle, and must do the appropriate accounting.
945 * The caller must have disabled interrupts.
946 */
28ced795 947static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 948{
2625d469 949 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 950
176f8f7a 951 rcu_dynticks_task_exit();
2625d469 952 rcu_dynticks_eqs_exit();
8fa7845d 953 rcu_cleanup_after_idle();
f7f7bac9 954 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
955 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
956 !user && !is_idle_task(current)) {
289828e6
PM
957 struct task_struct *idle __maybe_unused =
958 idle_task(smp_processor_id());
0989cb46 959
f7f7bac9 960 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 961 oldval, rdtp->dynticks_nesting);
274529ba 962 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
963 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
964 current->pid, current->comm,
965 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
966 }
967}
968
adf5091e
FW
969/*
970 * Exit an RCU extended quiescent state, which can be either the
971 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 972 */
adf5091e 973static void rcu_eqs_exit(bool user)
9b2e4f18 974{
9b2e4f18
PM
975 struct rcu_dynticks *rdtp;
976 long long oldval;
977
c0b334c5 978 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
c9d4b0af 979 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 980 oldval = rdtp->dynticks_nesting;
1ce46ee5 981 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 982 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 983 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 984 } else {
29e37d81 985 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 986 rcu_eqs_exit_common(oldval, user);
3a592405 987 }
9b2e4f18 988}
adf5091e
FW
989
990/**
991 * rcu_idle_exit - inform RCU that current CPU is leaving idle
992 *
993 * Exit idle mode, in other words, -enter- the mode in which RCU
994 * read-side critical sections can occur.
995 *
996 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
997 * allow for the possibility of usermode upcalls messing up our count
998 * of interrupt nesting level during the busy period that is just
999 * now starting.
1000 */
1001void rcu_idle_exit(void)
1002{
c5d900bf
FW
1003 unsigned long flags;
1004
1005 local_irq_save(flags);
cb349ca9 1006 rcu_eqs_exit(false);
28ced795 1007 rcu_sysidle_exit(0);
c5d900bf 1008 local_irq_restore(flags);
adf5091e 1009}
8a2ecf47 1010EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 1011
d1ec4c34 1012#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
1013/**
1014 * rcu_user_exit - inform RCU that we are exiting userspace.
1015 *
1016 * Exit RCU idle mode while entering the kernel because it can
1017 * run a RCU read side critical section anytime.
1018 */
1019void rcu_user_exit(void)
1020{
91d1aa43 1021 rcu_eqs_exit(1);
adf5091e 1022}
d1ec4c34 1023#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1024
9b2e4f18
PM
1025/**
1026 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1027 *
1028 * Enter an interrupt handler, which might possibly result in exiting
1029 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1030 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1031 *
1032 * Note that the Linux kernel is fully capable of entering an interrupt
1033 * handler that it never exits, for example when doing upcalls to
1034 * user mode! This code assumes that the idle loop never does upcalls to
1035 * user mode. If your architecture does do upcalls from the idle loop (or
1036 * does anything else that results in unbalanced calls to the irq_enter()
1037 * and irq_exit() functions), RCU will give you what you deserve, good
1038 * and hard. But very infrequently and irreproducibly.
1039 *
1040 * Use things like work queues to work around this limitation.
1041 *
1042 * You have been warned.
1043 */
1044void rcu_irq_enter(void)
1045{
9b2e4f18
PM
1046 struct rcu_dynticks *rdtp;
1047 long long oldval;
1048
7c9906ca 1049 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1050 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1051 oldval = rdtp->dynticks_nesting;
1052 rdtp->dynticks_nesting++;
1ce46ee5
PM
1053 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1054 rdtp->dynticks_nesting == 0);
b6fc6020 1055 if (oldval)
f7f7bac9 1056 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1057 else
28ced795
CL
1058 rcu_eqs_exit_common(oldval, true);
1059 rcu_sysidle_exit(1);
7c9906ca
PM
1060}
1061
1062/*
1063 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1064 */
1065void rcu_irq_enter_irqson(void)
1066{
1067 unsigned long flags;
1068
1069 local_irq_save(flags);
1070 rcu_irq_enter();
64db4cff 1071 local_irq_restore(flags);
64db4cff
PM
1072}
1073
1074/**
1075 * rcu_nmi_enter - inform RCU of entry to NMI context
1076 *
734d1680
PM
1077 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1078 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1079 * that the CPU is active. This implementation permits nested NMIs, as
1080 * long as the nesting level does not overflow an int. (You will probably
1081 * run out of stack space first.)
64db4cff
PM
1082 */
1083void rcu_nmi_enter(void)
1084{
c9d4b0af 1085 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1086 int incby = 2;
64db4cff 1087
734d1680
PM
1088 /* Complain about underflow. */
1089 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1090
1091 /*
1092 * If idle from RCU viewpoint, atomically increment ->dynticks
1093 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1094 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1095 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1096 * to be in the outermost NMI handler that interrupted an RCU-idle
1097 * period (observation due to Andy Lutomirski).
1098 */
02a5c550 1099 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1100 rcu_dynticks_eqs_exit();
734d1680
PM
1101 incby = 1;
1102 }
1103 rdtp->dynticks_nmi_nesting += incby;
1104 barrier();
64db4cff
PM
1105}
1106
1107/**
1108 * rcu_nmi_exit - inform RCU of exit from NMI context
1109 *
734d1680
PM
1110 * If we are returning from the outermost NMI handler that interrupted an
1111 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1112 * to let the RCU grace-period handling know that the CPU is back to
1113 * being RCU-idle.
64db4cff
PM
1114 */
1115void rcu_nmi_exit(void)
1116{
c9d4b0af 1117 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1118
734d1680
PM
1119 /*
1120 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1121 * (We are exiting an NMI handler, so RCU better be paying attention
1122 * to us!)
1123 */
1124 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1125 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1126
1127 /*
1128 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1129 * leave it in non-RCU-idle state.
1130 */
1131 if (rdtp->dynticks_nmi_nesting != 1) {
1132 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1133 return;
734d1680
PM
1134 }
1135
1136 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1137 rdtp->dynticks_nmi_nesting = 0;
2625d469 1138 rcu_dynticks_eqs_enter();
64db4cff
PM
1139}
1140
1141/**
5c173eb8
PM
1142 * __rcu_is_watching - are RCU read-side critical sections safe?
1143 *
1144 * Return true if RCU is watching the running CPU, which means that
1145 * this CPU can safely enter RCU read-side critical sections. Unlike
1146 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1147 * least disabled preemption.
1148 */
9418fb20 1149bool notrace __rcu_is_watching(void)
5c173eb8 1150{
02a5c550 1151 return !rcu_dynticks_curr_cpu_in_eqs();
5c173eb8
PM
1152}
1153
1154/**
1155 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1156 *
9b2e4f18 1157 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1158 * or NMI handler, return true.
64db4cff 1159 */
9418fb20 1160bool notrace rcu_is_watching(void)
64db4cff 1161{
f534ed1f 1162 bool ret;
34240697 1163
46f00d18 1164 preempt_disable_notrace();
5c173eb8 1165 ret = __rcu_is_watching();
46f00d18 1166 preempt_enable_notrace();
34240697 1167 return ret;
64db4cff 1168}
5c173eb8 1169EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1170
bcbfdd01
PM
1171/*
1172 * If a holdout task is actually running, request an urgent quiescent
1173 * state from its CPU. This is unsynchronized, so migrations can cause
1174 * the request to go to the wrong CPU. Which is OK, all that will happen
1175 * is that the CPU's next context switch will be a bit slower and next
1176 * time around this task will generate another request.
1177 */
1178void rcu_request_urgent_qs_task(struct task_struct *t)
1179{
1180 int cpu;
1181
1182 barrier();
1183 cpu = task_cpu(t);
1184 if (!task_curr(t))
1185 return; /* This task is not running on that CPU. */
1186 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1187}
1188
62fde6ed 1189#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1190
1191/*
1192 * Is the current CPU online? Disable preemption to avoid false positives
1193 * that could otherwise happen due to the current CPU number being sampled,
1194 * this task being preempted, its old CPU being taken offline, resuming
1195 * on some other CPU, then determining that its old CPU is now offline.
1196 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1197 * the check for rcu_scheduler_fully_active. Note also that it is OK
1198 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1199 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1200 * offline to continue to use RCU for one jiffy after marking itself
1201 * offline in the cpu_online_mask. This leniency is necessary given the
1202 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1203 * the fact that a CPU enters the scheduler after completing the teardown
1204 * of the CPU.
2036d94a 1205 *
4df83742
TG
1206 * This is also why RCU internally marks CPUs online during in the
1207 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1208 *
1209 * Disable checking if in an NMI handler because we cannot safely report
1210 * errors from NMI handlers anyway.
1211 */
1212bool rcu_lockdep_current_cpu_online(void)
1213{
2036d94a
PM
1214 struct rcu_data *rdp;
1215 struct rcu_node *rnp;
c0d6d01b
PM
1216 bool ret;
1217
1218 if (in_nmi())
f6f7ee9a 1219 return true;
c0d6d01b 1220 preempt_disable();
c9d4b0af 1221 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1222 rnp = rdp->mynode;
0aa04b05 1223 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1224 !rcu_scheduler_fully_active;
1225 preempt_enable();
1226 return ret;
1227}
1228EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1229
62fde6ed 1230#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1231
64db4cff 1232/**
9b2e4f18 1233 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1234 *
9b2e4f18
PM
1235 * If the current CPU is idle or running at a first-level (not nested)
1236 * interrupt from idle, return true. The caller must have at least
1237 * disabled preemption.
64db4cff 1238 */
62e3cb14 1239static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1240{
c9d4b0af 1241 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1242}
1243
64db4cff
PM
1244/*
1245 * Snapshot the specified CPU's dynticks counter so that we can later
1246 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1247 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1248 */
217af2a2
PM
1249static int dyntick_save_progress_counter(struct rcu_data *rdp,
1250 bool *isidle, unsigned long *maxj)
64db4cff 1251{
8b2f63ab 1252 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
0edd1b17 1253 rcu_sysidle_check_cpu(rdp, isidle, maxj);
02a5c550 1254 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1255 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1256 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1257 rdp->mynode->gpnum))
7d0ae808 1258 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1259 return 1;
7941dbde 1260 }
23a9bacd 1261 return 0;
64db4cff
PM
1262}
1263
1264/*
1265 * Return true if the specified CPU has passed through a quiescent
1266 * state by virtue of being in or having passed through an dynticks
1267 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1268 * for this same CPU, or by virtue of having been offline.
64db4cff 1269 */
217af2a2
PM
1270static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1271 bool *isidle, unsigned long *maxj)
64db4cff 1272{
3a19b46a 1273 unsigned long jtsq;
0f9be8ca 1274 bool *rnhqp;
9226b10d 1275 bool *ruqp;
3a19b46a
PM
1276 unsigned long rjtsc;
1277 struct rcu_node *rnp;
64db4cff
PM
1278
1279 /*
1280 * If the CPU passed through or entered a dynticks idle phase with
1281 * no active irq/NMI handlers, then we can safely pretend that the CPU
1282 * already acknowledged the request to pass through a quiescent
1283 * state. Either way, that CPU cannot possibly be in an RCU
1284 * read-side critical section that started before the beginning
1285 * of the current RCU grace period.
1286 */
02a5c550 1287 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1288 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1289 rdp->dynticks_fqs++;
1290 return 1;
1291 }
1292
3a19b46a
PM
1293 /* Compute and saturate jiffies_till_sched_qs. */
1294 jtsq = jiffies_till_sched_qs;
1295 rjtsc = rcu_jiffies_till_stall_check();
1296 if (jtsq > rjtsc / 2) {
1297 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1298 jtsq = rjtsc / 2;
1299 } else if (jtsq < 1) {
1300 WRITE_ONCE(jiffies_till_sched_qs, 1);
1301 jtsq = 1;
1302 }
1303
a82dcc76 1304 /*
3a19b46a
PM
1305 * Has this CPU encountered a cond_resched_rcu_qs() since the
1306 * beginning of the grace period? For this to be the case,
1307 * the CPU has to have noticed the current grace period. This
1308 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1309 */
3a19b46a 1310 rnp = rdp->mynode;
9226b10d 1311 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1312 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1313 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1314 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1315 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1316 return 1;
9226b10d
PM
1317 } else {
1318 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1319 smp_store_release(ruqp, true);
3a19b46a
PM
1320 }
1321
38d30b33
PM
1322 /* Check for the CPU being offline. */
1323 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1324 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1325 rdp->offline_fqs++;
1326 return 1;
1327 }
65d798f0
PM
1328
1329 /*
4a81e832
PM
1330 * A CPU running for an extended time within the kernel can
1331 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1332 * even context-switching back and forth between a pair of
1333 * in-kernel CPU-bound tasks cannot advance grace periods.
1334 * So if the grace period is old enough, make the CPU pay attention.
1335 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1336 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1337 * bits can be lost, but they will be set again on the next
1338 * force-quiescent-state pass. So lost bit sets do not result
1339 * in incorrect behavior, merely in a grace period lasting
1340 * a few jiffies longer than it might otherwise. Because
1341 * there are at most four threads involved, and because the
1342 * updates are only once every few jiffies, the probability of
1343 * lossage (and thus of slight grace-period extension) is
1344 * quite low.
1345 *
1346 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1347 * is set too high, we override with half of the RCU CPU stall
1348 * warning delay.
6193c76a 1349 */
0f9be8ca
PM
1350 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1351 if (!READ_ONCE(*rnhqp) &&
1352 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1353 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1354 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1355 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1356 smp_store_release(ruqp, true);
4914950a 1357 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1358 }
1359
28053bc7
PM
1360 /*
1361 * If more than halfway to RCU CPU stall-warning time, do
1362 * a resched_cpu() to try to loosen things up a bit.
1363 */
1364 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1365 resched_cpu(rdp->cpu);
4914950a 1366
a82dcc76 1367 return 0;
64db4cff
PM
1368}
1369
64db4cff
PM
1370static void record_gp_stall_check_time(struct rcu_state *rsp)
1371{
cb1e78cf 1372 unsigned long j = jiffies;
6193c76a 1373 unsigned long j1;
26cdfedf
PM
1374
1375 rsp->gp_start = j;
1376 smp_wmb(); /* Record start time before stall time. */
6193c76a 1377 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1378 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1379 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1380 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1381}
1382
6b50e119
PM
1383/*
1384 * Convert a ->gp_state value to a character string.
1385 */
1386static const char *gp_state_getname(short gs)
1387{
1388 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1389 return "???";
1390 return gp_state_names[gs];
1391}
1392
fb81a44b
PM
1393/*
1394 * Complain about starvation of grace-period kthread.
1395 */
1396static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1397{
1398 unsigned long gpa;
1399 unsigned long j;
1400
1401 j = jiffies;
7d0ae808 1402 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1403 if (j - gpa > 2 * HZ) {
6b50e119 1404 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1405 rsp->name, j - gpa,
319362c9 1406 rsp->gpnum, rsp->completed,
6b50e119
PM
1407 rsp->gp_flags,
1408 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1409 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1410 if (rsp->gp_kthread) {
b1adb3e2 1411 sched_show_task(rsp->gp_kthread);
86057b80
PM
1412 wake_up_process(rsp->gp_kthread);
1413 }
b1adb3e2 1414 }
64db4cff
PM
1415}
1416
b637a328 1417/*
7aa92230
PM
1418 * Dump stacks of all tasks running on stalled CPUs. First try using
1419 * NMIs, but fall back to manual remote stack tracing on architectures
1420 * that don't support NMI-based stack dumps. The NMI-triggered stack
1421 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1422 */
1423static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1424{
1425 int cpu;
1426 unsigned long flags;
1427 struct rcu_node *rnp;
1428
1429 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1430 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1431 for_each_leaf_node_possible_cpu(rnp, cpu)
1432 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1433 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1434 dump_cpu_task(cpu);
67c583a7 1435 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1436 }
1437}
1438
8c7c4829
PM
1439/*
1440 * If too much time has passed in the current grace period, and if
1441 * so configured, go kick the relevant kthreads.
1442 */
1443static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1444{
1445 unsigned long j;
1446
1447 if (!rcu_kick_kthreads)
1448 return;
1449 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1450 if (time_after(jiffies, j) && rsp->gp_kthread &&
1451 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1452 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1453 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1454 wake_up_process(rsp->gp_kthread);
1455 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1456 }
1457}
1458
088e9d25
DBO
1459static inline void panic_on_rcu_stall(void)
1460{
1461 if (sysctl_panic_on_rcu_stall)
1462 panic("RCU Stall\n");
1463}
1464
6ccd2ecd 1465static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1466{
1467 int cpu;
1468 long delta;
1469 unsigned long flags;
6ccd2ecd
PM
1470 unsigned long gpa;
1471 unsigned long j;
285fe294 1472 int ndetected = 0;
64db4cff 1473 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1474 long totqlen = 0;
64db4cff 1475
8c7c4829
PM
1476 /* Kick and suppress, if so configured. */
1477 rcu_stall_kick_kthreads(rsp);
1478 if (rcu_cpu_stall_suppress)
1479 return;
1480
64db4cff
PM
1481 /* Only let one CPU complain about others per time interval. */
1482
6cf10081 1483 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1484 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1485 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1486 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1487 return;
1488 }
7d0ae808
PM
1489 WRITE_ONCE(rsp->jiffies_stall,
1490 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1492
8cdd32a9
PM
1493 /*
1494 * OK, time to rat on our buddy...
1495 * See Documentation/RCU/stallwarn.txt for info on how to debug
1496 * RCU CPU stall warnings.
1497 */
d7f3e207 1498 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1499 rsp->name);
a858af28 1500 print_cpu_stall_info_begin();
a0b6c9a7 1501 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1502 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1503 ndetected += rcu_print_task_stall(rnp);
c8020a67 1504 if (rnp->qsmask != 0) {
bc75e999
MR
1505 for_each_leaf_node_possible_cpu(rnp, cpu)
1506 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1507 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1508 ndetected++;
1509 }
1510 }
67c583a7 1511 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1512 }
a858af28 1513
a858af28 1514 print_cpu_stall_info_end();
53bb857c 1515 for_each_possible_cpu(cpu)
15fecf89
PM
1516 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1517 cpu)->cblist);
83ebe63e 1518 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1519 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1520 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1521 if (ndetected) {
b637a328 1522 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1523
1524 /* Complain about tasks blocking the grace period. */
1525 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1526 } else {
7d0ae808
PM
1527 if (READ_ONCE(rsp->gpnum) != gpnum ||
1528 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1529 pr_err("INFO: Stall ended before state dump start\n");
1530 } else {
1531 j = jiffies;
7d0ae808 1532 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1533 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1534 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1535 jiffies_till_next_fqs,
1536 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1537 /* In this case, the current CPU might be at fault. */
1538 sched_show_task(current);
1539 }
1540 }
c1dc0b9c 1541
fb81a44b
PM
1542 rcu_check_gp_kthread_starvation(rsp);
1543
088e9d25
DBO
1544 panic_on_rcu_stall();
1545
4cdfc175 1546 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1547}
1548
1549static void print_cpu_stall(struct rcu_state *rsp)
1550{
53bb857c 1551 int cpu;
64db4cff
PM
1552 unsigned long flags;
1553 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1554 long totqlen = 0;
64db4cff 1555
8c7c4829
PM
1556 /* Kick and suppress, if so configured. */
1557 rcu_stall_kick_kthreads(rsp);
1558 if (rcu_cpu_stall_suppress)
1559 return;
1560
8cdd32a9
PM
1561 /*
1562 * OK, time to rat on ourselves...
1563 * See Documentation/RCU/stallwarn.txt for info on how to debug
1564 * RCU CPU stall warnings.
1565 */
d7f3e207 1566 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1567 print_cpu_stall_info_begin();
1568 print_cpu_stall_info(rsp, smp_processor_id());
1569 print_cpu_stall_info_end();
53bb857c 1570 for_each_possible_cpu(cpu)
15fecf89
PM
1571 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1572 cpu)->cblist);
83ebe63e
PM
1573 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1574 jiffies - rsp->gp_start,
1575 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1576
1577 rcu_check_gp_kthread_starvation(rsp);
1578
bc1dce51 1579 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1580
6cf10081 1581 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1582 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1583 WRITE_ONCE(rsp->jiffies_stall,
1584 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1585 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1586
088e9d25
DBO
1587 panic_on_rcu_stall();
1588
b021fe3e
PZ
1589 /*
1590 * Attempt to revive the RCU machinery by forcing a context switch.
1591 *
1592 * A context switch would normally allow the RCU state machine to make
1593 * progress and it could be we're stuck in kernel space without context
1594 * switches for an entirely unreasonable amount of time.
1595 */
1596 resched_cpu(smp_processor_id());
64db4cff
PM
1597}
1598
1599static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1600{
26cdfedf
PM
1601 unsigned long completed;
1602 unsigned long gpnum;
1603 unsigned long gps;
bad6e139
PM
1604 unsigned long j;
1605 unsigned long js;
64db4cff
PM
1606 struct rcu_node *rnp;
1607
8c7c4829
PM
1608 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1609 !rcu_gp_in_progress(rsp))
c68de209 1610 return;
8c7c4829 1611 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1612 j = jiffies;
26cdfedf
PM
1613
1614 /*
1615 * Lots of memory barriers to reject false positives.
1616 *
1617 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1618 * then rsp->gp_start, and finally rsp->completed. These values
1619 * are updated in the opposite order with memory barriers (or
1620 * equivalent) during grace-period initialization and cleanup.
1621 * Now, a false positive can occur if we get an new value of
1622 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1623 * the memory barriers, the only way that this can happen is if one
1624 * grace period ends and another starts between these two fetches.
1625 * Detect this by comparing rsp->completed with the previous fetch
1626 * from rsp->gpnum.
1627 *
1628 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1629 * and rsp->gp_start suffice to forestall false positives.
1630 */
7d0ae808 1631 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1632 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1633 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1634 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1635 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1636 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1637 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1638 if (ULONG_CMP_GE(completed, gpnum) ||
1639 ULONG_CMP_LT(j, js) ||
1640 ULONG_CMP_GE(gps, js))
1641 return; /* No stall or GP completed since entering function. */
64db4cff 1642 rnp = rdp->mynode;
c96ea7cf 1643 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1644 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1645
1646 /* We haven't checked in, so go dump stack. */
1647 print_cpu_stall(rsp);
1648
bad6e139
PM
1649 } else if (rcu_gp_in_progress(rsp) &&
1650 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1651
bad6e139 1652 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1653 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1654 }
1655}
1656
53d84e00
PM
1657/**
1658 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1659 *
1660 * Set the stall-warning timeout way off into the future, thus preventing
1661 * any RCU CPU stall-warning messages from appearing in the current set of
1662 * RCU grace periods.
1663 *
1664 * The caller must disable hard irqs.
1665 */
1666void rcu_cpu_stall_reset(void)
1667{
6ce75a23
PM
1668 struct rcu_state *rsp;
1669
1670 for_each_rcu_flavor(rsp)
7d0ae808 1671 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1672}
1673
dc35c893
PM
1674/*
1675 * Determine the value that ->completed will have at the end of the
1676 * next subsequent grace period. This is used to tag callbacks so that
1677 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1678 * been dyntick-idle for an extended period with callbacks under the
1679 * influence of RCU_FAST_NO_HZ.
1680 *
1681 * The caller must hold rnp->lock with interrupts disabled.
1682 */
1683static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1684 struct rcu_node *rnp)
1685{
c0b334c5
PM
1686 lockdep_assert_held(&rnp->lock);
1687
dc35c893
PM
1688 /*
1689 * If RCU is idle, we just wait for the next grace period.
1690 * But we can only be sure that RCU is idle if we are looking
1691 * at the root rcu_node structure -- otherwise, a new grace
1692 * period might have started, but just not yet gotten around
1693 * to initializing the current non-root rcu_node structure.
1694 */
1695 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1696 return rnp->completed + 1;
1697
1698 /*
1699 * Otherwise, wait for a possible partial grace period and
1700 * then the subsequent full grace period.
1701 */
1702 return rnp->completed + 2;
1703}
1704
0446be48
PM
1705/*
1706 * Trace-event helper function for rcu_start_future_gp() and
1707 * rcu_nocb_wait_gp().
1708 */
1709static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1710 unsigned long c, const char *s)
0446be48
PM
1711{
1712 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1713 rnp->completed, c, rnp->level,
1714 rnp->grplo, rnp->grphi, s);
1715}
1716
1717/*
1718 * Start some future grace period, as needed to handle newly arrived
1719 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1720 * rcu_node structure's ->need_future_gp field. Returns true if there
1721 * is reason to awaken the grace-period kthread.
0446be48
PM
1722 *
1723 * The caller must hold the specified rcu_node structure's ->lock.
1724 */
48a7639c
PM
1725static bool __maybe_unused
1726rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1727 unsigned long *c_out)
0446be48
PM
1728{
1729 unsigned long c;
48a7639c 1730 bool ret = false;
0446be48
PM
1731 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1732
c0b334c5
PM
1733 lockdep_assert_held(&rnp->lock);
1734
0446be48
PM
1735 /*
1736 * Pick up grace-period number for new callbacks. If this
1737 * grace period is already marked as needed, return to the caller.
1738 */
1739 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1740 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1741 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1742 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1743 goto out;
0446be48
PM
1744 }
1745
1746 /*
1747 * If either this rcu_node structure or the root rcu_node structure
1748 * believe that a grace period is in progress, then we must wait
1749 * for the one following, which is in "c". Because our request
1750 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1751 * need to explicitly start one. We only do the lockless check
1752 * of rnp_root's fields if the current rcu_node structure thinks
1753 * there is no grace period in flight, and because we hold rnp->lock,
1754 * the only possible change is when rnp_root's two fields are
1755 * equal, in which case rnp_root->gpnum might be concurrently
1756 * incremented. But that is OK, as it will just result in our
1757 * doing some extra useless work.
0446be48
PM
1758 */
1759 if (rnp->gpnum != rnp->completed ||
7d0ae808 1760 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1761 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1762 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1763 goto out;
0446be48
PM
1764 }
1765
1766 /*
1767 * There might be no grace period in progress. If we don't already
1768 * hold it, acquire the root rcu_node structure's lock in order to
1769 * start one (if needed).
1770 */
2a67e741
PZ
1771 if (rnp != rnp_root)
1772 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1773
1774 /*
1775 * Get a new grace-period number. If there really is no grace
1776 * period in progress, it will be smaller than the one we obtained
15fecf89 1777 * earlier. Adjust callbacks as needed.
0446be48
PM
1778 */
1779 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1780 if (!rcu_is_nocb_cpu(rdp->cpu))
1781 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1782
1783 /*
1784 * If the needed for the required grace period is already
1785 * recorded, trace and leave.
1786 */
1787 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1788 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1789 goto unlock_out;
1790 }
1791
1792 /* Record the need for the future grace period. */
1793 rnp_root->need_future_gp[c & 0x1]++;
1794
1795 /* If a grace period is not already in progress, start one. */
1796 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1797 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1798 } else {
f7f7bac9 1799 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1800 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1801 }
1802unlock_out:
1803 if (rnp != rnp_root)
67c583a7 1804 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1805out:
1806 if (c_out != NULL)
1807 *c_out = c;
1808 return ret;
0446be48
PM
1809}
1810
1811/*
1812 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1813 * whether any additional grace periods have been requested.
0446be48
PM
1814 */
1815static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1816{
1817 int c = rnp->completed;
1818 int needmore;
1819 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1820
0446be48
PM
1821 rnp->need_future_gp[c & 0x1] = 0;
1822 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1823 trace_rcu_future_gp(rnp, rdp, c,
1824 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1825 return needmore;
1826}
1827
48a7639c
PM
1828/*
1829 * Awaken the grace-period kthread for the specified flavor of RCU.
1830 * Don't do a self-awaken, and don't bother awakening when there is
1831 * nothing for the grace-period kthread to do (as in several CPUs
1832 * raced to awaken, and we lost), and finally don't try to awaken
1833 * a kthread that has not yet been created.
1834 */
1835static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1836{
1837 if (current == rsp->gp_kthread ||
7d0ae808 1838 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1839 !rsp->gp_kthread)
1840 return;
abedf8e2 1841 swake_up(&rsp->gp_wq);
48a7639c
PM
1842}
1843
dc35c893
PM
1844/*
1845 * If there is room, assign a ->completed number to any callbacks on
1846 * this CPU that have not already been assigned. Also accelerate any
1847 * callbacks that were previously assigned a ->completed number that has
1848 * since proven to be too conservative, which can happen if callbacks get
1849 * assigned a ->completed number while RCU is idle, but with reference to
1850 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1851 * not hurt to call it repeatedly. Returns an flag saying that we should
1852 * awaken the RCU grace-period kthread.
dc35c893
PM
1853 *
1854 * The caller must hold rnp->lock with interrupts disabled.
1855 */
48a7639c 1856static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1857 struct rcu_data *rdp)
1858{
15fecf89 1859 bool ret = false;
dc35c893 1860
c0b334c5
PM
1861 lockdep_assert_held(&rnp->lock);
1862
15fecf89
PM
1863 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1864 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1865 return false;
dc35c893
PM
1866
1867 /*
15fecf89
PM
1868 * Callbacks are often registered with incomplete grace-period
1869 * information. Something about the fact that getting exact
1870 * information requires acquiring a global lock... RCU therefore
1871 * makes a conservative estimate of the grace period number at which
1872 * a given callback will become ready to invoke. The following
1873 * code checks this estimate and improves it when possible, thus
1874 * accelerating callback invocation to an earlier grace-period
1875 * number.
dc35c893 1876 */
15fecf89
PM
1877 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1878 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1879
1880 /* Trace depending on how much we were able to accelerate. */
15fecf89 1881 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1882 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1883 else
f7f7bac9 1884 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1885 return ret;
dc35c893
PM
1886}
1887
1888/*
1889 * Move any callbacks whose grace period has completed to the
1890 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1891 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1892 * sublist. This function is idempotent, so it does not hurt to
1893 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1894 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1895 *
1896 * The caller must hold rnp->lock with interrupts disabled.
1897 */
48a7639c 1898static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1899 struct rcu_data *rdp)
1900{
c0b334c5
PM
1901 lockdep_assert_held(&rnp->lock);
1902
15fecf89
PM
1903 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1904 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1905 return false;
dc35c893
PM
1906
1907 /*
1908 * Find all callbacks whose ->completed numbers indicate that they
1909 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1910 */
15fecf89 1911 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1912
1913 /* Classify any remaining callbacks. */
48a7639c 1914 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1915}
1916
d09b62df 1917/*
ba9fbe95
PM
1918 * Update CPU-local rcu_data state to record the beginnings and ends of
1919 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1920 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1921 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1922 */
48a7639c
PM
1923static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1924 struct rcu_data *rdp)
d09b62df 1925{
48a7639c 1926 bool ret;
3563a438 1927 bool need_gp;
48a7639c 1928
c0b334c5
PM
1929 lockdep_assert_held(&rnp->lock);
1930
ba9fbe95 1931 /* Handle the ends of any preceding grace periods first. */
e3663b10 1932 if (rdp->completed == rnp->completed &&
7d0ae808 1933 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1934
ba9fbe95 1935 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1936 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1937
dc35c893
PM
1938 } else {
1939
1940 /* Advance callbacks. */
48a7639c 1941 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1942
1943 /* Remember that we saw this grace-period completion. */
1944 rdp->completed = rnp->completed;
f7f7bac9 1945 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1946 }
398ebe60 1947
7d0ae808 1948 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1949 /*
1950 * If the current grace period is waiting for this CPU,
1951 * set up to detect a quiescent state, otherwise don't
1952 * go looking for one.
1953 */
1954 rdp->gpnum = rnp->gpnum;
f7f7bac9 1955 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1956 need_gp = !!(rnp->qsmask & rdp->grpmask);
1957 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1958 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1959 rdp->core_needs_qs = need_gp;
6eaef633 1960 zero_cpu_stall_ticks(rdp);
7d0ae808 1961 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1962 }
48a7639c 1963 return ret;
6eaef633
PM
1964}
1965
d34ea322 1966static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1967{
1968 unsigned long flags;
48a7639c 1969 bool needwake;
6eaef633
PM
1970 struct rcu_node *rnp;
1971
1972 local_irq_save(flags);
1973 rnp = rdp->mynode;
7d0ae808
PM
1974 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1975 rdp->completed == READ_ONCE(rnp->completed) &&
1976 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1977 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1978 local_irq_restore(flags);
1979 return;
1980 }
48a7639c 1981 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1982 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1983 if (needwake)
1984 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1985}
1986
0f41c0dd
PM
1987static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1988{
1989 if (delay > 0 &&
1990 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1991 schedule_timeout_uninterruptible(delay);
1992}
1993
b3dbec76 1994/*
45fed3e7 1995 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1996 */
45fed3e7 1997static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1998{
0aa04b05 1999 unsigned long oldmask;
b3dbec76 2000 struct rcu_data *rdp;
7fdefc10 2001 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 2002
7d0ae808 2003 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2004 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 2005 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 2006 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 2007 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2008 return false;
f7be8209 2009 }
7d0ae808 2010 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 2011
f7be8209
PM
2012 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2013 /*
2014 * Grace period already in progress, don't start another.
2015 * Not supposed to be able to happen.
2016 */
67c583a7 2017 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2018 return false;
7fdefc10
PM
2019 }
2020
7fdefc10 2021 /* Advance to a new grace period and initialize state. */
26cdfedf 2022 record_gp_stall_check_time(rsp);
765a3f4f
PM
2023 /* Record GP times before starting GP, hence smp_store_release(). */
2024 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2025 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2026 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2027
0aa04b05
PM
2028 /*
2029 * Apply per-leaf buffered online and offline operations to the
2030 * rcu_node tree. Note that this new grace period need not wait
2031 * for subsequent online CPUs, and that quiescent-state forcing
2032 * will handle subsequent offline CPUs.
2033 */
2034 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2035 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2036 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2037 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2038 !rnp->wait_blkd_tasks) {
2039 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2040 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2041 continue;
2042 }
2043
2044 /* Record old state, apply changes to ->qsmaskinit field. */
2045 oldmask = rnp->qsmaskinit;
2046 rnp->qsmaskinit = rnp->qsmaskinitnext;
2047
2048 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2049 if (!oldmask != !rnp->qsmaskinit) {
2050 if (!oldmask) /* First online CPU for this rcu_node. */
2051 rcu_init_new_rnp(rnp);
2052 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2053 rnp->wait_blkd_tasks = true;
2054 else /* Last offline CPU and can propagate. */
2055 rcu_cleanup_dead_rnp(rnp);
2056 }
2057
2058 /*
2059 * If all waited-on tasks from prior grace period are
2060 * done, and if all this rcu_node structure's CPUs are
2061 * still offline, propagate up the rcu_node tree and
2062 * clear ->wait_blkd_tasks. Otherwise, if one of this
2063 * rcu_node structure's CPUs has since come back online,
2064 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2065 * checks for this, so just call it unconditionally).
2066 */
2067 if (rnp->wait_blkd_tasks &&
2068 (!rcu_preempt_has_tasks(rnp) ||
2069 rnp->qsmaskinit)) {
2070 rnp->wait_blkd_tasks = false;
2071 rcu_cleanup_dead_rnp(rnp);
2072 }
2073
67c583a7 2074 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2075 }
7fdefc10
PM
2076
2077 /*
2078 * Set the quiescent-state-needed bits in all the rcu_node
2079 * structures for all currently online CPUs in breadth-first order,
2080 * starting from the root rcu_node structure, relying on the layout
2081 * of the tree within the rsp->node[] array. Note that other CPUs
2082 * will access only the leaves of the hierarchy, thus seeing that no
2083 * grace period is in progress, at least until the corresponding
590d1757 2084 * leaf node has been initialized.
7fdefc10
PM
2085 *
2086 * The grace period cannot complete until the initialization
2087 * process finishes, because this kthread handles both.
2088 */
2089 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2090 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2091 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2092 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2093 rcu_preempt_check_blocked_tasks(rnp);
2094 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2095 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2096 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2097 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2098 if (rnp == rdp->mynode)
48a7639c 2099 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2100 rcu_preempt_boost_start_gp(rnp);
2101 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2102 rnp->level, rnp->grplo,
2103 rnp->grphi, rnp->qsmask);
67c583a7 2104 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2105 cond_resched_rcu_qs();
7d0ae808 2106 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2107 }
b3dbec76 2108
45fed3e7 2109 return true;
7fdefc10 2110}
b3dbec76 2111
b9a425cf
PM
2112/*
2113 * Helper function for wait_event_interruptible_timeout() wakeup
2114 * at force-quiescent-state time.
2115 */
2116static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2117{
2118 struct rcu_node *rnp = rcu_get_root(rsp);
2119
2120 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2121 *gfp = READ_ONCE(rsp->gp_flags);
2122 if (*gfp & RCU_GP_FLAG_FQS)
2123 return true;
2124
2125 /* The current grace period has completed. */
2126 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2127 return true;
2128
2129 return false;
2130}
2131
4cdfc175
PM
2132/*
2133 * Do one round of quiescent-state forcing.
2134 */
77f81fe0 2135static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2136{
217af2a2
PM
2137 bool isidle = false;
2138 unsigned long maxj;
4cdfc175
PM
2139 struct rcu_node *rnp = rcu_get_root(rsp);
2140
7d0ae808 2141 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2142 rsp->n_force_qs++;
77f81fe0 2143 if (first_time) {
4cdfc175 2144 /* Collect dyntick-idle snapshots. */
0edd1b17 2145 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2146 isidle = true;
0edd1b17
PM
2147 maxj = jiffies - ULONG_MAX / 4;
2148 }
217af2a2
PM
2149 force_qs_rnp(rsp, dyntick_save_progress_counter,
2150 &isidle, &maxj);
0edd1b17 2151 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2152 } else {
2153 /* Handle dyntick-idle and offline CPUs. */
675da67f 2154 isidle = true;
217af2a2 2155 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2156 }
2157 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2158 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2159 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2160 WRITE_ONCE(rsp->gp_flags,
2161 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2162 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2163 }
4cdfc175
PM
2164}
2165
7fdefc10
PM
2166/*
2167 * Clean up after the old grace period.
2168 */
4cdfc175 2169static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2170{
2171 unsigned long gp_duration;
48a7639c 2172 bool needgp = false;
dae6e64d 2173 int nocb = 0;
7fdefc10
PM
2174 struct rcu_data *rdp;
2175 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2176 struct swait_queue_head *sq;
b3dbec76 2177
7d0ae808 2178 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2179 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2180 gp_duration = jiffies - rsp->gp_start;
2181 if (gp_duration > rsp->gp_max)
2182 rsp->gp_max = gp_duration;
b3dbec76 2183
7fdefc10
PM
2184 /*
2185 * We know the grace period is complete, but to everyone else
2186 * it appears to still be ongoing. But it is also the case
2187 * that to everyone else it looks like there is nothing that
2188 * they can do to advance the grace period. It is therefore
2189 * safe for us to drop the lock in order to mark the grace
2190 * period as completed in all of the rcu_node structures.
7fdefc10 2191 */
67c583a7 2192 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2193
5d4b8659
PM
2194 /*
2195 * Propagate new ->completed value to rcu_node structures so
2196 * that other CPUs don't have to wait until the start of the next
2197 * grace period to process their callbacks. This also avoids
2198 * some nasty RCU grace-period initialization races by forcing
2199 * the end of the current grace period to be completely recorded in
2200 * all of the rcu_node structures before the beginning of the next
2201 * grace period is recorded in any of the rcu_node structures.
2202 */
2203 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2204 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2205 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2206 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2207 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2208 rdp = this_cpu_ptr(rsp->rda);
2209 if (rnp == rdp->mynode)
48a7639c 2210 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2211 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2212 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2213 sq = rcu_nocb_gp_get(rnp);
67c583a7 2214 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2215 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2216 cond_resched_rcu_qs();
7d0ae808 2217 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2218 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2219 }
5d4b8659 2220 rnp = rcu_get_root(rsp);
2a67e741 2221 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2222 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2223
765a3f4f 2224 /* Declare grace period done. */
7d0ae808 2225 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2226 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2227 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2228 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2229 /* Advance CBs to reduce false positives below. */
2230 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2231 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2232 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2233 trace_rcu_grace_period(rsp->name,
7d0ae808 2234 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2235 TPS("newreq"));
2236 }
67c583a7 2237 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2238}
2239
2240/*
2241 * Body of kthread that handles grace periods.
2242 */
2243static int __noreturn rcu_gp_kthread(void *arg)
2244{
77f81fe0 2245 bool first_gp_fqs;
88d6df61 2246 int gf;
d40011f6 2247 unsigned long j;
4cdfc175 2248 int ret;
7fdefc10
PM
2249 struct rcu_state *rsp = arg;
2250 struct rcu_node *rnp = rcu_get_root(rsp);
2251
5871968d 2252 rcu_bind_gp_kthread();
7fdefc10
PM
2253 for (;;) {
2254
2255 /* Handle grace-period start. */
2256 for (;;) {
63c4db78 2257 trace_rcu_grace_period(rsp->name,
7d0ae808 2258 READ_ONCE(rsp->gpnum),
63c4db78 2259 TPS("reqwait"));
afea227f 2260 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2261 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2262 READ_ONCE(rsp->gp_flags) &
4cdfc175 2263 RCU_GP_FLAG_INIT);
319362c9 2264 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2265 /* Locking provides needed memory barrier. */
f7be8209 2266 if (rcu_gp_init(rsp))
7fdefc10 2267 break;
bde6c3aa 2268 cond_resched_rcu_qs();
7d0ae808 2269 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2270 WARN_ON(signal_pending(current));
63c4db78 2271 trace_rcu_grace_period(rsp->name,
7d0ae808 2272 READ_ONCE(rsp->gpnum),
63c4db78 2273 TPS("reqwaitsig"));
7fdefc10 2274 }
cabc49c1 2275
4cdfc175 2276 /* Handle quiescent-state forcing. */
77f81fe0 2277 first_gp_fqs = true;
d40011f6
PM
2278 j = jiffies_till_first_fqs;
2279 if (j > HZ) {
2280 j = HZ;
2281 jiffies_till_first_fqs = HZ;
2282 }
88d6df61 2283 ret = 0;
cabc49c1 2284 for (;;) {
8c7c4829 2285 if (!ret) {
88d6df61 2286 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2287 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2288 jiffies + 3 * j);
2289 }
63c4db78 2290 trace_rcu_grace_period(rsp->name,
7d0ae808 2291 READ_ONCE(rsp->gpnum),
63c4db78 2292 TPS("fqswait"));
afea227f 2293 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2294 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2295 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2296 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2297 /* Locking provides needed memory barriers. */
4cdfc175 2298 /* If grace period done, leave loop. */
7d0ae808 2299 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2300 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2301 break;
4cdfc175 2302 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2303 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2304 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2305 trace_rcu_grace_period(rsp->name,
7d0ae808 2306 READ_ONCE(rsp->gpnum),
63c4db78 2307 TPS("fqsstart"));
77f81fe0
PM
2308 rcu_gp_fqs(rsp, first_gp_fqs);
2309 first_gp_fqs = false;
63c4db78 2310 trace_rcu_grace_period(rsp->name,
7d0ae808 2311 READ_ONCE(rsp->gpnum),
63c4db78 2312 TPS("fqsend"));
bde6c3aa 2313 cond_resched_rcu_qs();
7d0ae808 2314 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2315 ret = 0; /* Force full wait till next FQS. */
2316 j = jiffies_till_next_fqs;
2317 if (j > HZ) {
2318 j = HZ;
2319 jiffies_till_next_fqs = HZ;
2320 } else if (j < 1) {
2321 j = 1;
2322 jiffies_till_next_fqs = 1;
2323 }
4cdfc175
PM
2324 } else {
2325 /* Deal with stray signal. */
bde6c3aa 2326 cond_resched_rcu_qs();
7d0ae808 2327 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2328 WARN_ON(signal_pending(current));
63c4db78 2329 trace_rcu_grace_period(rsp->name,
7d0ae808 2330 READ_ONCE(rsp->gpnum),
63c4db78 2331 TPS("fqswaitsig"));
fcfd0a23
PM
2332 ret = 1; /* Keep old FQS timing. */
2333 j = jiffies;
2334 if (time_after(jiffies, rsp->jiffies_force_qs))
2335 j = 1;
2336 else
2337 j = rsp->jiffies_force_qs - j;
d40011f6 2338 }
cabc49c1 2339 }
4cdfc175
PM
2340
2341 /* Handle grace-period end. */
319362c9 2342 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2343 rcu_gp_cleanup(rsp);
319362c9 2344 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2345 }
b3dbec76
PM
2346}
2347
64db4cff
PM
2348/*
2349 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2350 * in preparation for detecting the next grace period. The caller must hold
b8462084 2351 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2352 *
2353 * Note that it is legal for a dying CPU (which is marked as offline) to
2354 * invoke this function. This can happen when the dying CPU reports its
2355 * quiescent state.
48a7639c
PM
2356 *
2357 * Returns true if the grace-period kthread must be awakened.
64db4cff 2358 */
48a7639c 2359static bool
910ee45d
PM
2360rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2361 struct rcu_data *rdp)
64db4cff 2362{
c0b334c5 2363 lockdep_assert_held(&rnp->lock);
b8462084 2364 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2365 /*
b3dbec76 2366 * Either we have not yet spawned the grace-period
62da1921
PM
2367 * task, this CPU does not need another grace period,
2368 * or a grace period is already in progress.
b3dbec76 2369 * Either way, don't start a new grace period.
afe24b12 2370 */
48a7639c 2371 return false;
afe24b12 2372 }
7d0ae808
PM
2373 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2374 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2375 TPS("newreq"));
62da1921 2376
016a8d5b
SR
2377 /*
2378 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2379 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2380 * the wakeup to our caller.
016a8d5b 2381 */
48a7639c 2382 return true;
64db4cff
PM
2383}
2384
910ee45d
PM
2385/*
2386 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2387 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2388 * is invoked indirectly from rcu_advance_cbs(), which would result in
2389 * endless recursion -- or would do so if it wasn't for the self-deadlock
2390 * that is encountered beforehand.
48a7639c
PM
2391 *
2392 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2393 */
48a7639c 2394static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2395{
2396 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2397 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2398 bool ret = false;
910ee45d
PM
2399
2400 /*
2401 * If there is no grace period in progress right now, any
2402 * callbacks we have up to this point will be satisfied by the
2403 * next grace period. Also, advancing the callbacks reduces the
2404 * probability of false positives from cpu_needs_another_gp()
2405 * resulting in pointless grace periods. So, advance callbacks
2406 * then start the grace period!
2407 */
48a7639c
PM
2408 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2409 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2410 return ret;
910ee45d
PM
2411}
2412
f41d911f 2413/*
8994515c
PM
2414 * Report a full set of quiescent states to the specified rcu_state data
2415 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2416 * kthread if another grace period is required. Whether we wake
2417 * the grace-period kthread or it awakens itself for the next round
2418 * of quiescent-state forcing, that kthread will clean up after the
2419 * just-completed grace period. Note that the caller must hold rnp->lock,
2420 * which is released before return.
f41d911f 2421 */
d3f6bad3 2422static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2423 __releases(rcu_get_root(rsp)->lock)
f41d911f 2424{
c0b334c5 2425 lockdep_assert_held(&rcu_get_root(rsp)->lock);
fc2219d4 2426 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2427 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2428 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2429 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2430}
2431
64db4cff 2432/*
d3f6bad3
PM
2433 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2434 * Allows quiescent states for a group of CPUs to be reported at one go
2435 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2436 * must be represented by the same rcu_node structure (which need not be a
2437 * leaf rcu_node structure, though it often will be). The gps parameter
2438 * is the grace-period snapshot, which means that the quiescent states
2439 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2440 * must be held upon entry, and it is released before return.
64db4cff
PM
2441 */
2442static void
d3f6bad3 2443rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2444 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2445 __releases(rnp->lock)
2446{
654e9533 2447 unsigned long oldmask = 0;
28ecd580
PM
2448 struct rcu_node *rnp_c;
2449
c0b334c5
PM
2450 lockdep_assert_held(&rnp->lock);
2451
64db4cff
PM
2452 /* Walk up the rcu_node hierarchy. */
2453 for (;;) {
654e9533 2454 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2455
654e9533
PM
2456 /*
2457 * Our bit has already been cleared, or the
2458 * relevant grace period is already over, so done.
2459 */
67c583a7 2460 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2461 return;
2462 }
654e9533 2463 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2464 rnp->qsmask &= ~mask;
d4c08f2a
PM
2465 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2466 mask, rnp->qsmask, rnp->level,
2467 rnp->grplo, rnp->grphi,
2468 !!rnp->gp_tasks);
27f4d280 2469 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2470
2471 /* Other bits still set at this level, so done. */
67c583a7 2472 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2473 return;
2474 }
2475 mask = rnp->grpmask;
2476 if (rnp->parent == NULL) {
2477
2478 /* No more levels. Exit loop holding root lock. */
2479
2480 break;
2481 }
67c583a7 2482 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2483 rnp_c = rnp;
64db4cff 2484 rnp = rnp->parent;
2a67e741 2485 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2486 oldmask = rnp_c->qsmask;
64db4cff
PM
2487 }
2488
2489 /*
2490 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2491 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2492 * to clean up and start the next grace period if one is needed.
64db4cff 2493 */
d3f6bad3 2494 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2495}
2496
cc99a310
PM
2497/*
2498 * Record a quiescent state for all tasks that were previously queued
2499 * on the specified rcu_node structure and that were blocking the current
2500 * RCU grace period. The caller must hold the specified rnp->lock with
2501 * irqs disabled, and this lock is released upon return, but irqs remain
2502 * disabled.
2503 */
0aa04b05 2504static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2505 struct rcu_node *rnp, unsigned long flags)
2506 __releases(rnp->lock)
2507{
654e9533 2508 unsigned long gps;
cc99a310
PM
2509 unsigned long mask;
2510 struct rcu_node *rnp_p;
2511
c0b334c5 2512 lockdep_assert_held(&rnp->lock);
a77da14c
PM
2513 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2514 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2515 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2516 return; /* Still need more quiescent states! */
2517 }
2518
2519 rnp_p = rnp->parent;
2520 if (rnp_p == NULL) {
2521 /*
a77da14c
PM
2522 * Only one rcu_node structure in the tree, so don't
2523 * try to report up to its nonexistent parent!
cc99a310
PM
2524 */
2525 rcu_report_qs_rsp(rsp, flags);
2526 return;
2527 }
2528
654e9533
PM
2529 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2530 gps = rnp->gpnum;
cc99a310 2531 mask = rnp->grpmask;
67c583a7 2532 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2533 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2534 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2535}
2536
64db4cff 2537/*
d3f6bad3 2538 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2539 * structure. This must be called from the specified CPU.
64db4cff
PM
2540 */
2541static void
d7d6a11e 2542rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2543{
2544 unsigned long flags;
2545 unsigned long mask;
48a7639c 2546 bool needwake;
64db4cff
PM
2547 struct rcu_node *rnp;
2548
2549 rnp = rdp->mynode;
2a67e741 2550 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2551 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2552 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2553
2554 /*
e4cc1f22
PM
2555 * The grace period in which this quiescent state was
2556 * recorded has ended, so don't report it upwards.
2557 * We will instead need a new quiescent state that lies
2558 * within the current grace period.
64db4cff 2559 */
5b74c458 2560 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2561 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2562 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2563 return;
2564 }
2565 mask = rdp->grpmask;
2566 if ((rnp->qsmask & mask) == 0) {
67c583a7 2567 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2568 } else {
bb53e416 2569 rdp->core_needs_qs = false;
64db4cff
PM
2570
2571 /*
2572 * This GP can't end until cpu checks in, so all of our
2573 * callbacks can be processed during the next GP.
2574 */
48a7639c 2575 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2576
654e9533
PM
2577 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2578 /* ^^^ Released rnp->lock */
48a7639c
PM
2579 if (needwake)
2580 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2581 }
2582}
2583
2584/*
2585 * Check to see if there is a new grace period of which this CPU
2586 * is not yet aware, and if so, set up local rcu_data state for it.
2587 * Otherwise, see if this CPU has just passed through its first
2588 * quiescent state for this grace period, and record that fact if so.
2589 */
2590static void
2591rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2592{
05eb552b
PM
2593 /* Check for grace-period ends and beginnings. */
2594 note_gp_changes(rsp, rdp);
64db4cff
PM
2595
2596 /*
2597 * Does this CPU still need to do its part for current grace period?
2598 * If no, return and let the other CPUs do their part as well.
2599 */
97c668b8 2600 if (!rdp->core_needs_qs)
64db4cff
PM
2601 return;
2602
2603 /*
2604 * Was there a quiescent state since the beginning of the grace
2605 * period? If no, then exit and wait for the next call.
2606 */
3a19b46a 2607 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2608 return;
2609
d3f6bad3
PM
2610 /*
2611 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2612 * judge of that).
2613 */
d7d6a11e 2614 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2615}
2616
e74f4c45 2617/*
b1420f1c
PM
2618 * Send the specified CPU's RCU callbacks to the orphanage. The
2619 * specified CPU must be offline, and the caller must hold the
7b2e6011 2620 * ->orphan_lock.
e74f4c45 2621 */
b1420f1c
PM
2622static void
2623rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2624 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2625{
c0b334c5
PM
2626 lockdep_assert_held(&rsp->orphan_lock);
2627
3fbfbf7a 2628 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2629 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2630 return;
2631
b1420f1c
PM
2632 /*
2633 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2634 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2635 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2636 */
15fecf89
PM
2637 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2638 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
a50c3af9
PM
2639
2640 /*
b1420f1c
PM
2641 * Next, move those callbacks still needing a grace period to
2642 * the orphanage, where some other CPU will pick them up.
2643 * Some of the callbacks might have gone partway through a grace
2644 * period, but that is too bad. They get to start over because we
2645 * cannot assume that grace periods are synchronized across CPUs.
a50c3af9 2646 */
15fecf89 2647 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
a50c3af9
PM
2648
2649 /*
b1420f1c
PM
2650 * Then move the ready-to-invoke callbacks to the orphanage,
2651 * where some other CPU will pick them up. These will not be
2652 * required to pass though another grace period: They are done.
a50c3af9 2653 */
15fecf89 2654 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
e74f4c45 2655
15fecf89
PM
2656 /* Finally, disallow further callbacks on this CPU. */
2657 rcu_segcblist_disable(&rdp->cblist);
b1420f1c
PM
2658}
2659
2660/*
2661 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2662 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2663 */
96d3fd0d 2664static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c 2665{
fa07a58f 2666 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2667
c0b334c5
PM
2668 lockdep_assert_held(&rsp->orphan_lock);
2669
3fbfbf7a 2670 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2671 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2672 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2673 return;
2674
b1420f1c 2675 /* Do the accounting first. */
4b27f20b 2676 rdp->n_cbs_adopted += rsp->orphan_done.len;
933dfbd7 2677 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
8f5af6f1 2678 rcu_idle_count_callbacks_posted();
15fecf89 2679 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
b1420f1c
PM
2680
2681 /*
2682 * We do not need a memory barrier here because the only way we
2683 * can get here if there is an rcu_barrier() in flight is if
2684 * we are the task doing the rcu_barrier().
2685 */
2686
15fecf89
PM
2687 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2688 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
8ef0f37e 2689 WARN_ON_ONCE(rsp->orphan_done.head);
15fecf89 2690 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
8ef0f37e 2691 WARN_ON_ONCE(rsp->orphan_pend.head);
15fecf89
PM
2692 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2693 !rcu_segcblist_n_cbs(&rdp->cblist));
b1420f1c
PM
2694}
2695
2696/*
2697 * Trace the fact that this CPU is going offline.
2698 */
2699static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2700{
88a4976d
PM
2701 RCU_TRACE(unsigned long mask;)
2702 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2703 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2704
ea46351c
PM
2705 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2706 return;
2707
88a4976d 2708 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2709 trace_rcu_grace_period(rsp->name,
2710 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2711 TPS("cpuofl"));
64db4cff
PM
2712}
2713
8af3a5e7
PM
2714/*
2715 * All CPUs for the specified rcu_node structure have gone offline,
2716 * and all tasks that were preempted within an RCU read-side critical
2717 * section while running on one of those CPUs have since exited their RCU
2718 * read-side critical section. Some other CPU is reporting this fact with
2719 * the specified rcu_node structure's ->lock held and interrupts disabled.
2720 * This function therefore goes up the tree of rcu_node structures,
2721 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2722 * the leaf rcu_node structure's ->qsmaskinit field has already been
2723 * updated
2724 *
2725 * This function does check that the specified rcu_node structure has
2726 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2727 * prematurely. That said, invoking it after the fact will cost you
2728 * a needless lock acquisition. So once it has done its work, don't
2729 * invoke it again.
2730 */
2731static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2732{
2733 long mask;
2734 struct rcu_node *rnp = rnp_leaf;
2735
c0b334c5 2736 lockdep_assert_held(&rnp->lock);
ea46351c
PM
2737 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2738 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2739 return;
2740 for (;;) {
2741 mask = rnp->grpmask;
2742 rnp = rnp->parent;
2743 if (!rnp)
2744 break;
2a67e741 2745 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2746 rnp->qsmaskinit &= ~mask;
0aa04b05 2747 rnp->qsmask &= ~mask;
8af3a5e7 2748 if (rnp->qsmaskinit) {
67c583a7
BF
2749 raw_spin_unlock_rcu_node(rnp);
2750 /* irqs remain disabled. */
8af3a5e7
PM
2751 return;
2752 }
67c583a7 2753 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2754 }
2755}
2756
64db4cff 2757/*
e5601400 2758 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2759 * this fact from process context. Do the remainder of the cleanup,
2760 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2761 * adopting them. There can only be one CPU hotplug operation at a time,
2762 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2763 */
e5601400 2764static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2765{
2036d94a 2766 unsigned long flags;
e5601400 2767 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2768 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2769
ea46351c
PM
2770 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2771 return;
2772
2036d94a 2773 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2774 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2775
b1420f1c 2776 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2777 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2778 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2779 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2780 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2781
15fecf89
PM
2782 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2783 !rcu_segcblist_empty(&rdp->cblist),
2784 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2785 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2786 rcu_segcblist_first_cb(&rdp->cblist));
64db4cff
PM
2787}
2788
64db4cff
PM
2789/*
2790 * Invoke any RCU callbacks that have made it to the end of their grace
2791 * period. Thottle as specified by rdp->blimit.
2792 */
37c72e56 2793static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2794{
2795 unsigned long flags;
15fecf89
PM
2796 struct rcu_head *rhp;
2797 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2798 long bl, count;
64db4cff 2799
dc35c893 2800 /* If no callbacks are ready, just return. */
15fecf89
PM
2801 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2802 trace_rcu_batch_start(rsp->name,
2803 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2804 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2805 trace_rcu_batch_end(rsp->name, 0,
2806 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2807 need_resched(), is_idle_task(current),
2808 rcu_is_callbacks_kthread());
64db4cff 2809 return;
29c00b4a 2810 }
64db4cff
PM
2811
2812 /*
2813 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2814 * races with call_rcu() from interrupt handlers. Leave the
2815 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2816 */
2817 local_irq_save(flags);
8146c4e2 2818 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2819 bl = rdp->blimit;
15fecf89
PM
2820 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2821 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2822 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2823 local_irq_restore(flags);
2824
2825 /* Invoke callbacks. */
15fecf89
PM
2826 rhp = rcu_cblist_dequeue(&rcl);
2827 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2828 debug_rcu_head_unqueue(rhp);
2829 if (__rcu_reclaim(rsp->name, rhp))
2830 rcu_cblist_dequeued_lazy(&rcl);
2831 /*
2832 * Stop only if limit reached and CPU has something to do.
2833 * Note: The rcl structure counts down from zero.
2834 */
4b27f20b 2835 if (-rcl.len >= bl &&
dff1672d
PM
2836 (need_resched() ||
2837 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2838 break;
2839 }
2840
2841 local_irq_save(flags);
4b27f20b 2842 count = -rcl.len;
8ef0f37e
PM
2843 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2844 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2845
15fecf89
PM
2846 /* Update counts and requeue any remaining callbacks. */
2847 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2848 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2849 rdp->n_cbs_invoked += count;
15fecf89 2850 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2851
2852 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2853 count = rcu_segcblist_n_cbs(&rdp->cblist);
2854 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2855 rdp->blimit = blimit;
2856
37c72e56 2857 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2858 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2859 rdp->qlen_last_fqs_check = 0;
2860 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2861 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2862 rdp->qlen_last_fqs_check = count;
2863 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2864
64db4cff
PM
2865 local_irq_restore(flags);
2866
e0f23060 2867 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2868 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2869 invoke_rcu_core();
64db4cff
PM
2870}
2871
2872/*
2873 * Check to see if this CPU is in a non-context-switch quiescent state
2874 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2875 * Also schedule RCU core processing.
64db4cff 2876 *
9b2e4f18 2877 * This function must be called from hardirq context. It is normally
5403d367 2878 * invoked from the scheduling-clock interrupt.
64db4cff 2879 */
c3377c2d 2880void rcu_check_callbacks(int user)
64db4cff 2881{
f7f7bac9 2882 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2883 increment_cpu_stall_ticks();
9b2e4f18 2884 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2885
2886 /*
2887 * Get here if this CPU took its interrupt from user
2888 * mode or from the idle loop, and if this is not a
2889 * nested interrupt. In this case, the CPU is in
d6714c22 2890 * a quiescent state, so note it.
64db4cff
PM
2891 *
2892 * No memory barrier is required here because both
d6714c22
PM
2893 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2894 * variables that other CPUs neither access nor modify,
2895 * at least not while the corresponding CPU is online.
64db4cff
PM
2896 */
2897
284a8c93
PM
2898 rcu_sched_qs();
2899 rcu_bh_qs();
64db4cff
PM
2900
2901 } else if (!in_softirq()) {
2902
2903 /*
2904 * Get here if this CPU did not take its interrupt from
2905 * softirq, in other words, if it is not interrupting
2906 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2907 * critical section, so note it.
64db4cff
PM
2908 */
2909
284a8c93 2910 rcu_bh_qs();
64db4cff 2911 }
86aea0e6 2912 rcu_preempt_check_callbacks();
e3950ecd 2913 if (rcu_pending())
a46e0899 2914 invoke_rcu_core();
8315f422
PM
2915 if (user)
2916 rcu_note_voluntary_context_switch(current);
f7f7bac9 2917 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2918}
2919
64db4cff
PM
2920/*
2921 * Scan the leaf rcu_node structures, processing dyntick state for any that
2922 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2923 * Also initiate boosting for any threads blocked on the root rcu_node.
2924 *
ee47eb9f 2925 * The caller must have suppressed start of new grace periods.
64db4cff 2926 */
217af2a2
PM
2927static void force_qs_rnp(struct rcu_state *rsp,
2928 int (*f)(struct rcu_data *rsp, bool *isidle,
2929 unsigned long *maxj),
2930 bool *isidle, unsigned long *maxj)
64db4cff 2931{
64db4cff
PM
2932 int cpu;
2933 unsigned long flags;
2934 unsigned long mask;
a0b6c9a7 2935 struct rcu_node *rnp;
64db4cff 2936
a0b6c9a7 2937 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2938 cond_resched_rcu_qs();
64db4cff 2939 mask = 0;
2a67e741 2940 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2941 if (rnp->qsmask == 0) {
a77da14c
PM
2942 if (rcu_state_p == &rcu_sched_state ||
2943 rsp != rcu_state_p ||
2944 rcu_preempt_blocked_readers_cgp(rnp)) {
2945 /*
2946 * No point in scanning bits because they
2947 * are all zero. But we might need to
2948 * priority-boost blocked readers.
2949 */
2950 rcu_initiate_boost(rnp, flags);
2951 /* rcu_initiate_boost() releases rnp->lock */
2952 continue;
2953 }
2954 if (rnp->parent &&
2955 (rnp->parent->qsmask & rnp->grpmask)) {
2956 /*
2957 * Race between grace-period
2958 * initialization and task exiting RCU
2959 * read-side critical section: Report.
2960 */
2961 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2962 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2963 continue;
2964 }
64db4cff 2965 }
bc75e999
MR
2966 for_each_leaf_node_possible_cpu(rnp, cpu) {
2967 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2968 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2969 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2970 mask |= bit;
2971 }
64db4cff 2972 }
45f014c5 2973 if (mask != 0) {
654e9533
PM
2974 /* Idle/offline CPUs, report (releases rnp->lock. */
2975 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2976 } else {
2977 /* Nothing to do here, so just drop the lock. */
67c583a7 2978 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2979 }
64db4cff 2980 }
64db4cff
PM
2981}
2982
2983/*
2984 * Force quiescent states on reluctant CPUs, and also detect which
2985 * CPUs are in dyntick-idle mode.
2986 */
4cdfc175 2987static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2988{
2989 unsigned long flags;
394f2769
PM
2990 bool ret;
2991 struct rcu_node *rnp;
2992 struct rcu_node *rnp_old = NULL;
2993
2994 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2995 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2996 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2997 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2998 !raw_spin_trylock(&rnp->fqslock);
2999 if (rnp_old != NULL)
3000 raw_spin_unlock(&rnp_old->fqslock);
3001 if (ret) {
a792563b 3002 rsp->n_force_qs_lh++;
394f2769
PM
3003 return;
3004 }
3005 rnp_old = rnp;
3006 }
3007 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 3008
394f2769 3009 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 3010 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 3011 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 3012 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 3013 rsp->n_force_qs_lh++;
67c583a7 3014 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 3015 return; /* Someone beat us to it. */
46a1e34e 3016 }
7d0ae808 3017 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 3018 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 3019 rcu_gp_kthread_wake(rsp);
64db4cff
PM
3020}
3021
64db4cff 3022/*
e0f23060
PM
3023 * This does the RCU core processing work for the specified rcu_state
3024 * and rcu_data structures. This may be called only from the CPU to
3025 * whom the rdp belongs.
64db4cff
PM
3026 */
3027static void
1bca8cf1 3028__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
3029{
3030 unsigned long flags;
48a7639c 3031 bool needwake;
fa07a58f 3032 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 3033
50dc7def 3034 WARN_ON_ONCE(!rdp->beenonline);
2e597558 3035
64db4cff
PM
3036 /* Update RCU state based on any recent quiescent states. */
3037 rcu_check_quiescent_state(rsp, rdp);
3038
3039 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3040 local_irq_save(flags);
64db4cff 3041 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3042 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3043 needwake = rcu_start_gp(rsp);
67c583a7 3044 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3045 if (needwake)
3046 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3047 } else {
3048 local_irq_restore(flags);
64db4cff
PM
3049 }
3050
3051 /* If there are callbacks ready, invoke them. */
15fecf89 3052 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 3053 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3054
3055 /* Do any needed deferred wakeups of rcuo kthreads. */
3056 do_nocb_deferred_wakeup(rdp);
09223371
SL
3057}
3058
64db4cff 3059/*
e0f23060 3060 * Do RCU core processing for the current CPU.
64db4cff 3061 */
0766f788 3062static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3063{
6ce75a23
PM
3064 struct rcu_state *rsp;
3065
bfa00b4c
PM
3066 if (cpu_is_offline(smp_processor_id()))
3067 return;
f7f7bac9 3068 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3069 for_each_rcu_flavor(rsp)
3070 __rcu_process_callbacks(rsp);
f7f7bac9 3071 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3072}
3073
a26ac245 3074/*
e0f23060
PM
3075 * Schedule RCU callback invocation. If the specified type of RCU
3076 * does not support RCU priority boosting, just do a direct call,
3077 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3078 * are running on the current CPU with softirqs disabled, the
e0f23060 3079 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3080 */
a46e0899 3081static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3082{
7d0ae808 3083 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3084 return;
a46e0899
PM
3085 if (likely(!rsp->boost)) {
3086 rcu_do_batch(rsp, rdp);
a26ac245
PM
3087 return;
3088 }
a46e0899 3089 invoke_rcu_callbacks_kthread();
a26ac245
PM
3090}
3091
a46e0899 3092static void invoke_rcu_core(void)
09223371 3093{
b0f74036
PM
3094 if (cpu_online(smp_processor_id()))
3095 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3096}
3097
29154c57
PM
3098/*
3099 * Handle any core-RCU processing required by a call_rcu() invocation.
3100 */
3101static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3102 struct rcu_head *head, unsigned long flags)
64db4cff 3103{
48a7639c
PM
3104 bool needwake;
3105
62fde6ed
PM
3106 /*
3107 * If called from an extended quiescent state, invoke the RCU
3108 * core in order to force a re-evaluation of RCU's idleness.
3109 */
9910affa 3110 if (!rcu_is_watching())
62fde6ed
PM
3111 invoke_rcu_core();
3112
a16b7a69 3113 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3114 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3115 return;
64db4cff 3116
37c72e56
PM
3117 /*
3118 * Force the grace period if too many callbacks or too long waiting.
3119 * Enforce hysteresis, and don't invoke force_quiescent_state()
3120 * if some other CPU has recently done so. Also, don't bother
3121 * invoking force_quiescent_state() if the newly enqueued callback
3122 * is the only one waiting for a grace period to complete.
3123 */
15fecf89
PM
3124 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3125 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3126
3127 /* Are we ignoring a completed grace period? */
470716fc 3128 note_gp_changes(rsp, rdp);
b52573d2
PM
3129
3130 /* Start a new grace period if one not already started. */
3131 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3132 struct rcu_node *rnp_root = rcu_get_root(rsp);
3133
2a67e741 3134 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3135 needwake = rcu_start_gp(rsp);
67c583a7 3136 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3137 if (needwake)
3138 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3139 } else {
3140 /* Give the grace period a kick. */
3141 rdp->blimit = LONG_MAX;
3142 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3143 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3144 force_quiescent_state(rsp);
b52573d2 3145 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3146 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3147 }
4cdfc175 3148 }
29154c57
PM
3149}
3150
ae150184
PM
3151/*
3152 * RCU callback function to leak a callback.
3153 */
3154static void rcu_leak_callback(struct rcu_head *rhp)
3155{
3156}
3157
3fbfbf7a
PM
3158/*
3159 * Helper function for call_rcu() and friends. The cpu argument will
3160 * normally be -1, indicating "currently running CPU". It may specify
3161 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3162 * is expected to specify a CPU.
3163 */
64db4cff 3164static void
b6a4ae76 3165__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3166 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3167{
3168 unsigned long flags;
3169 struct rcu_data *rdp;
3170
b8f2ed53
PM
3171 /* Misaligned rcu_head! */
3172 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3173
ae150184
PM
3174 if (debug_rcu_head_queue(head)) {
3175 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3176 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3177 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3178 return;
3179 }
64db4cff
PM
3180 head->func = func;
3181 head->next = NULL;
64db4cff 3182 local_irq_save(flags);
394f99a9 3183 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3184
3185 /* Add the callback to our list. */
15fecf89 3186 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3187 int offline;
3188
3189 if (cpu != -1)
3190 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3191 if (likely(rdp->mynode)) {
3192 /* Post-boot, so this should be for a no-CBs CPU. */
3193 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3194 WARN_ON_ONCE(offline);
3195 /* Offline CPU, _call_rcu() illegal, leak callback. */
3196 local_irq_restore(flags);
3197 return;
3198 }
3199 /*
3200 * Very early boot, before rcu_init(). Initialize if needed
3201 * and then drop through to queue the callback.
3202 */
3203 BUG_ON(cpu != -1);
34404ca8 3204 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3205 if (rcu_segcblist_empty(&rdp->cblist))
3206 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3207 }
15fecf89
PM
3208 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3209 if (!lazy)
c57afe80 3210 rcu_idle_count_callbacks_posted();
2655d57e 3211
d4c08f2a
PM
3212 if (__is_kfree_rcu_offset((unsigned long)func))
3213 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3214 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3215 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3216 else
15fecf89
PM
3217 trace_rcu_callback(rsp->name, head,
3218 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3219 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3220
29154c57
PM
3221 /* Go handle any RCU core processing required. */
3222 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3223 local_irq_restore(flags);
3224}
3225
a68a2bb2
PM
3226/**
3227 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3228 * @head: structure to be used for queueing the RCU updates.
3229 * @func: actual callback function to be invoked after the grace period
3230 *
3231 * The callback function will be invoked some time after a full grace
3232 * period elapses, in other words after all currently executing RCU
3233 * read-side critical sections have completed. call_rcu_sched() assumes
3234 * that the read-side critical sections end on enabling of preemption
3235 * or on voluntary preemption.
3236 * RCU read-side critical sections are delimited by :
3237 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3238 * - anything that disables preemption.
3239 *
3240 * These may be nested.
3241 *
3242 * See the description of call_rcu() for more detailed information on
3243 * memory ordering guarantees.
64db4cff 3244 */
b6a4ae76 3245void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3246{
3fbfbf7a 3247 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3248}
d6714c22 3249EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff 3250
a68a2bb2
PM
3251/**
3252 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3253 * @head: structure to be used for queueing the RCU updates.
3254 * @func: actual callback function to be invoked after the grace period
3255 *
3256 * The callback function will be invoked some time after a full grace
3257 * period elapses, in other words after all currently executing RCU
3258 * read-side critical sections have completed. call_rcu_bh() assumes
3259 * that the read-side critical sections end on completion of a softirq
3260 * handler. This means that read-side critical sections in process
3261 * context must not be interrupted by softirqs. This interface is to be
3262 * used when most of the read-side critical sections are in softirq context.
3263 * RCU read-side critical sections are delimited by :
3264 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
3265 * OR
3266 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3267 * These may be nested.
3268 *
3269 * See the description of call_rcu() for more detailed information on
3270 * memory ordering guarantees.
64db4cff 3271 */
b6a4ae76 3272void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3273{
3fbfbf7a 3274 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3275}
3276EXPORT_SYMBOL_GPL(call_rcu_bh);
3277
495aa969
ACB
3278/*
3279 * Queue an RCU callback for lazy invocation after a grace period.
3280 * This will likely be later named something like "call_rcu_lazy()",
3281 * but this change will require some way of tagging the lazy RCU
3282 * callbacks in the list of pending callbacks. Until then, this
3283 * function may only be called from __kfree_rcu().
3284 */
3285void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3286 rcu_callback_t func)
495aa969 3287{
e534165b 3288 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3289}
3290EXPORT_SYMBOL_GPL(kfree_call_rcu);
3291
6d813391
PM
3292/*
3293 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3294 * any blocking grace-period wait automatically implies a grace period
3295 * if there is only one CPU online at any point time during execution
3296 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3297 * occasionally incorrectly indicate that there are multiple CPUs online
3298 * when there was in fact only one the whole time, as this just adds
3299 * some overhead: RCU still operates correctly.
6d813391
PM
3300 */
3301static inline int rcu_blocking_is_gp(void)
3302{
95f0c1de
PM
3303 int ret;
3304
6d813391 3305 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3306 preempt_disable();
3307 ret = num_online_cpus() <= 1;
3308 preempt_enable();
3309 return ret;
6d813391
PM
3310}
3311
6ebb237b
PM
3312/**
3313 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3314 *
3315 * Control will return to the caller some time after a full rcu-sched
3316 * grace period has elapsed, in other words after all currently executing
3317 * rcu-sched read-side critical sections have completed. These read-side
3318 * critical sections are delimited by rcu_read_lock_sched() and
3319 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3320 * local_irq_disable(), and so on may be used in place of
3321 * rcu_read_lock_sched().
3322 *
3323 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3324 * non-threaded hardware-interrupt handlers, in progress on entry will
3325 * have completed before this primitive returns. However, this does not
3326 * guarantee that softirq handlers will have completed, since in some
3327 * kernels, these handlers can run in process context, and can block.
3328 *
3329 * Note that this guarantee implies further memory-ordering guarantees.
3330 * On systems with more than one CPU, when synchronize_sched() returns,
3331 * each CPU is guaranteed to have executed a full memory barrier since the
3332 * end of its last RCU-sched read-side critical section whose beginning
3333 * preceded the call to synchronize_sched(). In addition, each CPU having
3334 * an RCU read-side critical section that extends beyond the return from
3335 * synchronize_sched() is guaranteed to have executed a full memory barrier
3336 * after the beginning of synchronize_sched() and before the beginning of
3337 * that RCU read-side critical section. Note that these guarantees include
3338 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3339 * that are executing in the kernel.
3340 *
3341 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3342 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3343 * to have executed a full memory barrier during the execution of
3344 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3345 * again only if the system has more than one CPU).
6ebb237b
PM
3346 */
3347void synchronize_sched(void)
3348{
f78f5b90
PM
3349 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3350 lock_is_held(&rcu_lock_map) ||
3351 lock_is_held(&rcu_sched_lock_map),
3352 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3353 if (rcu_blocking_is_gp())
3354 return;
5afff48b 3355 if (rcu_gp_is_expedited())
3705b88d
AM
3356 synchronize_sched_expedited();
3357 else
3358 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3359}
3360EXPORT_SYMBOL_GPL(synchronize_sched);
3361
3362/**
3363 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3364 *
3365 * Control will return to the caller some time after a full rcu_bh grace
3366 * period has elapsed, in other words after all currently executing rcu_bh
3367 * read-side critical sections have completed. RCU read-side critical
3368 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3369 * and may be nested.
f0a0e6f2
PM
3370 *
3371 * See the description of synchronize_sched() for more detailed information
3372 * on memory ordering guarantees.
6ebb237b
PM
3373 */
3374void synchronize_rcu_bh(void)
3375{
f78f5b90
PM
3376 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3377 lock_is_held(&rcu_lock_map) ||
3378 lock_is_held(&rcu_sched_lock_map),
3379 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3380 if (rcu_blocking_is_gp())
3381 return;
5afff48b 3382 if (rcu_gp_is_expedited())
3705b88d
AM
3383 synchronize_rcu_bh_expedited();
3384 else
3385 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3386}
3387EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3388
765a3f4f
PM
3389/**
3390 * get_state_synchronize_rcu - Snapshot current RCU state
3391 *
3392 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3393 * to determine whether or not a full grace period has elapsed in the
3394 * meantime.
3395 */
3396unsigned long get_state_synchronize_rcu(void)
3397{
3398 /*
3399 * Any prior manipulation of RCU-protected data must happen
3400 * before the load from ->gpnum.
3401 */
3402 smp_mb(); /* ^^^ */
3403
3404 /*
3405 * Make sure this load happens before the purportedly
3406 * time-consuming work between get_state_synchronize_rcu()
3407 * and cond_synchronize_rcu().
3408 */
e534165b 3409 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3410}
3411EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3412
3413/**
3414 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3415 *
3416 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3417 *
3418 * If a full RCU grace period has elapsed since the earlier call to
3419 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3420 * synchronize_rcu() to wait for a full grace period.
3421 *
3422 * Yes, this function does not take counter wrap into account. But
3423 * counter wrap is harmless. If the counter wraps, we have waited for
3424 * more than 2 billion grace periods (and way more on a 64-bit system!),
3425 * so waiting for one additional grace period should be just fine.
3426 */
3427void cond_synchronize_rcu(unsigned long oldstate)
3428{
3429 unsigned long newstate;
3430
3431 /*
3432 * Ensure that this load happens before any RCU-destructive
3433 * actions the caller might carry out after we return.
3434 */
e534165b 3435 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3436 if (ULONG_CMP_GE(oldstate, newstate))
3437 synchronize_rcu();
3438}
3439EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3440
24560056
PM
3441/**
3442 * get_state_synchronize_sched - Snapshot current RCU-sched state
3443 *
3444 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3445 * to determine whether or not a full grace period has elapsed in the
3446 * meantime.
3447 */
3448unsigned long get_state_synchronize_sched(void)
3449{
3450 /*
3451 * Any prior manipulation of RCU-protected data must happen
3452 * before the load from ->gpnum.
3453 */
3454 smp_mb(); /* ^^^ */
3455
3456 /*
3457 * Make sure this load happens before the purportedly
3458 * time-consuming work between get_state_synchronize_sched()
3459 * and cond_synchronize_sched().
3460 */
3461 return smp_load_acquire(&rcu_sched_state.gpnum);
3462}
3463EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3464
3465/**
3466 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3467 *
3468 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3469 *
3470 * If a full RCU-sched grace period has elapsed since the earlier call to
3471 * get_state_synchronize_sched(), just return. Otherwise, invoke
3472 * synchronize_sched() to wait for a full grace period.
3473 *
3474 * Yes, this function does not take counter wrap into account. But
3475 * counter wrap is harmless. If the counter wraps, we have waited for
3476 * more than 2 billion grace periods (and way more on a 64-bit system!),
3477 * so waiting for one additional grace period should be just fine.
3478 */
3479void cond_synchronize_sched(unsigned long oldstate)
3480{
3481 unsigned long newstate;
3482
3483 /*
3484 * Ensure that this load happens before any RCU-destructive
3485 * actions the caller might carry out after we return.
3486 */
3487 newstate = smp_load_acquire(&rcu_sched_state.completed);
3488 if (ULONG_CMP_GE(oldstate, newstate))
3489 synchronize_sched();
3490}
3491EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3492
64db4cff
PM
3493/*
3494 * Check to see if there is any immediate RCU-related work to be done
3495 * by the current CPU, for the specified type of RCU, returning 1 if so.
3496 * The checks are in order of increasing expense: checks that can be
3497 * carried out against CPU-local state are performed first. However,
3498 * we must check for CPU stalls first, else we might not get a chance.
3499 */
3500static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3501{
2f51f988
PM
3502 struct rcu_node *rnp = rdp->mynode;
3503
64db4cff
PM
3504 rdp->n_rcu_pending++;
3505
3506 /* Check for CPU stalls, if enabled. */
3507 check_cpu_stall(rsp, rdp);
3508
a096932f
PM
3509 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3510 if (rcu_nohz_full_cpu(rsp))
3511 return 0;
3512
64db4cff 3513 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3514 if (rcu_scheduler_fully_active &&
5b74c458 3515 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3516 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3517 rdp->n_rp_core_needs_qs++;
3a19b46a 3518 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3519 rdp->n_rp_report_qs++;
64db4cff 3520 return 1;
7ba5c840 3521 }
64db4cff
PM
3522
3523 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3524 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3525 rdp->n_rp_cb_ready++;
64db4cff 3526 return 1;
7ba5c840 3527 }
64db4cff
PM
3528
3529 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3530 if (cpu_needs_another_gp(rsp, rdp)) {
3531 rdp->n_rp_cpu_needs_gp++;
64db4cff 3532 return 1;
7ba5c840 3533 }
64db4cff
PM
3534
3535 /* Has another RCU grace period completed? */
7d0ae808 3536 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3537 rdp->n_rp_gp_completed++;
64db4cff 3538 return 1;
7ba5c840 3539 }
64db4cff
PM
3540
3541 /* Has a new RCU grace period started? */
7d0ae808
PM
3542 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3543 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3544 rdp->n_rp_gp_started++;
64db4cff 3545 return 1;
7ba5c840 3546 }
64db4cff 3547
96d3fd0d
PM
3548 /* Does this CPU need a deferred NOCB wakeup? */
3549 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3550 rdp->n_rp_nocb_defer_wakeup++;
3551 return 1;
3552 }
3553
64db4cff 3554 /* nothing to do */
7ba5c840 3555 rdp->n_rp_need_nothing++;
64db4cff
PM
3556 return 0;
3557}
3558
3559/*
3560 * Check to see if there is any immediate RCU-related work to be done
3561 * by the current CPU, returning 1 if so. This function is part of the
3562 * RCU implementation; it is -not- an exported member of the RCU API.
3563 */
e3950ecd 3564static int rcu_pending(void)
64db4cff 3565{
6ce75a23
PM
3566 struct rcu_state *rsp;
3567
3568 for_each_rcu_flavor(rsp)
e3950ecd 3569 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3570 return 1;
3571 return 0;
64db4cff
PM
3572}
3573
3574/*
c0f4dfd4
PM
3575 * Return true if the specified CPU has any callback. If all_lazy is
3576 * non-NULL, store an indication of whether all callbacks are lazy.
3577 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3578 */
82072c4f 3579static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3580{
c0f4dfd4
PM
3581 bool al = true;
3582 bool hc = false;
3583 struct rcu_data *rdp;
6ce75a23
PM
3584 struct rcu_state *rsp;
3585
c0f4dfd4 3586 for_each_rcu_flavor(rsp) {
aa6da514 3587 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3588 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3589 continue;
3590 hc = true;
15fecf89 3591 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3592 al = false;
69c8d28c
PM
3593 break;
3594 }
c0f4dfd4
PM
3595 }
3596 if (all_lazy)
3597 *all_lazy = al;
3598 return hc;
64db4cff
PM
3599}
3600
a83eff0a
PM
3601/*
3602 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3603 * the compiler is expected to optimize this away.
3604 */
e66c33d5 3605static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3606 int cpu, unsigned long done)
3607{
3608 trace_rcu_barrier(rsp->name, s, cpu,
3609 atomic_read(&rsp->barrier_cpu_count), done);
3610}
3611
b1420f1c
PM
3612/*
3613 * RCU callback function for _rcu_barrier(). If we are last, wake
3614 * up the task executing _rcu_barrier().
3615 */
24ebbca8 3616static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3617{
24ebbca8
PM
3618 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3619 struct rcu_state *rsp = rdp->rsp;
3620
a83eff0a 3621 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3622 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3623 complete(&rsp->barrier_completion);
a83eff0a 3624 } else {
4f525a52 3625 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3626 }
d0ec774c
PM
3627}
3628
3629/*
3630 * Called with preemption disabled, and from cross-cpu IRQ context.
3631 */
3632static void rcu_barrier_func(void *type)
3633{
037b64ed 3634 struct rcu_state *rsp = type;
fa07a58f 3635 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3636
4f525a52 3637 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
f92c734f
PM
3638 rdp->barrier_head.func = rcu_barrier_callback;
3639 debug_rcu_head_queue(&rdp->barrier_head);
3640 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3641 atomic_inc(&rsp->barrier_cpu_count);
3642 } else {
3643 debug_rcu_head_unqueue(&rdp->barrier_head);
3644 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3645 }
d0ec774c
PM
3646}
3647
d0ec774c
PM
3648/*
3649 * Orchestrate the specified type of RCU barrier, waiting for all
3650 * RCU callbacks of the specified type to complete.
3651 */
037b64ed 3652static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3653{
b1420f1c 3654 int cpu;
b1420f1c 3655 struct rcu_data *rdp;
4f525a52 3656 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3657
4f525a52 3658 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3659
e74f4c45 3660 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3661 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3662
4f525a52
PM
3663 /* Did someone else do our work for us? */
3664 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3665 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3666 smp_mb(); /* caller's subsequent code after above check. */
3667 mutex_unlock(&rsp->barrier_mutex);
3668 return;
3669 }
3670
4f525a52
PM
3671 /* Mark the start of the barrier operation. */
3672 rcu_seq_start(&rsp->barrier_sequence);
3673 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3674
d0ec774c 3675 /*
b1420f1c
PM
3676 * Initialize the count to one rather than to zero in order to
3677 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3678 * (or preemption of this task). Exclude CPU-hotplug operations
3679 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3680 */
7db74df8 3681 init_completion(&rsp->barrier_completion);
24ebbca8 3682 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3683 get_online_cpus();
b1420f1c
PM
3684
3685 /*
1331e7a1
PM
3686 * Force each CPU with callbacks to register a new callback.
3687 * When that callback is invoked, we will know that all of the
3688 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3689 */
3fbfbf7a 3690 for_each_possible_cpu(cpu) {
d1e43fa5 3691 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3692 continue;
b1420f1c 3693 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3694 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3695 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3696 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3697 rsp->barrier_sequence);
d7e29933
PM
3698 } else {
3699 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3700 rsp->barrier_sequence);
41050a00 3701 smp_mb__before_atomic();
d7e29933
PM
3702 atomic_inc(&rsp->barrier_cpu_count);
3703 __call_rcu(&rdp->barrier_head,
3704 rcu_barrier_callback, rsp, cpu, 0);
3705 }
15fecf89 3706 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
a83eff0a 3707 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3708 rsp->barrier_sequence);
037b64ed 3709 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3710 } else {
a83eff0a 3711 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3712 rsp->barrier_sequence);
b1420f1c
PM
3713 }
3714 }
1331e7a1 3715 put_online_cpus();
b1420f1c
PM
3716
3717 /*
3718 * Now that we have an rcu_barrier_callback() callback on each
3719 * CPU, and thus each counted, remove the initial count.
3720 */
24ebbca8 3721 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3722 complete(&rsp->barrier_completion);
b1420f1c
PM
3723
3724 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3725 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3726
4f525a52
PM
3727 /* Mark the end of the barrier operation. */
3728 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3729 rcu_seq_end(&rsp->barrier_sequence);
3730
b1420f1c 3731 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3732 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3733}
d0ec774c
PM
3734
3735/**
3736 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3737 */
3738void rcu_barrier_bh(void)
3739{
037b64ed 3740 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3741}
3742EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3743
3744/**
3745 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3746 */
3747void rcu_barrier_sched(void)
3748{
037b64ed 3749 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3750}
3751EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3752
0aa04b05
PM
3753/*
3754 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3755 * first CPU in a given leaf rcu_node structure coming online. The caller
3756 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3757 * disabled.
3758 */
3759static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3760{
3761 long mask;
3762 struct rcu_node *rnp = rnp_leaf;
3763
c0b334c5 3764 lockdep_assert_held(&rnp->lock);
0aa04b05
PM
3765 for (;;) {
3766 mask = rnp->grpmask;
3767 rnp = rnp->parent;
3768 if (rnp == NULL)
3769 return;
6cf10081 3770 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3771 rnp->qsmaskinit |= mask;
67c583a7 3772 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3773 }
3774}
3775
64db4cff 3776/*
27569620 3777 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3778 */
27569620
PM
3779static void __init
3780rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3781{
3782 unsigned long flags;
394f99a9 3783 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3784 struct rcu_node *rnp = rcu_get_root(rsp);
3785
3786 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3787 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3788 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3789 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3790 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3791 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3792 rdp->cpu = cpu;
d4c08f2a 3793 rdp->rsp = rsp;
3fbfbf7a 3794 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3795 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3796}
3797
3798/*
3799 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3800 * offline event can be happening at a given time. Note also that we
3801 * can accept some slop in the rsp->completed access due to the fact
3802 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3803 */
49fb4c62 3804static void
9b67122a 3805rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3806{
3807 unsigned long flags;
394f99a9 3808 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3809 struct rcu_node *rnp = rcu_get_root(rsp);
3810
3811 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3812 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3813 rdp->qlen_last_fqs_check = 0;
3814 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3815 rdp->blimit = blimit;
15fecf89
PM
3816 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3817 !init_nocb_callback_list(rdp))
3818 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3819 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3820 rcu_sysidle_init_percpu_data(rdp->dynticks);
2625d469 3821 rcu_dynticks_eqs_online();
67c583a7 3822 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3823
0aa04b05
PM
3824 /*
3825 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3826 * propagation up the rcu_node tree will happen at the beginning
3827 * of the next grace period.
3828 */
64db4cff 3829 rnp = rdp->mynode;
2a67e741 3830 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3831 if (!rdp->beenonline)
3832 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3833 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3834 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3835 rdp->completed = rnp->completed;
5b74c458 3836 rdp->cpu_no_qs.b.norm = true;
9577df9a 3837 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3838 rdp->core_needs_qs = false;
0aa04b05 3839 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3840 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3841}
3842
deb34f36
PM
3843/*
3844 * Invoked early in the CPU-online process, when pretty much all
3845 * services are available. The incoming CPU is not present.
3846 */
4df83742 3847int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3848{
6ce75a23
PM
3849 struct rcu_state *rsp;
3850
3851 for_each_rcu_flavor(rsp)
9b67122a 3852 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3853
3854 rcu_prepare_kthreads(cpu);
3855 rcu_spawn_all_nocb_kthreads(cpu);
3856
3857 return 0;
3858}
3859
deb34f36
PM
3860/*
3861 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3862 */
4df83742
TG
3863static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3864{
3865 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3866
3867 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3868}
3869
deb34f36
PM
3870/*
3871 * Near the end of the CPU-online process. Pretty much all services
3872 * enabled, and the CPU is now very much alive.
3873 */
4df83742
TG
3874int rcutree_online_cpu(unsigned int cpu)
3875{
3876 sync_sched_exp_online_cleanup(cpu);
3877 rcutree_affinity_setting(cpu, -1);
da915ad5
PM
3878 if (IS_ENABLED(CONFIG_TREE_SRCU))
3879 srcu_online_cpu(cpu);
4df83742
TG
3880 return 0;
3881}
3882
deb34f36
PM
3883/*
3884 * Near the beginning of the process. The CPU is still very much alive
3885 * with pretty much all services enabled.
3886 */
4df83742
TG
3887int rcutree_offline_cpu(unsigned int cpu)
3888{
3889 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3890 if (IS_ENABLED(CONFIG_TREE_SRCU))
3891 srcu_offline_cpu(cpu);
4df83742
TG
3892 return 0;
3893}
3894
deb34f36
PM
3895/*
3896 * Near the end of the offline process. We do only tracing here.
3897 */
4df83742
TG
3898int rcutree_dying_cpu(unsigned int cpu)
3899{
3900 struct rcu_state *rsp;
3901
3902 for_each_rcu_flavor(rsp)
3903 rcu_cleanup_dying_cpu(rsp);
3904 return 0;
3905}
3906
deb34f36
PM
3907/*
3908 * The outgoing CPU is gone and we are running elsewhere.
3909 */
4df83742
TG
3910int rcutree_dead_cpu(unsigned int cpu)
3911{
3912 struct rcu_state *rsp;
3913
3914 for_each_rcu_flavor(rsp) {
3915 rcu_cleanup_dead_cpu(cpu, rsp);
3916 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3917 }
3918 return 0;
64db4cff
PM
3919}
3920
7ec99de3
PM
3921/*
3922 * Mark the specified CPU as being online so that subsequent grace periods
3923 * (both expedited and normal) will wait on it. Note that this means that
3924 * incoming CPUs are not allowed to use RCU read-side critical sections
3925 * until this function is called. Failing to observe this restriction
3926 * will result in lockdep splats.
deb34f36
PM
3927 *
3928 * Note that this function is special in that it is invoked directly
3929 * from the incoming CPU rather than from the cpuhp_step mechanism.
3930 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3931 */
3932void rcu_cpu_starting(unsigned int cpu)
3933{
3934 unsigned long flags;
3935 unsigned long mask;
3936 struct rcu_data *rdp;
3937 struct rcu_node *rnp;
3938 struct rcu_state *rsp;
3939
3940 for_each_rcu_flavor(rsp) {
fdbb9b31 3941 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3942 rnp = rdp->mynode;
3943 mask = rdp->grpmask;
3944 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3945 rnp->qsmaskinitnext |= mask;
3946 rnp->expmaskinitnext |= mask;
3947 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3948 }
3949}
3950
27d50c7e
TG
3951#ifdef CONFIG_HOTPLUG_CPU
3952/*
3953 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3954 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3955 * bit masks.
3956 */
3957static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3958{
3959 unsigned long flags;
3960 unsigned long mask;
3961 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3962 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3963
27d50c7e
TG
3964 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3965 mask = rdp->grpmask;
3966 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3967 rnp->qsmaskinitnext &= ~mask;
710d60cb 3968 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3969}
3970
deb34f36
PM
3971/*
3972 * The outgoing function has no further need of RCU, so remove it from
3973 * the list of CPUs that RCU must track.
3974 *
3975 * Note that this function is special in that it is invoked directly
3976 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3977 * This is because this function must be invoked at a precise location.
3978 */
27d50c7e
TG
3979void rcu_report_dead(unsigned int cpu)
3980{
3981 struct rcu_state *rsp;
3982
3983 /* QS for any half-done expedited RCU-sched GP. */
3984 preempt_disable();
3985 rcu_report_exp_rdp(&rcu_sched_state,
3986 this_cpu_ptr(rcu_sched_state.rda), true);
3987 preempt_enable();
3988 for_each_rcu_flavor(rsp)
3989 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3990}
3991#endif
3992
deb34f36
PM
3993/*
3994 * On non-huge systems, use expedited RCU grace periods to make suspend
3995 * and hibernation run faster.
3996 */
d1d74d14
BP
3997static int rcu_pm_notify(struct notifier_block *self,
3998 unsigned long action, void *hcpu)
3999{
4000 switch (action) {
4001 case PM_HIBERNATION_PREPARE:
4002 case PM_SUSPEND_PREPARE:
4003 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 4004 rcu_expedite_gp();
d1d74d14
BP
4005 break;
4006 case PM_POST_HIBERNATION:
4007 case PM_POST_SUSPEND:
5afff48b
PM
4008 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4009 rcu_unexpedite_gp();
d1d74d14
BP
4010 break;
4011 default:
4012 break;
4013 }
4014 return NOTIFY_OK;
4015}
4016
b3dbec76 4017/*
9386c0b7 4018 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
4019 */
4020static int __init rcu_spawn_gp_kthread(void)
4021{
4022 unsigned long flags;
a94844b2 4023 int kthread_prio_in = kthread_prio;
b3dbec76
PM
4024 struct rcu_node *rnp;
4025 struct rcu_state *rsp;
a94844b2 4026 struct sched_param sp;
b3dbec76
PM
4027 struct task_struct *t;
4028
a94844b2
PM
4029 /* Force priority into range. */
4030 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4031 kthread_prio = 1;
4032 else if (kthread_prio < 0)
4033 kthread_prio = 0;
4034 else if (kthread_prio > 99)
4035 kthread_prio = 99;
4036 if (kthread_prio != kthread_prio_in)
4037 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4038 kthread_prio, kthread_prio_in);
4039
9386c0b7 4040 rcu_scheduler_fully_active = 1;
b3dbec76 4041 for_each_rcu_flavor(rsp) {
a94844b2 4042 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
4043 BUG_ON(IS_ERR(t));
4044 rnp = rcu_get_root(rsp);
6cf10081 4045 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 4046 rsp->gp_kthread = t;
a94844b2
PM
4047 if (kthread_prio) {
4048 sp.sched_priority = kthread_prio;
4049 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4050 }
67c583a7 4051 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 4052 wake_up_process(t);
b3dbec76 4053 }
35ce7f29 4054 rcu_spawn_nocb_kthreads();
9386c0b7 4055 rcu_spawn_boost_kthreads();
b3dbec76
PM
4056 return 0;
4057}
4058early_initcall(rcu_spawn_gp_kthread);
4059
bbad9379 4060/*
52d7e48b
PM
4061 * This function is invoked towards the end of the scheduler's
4062 * initialization process. Before this is called, the idle task might
4063 * contain synchronous grace-period primitives (during which time, this idle
4064 * task is booting the system, and such primitives are no-ops). After this
4065 * function is called, any synchronous grace-period primitives are run as
4066 * expedited, with the requesting task driving the grace period forward.
900b1028 4067 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4068 * runtime RCU functionality.
bbad9379
PM
4069 */
4070void rcu_scheduler_starting(void)
4071{
4072 WARN_ON(num_online_cpus() != 1);
4073 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4074 rcu_test_sync_prims();
4075 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4076 rcu_test_sync_prims();
bbad9379
PM
4077}
4078
64db4cff
PM
4079/*
4080 * Helper function for rcu_init() that initializes one rcu_state structure.
4081 */
a87f203e 4082static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4083{
cb007102
AG
4084 static const char * const buf[] = RCU_NODE_NAME_INIT;
4085 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4086 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4087 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4088
199977bf 4089 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4090 int cpustride = 1;
4091 int i;
4092 int j;
4093 struct rcu_node *rnp;
4094
05b84aec 4095 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4096
3eaaaf6c
PM
4097 /* Silence gcc 4.8 false positive about array index out of range. */
4098 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4099 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4100
64db4cff
PM
4101 /* Initialize the level-tracking arrays. */
4102
f885b7f2 4103 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4104 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4105 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4106
4107 /* Initialize the elements themselves, starting from the leaves. */
4108
f885b7f2 4109 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4110 cpustride *= levelspread[i];
64db4cff 4111 rnp = rsp->level[i];
41f5c631 4112 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4113 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4114 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4115 &rcu_node_class[i], buf[i]);
394f2769
PM
4116 raw_spin_lock_init(&rnp->fqslock);
4117 lockdep_set_class_and_name(&rnp->fqslock,
4118 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4119 rnp->gpnum = rsp->gpnum;
4120 rnp->completed = rsp->completed;
64db4cff
PM
4121 rnp->qsmask = 0;
4122 rnp->qsmaskinit = 0;
4123 rnp->grplo = j * cpustride;
4124 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4125 if (rnp->grphi >= nr_cpu_ids)
4126 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4127 if (i == 0) {
4128 rnp->grpnum = 0;
4129 rnp->grpmask = 0;
4130 rnp->parent = NULL;
4131 } else {
199977bf 4132 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4133 rnp->grpmask = 1UL << rnp->grpnum;
4134 rnp->parent = rsp->level[i - 1] +
199977bf 4135 j / levelspread[i - 1];
64db4cff
PM
4136 }
4137 rnp->level = i;
12f5f524 4138 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4139 rcu_init_one_nocb(rnp);
f6a12f34
PM
4140 init_waitqueue_head(&rnp->exp_wq[0]);
4141 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4142 init_waitqueue_head(&rnp->exp_wq[2]);
4143 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4144 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4145 }
4146 }
0c34029a 4147
abedf8e2
PG
4148 init_swait_queue_head(&rsp->gp_wq);
4149 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4150 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4151 for_each_possible_cpu(i) {
4a90a068 4152 while (i > rnp->grphi)
0c34029a 4153 rnp++;
394f99a9 4154 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4155 rcu_boot_init_percpu_data(i, rsp);
4156 }
6ce75a23 4157 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4158}
4159
f885b7f2
PM
4160/*
4161 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4162 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4163 * the ->node array in the rcu_state structure.
4164 */
4165static void __init rcu_init_geometry(void)
4166{
026ad283 4167 ulong d;
f885b7f2 4168 int i;
05b84aec 4169 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4170
026ad283
PM
4171 /*
4172 * Initialize any unspecified boot parameters.
4173 * The default values of jiffies_till_first_fqs and
4174 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4175 * value, which is a function of HZ, then adding one for each
4176 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4177 */
4178 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4179 if (jiffies_till_first_fqs == ULONG_MAX)
4180 jiffies_till_first_fqs = d;
4181 if (jiffies_till_next_fqs == ULONG_MAX)
4182 jiffies_till_next_fqs = d;
4183
f885b7f2 4184 /* If the compile-time values are accurate, just leave. */
47d631af 4185 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4186 nr_cpu_ids == NR_CPUS)
f885b7f2 4187 return;
39479098
PM
4188 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4189 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4190
f885b7f2 4191 /*
ee968ac6
PM
4192 * The boot-time rcu_fanout_leaf parameter must be at least two
4193 * and cannot exceed the number of bits in the rcu_node masks.
4194 * Complain and fall back to the compile-time values if this
4195 * limit is exceeded.
f885b7f2 4196 */
ee968ac6 4197 if (rcu_fanout_leaf < 2 ||
75cf15a4 4198 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4199 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4200 WARN_ON(1);
4201 return;
4202 }
4203
f885b7f2
PM
4204 /*
4205 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4206 * with the given number of levels.
f885b7f2 4207 */
9618138b 4208 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4209 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4210 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4211
4212 /*
75cf15a4 4213 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4214 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4215 */
ee968ac6
PM
4216 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4217 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4218 WARN_ON(1);
4219 return;
4220 }
f885b7f2 4221
679f9858 4222 /* Calculate the number of levels in the tree. */
9618138b 4223 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4224 }
9618138b 4225 rcu_num_lvls = i + 1;
679f9858 4226
f885b7f2 4227 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4228 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4229 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4230 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4231 }
f885b7f2
PM
4232
4233 /* Calculate the total number of rcu_node structures. */
4234 rcu_num_nodes = 0;
679f9858 4235 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4236 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4237}
4238
a3dc2948
PM
4239/*
4240 * Dump out the structure of the rcu_node combining tree associated
4241 * with the rcu_state structure referenced by rsp.
4242 */
4243static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4244{
4245 int level = 0;
4246 struct rcu_node *rnp;
4247
4248 pr_info("rcu_node tree layout dump\n");
4249 pr_info(" ");
4250 rcu_for_each_node_breadth_first(rsp, rnp) {
4251 if (rnp->level != level) {
4252 pr_cont("\n");
4253 pr_info(" ");
4254 level = rnp->level;
4255 }
4256 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4257 }
4258 pr_cont("\n");
4259}
4260
9f680ab4 4261void __init rcu_init(void)
64db4cff 4262{
017c4261 4263 int cpu;
9f680ab4 4264
47627678
PM
4265 rcu_early_boot_tests();
4266
f41d911f 4267 rcu_bootup_announce();
f885b7f2 4268 rcu_init_geometry();
a87f203e
PM
4269 rcu_init_one(&rcu_bh_state);
4270 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4271 if (dump_tree)
4272 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4273 __rcu_init_preempt();
b5b39360 4274 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4275
4276 /*
4277 * We don't need protection against CPU-hotplug here because
4278 * this is called early in boot, before either interrupts
4279 * or the scheduler are operational.
4280 */
d1d74d14 4281 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4282 for_each_online_cpu(cpu) {
4df83742 4283 rcutree_prepare_cpu(cpu);
7ec99de3 4284 rcu_cpu_starting(cpu);
da915ad5
PM
4285 if (IS_ENABLED(CONFIG_TREE_SRCU))
4286 srcu_online_cpu(cpu);
7ec99de3 4287 }
64db4cff
PM
4288}
4289
3549c2bc 4290#include "tree_exp.h"
4102adab 4291#include "tree_plugin.h"