]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree.c
rcu: Add preemptibility checks in rcu_sched_qs() and rcu_bh_qs()
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
64db4cff
PM
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
f9411ebe 35#include <linux/rcupdate_wait.h>
64db4cff
PM
36#include <linux/interrupt.h>
37#include <linux/sched.h>
b17b0153 38#include <linux/sched/debug.h>
c1dc0b9c 39#include <linux/nmi.h>
8826f3b0 40#include <linux/atomic.h>
64db4cff 41#include <linux/bitops.h>
9984de1a 42#include <linux/export.h>
64db4cff
PM
43#include <linux/completion.h>
44#include <linux/moduleparam.h>
45#include <linux/percpu.h>
46#include <linux/notifier.h>
47#include <linux/cpu.h>
48#include <linux/mutex.h>
49#include <linux/time.h>
bbad9379 50#include <linux/kernel_stat.h>
a26ac245
PM
51#include <linux/wait.h>
52#include <linux/kthread.h>
ae7e81c0 53#include <uapi/linux/sched/types.h>
268bb0ce 54#include <linux/prefetch.h>
3d3b7db0
PM
55#include <linux/delay.h>
56#include <linux/stop_machine.h>
661a85dc 57#include <linux/random.h>
af658dca 58#include <linux/trace_events.h>
d1d74d14 59#include <linux/suspend.h>
a278d471 60#include <linux/ftrace.h>
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
64db4cff
PM
70/* Data structures. */
71
f7f7bac9
SRRH
72/*
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
79 */
a8a29b3b
AB
80#ifdef CONFIG_TRACING
81# define DEFINE_RCU_TPS(sname) \
f7f7bac9 82static char sname##_varname[] = #sname; \
a8a29b3b
AB
83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84# define RCU_STATE_NAME(sname) sname##_varname
85#else
86# define DEFINE_RCU_TPS(sname)
87# define RCU_STATE_NAME(sname) __stringify(sname)
88#endif
89
90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91DEFINE_RCU_TPS(sname) \
c92fb057 92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
a41bfeb2 93struct rcu_state sname##_state = { \
6c90cc7b 94 .level = { &sname##_state.node[0] }, \
2723249a 95 .rda = &sname##_data, \
037b64ed 96 .call = cr, \
77f81fe0 97 .gp_state = RCU_GP_IDLE, \
42c3533e
PM
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
7b2e6011 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
15fecf89
PM
101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
7be7f0be 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a8a29b3b 104 .name = RCU_STATE_NAME(sname), \
a4889858 105 .abbr = sabbr, \
f6a12f34 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
3b5f668e 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
2723249a 108}
64db4cff 109
a41bfeb2
SRRH
110RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 112
b28a7c01 113static struct rcu_state *const rcu_state_p;
6ce75a23 114LIST_HEAD(rcu_struct_flavors);
27f4d280 115
a3dc2948
PM
116/* Dump rcu_node combining tree at boot to verify correct setup. */
117static bool dump_tree;
118module_param(dump_tree, bool, 0444);
7fa27001
PM
119/* Control rcu_node-tree auto-balancing at boot time. */
120static bool rcu_fanout_exact;
121module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
122/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 124module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 125int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 126/* Number of rcu_nodes at specified level. */
e95d68d2 127int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2 128int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
088e9d25
DBO
129/* panic() on RCU Stall sysctl. */
130int sysctl_panic_on_rcu_stall __read_mostly;
f885b7f2 131
b0d30417 132/*
52d7e48b
PM
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 137 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 143 */
bbad9379
PM
144int rcu_scheduler_active __read_mostly;
145EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
b0d30417
PM
147/*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159static int rcu_scheduler_fully_active __read_mostly;
160
0aa04b05
PM
161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 163static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
164static void invoke_rcu_core(void);
165static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
6587a23b
PM
166static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 struct rcu_data *rdp, bool wake);
3549c2bc 168static void sync_sched_exp_online_cleanup(int cpu);
a26ac245 169
a94844b2 170/* rcuc/rcub kthread realtime priority */
26730f55 171#ifdef CONFIG_RCU_KTHREAD_PRIO
a94844b2 172static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
26730f55
PM
173#else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
174static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175#endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
a94844b2
PM
176module_param(kthread_prio, int, 0644);
177
8d7dc928 178/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd
PM
179
180#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
181static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
182module_param(gp_preinit_delay, int, 0644);
183#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
184static const int gp_preinit_delay;
185#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
186
8d7dc928
PM
187#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
188static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
37745d28 189module_param(gp_init_delay, int, 0644);
8d7dc928
PM
190#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
191static const int gp_init_delay;
192#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
eab128e8 193
0f41c0dd
PM
194#ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
195static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
196module_param(gp_cleanup_delay, int, 0644);
197#else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
198static const int gp_cleanup_delay;
199#endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
200
eab128e8
PM
201/*
202 * Number of grace periods between delays, normalized by the duration of
bfd090be 203 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
204 * each delay. The reason for this normalization is that it means that,
205 * for non-zero delays, the overall slowdown of grace periods is constant
206 * regardless of the duration of the delay. This arrangement balances
207 * the need for long delays to increase some race probabilities with the
208 * need for fast grace periods to increase other race probabilities.
209 */
210#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 211
4a298656
PM
212/*
213 * Track the rcutorture test sequence number and the update version
214 * number within a given test. The rcutorture_testseq is incremented
215 * on every rcutorture module load and unload, so has an odd value
216 * when a test is running. The rcutorture_vernum is set to zero
217 * when rcutorture starts and is incremented on each rcutorture update.
218 * These variables enable correlating rcutorture output with the
219 * RCU tracing information.
220 */
221unsigned long rcutorture_testseq;
222unsigned long rcutorture_vernum;
223
0aa04b05
PM
224/*
225 * Compute the mask of online CPUs for the specified rcu_node structure.
226 * This will not be stable unless the rcu_node structure's ->lock is
227 * held, but the bit corresponding to the current CPU will be stable
228 * in most contexts.
229 */
230unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
231{
7d0ae808 232 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
233}
234
fc2219d4 235/*
7d0ae808 236 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
237 * permit this function to be invoked without holding the root rcu_node
238 * structure's ->lock, but of course results can be subject to change.
239 */
240static int rcu_gp_in_progress(struct rcu_state *rsp)
241{
7d0ae808 242 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
fc2219d4
PM
243}
244
b1f77b05 245/*
d6714c22 246 * Note a quiescent state. Because we do not need to know
b1f77b05 247 * how many quiescent states passed, just if there was at least
d6714c22 248 * one since the start of the grace period, this just sets a flag.
e4cc1f22 249 * The caller must have disabled preemption.
b1f77b05 250 */
284a8c93 251void rcu_sched_qs(void)
b1f77b05 252{
f4687d26 253 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
fecbf6f0
PM
254 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
255 return;
256 trace_rcu_grace_period(TPS("rcu_sched"),
257 __this_cpu_read(rcu_sched_data.gpnum),
258 TPS("cpuqs"));
259 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
260 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
261 return;
46a5d164
PM
262 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
263 rcu_report_exp_rdp(&rcu_sched_state,
264 this_cpu_ptr(&rcu_sched_data), true);
b1f77b05
IM
265}
266
284a8c93 267void rcu_bh_qs(void)
b1f77b05 268{
f4687d26 269 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
5b74c458 270 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
284a8c93
PM
271 trace_rcu_grace_period(TPS("rcu_bh"),
272 __this_cpu_read(rcu_bh_data.gpnum),
273 TPS("cpuqs"));
5b74c458 274 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
284a8c93 275 }
b1f77b05 276}
64db4cff 277
b8c17e66
PM
278/*
279 * Steal a bit from the bottom of ->dynticks for idle entry/exit
280 * control. Initially this is for TLB flushing.
281 */
282#define RCU_DYNTICK_CTRL_MASK 0x1
283#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
284#ifndef rcu_eqs_special_exit
285#define rcu_eqs_special_exit() do { } while (0)
286#endif
4a81e832
PM
287
288static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
289 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
b8c17e66 290 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4a81e832
PM
291#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
292 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
293 .dynticks_idle = ATOMIC_INIT(1),
294#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
295};
296
03ecd3f4
SRV
297/*
298 * There's a few places, currently just in the tracing infrastructure,
299 * that uses rcu_irq_enter() to make sure RCU is watching. But there's
300 * a small location where that will not even work. In those cases
301 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
302 * can be called.
303 */
304static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
305
306bool rcu_irq_enter_disabled(void)
307{
308 return this_cpu_read(disable_rcu_irq_enter);
309}
310
2625d469
PM
311/*
312 * Record entry into an extended quiescent state. This is only to be
313 * called when not already in an extended quiescent state.
314 */
315static void rcu_dynticks_eqs_enter(void)
316{
317 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 318 int seq;
2625d469
PM
319
320 /*
b8c17e66 321 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
322 * critical sections, and we also must force ordering with the
323 * next idle sojourn.
324 */
b8c17e66
PM
325 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
326 /* Better be in an extended quiescent state! */
327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 (seq & RCU_DYNTICK_CTRL_CTR));
329 /* Better not have special action (TLB flush) pending! */
330 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
331 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
332}
333
334/*
335 * Record exit from an extended quiescent state. This is only to be
336 * called from an extended quiescent state.
337 */
338static void rcu_dynticks_eqs_exit(void)
339{
340 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66 341 int seq;
2625d469
PM
342
343 /*
b8c17e66 344 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
345 * and we also must force ordering with the next RCU read-side
346 * critical section.
347 */
b8c17e66
PM
348 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
349 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
350 !(seq & RCU_DYNTICK_CTRL_CTR));
351 if (seq & RCU_DYNTICK_CTRL_MASK) {
352 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
353 smp_mb__after_atomic(); /* _exit after clearing mask. */
354 /* Prefer duplicate flushes to losing a flush. */
355 rcu_eqs_special_exit();
356 }
2625d469
PM
357}
358
359/*
360 * Reset the current CPU's ->dynticks counter to indicate that the
361 * newly onlined CPU is no longer in an extended quiescent state.
362 * This will either leave the counter unchanged, or increment it
363 * to the next non-quiescent value.
364 *
365 * The non-atomic test/increment sequence works because the upper bits
366 * of the ->dynticks counter are manipulated only by the corresponding CPU,
367 * or when the corresponding CPU is offline.
368 */
369static void rcu_dynticks_eqs_online(void)
370{
371 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
372
b8c17e66 373 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 374 return;
b8c17e66 375 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
2625d469
PM
376}
377
02a5c550
PM
378/*
379 * Is the current CPU in an extended quiescent state?
380 *
381 * No ordering, as we are sampling CPU-local information.
382 */
383bool rcu_dynticks_curr_cpu_in_eqs(void)
384{
385 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
386
b8c17e66 387 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
388}
389
8b2f63ab
PM
390/*
391 * Snapshot the ->dynticks counter with full ordering so as to allow
392 * stable comparison of this counter with past and future snapshots.
393 */
02a5c550 394int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
8b2f63ab
PM
395{
396 int snap = atomic_add_return(0, &rdtp->dynticks);
397
b8c17e66 398 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
399}
400
02a5c550
PM
401/*
402 * Return true if the snapshot returned from rcu_dynticks_snap()
403 * indicates that RCU is in an extended quiescent state.
404 */
405static bool rcu_dynticks_in_eqs(int snap)
406{
b8c17e66 407 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
408}
409
410/*
411 * Return true if the CPU corresponding to the specified rcu_dynticks
412 * structure has spent some time in an extended quiescent state since
413 * rcu_dynticks_snap() returned the specified snapshot.
414 */
415static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
416{
417 return snap != rcu_dynticks_snap(rdtp);
418}
419
6563de9d
PM
420/*
421 * Do a double-increment of the ->dynticks counter to emulate a
422 * momentary idle-CPU quiescent state.
423 */
424static void rcu_dynticks_momentary_idle(void)
425{
426 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
b8c17e66
PM
427 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
428 &rdtp->dynticks);
6563de9d
PM
429
430 /* It is illegal to call this from idle state. */
b8c17e66 431 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
6563de9d
PM
432}
433
b8c17e66
PM
434/*
435 * Set the special (bottom) bit of the specified CPU so that it
436 * will take special action (such as flushing its TLB) on the
437 * next exit from an extended quiescent state. Returns true if
438 * the bit was successfully set, or false if the CPU was not in
439 * an extended quiescent state.
440 */
441bool rcu_eqs_special_set(int cpu)
442{
443 int old;
444 int new;
445 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
446
447 do {
448 old = atomic_read(&rdtp->dynticks);
449 if (old & RCU_DYNTICK_CTRL_CTR)
450 return false;
451 new = old | RCU_DYNTICK_CTRL_MASK;
452 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
453 return true;
6563de9d 454}
5cd37193 455
4a81e832
PM
456/*
457 * Let the RCU core know that this CPU has gone through the scheduler,
458 * which is a quiescent state. This is called when the need for a
459 * quiescent state is urgent, so we burn an atomic operation and full
460 * memory barriers to let the RCU core know about it, regardless of what
461 * this CPU might (or might not) do in the near future.
462 *
0f9be8ca 463 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164
PM
464 *
465 * The caller must have disabled interrupts.
4a81e832
PM
466 */
467static void rcu_momentary_dyntick_idle(void)
468{
0f9be8ca
PM
469 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
470 rcu_dynticks_momentary_idle();
4a81e832
PM
471}
472
25502a6c
PM
473/*
474 * Note a context switch. This is a quiescent state for RCU-sched,
475 * and requires special handling for preemptible RCU.
46a5d164 476 * The caller must have disabled interrupts.
25502a6c 477 */
bcbfdd01 478void rcu_note_context_switch(bool preempt)
25502a6c 479{
bb73c52b 480 barrier(); /* Avoid RCU read-side critical sections leaking down. */
f7f7bac9 481 trace_rcu_utilization(TPS("Start context switch"));
284a8c93 482 rcu_sched_qs();
5b72f964 483 rcu_preempt_note_context_switch(preempt);
9226b10d
PM
484 /* Load rcu_urgent_qs before other flags. */
485 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
486 goto out;
487 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
0f9be8ca 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
4a81e832 489 rcu_momentary_dyntick_idle();
9226b10d 490 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bcbfdd01
PM
491 if (!preempt)
492 rcu_note_voluntary_context_switch_lite(current);
9226b10d 493out:
f7f7bac9 494 trace_rcu_utilization(TPS("End context switch"));
bb73c52b 495 barrier(); /* Avoid RCU read-side critical sections leaking up. */
25502a6c 496}
29ce8310 497EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 498
5cd37193 499/*
1925d196 500 * Register a quiescent state for all RCU flavors. If there is an
5cd37193
PM
501 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
502 * dyntick-idle quiescent state visible to other CPUs (but only for those
1925d196 503 * RCU flavors in desperate need of a quiescent state, which will normally
5cd37193
PM
504 * be none of them). Either way, do a lightweight quiescent state for
505 * all RCU flavors.
bb73c52b
BF
506 *
507 * The barrier() calls are redundant in the common case when this is
508 * called externally, but just in case this is called from within this
509 * file.
510 *
5cd37193
PM
511 */
512void rcu_all_qs(void)
513{
46a5d164
PM
514 unsigned long flags;
515
9226b10d
PM
516 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
517 return;
518 preempt_disable();
519 /* Load rcu_urgent_qs before other flags. */
520 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
521 preempt_enable();
522 return;
523 }
524 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
bb73c52b 525 barrier(); /* Avoid RCU read-side critical sections leaking down. */
0f9be8ca 526 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
46a5d164 527 local_irq_save(flags);
5cd37193 528 rcu_momentary_dyntick_idle();
46a5d164
PM
529 local_irq_restore(flags);
530 }
9226b10d 531 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
a1e12248 532 rcu_sched_qs();
9577df9a 533 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
bb73c52b 534 barrier(); /* Avoid RCU read-side critical sections leaking up. */
9226b10d 535 preempt_enable();
5cd37193
PM
536}
537EXPORT_SYMBOL_GPL(rcu_all_qs);
538
878d7439
ED
539static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
540static long qhimark = 10000; /* If this many pending, ignore blimit. */
541static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 542
878d7439
ED
543module_param(blimit, long, 0444);
544module_param(qhimark, long, 0444);
545module_param(qlowmark, long, 0444);
3d76c082 546
026ad283
PM
547static ulong jiffies_till_first_fqs = ULONG_MAX;
548static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 549static bool rcu_kick_kthreads;
d40011f6
PM
550
551module_param(jiffies_till_first_fqs, ulong, 0644);
552module_param(jiffies_till_next_fqs, ulong, 0644);
8c7c4829 553module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 554
4a81e832
PM
555/*
556 * How long the grace period must be before we start recruiting
557 * quiescent-state help from rcu_note_context_switch().
558 */
559static ulong jiffies_till_sched_qs = HZ / 20;
560module_param(jiffies_till_sched_qs, ulong, 0644);
561
48a7639c 562static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
910ee45d 563 struct rcu_data *rdp);
217af2a2
PM
564static void force_qs_rnp(struct rcu_state *rsp,
565 int (*f)(struct rcu_data *rsp, bool *isidle,
566 unsigned long *maxj),
567 bool *isidle, unsigned long *maxj);
4cdfc175 568static void force_quiescent_state(struct rcu_state *rsp);
e3950ecd 569static int rcu_pending(void);
64db4cff
PM
570
571/*
917963d0 572 * Return the number of RCU batches started thus far for debug & stats.
64db4cff 573 */
917963d0
PM
574unsigned long rcu_batches_started(void)
575{
576 return rcu_state_p->gpnum;
577}
578EXPORT_SYMBOL_GPL(rcu_batches_started);
579
580/*
581 * Return the number of RCU-sched batches started thus far for debug & stats.
64db4cff 582 */
917963d0
PM
583unsigned long rcu_batches_started_sched(void)
584{
585 return rcu_sched_state.gpnum;
586}
587EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
588
589/*
590 * Return the number of RCU BH batches started thus far for debug & stats.
591 */
592unsigned long rcu_batches_started_bh(void)
593{
594 return rcu_bh_state.gpnum;
595}
596EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
597
598/*
599 * Return the number of RCU batches completed thus far for debug & stats.
600 */
601unsigned long rcu_batches_completed(void)
602{
603 return rcu_state_p->completed;
604}
605EXPORT_SYMBOL_GPL(rcu_batches_completed);
606
607/*
608 * Return the number of RCU-sched batches completed thus far for debug & stats.
64db4cff 609 */
9733e4f0 610unsigned long rcu_batches_completed_sched(void)
64db4cff 611{
d6714c22 612 return rcu_sched_state.completed;
64db4cff 613}
d6714c22 614EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
615
616/*
917963d0 617 * Return the number of RCU BH batches completed thus far for debug & stats.
64db4cff 618 */
9733e4f0 619unsigned long rcu_batches_completed_bh(void)
64db4cff
PM
620{
621 return rcu_bh_state.completed;
622}
623EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
624
291783b8
PM
625/*
626 * Return the number of RCU expedited batches completed thus far for
627 * debug & stats. Odd numbers mean that a batch is in progress, even
628 * numbers mean idle. The value returned will thus be roughly double
629 * the cumulative batches since boot.
630 */
631unsigned long rcu_exp_batches_completed(void)
632{
633 return rcu_state_p->expedited_sequence;
634}
635EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
636
637/*
638 * Return the number of RCU-sched expedited batches completed thus far
639 * for debug & stats. Similar to rcu_exp_batches_completed().
640 */
641unsigned long rcu_exp_batches_completed_sched(void)
642{
643 return rcu_sched_state.expedited_sequence;
644}
645EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
646
a381d757
ACB
647/*
648 * Force a quiescent state.
649 */
650void rcu_force_quiescent_state(void)
651{
e534165b 652 force_quiescent_state(rcu_state_p);
a381d757
ACB
653}
654EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
655
bf66f18e
PM
656/*
657 * Force a quiescent state for RCU BH.
658 */
659void rcu_bh_force_quiescent_state(void)
660{
4cdfc175 661 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
662}
663EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
664
e7580f33
PM
665/*
666 * Force a quiescent state for RCU-sched.
667 */
668void rcu_sched_force_quiescent_state(void)
669{
670 force_quiescent_state(&rcu_sched_state);
671}
672EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
673
afea227f
PM
674/*
675 * Show the state of the grace-period kthreads.
676 */
677void show_rcu_gp_kthreads(void)
678{
679 struct rcu_state *rsp;
680
681 for_each_rcu_flavor(rsp) {
682 pr_info("%s: wait state: %d ->state: %#lx\n",
683 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
684 /* sched_show_task(rsp->gp_kthread); */
685 }
686}
687EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
688
4a298656
PM
689/*
690 * Record the number of times rcutorture tests have been initiated and
691 * terminated. This information allows the debugfs tracing stats to be
692 * correlated to the rcutorture messages, even when the rcutorture module
693 * is being repeatedly loaded and unloaded. In other words, we cannot
694 * store this state in rcutorture itself.
695 */
696void rcutorture_record_test_transition(void)
697{
698 rcutorture_testseq++;
699 rcutorture_vernum = 0;
700}
701EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
702
ad0dc7f9
PM
703/*
704 * Send along grace-period-related data for rcutorture diagnostics.
705 */
706void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
707 unsigned long *gpnum, unsigned long *completed)
708{
709 struct rcu_state *rsp = NULL;
710
711 switch (test_type) {
712 case RCU_FLAVOR:
e534165b 713 rsp = rcu_state_p;
ad0dc7f9
PM
714 break;
715 case RCU_BH_FLAVOR:
716 rsp = &rcu_bh_state;
717 break;
718 case RCU_SCHED_FLAVOR:
719 rsp = &rcu_sched_state;
720 break;
721 default:
722 break;
723 }
7f6733c3 724 if (rsp == NULL)
ad0dc7f9 725 return;
7f6733c3
PM
726 *flags = READ_ONCE(rsp->gp_flags);
727 *gpnum = READ_ONCE(rsp->gpnum);
728 *completed = READ_ONCE(rsp->completed);
ad0dc7f9
PM
729}
730EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
731
4a298656
PM
732/*
733 * Record the number of writer passes through the current rcutorture test.
734 * This is also used to correlate debugfs tracing stats with the rcutorture
735 * messages.
736 */
737void rcutorture_record_progress(unsigned long vernum)
738{
739 rcutorture_vernum++;
740}
741EXPORT_SYMBOL_GPL(rcutorture_record_progress);
742
365187fb
PM
743/*
744 * Return the root node of the specified rcu_state structure.
745 */
746static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
747{
748 return &rsp->node[0];
749}
750
751/*
752 * Is there any need for future grace periods?
753 * Interrupts must be disabled. If the caller does not hold the root
754 * rnp_node structure's ->lock, the results are advisory only.
755 */
756static int rcu_future_needs_gp(struct rcu_state *rsp)
757{
758 struct rcu_node *rnp = rcu_get_root(rsp);
7d0ae808 759 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
365187fb
PM
760 int *fp = &rnp->need_future_gp[idx];
761
7d0ae808 762 return READ_ONCE(*fp);
365187fb
PM
763}
764
64db4cff 765/*
dc35c893
PM
766 * Does the current CPU require a not-yet-started grace period?
767 * The caller must have disabled interrupts to prevent races with
768 * normal callback registry.
64db4cff 769 */
d117c8aa 770static bool
64db4cff
PM
771cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
772{
dc35c893 773 if (rcu_gp_in_progress(rsp))
d117c8aa 774 return false; /* No, a grace period is already in progress. */
365187fb 775 if (rcu_future_needs_gp(rsp))
d117c8aa 776 return true; /* Yes, a no-CBs CPU needs one. */
15fecf89 777 if (!rcu_segcblist_is_enabled(&rdp->cblist))
d117c8aa 778 return false; /* No, this is a no-CBs (or offline) CPU. */
15fecf89 779 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
d117c8aa 780 return true; /* Yes, CPU has newly registered callbacks. */
15fecf89
PM
781 if (rcu_segcblist_future_gp_needed(&rdp->cblist,
782 READ_ONCE(rsp->completed)))
783 return true; /* Yes, CBs for future grace period. */
d117c8aa 784 return false; /* No grace period needed. */
64db4cff
PM
785}
786
9b2e4f18 787/*
a278d471 788 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
9b2e4f18 789 *
a278d471
PM
790 * Enter idle, doing appropriate accounting. The caller must have
791 * disabled interrupts.
9b2e4f18 792 */
a278d471 793static void rcu_eqs_enter_common(bool user)
9b2e4f18 794{
96d3fd0d
PM
795 struct rcu_state *rsp;
796 struct rcu_data *rdp;
a278d471 797 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
96d3fd0d 798
a278d471 799 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
1ce46ee5
PM
800 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
801 !user && !is_idle_task(current)) {
289828e6
PM
802 struct task_struct *idle __maybe_unused =
803 idle_task(smp_processor_id());
0989cb46 804
a278d471 805 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
274529ba 806 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
807 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
808 current->pid, current->comm,
809 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 810 }
96d3fd0d
PM
811 for_each_rcu_flavor(rsp) {
812 rdp = this_cpu_ptr(rsp->rda);
813 do_nocb_deferred_wakeup(rdp);
814 }
198bbf81 815 rcu_prepare_for_idle();
03ecd3f4 816 __this_cpu_inc(disable_rcu_irq_enter);
a278d471
PM
817 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
818 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
03ecd3f4 819 __this_cpu_dec(disable_rcu_irq_enter);
176f8f7a 820 rcu_dynticks_task_enter();
c44e2cdd
PM
821
822 /*
adf5091e 823 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
824 * in an RCU read-side critical section.
825 */
f78f5b90
PM
826 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
827 "Illegal idle entry in RCU read-side critical section.");
828 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
829 "Illegal idle entry in RCU-bh read-side critical section.");
830 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
831 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 832}
64db4cff 833
adf5091e
FW
834/*
835 * Enter an RCU extended quiescent state, which can be either the
836 * idle loop or adaptive-tickless usermode execution.
64db4cff 837 */
adf5091e 838static void rcu_eqs_enter(bool user)
64db4cff 839{
64db4cff
PM
840 struct rcu_dynticks *rdtp;
841
c9d4b0af 842 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 843 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
844 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
845 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
846 rcu_eqs_enter_common(user);
847 else
29e37d81 848 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
64db4cff 849}
adf5091e
FW
850
851/**
852 * rcu_idle_enter - inform RCU that current CPU is entering idle
853 *
854 * Enter idle mode, in other words, -leave- the mode in which RCU
855 * read-side critical sections can occur. (Though RCU read-side
856 * critical sections can occur in irq handlers in idle, a possibility
857 * handled by irq_enter() and irq_exit().)
858 *
859 * We crowbar the ->dynticks_nesting field to zero to allow for
860 * the possibility of usermode upcalls having messed up our count
861 * of interrupt nesting level during the prior busy period.
862 */
863void rcu_idle_enter(void)
864{
c5d900bf
FW
865 unsigned long flags;
866
867 local_irq_save(flags);
cb349ca9 868 rcu_eqs_enter(false);
28ced795 869 rcu_sysidle_enter(0);
c5d900bf 870 local_irq_restore(flags);
adf5091e 871}
8a2ecf47 872EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 873
d1ec4c34 874#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
875/**
876 * rcu_user_enter - inform RCU that we are resuming userspace.
877 *
878 * Enter RCU idle mode right before resuming userspace. No use of RCU
879 * is permitted between this call and rcu_user_exit(). This way the
880 * CPU doesn't need to maintain the tick for RCU maintenance purposes
881 * when the CPU runs in userspace.
882 */
883void rcu_user_enter(void)
884{
91d1aa43 885 rcu_eqs_enter(1);
adf5091e 886}
d1ec4c34 887#endif /* CONFIG_NO_HZ_FULL */
19dd1591 888
9b2e4f18
PM
889/**
890 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
891 *
892 * Exit from an interrupt handler, which might possibly result in entering
893 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 894 * sections can occur. The caller must have disabled interrupts.
64db4cff 895 *
9b2e4f18
PM
896 * This code assumes that the idle loop never does anything that might
897 * result in unbalanced calls to irq_enter() and irq_exit(). If your
898 * architecture violates this assumption, RCU will give you what you
899 * deserve, good and hard. But very infrequently and irreproducibly.
900 *
901 * Use things like work queues to work around this limitation.
902 *
903 * You have been warned.
64db4cff 904 */
9b2e4f18 905void rcu_irq_exit(void)
64db4cff 906{
64db4cff
PM
907 struct rcu_dynticks *rdtp;
908
7c9906ca 909 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
c9d4b0af 910 rdtp = this_cpu_ptr(&rcu_dynticks);
1ce46ee5 911 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
a278d471
PM
912 rdtp->dynticks_nesting < 1);
913 if (rdtp->dynticks_nesting <= 1) {
914 rcu_eqs_enter_common(true);
915 } else {
916 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
917 rdtp->dynticks_nesting--;
918 }
28ced795 919 rcu_sysidle_enter(1);
7c9906ca
PM
920}
921
922/*
923 * Wrapper for rcu_irq_exit() where interrupts are enabled.
924 */
925void rcu_irq_exit_irqson(void)
926{
927 unsigned long flags;
928
929 local_irq_save(flags);
930 rcu_irq_exit();
9b2e4f18
PM
931 local_irq_restore(flags);
932}
933
934/*
adf5091e 935 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
936 *
937 * If the new value of the ->dynticks_nesting counter was previously zero,
938 * we really have exited idle, and must do the appropriate accounting.
939 * The caller must have disabled interrupts.
940 */
28ced795 941static void rcu_eqs_exit_common(long long oldval, int user)
9b2e4f18 942{
2625d469 943 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
28ced795 944
176f8f7a 945 rcu_dynticks_task_exit();
2625d469 946 rcu_dynticks_eqs_exit();
8fa7845d 947 rcu_cleanup_after_idle();
f7f7bac9 948 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
1ce46ee5
PM
949 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
950 !user && !is_idle_task(current)) {
289828e6
PM
951 struct task_struct *idle __maybe_unused =
952 idle_task(smp_processor_id());
0989cb46 953
f7f7bac9 954 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 955 oldval, rdtp->dynticks_nesting);
274529ba 956 rcu_ftrace_dump(DUMP_ORIG);
0989cb46
PM
957 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
958 current->pid, current->comm,
959 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
960 }
961}
962
adf5091e
FW
963/*
964 * Exit an RCU extended quiescent state, which can be either the
965 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 966 */
adf5091e 967static void rcu_eqs_exit(bool user)
9b2e4f18 968{
9b2e4f18
PM
969 struct rcu_dynticks *rdtp;
970 long long oldval;
971
c9d4b0af 972 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18 973 oldval = rdtp->dynticks_nesting;
1ce46ee5 974 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
3a592405 975 if (oldval & DYNTICK_TASK_NEST_MASK) {
29e37d81 976 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
3a592405 977 } else {
29e37d81 978 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
28ced795 979 rcu_eqs_exit_common(oldval, user);
3a592405 980 }
9b2e4f18 981}
adf5091e
FW
982
983/**
984 * rcu_idle_exit - inform RCU that current CPU is leaving idle
985 *
986 * Exit idle mode, in other words, -enter- the mode in which RCU
987 * read-side critical sections can occur.
988 *
989 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
990 * allow for the possibility of usermode upcalls messing up our count
991 * of interrupt nesting level during the busy period that is just
992 * now starting.
993 */
994void rcu_idle_exit(void)
995{
c5d900bf
FW
996 unsigned long flags;
997
998 local_irq_save(flags);
cb349ca9 999 rcu_eqs_exit(false);
28ced795 1000 rcu_sysidle_exit(0);
c5d900bf 1001 local_irq_restore(flags);
adf5091e 1002}
8a2ecf47 1003EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 1004
d1ec4c34 1005#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
1006/**
1007 * rcu_user_exit - inform RCU that we are exiting userspace.
1008 *
1009 * Exit RCU idle mode while entering the kernel because it can
1010 * run a RCU read side critical section anytime.
1011 */
1012void rcu_user_exit(void)
1013{
91d1aa43 1014 rcu_eqs_exit(1);
adf5091e 1015}
d1ec4c34 1016#endif /* CONFIG_NO_HZ_FULL */
19dd1591 1017
9b2e4f18
PM
1018/**
1019 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1020 *
1021 * Enter an interrupt handler, which might possibly result in exiting
1022 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1023 * sections can occur. The caller must have disabled interrupts.
9b2e4f18
PM
1024 *
1025 * Note that the Linux kernel is fully capable of entering an interrupt
1026 * handler that it never exits, for example when doing upcalls to
1027 * user mode! This code assumes that the idle loop never does upcalls to
1028 * user mode. If your architecture does do upcalls from the idle loop (or
1029 * does anything else that results in unbalanced calls to the irq_enter()
1030 * and irq_exit() functions), RCU will give you what you deserve, good
1031 * and hard. But very infrequently and irreproducibly.
1032 *
1033 * Use things like work queues to work around this limitation.
1034 *
1035 * You have been warned.
1036 */
1037void rcu_irq_enter(void)
1038{
9b2e4f18
PM
1039 struct rcu_dynticks *rdtp;
1040 long long oldval;
1041
7c9906ca 1042 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
c9d4b0af 1043 rdtp = this_cpu_ptr(&rcu_dynticks);
9b2e4f18
PM
1044 oldval = rdtp->dynticks_nesting;
1045 rdtp->dynticks_nesting++;
1ce46ee5
PM
1046 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1047 rdtp->dynticks_nesting == 0);
b6fc6020 1048 if (oldval)
f7f7bac9 1049 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 1050 else
28ced795
CL
1051 rcu_eqs_exit_common(oldval, true);
1052 rcu_sysidle_exit(1);
7c9906ca
PM
1053}
1054
1055/*
1056 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1057 */
1058void rcu_irq_enter_irqson(void)
1059{
1060 unsigned long flags;
1061
1062 local_irq_save(flags);
1063 rcu_irq_enter();
64db4cff 1064 local_irq_restore(flags);
64db4cff
PM
1065}
1066
1067/**
1068 * rcu_nmi_enter - inform RCU of entry to NMI context
1069 *
734d1680
PM
1070 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1071 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1072 * that the CPU is active. This implementation permits nested NMIs, as
1073 * long as the nesting level does not overflow an int. (You will probably
1074 * run out of stack space first.)
64db4cff
PM
1075 */
1076void rcu_nmi_enter(void)
1077{
c9d4b0af 1078 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
734d1680 1079 int incby = 2;
64db4cff 1080
734d1680
PM
1081 /* Complain about underflow. */
1082 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1083
1084 /*
1085 * If idle from RCU viewpoint, atomically increment ->dynticks
1086 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1087 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1088 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1089 * to be in the outermost NMI handler that interrupted an RCU-idle
1090 * period (observation due to Andy Lutomirski).
1091 */
02a5c550 1092 if (rcu_dynticks_curr_cpu_in_eqs()) {
2625d469 1093 rcu_dynticks_eqs_exit();
734d1680
PM
1094 incby = 1;
1095 }
1096 rdtp->dynticks_nmi_nesting += incby;
1097 barrier();
64db4cff
PM
1098}
1099
1100/**
1101 * rcu_nmi_exit - inform RCU of exit from NMI context
1102 *
734d1680
PM
1103 * If we are returning from the outermost NMI handler that interrupted an
1104 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1105 * to let the RCU grace-period handling know that the CPU is back to
1106 * being RCU-idle.
64db4cff
PM
1107 */
1108void rcu_nmi_exit(void)
1109{
c9d4b0af 1110 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
64db4cff 1111
734d1680
PM
1112 /*
1113 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1114 * (We are exiting an NMI handler, so RCU better be paying attention
1115 * to us!)
1116 */
1117 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
02a5c550 1118 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
734d1680
PM
1119
1120 /*
1121 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1122 * leave it in non-RCU-idle state.
1123 */
1124 if (rdtp->dynticks_nmi_nesting != 1) {
1125 rdtp->dynticks_nmi_nesting -= 2;
64db4cff 1126 return;
734d1680
PM
1127 }
1128
1129 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1130 rdtp->dynticks_nmi_nesting = 0;
2625d469 1131 rcu_dynticks_eqs_enter();
64db4cff
PM
1132}
1133
1134/**
5c173eb8
PM
1135 * __rcu_is_watching - are RCU read-side critical sections safe?
1136 *
1137 * Return true if RCU is watching the running CPU, which means that
1138 * this CPU can safely enter RCU read-side critical sections. Unlike
1139 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1140 * least disabled preemption.
1141 */
9418fb20 1142bool notrace __rcu_is_watching(void)
5c173eb8 1143{
02a5c550 1144 return !rcu_dynticks_curr_cpu_in_eqs();
5c173eb8
PM
1145}
1146
1147/**
1148 * rcu_is_watching - see if RCU thinks that the current CPU is idle
64db4cff 1149 *
9b2e4f18 1150 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 1151 * or NMI handler, return true.
64db4cff 1152 */
9418fb20 1153bool notrace rcu_is_watching(void)
64db4cff 1154{
f534ed1f 1155 bool ret;
34240697 1156
46f00d18 1157 preempt_disable_notrace();
5c173eb8 1158 ret = __rcu_is_watching();
46f00d18 1159 preempt_enable_notrace();
34240697 1160 return ret;
64db4cff 1161}
5c173eb8 1162EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1163
bcbfdd01
PM
1164/*
1165 * If a holdout task is actually running, request an urgent quiescent
1166 * state from its CPU. This is unsynchronized, so migrations can cause
1167 * the request to go to the wrong CPU. Which is OK, all that will happen
1168 * is that the CPU's next context switch will be a bit slower and next
1169 * time around this task will generate another request.
1170 */
1171void rcu_request_urgent_qs_task(struct task_struct *t)
1172{
1173 int cpu;
1174
1175 barrier();
1176 cpu = task_cpu(t);
1177 if (!task_curr(t))
1178 return; /* This task is not running on that CPU. */
1179 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1180}
1181
62fde6ed 1182#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1183
1184/*
1185 * Is the current CPU online? Disable preemption to avoid false positives
1186 * that could otherwise happen due to the current CPU number being sampled,
1187 * this task being preempted, its old CPU being taken offline, resuming
1188 * on some other CPU, then determining that its old CPU is now offline.
1189 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
1190 * the check for rcu_scheduler_fully_active. Note also that it is OK
1191 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1192 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1193 * offline to continue to use RCU for one jiffy after marking itself
1194 * offline in the cpu_online_mask. This leniency is necessary given the
1195 * non-atomic nature of the online and offline processing, for example,
4df83742
TG
1196 * the fact that a CPU enters the scheduler after completing the teardown
1197 * of the CPU.
2036d94a 1198 *
4df83742
TG
1199 * This is also why RCU internally marks CPUs online during in the
1200 * preparation phase and offline after the CPU has been taken down.
c0d6d01b
PM
1201 *
1202 * Disable checking if in an NMI handler because we cannot safely report
1203 * errors from NMI handlers anyway.
1204 */
1205bool rcu_lockdep_current_cpu_online(void)
1206{
2036d94a
PM
1207 struct rcu_data *rdp;
1208 struct rcu_node *rnp;
c0d6d01b
PM
1209 bool ret;
1210
1211 if (in_nmi())
f6f7ee9a 1212 return true;
c0d6d01b 1213 preempt_disable();
c9d4b0af 1214 rdp = this_cpu_ptr(&rcu_sched_data);
2036d94a 1215 rnp = rdp->mynode;
0aa04b05 1216 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
c0d6d01b
PM
1217 !rcu_scheduler_fully_active;
1218 preempt_enable();
1219 return ret;
1220}
1221EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1222
62fde6ed 1223#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1224
64db4cff 1225/**
9b2e4f18 1226 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 1227 *
9b2e4f18
PM
1228 * If the current CPU is idle or running at a first-level (not nested)
1229 * interrupt from idle, return true. The caller must have at least
1230 * disabled preemption.
64db4cff 1231 */
62e3cb14 1232static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 1233{
c9d4b0af 1234 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
64db4cff
PM
1235}
1236
64db4cff
PM
1237/*
1238 * Snapshot the specified CPU's dynticks counter so that we can later
1239 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1240 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1241 */
217af2a2
PM
1242static int dyntick_save_progress_counter(struct rcu_data *rdp,
1243 bool *isidle, unsigned long *maxj)
64db4cff 1244{
8b2f63ab 1245 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
0edd1b17 1246 rcu_sysidle_check_cpu(rdp, isidle, maxj);
02a5c550 1247 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
7941dbde 1248 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
7d0ae808 1249 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
e3663b10 1250 rdp->mynode->gpnum))
7d0ae808 1251 WRITE_ONCE(rdp->gpwrap, true);
23a9bacd 1252 return 1;
7941dbde 1253 }
23a9bacd 1254 return 0;
64db4cff
PM
1255}
1256
1257/*
1258 * Return true if the specified CPU has passed through a quiescent
1259 * state by virtue of being in or having passed through an dynticks
1260 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1261 * for this same CPU, or by virtue of having been offline.
64db4cff 1262 */
217af2a2
PM
1263static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1264 bool *isidle, unsigned long *maxj)
64db4cff 1265{
3a19b46a 1266 unsigned long jtsq;
0f9be8ca 1267 bool *rnhqp;
9226b10d 1268 bool *ruqp;
3a19b46a
PM
1269 unsigned long rjtsc;
1270 struct rcu_node *rnp;
64db4cff
PM
1271
1272 /*
1273 * If the CPU passed through or entered a dynticks idle phase with
1274 * no active irq/NMI handlers, then we can safely pretend that the CPU
1275 * already acknowledged the request to pass through a quiescent
1276 * state. Either way, that CPU cannot possibly be in an RCU
1277 * read-side critical section that started before the beginning
1278 * of the current RCU grace period.
1279 */
02a5c550 1280 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
f7f7bac9 1281 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
1282 rdp->dynticks_fqs++;
1283 return 1;
1284 }
1285
3a19b46a
PM
1286 /* Compute and saturate jiffies_till_sched_qs. */
1287 jtsq = jiffies_till_sched_qs;
1288 rjtsc = rcu_jiffies_till_stall_check();
1289 if (jtsq > rjtsc / 2) {
1290 WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1291 jtsq = rjtsc / 2;
1292 } else if (jtsq < 1) {
1293 WRITE_ONCE(jiffies_till_sched_qs, 1);
1294 jtsq = 1;
1295 }
1296
a82dcc76 1297 /*
3a19b46a
PM
1298 * Has this CPU encountered a cond_resched_rcu_qs() since the
1299 * beginning of the grace period? For this to be the case,
1300 * the CPU has to have noticed the current grace period. This
1301 * might not be the case for nohz_full CPUs looping in the kernel.
a82dcc76 1302 */
3a19b46a 1303 rnp = rdp->mynode;
9226b10d 1304 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
3a19b46a 1305 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
9577df9a 1306 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
3a19b46a
PM
1307 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1308 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1309 return 1;
9226b10d
PM
1310 } else {
1311 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1312 smp_store_release(ruqp, true);
3a19b46a
PM
1313 }
1314
38d30b33
PM
1315 /* Check for the CPU being offline. */
1316 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
f7f7bac9 1317 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
1318 rdp->offline_fqs++;
1319 return 1;
1320 }
65d798f0
PM
1321
1322 /*
4a81e832
PM
1323 * A CPU running for an extended time within the kernel can
1324 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1325 * even context-switching back and forth between a pair of
1326 * in-kernel CPU-bound tasks cannot advance grace periods.
1327 * So if the grace period is old enough, make the CPU pay attention.
1328 * Note that the unsynchronized assignments to the per-CPU
0f9be8ca 1329 * rcu_need_heavy_qs variable are safe. Yes, setting of
4a81e832
PM
1330 * bits can be lost, but they will be set again on the next
1331 * force-quiescent-state pass. So lost bit sets do not result
1332 * in incorrect behavior, merely in a grace period lasting
1333 * a few jiffies longer than it might otherwise. Because
1334 * there are at most four threads involved, and because the
1335 * updates are only once every few jiffies, the probability of
1336 * lossage (and thus of slight grace-period extension) is
1337 * quite low.
1338 *
1339 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1340 * is set too high, we override with half of the RCU CPU stall
1341 * warning delay.
6193c76a 1342 */
0f9be8ca
PM
1343 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1344 if (!READ_ONCE(*rnhqp) &&
1345 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1346 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1347 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1348 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1349 smp_store_release(ruqp, true);
4914950a 1350 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
6193c76a
PM
1351 }
1352
28053bc7
PM
1353 /*
1354 * If more than halfway to RCU CPU stall-warning time, do
1355 * a resched_cpu() to try to loosen things up a bit.
1356 */
1357 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1358 resched_cpu(rdp->cpu);
4914950a 1359
a82dcc76 1360 return 0;
64db4cff
PM
1361}
1362
64db4cff
PM
1363static void record_gp_stall_check_time(struct rcu_state *rsp)
1364{
cb1e78cf 1365 unsigned long j = jiffies;
6193c76a 1366 unsigned long j1;
26cdfedf
PM
1367
1368 rsp->gp_start = j;
1369 smp_wmb(); /* Record start time before stall time. */
6193c76a 1370 j1 = rcu_jiffies_till_stall_check();
7d0ae808 1371 WRITE_ONCE(rsp->jiffies_stall, j + j1);
6193c76a 1372 rsp->jiffies_resched = j + j1 / 2;
7d0ae808 1373 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
64db4cff
PM
1374}
1375
6b50e119
PM
1376/*
1377 * Convert a ->gp_state value to a character string.
1378 */
1379static const char *gp_state_getname(short gs)
1380{
1381 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1382 return "???";
1383 return gp_state_names[gs];
1384}
1385
fb81a44b
PM
1386/*
1387 * Complain about starvation of grace-period kthread.
1388 */
1389static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1390{
1391 unsigned long gpa;
1392 unsigned long j;
1393
1394 j = jiffies;
7d0ae808 1395 gpa = READ_ONCE(rsp->gp_activity);
b1adb3e2 1396 if (j - gpa > 2 * HZ) {
6b50e119 1397 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
81e701e4 1398 rsp->name, j - gpa,
319362c9 1399 rsp->gpnum, rsp->completed,
6b50e119
PM
1400 rsp->gp_flags,
1401 gp_state_getname(rsp->gp_state), rsp->gp_state,
a0e3a3aa 1402 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
86057b80 1403 if (rsp->gp_kthread) {
b1adb3e2 1404 sched_show_task(rsp->gp_kthread);
86057b80
PM
1405 wake_up_process(rsp->gp_kthread);
1406 }
b1adb3e2 1407 }
64db4cff
PM
1408}
1409
b637a328 1410/*
7aa92230
PM
1411 * Dump stacks of all tasks running on stalled CPUs. First try using
1412 * NMIs, but fall back to manual remote stack tracing on architectures
1413 * that don't support NMI-based stack dumps. The NMI-triggered stack
1414 * traces are more accurate because they are printed by the target CPU.
b637a328
PM
1415 */
1416static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1417{
1418 int cpu;
1419 unsigned long flags;
1420 struct rcu_node *rnp;
1421
1422 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1423 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7aa92230
PM
1424 for_each_leaf_node_possible_cpu(rnp, cpu)
1425 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1426 if (!trigger_single_cpu_backtrace(cpu))
bc75e999 1427 dump_cpu_task(cpu);
67c583a7 1428 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
b637a328
PM
1429 }
1430}
1431
8c7c4829
PM
1432/*
1433 * If too much time has passed in the current grace period, and if
1434 * so configured, go kick the relevant kthreads.
1435 */
1436static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1437{
1438 unsigned long j;
1439
1440 if (!rcu_kick_kthreads)
1441 return;
1442 j = READ_ONCE(rsp->jiffies_kick_kthreads);
aa3e0bf1
PM
1443 if (time_after(jiffies, j) && rsp->gp_kthread &&
1444 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
8c7c4829 1445 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
5dffed1e 1446 rcu_ftrace_dump(DUMP_ALL);
8c7c4829
PM
1447 wake_up_process(rsp->gp_kthread);
1448 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1449 }
1450}
1451
088e9d25
DBO
1452static inline void panic_on_rcu_stall(void)
1453{
1454 if (sysctl_panic_on_rcu_stall)
1455 panic("RCU Stall\n");
1456}
1457
6ccd2ecd 1458static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
64db4cff
PM
1459{
1460 int cpu;
1461 long delta;
1462 unsigned long flags;
6ccd2ecd
PM
1463 unsigned long gpa;
1464 unsigned long j;
285fe294 1465 int ndetected = 0;
64db4cff 1466 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1467 long totqlen = 0;
64db4cff 1468
8c7c4829
PM
1469 /* Kick and suppress, if so configured. */
1470 rcu_stall_kick_kthreads(rsp);
1471 if (rcu_cpu_stall_suppress)
1472 return;
1473
64db4cff
PM
1474 /* Only let one CPU complain about others per time interval. */
1475
6cf10081 1476 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808 1477 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
fc2219d4 1478 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
67c583a7 1479 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
1480 return;
1481 }
7d0ae808
PM
1482 WRITE_ONCE(rsp->jiffies_stall,
1483 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1484 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1485
8cdd32a9
PM
1486 /*
1487 * OK, time to rat on our buddy...
1488 * See Documentation/RCU/stallwarn.txt for info on how to debug
1489 * RCU CPU stall warnings.
1490 */
d7f3e207 1491 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 1492 rsp->name);
a858af28 1493 print_cpu_stall_info_begin();
a0b6c9a7 1494 rcu_for_each_leaf_node(rsp, rnp) {
6cf10081 1495 raw_spin_lock_irqsave_rcu_node(rnp, flags);
9bc8b558 1496 ndetected += rcu_print_task_stall(rnp);
c8020a67 1497 if (rnp->qsmask != 0) {
bc75e999
MR
1498 for_each_leaf_node_possible_cpu(rnp, cpu)
1499 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1500 print_cpu_stall_info(rsp, cpu);
c8020a67
PM
1501 ndetected++;
1502 }
1503 }
67c583a7 1504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 1505 }
a858af28 1506
a858af28 1507 print_cpu_stall_info_end();
53bb857c 1508 for_each_possible_cpu(cpu)
15fecf89
PM
1509 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1510 cpu)->cblist);
83ebe63e 1511 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
eee05882 1512 smp_processor_id(), (long)(jiffies - rsp->gp_start),
83ebe63e 1513 (long)rsp->gpnum, (long)rsp->completed, totqlen);
6ccd2ecd 1514 if (ndetected) {
b637a328 1515 rcu_dump_cpu_stacks(rsp);
c4402b27
BP
1516
1517 /* Complain about tasks blocking the grace period. */
1518 rcu_print_detail_task_stall(rsp);
6ccd2ecd 1519 } else {
7d0ae808
PM
1520 if (READ_ONCE(rsp->gpnum) != gpnum ||
1521 READ_ONCE(rsp->completed) == gpnum) {
6ccd2ecd
PM
1522 pr_err("INFO: Stall ended before state dump start\n");
1523 } else {
1524 j = jiffies;
7d0ae808 1525 gpa = READ_ONCE(rsp->gp_activity);
237a0f21 1526 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
6ccd2ecd 1527 rsp->name, j - gpa, j, gpa,
237a0f21
PM
1528 jiffies_till_next_fqs,
1529 rcu_get_root(rsp)->qsmask);
6ccd2ecd
PM
1530 /* In this case, the current CPU might be at fault. */
1531 sched_show_task(current);
1532 }
1533 }
c1dc0b9c 1534
fb81a44b
PM
1535 rcu_check_gp_kthread_starvation(rsp);
1536
088e9d25
DBO
1537 panic_on_rcu_stall();
1538
4cdfc175 1539 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
1540}
1541
1542static void print_cpu_stall(struct rcu_state *rsp)
1543{
53bb857c 1544 int cpu;
64db4cff
PM
1545 unsigned long flags;
1546 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 1547 long totqlen = 0;
64db4cff 1548
8c7c4829
PM
1549 /* Kick and suppress, if so configured. */
1550 rcu_stall_kick_kthreads(rsp);
1551 if (rcu_cpu_stall_suppress)
1552 return;
1553
8cdd32a9
PM
1554 /*
1555 * OK, time to rat on ourselves...
1556 * See Documentation/RCU/stallwarn.txt for info on how to debug
1557 * RCU CPU stall warnings.
1558 */
d7f3e207 1559 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
1560 print_cpu_stall_info_begin();
1561 print_cpu_stall_info(rsp, smp_processor_id());
1562 print_cpu_stall_info_end();
53bb857c 1563 for_each_possible_cpu(cpu)
15fecf89
PM
1564 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1565 cpu)->cblist);
83ebe63e
PM
1566 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1567 jiffies - rsp->gp_start,
1568 (long)rsp->gpnum, (long)rsp->completed, totqlen);
fb81a44b
PM
1569
1570 rcu_check_gp_kthread_starvation(rsp);
1571
bc1dce51 1572 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 1573
6cf10081 1574 raw_spin_lock_irqsave_rcu_node(rnp, flags);
7d0ae808
PM
1575 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1576 WRITE_ONCE(rsp->jiffies_stall,
1577 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
67c583a7 1578 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c1dc0b9c 1579
088e9d25
DBO
1580 panic_on_rcu_stall();
1581
b021fe3e
PZ
1582 /*
1583 * Attempt to revive the RCU machinery by forcing a context switch.
1584 *
1585 * A context switch would normally allow the RCU state machine to make
1586 * progress and it could be we're stuck in kernel space without context
1587 * switches for an entirely unreasonable amount of time.
1588 */
1589 resched_cpu(smp_processor_id());
64db4cff
PM
1590}
1591
1592static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1593{
26cdfedf
PM
1594 unsigned long completed;
1595 unsigned long gpnum;
1596 unsigned long gps;
bad6e139
PM
1597 unsigned long j;
1598 unsigned long js;
64db4cff
PM
1599 struct rcu_node *rnp;
1600
8c7c4829
PM
1601 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1602 !rcu_gp_in_progress(rsp))
c68de209 1603 return;
8c7c4829 1604 rcu_stall_kick_kthreads(rsp);
cb1e78cf 1605 j = jiffies;
26cdfedf
PM
1606
1607 /*
1608 * Lots of memory barriers to reject false positives.
1609 *
1610 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1611 * then rsp->gp_start, and finally rsp->completed. These values
1612 * are updated in the opposite order with memory barriers (or
1613 * equivalent) during grace-period initialization and cleanup.
1614 * Now, a false positive can occur if we get an new value of
1615 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1616 * the memory barriers, the only way that this can happen is if one
1617 * grace period ends and another starts between these two fetches.
1618 * Detect this by comparing rsp->completed with the previous fetch
1619 * from rsp->gpnum.
1620 *
1621 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1622 * and rsp->gp_start suffice to forestall false positives.
1623 */
7d0ae808 1624 gpnum = READ_ONCE(rsp->gpnum);
26cdfedf 1625 smp_rmb(); /* Pick up ->gpnum first... */
7d0ae808 1626 js = READ_ONCE(rsp->jiffies_stall);
26cdfedf 1627 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
7d0ae808 1628 gps = READ_ONCE(rsp->gp_start);
26cdfedf 1629 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
7d0ae808 1630 completed = READ_ONCE(rsp->completed);
26cdfedf
PM
1631 if (ULONG_CMP_GE(completed, gpnum) ||
1632 ULONG_CMP_LT(j, js) ||
1633 ULONG_CMP_GE(gps, js))
1634 return; /* No stall or GP completed since entering function. */
64db4cff 1635 rnp = rdp->mynode;
c96ea7cf 1636 if (rcu_gp_in_progress(rsp) &&
7d0ae808 1637 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
64db4cff
PM
1638
1639 /* We haven't checked in, so go dump stack. */
1640 print_cpu_stall(rsp);
1641
bad6e139
PM
1642 } else if (rcu_gp_in_progress(rsp) &&
1643 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 1644
bad6e139 1645 /* They had a few time units to dump stack, so complain. */
6ccd2ecd 1646 print_other_cpu_stall(rsp, gpnum);
64db4cff
PM
1647 }
1648}
1649
53d84e00
PM
1650/**
1651 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1652 *
1653 * Set the stall-warning timeout way off into the future, thus preventing
1654 * any RCU CPU stall-warning messages from appearing in the current set of
1655 * RCU grace periods.
1656 *
1657 * The caller must disable hard irqs.
1658 */
1659void rcu_cpu_stall_reset(void)
1660{
6ce75a23
PM
1661 struct rcu_state *rsp;
1662
1663 for_each_rcu_flavor(rsp)
7d0ae808 1664 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
53d84e00
PM
1665}
1666
dc35c893
PM
1667/*
1668 * Determine the value that ->completed will have at the end of the
1669 * next subsequent grace period. This is used to tag callbacks so that
1670 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1671 * been dyntick-idle for an extended period with callbacks under the
1672 * influence of RCU_FAST_NO_HZ.
1673 *
1674 * The caller must hold rnp->lock with interrupts disabled.
1675 */
1676static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1677 struct rcu_node *rnp)
1678{
1679 /*
1680 * If RCU is idle, we just wait for the next grace period.
1681 * But we can only be sure that RCU is idle if we are looking
1682 * at the root rcu_node structure -- otherwise, a new grace
1683 * period might have started, but just not yet gotten around
1684 * to initializing the current non-root rcu_node structure.
1685 */
1686 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1687 return rnp->completed + 1;
1688
1689 /*
1690 * Otherwise, wait for a possible partial grace period and
1691 * then the subsequent full grace period.
1692 */
1693 return rnp->completed + 2;
1694}
1695
0446be48
PM
1696/*
1697 * Trace-event helper function for rcu_start_future_gp() and
1698 * rcu_nocb_wait_gp().
1699 */
1700static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1701 unsigned long c, const char *s)
0446be48
PM
1702{
1703 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1704 rnp->completed, c, rnp->level,
1705 rnp->grplo, rnp->grphi, s);
1706}
1707
1708/*
1709 * Start some future grace period, as needed to handle newly arrived
1710 * callbacks. The required future grace periods are recorded in each
48a7639c
PM
1711 * rcu_node structure's ->need_future_gp field. Returns true if there
1712 * is reason to awaken the grace-period kthread.
0446be48
PM
1713 *
1714 * The caller must hold the specified rcu_node structure's ->lock.
1715 */
48a7639c
PM
1716static bool __maybe_unused
1717rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1718 unsigned long *c_out)
0446be48
PM
1719{
1720 unsigned long c;
48a7639c 1721 bool ret = false;
0446be48
PM
1722 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1723
1724 /*
1725 * Pick up grace-period number for new callbacks. If this
1726 * grace period is already marked as needed, return to the caller.
1727 */
1728 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1729 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1730 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1731 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
48a7639c 1732 goto out;
0446be48
PM
1733 }
1734
1735 /*
1736 * If either this rcu_node structure or the root rcu_node structure
1737 * believe that a grace period is in progress, then we must wait
1738 * for the one following, which is in "c". Because our request
1739 * will be noticed at the end of the current grace period, we don't
48bd8e9b
PK
1740 * need to explicitly start one. We only do the lockless check
1741 * of rnp_root's fields if the current rcu_node structure thinks
1742 * there is no grace period in flight, and because we hold rnp->lock,
1743 * the only possible change is when rnp_root's two fields are
1744 * equal, in which case rnp_root->gpnum might be concurrently
1745 * incremented. But that is OK, as it will just result in our
1746 * doing some extra useless work.
0446be48
PM
1747 */
1748 if (rnp->gpnum != rnp->completed ||
7d0ae808 1749 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
0446be48 1750 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1751 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
48a7639c 1752 goto out;
0446be48
PM
1753 }
1754
1755 /*
1756 * There might be no grace period in progress. If we don't already
1757 * hold it, acquire the root rcu_node structure's lock in order to
1758 * start one (if needed).
1759 */
2a67e741
PZ
1760 if (rnp != rnp_root)
1761 raw_spin_lock_rcu_node(rnp_root);
0446be48
PM
1762
1763 /*
1764 * Get a new grace-period number. If there really is no grace
1765 * period in progress, it will be smaller than the one we obtained
15fecf89 1766 * earlier. Adjust callbacks as needed.
0446be48
PM
1767 */
1768 c = rcu_cbs_completed(rdp->rsp, rnp_root);
15fecf89
PM
1769 if (!rcu_is_nocb_cpu(rdp->cpu))
1770 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
0446be48
PM
1771
1772 /*
1773 * If the needed for the required grace period is already
1774 * recorded, trace and leave.
1775 */
1776 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1777 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1778 goto unlock_out;
1779 }
1780
1781 /* Record the need for the future grace period. */
1782 rnp_root->need_future_gp[c & 0x1]++;
1783
1784 /* If a grace period is not already in progress, start one. */
1785 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1786 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1787 } else {
f7f7bac9 1788 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
48a7639c 1789 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1790 }
1791unlock_out:
1792 if (rnp != rnp_root)
67c583a7 1793 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
1794out:
1795 if (c_out != NULL)
1796 *c_out = c;
1797 return ret;
0446be48
PM
1798}
1799
1800/*
1801 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1802 * whether any additional grace periods have been requested.
0446be48
PM
1803 */
1804static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1805{
1806 int c = rnp->completed;
1807 int needmore;
1808 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1809
0446be48
PM
1810 rnp->need_future_gp[c & 0x1] = 0;
1811 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1812 trace_rcu_future_gp(rnp, rdp, c,
1813 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1814 return needmore;
1815}
1816
48a7639c
PM
1817/*
1818 * Awaken the grace-period kthread for the specified flavor of RCU.
1819 * Don't do a self-awaken, and don't bother awakening when there is
1820 * nothing for the grace-period kthread to do (as in several CPUs
1821 * raced to awaken, and we lost), and finally don't try to awaken
1822 * a kthread that has not yet been created.
1823 */
1824static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1825{
1826 if (current == rsp->gp_kthread ||
7d0ae808 1827 !READ_ONCE(rsp->gp_flags) ||
48a7639c
PM
1828 !rsp->gp_kthread)
1829 return;
abedf8e2 1830 swake_up(&rsp->gp_wq);
48a7639c
PM
1831}
1832
dc35c893
PM
1833/*
1834 * If there is room, assign a ->completed number to any callbacks on
1835 * this CPU that have not already been assigned. Also accelerate any
1836 * callbacks that were previously assigned a ->completed number that has
1837 * since proven to be too conservative, which can happen if callbacks get
1838 * assigned a ->completed number while RCU is idle, but with reference to
1839 * a non-root rcu_node structure. This function is idempotent, so it does
48a7639c
PM
1840 * not hurt to call it repeatedly. Returns an flag saying that we should
1841 * awaken the RCU grace-period kthread.
dc35c893
PM
1842 *
1843 * The caller must hold rnp->lock with interrupts disabled.
1844 */
48a7639c 1845static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1846 struct rcu_data *rdp)
1847{
15fecf89 1848 bool ret = false;
dc35c893 1849
15fecf89
PM
1850 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1851 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1852 return false;
dc35c893
PM
1853
1854 /*
15fecf89
PM
1855 * Callbacks are often registered with incomplete grace-period
1856 * information. Something about the fact that getting exact
1857 * information requires acquiring a global lock... RCU therefore
1858 * makes a conservative estimate of the grace period number at which
1859 * a given callback will become ready to invoke. The following
1860 * code checks this estimate and improves it when possible, thus
1861 * accelerating callback invocation to an earlier grace-period
1862 * number.
dc35c893 1863 */
15fecf89
PM
1864 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1865 ret = rcu_start_future_gp(rnp, rdp, NULL);
6d4b418c
PM
1866
1867 /* Trace depending on how much we were able to accelerate. */
15fecf89 1868 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
f7f7bac9 1869 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1870 else
f7f7bac9 1871 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
48a7639c 1872 return ret;
dc35c893
PM
1873}
1874
1875/*
1876 * Move any callbacks whose grace period has completed to the
1877 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1878 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1879 * sublist. This function is idempotent, so it does not hurt to
1880 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1881 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1882 *
1883 * The caller must hold rnp->lock with interrupts disabled.
1884 */
48a7639c 1885static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
dc35c893
PM
1886 struct rcu_data *rdp)
1887{
15fecf89
PM
1888 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1889 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1890 return false;
dc35c893
PM
1891
1892 /*
1893 * Find all callbacks whose ->completed numbers indicate that they
1894 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1895 */
15fecf89 1896 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
dc35c893
PM
1897
1898 /* Classify any remaining callbacks. */
48a7639c 1899 return rcu_accelerate_cbs(rsp, rnp, rdp);
dc35c893
PM
1900}
1901
d09b62df 1902/*
ba9fbe95
PM
1903 * Update CPU-local rcu_data state to record the beginnings and ends of
1904 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1905 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1906 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1907 */
48a7639c
PM
1908static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1909 struct rcu_data *rdp)
d09b62df 1910{
48a7639c 1911 bool ret;
3563a438 1912 bool need_gp;
48a7639c 1913
ba9fbe95 1914 /* Handle the ends of any preceding grace periods first. */
e3663b10 1915 if (rdp->completed == rnp->completed &&
7d0ae808 1916 !unlikely(READ_ONCE(rdp->gpwrap))) {
d09b62df 1917
ba9fbe95 1918 /* No grace period end, so just accelerate recent callbacks. */
48a7639c 1919 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1920
dc35c893
PM
1921 } else {
1922
1923 /* Advance callbacks. */
48a7639c 1924 ret = rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1925
1926 /* Remember that we saw this grace-period completion. */
1927 rdp->completed = rnp->completed;
f7f7bac9 1928 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1929 }
398ebe60 1930
7d0ae808 1931 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1932 /*
1933 * If the current grace period is waiting for this CPU,
1934 * set up to detect a quiescent state, otherwise don't
1935 * go looking for one.
1936 */
1937 rdp->gpnum = rnp->gpnum;
f7f7bac9 1938 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
3563a438
PM
1939 need_gp = !!(rnp->qsmask & rdp->grpmask);
1940 rdp->cpu_no_qs.b.norm = need_gp;
9577df9a 1941 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
3563a438 1942 rdp->core_needs_qs = need_gp;
6eaef633 1943 zero_cpu_stall_ticks(rdp);
7d0ae808 1944 WRITE_ONCE(rdp->gpwrap, false);
6eaef633 1945 }
48a7639c 1946 return ret;
6eaef633
PM
1947}
1948
d34ea322 1949static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1950{
1951 unsigned long flags;
48a7639c 1952 bool needwake;
6eaef633
PM
1953 struct rcu_node *rnp;
1954
1955 local_irq_save(flags);
1956 rnp = rdp->mynode;
7d0ae808
PM
1957 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1958 rdp->completed == READ_ONCE(rnp->completed) &&
1959 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1960 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1961 local_irq_restore(flags);
1962 return;
1963 }
48a7639c 1964 needwake = __note_gp_changes(rsp, rnp, rdp);
67c583a7 1965 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
1966 if (needwake)
1967 rcu_gp_kthread_wake(rsp);
6eaef633
PM
1968}
1969
0f41c0dd
PM
1970static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1971{
1972 if (delay > 0 &&
1973 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1974 schedule_timeout_uninterruptible(delay);
1975}
1976
b3dbec76 1977/*
45fed3e7 1978 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1979 */
45fed3e7 1980static bool rcu_gp_init(struct rcu_state *rsp)
b3dbec76 1981{
0aa04b05 1982 unsigned long oldmask;
b3dbec76 1983 struct rcu_data *rdp;
7fdefc10 1984 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1985
7d0ae808 1986 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 1987 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808 1988 if (!READ_ONCE(rsp->gp_flags)) {
f7be8209 1989 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1990 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1991 return false;
f7be8209 1992 }
7d0ae808 1993 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
b3dbec76 1994
f7be8209
PM
1995 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1996 /*
1997 * Grace period already in progress, don't start another.
1998 * Not supposed to be able to happen.
1999 */
67c583a7 2000 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 2001 return false;
7fdefc10
PM
2002 }
2003
7fdefc10 2004 /* Advance to a new grace period and initialize state. */
26cdfedf 2005 record_gp_stall_check_time(rsp);
765a3f4f
PM
2006 /* Record GP times before starting GP, hence smp_store_release(). */
2007 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
f7f7bac9 2008 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
67c583a7 2009 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 2010
0aa04b05
PM
2011 /*
2012 * Apply per-leaf buffered online and offline operations to the
2013 * rcu_node tree. Note that this new grace period need not wait
2014 * for subsequent online CPUs, and that quiescent-state forcing
2015 * will handle subsequent offline CPUs.
2016 */
2017 rcu_for_each_leaf_node(rsp, rnp) {
0f41c0dd 2018 rcu_gp_slow(rsp, gp_preinit_delay);
2a67e741 2019 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
2020 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2021 !rnp->wait_blkd_tasks) {
2022 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 2023 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05
PM
2024 continue;
2025 }
2026
2027 /* Record old state, apply changes to ->qsmaskinit field. */
2028 oldmask = rnp->qsmaskinit;
2029 rnp->qsmaskinit = rnp->qsmaskinitnext;
2030
2031 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2032 if (!oldmask != !rnp->qsmaskinit) {
2033 if (!oldmask) /* First online CPU for this rcu_node. */
2034 rcu_init_new_rnp(rnp);
2035 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2036 rnp->wait_blkd_tasks = true;
2037 else /* Last offline CPU and can propagate. */
2038 rcu_cleanup_dead_rnp(rnp);
2039 }
2040
2041 /*
2042 * If all waited-on tasks from prior grace period are
2043 * done, and if all this rcu_node structure's CPUs are
2044 * still offline, propagate up the rcu_node tree and
2045 * clear ->wait_blkd_tasks. Otherwise, if one of this
2046 * rcu_node structure's CPUs has since come back online,
2047 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2048 * checks for this, so just call it unconditionally).
2049 */
2050 if (rnp->wait_blkd_tasks &&
2051 (!rcu_preempt_has_tasks(rnp) ||
2052 rnp->qsmaskinit)) {
2053 rnp->wait_blkd_tasks = false;
2054 rcu_cleanup_dead_rnp(rnp);
2055 }
2056
67c583a7 2057 raw_spin_unlock_irq_rcu_node(rnp);
0aa04b05 2058 }
7fdefc10
PM
2059
2060 /*
2061 * Set the quiescent-state-needed bits in all the rcu_node
2062 * structures for all currently online CPUs in breadth-first order,
2063 * starting from the root rcu_node structure, relying on the layout
2064 * of the tree within the rsp->node[] array. Note that other CPUs
2065 * will access only the leaves of the hierarchy, thus seeing that no
2066 * grace period is in progress, at least until the corresponding
590d1757 2067 * leaf node has been initialized.
7fdefc10
PM
2068 *
2069 * The grace period cannot complete until the initialization
2070 * process finishes, because this kthread handles both.
2071 */
2072 rcu_for_each_node_breadth_first(rsp, rnp) {
0f41c0dd 2073 rcu_gp_slow(rsp, gp_init_delay);
2a67e741 2074 raw_spin_lock_irq_rcu_node(rnp);
b3dbec76 2075 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
2076 rcu_preempt_check_blocked_tasks(rnp);
2077 rnp->qsmask = rnp->qsmaskinit;
7d0ae808 2078 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
3f47da0f 2079 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
7d0ae808 2080 WRITE_ONCE(rnp->completed, rsp->completed);
7fdefc10 2081 if (rnp == rdp->mynode)
48a7639c 2082 (void)__note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
2083 rcu_preempt_boost_start_gp(rnp);
2084 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2085 rnp->level, rnp->grplo,
2086 rnp->grphi, rnp->qsmask);
67c583a7 2087 raw_spin_unlock_irq_rcu_node(rnp);
bde6c3aa 2088 cond_resched_rcu_qs();
7d0ae808 2089 WRITE_ONCE(rsp->gp_activity, jiffies);
7fdefc10 2090 }
b3dbec76 2091
45fed3e7 2092 return true;
7fdefc10 2093}
b3dbec76 2094
b9a425cf
PM
2095/*
2096 * Helper function for wait_event_interruptible_timeout() wakeup
2097 * at force-quiescent-state time.
2098 */
2099static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2100{
2101 struct rcu_node *rnp = rcu_get_root(rsp);
2102
2103 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2104 *gfp = READ_ONCE(rsp->gp_flags);
2105 if (*gfp & RCU_GP_FLAG_FQS)
2106 return true;
2107
2108 /* The current grace period has completed. */
2109 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2110 return true;
2111
2112 return false;
2113}
2114
4cdfc175
PM
2115/*
2116 * Do one round of quiescent-state forcing.
2117 */
77f81fe0 2118static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
4cdfc175 2119{
217af2a2
PM
2120 bool isidle = false;
2121 unsigned long maxj;
4cdfc175
PM
2122 struct rcu_node *rnp = rcu_get_root(rsp);
2123
7d0ae808 2124 WRITE_ONCE(rsp->gp_activity, jiffies);
4cdfc175 2125 rsp->n_force_qs++;
77f81fe0 2126 if (first_time) {
4cdfc175 2127 /* Collect dyntick-idle snapshots. */
0edd1b17 2128 if (is_sysidle_rcu_state(rsp)) {
e02b2edf 2129 isidle = true;
0edd1b17
PM
2130 maxj = jiffies - ULONG_MAX / 4;
2131 }
217af2a2
PM
2132 force_qs_rnp(rsp, dyntick_save_progress_counter,
2133 &isidle, &maxj);
0edd1b17 2134 rcu_sysidle_report_gp(rsp, isidle, maxj);
4cdfc175
PM
2135 } else {
2136 /* Handle dyntick-idle and offline CPUs. */
675da67f 2137 isidle = true;
217af2a2 2138 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
4cdfc175
PM
2139 }
2140 /* Clear flag to prevent immediate re-entry. */
7d0ae808 2141 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 2142 raw_spin_lock_irq_rcu_node(rnp);
7d0ae808
PM
2143 WRITE_ONCE(rsp->gp_flags,
2144 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 2145 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 2146 }
4cdfc175
PM
2147}
2148
7fdefc10
PM
2149/*
2150 * Clean up after the old grace period.
2151 */
4cdfc175 2152static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
2153{
2154 unsigned long gp_duration;
48a7639c 2155 bool needgp = false;
dae6e64d 2156 int nocb = 0;
7fdefc10
PM
2157 struct rcu_data *rdp;
2158 struct rcu_node *rnp = rcu_get_root(rsp);
abedf8e2 2159 struct swait_queue_head *sq;
b3dbec76 2160
7d0ae808 2161 WRITE_ONCE(rsp->gp_activity, jiffies);
2a67e741 2162 raw_spin_lock_irq_rcu_node(rnp);
7fdefc10
PM
2163 gp_duration = jiffies - rsp->gp_start;
2164 if (gp_duration > rsp->gp_max)
2165 rsp->gp_max = gp_duration;
b3dbec76 2166
7fdefc10
PM
2167 /*
2168 * We know the grace period is complete, but to everyone else
2169 * it appears to still be ongoing. But it is also the case
2170 * that to everyone else it looks like there is nothing that
2171 * they can do to advance the grace period. It is therefore
2172 * safe for us to drop the lock in order to mark the grace
2173 * period as completed in all of the rcu_node structures.
7fdefc10 2174 */
67c583a7 2175 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 2176
5d4b8659
PM
2177 /*
2178 * Propagate new ->completed value to rcu_node structures so
2179 * that other CPUs don't have to wait until the start of the next
2180 * grace period to process their callbacks. This also avoids
2181 * some nasty RCU grace-period initialization races by forcing
2182 * the end of the current grace period to be completely recorded in
2183 * all of the rcu_node structures before the beginning of the next
2184 * grace period is recorded in any of the rcu_node structures.
2185 */
2186 rcu_for_each_node_breadth_first(rsp, rnp) {
2a67e741 2187 raw_spin_lock_irq_rcu_node(rnp);
5c60d25f
PM
2188 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2189 WARN_ON_ONCE(rnp->qsmask);
7d0ae808 2190 WRITE_ONCE(rnp->completed, rsp->gpnum);
b11cc576
PM
2191 rdp = this_cpu_ptr(rsp->rda);
2192 if (rnp == rdp->mynode)
48a7639c 2193 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
78e4bc34 2194 /* smp_mb() provided by prior unlock-lock pair. */
0446be48 2195 nocb += rcu_future_gp_cleanup(rsp, rnp);
065bb78c 2196 sq = rcu_nocb_gp_get(rnp);
67c583a7 2197 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 2198 rcu_nocb_gp_cleanup(sq);
bde6c3aa 2199 cond_resched_rcu_qs();
7d0ae808 2200 WRITE_ONCE(rsp->gp_activity, jiffies);
0f41c0dd 2201 rcu_gp_slow(rsp, gp_cleanup_delay);
7fdefc10 2202 }
5d4b8659 2203 rnp = rcu_get_root(rsp);
2a67e741 2204 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
dae6e64d 2205 rcu_nocb_gp_set(rnp, nocb);
7fdefc10 2206
765a3f4f 2207 /* Declare grace period done. */
7d0ae808 2208 WRITE_ONCE(rsp->completed, rsp->gpnum);
f7f7bac9 2209 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
77f81fe0 2210 rsp->gp_state = RCU_GP_IDLE;
5d4b8659 2211 rdp = this_cpu_ptr(rsp->rda);
48a7639c
PM
2212 /* Advance CBs to reduce false positives below. */
2213 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2214 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
7d0ae808 2215 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
bb311ecc 2216 trace_rcu_grace_period(rsp->name,
7d0ae808 2217 READ_ONCE(rsp->gpnum),
bb311ecc
PM
2218 TPS("newreq"));
2219 }
67c583a7 2220 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
2221}
2222
2223/*
2224 * Body of kthread that handles grace periods.
2225 */
2226static int __noreturn rcu_gp_kthread(void *arg)
2227{
77f81fe0 2228 bool first_gp_fqs;
88d6df61 2229 int gf;
d40011f6 2230 unsigned long j;
4cdfc175 2231 int ret;
7fdefc10
PM
2232 struct rcu_state *rsp = arg;
2233 struct rcu_node *rnp = rcu_get_root(rsp);
2234
5871968d 2235 rcu_bind_gp_kthread();
7fdefc10
PM
2236 for (;;) {
2237
2238 /* Handle grace-period start. */
2239 for (;;) {
63c4db78 2240 trace_rcu_grace_period(rsp->name,
7d0ae808 2241 READ_ONCE(rsp->gpnum),
63c4db78 2242 TPS("reqwait"));
afea227f 2243 rsp->gp_state = RCU_GP_WAIT_GPS;
abedf8e2 2244 swait_event_interruptible(rsp->gp_wq,
7d0ae808 2245 READ_ONCE(rsp->gp_flags) &
4cdfc175 2246 RCU_GP_FLAG_INIT);
319362c9 2247 rsp->gp_state = RCU_GP_DONE_GPS;
78e4bc34 2248 /* Locking provides needed memory barrier. */
f7be8209 2249 if (rcu_gp_init(rsp))
7fdefc10 2250 break;
bde6c3aa 2251 cond_resched_rcu_qs();
7d0ae808 2252 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2253 WARN_ON(signal_pending(current));
63c4db78 2254 trace_rcu_grace_period(rsp->name,
7d0ae808 2255 READ_ONCE(rsp->gpnum),
63c4db78 2256 TPS("reqwaitsig"));
7fdefc10 2257 }
cabc49c1 2258
4cdfc175 2259 /* Handle quiescent-state forcing. */
77f81fe0 2260 first_gp_fqs = true;
d40011f6
PM
2261 j = jiffies_till_first_fqs;
2262 if (j > HZ) {
2263 j = HZ;
2264 jiffies_till_first_fqs = HZ;
2265 }
88d6df61 2266 ret = 0;
cabc49c1 2267 for (;;) {
8c7c4829 2268 if (!ret) {
88d6df61 2269 rsp->jiffies_force_qs = jiffies + j;
8c7c4829
PM
2270 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2271 jiffies + 3 * j);
2272 }
63c4db78 2273 trace_rcu_grace_period(rsp->name,
7d0ae808 2274 READ_ONCE(rsp->gpnum),
63c4db78 2275 TPS("fqswait"));
afea227f 2276 rsp->gp_state = RCU_GP_WAIT_FQS;
abedf8e2 2277 ret = swait_event_interruptible_timeout(rsp->gp_wq,
b9a425cf 2278 rcu_gp_fqs_check_wake(rsp, &gf), j);
32bb1c79 2279 rsp->gp_state = RCU_GP_DOING_FQS;
78e4bc34 2280 /* Locking provides needed memory barriers. */
4cdfc175 2281 /* If grace period done, leave loop. */
7d0ae808 2282 if (!READ_ONCE(rnp->qsmask) &&
4cdfc175 2283 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 2284 break;
4cdfc175 2285 /* If time for quiescent-state forcing, do it. */
88d6df61
PM
2286 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2287 (gf & RCU_GP_FLAG_FQS)) {
63c4db78 2288 trace_rcu_grace_period(rsp->name,
7d0ae808 2289 READ_ONCE(rsp->gpnum),
63c4db78 2290 TPS("fqsstart"));
77f81fe0
PM
2291 rcu_gp_fqs(rsp, first_gp_fqs);
2292 first_gp_fqs = false;
63c4db78 2293 trace_rcu_grace_period(rsp->name,
7d0ae808 2294 READ_ONCE(rsp->gpnum),
63c4db78 2295 TPS("fqsend"));
bde6c3aa 2296 cond_resched_rcu_qs();
7d0ae808 2297 WRITE_ONCE(rsp->gp_activity, jiffies);
fcfd0a23
PM
2298 ret = 0; /* Force full wait till next FQS. */
2299 j = jiffies_till_next_fqs;
2300 if (j > HZ) {
2301 j = HZ;
2302 jiffies_till_next_fqs = HZ;
2303 } else if (j < 1) {
2304 j = 1;
2305 jiffies_till_next_fqs = 1;
2306 }
4cdfc175
PM
2307 } else {
2308 /* Deal with stray signal. */
bde6c3aa 2309 cond_resched_rcu_qs();
7d0ae808 2310 WRITE_ONCE(rsp->gp_activity, jiffies);
73a860cd 2311 WARN_ON(signal_pending(current));
63c4db78 2312 trace_rcu_grace_period(rsp->name,
7d0ae808 2313 READ_ONCE(rsp->gpnum),
63c4db78 2314 TPS("fqswaitsig"));
fcfd0a23
PM
2315 ret = 1; /* Keep old FQS timing. */
2316 j = jiffies;
2317 if (time_after(jiffies, rsp->jiffies_force_qs))
2318 j = 1;
2319 else
2320 j = rsp->jiffies_force_qs - j;
d40011f6 2321 }
cabc49c1 2322 }
4cdfc175
PM
2323
2324 /* Handle grace-period end. */
319362c9 2325 rsp->gp_state = RCU_GP_CLEANUP;
4cdfc175 2326 rcu_gp_cleanup(rsp);
319362c9 2327 rsp->gp_state = RCU_GP_CLEANED;
b3dbec76 2328 }
b3dbec76
PM
2329}
2330
64db4cff
PM
2331/*
2332 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2333 * in preparation for detecting the next grace period. The caller must hold
b8462084 2334 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
2335 *
2336 * Note that it is legal for a dying CPU (which is marked as offline) to
2337 * invoke this function. This can happen when the dying CPU reports its
2338 * quiescent state.
48a7639c
PM
2339 *
2340 * Returns true if the grace-period kthread must be awakened.
64db4cff 2341 */
48a7639c 2342static bool
910ee45d
PM
2343rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2344 struct rcu_data *rdp)
64db4cff 2345{
b8462084 2346 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 2347 /*
b3dbec76 2348 * Either we have not yet spawned the grace-period
62da1921
PM
2349 * task, this CPU does not need another grace period,
2350 * or a grace period is already in progress.
b3dbec76 2351 * Either way, don't start a new grace period.
afe24b12 2352 */
48a7639c 2353 return false;
afe24b12 2354 }
7d0ae808
PM
2355 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2356 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
bb311ecc 2357 TPS("newreq"));
62da1921 2358
016a8d5b
SR
2359 /*
2360 * We can't do wakeups while holding the rnp->lock, as that
1eafd31c 2361 * could cause possible deadlocks with the rq->lock. Defer
48a7639c 2362 * the wakeup to our caller.
016a8d5b 2363 */
48a7639c 2364 return true;
64db4cff
PM
2365}
2366
910ee45d
PM
2367/*
2368 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2369 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2370 * is invoked indirectly from rcu_advance_cbs(), which would result in
2371 * endless recursion -- or would do so if it wasn't for the self-deadlock
2372 * that is encountered beforehand.
48a7639c
PM
2373 *
2374 * Returns true if the grace-period kthread needs to be awakened.
910ee45d 2375 */
48a7639c 2376static bool rcu_start_gp(struct rcu_state *rsp)
910ee45d
PM
2377{
2378 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2379 struct rcu_node *rnp = rcu_get_root(rsp);
48a7639c 2380 bool ret = false;
910ee45d
PM
2381
2382 /*
2383 * If there is no grace period in progress right now, any
2384 * callbacks we have up to this point will be satisfied by the
2385 * next grace period. Also, advancing the callbacks reduces the
2386 * probability of false positives from cpu_needs_another_gp()
2387 * resulting in pointless grace periods. So, advance callbacks
2388 * then start the grace period!
2389 */
48a7639c
PM
2390 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2391 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2392 return ret;
910ee45d
PM
2393}
2394
f41d911f 2395/*
8994515c
PM
2396 * Report a full set of quiescent states to the specified rcu_state data
2397 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2398 * kthread if another grace period is required. Whether we wake
2399 * the grace-period kthread or it awakens itself for the next round
2400 * of quiescent-state forcing, that kthread will clean up after the
2401 * just-completed grace period. Note that the caller must hold rnp->lock,
2402 * which is released before return.
f41d911f 2403 */
d3f6bad3 2404static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 2405 __releases(rcu_get_root(rsp)->lock)
f41d911f 2406{
fc2219d4 2407 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cd73ca21 2408 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2409 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
94d44776 2410 rcu_gp_kthread_wake(rsp);
f41d911f
PM
2411}
2412
64db4cff 2413/*
d3f6bad3
PM
2414 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2415 * Allows quiescent states for a group of CPUs to be reported at one go
2416 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2417 * must be represented by the same rcu_node structure (which need not be a
2418 * leaf rcu_node structure, though it often will be). The gps parameter
2419 * is the grace-period snapshot, which means that the quiescent states
2420 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2421 * must be held upon entry, and it is released before return.
64db4cff
PM
2422 */
2423static void
d3f6bad3 2424rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
654e9533 2425 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
64db4cff
PM
2426 __releases(rnp->lock)
2427{
654e9533 2428 unsigned long oldmask = 0;
28ecd580
PM
2429 struct rcu_node *rnp_c;
2430
64db4cff
PM
2431 /* Walk up the rcu_node hierarchy. */
2432 for (;;) {
654e9533 2433 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
64db4cff 2434
654e9533
PM
2435 /*
2436 * Our bit has already been cleared, or the
2437 * relevant grace period is already over, so done.
2438 */
67c583a7 2439 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2440 return;
2441 }
654e9533 2442 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
64db4cff 2443 rnp->qsmask &= ~mask;
d4c08f2a
PM
2444 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2445 mask, rnp->qsmask, rnp->level,
2446 rnp->grplo, rnp->grphi,
2447 !!rnp->gp_tasks);
27f4d280 2448 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2449
2450 /* Other bits still set at this level, so done. */
67c583a7 2451 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2452 return;
2453 }
2454 mask = rnp->grpmask;
2455 if (rnp->parent == NULL) {
2456
2457 /* No more levels. Exit loop holding root lock. */
2458
2459 break;
2460 }
67c583a7 2461 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2462 rnp_c = rnp;
64db4cff 2463 rnp = rnp->parent;
2a67e741 2464 raw_spin_lock_irqsave_rcu_node(rnp, flags);
654e9533 2465 oldmask = rnp_c->qsmask;
64db4cff
PM
2466 }
2467
2468 /*
2469 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2470 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2471 * to clean up and start the next grace period if one is needed.
64db4cff 2472 */
d3f6bad3 2473 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
2474}
2475
cc99a310
PM
2476/*
2477 * Record a quiescent state for all tasks that were previously queued
2478 * on the specified rcu_node structure and that were blocking the current
2479 * RCU grace period. The caller must hold the specified rnp->lock with
2480 * irqs disabled, and this lock is released upon return, but irqs remain
2481 * disabled.
2482 */
0aa04b05 2483static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
cc99a310
PM
2484 struct rcu_node *rnp, unsigned long flags)
2485 __releases(rnp->lock)
2486{
654e9533 2487 unsigned long gps;
cc99a310
PM
2488 unsigned long mask;
2489 struct rcu_node *rnp_p;
2490
a77da14c
PM
2491 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2492 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 2493 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2494 return; /* Still need more quiescent states! */
2495 }
2496
2497 rnp_p = rnp->parent;
2498 if (rnp_p == NULL) {
2499 /*
a77da14c
PM
2500 * Only one rcu_node structure in the tree, so don't
2501 * try to report up to its nonexistent parent!
cc99a310
PM
2502 */
2503 rcu_report_qs_rsp(rsp, flags);
2504 return;
2505 }
2506
654e9533
PM
2507 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2508 gps = rnp->gpnum;
cc99a310 2509 mask = rnp->grpmask;
67c583a7 2510 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2511 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
654e9533 2512 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
cc99a310
PM
2513}
2514
64db4cff 2515/*
d3f6bad3 2516 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2517 * structure. This must be called from the specified CPU.
64db4cff
PM
2518 */
2519static void
d7d6a11e 2520rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2521{
2522 unsigned long flags;
2523 unsigned long mask;
48a7639c 2524 bool needwake;
64db4cff
PM
2525 struct rcu_node *rnp;
2526
2527 rnp = rdp->mynode;
2a67e741 2528 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3a19b46a
PM
2529 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2530 rnp->completed == rnp->gpnum || rdp->gpwrap) {
64db4cff
PM
2531
2532 /*
e4cc1f22
PM
2533 * The grace period in which this quiescent state was
2534 * recorded has ended, so don't report it upwards.
2535 * We will instead need a new quiescent state that lies
2536 * within the current grace period.
64db4cff 2537 */
5b74c458 2538 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
9577df9a 2539 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
67c583a7 2540 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2541 return;
2542 }
2543 mask = rdp->grpmask;
2544 if ((rnp->qsmask & mask) == 0) {
67c583a7 2545 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2546 } else {
bb53e416 2547 rdp->core_needs_qs = false;
64db4cff
PM
2548
2549 /*
2550 * This GP can't end until cpu checks in, so all of our
2551 * callbacks can be processed during the next GP.
2552 */
48a7639c 2553 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 2554
654e9533
PM
2555 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2556 /* ^^^ Released rnp->lock */
48a7639c
PM
2557 if (needwake)
2558 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2559 }
2560}
2561
2562/*
2563 * Check to see if there is a new grace period of which this CPU
2564 * is not yet aware, and if so, set up local rcu_data state for it.
2565 * Otherwise, see if this CPU has just passed through its first
2566 * quiescent state for this grace period, and record that fact if so.
2567 */
2568static void
2569rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2570{
05eb552b
PM
2571 /* Check for grace-period ends and beginnings. */
2572 note_gp_changes(rsp, rdp);
64db4cff
PM
2573
2574 /*
2575 * Does this CPU still need to do its part for current grace period?
2576 * If no, return and let the other CPUs do their part as well.
2577 */
97c668b8 2578 if (!rdp->core_needs_qs)
64db4cff
PM
2579 return;
2580
2581 /*
2582 * Was there a quiescent state since the beginning of the grace
2583 * period? If no, then exit and wait for the next call.
2584 */
3a19b46a 2585 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2586 return;
2587
d3f6bad3
PM
2588 /*
2589 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2590 * judge of that).
2591 */
d7d6a11e 2592 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
2593}
2594
e74f4c45 2595/*
b1420f1c
PM
2596 * Send the specified CPU's RCU callbacks to the orphanage. The
2597 * specified CPU must be offline, and the caller must hold the
7b2e6011 2598 * ->orphan_lock.
e74f4c45 2599 */
b1420f1c
PM
2600static void
2601rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2602 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 2603{
3fbfbf7a 2604 /* No-CBs CPUs do not have orphanable callbacks. */
ea46351c 2605 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
2606 return;
2607
b1420f1c
PM
2608 /*
2609 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
2610 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2611 * cannot be running now. Thus no memory barrier is required.
b1420f1c 2612 */
15fecf89
PM
2613 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2614 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
a50c3af9
PM
2615
2616 /*
b1420f1c
PM
2617 * Next, move those callbacks still needing a grace period to
2618 * the orphanage, where some other CPU will pick them up.
2619 * Some of the callbacks might have gone partway through a grace
2620 * period, but that is too bad. They get to start over because we
2621 * cannot assume that grace periods are synchronized across CPUs.
a50c3af9 2622 */
15fecf89 2623 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
a50c3af9
PM
2624
2625 /*
b1420f1c
PM
2626 * Then move the ready-to-invoke callbacks to the orphanage,
2627 * where some other CPU will pick them up. These will not be
2628 * required to pass though another grace period: They are done.
a50c3af9 2629 */
15fecf89 2630 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
e74f4c45 2631
15fecf89
PM
2632 /* Finally, disallow further callbacks on this CPU. */
2633 rcu_segcblist_disable(&rdp->cblist);
b1420f1c
PM
2634}
2635
2636/*
2637 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 2638 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c 2639 */
96d3fd0d 2640static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
b1420f1c 2641{
fa07a58f 2642 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
b1420f1c 2643
3fbfbf7a 2644 /* No-CBs CPUs are handled specially. */
ea46351c
PM
2645 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2646 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
3fbfbf7a
PM
2647 return;
2648
b1420f1c 2649 /* Do the accounting first. */
4b27f20b 2650 rdp->n_cbs_adopted += rsp->orphan_done.len;
933dfbd7 2651 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
8f5af6f1 2652 rcu_idle_count_callbacks_posted();
15fecf89 2653 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
b1420f1c
PM
2654
2655 /*
2656 * We do not need a memory barrier here because the only way we
2657 * can get here if there is an rcu_barrier() in flight is if
2658 * we are the task doing the rcu_barrier().
2659 */
2660
15fecf89
PM
2661 /* First adopt the ready-to-invoke callbacks, then the done ones. */
2662 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
8ef0f37e 2663 WARN_ON_ONCE(rsp->orphan_done.head);
15fecf89 2664 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
8ef0f37e 2665 WARN_ON_ONCE(rsp->orphan_pend.head);
15fecf89
PM
2666 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2667 !rcu_segcblist_n_cbs(&rdp->cblist));
b1420f1c
PM
2668}
2669
2670/*
2671 * Trace the fact that this CPU is going offline.
2672 */
2673static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2674{
88a4976d
PM
2675 RCU_TRACE(unsigned long mask;)
2676 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2677 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
b1420f1c 2678
ea46351c
PM
2679 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2680 return;
2681
88a4976d 2682 RCU_TRACE(mask = rdp->grpmask;)
e5601400
PM
2683 trace_rcu_grace_period(rsp->name,
2684 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 2685 TPS("cpuofl"));
64db4cff
PM
2686}
2687
8af3a5e7
PM
2688/*
2689 * All CPUs for the specified rcu_node structure have gone offline,
2690 * and all tasks that were preempted within an RCU read-side critical
2691 * section while running on one of those CPUs have since exited their RCU
2692 * read-side critical section. Some other CPU is reporting this fact with
2693 * the specified rcu_node structure's ->lock held and interrupts disabled.
2694 * This function therefore goes up the tree of rcu_node structures,
2695 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2696 * the leaf rcu_node structure's ->qsmaskinit field has already been
2697 * updated
2698 *
2699 * This function does check that the specified rcu_node structure has
2700 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2701 * prematurely. That said, invoking it after the fact will cost you
2702 * a needless lock acquisition. So once it has done its work, don't
2703 * invoke it again.
2704 */
2705static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2706{
2707 long mask;
2708 struct rcu_node *rnp = rnp_leaf;
2709
ea46351c
PM
2710 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2711 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
8af3a5e7
PM
2712 return;
2713 for (;;) {
2714 mask = rnp->grpmask;
2715 rnp = rnp->parent;
2716 if (!rnp)
2717 break;
2a67e741 2718 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2719 rnp->qsmaskinit &= ~mask;
0aa04b05 2720 rnp->qsmask &= ~mask;
8af3a5e7 2721 if (rnp->qsmaskinit) {
67c583a7
BF
2722 raw_spin_unlock_rcu_node(rnp);
2723 /* irqs remain disabled. */
8af3a5e7
PM
2724 return;
2725 }
67c583a7 2726 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2727 }
2728}
2729
64db4cff 2730/*
e5601400 2731 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
2732 * this fact from process context. Do the remainder of the cleanup,
2733 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
2734 * adopting them. There can only be one CPU hotplug operation at a time,
2735 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 2736 */
e5601400 2737static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 2738{
2036d94a 2739 unsigned long flags;
e5601400 2740 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 2741 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2742
ea46351c
PM
2743 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2744 return;
2745
2036d94a 2746 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2747 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 2748
b1420f1c 2749 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
78043c46 2750 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
b1420f1c 2751 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
96d3fd0d 2752 rcu_adopt_orphan_cbs(rsp, flags);
a8f4cbad 2753 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
b1420f1c 2754
15fecf89
PM
2755 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2756 !rcu_segcblist_empty(&rdp->cblist),
2757 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2758 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2759 rcu_segcblist_first_cb(&rdp->cblist));
64db4cff
PM
2760}
2761
64db4cff
PM
2762/*
2763 * Invoke any RCU callbacks that have made it to the end of their grace
2764 * period. Thottle as specified by rdp->blimit.
2765 */
37c72e56 2766static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
2767{
2768 unsigned long flags;
15fecf89
PM
2769 struct rcu_head *rhp;
2770 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2771 long bl, count;
64db4cff 2772
dc35c893 2773 /* If no callbacks are ready, just return. */
15fecf89
PM
2774 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2775 trace_rcu_batch_start(rsp->name,
2776 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2777 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2778 trace_rcu_batch_end(rsp->name, 0,
2779 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2780 need_resched(), is_idle_task(current),
2781 rcu_is_callbacks_kthread());
64db4cff 2782 return;
29c00b4a 2783 }
64db4cff
PM
2784
2785 /*
2786 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2787 * races with call_rcu() from interrupt handlers. Leave the
2788 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2789 */
2790 local_irq_save(flags);
8146c4e2 2791 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 2792 bl = rdp->blimit;
15fecf89
PM
2793 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2794 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2795 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
64db4cff
PM
2796 local_irq_restore(flags);
2797
2798 /* Invoke callbacks. */
15fecf89
PM
2799 rhp = rcu_cblist_dequeue(&rcl);
2800 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2801 debug_rcu_head_unqueue(rhp);
2802 if (__rcu_reclaim(rsp->name, rhp))
2803 rcu_cblist_dequeued_lazy(&rcl);
2804 /*
2805 * Stop only if limit reached and CPU has something to do.
2806 * Note: The rcl structure counts down from zero.
2807 */
4b27f20b 2808 if (-rcl.len >= bl &&
dff1672d
PM
2809 (need_resched() ||
2810 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2811 break;
2812 }
2813
2814 local_irq_save(flags);
4b27f20b 2815 count = -rcl.len;
8ef0f37e
PM
2816 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2817 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2818
15fecf89
PM
2819 /* Update counts and requeue any remaining callbacks. */
2820 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2821 smp_mb(); /* List handling before counting for rcu_barrier(). */
b1420f1c 2822 rdp->n_cbs_invoked += count;
15fecf89 2823 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2824
2825 /* Reinstate batch limit if we have worked down the excess. */
15fecf89
PM
2826 count = rcu_segcblist_n_cbs(&rdp->cblist);
2827 if (rdp->blimit == LONG_MAX && count <= qlowmark)
64db4cff
PM
2828 rdp->blimit = blimit;
2829
37c72e56 2830 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2831 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56
PM
2832 rdp->qlen_last_fqs_check = 0;
2833 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89
PM
2834 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2835 rdp->qlen_last_fqs_check = count;
2836 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
37c72e56 2837
64db4cff
PM
2838 local_irq_restore(flags);
2839
e0f23060 2840 /* Re-invoke RCU core processing if there are callbacks remaining. */
15fecf89 2841 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2842 invoke_rcu_core();
64db4cff
PM
2843}
2844
2845/*
2846 * Check to see if this CPU is in a non-context-switch quiescent state
2847 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2848 * Also schedule RCU core processing.
64db4cff 2849 *
9b2e4f18 2850 * This function must be called from hardirq context. It is normally
5403d367 2851 * invoked from the scheduling-clock interrupt.
64db4cff 2852 */
c3377c2d 2853void rcu_check_callbacks(int user)
64db4cff 2854{
f7f7bac9 2855 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2856 increment_cpu_stall_ticks();
9b2e4f18 2857 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2858
2859 /*
2860 * Get here if this CPU took its interrupt from user
2861 * mode or from the idle loop, and if this is not a
2862 * nested interrupt. In this case, the CPU is in
d6714c22 2863 * a quiescent state, so note it.
64db4cff
PM
2864 *
2865 * No memory barrier is required here because both
d6714c22
PM
2866 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2867 * variables that other CPUs neither access nor modify,
2868 * at least not while the corresponding CPU is online.
64db4cff
PM
2869 */
2870
284a8c93
PM
2871 rcu_sched_qs();
2872 rcu_bh_qs();
64db4cff
PM
2873
2874 } else if (!in_softirq()) {
2875
2876 /*
2877 * Get here if this CPU did not take its interrupt from
2878 * softirq, in other words, if it is not interrupting
2879 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2880 * critical section, so note it.
64db4cff
PM
2881 */
2882
284a8c93 2883 rcu_bh_qs();
64db4cff 2884 }
86aea0e6 2885 rcu_preempt_check_callbacks();
e3950ecd 2886 if (rcu_pending())
a46e0899 2887 invoke_rcu_core();
8315f422
PM
2888 if (user)
2889 rcu_note_voluntary_context_switch(current);
f7f7bac9 2890 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2891}
2892
64db4cff
PM
2893/*
2894 * Scan the leaf rcu_node structures, processing dyntick state for any that
2895 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2896 * Also initiate boosting for any threads blocked on the root rcu_node.
2897 *
ee47eb9f 2898 * The caller must have suppressed start of new grace periods.
64db4cff 2899 */
217af2a2
PM
2900static void force_qs_rnp(struct rcu_state *rsp,
2901 int (*f)(struct rcu_data *rsp, bool *isidle,
2902 unsigned long *maxj),
2903 bool *isidle, unsigned long *maxj)
64db4cff 2904{
64db4cff
PM
2905 int cpu;
2906 unsigned long flags;
2907 unsigned long mask;
a0b6c9a7 2908 struct rcu_node *rnp;
64db4cff 2909
a0b6c9a7 2910 rcu_for_each_leaf_node(rsp, rnp) {
bde6c3aa 2911 cond_resched_rcu_qs();
64db4cff 2912 mask = 0;
2a67e741 2913 raw_spin_lock_irqsave_rcu_node(rnp, flags);
a0b6c9a7 2914 if (rnp->qsmask == 0) {
a77da14c
PM
2915 if (rcu_state_p == &rcu_sched_state ||
2916 rsp != rcu_state_p ||
2917 rcu_preempt_blocked_readers_cgp(rnp)) {
2918 /*
2919 * No point in scanning bits because they
2920 * are all zero. But we might need to
2921 * priority-boost blocked readers.
2922 */
2923 rcu_initiate_boost(rnp, flags);
2924 /* rcu_initiate_boost() releases rnp->lock */
2925 continue;
2926 }
2927 if (rnp->parent &&
2928 (rnp->parent->qsmask & rnp->grpmask)) {
2929 /*
2930 * Race between grace-period
2931 * initialization and task exiting RCU
2932 * read-side critical section: Report.
2933 */
2934 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2935 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2936 continue;
2937 }
64db4cff 2938 }
bc75e999
MR
2939 for_each_leaf_node_possible_cpu(rnp, cpu) {
2940 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
0edd1b17 2941 if ((rnp->qsmask & bit) != 0) {
0edd1b17
PM
2942 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2943 mask |= bit;
2944 }
64db4cff 2945 }
45f014c5 2946 if (mask != 0) {
654e9533
PM
2947 /* Idle/offline CPUs, report (releases rnp->lock. */
2948 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
0aa04b05
PM
2949 } else {
2950 /* Nothing to do here, so just drop the lock. */
67c583a7 2951 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2952 }
64db4cff 2953 }
64db4cff
PM
2954}
2955
2956/*
2957 * Force quiescent states on reluctant CPUs, and also detect which
2958 * CPUs are in dyntick-idle mode.
2959 */
4cdfc175 2960static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2961{
2962 unsigned long flags;
394f2769
PM
2963 bool ret;
2964 struct rcu_node *rnp;
2965 struct rcu_node *rnp_old = NULL;
2966
2967 /* Funnel through hierarchy to reduce memory contention. */
d860d403 2968 rnp = __this_cpu_read(rsp->rda->mynode);
394f2769 2969 for (; rnp != NULL; rnp = rnp->parent) {
7d0ae808 2970 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
394f2769
PM
2971 !raw_spin_trylock(&rnp->fqslock);
2972 if (rnp_old != NULL)
2973 raw_spin_unlock(&rnp_old->fqslock);
2974 if (ret) {
a792563b 2975 rsp->n_force_qs_lh++;
394f2769
PM
2976 return;
2977 }
2978 rnp_old = rnp;
2979 }
2980 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2981
394f2769 2982 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2983 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2984 raw_spin_unlock(&rnp_old->fqslock);
7d0ae808 2985 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
a792563b 2986 rsp->n_force_qs_lh++;
67c583a7 2987 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2988 return; /* Someone beat us to it. */
46a1e34e 2989 }
7d0ae808 2990 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2991 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
94d44776 2992 rcu_gp_kthread_wake(rsp);
64db4cff
PM
2993}
2994
64db4cff 2995/*
e0f23060
PM
2996 * This does the RCU core processing work for the specified rcu_state
2997 * and rcu_data structures. This may be called only from the CPU to
2998 * whom the rdp belongs.
64db4cff
PM
2999 */
3000static void
1bca8cf1 3001__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
3002{
3003 unsigned long flags;
48a7639c 3004 bool needwake;
fa07a58f 3005 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
64db4cff 3006
50dc7def 3007 WARN_ON_ONCE(!rdp->beenonline);
2e597558 3008
64db4cff
PM
3009 /* Update RCU state based on any recent quiescent states. */
3010 rcu_check_quiescent_state(rsp, rdp);
3011
3012 /* Does this CPU require a not-yet-started grace period? */
dc35c893 3013 local_irq_save(flags);
64db4cff 3014 if (cpu_needs_another_gp(rsp, rdp)) {
6cf10081 3015 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
48a7639c 3016 needwake = rcu_start_gp(rsp);
67c583a7 3017 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
48a7639c
PM
3018 if (needwake)
3019 rcu_gp_kthread_wake(rsp);
dc35c893
PM
3020 } else {
3021 local_irq_restore(flags);
64db4cff
PM
3022 }
3023
3024 /* If there are callbacks ready, invoke them. */
15fecf89 3025 if (rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 3026 invoke_rcu_callbacks(rsp, rdp);
96d3fd0d
PM
3027
3028 /* Do any needed deferred wakeups of rcuo kthreads. */
3029 do_nocb_deferred_wakeup(rdp);
09223371
SL
3030}
3031
64db4cff 3032/*
e0f23060 3033 * Do RCU core processing for the current CPU.
64db4cff 3034 */
0766f788 3035static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 3036{
6ce75a23
PM
3037 struct rcu_state *rsp;
3038
bfa00b4c
PM
3039 if (cpu_is_offline(smp_processor_id()))
3040 return;
f7f7bac9 3041 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
3042 for_each_rcu_flavor(rsp)
3043 __rcu_process_callbacks(rsp);
f7f7bac9 3044 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
3045}
3046
a26ac245 3047/*
e0f23060
PM
3048 * Schedule RCU callback invocation. If the specified type of RCU
3049 * does not support RCU priority boosting, just do a direct call,
3050 * otherwise wake up the per-CPU kernel kthread. Note that because we
924df8a0 3051 * are running on the current CPU with softirqs disabled, the
e0f23060 3052 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 3053 */
a46e0899 3054static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 3055{
7d0ae808 3056 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
b0d30417 3057 return;
a46e0899
PM
3058 if (likely(!rsp->boost)) {
3059 rcu_do_batch(rsp, rdp);
a26ac245
PM
3060 return;
3061 }
a46e0899 3062 invoke_rcu_callbacks_kthread();
a26ac245
PM
3063}
3064
a46e0899 3065static void invoke_rcu_core(void)
09223371 3066{
b0f74036
PM
3067 if (cpu_online(smp_processor_id()))
3068 raise_softirq(RCU_SOFTIRQ);
09223371
SL
3069}
3070
29154c57
PM
3071/*
3072 * Handle any core-RCU processing required by a call_rcu() invocation.
3073 */
3074static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3075 struct rcu_head *head, unsigned long flags)
64db4cff 3076{
48a7639c
PM
3077 bool needwake;
3078
62fde6ed
PM
3079 /*
3080 * If called from an extended quiescent state, invoke the RCU
3081 * core in order to force a re-evaluation of RCU's idleness.
3082 */
9910affa 3083 if (!rcu_is_watching())
62fde6ed
PM
3084 invoke_rcu_core();
3085
a16b7a69 3086 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 3087 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 3088 return;
64db4cff 3089
37c72e56
PM
3090 /*
3091 * Force the grace period if too many callbacks or too long waiting.
3092 * Enforce hysteresis, and don't invoke force_quiescent_state()
3093 * if some other CPU has recently done so. Also, don't bother
3094 * invoking force_quiescent_state() if the newly enqueued callback
3095 * is the only one waiting for a grace period to complete.
3096 */
15fecf89
PM
3097 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3098 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
3099
3100 /* Are we ignoring a completed grace period? */
470716fc 3101 note_gp_changes(rsp, rdp);
b52573d2
PM
3102
3103 /* Start a new grace period if one not already started. */
3104 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
3105 struct rcu_node *rnp_root = rcu_get_root(rsp);
3106
2a67e741 3107 raw_spin_lock_rcu_node(rnp_root);
48a7639c 3108 needwake = rcu_start_gp(rsp);
67c583a7 3109 raw_spin_unlock_rcu_node(rnp_root);
48a7639c
PM
3110 if (needwake)
3111 rcu_gp_kthread_wake(rsp);
b52573d2
PM
3112 } else {
3113 /* Give the grace period a kick. */
3114 rdp->blimit = LONG_MAX;
3115 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
15fecf89 3116 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
4cdfc175 3117 force_quiescent_state(rsp);
b52573d2 3118 rdp->n_force_qs_snap = rsp->n_force_qs;
15fecf89 3119 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 3120 }
4cdfc175 3121 }
29154c57
PM
3122}
3123
ae150184
PM
3124/*
3125 * RCU callback function to leak a callback.
3126 */
3127static void rcu_leak_callback(struct rcu_head *rhp)
3128{
3129}
3130
3fbfbf7a
PM
3131/*
3132 * Helper function for call_rcu() and friends. The cpu argument will
3133 * normally be -1, indicating "currently running CPU". It may specify
3134 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3135 * is expected to specify a CPU.
3136 */
64db4cff 3137static void
b6a4ae76 3138__call_rcu(struct rcu_head *head, rcu_callback_t func,
3fbfbf7a 3139 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
3140{
3141 unsigned long flags;
3142 struct rcu_data *rdp;
3143
b8f2ed53
PM
3144 /* Misaligned rcu_head! */
3145 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3146
ae150184
PM
3147 if (debug_rcu_head_queue(head)) {
3148 /* Probable double call_rcu(), so leak the callback. */
7d0ae808 3149 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
3150 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3151 return;
3152 }
64db4cff
PM
3153 head->func = func;
3154 head->next = NULL;
64db4cff 3155 local_irq_save(flags);
394f99a9 3156 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
3157
3158 /* Add the callback to our list. */
15fecf89 3159 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3fbfbf7a
PM
3160 int offline;
3161
3162 if (cpu != -1)
3163 rdp = per_cpu_ptr(rsp->rda, cpu);
143da9c2
PM
3164 if (likely(rdp->mynode)) {
3165 /* Post-boot, so this should be for a no-CBs CPU. */
3166 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3167 WARN_ON_ONCE(offline);
3168 /* Offline CPU, _call_rcu() illegal, leak callback. */
3169 local_irq_restore(flags);
3170 return;
3171 }
3172 /*
3173 * Very early boot, before rcu_init(). Initialize if needed
3174 * and then drop through to queue the callback.
3175 */
3176 BUG_ON(cpu != -1);
34404ca8 3177 WARN_ON_ONCE(!rcu_is_watching());
15fecf89
PM
3178 if (rcu_segcblist_empty(&rdp->cblist))
3179 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 3180 }
15fecf89
PM
3181 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3182 if (!lazy)
c57afe80 3183 rcu_idle_count_callbacks_posted();
2655d57e 3184
d4c08f2a
PM
3185 if (__is_kfree_rcu_offset((unsigned long)func))
3186 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
15fecf89
PM
3187 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3188 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3189 else
15fecf89
PM
3190 trace_rcu_callback(rsp->name, head,
3191 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3192 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 3193
29154c57
PM
3194 /* Go handle any RCU core processing required. */
3195 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
3196 local_irq_restore(flags);
3197}
3198
3199/*
d6714c22 3200 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 3201 */
b6a4ae76 3202void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
64db4cff 3203{
3fbfbf7a 3204 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 3205}
d6714c22 3206EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
3207
3208/*
486e2593 3209 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff 3210 */
b6a4ae76 3211void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
64db4cff 3212{
3fbfbf7a 3213 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
3214}
3215EXPORT_SYMBOL_GPL(call_rcu_bh);
3216
495aa969
ACB
3217/*
3218 * Queue an RCU callback for lazy invocation after a grace period.
3219 * This will likely be later named something like "call_rcu_lazy()",
3220 * but this change will require some way of tagging the lazy RCU
3221 * callbacks in the list of pending callbacks. Until then, this
3222 * function may only be called from __kfree_rcu().
3223 */
3224void kfree_call_rcu(struct rcu_head *head,
b6a4ae76 3225 rcu_callback_t func)
495aa969 3226{
e534165b 3227 __call_rcu(head, func, rcu_state_p, -1, 1);
495aa969
ACB
3228}
3229EXPORT_SYMBOL_GPL(kfree_call_rcu);
3230
6d813391
PM
3231/*
3232 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3233 * any blocking grace-period wait automatically implies a grace period
3234 * if there is only one CPU online at any point time during execution
3235 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3236 * occasionally incorrectly indicate that there are multiple CPUs online
3237 * when there was in fact only one the whole time, as this just adds
3238 * some overhead: RCU still operates correctly.
6d813391
PM
3239 */
3240static inline int rcu_blocking_is_gp(void)
3241{
95f0c1de
PM
3242 int ret;
3243
6d813391 3244 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
3245 preempt_disable();
3246 ret = num_online_cpus() <= 1;
3247 preempt_enable();
3248 return ret;
6d813391
PM
3249}
3250
6ebb237b
PM
3251/**
3252 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3253 *
3254 * Control will return to the caller some time after a full rcu-sched
3255 * grace period has elapsed, in other words after all currently executing
3256 * rcu-sched read-side critical sections have completed. These read-side
3257 * critical sections are delimited by rcu_read_lock_sched() and
3258 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3259 * local_irq_disable(), and so on may be used in place of
3260 * rcu_read_lock_sched().
3261 *
3262 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
3263 * non-threaded hardware-interrupt handlers, in progress on entry will
3264 * have completed before this primitive returns. However, this does not
3265 * guarantee that softirq handlers will have completed, since in some
3266 * kernels, these handlers can run in process context, and can block.
3267 *
3268 * Note that this guarantee implies further memory-ordering guarantees.
3269 * On systems with more than one CPU, when synchronize_sched() returns,
3270 * each CPU is guaranteed to have executed a full memory barrier since the
3271 * end of its last RCU-sched read-side critical section whose beginning
3272 * preceded the call to synchronize_sched(). In addition, each CPU having
3273 * an RCU read-side critical section that extends beyond the return from
3274 * synchronize_sched() is guaranteed to have executed a full memory barrier
3275 * after the beginning of synchronize_sched() and before the beginning of
3276 * that RCU read-side critical section. Note that these guarantees include
3277 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3278 * that are executing in the kernel.
3279 *
3280 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3281 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3282 * to have executed a full memory barrier during the execution of
3283 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3284 * again only if the system has more than one CPU).
6ebb237b
PM
3285 */
3286void synchronize_sched(void)
3287{
f78f5b90
PM
3288 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3289 lock_is_held(&rcu_lock_map) ||
3290 lock_is_held(&rcu_sched_lock_map),
3291 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
3292 if (rcu_blocking_is_gp())
3293 return;
5afff48b 3294 if (rcu_gp_is_expedited())
3705b88d
AM
3295 synchronize_sched_expedited();
3296 else
3297 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
3298}
3299EXPORT_SYMBOL_GPL(synchronize_sched);
3300
3301/**
3302 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3303 *
3304 * Control will return to the caller some time after a full rcu_bh grace
3305 * period has elapsed, in other words after all currently executing rcu_bh
3306 * read-side critical sections have completed. RCU read-side critical
3307 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3308 * and may be nested.
f0a0e6f2
PM
3309 *
3310 * See the description of synchronize_sched() for more detailed information
3311 * on memory ordering guarantees.
6ebb237b
PM
3312 */
3313void synchronize_rcu_bh(void)
3314{
f78f5b90
PM
3315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3316 lock_is_held(&rcu_lock_map) ||
3317 lock_is_held(&rcu_sched_lock_map),
3318 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
3319 if (rcu_blocking_is_gp())
3320 return;
5afff48b 3321 if (rcu_gp_is_expedited())
3705b88d
AM
3322 synchronize_rcu_bh_expedited();
3323 else
3324 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
3325}
3326EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3327
765a3f4f
PM
3328/**
3329 * get_state_synchronize_rcu - Snapshot current RCU state
3330 *
3331 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3332 * to determine whether or not a full grace period has elapsed in the
3333 * meantime.
3334 */
3335unsigned long get_state_synchronize_rcu(void)
3336{
3337 /*
3338 * Any prior manipulation of RCU-protected data must happen
3339 * before the load from ->gpnum.
3340 */
3341 smp_mb(); /* ^^^ */
3342
3343 /*
3344 * Make sure this load happens before the purportedly
3345 * time-consuming work between get_state_synchronize_rcu()
3346 * and cond_synchronize_rcu().
3347 */
e534165b 3348 return smp_load_acquire(&rcu_state_p->gpnum);
765a3f4f
PM
3349}
3350EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3351
3352/**
3353 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3354 *
3355 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3356 *
3357 * If a full RCU grace period has elapsed since the earlier call to
3358 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3359 * synchronize_rcu() to wait for a full grace period.
3360 *
3361 * Yes, this function does not take counter wrap into account. But
3362 * counter wrap is harmless. If the counter wraps, we have waited for
3363 * more than 2 billion grace periods (and way more on a 64-bit system!),
3364 * so waiting for one additional grace period should be just fine.
3365 */
3366void cond_synchronize_rcu(unsigned long oldstate)
3367{
3368 unsigned long newstate;
3369
3370 /*
3371 * Ensure that this load happens before any RCU-destructive
3372 * actions the caller might carry out after we return.
3373 */
e534165b 3374 newstate = smp_load_acquire(&rcu_state_p->completed);
765a3f4f
PM
3375 if (ULONG_CMP_GE(oldstate, newstate))
3376 synchronize_rcu();
3377}
3378EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3379
24560056
PM
3380/**
3381 * get_state_synchronize_sched - Snapshot current RCU-sched state
3382 *
3383 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3384 * to determine whether or not a full grace period has elapsed in the
3385 * meantime.
3386 */
3387unsigned long get_state_synchronize_sched(void)
3388{
3389 /*
3390 * Any prior manipulation of RCU-protected data must happen
3391 * before the load from ->gpnum.
3392 */
3393 smp_mb(); /* ^^^ */
3394
3395 /*
3396 * Make sure this load happens before the purportedly
3397 * time-consuming work between get_state_synchronize_sched()
3398 * and cond_synchronize_sched().
3399 */
3400 return smp_load_acquire(&rcu_sched_state.gpnum);
3401}
3402EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3403
3404/**
3405 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3406 *
3407 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3408 *
3409 * If a full RCU-sched grace period has elapsed since the earlier call to
3410 * get_state_synchronize_sched(), just return. Otherwise, invoke
3411 * synchronize_sched() to wait for a full grace period.
3412 *
3413 * Yes, this function does not take counter wrap into account. But
3414 * counter wrap is harmless. If the counter wraps, we have waited for
3415 * more than 2 billion grace periods (and way more on a 64-bit system!),
3416 * so waiting for one additional grace period should be just fine.
3417 */
3418void cond_synchronize_sched(unsigned long oldstate)
3419{
3420 unsigned long newstate;
3421
3422 /*
3423 * Ensure that this load happens before any RCU-destructive
3424 * actions the caller might carry out after we return.
3425 */
3426 newstate = smp_load_acquire(&rcu_sched_state.completed);
3427 if (ULONG_CMP_GE(oldstate, newstate))
3428 synchronize_sched();
3429}
3430EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3431
64db4cff
PM
3432/*
3433 * Check to see if there is any immediate RCU-related work to be done
3434 * by the current CPU, for the specified type of RCU, returning 1 if so.
3435 * The checks are in order of increasing expense: checks that can be
3436 * carried out against CPU-local state are performed first. However,
3437 * we must check for CPU stalls first, else we might not get a chance.
3438 */
3439static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3440{
2f51f988
PM
3441 struct rcu_node *rnp = rdp->mynode;
3442
64db4cff
PM
3443 rdp->n_rcu_pending++;
3444
3445 /* Check for CPU stalls, if enabled. */
3446 check_cpu_stall(rsp, rdp);
3447
a096932f
PM
3448 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3449 if (rcu_nohz_full_cpu(rsp))
3450 return 0;
3451
64db4cff 3452 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73 3453 if (rcu_scheduler_fully_active &&
5b74c458 3454 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
9577df9a 3455 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
97c668b8 3456 rdp->n_rp_core_needs_qs++;
3a19b46a 3457 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
d21670ac 3458 rdp->n_rp_report_qs++;
64db4cff 3459 return 1;
7ba5c840 3460 }
64db4cff
PM
3461
3462 /* Does this CPU have callbacks ready to invoke? */
15fecf89 3463 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
7ba5c840 3464 rdp->n_rp_cb_ready++;
64db4cff 3465 return 1;
7ba5c840 3466 }
64db4cff
PM
3467
3468 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
3469 if (cpu_needs_another_gp(rsp, rdp)) {
3470 rdp->n_rp_cpu_needs_gp++;
64db4cff 3471 return 1;
7ba5c840 3472 }
64db4cff
PM
3473
3474 /* Has another RCU grace period completed? */
7d0ae808 3475 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 3476 rdp->n_rp_gp_completed++;
64db4cff 3477 return 1;
7ba5c840 3478 }
64db4cff
PM
3479
3480 /* Has a new RCU grace period started? */
7d0ae808
PM
3481 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3482 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
7ba5c840 3483 rdp->n_rp_gp_started++;
64db4cff 3484 return 1;
7ba5c840 3485 }
64db4cff 3486
96d3fd0d
PM
3487 /* Does this CPU need a deferred NOCB wakeup? */
3488 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3489 rdp->n_rp_nocb_defer_wakeup++;
3490 return 1;
3491 }
3492
64db4cff 3493 /* nothing to do */
7ba5c840 3494 rdp->n_rp_need_nothing++;
64db4cff
PM
3495 return 0;
3496}
3497
3498/*
3499 * Check to see if there is any immediate RCU-related work to be done
3500 * by the current CPU, returning 1 if so. This function is part of the
3501 * RCU implementation; it is -not- an exported member of the RCU API.
3502 */
e3950ecd 3503static int rcu_pending(void)
64db4cff 3504{
6ce75a23
PM
3505 struct rcu_state *rsp;
3506
3507 for_each_rcu_flavor(rsp)
e3950ecd 3508 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
6ce75a23
PM
3509 return 1;
3510 return 0;
64db4cff
PM
3511}
3512
3513/*
c0f4dfd4
PM
3514 * Return true if the specified CPU has any callback. If all_lazy is
3515 * non-NULL, store an indication of whether all callbacks are lazy.
3516 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 3517 */
82072c4f 3518static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
64db4cff 3519{
c0f4dfd4
PM
3520 bool al = true;
3521 bool hc = false;
3522 struct rcu_data *rdp;
6ce75a23
PM
3523 struct rcu_state *rsp;
3524
c0f4dfd4 3525 for_each_rcu_flavor(rsp) {
aa6da514 3526 rdp = this_cpu_ptr(rsp->rda);
15fecf89 3527 if (rcu_segcblist_empty(&rdp->cblist))
69c8d28c
PM
3528 continue;
3529 hc = true;
15fecf89 3530 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
c0f4dfd4 3531 al = false;
69c8d28c
PM
3532 break;
3533 }
c0f4dfd4
PM
3534 }
3535 if (all_lazy)
3536 *all_lazy = al;
3537 return hc;
64db4cff
PM
3538}
3539
a83eff0a
PM
3540/*
3541 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3542 * the compiler is expected to optimize this away.
3543 */
e66c33d5 3544static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
3545 int cpu, unsigned long done)
3546{
3547 trace_rcu_barrier(rsp->name, s, cpu,
3548 atomic_read(&rsp->barrier_cpu_count), done);
3549}
3550
b1420f1c
PM
3551/*
3552 * RCU callback function for _rcu_barrier(). If we are last, wake
3553 * up the task executing _rcu_barrier().
3554 */
24ebbca8 3555static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3556{
24ebbca8
PM
3557 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3558 struct rcu_state *rsp = rdp->rsp;
3559
a83eff0a 3560 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
4f525a52 3561 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
7db74df8 3562 complete(&rsp->barrier_completion);
a83eff0a 3563 } else {
4f525a52 3564 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
a83eff0a 3565 }
d0ec774c
PM
3566}
3567
3568/*
3569 * Called with preemption disabled, and from cross-cpu IRQ context.
3570 */
3571static void rcu_barrier_func(void *type)
3572{
037b64ed 3573 struct rcu_state *rsp = type;
fa07a58f 3574 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
d0ec774c 3575
4f525a52 3576 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
f92c734f
PM
3577 rdp->barrier_head.func = rcu_barrier_callback;
3578 debug_rcu_head_queue(&rdp->barrier_head);
3579 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3580 atomic_inc(&rsp->barrier_cpu_count);
3581 } else {
3582 debug_rcu_head_unqueue(&rdp->barrier_head);
3583 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3584 }
d0ec774c
PM
3585}
3586
d0ec774c
PM
3587/*
3588 * Orchestrate the specified type of RCU barrier, waiting for all
3589 * RCU callbacks of the specified type to complete.
3590 */
037b64ed 3591static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 3592{
b1420f1c 3593 int cpu;
b1420f1c 3594 struct rcu_data *rdp;
4f525a52 3595 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
b1420f1c 3596
4f525a52 3597 _rcu_barrier_trace(rsp, "Begin", -1, s);
b1420f1c 3598
e74f4c45 3599 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 3600 mutex_lock(&rsp->barrier_mutex);
b1420f1c 3601
4f525a52
PM
3602 /* Did someone else do our work for us? */
3603 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3604 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
cf3a9c48
PM
3605 smp_mb(); /* caller's subsequent code after above check. */
3606 mutex_unlock(&rsp->barrier_mutex);
3607 return;
3608 }
3609
4f525a52
PM
3610 /* Mark the start of the barrier operation. */
3611 rcu_seq_start(&rsp->barrier_sequence);
3612 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
b1420f1c 3613
d0ec774c 3614 /*
b1420f1c
PM
3615 * Initialize the count to one rather than to zero in order to
3616 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
3617 * (or preemption of this task). Exclude CPU-hotplug operations
3618 * to ensure that no offline CPU has callbacks queued.
d0ec774c 3619 */
7db74df8 3620 init_completion(&rsp->barrier_completion);
24ebbca8 3621 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 3622 get_online_cpus();
b1420f1c
PM
3623
3624 /*
1331e7a1
PM
3625 * Force each CPU with callbacks to register a new callback.
3626 * When that callback is invoked, we will know that all of the
3627 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3628 */
3fbfbf7a 3629 for_each_possible_cpu(cpu) {
d1e43fa5 3630 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 3631 continue;
b1420f1c 3632 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 3633 if (rcu_is_nocb_cpu(cpu)) {
d7e29933
PM
3634 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3635 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
4f525a52 3636 rsp->barrier_sequence);
d7e29933
PM
3637 } else {
3638 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
4f525a52 3639 rsp->barrier_sequence);
41050a00 3640 smp_mb__before_atomic();
d7e29933
PM
3641 atomic_inc(&rsp->barrier_cpu_count);
3642 __call_rcu(&rdp->barrier_head,
3643 rcu_barrier_callback, rsp, cpu, 0);
3644 }
15fecf89 3645 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
a83eff0a 3646 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
4f525a52 3647 rsp->barrier_sequence);
037b64ed 3648 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 3649 } else {
a83eff0a 3650 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
4f525a52 3651 rsp->barrier_sequence);
b1420f1c
PM
3652 }
3653 }
1331e7a1 3654 put_online_cpus();
b1420f1c
PM
3655
3656 /*
3657 * Now that we have an rcu_barrier_callback() callback on each
3658 * CPU, and thus each counted, remove the initial count.
3659 */
24ebbca8 3660 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 3661 complete(&rsp->barrier_completion);
b1420f1c
PM
3662
3663 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 3664 wait_for_completion(&rsp->barrier_completion);
b1420f1c 3665
4f525a52
PM
3666 /* Mark the end of the barrier operation. */
3667 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3668 rcu_seq_end(&rsp->barrier_sequence);
3669
b1420f1c 3670 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 3671 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 3672}
d0ec774c
PM
3673
3674/**
3675 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3676 */
3677void rcu_barrier_bh(void)
3678{
037b64ed 3679 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
3680}
3681EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3682
3683/**
3684 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3685 */
3686void rcu_barrier_sched(void)
3687{
037b64ed 3688 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
3689}
3690EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3691
0aa04b05
PM
3692/*
3693 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3694 * first CPU in a given leaf rcu_node structure coming online. The caller
3695 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3696 * disabled.
3697 */
3698static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3699{
3700 long mask;
3701 struct rcu_node *rnp = rnp_leaf;
3702
3703 for (;;) {
3704 mask = rnp->grpmask;
3705 rnp = rnp->parent;
3706 if (rnp == NULL)
3707 return;
6cf10081 3708 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
0aa04b05 3709 rnp->qsmaskinit |= mask;
67c583a7 3710 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
0aa04b05
PM
3711 }
3712}
3713
64db4cff 3714/*
27569620 3715 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3716 */
27569620
PM
3717static void __init
3718rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3719{
3720 unsigned long flags;
394f99a9 3721 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
3722 struct rcu_node *rnp = rcu_get_root(rsp);
3723
3724 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3725 raw_spin_lock_irqsave_rcu_node(rnp, flags);
bc75e999 3726 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
27569620 3727 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 3728 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
02a5c550 3729 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
27569620 3730 rdp->cpu = cpu;
d4c08f2a 3731 rdp->rsp = rsp;
3fbfbf7a 3732 rcu_boot_init_nocb_percpu_data(rdp);
67c583a7 3733 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27569620
PM
3734}
3735
3736/*
3737 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3738 * offline event can be happening at a given time. Note also that we
3739 * can accept some slop in the rsp->completed access due to the fact
3740 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 3741 */
49fb4c62 3742static void
9b67122a 3743rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
3744{
3745 unsigned long flags;
394f99a9 3746 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
3747 struct rcu_node *rnp = rcu_get_root(rsp);
3748
3749 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3750 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56
PM
3751 rdp->qlen_last_fqs_check = 0;
3752 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 3753 rdp->blimit = blimit;
15fecf89
PM
3754 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3755 !init_nocb_callback_list(rdp))
3756 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
29e37d81 3757 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
2333210b 3758 rcu_sysidle_init_percpu_data(rdp->dynticks);
2625d469 3759 rcu_dynticks_eqs_online();
67c583a7 3760 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3761
0aa04b05
PM
3762 /*
3763 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3764 * propagation up the rcu_node tree will happen at the beginning
3765 * of the next grace period.
3766 */
64db4cff 3767 rnp = rdp->mynode;
2a67e741 3768 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94
PM
3769 if (!rdp->beenonline)
3770 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3771 rdp->beenonline = true; /* We have now been online. */
0aa04b05
PM
3772 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3773 rdp->completed = rnp->completed;
5b74c458 3774 rdp->cpu_no_qs.b.norm = true;
9577df9a 3775 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
97c668b8 3776 rdp->core_needs_qs = false;
0aa04b05 3777 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
67c583a7 3778 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
3779}
3780
deb34f36
PM
3781/*
3782 * Invoked early in the CPU-online process, when pretty much all
3783 * services are available. The incoming CPU is not present.
3784 */
4df83742 3785int rcutree_prepare_cpu(unsigned int cpu)
64db4cff 3786{
6ce75a23
PM
3787 struct rcu_state *rsp;
3788
3789 for_each_rcu_flavor(rsp)
9b67122a 3790 rcu_init_percpu_data(cpu, rsp);
4df83742
TG
3791
3792 rcu_prepare_kthreads(cpu);
3793 rcu_spawn_all_nocb_kthreads(cpu);
3794
3795 return 0;
3796}
3797
deb34f36
PM
3798/*
3799 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3800 */
4df83742
TG
3801static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3802{
3803 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3804
3805 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3806}
3807
deb34f36
PM
3808/*
3809 * Near the end of the CPU-online process. Pretty much all services
3810 * enabled, and the CPU is now very much alive.
3811 */
4df83742
TG
3812int rcutree_online_cpu(unsigned int cpu)
3813{
3814 sync_sched_exp_online_cleanup(cpu);
3815 rcutree_affinity_setting(cpu, -1);
da915ad5
PM
3816 if (IS_ENABLED(CONFIG_TREE_SRCU))
3817 srcu_online_cpu(cpu);
4df83742
TG
3818 return 0;
3819}
3820
deb34f36
PM
3821/*
3822 * Near the beginning of the process. The CPU is still very much alive
3823 * with pretty much all services enabled.
3824 */
4df83742
TG
3825int rcutree_offline_cpu(unsigned int cpu)
3826{
3827 rcutree_affinity_setting(cpu, cpu);
da915ad5
PM
3828 if (IS_ENABLED(CONFIG_TREE_SRCU))
3829 srcu_offline_cpu(cpu);
4df83742
TG
3830 return 0;
3831}
3832
deb34f36
PM
3833/*
3834 * Near the end of the offline process. We do only tracing here.
3835 */
4df83742
TG
3836int rcutree_dying_cpu(unsigned int cpu)
3837{
3838 struct rcu_state *rsp;
3839
3840 for_each_rcu_flavor(rsp)
3841 rcu_cleanup_dying_cpu(rsp);
3842 return 0;
3843}
3844
deb34f36
PM
3845/*
3846 * The outgoing CPU is gone and we are running elsewhere.
3847 */
4df83742
TG
3848int rcutree_dead_cpu(unsigned int cpu)
3849{
3850 struct rcu_state *rsp;
3851
3852 for_each_rcu_flavor(rsp) {
3853 rcu_cleanup_dead_cpu(cpu, rsp);
3854 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3855 }
3856 return 0;
64db4cff
PM
3857}
3858
7ec99de3
PM
3859/*
3860 * Mark the specified CPU as being online so that subsequent grace periods
3861 * (both expedited and normal) will wait on it. Note that this means that
3862 * incoming CPUs are not allowed to use RCU read-side critical sections
3863 * until this function is called. Failing to observe this restriction
3864 * will result in lockdep splats.
deb34f36
PM
3865 *
3866 * Note that this function is special in that it is invoked directly
3867 * from the incoming CPU rather than from the cpuhp_step mechanism.
3868 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3869 */
3870void rcu_cpu_starting(unsigned int cpu)
3871{
3872 unsigned long flags;
3873 unsigned long mask;
3874 struct rcu_data *rdp;
3875 struct rcu_node *rnp;
3876 struct rcu_state *rsp;
3877
3878 for_each_rcu_flavor(rsp) {
fdbb9b31 3879 rdp = per_cpu_ptr(rsp->rda, cpu);
7ec99de3
PM
3880 rnp = rdp->mynode;
3881 mask = rdp->grpmask;
3882 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3883 rnp->qsmaskinitnext |= mask;
3884 rnp->expmaskinitnext |= mask;
3885 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3886 }
3887}
3888
27d50c7e
TG
3889#ifdef CONFIG_HOTPLUG_CPU
3890/*
3891 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3892 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3893 * bit masks.
3894 */
3895static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3896{
3897 unsigned long flags;
3898 unsigned long mask;
3899 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3900 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3901
27d50c7e
TG
3902 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3903 mask = rdp->grpmask;
3904 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3905 rnp->qsmaskinitnext &= ~mask;
710d60cb 3906 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27d50c7e
TG
3907}
3908
deb34f36
PM
3909/*
3910 * The outgoing function has no further need of RCU, so remove it from
3911 * the list of CPUs that RCU must track.
3912 *
3913 * Note that this function is special in that it is invoked directly
3914 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3915 * This is because this function must be invoked at a precise location.
3916 */
27d50c7e
TG
3917void rcu_report_dead(unsigned int cpu)
3918{
3919 struct rcu_state *rsp;
3920
3921 /* QS for any half-done expedited RCU-sched GP. */
3922 preempt_disable();
3923 rcu_report_exp_rdp(&rcu_sched_state,
3924 this_cpu_ptr(rcu_sched_state.rda), true);
3925 preempt_enable();
3926 for_each_rcu_flavor(rsp)
3927 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3928}
3929#endif
3930
deb34f36
PM
3931/*
3932 * On non-huge systems, use expedited RCU grace periods to make suspend
3933 * and hibernation run faster.
3934 */
d1d74d14
BP
3935static int rcu_pm_notify(struct notifier_block *self,
3936 unsigned long action, void *hcpu)
3937{
3938 switch (action) {
3939 case PM_HIBERNATION_PREPARE:
3940 case PM_SUSPEND_PREPARE:
3941 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
5afff48b 3942 rcu_expedite_gp();
d1d74d14
BP
3943 break;
3944 case PM_POST_HIBERNATION:
3945 case PM_POST_SUSPEND:
5afff48b
PM
3946 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3947 rcu_unexpedite_gp();
d1d74d14
BP
3948 break;
3949 default:
3950 break;
3951 }
3952 return NOTIFY_OK;
3953}
3954
b3dbec76 3955/*
9386c0b7 3956 * Spawn the kthreads that handle each RCU flavor's grace periods.
b3dbec76
PM
3957 */
3958static int __init rcu_spawn_gp_kthread(void)
3959{
3960 unsigned long flags;
a94844b2 3961 int kthread_prio_in = kthread_prio;
b3dbec76
PM
3962 struct rcu_node *rnp;
3963 struct rcu_state *rsp;
a94844b2 3964 struct sched_param sp;
b3dbec76
PM
3965 struct task_struct *t;
3966
a94844b2
PM
3967 /* Force priority into range. */
3968 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3969 kthread_prio = 1;
3970 else if (kthread_prio < 0)
3971 kthread_prio = 0;
3972 else if (kthread_prio > 99)
3973 kthread_prio = 99;
3974 if (kthread_prio != kthread_prio_in)
3975 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3976 kthread_prio, kthread_prio_in);
3977
9386c0b7 3978 rcu_scheduler_fully_active = 1;
b3dbec76 3979 for_each_rcu_flavor(rsp) {
a94844b2 3980 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3981 BUG_ON(IS_ERR(t));
3982 rnp = rcu_get_root(rsp);
6cf10081 3983 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b3dbec76 3984 rsp->gp_kthread = t;
a94844b2
PM
3985 if (kthread_prio) {
3986 sp.sched_priority = kthread_prio;
3987 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3988 }
67c583a7 3989 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
e11f1335 3990 wake_up_process(t);
b3dbec76 3991 }
35ce7f29 3992 rcu_spawn_nocb_kthreads();
9386c0b7 3993 rcu_spawn_boost_kthreads();
b3dbec76
PM
3994 return 0;
3995}
3996early_initcall(rcu_spawn_gp_kthread);
3997
bbad9379 3998/*
52d7e48b
PM
3999 * This function is invoked towards the end of the scheduler's
4000 * initialization process. Before this is called, the idle task might
4001 * contain synchronous grace-period primitives (during which time, this idle
4002 * task is booting the system, and such primitives are no-ops). After this
4003 * function is called, any synchronous grace-period primitives are run as
4004 * expedited, with the requesting task driving the grace period forward.
900b1028 4005 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4006 * runtime RCU functionality.
bbad9379
PM
4007 */
4008void rcu_scheduler_starting(void)
4009{
4010 WARN_ON(num_online_cpus() != 1);
4011 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4012 rcu_test_sync_prims();
4013 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4014 rcu_test_sync_prims();
bbad9379
PM
4015}
4016
64db4cff
PM
4017/*
4018 * Helper function for rcu_init() that initializes one rcu_state structure.
4019 */
a87f203e 4020static void __init rcu_init_one(struct rcu_state *rsp)
64db4cff 4021{
cb007102
AG
4022 static const char * const buf[] = RCU_NODE_NAME_INIT;
4023 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4024 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4025 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4026
199977bf 4027 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4028 int cpustride = 1;
4029 int i;
4030 int j;
4031 struct rcu_node *rnp;
4032
05b84aec 4033 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4034
3eaaaf6c
PM
4035 /* Silence gcc 4.8 false positive about array index out of range. */
4036 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4037 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4038
64db4cff
PM
4039 /* Initialize the level-tracking arrays. */
4040
f885b7f2 4041 for (i = 1; i < rcu_num_lvls; i++)
41f5c631
PM
4042 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4043 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4044
4045 /* Initialize the elements themselves, starting from the leaves. */
4046
f885b7f2 4047 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4048 cpustride *= levelspread[i];
64db4cff 4049 rnp = rsp->level[i];
41f5c631 4050 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4051 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4052 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4053 &rcu_node_class[i], buf[i]);
394f2769
PM
4054 raw_spin_lock_init(&rnp->fqslock);
4055 lockdep_set_class_and_name(&rnp->fqslock,
4056 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
4057 rnp->gpnum = rsp->gpnum;
4058 rnp->completed = rsp->completed;
64db4cff
PM
4059 rnp->qsmask = 0;
4060 rnp->qsmaskinit = 0;
4061 rnp->grplo = j * cpustride;
4062 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4063 if (rnp->grphi >= nr_cpu_ids)
4064 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4065 if (i == 0) {
4066 rnp->grpnum = 0;
4067 rnp->grpmask = 0;
4068 rnp->parent = NULL;
4069 } else {
199977bf 4070 rnp->grpnum = j % levelspread[i - 1];
64db4cff
PM
4071 rnp->grpmask = 1UL << rnp->grpnum;
4072 rnp->parent = rsp->level[i - 1] +
199977bf 4073 j / levelspread[i - 1];
64db4cff
PM
4074 }
4075 rnp->level = i;
12f5f524 4076 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4077 rcu_init_one_nocb(rnp);
f6a12f34
PM
4078 init_waitqueue_head(&rnp->exp_wq[0]);
4079 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4080 init_waitqueue_head(&rnp->exp_wq[2]);
4081 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4082 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4083 }
4084 }
0c34029a 4085
abedf8e2
PG
4086 init_swait_queue_head(&rsp->gp_wq);
4087 init_swait_queue_head(&rsp->expedited_wq);
f885b7f2 4088 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 4089 for_each_possible_cpu(i) {
4a90a068 4090 while (i > rnp->grphi)
0c34029a 4091 rnp++;
394f99a9 4092 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
4093 rcu_boot_init_percpu_data(i, rsp);
4094 }
6ce75a23 4095 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
4096}
4097
f885b7f2
PM
4098/*
4099 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4100 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4101 * the ->node array in the rcu_state structure.
4102 */
4103static void __init rcu_init_geometry(void)
4104{
026ad283 4105 ulong d;
f885b7f2 4106 int i;
05b84aec 4107 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4108
026ad283
PM
4109 /*
4110 * Initialize any unspecified boot parameters.
4111 * The default values of jiffies_till_first_fqs and
4112 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4113 * value, which is a function of HZ, then adding one for each
4114 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4115 */
4116 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4117 if (jiffies_till_first_fqs == ULONG_MAX)
4118 jiffies_till_first_fqs = d;
4119 if (jiffies_till_next_fqs == ULONG_MAX)
4120 jiffies_till_next_fqs = d;
4121
f885b7f2 4122 /* If the compile-time values are accurate, just leave. */
47d631af 4123 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4124 nr_cpu_ids == NR_CPUS)
f885b7f2 4125 return;
39479098
PM
4126 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4127 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4128
f885b7f2 4129 /*
ee968ac6
PM
4130 * The boot-time rcu_fanout_leaf parameter must be at least two
4131 * and cannot exceed the number of bits in the rcu_node masks.
4132 * Complain and fall back to the compile-time values if this
4133 * limit is exceeded.
f885b7f2 4134 */
ee968ac6 4135 if (rcu_fanout_leaf < 2 ||
75cf15a4 4136 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4137 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4138 WARN_ON(1);
4139 return;
4140 }
4141
f885b7f2
PM
4142 /*
4143 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4144 * with the given number of levels.
f885b7f2 4145 */
9618138b 4146 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4147 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4148 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4149
4150 /*
75cf15a4 4151 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4152 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4153 */
ee968ac6
PM
4154 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4155 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4156 WARN_ON(1);
4157 return;
4158 }
f885b7f2 4159
679f9858 4160 /* Calculate the number of levels in the tree. */
9618138b 4161 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4162 }
9618138b 4163 rcu_num_lvls = i + 1;
679f9858 4164
f885b7f2 4165 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4166 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4167 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4168 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4169 }
f885b7f2
PM
4170
4171 /* Calculate the total number of rcu_node structures. */
4172 rcu_num_nodes = 0;
679f9858 4173 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4174 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4175}
4176
a3dc2948
PM
4177/*
4178 * Dump out the structure of the rcu_node combining tree associated
4179 * with the rcu_state structure referenced by rsp.
4180 */
4181static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4182{
4183 int level = 0;
4184 struct rcu_node *rnp;
4185
4186 pr_info("rcu_node tree layout dump\n");
4187 pr_info(" ");
4188 rcu_for_each_node_breadth_first(rsp, rnp) {
4189 if (rnp->level != level) {
4190 pr_cont("\n");
4191 pr_info(" ");
4192 level = rnp->level;
4193 }
4194 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4195 }
4196 pr_cont("\n");
4197}
4198
9f680ab4 4199void __init rcu_init(void)
64db4cff 4200{
017c4261 4201 int cpu;
9f680ab4 4202
47627678
PM
4203 rcu_early_boot_tests();
4204
f41d911f 4205 rcu_bootup_announce();
f885b7f2 4206 rcu_init_geometry();
a87f203e
PM
4207 rcu_init_one(&rcu_bh_state);
4208 rcu_init_one(&rcu_sched_state);
a3dc2948
PM
4209 if (dump_tree)
4210 rcu_dump_rcu_node_tree(&rcu_sched_state);
f41d911f 4211 __rcu_init_preempt();
b5b39360 4212 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
4213
4214 /*
4215 * We don't need protection against CPU-hotplug here because
4216 * this is called early in boot, before either interrupts
4217 * or the scheduler are operational.
4218 */
d1d74d14 4219 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4220 for_each_online_cpu(cpu) {
4df83742 4221 rcutree_prepare_cpu(cpu);
7ec99de3 4222 rcu_cpu_starting(cpu);
da915ad5
PM
4223 if (IS_ENABLED(CONFIG_TREE_SRCU))
4224 srcu_online_cpu(cpu);
7ec99de3 4225 }
64db4cff
PM
4226}
4227
3549c2bc 4228#include "tree_exp.h"
4102adab 4229#include "tree_plugin.h"