]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/rcu/tree_plugin.h
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
b17b0153 30#include <linux/sched/debug.h>
62ab7072 31#include <linux/smpboot.h>
78634061 32#include <linux/sched/isolation.h>
ae7e81c0 33#include <uapi/linux/sched/types.h>
4102adab 34#include "../time/tick-internal.h"
f41d911f 35
5b61b0ba 36#ifdef CONFIG_RCU_BOOST
61cfd097 37
abaa93d9 38#include "../locking/rtmutex_common.h"
21871d7e 39
61cfd097
PM
40/*
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
43 */
44static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
727b705b
PM
49#else /* #ifdef CONFIG_RCU_BOOST */
50
51/*
52 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
53 * all uses are in dead code. Provide a definition to keep the compiler
54 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
55 * This probably needs to be excluded from -rt builds.
56 */
57#define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
b8869781 58#define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
727b705b
PM
59
60#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 61
3fbfbf7a
PM
62#ifdef CONFIG_RCU_NOCB_CPU
63static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
64static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 65static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
66#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
67
26845c28
PM
68/*
69 * Check the RCU kernel configuration parameters and print informative
699d4035 70 * messages about anything out of the ordinary.
26845c28
PM
71 */
72static void __init rcu_bootup_announce_oddness(void)
73{
ab6f5bd6 74 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 75 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
76 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
77 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
ab6f5bd6 78 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
05c5df31 79 RCU_FANOUT);
7fa27001 80 if (rcu_fanout_exact)
ab6f5bd6
PM
81 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
82 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
83 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 84 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 85 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
86 if (RCU_NUM_LVLS >= 4)
87 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 88 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 89 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
90 RCU_FANOUT_LEAF);
91 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
9a5739d7 92 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 93 if (nr_cpu_ids != NR_CPUS)
9b130ad5 94 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b
PM
95#ifdef CONFIG_RCU_BOOST
96 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
97#endif
98 if (blimit != DEFAULT_RCU_BLIMIT)
99 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
100 if (qhimark != DEFAULT_RCU_QHIMARK)
101 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
102 if (qlowmark != DEFAULT_RCU_QLOMARK)
103 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
104 if (jiffies_till_first_fqs != ULONG_MAX)
105 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
106 if (jiffies_till_next_fqs != ULONG_MAX)
107 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
108 if (rcu_kick_kthreads)
109 pr_info("\tKick kthreads if too-long grace period.\n");
110 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
111 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 112 if (gp_preinit_delay)
17c7798b 113 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 114 if (gp_init_delay)
17c7798b 115 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 116 if (gp_cleanup_delay)
17c7798b
PM
117 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
118 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
119 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 120 rcupdate_announce_bootup_oddness();
26845c28
PM
121}
122
28f6569a 123#ifdef CONFIG_PREEMPT_RCU
f41d911f 124
a41bfeb2 125RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
b28a7c01 126static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
2927a689 127static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
f41d911f 128
d19fb8d1
PM
129static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
130 bool wake);
d9a3da06 131
f41d911f
PM
132/*
133 * Tell them what RCU they are running.
134 */
0e0fc1c2 135static void __init rcu_bootup_announce(void)
f41d911f 136{
efc151c3 137 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 138 rcu_bootup_announce_oddness();
f41d911f
PM
139}
140
8203d6d0
PM
141/* Flags for rcu_preempt_ctxt_queue() decision table. */
142#define RCU_GP_TASKS 0x8
143#define RCU_EXP_TASKS 0x4
144#define RCU_GP_BLKD 0x2
145#define RCU_EXP_BLKD 0x1
146
147/*
148 * Queues a task preempted within an RCU-preempt read-side critical
149 * section into the appropriate location within the ->blkd_tasks list,
150 * depending on the states of any ongoing normal and expedited grace
151 * periods. The ->gp_tasks pointer indicates which element the normal
152 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
153 * indicates which element the expedited grace period is waiting on (again,
154 * NULL if none). If a grace period is waiting on a given element in the
155 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
156 * adding a task to the tail of the list blocks any grace period that is
157 * already waiting on one of the elements. In contrast, adding a task
158 * to the head of the list won't block any grace period that is already
159 * waiting on one of the elements.
160 *
161 * This queuing is imprecise, and can sometimes make an ongoing grace
162 * period wait for a task that is not strictly speaking blocking it.
163 * Given the choice, we needlessly block a normal grace period rather than
164 * blocking an expedited grace period.
165 *
166 * Note that an endless sequence of expedited grace periods still cannot
167 * indefinitely postpone a normal grace period. Eventually, all of the
168 * fixed number of preempted tasks blocking the normal grace period that are
169 * not also blocking the expedited grace period will resume and complete
170 * their RCU read-side critical sections. At that point, the ->gp_tasks
171 * pointer will equal the ->exp_tasks pointer, at which point the end of
172 * the corresponding expedited grace period will also be the end of the
173 * normal grace period.
174 */
46a5d164
PM
175static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
176 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
177{
178 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
179 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
180 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
181 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
182 struct task_struct *t = current;
183
ea9b0c8a 184 lockdep_assert_held(&rnp->lock);
2dee9404
PM
185 WARN_ON_ONCE(rdp->mynode != rnp);
186 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
ea9b0c8a 187
8203d6d0
PM
188 /*
189 * Decide where to queue the newly blocked task. In theory,
190 * this could be an if-statement. In practice, when I tried
191 * that, it was quite messy.
192 */
193 switch (blkd_state) {
194 case 0:
195 case RCU_EXP_TASKS:
196 case RCU_EXP_TASKS + RCU_GP_BLKD:
197 case RCU_GP_TASKS:
198 case RCU_GP_TASKS + RCU_EXP_TASKS:
199
200 /*
201 * Blocking neither GP, or first task blocking the normal
202 * GP but not blocking the already-waiting expedited GP.
203 * Queue at the head of the list to avoid unnecessarily
204 * blocking the already-waiting GPs.
205 */
206 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
207 break;
208
209 case RCU_EXP_BLKD:
210 case RCU_GP_BLKD:
211 case RCU_GP_BLKD + RCU_EXP_BLKD:
212 case RCU_GP_TASKS + RCU_EXP_BLKD:
213 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
214 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
215
216 /*
217 * First task arriving that blocks either GP, or first task
218 * arriving that blocks the expedited GP (with the normal
219 * GP already waiting), or a task arriving that blocks
220 * both GPs with both GPs already waiting. Queue at the
221 * tail of the list to avoid any GP waiting on any of the
222 * already queued tasks that are not blocking it.
223 */
224 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
225 break;
226
227 case RCU_EXP_TASKS + RCU_EXP_BLKD:
228 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
229 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
230
231 /*
232 * Second or subsequent task blocking the expedited GP.
233 * The task either does not block the normal GP, or is the
234 * first task blocking the normal GP. Queue just after
235 * the first task blocking the expedited GP.
236 */
237 list_add(&t->rcu_node_entry, rnp->exp_tasks);
238 break;
239
240 case RCU_GP_TASKS + RCU_GP_BLKD:
241 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
242
243 /*
244 * Second or subsequent task blocking the normal GP.
245 * The task does not block the expedited GP. Queue just
246 * after the first task blocking the normal GP.
247 */
248 list_add(&t->rcu_node_entry, rnp->gp_tasks);
249 break;
250
251 default:
252
253 /* Yet another exercise in excessive paranoia. */
254 WARN_ON_ONCE(1);
255 break;
256 }
257
258 /*
259 * We have now queued the task. If it was the first one to
260 * block either grace period, update the ->gp_tasks and/or
261 * ->exp_tasks pointers, respectively, to reference the newly
262 * blocked tasks.
263 */
264 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
265 rnp->gp_tasks = &t->rcu_node_entry;
266 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
267 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
268 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
269 !(rnp->qsmask & rdp->grpmask));
270 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
271 !(rnp->expmask & rdp->grpmask));
67c583a7 272 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
273
274 /*
275 * Report the quiescent state for the expedited GP. This expedited
276 * GP should not be able to end until we report, so there should be
277 * no need to check for a subsequent expedited GP. (Though we are
278 * still in a quiescent state in any case.)
279 */
280 if (blkd_state & RCU_EXP_BLKD &&
281 t->rcu_read_unlock_special.b.exp_need_qs) {
282 t->rcu_read_unlock_special.b.exp_need_qs = false;
283 rcu_report_exp_rdp(rdp->rsp, rdp, true);
284 } else {
285 WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
286 }
8203d6d0
PM
287}
288
f41d911f 289/*
6cc68793 290 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
291 * that this just means that the task currently running on the CPU is
292 * not in a quiescent state. There might be any number of tasks blocked
293 * while in an RCU read-side critical section.
25502a6c 294 *
1d082fd0
PM
295 * As with the other rcu_*_qs() functions, callers to this function
296 * must disable preemption.
f41d911f 297 */
284a8c93 298static void rcu_preempt_qs(void)
f41d911f 299{
ea9b0c8a 300 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
5b74c458 301 if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
284a8c93 302 trace_rcu_grace_period(TPS("rcu_preempt"),
2927a689 303 __this_cpu_read(rcu_data_p->gpnum),
284a8c93 304 TPS("cpuqs"));
5b74c458 305 __this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
284a8c93
PM
306 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
307 current->rcu_read_unlock_special.b.need_qs = false;
308 }
f41d911f
PM
309}
310
311/*
c3422bea
PM
312 * We have entered the scheduler, and the current task might soon be
313 * context-switched away from. If this task is in an RCU read-side
314 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
315 * record that fact, so we enqueue the task on the blkd_tasks list.
316 * The task will dequeue itself when it exits the outermost enclosing
317 * RCU read-side critical section. Therefore, the current grace period
318 * cannot be permitted to complete until the blkd_tasks list entries
319 * predating the current grace period drain, in other words, until
320 * rnp->gp_tasks becomes NULL.
c3422bea 321 *
46a5d164 322 * Caller must disable interrupts.
f41d911f 323 */
5b72f964 324static void rcu_preempt_note_context_switch(bool preempt)
f41d911f
PM
325{
326 struct task_struct *t = current;
f41d911f
PM
327 struct rcu_data *rdp;
328 struct rcu_node *rnp;
329
b04db8e1 330 lockdep_assert_irqs_disabled();
5b72f964 331 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
10f39bb1 332 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 333 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
334
335 /* Possibly blocking in an RCU read-side critical section. */
e63c887c 336 rdp = this_cpu_ptr(rcu_state_p->rda);
f41d911f 337 rnp = rdp->mynode;
46a5d164 338 raw_spin_lock_rcu_node(rnp);
1d082fd0 339 t->rcu_read_unlock_special.b.blocked = true;
86848966 340 t->rcu_blocked_node = rnp;
f41d911f
PM
341
342 /*
8203d6d0
PM
343 * Verify the CPU's sanity, trace the preemption, and
344 * then queue the task as required based on the states
345 * of any ongoing and expedited grace periods.
f41d911f 346 */
0aa04b05 347 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 348 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
d4c08f2a
PM
349 trace_rcu_preempt_task(rdp->rsp->name,
350 t->pid,
351 (rnp->qsmask & rdp->grpmask)
352 ? rnp->gpnum
353 : rnp->gpnum + 1);
46a5d164 354 rcu_preempt_ctxt_queue(rnp, rdp);
10f39bb1 355 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 356 t->rcu_read_unlock_special.s) {
10f39bb1
PM
357
358 /*
359 * Complete exit from RCU read-side critical section on
360 * behalf of preempted instance of __rcu_read_unlock().
361 */
362 rcu_read_unlock_special(t);
f41d911f
PM
363 }
364
365 /*
366 * Either we were not in an RCU read-side critical section to
367 * begin with, or we have now recorded that critical section
368 * globally. Either way, we can now note a quiescent state
369 * for this CPU. Again, if we were in an RCU read-side critical
370 * section, and if that critical section was blocking the current
371 * grace period, then the fact that the task has been enqueued
372 * means that we continue to block the current grace period.
373 */
284a8c93 374 rcu_preempt_qs();
f41d911f
PM
375}
376
fc2219d4
PM
377/*
378 * Check for preempted RCU readers blocking the current grace period
379 * for the specified rcu_node structure. If the caller needs a reliable
380 * answer, it must hold the rcu_node's ->lock.
381 */
27f4d280 382static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 383{
12f5f524 384 return rnp->gp_tasks != NULL;
fc2219d4
PM
385}
386
12f5f524
PM
387/*
388 * Advance a ->blkd_tasks-list pointer to the next entry, instead
389 * returning NULL if at the end of the list.
390 */
391static struct list_head *rcu_next_node_entry(struct task_struct *t,
392 struct rcu_node *rnp)
393{
394 struct list_head *np;
395
396 np = t->rcu_node_entry.next;
397 if (np == &rnp->blkd_tasks)
398 np = NULL;
399 return np;
400}
401
8af3a5e7
PM
402/*
403 * Return true if the specified rcu_node structure has tasks that were
404 * preempted within an RCU read-side critical section.
405 */
406static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
407{
408 return !list_empty(&rnp->blkd_tasks);
409}
410
b668c9cf
PM
411/*
412 * Handle special cases during rcu_read_unlock(), such as needing to
413 * notify RCU core processing or task having blocked during the RCU
414 * read-side critical section.
415 */
2a3fa843 416void rcu_read_unlock_special(struct task_struct *t)
f41d911f 417{
b6a932d1
PM
418 bool empty_exp;
419 bool empty_norm;
420 bool empty_exp_now;
f41d911f 421 unsigned long flags;
12f5f524 422 struct list_head *np;
abaa93d9 423 bool drop_boost_mutex = false;
8203d6d0 424 struct rcu_data *rdp;
f41d911f 425 struct rcu_node *rnp;
1d082fd0 426 union rcu_special special;
f41d911f
PM
427
428 /* NMI handlers cannot block and cannot safely manipulate state. */
429 if (in_nmi())
430 return;
431
432 local_irq_save(flags);
433
434 /*
8203d6d0
PM
435 * If RCU core is waiting for this CPU to exit its critical section,
436 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 437 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
438 */
439 special = t->rcu_read_unlock_special;
1d082fd0 440 if (special.b.need_qs) {
284a8c93 441 rcu_preempt_qs();
c0135d07 442 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 443 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
444 local_irq_restore(flags);
445 return;
446 }
f41d911f
PM
447 }
448
8203d6d0
PM
449 /*
450 * Respond to a request for an expedited grace period, but only if
451 * we were not preempted, meaning that we were running on the same
452 * CPU throughout. If we were preempted, the exp_need_qs flag
453 * would have been cleared at the time of the first preemption,
454 * and the quiescent state would be reported when we were dequeued.
455 */
456 if (special.b.exp_need_qs) {
457 WARN_ON_ONCE(special.b.blocked);
458 t->rcu_read_unlock_special.b.exp_need_qs = false;
459 rdp = this_cpu_ptr(rcu_state_p->rda);
460 rcu_report_exp_rdp(rcu_state_p, rdp, true);
461 if (!t->rcu_read_unlock_special.s) {
462 local_irq_restore(flags);
463 return;
464 }
465 }
466
79a62f95 467 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
468 if (in_irq() || in_serving_softirq()) {
469 lockdep_rcu_suspicious(__FILE__, __LINE__,
470 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
8203d6d0 471 pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
d24209bb
PM
472 t->rcu_read_unlock_special.s,
473 t->rcu_read_unlock_special.b.blocked,
8203d6d0 474 t->rcu_read_unlock_special.b.exp_need_qs,
d24209bb 475 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
476 local_irq_restore(flags);
477 return;
478 }
479
480 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
481 if (special.b.blocked) {
482 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 483
dd5d19ba 484 /*
0a0ba1c9 485 * Remove this task from the list it blocked on. The task
8ba9153b
PM
486 * now remains queued on the rcu_node corresponding to the
487 * CPU it first blocked on, so there is no longer any need
488 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 489 */
8ba9153b
PM
490 rnp = t->rcu_blocked_node;
491 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
492 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
2dee9404 493 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
74e871ac 494 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
8203d6d0 495 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 496 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 497 np = rcu_next_node_entry(t, rnp);
f41d911f 498 list_del_init(&t->rcu_node_entry);
82e78d80 499 t->rcu_blocked_node = NULL;
f7f7bac9 500 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 501 rnp->gpnum, t->pid);
12f5f524
PM
502 if (&t->rcu_node_entry == rnp->gp_tasks)
503 rnp->gp_tasks = np;
504 if (&t->rcu_node_entry == rnp->exp_tasks)
505 rnp->exp_tasks = np;
727b705b 506 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
507 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
508 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
509 if (&t->rcu_node_entry == rnp->boost_tasks)
510 rnp->boost_tasks = np;
727b705b 511 }
f41d911f
PM
512
513 /*
514 * If this was the last task on the current list, and if
515 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
516 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
517 * so we must take a snapshot of the expedited state.
f41d911f 518 */
8203d6d0 519 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 520 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 521 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
522 rnp->gpnum,
523 0, rnp->qsmask,
524 rnp->level,
525 rnp->grplo,
526 rnp->grphi,
527 !!rnp->gp_tasks);
e63c887c 528 rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
c701d5d9 529 } else {
67c583a7 530 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 531 }
d9a3da06 532
27f4d280 533 /* Unboost if we were boosted. */
727b705b 534 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 535 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 536
d9a3da06
PM
537 /*
538 * If this was the last task on the expedited lists,
539 * then we need to report up the rcu_node hierarchy.
540 */
389abd48 541 if (!empty_exp && empty_exp_now)
e63c887c 542 rcu_report_exp_rnp(rcu_state_p, rnp, true);
b668c9cf
PM
543 } else {
544 local_irq_restore(flags);
f41d911f 545 }
f41d911f
PM
546}
547
1ed509a2
PM
548/*
549 * Dump detailed information for all tasks blocking the current RCU
550 * grace period on the specified rcu_node structure.
551 */
552static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
553{
554 unsigned long flags;
1ed509a2
PM
555 struct task_struct *t;
556
6cf10081 557 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5fd4dc06 558 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
67c583a7 559 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5fd4dc06
PM
560 return;
561 }
82efed06 562 t = list_entry(rnp->gp_tasks->prev,
12f5f524 563 struct task_struct, rcu_node_entry);
2227d91f
TH
564 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
565 /*
566 * We could be printing a lot while holding a spinlock.
567 * Avoid triggering hard lockup.
568 */
569 touch_nmi_watchdog();
12f5f524 570 sched_show_task(t);
2227d91f 571 }
67c583a7 572 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1ed509a2
PM
573}
574
575/*
576 * Dump detailed information for all tasks blocking the current RCU
577 * grace period.
578 */
579static void rcu_print_detail_task_stall(struct rcu_state *rsp)
580{
581 struct rcu_node *rnp = rcu_get_root(rsp);
582
583 rcu_print_detail_task_stall_rnp(rnp);
584 rcu_for_each_leaf_node(rsp, rnp)
585 rcu_print_detail_task_stall_rnp(rnp);
586}
587
a858af28
PM
588static void rcu_print_task_stall_begin(struct rcu_node *rnp)
589{
efc151c3 590 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
591 rnp->level, rnp->grplo, rnp->grphi);
592}
593
594static void rcu_print_task_stall_end(void)
595{
efc151c3 596 pr_cont("\n");
a858af28
PM
597}
598
f41d911f
PM
599/*
600 * Scan the current list of tasks blocked within RCU read-side critical
601 * sections, printing out the tid of each.
602 */
9bc8b558 603static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 604{
f41d911f 605 struct task_struct *t;
9bc8b558 606 int ndetected = 0;
f41d911f 607
27f4d280 608 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 609 return 0;
a858af28 610 rcu_print_task_stall_begin(rnp);
82efed06 611 t = list_entry(rnp->gp_tasks->prev,
12f5f524 612 struct task_struct, rcu_node_entry);
9bc8b558 613 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 614 pr_cont(" P%d", t->pid);
9bc8b558
PM
615 ndetected++;
616 }
a858af28 617 rcu_print_task_stall_end();
9bc8b558 618 return ndetected;
f41d911f
PM
619}
620
74611ecb
PM
621/*
622 * Scan the current list of tasks blocked within RCU read-side critical
623 * sections, printing out the tid of each that is blocking the current
624 * expedited grace period.
625 */
626static int rcu_print_task_exp_stall(struct rcu_node *rnp)
627{
628 struct task_struct *t;
629 int ndetected = 0;
630
631 if (!rnp->exp_tasks)
632 return 0;
633 t = list_entry(rnp->exp_tasks->prev,
634 struct task_struct, rcu_node_entry);
635 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
636 pr_cont(" P%d", t->pid);
637 ndetected++;
638 }
639 return ndetected;
640}
641
b0e165c0
PM
642/*
643 * Check that the list of blocked tasks for the newly completed grace
644 * period is in fact empty. It is a serious bug to complete a grace
645 * period that still has RCU readers blocked! This function must be
646 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
647 * must be held by the caller.
12f5f524
PM
648 *
649 * Also, if there are blocked tasks on the list, they automatically
650 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
651 */
652static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
653{
c5ebe66c
PM
654 struct task_struct *t;
655
ea9b0c8a 656 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
27f4d280 657 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
c5ebe66c 658 if (rcu_preempt_has_tasks(rnp)) {
12f5f524 659 rnp->gp_tasks = rnp->blkd_tasks.next;
c5ebe66c
PM
660 t = container_of(rnp->gp_tasks, struct task_struct,
661 rcu_node_entry);
662 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
663 rnp->gpnum, t->pid);
664 }
28ecd580 665 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
666}
667
f41d911f
PM
668/*
669 * Check for a quiescent state from the current CPU. When a task blocks,
670 * the task is recorded in the corresponding CPU's rcu_node structure,
671 * which is checked elsewhere.
672 *
673 * Caller must disable hard irqs.
674 */
86aea0e6 675static void rcu_preempt_check_callbacks(void)
f41d911f
PM
676{
677 struct task_struct *t = current;
678
679 if (t->rcu_read_lock_nesting == 0) {
284a8c93 680 rcu_preempt_qs();
f41d911f
PM
681 return;
682 }
10f39bb1 683 if (t->rcu_read_lock_nesting > 0 &&
97c668b8 684 __this_cpu_read(rcu_data_p->core_needs_qs) &&
5b74c458 685 __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
1d082fd0 686 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
687}
688
a46e0899
PM
689#ifdef CONFIG_RCU_BOOST
690
09223371
SL
691static void rcu_preempt_do_callbacks(void)
692{
2927a689 693 rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
09223371
SL
694}
695
a46e0899
PM
696#endif /* #ifdef CONFIG_RCU_BOOST */
697
a68a2bb2
PM
698/**
699 * call_rcu() - Queue an RCU callback for invocation after a grace period.
700 * @head: structure to be used for queueing the RCU updates.
701 * @func: actual callback function to be invoked after the grace period
702 *
703 * The callback function will be invoked some time after a full grace
704 * period elapses, in other words after all pre-existing RCU read-side
705 * critical sections have completed. However, the callback function
706 * might well execute concurrently with RCU read-side critical sections
707 * that started after call_rcu() was invoked. RCU read-side critical
708 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
709 * and may be nested.
710 *
711 * Note that all CPUs must agree that the grace period extended beyond
712 * all pre-existing RCU read-side critical section. On systems with more
713 * than one CPU, this means that when "func()" is invoked, each CPU is
714 * guaranteed to have executed a full memory barrier since the end of its
715 * last RCU read-side critical section whose beginning preceded the call
716 * to call_rcu(). It also means that each CPU executing an RCU read-side
717 * critical section that continues beyond the start of "func()" must have
718 * executed a memory barrier after the call_rcu() but before the beginning
719 * of that RCU read-side critical section. Note that these guarantees
720 * include CPUs that are offline, idle, or executing in user mode, as
721 * well as CPUs that are executing in the kernel.
722 *
723 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
724 * resulting RCU callback function "func()", then both CPU A and CPU B are
725 * guaranteed to execute a full memory barrier during the time interval
726 * between the call to call_rcu() and the invocation of "func()" -- even
727 * if CPU A and CPU B are the same CPU (but again only if the system has
728 * more than one CPU).
f41d911f 729 */
b6a4ae76 730void call_rcu(struct rcu_head *head, rcu_callback_t func)
f41d911f 731{
e63c887c 732 __call_rcu(head, func, rcu_state_p, -1, 0);
f41d911f
PM
733}
734EXPORT_SYMBOL_GPL(call_rcu);
735
6ebb237b
PM
736/**
737 * synchronize_rcu - wait until a grace period has elapsed.
738 *
739 * Control will return to the caller some time after a full grace
740 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
741 * read-side critical sections have completed. Note, however, that
742 * upon return from synchronize_rcu(), the caller might well be executing
743 * concurrently with new RCU read-side critical sections that began while
744 * synchronize_rcu() was waiting. RCU read-side critical sections are
745 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2 746 *
e28371c8
PM
747 * See the description of synchronize_sched() for more detailed
748 * information on memory-ordering guarantees. However, please note
749 * that -only- the memory-ordering guarantees apply. For example,
750 * synchronize_rcu() is -not- guaranteed to wait on things like code
751 * protected by preempt_disable(), instead, synchronize_rcu() is -only-
752 * guaranteed to wait on RCU read-side critical sections, that is, sections
753 * of code protected by rcu_read_lock().
6ebb237b
PM
754 */
755void synchronize_rcu(void)
756{
f78f5b90
PM
757 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
758 lock_is_held(&rcu_lock_map) ||
759 lock_is_held(&rcu_sched_lock_map),
760 "Illegal synchronize_rcu() in RCU read-side critical section");
52d7e48b 761 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
6ebb237b 762 return;
5afff48b 763 if (rcu_gp_is_expedited())
3705b88d
AM
764 synchronize_rcu_expedited();
765 else
766 wait_rcu_gp(call_rcu);
6ebb237b
PM
767}
768EXPORT_SYMBOL_GPL(synchronize_rcu);
769
e74f4c45
PM
770/**
771 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
772 *
773 * Note that this primitive does not necessarily wait for an RCU grace period
774 * to complete. For example, if there are no RCU callbacks queued anywhere
775 * in the system, then rcu_barrier() is within its rights to return
776 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
777 */
778void rcu_barrier(void)
779{
e63c887c 780 _rcu_barrier(rcu_state_p);
e74f4c45
PM
781}
782EXPORT_SYMBOL_GPL(rcu_barrier);
783
1eba8f84 784/*
6cc68793 785 * Initialize preemptible RCU's state structures.
1eba8f84
PM
786 */
787static void __init __rcu_init_preempt(void)
788{
a87f203e 789 rcu_init_one(rcu_state_p);
1eba8f84
PM
790}
791
2439b696
PM
792/*
793 * Check for a task exiting while in a preemptible-RCU read-side
794 * critical section, clean up if so. No need to issue warnings,
795 * as debug_check_no_locks_held() already does this if lockdep
796 * is enabled.
797 */
798void exit_rcu(void)
799{
800 struct task_struct *t = current;
801
802 if (likely(list_empty(&current->rcu_node_entry)))
803 return;
804 t->rcu_read_lock_nesting = 1;
805 barrier();
1d082fd0 806 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
807 __rcu_read_unlock();
808}
809
28f6569a 810#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 811
b28a7c01 812static struct rcu_state *const rcu_state_p = &rcu_sched_state;
27f4d280 813
f41d911f
PM
814/*
815 * Tell them what RCU they are running.
816 */
0e0fc1c2 817static void __init rcu_bootup_announce(void)
f41d911f 818{
efc151c3 819 pr_info("Hierarchical RCU implementation.\n");
26845c28 820 rcu_bootup_announce_oddness();
f41d911f
PM
821}
822
cba6d0d6
PM
823/*
824 * Because preemptible RCU does not exist, we never have to check for
825 * CPUs being in quiescent states.
826 */
5b72f964 827static void rcu_preempt_note_context_switch(bool preempt)
cba6d0d6
PM
828{
829}
830
fc2219d4 831/*
6cc68793 832 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
833 * RCU readers.
834 */
27f4d280 835static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
836{
837 return 0;
838}
839
8af3a5e7
PM
840/*
841 * Because there is no preemptible RCU, there can be no readers blocked.
842 */
843static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 844{
8af3a5e7 845 return false;
b668c9cf
PM
846}
847
1ed509a2 848/*
6cc68793 849 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
850 * tasks blocked within RCU read-side critical sections.
851 */
852static void rcu_print_detail_task_stall(struct rcu_state *rsp)
853{
854}
855
f41d911f 856/*
6cc68793 857 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
858 * tasks blocked within RCU read-side critical sections.
859 */
9bc8b558 860static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 861{
9bc8b558 862 return 0;
f41d911f
PM
863}
864
74611ecb
PM
865/*
866 * Because preemptible RCU does not exist, we never have to check for
867 * tasks blocked within RCU read-side critical sections that are
868 * blocking the current expedited grace period.
869 */
870static int rcu_print_task_exp_stall(struct rcu_node *rnp)
871{
872 return 0;
873}
874
b0e165c0 875/*
6cc68793 876 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
877 * so there is no need to check for blocked tasks. So check only for
878 * bogus qsmask values.
b0e165c0
PM
879 */
880static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
881{
49e29126 882 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
883}
884
f41d911f 885/*
6cc68793 886 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
887 * to check.
888 */
86aea0e6 889static void rcu_preempt_check_callbacks(void)
f41d911f
PM
890{
891}
892
e74f4c45 893/*
6cc68793 894 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
895 * another name for rcu_barrier_sched().
896 */
897void rcu_barrier(void)
898{
899 rcu_barrier_sched();
900}
901EXPORT_SYMBOL_GPL(rcu_barrier);
902
1eba8f84 903/*
6cc68793 904 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
905 */
906static void __init __rcu_init_preempt(void)
907{
908}
909
2439b696
PM
910/*
911 * Because preemptible RCU does not exist, tasks cannot possibly exit
912 * while in preemptible RCU read-side critical sections.
913 */
914void exit_rcu(void)
915{
916}
917
28f6569a 918#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 919
27f4d280
PM
920#ifdef CONFIG_RCU_BOOST
921
5d01bbd1
TG
922static void rcu_wake_cond(struct task_struct *t, int status)
923{
924 /*
925 * If the thread is yielding, only wake it when this
926 * is invoked from idle
927 */
928 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
929 wake_up_process(t);
930}
931
27f4d280
PM
932/*
933 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
934 * or ->boost_tasks, advancing the pointer to the next task in the
935 * ->blkd_tasks list.
936 *
937 * Note that irqs must be enabled: boosting the task can block.
938 * Returns 1 if there are more tasks needing to be boosted.
939 */
940static int rcu_boost(struct rcu_node *rnp)
941{
942 unsigned long flags;
27f4d280
PM
943 struct task_struct *t;
944 struct list_head *tb;
945
7d0ae808
PM
946 if (READ_ONCE(rnp->exp_tasks) == NULL &&
947 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
948 return 0; /* Nothing left to boost. */
949
2a67e741 950 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
951
952 /*
953 * Recheck under the lock: all tasks in need of boosting
954 * might exit their RCU read-side critical sections on their own.
955 */
956 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 957 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
958 return 0;
959 }
960
961 /*
962 * Preferentially boost tasks blocking expedited grace periods.
963 * This cannot starve the normal grace periods because a second
964 * expedited grace period must boost all blocked tasks, including
965 * those blocking the pre-existing normal grace period.
966 */
0ea1f2eb 967 if (rnp->exp_tasks != NULL) {
27f4d280 968 tb = rnp->exp_tasks;
0ea1f2eb
PM
969 rnp->n_exp_boosts++;
970 } else {
27f4d280 971 tb = rnp->boost_tasks;
0ea1f2eb
PM
972 rnp->n_normal_boosts++;
973 }
974 rnp->n_tasks_boosted++;
27f4d280
PM
975
976 /*
977 * We boost task t by manufacturing an rt_mutex that appears to
978 * be held by task t. We leave a pointer to that rt_mutex where
979 * task t can find it, and task t will release the mutex when it
980 * exits its outermost RCU read-side critical section. Then
981 * simply acquiring this artificial rt_mutex will boost task
982 * t's priority. (Thanks to tglx for suggesting this approach!)
983 *
984 * Note that task t must acquire rnp->lock to remove itself from
985 * the ->blkd_tasks list, which it will do from exit() if from
986 * nowhere else. We therefore are guaranteed that task t will
987 * stay around at least until we drop rnp->lock. Note that
988 * rnp->lock also resolves races between our priority boosting
989 * and task t's exiting its outermost RCU read-side critical
990 * section.
991 */
992 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 993 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 994 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
995 /* Lock only for side effect: boosts task t's priority. */
996 rt_mutex_lock(&rnp->boost_mtx);
997 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 998
7d0ae808
PM
999 return READ_ONCE(rnp->exp_tasks) != NULL ||
1000 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1001}
1002
27f4d280 1003/*
bc17ea10 1004 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1005 */
1006static int rcu_boost_kthread(void *arg)
1007{
1008 struct rcu_node *rnp = (struct rcu_node *)arg;
1009 int spincnt = 0;
1010 int more2boost;
1011
f7f7bac9 1012 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1013 for (;;) {
d71df90e 1014 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1015 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1016 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1017 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1018 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1019 more2boost = rcu_boost(rnp);
1020 if (more2boost)
1021 spincnt++;
1022 else
1023 spincnt = 0;
1024 if (spincnt > 10) {
5d01bbd1 1025 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1026 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1027 schedule_timeout_interruptible(2);
f7f7bac9 1028 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1029 spincnt = 0;
1030 }
1031 }
1217ed1b 1032 /* NOTREACHED */
f7f7bac9 1033 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1034 return 0;
1035}
1036
1037/*
1038 * Check to see if it is time to start boosting RCU readers that are
1039 * blocking the current grace period, and, if so, tell the per-rcu_node
1040 * kthread to start boosting them. If there is an expedited grace
1041 * period in progress, it is always time to boost.
1042 *
b065a853
PM
1043 * The caller must hold rnp->lock, which this function releases.
1044 * The ->boost_kthread_task is immortal, so we don't need to worry
1045 * about it going away.
27f4d280 1046 */
1217ed1b 1047static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1048 __releases(rnp->lock)
27f4d280
PM
1049{
1050 struct task_struct *t;
1051
ea9b0c8a 1052 lockdep_assert_held(&rnp->lock);
0ea1f2eb 1053 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1054 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1055 return;
0ea1f2eb 1056 }
27f4d280
PM
1057 if (rnp->exp_tasks != NULL ||
1058 (rnp->gp_tasks != NULL &&
1059 rnp->boost_tasks == NULL &&
1060 rnp->qsmask == 0 &&
1061 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1062 if (rnp->exp_tasks == NULL)
1063 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1064 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1065 t = rnp->boost_kthread_task;
5d01bbd1
TG
1066 if (t)
1067 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1068 } else {
67c583a7 1069 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1070 }
27f4d280
PM
1071}
1072
a46e0899
PM
1073/*
1074 * Wake up the per-CPU kthread to invoke RCU callbacks.
1075 */
1076static void invoke_rcu_callbacks_kthread(void)
1077{
1078 unsigned long flags;
1079
1080 local_irq_save(flags);
1081 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1082 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1083 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1084 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1085 __this_cpu_read(rcu_cpu_kthread_status));
1086 }
a46e0899
PM
1087 local_irq_restore(flags);
1088}
1089
dff1672d
PM
1090/*
1091 * Is the current CPU running the RCU-callbacks kthread?
1092 * Caller must have preemption disabled.
1093 */
1094static bool rcu_is_callbacks_kthread(void)
1095{
c9d4b0af 1096 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1097}
1098
27f4d280
PM
1099#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1100
1101/*
1102 * Do priority-boost accounting for the start of a new grace period.
1103 */
1104static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1105{
1106 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1107}
1108
27f4d280
PM
1109/*
1110 * Create an RCU-boost kthread for the specified node if one does not
1111 * already exist. We only create this kthread for preemptible RCU.
1112 * Returns zero if all is well, a negated errno otherwise.
1113 */
49fb4c62 1114static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
0aa04b05 1115 struct rcu_node *rnp)
27f4d280 1116{
5d01bbd1 1117 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1118 unsigned long flags;
1119 struct sched_param sp;
1120 struct task_struct *t;
1121
e63c887c 1122 if (rcu_state_p != rsp)
27f4d280 1123 return 0;
5d01bbd1 1124
0aa04b05 1125 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
5d01bbd1
TG
1126 return 0;
1127
a46e0899 1128 rsp->boost = 1;
27f4d280
PM
1129 if (rnp->boost_kthread_task != NULL)
1130 return 0;
1131 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1132 "rcub/%d", rnp_index);
27f4d280
PM
1133 if (IS_ERR(t))
1134 return PTR_ERR(t);
2a67e741 1135 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1136 rnp->boost_kthread_task = t;
67c583a7 1137 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1138 sp.sched_priority = kthread_prio;
27f4d280 1139 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1140 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1141 return 0;
1142}
1143
f8b7fc6b
PM
1144static void rcu_kthread_do_work(void)
1145{
c9d4b0af
CL
1146 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1147 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1148 rcu_preempt_do_callbacks();
1149}
1150
62ab7072 1151static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1152{
f8b7fc6b 1153 struct sched_param sp;
f8b7fc6b 1154
21871d7e 1155 sp.sched_priority = kthread_prio;
62ab7072 1156 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1157}
1158
62ab7072 1159static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1160{
62ab7072 1161 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1162}
1163
62ab7072 1164static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1165{
c9d4b0af 1166 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1167}
1168
1169/*
1170 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1171 * RCU softirq used in flavors and configurations of RCU that do not
1172 * support RCU priority boosting.
f8b7fc6b 1173 */
62ab7072 1174static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1175{
c9d4b0af
CL
1176 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1177 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1178 int spincnt;
f8b7fc6b 1179
62ab7072 1180 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1181 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1182 local_bh_disable();
f8b7fc6b 1183 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1184 this_cpu_inc(rcu_cpu_kthread_loops);
1185 local_irq_disable();
f8b7fc6b
PM
1186 work = *workp;
1187 *workp = 0;
62ab7072 1188 local_irq_enable();
f8b7fc6b
PM
1189 if (work)
1190 rcu_kthread_do_work();
1191 local_bh_enable();
62ab7072 1192 if (*workp == 0) {
f7f7bac9 1193 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1194 *statusp = RCU_KTHREAD_WAITING;
1195 return;
f8b7fc6b
PM
1196 }
1197 }
62ab7072 1198 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1199 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1200 schedule_timeout_interruptible(2);
f7f7bac9 1201 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1202 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1203}
1204
1205/*
1206 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1207 * served by the rcu_node in question. The CPU hotplug lock is still
1208 * held, so the value of rnp->qsmaskinit will be stable.
1209 *
1210 * We don't include outgoingcpu in the affinity set, use -1 if there is
1211 * no outgoing CPU. If there are no CPUs left in the affinity set,
1212 * this function allows the kthread to execute on any CPU.
1213 */
5d01bbd1 1214static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1215{
5d01bbd1 1216 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1217 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1218 cpumask_var_t cm;
1219 int cpu;
f8b7fc6b 1220
5d01bbd1 1221 if (!t)
f8b7fc6b 1222 return;
5d01bbd1 1223 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1224 return;
bc75e999
MR
1225 for_each_leaf_node_possible_cpu(rnp, cpu)
1226 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1227 cpu != outgoingcpu)
f8b7fc6b 1228 cpumask_set_cpu(cpu, cm);
5d0b0249 1229 if (cpumask_weight(cm) == 0)
f8b7fc6b 1230 cpumask_setall(cm);
5d01bbd1 1231 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1232 free_cpumask_var(cm);
1233}
1234
62ab7072
PM
1235static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1236 .store = &rcu_cpu_kthread_task,
1237 .thread_should_run = rcu_cpu_kthread_should_run,
1238 .thread_fn = rcu_cpu_kthread,
1239 .thread_comm = "rcuc/%u",
1240 .setup = rcu_cpu_kthread_setup,
1241 .park = rcu_cpu_kthread_park,
1242};
f8b7fc6b
PM
1243
1244/*
9386c0b7 1245 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1246 */
9386c0b7 1247static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1248{
f8b7fc6b 1249 struct rcu_node *rnp;
5d01bbd1 1250 int cpu;
f8b7fc6b 1251
62ab7072 1252 for_each_possible_cpu(cpu)
f8b7fc6b 1253 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1254 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1255 rcu_for_each_leaf_node(rcu_state_p, rnp)
1256 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1257}
f8b7fc6b 1258
49fb4c62 1259static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1260{
e534165b 1261 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1262 struct rcu_node *rnp = rdp->mynode;
1263
1264 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1265 if (rcu_scheduler_fully_active)
e534165b 1266 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1267}
1268
27f4d280
PM
1269#else /* #ifdef CONFIG_RCU_BOOST */
1270
1217ed1b 1271static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1272 __releases(rnp->lock)
27f4d280 1273{
67c583a7 1274 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1275}
1276
a46e0899 1277static void invoke_rcu_callbacks_kthread(void)
27f4d280 1278{
a46e0899 1279 WARN_ON_ONCE(1);
27f4d280
PM
1280}
1281
dff1672d
PM
1282static bool rcu_is_callbacks_kthread(void)
1283{
1284 return false;
1285}
1286
27f4d280
PM
1287static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1288{
1289}
1290
5d01bbd1 1291static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1292{
1293}
1294
9386c0b7 1295static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1296{
b0d30417 1297}
b0d30417 1298
49fb4c62 1299static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1300{
1301}
1302
27f4d280
PM
1303#endif /* #else #ifdef CONFIG_RCU_BOOST */
1304
8bd93a2c
PM
1305#if !defined(CONFIG_RCU_FAST_NO_HZ)
1306
1307/*
1308 * Check to see if any future RCU-related work will need to be done
1309 * by the current CPU, even if none need be done immediately, returning
1310 * 1 if so. This function is part of the RCU implementation; it is -not-
1311 * an exported member of the RCU API.
1312 *
7cb92499
PM
1313 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1314 * any flavor of RCU.
8bd93a2c 1315 */
c1ad348b 1316int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1317{
c1ad348b 1318 *nextevt = KTIME_MAX;
44c65ff2 1319 return rcu_cpu_has_callbacks(NULL);
7cb92499
PM
1320}
1321
1322/*
1323 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1324 * after it.
1325 */
8fa7845d 1326static void rcu_cleanup_after_idle(void)
7cb92499
PM
1327{
1328}
1329
aea1b35e 1330/*
a858af28 1331 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1332 * is nothing.
1333 */
198bbf81 1334static void rcu_prepare_for_idle(void)
aea1b35e
PM
1335{
1336}
1337
c57afe80
PM
1338/*
1339 * Don't bother keeping a running count of the number of RCU callbacks
1340 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1341 */
1342static void rcu_idle_count_callbacks_posted(void)
1343{
1344}
1345
8bd93a2c
PM
1346#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1347
f23f7fa1
PM
1348/*
1349 * This code is invoked when a CPU goes idle, at which point we want
1350 * to have the CPU do everything required for RCU so that it can enter
1351 * the energy-efficient dyntick-idle mode. This is handled by a
1352 * state machine implemented by rcu_prepare_for_idle() below.
1353 *
1354 * The following three proprocessor symbols control this state machine:
1355 *
f23f7fa1
PM
1356 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1357 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1358 * is sized to be roughly one RCU grace period. Those energy-efficiency
1359 * benchmarkers who might otherwise be tempted to set this to a large
1360 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1361 * system. And if you are -that- concerned about energy efficiency,
1362 * just power the system down and be done with it!
778d250a
PM
1363 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1364 * permitted to sleep in dyntick-idle mode with only lazy RCU
1365 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1366 *
1367 * The values below work well in practice. If future workloads require
1368 * adjustment, they can be converted into kernel config parameters, though
1369 * making the state machine smarter might be a better option.
1370 */
e84c48ae 1371#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1372#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1373
5e44ce35
PM
1374static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1375module_param(rcu_idle_gp_delay, int, 0644);
1376static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1377module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1378
486e2593 1379/*
c229828c
PM
1380 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1381 * only if it has been awhile since the last time we did so. Afterwards,
1382 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1383 */
f1f399d1 1384static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1385{
c0f4dfd4
PM
1386 bool cbs_ready = false;
1387 struct rcu_data *rdp;
c229828c 1388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1389 struct rcu_node *rnp;
1390 struct rcu_state *rsp;
486e2593 1391
c229828c
PM
1392 /* Exit early if we advanced recently. */
1393 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1394 return false;
c229828c
PM
1395 rdtp->last_advance_all = jiffies;
1396
c0f4dfd4
PM
1397 for_each_rcu_flavor(rsp) {
1398 rdp = this_cpu_ptr(rsp->rda);
1399 rnp = rdp->mynode;
486e2593 1400
c0f4dfd4
PM
1401 /*
1402 * Don't bother checking unless a grace period has
1403 * completed since we last checked and there are
1404 * callbacks not yet ready to invoke.
1405 */
e3663b10 1406 if ((rdp->completed != rnp->completed ||
7d0ae808 1407 unlikely(READ_ONCE(rdp->gpwrap))) &&
15fecf89 1408 rcu_segcblist_pend_cbs(&rdp->cblist))
470716fc 1409 note_gp_changes(rsp, rdp);
486e2593 1410
15fecf89 1411 if (rcu_segcblist_ready_cbs(&rdp->cblist))
c0f4dfd4
PM
1412 cbs_ready = true;
1413 }
1414 return cbs_ready;
486e2593
PM
1415}
1416
aa9b1630 1417/*
c0f4dfd4
PM
1418 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1419 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1420 * caller to set the timeout based on whether or not there are non-lazy
1421 * callbacks.
aa9b1630 1422 *
c0f4dfd4 1423 * The caller must have disabled interrupts.
aa9b1630 1424 */
c1ad348b 1425int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1426{
aa6da514 1427 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c1ad348b 1428 unsigned long dj;
aa9b1630 1429
b04db8e1 1430 lockdep_assert_irqs_disabled();
3382adbc 1431
c0f4dfd4
PM
1432 /* Snapshot to detect later posting of non-lazy callback. */
1433 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1434
aa9b1630 1435 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1436 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c1ad348b 1437 *nextevt = KTIME_MAX;
aa9b1630
PM
1438 return 0;
1439 }
c0f4dfd4
PM
1440
1441 /* Attempt to advance callbacks. */
1442 if (rcu_try_advance_all_cbs()) {
1443 /* Some ready to invoke, so initiate later invocation. */
1444 invoke_rcu_core();
aa9b1630
PM
1445 return 1;
1446 }
c0f4dfd4
PM
1447 rdtp->last_accelerate = jiffies;
1448
1449 /* Request timer delay depending on laziness, and round. */
6faf7283 1450 if (!rdtp->all_lazy) {
c1ad348b 1451 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1452 rcu_idle_gp_delay) - jiffies;
e84c48ae 1453 } else {
c1ad348b 1454 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1455 }
c1ad348b 1456 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1457 return 0;
1458}
1459
21e52e15 1460/*
c0f4dfd4
PM
1461 * Prepare a CPU for idle from an RCU perspective. The first major task
1462 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1463 * The second major task is to check to see if a non-lazy callback has
1464 * arrived at a CPU that previously had only lazy callbacks. The third
1465 * major task is to accelerate (that is, assign grace-period numbers to)
1466 * any recently arrived callbacks.
aea1b35e
PM
1467 *
1468 * The caller must have disabled interrupts.
8bd93a2c 1469 */
198bbf81 1470static void rcu_prepare_for_idle(void)
8bd93a2c 1471{
48a7639c 1472 bool needwake;
c0f4dfd4 1473 struct rcu_data *rdp;
198bbf81 1474 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1475 struct rcu_node *rnp;
1476 struct rcu_state *rsp;
9d2ad243
PM
1477 int tne;
1478
b04db8e1 1479 lockdep_assert_irqs_disabled();
44c65ff2 1480 if (rcu_is_nocb_cpu(smp_processor_id()))
3382adbc
PM
1481 return;
1482
9d2ad243 1483 /* Handle nohz enablement switches conservatively. */
7d0ae808 1484 tne = READ_ONCE(tick_nohz_active);
9d2ad243 1485 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1486 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1487 invoke_rcu_core(); /* force nohz to see update. */
1488 rdtp->tick_nohz_enabled_snap = tne;
1489 return;
1490 }
1491 if (!tne)
1492 return;
f511fc62 1493
c57afe80 1494 /*
c0f4dfd4
PM
1495 * If a non-lazy callback arrived at a CPU having only lazy
1496 * callbacks, invoke RCU core for the side-effect of recalculating
1497 * idle duration on re-entry to idle.
c57afe80 1498 */
c0f4dfd4
PM
1499 if (rdtp->all_lazy &&
1500 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1501 rdtp->all_lazy = false;
1502 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1503 invoke_rcu_core();
c57afe80
PM
1504 return;
1505 }
c57afe80 1506
3084f2f8 1507 /*
c0f4dfd4
PM
1508 * If we have not yet accelerated this jiffy, accelerate all
1509 * callbacks on this CPU.
3084f2f8 1510 */
c0f4dfd4 1511 if (rdtp->last_accelerate == jiffies)
aea1b35e 1512 return;
c0f4dfd4
PM
1513 rdtp->last_accelerate = jiffies;
1514 for_each_rcu_flavor(rsp) {
198bbf81 1515 rdp = this_cpu_ptr(rsp->rda);
135bd1a2 1516 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
c0f4dfd4
PM
1517 continue;
1518 rnp = rdp->mynode;
2a67e741 1519 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
48a7639c 1520 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
67c583a7 1521 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c
PM
1522 if (needwake)
1523 rcu_gp_kthread_wake(rsp);
77e38ed3 1524 }
c0f4dfd4 1525}
3084f2f8 1526
c0f4dfd4
PM
1527/*
1528 * Clean up for exit from idle. Attempt to advance callbacks based on
1529 * any grace periods that elapsed while the CPU was idle, and if any
1530 * callbacks are now ready to invoke, initiate invocation.
1531 */
8fa7845d 1532static void rcu_cleanup_after_idle(void)
c0f4dfd4 1533{
b04db8e1 1534 lockdep_assert_irqs_disabled();
44c65ff2 1535 if (rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1536 return;
7a497c96
PM
1537 if (rcu_try_advance_all_cbs())
1538 invoke_rcu_core();
8bd93a2c
PM
1539}
1540
c57afe80 1541/*
98248a0e
PM
1542 * Keep a running count of the number of non-lazy callbacks posted
1543 * on this CPU. This running counter (which is never decremented) allows
1544 * rcu_prepare_for_idle() to detect when something out of the idle loop
1545 * posts a callback, even if an equal number of callbacks are invoked.
1546 * Of course, callbacks should only be posted from within a trace event
1547 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1548 */
1549static void rcu_idle_count_callbacks_posted(void)
1550{
5955f7ee 1551 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1552}
1553
b626c1b6
PM
1554/*
1555 * Data for flushing lazy RCU callbacks at OOM time.
1556 */
1557static atomic_t oom_callback_count;
1558static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1559
1560/*
1561 * RCU OOM callback -- decrement the outstanding count and deliver the
1562 * wake-up if we are the last one.
1563 */
1564static void rcu_oom_callback(struct rcu_head *rhp)
1565{
1566 if (atomic_dec_and_test(&oom_callback_count))
1567 wake_up(&oom_callback_wq);
1568}
1569
1570/*
1571 * Post an rcu_oom_notify callback on the current CPU if it has at
1572 * least one lazy callback. This will unnecessarily post callbacks
1573 * to CPUs that already have a non-lazy callback at the end of their
1574 * callback list, but this is an infrequent operation, so accept some
1575 * extra overhead to keep things simple.
1576 */
1577static void rcu_oom_notify_cpu(void *unused)
1578{
1579 struct rcu_state *rsp;
1580 struct rcu_data *rdp;
1581
1582 for_each_rcu_flavor(rsp) {
fa07a58f 1583 rdp = raw_cpu_ptr(rsp->rda);
15fecf89 1584 if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
b626c1b6
PM
1585 atomic_inc(&oom_callback_count);
1586 rsp->call(&rdp->oom_head, rcu_oom_callback);
1587 }
1588 }
1589}
1590
1591/*
1592 * If low on memory, ensure that each CPU has a non-lazy callback.
1593 * This will wake up CPUs that have only lazy callbacks, in turn
1594 * ensuring that they free up the corresponding memory in a timely manner.
1595 * Because an uncertain amount of memory will be freed in some uncertain
1596 * timeframe, we do not claim to have freed anything.
1597 */
1598static int rcu_oom_notify(struct notifier_block *self,
1599 unsigned long notused, void *nfreed)
1600{
1601 int cpu;
1602
1603 /* Wait for callbacks from earlier instance to complete. */
1604 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1605 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1606
1607 /*
1608 * Prevent premature wakeup: ensure that all increments happen
1609 * before there is a chance of the counter reaching zero.
1610 */
1611 atomic_set(&oom_callback_count, 1);
1612
b626c1b6
PM
1613 for_each_online_cpu(cpu) {
1614 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1615 cond_resched_rcu_qs();
b626c1b6 1616 }
b626c1b6
PM
1617
1618 /* Unconditionally decrement: no need to wake ourselves up. */
1619 atomic_dec(&oom_callback_count);
1620
1621 return NOTIFY_OK;
1622}
1623
1624static struct notifier_block rcu_oom_nb = {
1625 .notifier_call = rcu_oom_notify
1626};
1627
1628static int __init rcu_register_oom_notifier(void)
1629{
1630 register_oom_notifier(&rcu_oom_nb);
1631 return 0;
1632}
1633early_initcall(rcu_register_oom_notifier);
1634
8bd93a2c 1635#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1636
a858af28
PM
1637#ifdef CONFIG_RCU_FAST_NO_HZ
1638
1639static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1640{
5955f7ee 1641 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1642 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1643
c0f4dfd4
PM
1644 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1645 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1646 ulong2long(nlpd),
1647 rdtp->all_lazy ? 'L' : '.',
1648 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1649}
1650
1651#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1652
1653static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1654{
1c17e4d4 1655 *cp = '\0';
a858af28
PM
1656}
1657
1658#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1659
1660/* Initiate the stall-info list. */
1661static void print_cpu_stall_info_begin(void)
1662{
efc151c3 1663 pr_cont("\n");
a858af28
PM
1664}
1665
1666/*
1667 * Print out diagnostic information for the specified stalled CPU.
1668 *
1669 * If the specified CPU is aware of the current RCU grace period
1670 * (flavor specified by rsp), then print the number of scheduling
1671 * clock interrupts the CPU has taken during the time that it has
1672 * been aware. Otherwise, print the number of RCU grace periods
1673 * that this CPU is ignorant of, for example, "1" if the CPU was
1674 * aware of the previous grace period.
1675 *
1676 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1677 */
1678static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1679{
9b9500da 1680 unsigned long delta;
a858af28
PM
1681 char fast_no_hz[72];
1682 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1683 struct rcu_dynticks *rdtp = rdp->dynticks;
1684 char *ticks_title;
1685 unsigned long ticks_value;
1686
2227d91f
TH
1687 /*
1688 * We could be printing a lot while holding a spinlock. Avoid
1689 * triggering hard lockup.
1690 */
1691 touch_nmi_watchdog();
1692
a858af28
PM
1693 if (rsp->gpnum == rdp->gpnum) {
1694 ticks_title = "ticks this GP";
1695 ticks_value = rdp->ticks_this_gp;
1696 } else {
1697 ticks_title = "GPs behind";
1698 ticks_value = rsp->gpnum - rdp->gpnum;
1699 }
1700 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
9b9500da
PM
1701 delta = rdp->mynode->gpnum - rdp->rcu_iw_gpnum;
1702 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
7f21aeef
PM
1703 cpu,
1704 "O."[!!cpu_online(cpu)],
1705 "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1706 "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
9b9500da
PM
1707 !IS_ENABLED(CONFIG_IRQ_WORK) ? '?' :
1708 rdp->rcu_iw_pending ? (int)min(delta, 9UL) + '0' :
1709 "!."[!delta],
7f21aeef 1710 ticks_value, ticks_title,
02a5c550 1711 rcu_dynticks_snap(rdtp) & 0xfff,
a858af28 1712 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1713 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
7d0ae808 1714 READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1715 fast_no_hz);
1716}
1717
1718/* Terminate the stall-info list. */
1719static void print_cpu_stall_info_end(void)
1720{
efc151c3 1721 pr_err("\t");
a858af28
PM
1722}
1723
1724/* Zero ->ticks_this_gp for all flavors of RCU. */
1725static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1726{
1727 rdp->ticks_this_gp = 0;
6231069b 1728 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1729}
1730
1731/* Increment ->ticks_this_gp for all flavors of RCU. */
1732static void increment_cpu_stall_ticks(void)
1733{
115f7a7c
PM
1734 struct rcu_state *rsp;
1735
1736 for_each_rcu_flavor(rsp)
fa07a58f 1737 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1738}
1739
3fbfbf7a
PM
1740#ifdef CONFIG_RCU_NOCB_CPU
1741
1742/*
1743 * Offload callback processing from the boot-time-specified set of CPUs
1744 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1745 * kthread created that pulls the callbacks from the corresponding CPU,
1746 * waits for a grace period to elapse, and invokes the callbacks.
1747 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1748 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1749 * has been specified, in which case each kthread actively polls its
1750 * CPU. (Which isn't so great for energy efficiency, but which does
1751 * reduce RCU's overhead on that CPU.)
1752 *
1753 * This is intended to be used in conjunction with Frederic Weisbecker's
1754 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1755 * running CPU-bound user-mode computations.
1756 *
1757 * Offloading of callback processing could also in theory be used as
1758 * an energy-efficiency measure because CPUs with no RCU callbacks
1759 * queued are more aggressive about entering dyntick-idle mode.
1760 */
1761
1762
1763/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1764static int __init rcu_nocb_setup(char *str)
1765{
1766 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1767 have_rcu_nocb_mask = true;
1768 cpulist_parse(str, rcu_nocb_mask);
1769 return 1;
1770}
1771__setup("rcu_nocbs=", rcu_nocb_setup);
1772
1b0048a4
PG
1773static int __init parse_rcu_nocb_poll(char *arg)
1774{
5455a7f6 1775 rcu_nocb_poll = true;
1b0048a4
PG
1776 return 0;
1777}
1778early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1779
dae6e64d 1780/*
0446be48
PM
1781 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1782 * grace period.
dae6e64d 1783 */
abedf8e2 1784static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1785{
abedf8e2 1786 swake_up_all(sq);
dae6e64d
PM
1787}
1788
1789/*
8b425aa8 1790 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1791 * based on the sum of those of all rcu_node structures. This does
1792 * double-count the root rcu_node structure's requests, but this
1793 * is necessary to handle the possibility of a rcu_nocb_kthread()
1794 * having awakened during the time that the rcu_node structures
1795 * were being updated for the end of the previous grace period.
34ed6246 1796 */
dae6e64d
PM
1797static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1798{
8b425aa8 1799 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1800}
1801
abedf8e2 1802static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
1803{
1804 return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1805}
1806
dae6e64d 1807static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1808{
abedf8e2
PG
1809 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1810 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1811}
1812
24342c96 1813/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1814bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1815{
1816 if (have_rcu_nocb_mask)
1817 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1818 return false;
1819}
1820
fbce7497 1821/*
8be6e1b1
PM
1822 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1823 * and this function releases it.
fbce7497 1824 */
8be6e1b1
PM
1825static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1826 unsigned long flags)
1827 __releases(rdp->nocb_lock)
fbce7497
PM
1828{
1829 struct rcu_data *rdp_leader = rdp->nocb_leader;
1830
8be6e1b1
PM
1831 lockdep_assert_held(&rdp->nocb_lock);
1832 if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1833 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 1834 return;
8be6e1b1
PM
1835 }
1836 if (rdp_leader->nocb_leader_sleep || force) {
39953dfd 1837 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
7d0ae808 1838 WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
8be6e1b1
PM
1839 del_timer(&rdp->nocb_timer);
1840 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
6b5fc3a1 1841 smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
abedf8e2 1842 swake_up(&rdp_leader->nocb_wq);
8be6e1b1
PM
1843 } else {
1844 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497
PM
1845 }
1846}
1847
8be6e1b1
PM
1848/*
1849 * Kick the leader kthread for this NOCB group, but caller has not
1850 * acquired locks.
1851 */
1852static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1853{
1854 unsigned long flags;
1855
1856 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1857 __wake_nocb_leader(rdp, force, flags);
1858}
1859
1860/*
1861 * Arrange to wake the leader kthread for this NOCB group at some
1862 * future time when it is safe to do so.
1863 */
1864static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1865 const char *reason)
1866{
1867 unsigned long flags;
1868
1869 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1870 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1871 mod_timer(&rdp->nocb_timer, jiffies + 1);
1872 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1873 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1874 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1875}
1876
d7e29933
PM
1877/*
1878 * Does the specified CPU need an RCU callback for the specified flavor
1879 * of rcu_barrier()?
1880 */
1881static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1882{
1883 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1884 unsigned long ret;
1885#ifdef CONFIG_PROVE_RCU
d7e29933 1886 struct rcu_head *rhp;
41050a00 1887#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1888
41050a00
PM
1889 /*
1890 * Check count of all no-CBs callbacks awaiting invocation.
1891 * There needs to be a barrier before this function is called,
1892 * but associated with a prior determination that no more
1893 * callbacks would be posted. In the worst case, the first
1894 * barrier in _rcu_barrier() suffices (but the caller cannot
1895 * necessarily rely on this, not a substitute for the caller
1896 * getting the concurrency design right!). There must also be
1897 * a barrier between the following load an posting of a callback
1898 * (if a callback is in fact needed). This is associated with an
1899 * atomic_inc() in the caller.
1900 */
1901 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1902
41050a00 1903#ifdef CONFIG_PROVE_RCU
7d0ae808 1904 rhp = READ_ONCE(rdp->nocb_head);
d7e29933 1905 if (!rhp)
7d0ae808 1906 rhp = READ_ONCE(rdp->nocb_gp_head);
d7e29933 1907 if (!rhp)
7d0ae808 1908 rhp = READ_ONCE(rdp->nocb_follower_head);
d7e29933
PM
1909
1910 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
7d0ae808 1911 if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
59f792d1 1912 rcu_scheduler_fully_active) {
d7e29933
PM
1913 /* RCU callback enqueued before CPU first came online??? */
1914 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1915 cpu, rhp->func);
1916 WARN_ON_ONCE(1);
1917 }
41050a00 1918#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1919
41050a00 1920 return !!ret;
d7e29933
PM
1921}
1922
3fbfbf7a
PM
1923/*
1924 * Enqueue the specified string of rcu_head structures onto the specified
1925 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1926 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1927 * counts are supplied by rhcount and rhcount_lazy.
1928 *
1929 * If warranted, also wake up the kthread servicing this CPUs queues.
1930 */
1931static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1932 struct rcu_head *rhp,
1933 struct rcu_head **rhtp,
96d3fd0d
PM
1934 int rhcount, int rhcount_lazy,
1935 unsigned long flags)
3fbfbf7a
PM
1936{
1937 int len;
1938 struct rcu_head **old_rhpp;
1939 struct task_struct *t;
1940
1941 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1942 atomic_long_add(rhcount, &rdp->nocb_q_count);
1943 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a 1944 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
7d0ae808 1945 WRITE_ONCE(*old_rhpp, rhp);
3fbfbf7a 1946 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1947 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1948
1949 /* If we are not being polled and there is a kthread, awaken it ... */
7d0ae808 1950 t = READ_ONCE(rdp->nocb_kthread);
25e03a74 1951 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1952 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1953 TPS("WakeNotPoll"));
3fbfbf7a 1954 return;
9261dd0d 1955 }
3fbfbf7a
PM
1956 len = atomic_long_read(&rdp->nocb_q_count);
1957 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 1958 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
1959 /* ... if queue was empty ... */
1960 wake_nocb_leader(rdp, false);
96d3fd0d
PM
1961 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1962 TPS("WakeEmpty"));
1963 } else {
8be6e1b1
PM
1964 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1965 TPS("WakeEmptyIsDeferred"));
96d3fd0d 1966 }
3fbfbf7a
PM
1967 rdp->qlen_last_fqs_check = 0;
1968 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1969 /* ... or if many callbacks queued. */
9fdd3bc9
PM
1970 if (!irqs_disabled_flags(flags)) {
1971 wake_nocb_leader(rdp, true);
1972 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1973 TPS("WakeOvf"));
1974 } else {
8be6e1b1
PM
1975 wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1976 TPS("WakeOvfIsDeferred"));
9fdd3bc9 1977 }
3fbfbf7a 1978 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
1979 } else {
1980 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
1981 }
1982 return;
1983}
1984
1985/*
1986 * This is a helper for __call_rcu(), which invokes this when the normal
1987 * callback queue is inoperable. If this is not a no-CBs CPU, this
1988 * function returns failure back to __call_rcu(), which can complain
1989 * appropriately.
1990 *
1991 * Otherwise, this function queues the callback where the corresponding
1992 * "rcuo" kthread can find it.
1993 */
1994static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 1995 bool lazy, unsigned long flags)
3fbfbf7a
PM
1996{
1997
d1e43fa5 1998 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 1999 return false;
96d3fd0d 2000 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2001 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2002 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2003 (unsigned long)rhp->func,
756cbf6b
PM
2004 -atomic_long_read(&rdp->nocb_q_count_lazy),
2005 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2006 else
2007 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2008 -atomic_long_read(&rdp->nocb_q_count_lazy),
2009 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2010
2011 /*
2012 * If called from an extended quiescent state with interrupts
2013 * disabled, invoke the RCU core in order to allow the idle-entry
2014 * deferred-wakeup check to function.
2015 */
2016 if (irqs_disabled_flags(flags) &&
2017 !rcu_is_watching() &&
2018 cpu_online(smp_processor_id()))
2019 invoke_rcu_core();
2020
c271d3a9 2021 return true;
3fbfbf7a
PM
2022}
2023
2024/*
2025 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2026 * not a no-CBs CPU.
2027 */
b1a2d79f 2028static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
96d3fd0d
PM
2029 struct rcu_data *rdp,
2030 unsigned long flags)
3fbfbf7a 2031{
b04db8e1 2032 lockdep_assert_irqs_disabled();
d1e43fa5 2033 if (!rcu_is_nocb_cpu(smp_processor_id()))
b1a2d79f
PM
2034 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2035 __call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2036 rcu_segcblist_tail(&rdp->cblist),
2037 rcu_segcblist_n_cbs(&rdp->cblist),
2038 rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2039 rcu_segcblist_init(&rdp->cblist);
2040 rcu_segcblist_disable(&rdp->cblist);
0a9e1e11 2041 return true;
3fbfbf7a
PM
2042}
2043
2044/*
34ed6246
PM
2045 * If necessary, kick off a new grace period, and either way wait
2046 * for a subsequent grace period to complete.
3fbfbf7a 2047 */
34ed6246 2048static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2049{
34ed6246 2050 unsigned long c;
dae6e64d 2051 bool d;
34ed6246 2052 unsigned long flags;
48a7639c 2053 bool needwake;
34ed6246
PM
2054 struct rcu_node *rnp = rdp->mynode;
2055
2a67e741 2056 raw_spin_lock_irqsave_rcu_node(rnp, flags);
48a7639c 2057 needwake = rcu_start_future_gp(rnp, rdp, &c);
67c583a7 2058 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c
PM
2059 if (needwake)
2060 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2061
2062 /*
34ed6246
PM
2063 * Wait for the grace period. Do so interruptibly to avoid messing
2064 * up the load average.
3fbfbf7a 2065 */
f7f7bac9 2066 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2067 for (;;) {
abedf8e2 2068 swait_event_interruptible(
dae6e64d 2069 rnp->nocb_gp_wq[c & 0x1],
7d0ae808 2070 (d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
dae6e64d 2071 if (likely(d))
34ed6246 2072 break;
73a860cd 2073 WARN_ON(signal_pending(current));
f7f7bac9 2074 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2075 }
f7f7bac9 2076 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2077 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2078}
2079
fbce7497
PM
2080/*
2081 * Leaders come here to wait for additional callbacks to show up.
2082 * This function does not return until callbacks appear.
2083 */
2084static void nocb_leader_wait(struct rcu_data *my_rdp)
2085{
2086 bool firsttime = true;
8be6e1b1 2087 unsigned long flags;
fbce7497
PM
2088 bool gotcbs;
2089 struct rcu_data *rdp;
2090 struct rcu_head **tail;
2091
2092wait_again:
2093
2094 /* Wait for callbacks to appear. */
2095 if (!rcu_nocb_poll) {
bedbb648 2096 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
abedf8e2 2097 swait_event_interruptible(my_rdp->nocb_wq,
7d0ae808 2098 !READ_ONCE(my_rdp->nocb_leader_sleep));
8be6e1b1
PM
2099 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2100 my_rdp->nocb_leader_sleep = true;
2101 WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2102 del_timer(&my_rdp->nocb_timer);
2103 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
fbce7497
PM
2104 } else if (firsttime) {
2105 firsttime = false; /* Don't drown trace log with "Poll"! */
bedbb648 2106 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
fbce7497
PM
2107 }
2108
2109 /*
2110 * Each pass through the following loop checks a follower for CBs.
2111 * We are our own first follower. Any CBs found are moved to
2112 * nocb_gp_head, where they await a grace period.
2113 */
2114 gotcbs = false;
8be6e1b1 2115 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
fbce7497 2116 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
7d0ae808 2117 rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
fbce7497
PM
2118 if (!rdp->nocb_gp_head)
2119 continue; /* No CBs here, try next follower. */
2120
2121 /* Move callbacks to wait-for-GP list, which is empty. */
7d0ae808 2122 WRITE_ONCE(rdp->nocb_head, NULL);
fbce7497 2123 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2124 gotcbs = true;
2125 }
2126
8be6e1b1 2127 /* No callbacks? Sleep a bit if polling, and go retry. */
fbce7497 2128 if (unlikely(!gotcbs)) {
73a860cd 2129 WARN_ON(signal_pending(current));
8be6e1b1
PM
2130 if (rcu_nocb_poll) {
2131 schedule_timeout_interruptible(1);
2132 } else {
fbce7497 2133 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
bedbb648 2134 TPS("WokeEmpty"));
8be6e1b1 2135 }
fbce7497
PM
2136 goto wait_again;
2137 }
2138
2139 /* Wait for one grace period. */
2140 rcu_nocb_wait_gp(my_rdp);
2141
fbce7497
PM
2142 /* Each pass through the following loop wakes a follower, if needed. */
2143 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
8be6e1b1
PM
2144 if (!rcu_nocb_poll &&
2145 READ_ONCE(rdp->nocb_head) &&
2146 READ_ONCE(my_rdp->nocb_leader_sleep)) {
2147 raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
11ed7f93 2148 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
8be6e1b1
PM
2149 raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2150 }
fbce7497
PM
2151 if (!rdp->nocb_gp_head)
2152 continue; /* No CBs, so no need to wake follower. */
2153
2154 /* Append callbacks to follower's "done" list. */
8be6e1b1
PM
2155 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2156 tail = rdp->nocb_follower_tail;
2157 rdp->nocb_follower_tail = rdp->nocb_gp_tail;
fbce7497 2158 *tail = rdp->nocb_gp_head;
8be6e1b1 2159 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 2160 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
8be6e1b1 2161 /* List was empty, so wake up the follower. */
abedf8e2 2162 swake_up(&rdp->nocb_wq);
fbce7497
PM
2163 }
2164 }
2165
2166 /* If we (the leader) don't have CBs, go wait some more. */
2167 if (!my_rdp->nocb_follower_head)
2168 goto wait_again;
2169}
2170
2171/*
2172 * Followers come here to wait for additional callbacks to show up.
2173 * This function does not return until callbacks appear.
2174 */
2175static void nocb_follower_wait(struct rcu_data *rdp)
2176{
fbce7497 2177 for (;;) {
bedbb648 2178 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
8be6e1b1
PM
2179 swait_event_interruptible(rdp->nocb_wq,
2180 READ_ONCE(rdp->nocb_follower_head));
fbce7497
PM
2181 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2182 /* ^^^ Ensure CB invocation follows _head test. */
2183 return;
2184 }
73a860cd 2185 WARN_ON(signal_pending(current));
bedbb648 2186 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2187 }
2188}
2189
3fbfbf7a
PM
2190/*
2191 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2192 * callbacks queued by the corresponding no-CBs CPU, however, there is
2193 * an optional leader-follower relationship so that the grace-period
2194 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2195 */
2196static int rcu_nocb_kthread(void *arg)
2197{
2198 int c, cl;
8be6e1b1 2199 unsigned long flags;
3fbfbf7a
PM
2200 struct rcu_head *list;
2201 struct rcu_head *next;
2202 struct rcu_head **tail;
2203 struct rcu_data *rdp = arg;
2204
2205 /* Each pass through this loop invokes one batch of callbacks */
2206 for (;;) {
fbce7497
PM
2207 /* Wait for callbacks. */
2208 if (rdp->nocb_leader == rdp)
2209 nocb_leader_wait(rdp);
2210 else
2211 nocb_follower_wait(rdp);
2212
2213 /* Pull the ready-to-invoke callbacks onto local list. */
8be6e1b1
PM
2214 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2215 list = rdp->nocb_follower_head;
2216 rdp->nocb_follower_head = NULL;
2217 tail = rdp->nocb_follower_tail;
2218 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2219 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
fbce7497 2220 BUG_ON(!list);
bedbb648 2221 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
3fbfbf7a
PM
2222
2223 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2224 trace_rcu_batch_start(rdp->rsp->name,
2225 atomic_long_read(&rdp->nocb_q_count_lazy),
2226 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2227 c = cl = 0;
2228 while (list) {
2229 next = list->next;
2230 /* Wait for enqueuing to complete, if needed. */
2231 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2232 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2233 TPS("WaitQueue"));
3fbfbf7a 2234 schedule_timeout_interruptible(1);
69a79bb1
PM
2235 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2236 TPS("WokeQueue"));
3fbfbf7a
PM
2237 next = list->next;
2238 }
2239 debug_rcu_head_unqueue(list);
2240 local_bh_disable();
2241 if (__rcu_reclaim(rdp->rsp->name, list))
2242 cl++;
2243 c++;
2244 local_bh_enable();
bedc1969 2245 cond_resched_rcu_qs();
3fbfbf7a
PM
2246 list = next;
2247 }
2248 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2249 smp_mb__before_atomic(); /* _add after CB invocation. */
2250 atomic_long_add(-c, &rdp->nocb_q_count);
2251 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2252 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2253 }
2254 return 0;
2255}
2256
96d3fd0d 2257/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2258static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2259{
7d0ae808 2260 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2261}
2262
2263/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2264static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2265{
8be6e1b1 2266 unsigned long flags;
9fdd3bc9
PM
2267 int ndw;
2268
8be6e1b1
PM
2269 raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2270 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2271 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
96d3fd0d 2272 return;
8be6e1b1 2273 }
7d0ae808 2274 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2275 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
8be6e1b1 2276 __wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
9fdd3bc9 2277 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2278}
2279
8be6e1b1 2280/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2281static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2282{
fd30b717
KC
2283 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2284
2285 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2286}
2287
2288/*
2289 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2290 * This means we do an inexact common-case check. Note that if
2291 * we miss, ->nocb_timer will eventually clean things up.
2292 */
2293static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2294{
2295 if (rcu_nocb_need_deferred_wakeup(rdp))
2296 do_nocb_deferred_wakeup_common(rdp);
2297}
2298
f4579fc5
PM
2299void __init rcu_init_nohz(void)
2300{
2301 int cpu;
2302 bool need_rcu_nocb_mask = true;
2303 struct rcu_state *rsp;
2304
f4579fc5
PM
2305#if defined(CONFIG_NO_HZ_FULL)
2306 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2307 need_rcu_nocb_mask = true;
2308#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2309
2310 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2311 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2312 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2313 return;
2314 }
f4579fc5
PM
2315 have_rcu_nocb_mask = true;
2316 }
2317 if (!have_rcu_nocb_mask)
2318 return;
2319
f4579fc5
PM
2320#if defined(CONFIG_NO_HZ_FULL)
2321 if (tick_nohz_full_running)
2322 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2323#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2324
2325 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2326 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2327 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2328 rcu_nocb_mask);
2329 }
ad853b48
TH
2330 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2331 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2332 if (rcu_nocb_poll)
2333 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2334
2335 for_each_rcu_flavor(rsp) {
34404ca8
PM
2336 for_each_cpu(cpu, rcu_nocb_mask)
2337 init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
35ce7f29 2338 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2339 }
96d3fd0d
PM
2340}
2341
3fbfbf7a
PM
2342/* Initialize per-rcu_data variables for no-CBs CPUs. */
2343static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2344{
2345 rdp->nocb_tail = &rdp->nocb_head;
abedf8e2 2346 init_swait_queue_head(&rdp->nocb_wq);
fbce7497 2347 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
8be6e1b1 2348 raw_spin_lock_init(&rdp->nocb_lock);
fd30b717 2349 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
3fbfbf7a
PM
2350}
2351
35ce7f29
PM
2352/*
2353 * If the specified CPU is a no-CBs CPU that does not already have its
2354 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2355 * brought online out of order, this can require re-organizing the
2356 * leader-follower relationships.
2357 */
2358static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2359{
2360 struct rcu_data *rdp;
2361 struct rcu_data *rdp_last;
2362 struct rcu_data *rdp_old_leader;
2363 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2364 struct task_struct *t;
2365
2366 /*
2367 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2368 * then nothing to do.
2369 */
2370 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2371 return;
2372
2373 /* If we didn't spawn the leader first, reorganize! */
2374 rdp_old_leader = rdp_spawn->nocb_leader;
2375 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2376 rdp_last = NULL;
2377 rdp = rdp_old_leader;
2378 do {
2379 rdp->nocb_leader = rdp_spawn;
2380 if (rdp_last && rdp != rdp_spawn)
2381 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2382 if (rdp == rdp_spawn) {
2383 rdp = rdp->nocb_next_follower;
2384 } else {
2385 rdp_last = rdp;
2386 rdp = rdp->nocb_next_follower;
2387 rdp_last->nocb_next_follower = NULL;
2388 }
35ce7f29
PM
2389 } while (rdp);
2390 rdp_spawn->nocb_next_follower = rdp_old_leader;
2391 }
2392
2393 /* Spawn the kthread for this CPU and RCU flavor. */
2394 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2395 "rcuo%c/%d", rsp->abbr, cpu);
2396 BUG_ON(IS_ERR(t));
7d0ae808 2397 WRITE_ONCE(rdp_spawn->nocb_kthread, t);
35ce7f29
PM
2398}
2399
2400/*
2401 * If the specified CPU is a no-CBs CPU that does not already have its
2402 * rcuo kthreads, spawn them.
2403 */
2404static void rcu_spawn_all_nocb_kthreads(int cpu)
2405{
2406 struct rcu_state *rsp;
2407
2408 if (rcu_scheduler_fully_active)
2409 for_each_rcu_flavor(rsp)
2410 rcu_spawn_one_nocb_kthread(rsp, cpu);
2411}
2412
2413/*
2414 * Once the scheduler is running, spawn rcuo kthreads for all online
2415 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2416 * non-boot CPUs come online -- if this changes, we will need to add
2417 * some mutual exclusion.
2418 */
2419static void __init rcu_spawn_nocb_kthreads(void)
2420{
2421 int cpu;
2422
2423 for_each_online_cpu(cpu)
2424 rcu_spawn_all_nocb_kthreads(cpu);
2425}
2426
fbce7497
PM
2427/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2428static int rcu_nocb_leader_stride = -1;
2429module_param(rcu_nocb_leader_stride, int, 0444);
2430
2431/*
35ce7f29 2432 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2433 */
35ce7f29 2434static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2435{
2436 int cpu;
fbce7497
PM
2437 int ls = rcu_nocb_leader_stride;
2438 int nl = 0; /* Next leader. */
3fbfbf7a 2439 struct rcu_data *rdp;
fbce7497
PM
2440 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2441 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2442
22c2f669 2443 if (!have_rcu_nocb_mask)
3fbfbf7a 2444 return;
fbce7497
PM
2445 if (ls == -1) {
2446 ls = int_sqrt(nr_cpu_ids);
2447 rcu_nocb_leader_stride = ls;
2448 }
2449
2450 /*
9831ce3b
PM
2451 * Each pass through this loop sets up one rcu_data structure.
2452 * Should the corresponding CPU come online in the future, then
2453 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2454 */
3fbfbf7a
PM
2455 for_each_cpu(cpu, rcu_nocb_mask) {
2456 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2457 if (rdp->cpu >= nl) {
2458 /* New leader, set up for followers & next leader. */
2459 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2460 rdp->nocb_leader = rdp;
2461 rdp_leader = rdp;
2462 } else {
2463 /* Another follower, link to previous leader. */
2464 rdp->nocb_leader = rdp_leader;
2465 rdp_prev->nocb_next_follower = rdp;
2466 }
2467 rdp_prev = rdp;
3fbfbf7a
PM
2468 }
2469}
2470
2471/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2472static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2473{
22c2f669 2474 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2475 return false;
22c2f669 2476
34404ca8 2477 /* If there are early-boot callbacks, move them to nocb lists. */
15fecf89
PM
2478 if (!rcu_segcblist_empty(&rdp->cblist)) {
2479 rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2480 rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2481 atomic_long_set(&rdp->nocb_q_count,
2482 rcu_segcblist_n_cbs(&rdp->cblist));
2483 atomic_long_set(&rdp->nocb_q_count_lazy,
2484 rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2485 rcu_segcblist_init(&rdp->cblist);
34404ca8 2486 }
15fecf89 2487 rcu_segcblist_disable(&rdp->cblist);
34ed6246 2488 return true;
3fbfbf7a
PM
2489}
2490
34ed6246
PM
2491#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2492
d7e29933
PM
2493static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2494{
2495 WARN_ON_ONCE(1); /* Should be dead code. */
2496 return false;
2497}
2498
abedf8e2 2499static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2500{
3fbfbf7a
PM
2501}
2502
dae6e64d
PM
2503static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2504{
2505}
2506
abedf8e2 2507static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2508{
2509 return NULL;
2510}
2511
dae6e64d
PM
2512static void rcu_init_one_nocb(struct rcu_node *rnp)
2513{
2514}
3fbfbf7a 2515
3fbfbf7a 2516static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2517 bool lazy, unsigned long flags)
3fbfbf7a 2518{
4afc7e26 2519 return false;
3fbfbf7a
PM
2520}
2521
b1a2d79f 2522static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
96d3fd0d
PM
2523 struct rcu_data *rdp,
2524 unsigned long flags)
3fbfbf7a 2525{
f4aa84ba 2526 return false;
3fbfbf7a
PM
2527}
2528
3fbfbf7a
PM
2529static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2530{
2531}
2532
9fdd3bc9 2533static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2534{
2535 return false;
2536}
2537
2538static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2539{
2540}
2541
35ce7f29
PM
2542static void rcu_spawn_all_nocb_kthreads(int cpu)
2543{
2544}
2545
2546static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2547{
2548}
2549
34ed6246 2550static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2551{
34ed6246 2552 return false;
3fbfbf7a
PM
2553}
2554
2555#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2556
2557/*
2558 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2559 * arbitrarily long period of time with the scheduling-clock tick turned
2560 * off. RCU will be paying attention to this CPU because it is in the
2561 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2562 * machine because the scheduling-clock tick has been disabled. Therefore,
2563 * if an adaptive-ticks CPU is failing to respond to the current grace
2564 * period and has not be idle from an RCU perspective, kick it.
2565 */
4a81e832 2566static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2567{
2568#ifdef CONFIG_NO_HZ_FULL
2569 if (tick_nohz_full_cpu(cpu))
2570 smp_send_reschedule(cpu);
2571#endif /* #ifdef CONFIG_NO_HZ_FULL */
2572}
2333210b 2573
a096932f
PM
2574/*
2575 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2576 * grace-period kthread will do force_quiescent_state() processing?
2577 * The idea is to avoid waking up RCU core processing on such a
2578 * CPU unless the grace period has extended for too long.
2579 *
2580 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2581 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
2582 */
2583static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2584{
2585#ifdef CONFIG_NO_HZ_FULL
2586 if (tick_nohz_full_cpu(smp_processor_id()) &&
2587 (!rcu_gp_in_progress(rsp) ||
7d0ae808 2588 ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
5ce035fb 2589 return true;
a096932f 2590#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2591 return false;
a096932f 2592}
5057f55e
PM
2593
2594/*
2595 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2596 * timekeeping CPU.
2597 */
2598static void rcu_bind_gp_kthread(void)
2599{
c0f489d2 2600 int __maybe_unused cpu;
5057f55e 2601
c0f489d2 2602 if (!tick_nohz_full_enabled())
5057f55e 2603 return;
de201559 2604 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2605}
176f8f7a
PM
2606
2607/* Record the current task on dyntick-idle entry. */
2608static void rcu_dynticks_task_enter(void)
2609{
2610#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2611 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2612#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2613}
2614
2615/* Record no current task on dyntick-idle exit. */
2616static void rcu_dynticks_task_exit(void)
2617{
2618#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2619 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2620#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2621}