]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/rcu/tree_plugin.h
Merge tag 'erofs-for-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/xiang...
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
22e40925 11 * Paul E. McKenney <paulmck@linux.ibm.com>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 41 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
cca6f393 47 if (nr_cpu_ids != NR_CPUS)
9b130ad5 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 49#ifdef CONFIG_RCU_BOOST
a7538352
JP
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
52#endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (jiffies_till_first_fqs != ULONG_MAX)
60 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 if (jiffies_till_next_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
63 if (jiffies_till_sched_qs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
65 if (rcu_kick_kthreads)
66 pr_info("\tKick kthreads if too-long grace period.\n");
67 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 69 if (gp_preinit_delay)
17c7798b 70 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 71 if (gp_init_delay)
17c7798b 72 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 73 if (gp_cleanup_delay)
17c7798b 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
75 if (!use_softirq)
76 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
77 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 79 rcupdate_announce_bootup_oddness();
26845c28
PM
80}
81
28f6569a 82#ifdef CONFIG_PREEMPT_RCU
f41d911f 83
63d4c8c9 84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 85static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 86
f41d911f
PM
87/*
88 * Tell them what RCU they are running.
89 */
0e0fc1c2 90static void __init rcu_bootup_announce(void)
f41d911f 91{
efc151c3 92 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 93 rcu_bootup_announce_oddness();
f41d911f
PM
94}
95
8203d6d0
PM
96/* Flags for rcu_preempt_ctxt_queue() decision table. */
97#define RCU_GP_TASKS 0x8
98#define RCU_EXP_TASKS 0x4
99#define RCU_GP_BLKD 0x2
100#define RCU_EXP_BLKD 0x1
101
102/*
103 * Queues a task preempted within an RCU-preempt read-side critical
104 * section into the appropriate location within the ->blkd_tasks list,
105 * depending on the states of any ongoing normal and expedited grace
106 * periods. The ->gp_tasks pointer indicates which element the normal
107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108 * indicates which element the expedited grace period is waiting on (again,
109 * NULL if none). If a grace period is waiting on a given element in the
110 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
111 * adding a task to the tail of the list blocks any grace period that is
112 * already waiting on one of the elements. In contrast, adding a task
113 * to the head of the list won't block any grace period that is already
114 * waiting on one of the elements.
115 *
116 * This queuing is imprecise, and can sometimes make an ongoing grace
117 * period wait for a task that is not strictly speaking blocking it.
118 * Given the choice, we needlessly block a normal grace period rather than
119 * blocking an expedited grace period.
120 *
121 * Note that an endless sequence of expedited grace periods still cannot
122 * indefinitely postpone a normal grace period. Eventually, all of the
123 * fixed number of preempted tasks blocking the normal grace period that are
124 * not also blocking the expedited grace period will resume and complete
125 * their RCU read-side critical sections. At that point, the ->gp_tasks
126 * pointer will equal the ->exp_tasks pointer, at which point the end of
127 * the corresponding expedited grace period will also be the end of the
128 * normal grace period.
129 */
46a5d164
PM
130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
132{
133 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 struct task_struct *t = current;
138
a32e01ee 139 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 140 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 141 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
142 /* RCU better not be waiting on newly onlined CPUs! */
143 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 rdp->grpmask);
ea9b0c8a 145
8203d6d0
PM
146 /*
147 * Decide where to queue the newly blocked task. In theory,
148 * this could be an if-statement. In practice, when I tried
149 * that, it was quite messy.
150 */
151 switch (blkd_state) {
152 case 0:
153 case RCU_EXP_TASKS:
154 case RCU_EXP_TASKS + RCU_GP_BLKD:
155 case RCU_GP_TASKS:
156 case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158 /*
159 * Blocking neither GP, or first task blocking the normal
160 * GP but not blocking the already-waiting expedited GP.
161 * Queue at the head of the list to avoid unnecessarily
162 * blocking the already-waiting GPs.
163 */
164 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 break;
166
167 case RCU_EXP_BLKD:
168 case RCU_GP_BLKD:
169 case RCU_GP_BLKD + RCU_EXP_BLKD:
170 case RCU_GP_TASKS + RCU_EXP_BLKD:
171 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174 /*
175 * First task arriving that blocks either GP, or first task
176 * arriving that blocks the expedited GP (with the normal
177 * GP already waiting), or a task arriving that blocks
178 * both GPs with both GPs already waiting. Queue at the
179 * tail of the list to avoid any GP waiting on any of the
180 * already queued tasks that are not blocking it.
181 */
182 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 break;
184
185 case RCU_EXP_TASKS + RCU_EXP_BLKD:
186 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
188
189 /*
190 * Second or subsequent task blocking the expedited GP.
191 * The task either does not block the normal GP, or is the
192 * first task blocking the normal GP. Queue just after
193 * the first task blocking the expedited GP.
194 */
195 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 break;
197
198 case RCU_GP_TASKS + RCU_GP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the normal GP.
203 * The task does not block the expedited GP. Queue just
204 * after the first task blocking the normal GP.
205 */
206 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 break;
208
209 default:
210
211 /* Yet another exercise in excessive paranoia. */
212 WARN_ON_ONCE(1);
213 break;
214 }
215
216 /*
217 * We have now queued the task. If it was the first one to
218 * block either grace period, update the ->gp_tasks and/or
219 * ->exp_tasks pointers, respectively, to reference the newly
220 * blocked tasks.
221 */
4bc8d555 222 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
6935c398 223 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
d43a5d32 224 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 225 }
8203d6d0
PM
226 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
228 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 !(rnp->qsmask & rdp->grpmask));
230 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 !(rnp->expmask & rdp->grpmask));
67c583a7 232 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
233
234 /*
235 * Report the quiescent state for the expedited GP. This expedited
236 * GP should not be able to end until we report, so there should be
237 * no need to check for a subsequent expedited GP. (Though we are
238 * still in a quiescent state in any case.)
239 */
1bb33644 240 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 241 rcu_report_exp_rdp(rdp);
fcc878e4 242 else
1bb33644 243 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
244}
245
f41d911f 246/*
c7037ff5
PM
247 * Record a preemptible-RCU quiescent state for the specified CPU.
248 * Note that this does not necessarily mean that the task currently running
249 * on the CPU is in a quiescent state: Instead, it means that the current
250 * grace period need not wait on any RCU read-side critical section that
251 * starts later on this CPU. It also means that if the current task is
252 * in an RCU read-side critical section, it has already added itself to
253 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
254 * current task, there might be any number of other tasks blocked while
255 * in an RCU read-side critical section.
25502a6c 256 *
c7037ff5 257 * Callers to this function must disable preemption.
f41d911f 258 */
45975c7d 259static void rcu_qs(void)
f41d911f 260{
45975c7d 261 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 262 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 263 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 264 __this_cpu_read(rcu_data.gp_seq),
284a8c93 265 TPS("cpuqs"));
2280ee5a 266 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 267 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 268 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 269 }
f41d911f
PM
270}
271
272/*
c3422bea
PM
273 * We have entered the scheduler, and the current task might soon be
274 * context-switched away from. If this task is in an RCU read-side
275 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
276 * record that fact, so we enqueue the task on the blkd_tasks list.
277 * The task will dequeue itself when it exits the outermost enclosing
278 * RCU read-side critical section. Therefore, the current grace period
279 * cannot be permitted to complete until the blkd_tasks list entries
280 * predating the current grace period drain, in other words, until
281 * rnp->gp_tasks becomes NULL.
c3422bea 282 *
46a5d164 283 * Caller must disable interrupts.
f41d911f 284 */
45975c7d 285void rcu_note_context_switch(bool preempt)
f41d911f
PM
286{
287 struct task_struct *t = current;
da1df50d 288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
289 struct rcu_node *rnp;
290
45975c7d 291 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 292 lockdep_assert_irqs_disabled();
77339e61
LJ
293 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
294 if (rcu_preempt_depth() > 0 &&
1d082fd0 295 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
296
297 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 298 rnp = rdp->mynode;
46a5d164 299 raw_spin_lock_rcu_node(rnp);
1d082fd0 300 t->rcu_read_unlock_special.b.blocked = true;
86848966 301 t->rcu_blocked_node = rnp;
f41d911f
PM
302
303 /*
8203d6d0
PM
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
f41d911f 307 */
0aa04b05 308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 310 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
311 t->pid,
312 (rnp->qsmask & rdp->grpmask)
598ce094
PM
313 ? rnp->gp_seq
314 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 315 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
316 } else {
317 rcu_preempt_deferred_qs(t);
f41d911f
PM
318 }
319
320 /*
321 * Either we were not in an RCU read-side critical section to
322 * begin with, or we have now recorded that critical section
323 * globally. Either way, we can now note a quiescent state
324 * for this CPU. Again, if we were in an RCU read-side critical
325 * section, and if that critical section was blocking the current
326 * grace period, then the fact that the task has been enqueued
327 * means that we continue to block the current grace period.
328 */
45975c7d 329 rcu_qs();
1bb33644 330 if (rdp->exp_deferred_qs)
63d4c8c9 331 rcu_report_exp_rdp(rdp);
45975c7d 332 trace_rcu_utilization(TPS("End context switch"));
f41d911f 333}
45975c7d 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 335
fc2219d4
PM
336/*
337 * Check for preempted RCU readers blocking the current grace period
338 * for the specified rcu_node structure. If the caller needs a reliable
339 * answer, it must hold the rcu_node's ->lock.
340 */
27f4d280 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 342{
6935c398 343 return READ_ONCE(rnp->gp_tasks) != NULL;
fc2219d4
PM
344}
345
5f1a6ef3
PM
346/* Bias and limit values for ->rcu_read_lock_nesting. */
347#define RCU_NEST_BIAS INT_MAX
348#define RCU_NEST_NMAX (-INT_MAX / 2)
349#define RCU_NEST_PMAX (INT_MAX / 2)
350
77339e61
LJ
351static void rcu_preempt_read_enter(void)
352{
353 current->rcu_read_lock_nesting++;
354}
355
356static void rcu_preempt_read_exit(void)
357{
358 current->rcu_read_lock_nesting--;
359}
360
361static void rcu_preempt_depth_set(int val)
362{
363 current->rcu_read_lock_nesting = val;
364}
365
0e5da22e
PM
366/*
367 * Preemptible RCU implementation for rcu_read_lock().
368 * Just increment ->rcu_read_lock_nesting, shared state will be updated
369 * if we block.
370 */
371void __rcu_read_lock(void)
372{
77339e61 373 rcu_preempt_read_enter();
5f1a6ef3 374 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
77339e61 375 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
0e5da22e
PM
376 barrier(); /* critical section after entry code. */
377}
378EXPORT_SYMBOL_GPL(__rcu_read_lock);
379
380/*
381 * Preemptible RCU implementation for rcu_read_unlock().
382 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
383 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
384 * invoke rcu_read_unlock_special() to clean up after a context switch
385 * in an RCU read-side critical section and other special cases.
386 */
387void __rcu_read_unlock(void)
388{
389 struct task_struct *t = current;
390
77339e61
LJ
391 if (rcu_preempt_depth() != 1) {
392 rcu_preempt_read_exit();
0e5da22e
PM
393 } else {
394 barrier(); /* critical section before exit code. */
77339e61 395 rcu_preempt_depth_set(-RCU_NEST_BIAS);
0e5da22e
PM
396 barrier(); /* assign before ->rcu_read_unlock_special load */
397 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
398 rcu_read_unlock_special(t);
399 barrier(); /* ->rcu_read_unlock_special load before assign */
77339e61 400 rcu_preempt_depth_set(0);
0e5da22e 401 }
5f1a6ef3 402 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
77339e61 403 int rrln = rcu_preempt_depth();
0e5da22e 404
5f1a6ef3 405 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
0e5da22e 406 }
0e5da22e
PM
407}
408EXPORT_SYMBOL_GPL(__rcu_read_unlock);
409
12f5f524
PM
410/*
411 * Advance a ->blkd_tasks-list pointer to the next entry, instead
412 * returning NULL if at the end of the list.
413 */
414static struct list_head *rcu_next_node_entry(struct task_struct *t,
415 struct rcu_node *rnp)
416{
417 struct list_head *np;
418
419 np = t->rcu_node_entry.next;
420 if (np == &rnp->blkd_tasks)
421 np = NULL;
422 return np;
423}
424
8af3a5e7
PM
425/*
426 * Return true if the specified rcu_node structure has tasks that were
427 * preempted within an RCU read-side critical section.
428 */
429static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
430{
431 return !list_empty(&rnp->blkd_tasks);
432}
433
b668c9cf 434/*
3e310098
PM
435 * Report deferred quiescent states. The deferral time can
436 * be quite short, for example, in the case of the call from
437 * rcu_read_unlock_special().
b668c9cf 438 */
3e310098
PM
439static void
440rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 441{
b6a932d1
PM
442 bool empty_exp;
443 bool empty_norm;
444 bool empty_exp_now;
12f5f524 445 struct list_head *np;
abaa93d9 446 bool drop_boost_mutex = false;
8203d6d0 447 struct rcu_data *rdp;
f41d911f 448 struct rcu_node *rnp;
1d082fd0 449 union rcu_special special;
f41d911f 450
f41d911f 451 /*
8203d6d0
PM
452 * If RCU core is waiting for this CPU to exit its critical section,
453 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 454 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
455 */
456 special = t->rcu_read_unlock_special;
da1df50d 457 rdp = this_cpu_ptr(&rcu_data);
1bb33644 458 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
459 local_irq_restore(flags);
460 return;
461 }
3717e1e9
LJ
462 t->rcu_read_unlock_special.s = 0;
463 if (special.b.need_qs)
45975c7d 464 rcu_qs();
f41d911f 465
8203d6d0 466 /*
3e310098
PM
467 * Respond to a request by an expedited grace period for a
468 * quiescent state from this CPU. Note that requests from
469 * tasks are handled when removing the task from the
470 * blocked-tasks list below.
8203d6d0 471 */
3717e1e9 472 if (rdp->exp_deferred_qs)
63d4c8c9 473 rcu_report_exp_rdp(rdp);
8203d6d0 474
f41d911f 475 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0 476 if (special.b.blocked) {
f41d911f 477
dd5d19ba 478 /*
0a0ba1c9 479 * Remove this task from the list it blocked on. The task
8ba9153b
PM
480 * now remains queued on the rcu_node corresponding to the
481 * CPU it first blocked on, so there is no longer any need
482 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 483 */
8ba9153b
PM
484 rnp = t->rcu_blocked_node;
485 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
486 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 487 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 488 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 489 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 490 (!empty_norm || rnp->qsmask));
6c7d7dbf 491 empty_exp = sync_rcu_exp_done(rnp);
d9a3da06 492 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 493 np = rcu_next_node_entry(t, rnp);
f41d911f 494 list_del_init(&t->rcu_node_entry);
82e78d80 495 t->rcu_blocked_node = NULL;
f7f7bac9 496 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 497 rnp->gp_seq, t->pid);
12f5f524 498 if (&t->rcu_node_entry == rnp->gp_tasks)
6935c398 499 WRITE_ONCE(rnp->gp_tasks, np);
12f5f524
PM
500 if (&t->rcu_node_entry == rnp->exp_tasks)
501 rnp->exp_tasks = np;
727b705b 502 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
503 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
504 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
505 if (&t->rcu_node_entry == rnp->boost_tasks)
506 rnp->boost_tasks = np;
727b705b 507 }
f41d911f
PM
508
509 /*
510 * If this was the last task on the current list, and if
511 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
512 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
513 * so we must take a snapshot of the expedited state.
f41d911f 514 */
6c7d7dbf 515 empty_exp_now = sync_rcu_exp_done(rnp);
74e871ac 516 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 517 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 518 rnp->gp_seq,
d4c08f2a
PM
519 0, rnp->qsmask,
520 rnp->level,
521 rnp->grplo,
522 rnp->grphi,
523 !!rnp->gp_tasks);
139ad4da 524 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 525 } else {
67c583a7 526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 527 }
d9a3da06 528
27f4d280 529 /* Unboost if we were boosted. */
727b705b 530 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 531 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 532
d9a3da06
PM
533 /*
534 * If this was the last task on the expedited lists,
535 * then we need to report up the rcu_node hierarchy.
536 */
389abd48 537 if (!empty_exp && empty_exp_now)
63d4c8c9 538 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
539 } else {
540 local_irq_restore(flags);
f41d911f 541 }
f41d911f
PM
542}
543
3e310098
PM
544/*
545 * Is a deferred quiescent-state pending, and are we also not in
546 * an RCU read-side critical section? It is the caller's responsibility
547 * to ensure it is otherwise safe to report any deferred quiescent
548 * states. The reason for this is that it is safe to report a
549 * quiescent state during context switch even though preemption
550 * is disabled. This function cannot be expected to understand these
551 * nuances, so the caller must handle them.
552 */
553static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
554{
1bb33644 555 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 556 READ_ONCE(t->rcu_read_unlock_special.s)) &&
77339e61 557 rcu_preempt_depth() <= 0;
3e310098
PM
558}
559
560/*
561 * Report a deferred quiescent state if needed and safe to do so.
562 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
563 * not being in an RCU read-side critical section. The caller must
564 * evaluate safety in terms of interrupt, softirq, and preemption
565 * disabling.
566 */
567static void rcu_preempt_deferred_qs(struct task_struct *t)
568{
569 unsigned long flags;
77339e61 570 bool couldrecurse = rcu_preempt_depth() >= 0;
3e310098
PM
571
572 if (!rcu_preempt_need_deferred_qs(t))
573 return;
574 if (couldrecurse)
77339e61 575 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
3e310098
PM
576 local_irq_save(flags);
577 rcu_preempt_deferred_qs_irqrestore(t, flags);
578 if (couldrecurse)
77339e61 579 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
3e310098
PM
580}
581
0864f057
PM
582/*
583 * Minimal handler to give the scheduler a chance to re-evaluate.
584 */
585static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
586{
587 struct rcu_data *rdp;
588
589 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
590 rdp->defer_qs_iw_pending = false;
591}
592
3e310098
PM
593/*
594 * Handle special cases during rcu_read_unlock(), such as needing to
595 * notify RCU core processing or task having blocked during the RCU
596 * read-side critical section.
597 */
598static void rcu_read_unlock_special(struct task_struct *t)
599{
600 unsigned long flags;
601 bool preempt_bh_were_disabled =
602 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
603 bool irqs_were_disabled;
604
605 /* NMI handlers cannot block and cannot safely manipulate state. */
606 if (in_nmi())
607 return;
608
609 local_irq_save(flags);
610 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 611 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
612 bool exp;
613 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
614 struct rcu_node *rnp = rdp->mynode;
615
25102de6 616 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
c51f83c3 617 (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
25102de6 618 tick_nohz_full_cpu(rdp->cpu);
23634ebc 619 // Need to defer quiescent state until everything is enabled.
87446b48
PM
620 if (irqs_were_disabled && use_softirq &&
621 (in_interrupt() ||
622 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
23634ebc
PM
623 // Using softirq, safe to awaken, and we get
624 // no help from enabling irqs, unlike bh/preempt.
05f41571
PM
625 raise_softirq_irqoff(RCU_SOFTIRQ);
626 } else {
23634ebc 627 // Enabling BH or preempt does reschedule, so...
25102de6 628 // Also if no expediting or NO_HZ_FULL, slow is OK.
05f41571
PM
629 set_tsk_need_resched(current);
630 set_preempt_need_resched();
d143b3d1 631 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
632 !rdp->defer_qs_iw_pending && exp) {
633 // Get scheduler to re-evaluate and call hooks.
634 // If !IRQ_WORK, FQS scan will eventually IPI.
635 init_irq_work(&rdp->defer_qs_iw,
636 rcu_preempt_deferred_qs_handler);
637 rdp->defer_qs_iw_pending = true;
638 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
639 }
05f41571 640 }
23634ebc 641 t->rcu_read_unlock_special.b.deferred_qs = true;
3e310098
PM
642 local_irq_restore(flags);
643 return;
644 }
645 rcu_preempt_deferred_qs_irqrestore(t, flags);
646}
647
b0e165c0
PM
648/*
649 * Check that the list of blocked tasks for the newly completed grace
650 * period is in fact empty. It is a serious bug to complete a grace
651 * period that still has RCU readers blocked! This function must be
03bd2983 652 * invoked -before- updating this rnp's ->gp_seq.
12f5f524
PM
653 *
654 * Also, if there are blocked tasks on the list, they automatically
655 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 656 */
81ab59a3 657static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 658{
c5ebe66c
PM
659 struct task_struct *t;
660
ea9b0c8a 661 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
03bd2983 662 raw_lockdep_assert_held_rcu_node(rnp);
4bc8d555 663 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 664 dump_blkd_tasks(rnp, 10);
0b107d24
PM
665 if (rcu_preempt_has_tasks(rnp) &&
666 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
6935c398 667 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
c5ebe66c
PM
668 t = container_of(rnp->gp_tasks, struct task_struct,
669 rcu_node_entry);
670 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 671 rnp->gp_seq, t->pid);
c5ebe66c 672 }
28ecd580 673 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
674}
675
f41d911f 676/*
c98cac60
PM
677 * Check for a quiescent state from the current CPU, including voluntary
678 * context switches for Tasks RCU. When a task blocks, the task is
679 * recorded in the corresponding CPU's rcu_node structure, which is checked
680 * elsewhere, hence this function need only check for quiescent states
681 * related to the current CPU, not to those related to tasks.
f41d911f 682 */
c98cac60 683static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
684{
685 struct task_struct *t = current;
686
45975c7d
PM
687 if (user || rcu_is_cpu_rrupt_from_idle()) {
688 rcu_note_voluntary_context_switch(current);
689 }
77339e61 690 if (rcu_preempt_depth() > 0 ||
3e310098
PM
691 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
692 /* No QS, force context switch if deferred. */
fced9c8c
PM
693 if (rcu_preempt_need_deferred_qs(t)) {
694 set_tsk_need_resched(t);
695 set_preempt_need_resched();
696 }
3e310098
PM
697 } else if (rcu_preempt_need_deferred_qs(t)) {
698 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
699 return;
77339e61 700 } else if (!rcu_preempt_depth()) {
45975c7d 701 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
702 return;
703 }
3e310098
PM
704
705 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
77339e61 706 if (rcu_preempt_depth() > 0 &&
2280ee5a
PM
707 __this_cpu_read(rcu_data.core_needs_qs) &&
708 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 709 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 710 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 711 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
712}
713
2439b696
PM
714/*
715 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
716 * critical section, clean up if so. No need to issue warnings, as
717 * debug_check_no_locks_held() already does this if lockdep is enabled.
718 * Besides, if this function does anything other than just immediately
719 * return, there was a bug of some sort. Spewing warnings from this
720 * function is like as not to simply obscure important prior warnings.
2439b696
PM
721 */
722void exit_rcu(void)
723{
724 struct task_struct *t = current;
725
884157ce 726 if (unlikely(!list_empty(&current->rcu_node_entry))) {
77339e61 727 rcu_preempt_depth_set(1);
884157ce 728 barrier();
add0d37b 729 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
77339e61
LJ
730 } else if (unlikely(rcu_preempt_depth())) {
731 rcu_preempt_depth_set(1);
884157ce 732 } else {
2439b696 733 return;
884157ce 734 }
2439b696 735 __rcu_read_unlock();
3e310098 736 rcu_preempt_deferred_qs(current);
2439b696
PM
737}
738
4bc8d555
PM
739/*
740 * Dump the blocked-tasks state, but limit the list dump to the
741 * specified number of elements.
742 */
57738942 743static void
81ab59a3 744dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 745{
57738942 746 int cpu;
4bc8d555
PM
747 int i;
748 struct list_head *lhp;
57738942
PM
749 bool onl;
750 struct rcu_data *rdp;
ff3cee39 751 struct rcu_node *rnp1;
4bc8d555 752
ce11fae8 753 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 754 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 755 __func__, rnp->grplo, rnp->grphi, rnp->level,
ff3cee39
PM
756 (long)rnp->gp_seq, (long)rnp->completedqs);
757 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
758 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
759 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf 760 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
6935c398
ED
761 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
762 rnp->exp_tasks);
77cfc7bf 763 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
764 i = 0;
765 list_for_each(lhp, &rnp->blkd_tasks) {
766 pr_cont(" %p", lhp);
cd6d17b4 767 if (++i >= ncheck)
4bc8d555
PM
768 break;
769 }
770 pr_cont("\n");
57738942 771 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 772 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
773 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
774 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
775 cpu, ".o"[onl],
776 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
777 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
778 }
4bc8d555
PM
779}
780
28f6569a 781#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
782
783/*
784 * Tell them what RCU they are running.
785 */
0e0fc1c2 786static void __init rcu_bootup_announce(void)
f41d911f 787{
efc151c3 788 pr_info("Hierarchical RCU implementation.\n");
26845c28 789 rcu_bootup_announce_oddness();
f41d911f
PM
790}
791
45975c7d 792/*
90326f05 793 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
45975c7d
PM
794 * how many quiescent states passed, just if there was at least one since
795 * the start of the grace period, this just sets a flag. The caller must
796 * have disabled preemption.
797 */
798static void rcu_qs(void)
d28139c4 799{
45975c7d
PM
800 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
801 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
802 return;
803 trace_rcu_grace_period(TPS("rcu_sched"),
804 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
805 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
806 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
807 return;
808 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 809 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
810}
811
395a2f09
PM
812/*
813 * Register an urgently needed quiescent state. If there is an
814 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
815 * dyntick-idle quiescent state visible to other CPUs, which will in
816 * some cases serve for expedited as well as normal grace periods.
817 * Either way, register a lightweight quiescent state.
395a2f09
PM
818 */
819void rcu_all_qs(void)
820{
821 unsigned long flags;
822
2dba13f0 823 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
824 return;
825 preempt_disable();
826 /* Load rcu_urgent_qs before other flags. */
2dba13f0 827 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
828 preempt_enable();
829 return;
830 }
2dba13f0 831 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 832 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
833 local_irq_save(flags);
834 rcu_momentary_dyntick_idle();
835 local_irq_restore(flags);
836 }
7e28c5af 837 rcu_qs();
395a2f09
PM
838 preempt_enable();
839}
840EXPORT_SYMBOL_GPL(rcu_all_qs);
841
cba6d0d6 842/*
90326f05 843 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
cba6d0d6 844 */
45975c7d 845void rcu_note_context_switch(bool preempt)
cba6d0d6 846{
45975c7d
PM
847 trace_rcu_utilization(TPS("Start context switch"));
848 rcu_qs();
849 /* Load rcu_urgent_qs before other flags. */
2dba13f0 850 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 851 goto out;
2dba13f0
PM
852 this_cpu_write(rcu_data.rcu_urgent_qs, false);
853 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 854 rcu_momentary_dyntick_idle();
45975c7d
PM
855 if (!preempt)
856 rcu_tasks_qs(current);
857out:
858 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 859}
45975c7d 860EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 861
fc2219d4 862/*
6cc68793 863 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
864 * RCU readers.
865 */
27f4d280 866static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
867{
868 return 0;
869}
870
8af3a5e7
PM
871/*
872 * Because there is no preemptible RCU, there can be no readers blocked.
873 */
874static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 875{
8af3a5e7 876 return false;
b668c9cf
PM
877}
878
3e310098
PM
879/*
880 * Because there is no preemptible RCU, there can be no deferred quiescent
881 * states.
882 */
883static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
884{
885 return false;
886}
887static void rcu_preempt_deferred_qs(struct task_struct *t) { }
888
b0e165c0 889/*
6cc68793 890 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
891 * so there is no need to check for blocked tasks. So check only for
892 * bogus qsmask values.
b0e165c0 893 */
81ab59a3 894static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 895{
49e29126 896 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
897}
898
f41d911f 899/*
c98cac60
PM
900 * Check to see if this CPU is in a non-context-switch quiescent state,
901 * namely user mode and idle loop.
f41d911f 902 */
c98cac60 903static void rcu_flavor_sched_clock_irq(int user)
f41d911f 904{
45975c7d 905 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 906
45975c7d
PM
907 /*
908 * Get here if this CPU took its interrupt from user
909 * mode or from the idle loop, and if this is not a
910 * nested interrupt. In this case, the CPU is in
911 * a quiescent state, so note it.
912 *
913 * No memory barrier is required here because rcu_qs()
914 * references only CPU-local variables that other CPUs
915 * neither access nor modify, at least not while the
916 * corresponding CPU is online.
917 */
918
919 rcu_qs();
920 }
e74f4c45 921}
e74f4c45 922
2439b696
PM
923/*
924 * Because preemptible RCU does not exist, tasks cannot possibly exit
925 * while in preemptible RCU read-side critical sections.
926 */
927void exit_rcu(void)
928{
929}
930
4bc8d555
PM
931/*
932 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
933 */
57738942 934static void
81ab59a3 935dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
936{
937 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
938}
939
28f6569a 940#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 941
48d07c04
SAS
942/*
943 * If boosting, set rcuc kthreads to realtime priority.
944 */
945static void rcu_cpu_kthread_setup(unsigned int cpu)
946{
27f4d280 947#ifdef CONFIG_RCU_BOOST
48d07c04 948 struct sched_param sp;
27f4d280 949
48d07c04
SAS
950 sp.sched_priority = kthread_prio;
951 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
952#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
953}
954
48d07c04
SAS
955#ifdef CONFIG_RCU_BOOST
956
27f4d280
PM
957/*
958 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
959 * or ->boost_tasks, advancing the pointer to the next task in the
960 * ->blkd_tasks list.
961 *
962 * Note that irqs must be enabled: boosting the task can block.
963 * Returns 1 if there are more tasks needing to be boosted.
964 */
965static int rcu_boost(struct rcu_node *rnp)
966{
967 unsigned long flags;
27f4d280
PM
968 struct task_struct *t;
969 struct list_head *tb;
970
7d0ae808
PM
971 if (READ_ONCE(rnp->exp_tasks) == NULL &&
972 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
973 return 0; /* Nothing left to boost. */
974
2a67e741 975 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
976
977 /*
978 * Recheck under the lock: all tasks in need of boosting
979 * might exit their RCU read-side critical sections on their own.
980 */
981 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 982 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
983 return 0;
984 }
985
986 /*
987 * Preferentially boost tasks blocking expedited grace periods.
988 * This cannot starve the normal grace periods because a second
989 * expedited grace period must boost all blocked tasks, including
990 * those blocking the pre-existing normal grace period.
991 */
bec06785 992 if (rnp->exp_tasks != NULL)
27f4d280 993 tb = rnp->exp_tasks;
bec06785 994 else
27f4d280
PM
995 tb = rnp->boost_tasks;
996
997 /*
998 * We boost task t by manufacturing an rt_mutex that appears to
999 * be held by task t. We leave a pointer to that rt_mutex where
1000 * task t can find it, and task t will release the mutex when it
1001 * exits its outermost RCU read-side critical section. Then
1002 * simply acquiring this artificial rt_mutex will boost task
1003 * t's priority. (Thanks to tglx for suggesting this approach!)
1004 *
1005 * Note that task t must acquire rnp->lock to remove itself from
1006 * the ->blkd_tasks list, which it will do from exit() if from
1007 * nowhere else. We therefore are guaranteed that task t will
1008 * stay around at least until we drop rnp->lock. Note that
1009 * rnp->lock also resolves races between our priority boosting
1010 * and task t's exiting its outermost RCU read-side critical
1011 * section.
1012 */
1013 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1014 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1015 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1016 /* Lock only for side effect: boosts task t's priority. */
1017 rt_mutex_lock(&rnp->boost_mtx);
1018 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1019
7d0ae808
PM
1020 return READ_ONCE(rnp->exp_tasks) != NULL ||
1021 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1022}
1023
27f4d280 1024/*
bc17ea10 1025 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1026 */
1027static int rcu_boost_kthread(void *arg)
1028{
1029 struct rcu_node *rnp = (struct rcu_node *)arg;
1030 int spincnt = 0;
1031 int more2boost;
1032
f7f7bac9 1033 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1034 for (;;) {
d71df90e 1035 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1036 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1037 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1038 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1039 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1040 more2boost = rcu_boost(rnp);
1041 if (more2boost)
1042 spincnt++;
1043 else
1044 spincnt = 0;
1045 if (spincnt > 10) {
5d01bbd1 1046 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1047 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1048 schedule_timeout_interruptible(2);
f7f7bac9 1049 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1050 spincnt = 0;
1051 }
1052 }
1217ed1b 1053 /* NOTREACHED */
f7f7bac9 1054 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1055 return 0;
1056}
1057
1058/*
1059 * Check to see if it is time to start boosting RCU readers that are
1060 * blocking the current grace period, and, if so, tell the per-rcu_node
1061 * kthread to start boosting them. If there is an expedited grace
1062 * period in progress, it is always time to boost.
1063 *
b065a853
PM
1064 * The caller must hold rnp->lock, which this function releases.
1065 * The ->boost_kthread_task is immortal, so we don't need to worry
1066 * about it going away.
27f4d280 1067 */
1217ed1b 1068static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1069 __releases(rnp->lock)
27f4d280 1070{
a32e01ee 1071 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1072 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1073 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1074 return;
0ea1f2eb 1075 }
27f4d280
PM
1076 if (rnp->exp_tasks != NULL ||
1077 (rnp->gp_tasks != NULL &&
1078 rnp->boost_tasks == NULL &&
1079 rnp->qsmask == 0 &&
1080 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1081 if (rnp->exp_tasks == NULL)
1082 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1083 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa
PM
1084 rcu_wake_cond(rnp->boost_kthread_task,
1085 rnp->boost_kthread_status);
1217ed1b 1086 } else {
67c583a7 1087 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1088 }
27f4d280
PM
1089}
1090
dff1672d
PM
1091/*
1092 * Is the current CPU running the RCU-callbacks kthread?
1093 * Caller must have preemption disabled.
1094 */
1095static bool rcu_is_callbacks_kthread(void)
1096{
37f62d7c 1097 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1098}
1099
27f4d280
PM
1100#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1101
1102/*
1103 * Do priority-boost accounting for the start of a new grace period.
1104 */
1105static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1106{
1107 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1108}
1109
27f4d280
PM
1110/*
1111 * Create an RCU-boost kthread for the specified node if one does not
1112 * already exist. We only create this kthread for preemptible RCU.
1113 * Returns zero if all is well, a negated errno otherwise.
1114 */
3545832f 1115static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1116{
6dbfdc14 1117 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1118 unsigned long flags;
1119 struct sched_param sp;
1120 struct task_struct *t;
1121
6dbfdc14 1122 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1123 return;
5d01bbd1 1124
0aa04b05 1125 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1126 return;
5d01bbd1 1127
6dbfdc14 1128 rcu_state.boost = 1;
3545832f 1129
27f4d280 1130 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1131 return;
1132
27f4d280 1133 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1134 "rcub/%d", rnp_index);
3545832f
BP
1135 if (WARN_ON_ONCE(IS_ERR(t)))
1136 return;
1137
2a67e741 1138 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1139 rnp->boost_kthread_task = t;
67c583a7 1140 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1141 sp.sched_priority = kthread_prio;
27f4d280 1142 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1143 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1144}
1145
f8b7fc6b
PM
1146/*
1147 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1148 * served by the rcu_node in question. The CPU hotplug lock is still
1149 * held, so the value of rnp->qsmaskinit will be stable.
1150 *
1151 * We don't include outgoingcpu in the affinity set, use -1 if there is
1152 * no outgoing CPU. If there are no CPUs left in the affinity set,
1153 * this function allows the kthread to execute on any CPU.
1154 */
5d01bbd1 1155static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1156{
5d01bbd1 1157 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1158 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1159 cpumask_var_t cm;
1160 int cpu;
f8b7fc6b 1161
5d01bbd1 1162 if (!t)
f8b7fc6b 1163 return;
5d01bbd1 1164 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1165 return;
bc75e999
MR
1166 for_each_leaf_node_possible_cpu(rnp, cpu)
1167 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1168 cpu != outgoingcpu)
f8b7fc6b 1169 cpumask_set_cpu(cpu, cm);
5d0b0249 1170 if (cpumask_weight(cm) == 0)
f8b7fc6b 1171 cpumask_setall(cm);
5d01bbd1 1172 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1173 free_cpumask_var(cm);
1174}
1175
f8b7fc6b 1176/*
9386c0b7 1177 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1178 */
9386c0b7 1179static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1180{
f8b7fc6b
PM
1181 struct rcu_node *rnp;
1182
aedf4ba9 1183 rcu_for_each_leaf_node(rnp)
3545832f 1184 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1185}
f8b7fc6b 1186
49fb4c62 1187static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1188{
da1df50d 1189 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1190 struct rcu_node *rnp = rdp->mynode;
1191
1192 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1193 if (rcu_scheduler_fully_active)
3545832f 1194 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1195}
1196
27f4d280
PM
1197#else /* #ifdef CONFIG_RCU_BOOST */
1198
1217ed1b 1199static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1200 __releases(rnp->lock)
27f4d280 1201{
67c583a7 1202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1203}
1204
dff1672d
PM
1205static bool rcu_is_callbacks_kthread(void)
1206{
1207 return false;
1208}
1209
27f4d280
PM
1210static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1211{
1212}
1213
5d01bbd1 1214static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1215{
1216}
1217
9386c0b7 1218static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1219{
b0d30417 1220}
b0d30417 1221
49fb4c62 1222static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1223{
1224}
1225
27f4d280
PM
1226#endif /* #else #ifdef CONFIG_RCU_BOOST */
1227
8bd93a2c
PM
1228#if !defined(CONFIG_RCU_FAST_NO_HZ)
1229
1230/*
0bd55c69
PM
1231 * Check to see if any future non-offloaded RCU-related work will need
1232 * to be done by the current CPU, even if none need be done immediately,
1233 * returning 1 if so. This function is part of the RCU implementation;
1234 * it is -not- an exported member of the RCU API.
8bd93a2c 1235 *
0ae86a27
PM
1236 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1237 * CPU has RCU callbacks queued.
8bd93a2c 1238 */
c1ad348b 1239int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1240{
c1ad348b 1241 *nextevt = KTIME_MAX;
0bd55c69
PM
1242 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1243 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1244}
1245
1246/*
1247 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1248 * after it.
1249 */
8fa7845d 1250static void rcu_cleanup_after_idle(void)
7cb92499
PM
1251{
1252}
1253
aea1b35e 1254/*
a858af28 1255 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1256 * is nothing.
1257 */
198bbf81 1258static void rcu_prepare_for_idle(void)
aea1b35e
PM
1259{
1260}
1261
8bd93a2c
PM
1262#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1263
f23f7fa1
PM
1264/*
1265 * This code is invoked when a CPU goes idle, at which point we want
1266 * to have the CPU do everything required for RCU so that it can enter
77a40f97 1267 * the energy-efficient dyntick-idle mode.
f23f7fa1 1268 *
77a40f97 1269 * The following preprocessor symbol controls this:
f23f7fa1 1270 *
f23f7fa1
PM
1271 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1272 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1273 * is sized to be roughly one RCU grace period. Those energy-efficiency
1274 * benchmarkers who might otherwise be tempted to set this to a large
1275 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1276 * system. And if you are -that- concerned about energy efficiency,
1277 * just power the system down and be done with it!
1278 *
77a40f97 1279 * The value below works well in practice. If future workloads require
f23f7fa1
PM
1280 * adjustment, they can be converted into kernel config parameters, though
1281 * making the state machine smarter might be a better option.
1282 */
e84c48ae 1283#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
f23f7fa1 1284
5e44ce35
PM
1285static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1286module_param(rcu_idle_gp_delay, int, 0644);
486e2593 1287
486e2593 1288/*
0ae86a27
PM
1289 * Try to advance callbacks on the current CPU, but only if it has been
1290 * awhile since the last time we did so. Afterwards, if there are any
1291 * callbacks ready for immediate invocation, return true.
486e2593 1292 */
f1f399d1 1293static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1294{
c0f4dfd4 1295 bool cbs_ready = false;
5998a75a 1296 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1297 struct rcu_node *rnp;
486e2593 1298
c229828c 1299 /* Exit early if we advanced recently. */
5998a75a 1300 if (jiffies == rdp->last_advance_all)
d0bc90fd 1301 return false;
5998a75a 1302 rdp->last_advance_all = jiffies;
c229828c 1303
b97d23c5 1304 rnp = rdp->mynode;
486e2593 1305
b97d23c5
PM
1306 /*
1307 * Don't bother checking unless a grace period has
1308 * completed since we last checked and there are
1309 * callbacks not yet ready to invoke.
1310 */
1311 if ((rcu_seq_completed_gp(rdp->gp_seq,
1312 rcu_seq_current(&rnp->gp_seq)) ||
1313 unlikely(READ_ONCE(rdp->gpwrap))) &&
1314 rcu_segcblist_pend_cbs(&rdp->cblist))
1315 note_gp_changes(rdp);
1316
1317 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1318 cbs_ready = true;
c0f4dfd4 1319 return cbs_ready;
486e2593
PM
1320}
1321
aa9b1630 1322/*
c0f4dfd4
PM
1323 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1324 * to invoke. If the CPU has callbacks, try to advance them. Tell the
77a40f97 1325 * caller about what to set the timeout.
aa9b1630 1326 *
c0f4dfd4 1327 * The caller must have disabled interrupts.
aa9b1630 1328 */
c1ad348b 1329int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1330{
5998a75a 1331 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1332 unsigned long dj;
aa9b1630 1333
b04db8e1 1334 lockdep_assert_irqs_disabled();
3382adbc 1335
0bd55c69
PM
1336 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1337 if (rcu_segcblist_empty(&rdp->cblist) ||
1338 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1339 *nextevt = KTIME_MAX;
aa9b1630
PM
1340 return 0;
1341 }
c0f4dfd4
PM
1342
1343 /* Attempt to advance callbacks. */
1344 if (rcu_try_advance_all_cbs()) {
1345 /* Some ready to invoke, so initiate later invocation. */
1346 invoke_rcu_core();
aa9b1630
PM
1347 return 1;
1348 }
5998a75a 1349 rdp->last_accelerate = jiffies;
c0f4dfd4 1350
77a40f97
JFG
1351 /* Request timer and round. */
1352 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1353
c1ad348b 1354 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1355 return 0;
1356}
1357
21e52e15 1358/*
77a40f97
JFG
1359 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1360 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1361 * major task is to accelerate (that is, assign grace-period numbers to) any
1362 * recently arrived callbacks.
aea1b35e
PM
1363 *
1364 * The caller must have disabled interrupts.
8bd93a2c 1365 */
198bbf81 1366static void rcu_prepare_for_idle(void)
8bd93a2c 1367{
48a7639c 1368 bool needwake;
0fd79e75 1369 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1370 struct rcu_node *rnp;
9d2ad243
PM
1371 int tne;
1372
b04db8e1 1373 lockdep_assert_irqs_disabled();
ce5215c1 1374 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1375 return;
1376
9d2ad243 1377 /* Handle nohz enablement switches conservatively. */
7d0ae808 1378 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1379 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1380 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1381 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1382 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1383 return;
1384 }
1385 if (!tne)
1386 return;
f511fc62 1387
3084f2f8 1388 /*
c0f4dfd4
PM
1389 * If we have not yet accelerated this jiffy, accelerate all
1390 * callbacks on this CPU.
3084f2f8 1391 */
5998a75a 1392 if (rdp->last_accelerate == jiffies)
aea1b35e 1393 return;
5998a75a 1394 rdp->last_accelerate = jiffies;
b97d23c5 1395 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1396 rnp = rdp->mynode;
2a67e741 1397 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1398 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1399 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1400 if (needwake)
532c00c9 1401 rcu_gp_kthread_wake();
77e38ed3 1402 }
c0f4dfd4 1403}
3084f2f8 1404
c0f4dfd4
PM
1405/*
1406 * Clean up for exit from idle. Attempt to advance callbacks based on
1407 * any grace periods that elapsed while the CPU was idle, and if any
1408 * callbacks are now ready to invoke, initiate invocation.
1409 */
8fa7845d 1410static void rcu_cleanup_after_idle(void)
c0f4dfd4 1411{
ce5215c1
PM
1412 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1413
b04db8e1 1414 lockdep_assert_irqs_disabled();
ce5215c1 1415 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1416 return;
7a497c96
PM
1417 if (rcu_try_advance_all_cbs())
1418 invoke_rcu_core();
8bd93a2c
PM
1419}
1420
1421#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1422
3fbfbf7a
PM
1423#ifdef CONFIG_RCU_NOCB_CPU
1424
1425/*
1426 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1427 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1428 * created that pull the callbacks from the corresponding CPU, wait for
1429 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1430 * are organized into GP kthreads, which manage incoming callbacks, wait for
1431 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1432 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1433 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1434 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1435 * in which case each kthread actively polls its CPU. (Which isn't so great
1436 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1437 *
1438 * This is intended to be used in conjunction with Frederic Weisbecker's
1439 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1440 * running CPU-bound user-mode computations.
1441 *
a9fefdb2
PM
1442 * Offloading of callbacks can also be used as an energy-efficiency
1443 * measure because CPUs with no RCU callbacks queued are more aggressive
1444 * about entering dyntick-idle mode.
3fbfbf7a
PM
1445 */
1446
1447
497e4260
PM
1448/*
1449 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1450 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1451 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1452 * given, a warning is emitted and all CPUs are offloaded.
1453 */
3fbfbf7a
PM
1454static int __init rcu_nocb_setup(char *str)
1455{
1456 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1457 if (!strcasecmp(str, "all"))
1458 cpumask_setall(rcu_nocb_mask);
1459 else
497e4260
PM
1460 if (cpulist_parse(str, rcu_nocb_mask)) {
1461 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1462 cpumask_setall(rcu_nocb_mask);
1463 }
3fbfbf7a
PM
1464 return 1;
1465}
1466__setup("rcu_nocbs=", rcu_nocb_setup);
1467
1b0048a4
PG
1468static int __init parse_rcu_nocb_poll(char *arg)
1469{
5455a7f6 1470 rcu_nocb_poll = true;
1b0048a4
PG
1471 return 0;
1472}
1473early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1474
5d6742b3 1475/*
d1b222c6
PM
1476 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1477 * After all, the main point of bypassing is to avoid lock contention
1478 * on ->nocb_lock, which only can happen at high call_rcu() rates.
5d6742b3 1479 */
d1b222c6
PM
1480int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1481module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1482
1483/*
1484 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1485 * lock isn't immediately available, increment ->nocb_lock_contended to
1486 * flag the contention.
1487 */
1488static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
5d6742b3 1489{
81c0b3d7 1490 lockdep_assert_irqs_disabled();
d1b222c6 1491 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
81c0b3d7
PM
1492 return;
1493 atomic_inc(&rdp->nocb_lock_contended);
6aacd88d 1494 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
81c0b3d7 1495 smp_mb__after_atomic(); /* atomic_inc() before lock. */
d1b222c6 1496 raw_spin_lock(&rdp->nocb_bypass_lock);
81c0b3d7
PM
1497 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1498 atomic_dec(&rdp->nocb_lock_contended);
1499}
1500
1501/*
1502 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1503 * not contended. Please note that this is extremely special-purpose,
1504 * relying on the fact that at most two kthreads and one CPU contend for
1505 * this lock, and also that the two kthreads are guaranteed to have frequent
1506 * grace-period-duration time intervals between successive acquisitions
1507 * of the lock. This allows us to use an extremely simple throttling
1508 * mechanism, and further to apply it only to the CPU doing floods of
1509 * call_rcu() invocations. Don't try this at home!
1510 */
1511static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1512{
6aacd88d
PM
1513 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1514 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
81c0b3d7 1515 cpu_relax();
5d6742b3
PM
1516}
1517
d1b222c6
PM
1518/*
1519 * Conditionally acquire the specified rcu_data structure's
1520 * ->nocb_bypass_lock.
1521 */
1522static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1523{
1524 lockdep_assert_irqs_disabled();
1525 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1526}
1527
1528/*
1529 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1530 */
1531static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1532{
1533 lockdep_assert_irqs_disabled();
1534 raw_spin_unlock(&rdp->nocb_bypass_lock);
1535}
1536
1537/*
1538 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1539 * if it corresponds to a no-CBs CPU.
1540 */
1541static void rcu_nocb_lock(struct rcu_data *rdp)
1542{
1543 lockdep_assert_irqs_disabled();
1544 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1545 return;
1546 raw_spin_lock(&rdp->nocb_lock);
1547}
1548
5d6742b3
PM
1549/*
1550 * Release the specified rcu_data structure's ->nocb_lock, but only
1551 * if it corresponds to a no-CBs CPU.
1552 */
1553static void rcu_nocb_unlock(struct rcu_data *rdp)
1554{
1555 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1556 lockdep_assert_irqs_disabled();
1557 raw_spin_unlock(&rdp->nocb_lock);
1558 }
1559}
1560
1561/*
1562 * Release the specified rcu_data structure's ->nocb_lock and restore
1563 * interrupts, but only if it corresponds to a no-CBs CPU.
1564 */
1565static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1566 unsigned long flags)
1567{
1568 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1569 lockdep_assert_irqs_disabled();
1570 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1571 } else {
1572 local_irq_restore(flags);
1573 }
1574}
1575
d1b222c6
PM
1576/* Lockdep check that ->cblist may be safely accessed. */
1577static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1578{
1579 lockdep_assert_irqs_disabled();
1580 if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1581 cpu_online(rdp->cpu))
1582 lockdep_assert_held(&rdp->nocb_lock);
1583}
1584
dae6e64d 1585/*
0446be48
PM
1586 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1587 * grace period.
dae6e64d 1588 */
abedf8e2 1589static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1590{
abedf8e2 1591 swake_up_all(sq);
dae6e64d
PM
1592}
1593
abedf8e2 1594static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1595{
e0da2374 1596 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1597}
1598
dae6e64d 1599static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1600{
abedf8e2
PG
1601 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1602 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1603}
1604
24342c96 1605/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1606bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1607{
84b12b75 1608 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1609 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1610 return false;
1611}
1612
fbce7497 1613/*
6484fe54 1614 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1615 * and this function releases it.
fbce7497 1616 */
5d6742b3 1617static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1618 unsigned long flags)
8be6e1b1 1619 __releases(rdp->nocb_lock)
fbce7497 1620{
d1b222c6 1621 bool needwake = false;
5f675ba6 1622 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1623
8be6e1b1 1624 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1625 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
d1b222c6
PM
1626 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1627 TPS("AlreadyAwake"));
81c0b3d7 1628 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1629 return;
8be6e1b1 1630 }
d1b222c6
PM
1631 del_timer(&rdp->nocb_timer);
1632 rcu_nocb_unlock_irqrestore(rdp, flags);
1633 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1634 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
5d6742b3 1635 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
d1b222c6
PM
1636 needwake = true;
1637 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
fbce7497 1638 }
d1b222c6
PM
1639 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1640 if (needwake)
1641 wake_up_process(rdp_gp->nocb_gp_kthread);
fbce7497
PM
1642}
1643
8be6e1b1 1644/*
6484fe54
PM
1645 * Arrange to wake the GP kthread for this NOCB group at some future
1646 * time when it is safe to do so.
8be6e1b1 1647 */
0d52a665
PM
1648static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1649 const char *reason)
8be6e1b1 1650{
8be6e1b1
PM
1651 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1652 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1653 if (rdp->nocb_defer_wakeup < waketype)
1654 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1655 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1656}
1657
d1b222c6
PM
1658/*
1659 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1660 * However, if there is a callback to be enqueued and if ->nocb_bypass
1661 * proves to be initially empty, just return false because the no-CB GP
1662 * kthread may need to be awakened in this case.
1663 *
1664 * Note that this function always returns true if rhp is NULL.
1665 */
1666static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1667 unsigned long j)
1668{
1669 struct rcu_cblist rcl;
1670
1671 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1672 rcu_lockdep_assert_cblist_protected(rdp);
1673 lockdep_assert_held(&rdp->nocb_bypass_lock);
1674 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1675 raw_spin_unlock(&rdp->nocb_bypass_lock);
1676 return false;
1677 }
1678 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1679 if (rhp)
1680 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1681 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1682 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1683 WRITE_ONCE(rdp->nocb_bypass_first, j);
1684 rcu_nocb_bypass_unlock(rdp);
1685 return true;
1686}
1687
1688/*
1689 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1690 * However, if there is a callback to be enqueued and if ->nocb_bypass
1691 * proves to be initially empty, just return false because the no-CB GP
1692 * kthread may need to be awakened in this case.
1693 *
1694 * Note that this function always returns true if rhp is NULL.
1695 */
1696static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1697 unsigned long j)
1698{
1699 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1700 return true;
1701 rcu_lockdep_assert_cblist_protected(rdp);
1702 rcu_nocb_bypass_lock(rdp);
1703 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1704}
1705
1706/*
1707 * If the ->nocb_bypass_lock is immediately available, flush the
1708 * ->nocb_bypass queue into ->cblist.
1709 */
1710static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1711{
1712 rcu_lockdep_assert_cblist_protected(rdp);
1713 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1714 !rcu_nocb_bypass_trylock(rdp))
1715 return;
1716 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1717}
1718
1719/*
1720 * See whether it is appropriate to use the ->nocb_bypass list in order
1721 * to control contention on ->nocb_lock. A limited number of direct
1722 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1723 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1724 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1725 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1726 * used if ->cblist is empty, because otherwise callbacks can be stranded
1727 * on ->nocb_bypass because we cannot count on the current CPU ever again
1728 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1729 * non-empty, the corresponding no-CBs grace-period kthread must not be
1730 * in an indefinite sleep state.
1731 *
1732 * Finally, it is not permitted to use the bypass during early boot,
1733 * as doing so would confuse the auto-initialization code. Besides
1734 * which, there is no point in worrying about lock contention while
1735 * there is only one CPU in operation.
1736 */
1737static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1738 bool *was_alldone, unsigned long flags)
1739{
1740 unsigned long c;
1741 unsigned long cur_gp_seq;
1742 unsigned long j = jiffies;
1743 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1744
1745 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1746 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1747 return false; /* Not offloaded, no bypassing. */
1748 }
1749 lockdep_assert_irqs_disabled();
1750
1751 // Don't use ->nocb_bypass during early boot.
1752 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1753 rcu_nocb_lock(rdp);
1754 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1755 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1756 return false;
1757 }
1758
1759 // If we have advanced to a new jiffy, reset counts to allow
1760 // moving back from ->nocb_bypass to ->cblist.
1761 if (j == rdp->nocb_nobypass_last) {
1762 c = rdp->nocb_nobypass_count + 1;
1763 } else {
1764 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1765 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1766 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1767 nocb_nobypass_lim_per_jiffy))
1768 c = 0;
1769 else if (c > nocb_nobypass_lim_per_jiffy)
1770 c = nocb_nobypass_lim_per_jiffy;
1771 }
1772 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1773
1774 // If there hasn't yet been all that many ->cblist enqueues
1775 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1776 // ->nocb_bypass first.
1777 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1778 rcu_nocb_lock(rdp);
1779 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1780 if (*was_alldone)
1781 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1782 TPS("FirstQ"));
1783 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1784 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1785 return false; // Caller must enqueue the callback.
1786 }
1787
1788 // If ->nocb_bypass has been used too long or is too full,
1789 // flush ->nocb_bypass to ->cblist.
1790 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1791 ncbs >= qhimark) {
1792 rcu_nocb_lock(rdp);
1793 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1794 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1795 if (*was_alldone)
1796 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1797 TPS("FirstQ"));
1798 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1799 return false; // Caller must enqueue the callback.
1800 }
1801 if (j != rdp->nocb_gp_adv_time &&
1802 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1803 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1804 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1805 rdp->nocb_gp_adv_time = j;
1806 }
1807 rcu_nocb_unlock_irqrestore(rdp, flags);
1808 return true; // Callback already enqueued.
1809 }
1810
1811 // We need to use the bypass.
1812 rcu_nocb_wait_contended(rdp);
1813 rcu_nocb_bypass_lock(rdp);
1814 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1815 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1816 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1817 if (!ncbs) {
1818 WRITE_ONCE(rdp->nocb_bypass_first, j);
1819 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1820 }
1821 rcu_nocb_bypass_unlock(rdp);
1822 smp_mb(); /* Order enqueue before wake. */
1823 if (ncbs) {
1824 local_irq_restore(flags);
1825 } else {
1826 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1827 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1828 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1829 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1830 TPS("FirstBQwake"));
1831 __call_rcu_nocb_wake(rdp, true, flags);
1832 } else {
1833 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1834 TPS("FirstBQnoWake"));
1835 rcu_nocb_unlock_irqrestore(rdp, flags);
1836 }
1837 }
1838 return true; // Callback already enqueued.
1839}
1840
3fbfbf7a 1841/*
5d6742b3
PM
1842 * Awaken the no-CBs grace-period kthead if needed, either due to it
1843 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1844 *
1845 * If warranted, also wake up the kthread servicing this CPUs queues.
1846 */
5d6742b3
PM
1847static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1848 unsigned long flags)
1849 __releases(rdp->nocb_lock)
3fbfbf7a 1850{
296181d7
PM
1851 unsigned long cur_gp_seq;
1852 unsigned long j;
ce0a825e 1853 long len;
3fbfbf7a
PM
1854 struct task_struct *t;
1855
5d6742b3 1856 // If we are being polled or there is no kthread, just leave.
12f54c3a 1857 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1858 if (rcu_nocb_poll || !t) {
88d1bead 1859 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1860 TPS("WakeNotPoll"));
5d6742b3 1861 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1862 return;
9261dd0d 1863 }
5d6742b3
PM
1864 // Need to actually to a wakeup.
1865 len = rcu_segcblist_n_cbs(&rdp->cblist);
1866 if (was_alldone) {
aeeacd9d 1867 rdp->qlen_last_fqs_check = len;
96d3fd0d 1868 if (!irqs_disabled_flags(flags)) {
fbce7497 1869 /* ... if queue was empty ... */
5d6742b3 1870 wake_nocb_gp(rdp, false, flags);
88d1bead 1871 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1872 TPS("WakeEmpty"));
1873 } else {
0d52a665
PM
1874 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1875 TPS("WakeEmptyIsDeferred"));
5d6742b3 1876 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1877 }
3fbfbf7a 1878 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1879 /* ... or if many callbacks queued. */
aeeacd9d 1880 rdp->qlen_last_fqs_check = len;
296181d7
PM
1881 j = jiffies;
1882 if (j != rdp->nocb_gp_adv_time &&
1883 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1884 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
faca5c25 1885 rcu_advance_cbs_nowake(rdp->mynode, rdp);
296181d7
PM
1886 rdp->nocb_gp_adv_time = j;
1887 }
f48fe4c5
PM
1888 smp_mb(); /* Enqueue before timer_pending(). */
1889 if ((rdp->nocb_cb_sleep ||
1890 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1891 !timer_pending(&rdp->nocb_bypass_timer))
273f0340
PM
1892 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1893 TPS("WakeOvfIsDeferred"));
273f0340 1894 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1895 } else {
88d1bead 1896 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1897 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a
PM
1898 }
1899 return;
1900}
1901
d1b222c6
PM
1902/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1903static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1904{
1905 unsigned long flags;
1906 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1907
1908 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1909 rcu_nocb_lock_irqsave(rdp, flags);
f48fe4c5 1910 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
d1b222c6
PM
1911 __call_rcu_nocb_wake(rdp, true, flags);
1912}
1913
3fbfbf7a 1914/*
5d6742b3
PM
1915 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1916 * or for grace periods to end.
fbce7497 1917 */
12f54c3a 1918static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1919{
d1b222c6
PM
1920 bool bypass = false;
1921 long bypass_ncbs;
5d6742b3
PM
1922 int __maybe_unused cpu = my_rdp->cpu;
1923 unsigned long cur_gp_seq;
8be6e1b1 1924 unsigned long flags;
b8889c9c 1925 bool gotcbs = false;
d1b222c6 1926 unsigned long j = jiffies;
969974e5 1927 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1928 bool needwake;
1929 bool needwake_gp;
fbce7497 1930 struct rcu_data *rdp;
5d6742b3 1931 struct rcu_node *rnp;
969974e5 1932 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
fbce7497
PM
1933
1934 /*
5d6742b3
PM
1935 * Each pass through the following loop checks for CBs and for the
1936 * nearest grace period (if any) to wait for next. The CB kthreads
1937 * and the global grace-period kthread are awakened if needed.
fbce7497 1938 */
58bf6f77 1939 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
d1b222c6
PM
1940 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1941 rcu_nocb_lock_irqsave(rdp, flags);
1942 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1943 if (bypass_ncbs &&
1944 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1945 bypass_ncbs > 2 * qhimark)) {
1946 // Bypass full or old, so flush it.
1947 (void)rcu_nocb_try_flush_bypass(rdp, j);
1948 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1949 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1950 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1951 continue; /* No callbacks here, try next. */
d1b222c6
PM
1952 }
1953 if (bypass_ncbs) {
1954 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1955 TPS("Bypass"));
1956 bypass = true;
1957 }
5d6742b3 1958 rnp = rdp->mynode;
d1b222c6
PM
1959 if (bypass) { // Avoid race with first bypass CB.
1960 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1961 RCU_NOCB_WAKE_NOT);
1962 del_timer(&my_rdp->nocb_timer);
1963 }
1964 // Advance callbacks if helpful and low contention.
1965 needwake_gp = false;
1966 if (!rcu_segcblist_restempty(&rdp->cblist,
1967 RCU_NEXT_READY_TAIL) ||
1968 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1969 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1970 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1971 needwake_gp = rcu_advance_cbs(rnp, rdp);
1972 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1973 }
5d6742b3 1974 // Need to wait on some grace period?
d1b222c6
PM
1975 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
1976 RCU_NEXT_READY_TAIL));
5d6742b3
PM
1977 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1978 if (!needwait_gp ||
1979 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1980 wait_gp_seq = cur_gp_seq;
1981 needwait_gp = true;
d1b222c6
PM
1982 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1983 TPS("NeedWaitGP"));
8be6e1b1 1984 }
5d6742b3
PM
1985 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1986 needwake = rdp->nocb_cb_sleep;
1987 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1988 smp_mb(); /* CB invocation -after- GP end. */
1989 } else {
1990 needwake = false;
8be6e1b1 1991 }
81c0b3d7 1992 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1993 if (needwake) {
12f54c3a 1994 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 1995 gotcbs = true;
fbce7497 1996 }
5d6742b3
PM
1997 if (needwake_gp)
1998 rcu_gp_kthread_wake();
1999 }
2000
f7a81b12
PM
2001 my_rdp->nocb_gp_bypass = bypass;
2002 my_rdp->nocb_gp_gp = needwait_gp;
2003 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
d1b222c6
PM
2004 if (bypass && !rcu_nocb_poll) {
2005 // At least one child with non-empty ->nocb_bypass, so set
2006 // timer in order to avoid stranding its callbacks.
2007 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2008 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2009 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2010 }
5d6742b3
PM
2011 if (rcu_nocb_poll) {
2012 /* Polling, so trace if first poll in the series. */
2013 if (gotcbs)
2014 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2015 schedule_timeout_interruptible(1);
2016 } else if (!needwait_gp) {
2017 /* Wait for callbacks to appear. */
2018 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2019 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2020 !READ_ONCE(my_rdp->nocb_gp_sleep));
d1b222c6 2021 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
5d6742b3
PM
2022 } else {
2023 rnp = my_rdp->mynode;
2024 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2025 swait_event_interruptible_exclusive(
2026 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2027 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2028 !READ_ONCE(my_rdp->nocb_gp_sleep));
2029 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2030 }
2031 if (!rcu_nocb_poll) {
4fd8c5f1 2032 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
d1b222c6
PM
2033 if (bypass)
2034 del_timer(&my_rdp->nocb_bypass_timer);
5d6742b3 2035 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
4fd8c5f1 2036 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
fbce7497 2037 }
f7a81b12 2038 my_rdp->nocb_gp_seq = -1;
5d6742b3 2039 WARN_ON(signal_pending(current));
12f54c3a 2040}
fbce7497 2041
12f54c3a
PM
2042/*
2043 * No-CBs grace-period-wait kthread. There is one of these per group
2044 * of CPUs, but only once at least one CPU in that group has come online
2045 * at least once since boot. This kthread checks for newly posted
2046 * callbacks from any of the CPUs it is responsible for, waits for a
2047 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048 * that then have callback-invocation work to do.
2049 */
2050static int rcu_nocb_gp_kthread(void *arg)
2051{
2052 struct rcu_data *rdp = arg;
2053
5d6742b3 2054 for (;;) {
f7a81b12 2055 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
12f54c3a 2056 nocb_gp_wait(rdp);
5d6742b3
PM
2057 cond_resched_tasks_rcu_qs();
2058 }
12f54c3a 2059 return 0;
fbce7497
PM
2060}
2061
2062/*
5d6742b3
PM
2063 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064 * then, if there are no more, wait for more to appear.
fbce7497 2065 */
5d6742b3 2066static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 2067{
1d5a81c1 2068 unsigned long cur_gp_seq;
5d6742b3
PM
2069 unsigned long flags;
2070 bool needwake_gp = false;
2071 struct rcu_node *rnp = rdp->mynode;
2072
2073 local_irq_save(flags);
2074 rcu_momentary_dyntick_idle();
2075 local_irq_restore(flags);
2076 local_bh_disable();
2077 rcu_do_batch(rdp);
2078 local_bh_enable();
2079 lockdep_assert_irqs_enabled();
81c0b3d7 2080 rcu_nocb_lock_irqsave(rdp, flags);
1d5a81c1
PM
2081 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2082 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2083 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
523bddd5
PM
2084 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2085 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2086 }
5d6742b3 2087 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 2088 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2089 if (needwake_gp)
2090 rcu_gp_kthread_wake();
2091 return;
2092 }
2093
f7c9a9b6 2094 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 2095 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 2096 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2097 if (needwake_gp)
2098 rcu_gp_kthread_wake();
12f54c3a 2099 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
2100 !READ_ONCE(rdp->nocb_cb_sleep));
2101 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2102 /* ^^^ Ensure CB invocation follows _sleep test. */
2103 return;
fbce7497 2104 }
12f54c3a
PM
2105 WARN_ON(signal_pending(current));
2106 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2107}
2108
3fbfbf7a 2109/*
5d6742b3
PM
2110 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2111 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 2112 */
12f54c3a 2113static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 2114{
3fbfbf7a
PM
2115 struct rcu_data *rdp = arg;
2116
5d6742b3
PM
2117 // Each pass through this loop does one callback batch, and,
2118 // if there are no more ready callbacks, waits for them.
3fbfbf7a 2119 for (;;) {
5d6742b3
PM
2120 nocb_cb_wait(rdp);
2121 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2122 }
2123 return 0;
2124}
2125
96d3fd0d 2126/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2127static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2128{
7d0ae808 2129 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2130}
2131
2132/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2133static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2134{
8be6e1b1 2135 unsigned long flags;
9fdd3bc9
PM
2136 int ndw;
2137
81c0b3d7 2138 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 2139 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 2140 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 2141 return;
8be6e1b1 2142 }
7d0ae808 2143 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2144 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 2145 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 2146 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2147}
2148
8be6e1b1 2149/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2150static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2151{
fd30b717
KC
2152 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2153
2154 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2155}
2156
2157/*
2158 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159 * This means we do an inexact common-case check. Note that if
2160 * we miss, ->nocb_timer will eventually clean things up.
2161 */
2162static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2163{
2164 if (rcu_nocb_need_deferred_wakeup(rdp))
2165 do_nocb_deferred_wakeup_common(rdp);
2166}
2167
f4579fc5
PM
2168void __init rcu_init_nohz(void)
2169{
2170 int cpu;
ef126206 2171 bool need_rcu_nocb_mask = false;
e83e73f5 2172 struct rcu_data *rdp;
f4579fc5 2173
f4579fc5
PM
2174#if defined(CONFIG_NO_HZ_FULL)
2175 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2176 need_rcu_nocb_mask = true;
2177#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2178
84b12b75 2179 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2180 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2181 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2182 return;
2183 }
f4579fc5 2184 }
84b12b75 2185 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2186 return;
2187
f4579fc5
PM
2188#if defined(CONFIG_NO_HZ_FULL)
2189 if (tick_nohz_full_running)
2190 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2191#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2192
2193 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2194 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2195 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2196 rcu_nocb_mask);
2197 }
3016611e
PM
2198 if (cpumask_empty(rcu_nocb_mask))
2199 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2200 else
2201 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2203 if (rcu_nocb_poll)
2204 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2205
e83e73f5
PM
2206 for_each_cpu(cpu, rcu_nocb_mask) {
2207 rdp = per_cpu_ptr(&rcu_data, cpu);
2208 if (rcu_segcblist_empty(&rdp->cblist))
2209 rcu_segcblist_init(&rdp->cblist);
2210 rcu_segcblist_offload(&rdp->cblist);
2211 }
b97d23c5 2212 rcu_organize_nocb_kthreads();
96d3fd0d
PM
2213}
2214
3fbfbf7a
PM
2215/* Initialize per-rcu_data variables for no-CBs CPUs. */
2216static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2217{
12f54c3a
PM
2218 init_swait_queue_head(&rdp->nocb_cb_wq);
2219 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 2220 raw_spin_lock_init(&rdp->nocb_lock);
d1b222c6 2221 raw_spin_lock_init(&rdp->nocb_bypass_lock);
4fd8c5f1 2222 raw_spin_lock_init(&rdp->nocb_gp_lock);
fd30b717 2223 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
d1b222c6
PM
2224 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2225 rcu_cblist_init(&rdp->nocb_bypass);
3fbfbf7a
PM
2226}
2227
35ce7f29
PM
2228/*
2229 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
2230 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2231 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 2232 */
4580b054 2233static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 2234{
12f54c3a
PM
2235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2236 struct rcu_data *rdp_gp;
35ce7f29
PM
2237 struct task_struct *t;
2238
2239 /*
2240 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241 * then nothing to do.
2242 */
12f54c3a 2243 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
2244 return;
2245
6484fe54 2246 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
2247 rdp_gp = rdp->nocb_gp_rdp;
2248 if (!rdp_gp->nocb_gp_kthread) {
2249 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2250 "rcuog/%d", rdp_gp->cpu);
2251 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2252 return;
2253 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
2254 }
2255
0ae86a27 2256 /* Spawn the kthread for this CPU. */
12f54c3a 2257 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 2258 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 2259 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 2260 return;
12f54c3a
PM
2261 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2262 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
2263}
2264
2265/*
2266 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 2267 * rcuo kthread, spawn it.
35ce7f29 2268 */
ad368d15 2269static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 2270{
35ce7f29 2271 if (rcu_scheduler_fully_active)
b97d23c5 2272 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2273}
2274
2275/*
2276 * Once the scheduler is running, spawn rcuo kthreads for all online
2277 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2278 * non-boot CPUs come online -- if this changes, we will need to add
2279 * some mutual exclusion.
2280 */
2281static void __init rcu_spawn_nocb_kthreads(void)
2282{
2283 int cpu;
2284
2285 for_each_online_cpu(cpu)
ad368d15 2286 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2287}
2288
6484fe54 2289/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2290static int rcu_nocb_gp_stride = -1;
2291module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2292
2293/*
6484fe54 2294 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2295 */
4580b054 2296static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2297{
2298 int cpu;
18cd8c93 2299 bool firsttime = true;
610dea36
SR
2300 bool gotnocbs = false;
2301 bool gotnocbscbs = true;
f7c612b0 2302 int ls = rcu_nocb_gp_stride;
6484fe54 2303 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2304 struct rcu_data *rdp;
0bdc33da 2305 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2306 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2307
84b12b75 2308 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2309 return;
fbce7497 2310 if (ls == -1) {
9fcb09bd 2311 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2312 rcu_nocb_gp_stride = ls;
fbce7497
PM
2313 }
2314
2315 /*
9831ce3b
PM
2316 * Each pass through this loop sets up one rcu_data structure.
2317 * Should the corresponding CPU come online in the future, then
2318 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2319 */
3fbfbf7a 2320 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2321 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2322 if (rdp->cpu >= nl) {
6484fe54 2323 /* New GP kthread, set up for CBs & next GP. */
610dea36 2324 gotnocbs = true;
fbce7497 2325 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2326 rdp->nocb_gp_rdp = rdp;
0bdc33da 2327 rdp_gp = rdp;
610dea36
SR
2328 if (dump_tree) {
2329 if (!firsttime)
2330 pr_cont("%s\n", gotnocbscbs
2331 ? "" : " (self only)");
2332 gotnocbscbs = false;
2333 firsttime = false;
2334 pr_alert("%s: No-CB GP kthread CPU %d:",
2335 __func__, cpu);
2336 }
fbce7497 2337 } else {
6484fe54 2338 /* Another CB kthread, link to previous GP kthread. */
610dea36 2339 gotnocbscbs = true;
0bdc33da 2340 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2341 rdp_prev->nocb_next_cb_rdp = rdp;
610dea36
SR
2342 if (dump_tree)
2343 pr_cont(" %d", cpu);
fbce7497
PM
2344 }
2345 rdp_prev = rdp;
3fbfbf7a 2346 }
610dea36
SR
2347 if (gotnocbs && dump_tree)
2348 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
3fbfbf7a
PM
2349}
2350
5ab7ab83
PM
2351/*
2352 * Bind the current task to the offloaded CPUs. If there are no offloaded
2353 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2354 */
2355void rcu_bind_current_to_nocb(void)
2356{
2357 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2358 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2359}
2360EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2361
f7a81b12
PM
2362/*
2363 * Dump out nocb grace-period kthread state for the specified rcu_data
2364 * structure.
2365 */
2366static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2367{
2368 struct rcu_node *rnp = rdp->mynode;
2369
2370 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2371 rdp->cpu,
2372 "kK"[!!rdp->nocb_gp_kthread],
2373 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2374 "dD"[!!rdp->nocb_defer_wakeup],
2375 "tT"[timer_pending(&rdp->nocb_timer)],
2376 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2377 "sS"[!!rdp->nocb_gp_sleep],
2378 ".W"[swait_active(&rdp->nocb_gp_wq)],
2379 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2380 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2381 ".B"[!!rdp->nocb_gp_bypass],
2382 ".G"[!!rdp->nocb_gp_gp],
2383 (long)rdp->nocb_gp_seq,
2384 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2385}
2386
2387/* Dump out nocb kthread state for the specified rcu_data structure. */
2388static void show_rcu_nocb_state(struct rcu_data *rdp)
2389{
2390 struct rcu_segcblist *rsclp = &rdp->cblist;
2391 bool waslocked;
2392 bool wastimer;
2393 bool wassleep;
2394
2395 if (rdp->nocb_gp_rdp == rdp)
2396 show_rcu_nocb_gp_state(rdp);
2397
2398 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2400 "kK"[!!rdp->nocb_cb_kthread],
2401 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2402 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2403 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2404 "sS"[!!rdp->nocb_cb_sleep],
2405 ".W"[swait_active(&rdp->nocb_cb_wq)],
2406 jiffies - rdp->nocb_bypass_first,
2407 jiffies - rdp->nocb_nobypass_last,
2408 rdp->nocb_nobypass_count,
2409 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2410 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2411 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2412 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2413 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2414 rcu_segcblist_n_cbs(&rdp->cblist));
2415
2416 /* It is OK for GP kthreads to have GP state. */
2417 if (rdp->nocb_gp_rdp == rdp)
2418 return;
2419
2420 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2421 wastimer = timer_pending(&rdp->nocb_timer);
2422 wassleep = swait_active(&rdp->nocb_gp_wq);
2423 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2424 !waslocked && !wastimer && !wassleep)
2425 return; /* Nothing untowards. */
2426
2427 pr_info(" !!! %c%c%c%c %c\n",
2428 "lL"[waslocked],
2429 "dD"[!!rdp->nocb_defer_wakeup],
2430 "tT"[wastimer],
2431 "sS"[!!rdp->nocb_gp_sleep],
2432 ".W"[wassleep]);
2433}
2434
34ed6246
PM
2435#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2436
5d6742b3
PM
2437/* No ->nocb_lock to acquire. */
2438static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2439{
5d6742b3
PM
2440}
2441
2442/* No ->nocb_lock to release. */
2443static void rcu_nocb_unlock(struct rcu_data *rdp)
2444{
2445}
2446
2447/* No ->nocb_lock to release. */
2448static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2449 unsigned long flags)
2450{
2451 local_irq_restore(flags);
d7e29933
PM
2452}
2453
d1b222c6
PM
2454/* Lockdep check that ->cblist may be safely accessed. */
2455static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2456{
2457 lockdep_assert_irqs_disabled();
2458}
2459
abedf8e2 2460static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2461{
3fbfbf7a
PM
2462}
2463
abedf8e2 2464static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2465{
2466 return NULL;
2467}
2468
dae6e64d
PM
2469static void rcu_init_one_nocb(struct rcu_node *rnp)
2470{
2471}
3fbfbf7a 2472
d1b222c6
PM
2473static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2474 unsigned long j)
2475{
2476 return true;
2477}
2478
2479static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2480 bool *was_alldone, unsigned long flags)
2481{
2482 return false;
2483}
2484
5d6742b3
PM
2485static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2486 unsigned long flags)
3fbfbf7a 2487{
5d6742b3 2488 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2489}
2490
3fbfbf7a
PM
2491static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2492{
2493}
2494
9fdd3bc9 2495static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2496{
2497 return false;
2498}
2499
2500static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2501{
2502}
2503
ad368d15 2504static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2505{
2506}
2507
2508static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2509{
2510}
2511
f7a81b12
PM
2512static void show_rcu_nocb_state(struct rcu_data *rdp)
2513{
2514}
2515
3fbfbf7a 2516#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2517
a096932f
PM
2518/*
2519 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520 * grace-period kthread will do force_quiescent_state() processing?
2521 * The idea is to avoid waking up RCU core processing on such a
2522 * CPU unless the grace period has extended for too long.
2523 *
2524 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2525 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2526 */
4580b054 2527static bool rcu_nohz_full_cpu(void)
a096932f
PM
2528{
2529#ifdef CONFIG_NO_HZ_FULL
2530 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2531 (!rcu_gp_in_progress() ||
4580b054 2532 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2533 return true;
a096932f 2534#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2535 return false;
a096932f 2536}
5057f55e
PM
2537
2538/*
265f5f28 2539 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2540 */
2541static void rcu_bind_gp_kthread(void)
2542{
c0f489d2 2543 if (!tick_nohz_full_enabled())
5057f55e 2544 return;
de201559 2545 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2546}
176f8f7a
PM
2547
2548/* Record the current task on dyntick-idle entry. */
2549static void rcu_dynticks_task_enter(void)
2550{
2551#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2552 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2553#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2554}
2555
2556/* Record no current task on dyntick-idle exit. */
2557static void rcu_dynticks_task_exit(void)
2558{
2559#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2560 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2561#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2562}