]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - kernel/rcu/tree_plugin.h
rcu: Clear ->rcu_read_unlock_special only once
[mirror_ubuntu-jammy-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
22e40925 1/* SPDX-License-Identifier: GPL-2.0+ */
f41d911f
PM
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
6cc68793 5 * or preemptible semantics.
f41d911f 6 *
f41d911f
PM
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
9 *
10 * Author: Ingo Molnar <mingo@elte.hu>
22e40925 11 * Paul E. McKenney <paulmck@linux.ibm.com>
f41d911f
PM
12 */
13
abaa93d9 14#include "../locking/rtmutex_common.h"
5b61b0ba 15
3fbfbf7a
PM
16#ifdef CONFIG_RCU_NOCB_CPU
17static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
1b0048a4 18static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
19#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
26845c28
PM
21/*
22 * Check the RCU kernel configuration parameters and print informative
699d4035 23 * messages about anything out of the ordinary.
26845c28
PM
24 */
25static void __init rcu_bootup_announce_oddness(void)
26{
ab6f5bd6 27 if (IS_ENABLED(CONFIG_RCU_TRACE))
ae91aa0a 28 pr_info("\tRCU event tracing is enabled.\n");
05c5df31
PM
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
a7538352
JP
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
7fa27001 33 if (rcu_fanout_exact)
ab6f5bd6
PM
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
c4a09ff7 37 if (IS_ENABLED(CONFIG_PROVE_RCU))
ab6f5bd6 38 pr_info("\tRCU lockdep checking is enabled.\n");
42621697
AG
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
47d631af 41 if (RCU_FANOUT_LEAF != 16)
a3bd2c09 42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
47d631af
PM
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
a7538352
JP
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
cca6f393 47 if (nr_cpu_ids != NR_CPUS)
9b130ad5 48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
17c7798b 49#ifdef CONFIG_RCU_BOOST
a7538352
JP
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
17c7798b
PM
52#endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (jiffies_till_first_fqs != ULONG_MAX)
60 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
61 if (jiffies_till_next_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
c06aed0e
PM
63 if (jiffies_till_sched_qs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
17c7798b
PM
65 if (rcu_kick_kthreads)
66 pr_info("\tKick kthreads if too-long grace period.\n");
67 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
68 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
90040c9e 69 if (gp_preinit_delay)
17c7798b 70 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
90040c9e 71 if (gp_init_delay)
17c7798b 72 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
90040c9e 73 if (gp_cleanup_delay)
17c7798b 74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
48d07c04
SAS
75 if (!use_softirq)
76 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
17c7798b
PM
77 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
78 pr_info("\tRCU debug extended QS entry/exit.\n");
59d80fd8 79 rcupdate_announce_bootup_oddness();
26845c28
PM
80}
81
28f6569a 82#ifdef CONFIG_PREEMPT_RCU
f41d911f 83
63d4c8c9 84static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
3949fa9b 85static void rcu_read_unlock_special(struct task_struct *t);
d9a3da06 86
f41d911f
PM
87/*
88 * Tell them what RCU they are running.
89 */
0e0fc1c2 90static void __init rcu_bootup_announce(void)
f41d911f 91{
efc151c3 92 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 93 rcu_bootup_announce_oddness();
f41d911f
PM
94}
95
8203d6d0
PM
96/* Flags for rcu_preempt_ctxt_queue() decision table. */
97#define RCU_GP_TASKS 0x8
98#define RCU_EXP_TASKS 0x4
99#define RCU_GP_BLKD 0x2
100#define RCU_EXP_BLKD 0x1
101
102/*
103 * Queues a task preempted within an RCU-preempt read-side critical
104 * section into the appropriate location within the ->blkd_tasks list,
105 * depending on the states of any ongoing normal and expedited grace
106 * periods. The ->gp_tasks pointer indicates which element the normal
107 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
108 * indicates which element the expedited grace period is waiting on (again,
109 * NULL if none). If a grace period is waiting on a given element in the
110 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
111 * adding a task to the tail of the list blocks any grace period that is
112 * already waiting on one of the elements. In contrast, adding a task
113 * to the head of the list won't block any grace period that is already
114 * waiting on one of the elements.
115 *
116 * This queuing is imprecise, and can sometimes make an ongoing grace
117 * period wait for a task that is not strictly speaking blocking it.
118 * Given the choice, we needlessly block a normal grace period rather than
119 * blocking an expedited grace period.
120 *
121 * Note that an endless sequence of expedited grace periods still cannot
122 * indefinitely postpone a normal grace period. Eventually, all of the
123 * fixed number of preempted tasks blocking the normal grace period that are
124 * not also blocking the expedited grace period will resume and complete
125 * their RCU read-side critical sections. At that point, the ->gp_tasks
126 * pointer will equal the ->exp_tasks pointer, at which point the end of
127 * the corresponding expedited grace period will also be the end of the
128 * normal grace period.
129 */
46a5d164
PM
130static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
131 __releases(rnp->lock) /* But leaves rrupts disabled. */
8203d6d0
PM
132{
133 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
134 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
135 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
136 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
137 struct task_struct *t = current;
138
a32e01ee 139 raw_lockdep_assert_held_rcu_node(rnp);
2dee9404 140 WARN_ON_ONCE(rdp->mynode != rnp);
5b4c11d5 141 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
1f3e5f51
PM
142 /* RCU better not be waiting on newly onlined CPUs! */
143 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
144 rdp->grpmask);
ea9b0c8a 145
8203d6d0
PM
146 /*
147 * Decide where to queue the newly blocked task. In theory,
148 * this could be an if-statement. In practice, when I tried
149 * that, it was quite messy.
150 */
151 switch (blkd_state) {
152 case 0:
153 case RCU_EXP_TASKS:
154 case RCU_EXP_TASKS + RCU_GP_BLKD:
155 case RCU_GP_TASKS:
156 case RCU_GP_TASKS + RCU_EXP_TASKS:
157
158 /*
159 * Blocking neither GP, or first task blocking the normal
160 * GP but not blocking the already-waiting expedited GP.
161 * Queue at the head of the list to avoid unnecessarily
162 * blocking the already-waiting GPs.
163 */
164 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
165 break;
166
167 case RCU_EXP_BLKD:
168 case RCU_GP_BLKD:
169 case RCU_GP_BLKD + RCU_EXP_BLKD:
170 case RCU_GP_TASKS + RCU_EXP_BLKD:
171 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
173
174 /*
175 * First task arriving that blocks either GP, or first task
176 * arriving that blocks the expedited GP (with the normal
177 * GP already waiting), or a task arriving that blocks
178 * both GPs with both GPs already waiting. Queue at the
179 * tail of the list to avoid any GP waiting on any of the
180 * already queued tasks that are not blocking it.
181 */
182 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
183 break;
184
185 case RCU_EXP_TASKS + RCU_EXP_BLKD:
186 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
187 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
188
189 /*
190 * Second or subsequent task blocking the expedited GP.
191 * The task either does not block the normal GP, or is the
192 * first task blocking the normal GP. Queue just after
193 * the first task blocking the expedited GP.
194 */
195 list_add(&t->rcu_node_entry, rnp->exp_tasks);
196 break;
197
198 case RCU_GP_TASKS + RCU_GP_BLKD:
199 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
200
201 /*
202 * Second or subsequent task blocking the normal GP.
203 * The task does not block the expedited GP. Queue just
204 * after the first task blocking the normal GP.
205 */
206 list_add(&t->rcu_node_entry, rnp->gp_tasks);
207 break;
208
209 default:
210
211 /* Yet another exercise in excessive paranoia. */
212 WARN_ON_ONCE(1);
213 break;
214 }
215
216 /*
217 * We have now queued the task. If it was the first one to
218 * block either grace period, update the ->gp_tasks and/or
219 * ->exp_tasks pointers, respectively, to reference the newly
220 * blocked tasks.
221 */
4bc8d555 222 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
6935c398 223 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
d43a5d32 224 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
4bc8d555 225 }
8203d6d0
PM
226 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
227 rnp->exp_tasks = &t->rcu_node_entry;
2dee9404
PM
228 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
229 !(rnp->qsmask & rdp->grpmask));
230 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
231 !(rnp->expmask & rdp->grpmask));
67c583a7 232 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
8203d6d0
PM
233
234 /*
235 * Report the quiescent state for the expedited GP. This expedited
236 * GP should not be able to end until we report, so there should be
237 * no need to check for a subsequent expedited GP. (Though we are
238 * still in a quiescent state in any case.)
239 */
1bb33644 240 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
63d4c8c9 241 rcu_report_exp_rdp(rdp);
fcc878e4 242 else
1bb33644 243 WARN_ON_ONCE(rdp->exp_deferred_qs);
8203d6d0
PM
244}
245
f41d911f 246/*
c7037ff5
PM
247 * Record a preemptible-RCU quiescent state for the specified CPU.
248 * Note that this does not necessarily mean that the task currently running
249 * on the CPU is in a quiescent state: Instead, it means that the current
250 * grace period need not wait on any RCU read-side critical section that
251 * starts later on this CPU. It also means that if the current task is
252 * in an RCU read-side critical section, it has already added itself to
253 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
254 * current task, there might be any number of other tasks blocked while
255 * in an RCU read-side critical section.
25502a6c 256 *
c7037ff5 257 * Callers to this function must disable preemption.
f41d911f 258 */
45975c7d 259static void rcu_qs(void)
f41d911f 260{
45975c7d 261 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
2280ee5a 262 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
284a8c93 263 trace_rcu_grace_period(TPS("rcu_preempt"),
2280ee5a 264 __this_cpu_read(rcu_data.gp_seq),
284a8c93 265 TPS("cpuqs"));
2280ee5a 266 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
c98cac60 267 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
add0d37b 268 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
284a8c93 269 }
f41d911f
PM
270}
271
272/*
c3422bea
PM
273 * We have entered the scheduler, and the current task might soon be
274 * context-switched away from. If this task is in an RCU read-side
275 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
276 * record that fact, so we enqueue the task on the blkd_tasks list.
277 * The task will dequeue itself when it exits the outermost enclosing
278 * RCU read-side critical section. Therefore, the current grace period
279 * cannot be permitted to complete until the blkd_tasks list entries
280 * predating the current grace period drain, in other words, until
281 * rnp->gp_tasks becomes NULL.
c3422bea 282 *
46a5d164 283 * Caller must disable interrupts.
f41d911f 284 */
45975c7d 285void rcu_note_context_switch(bool preempt)
f41d911f
PM
286{
287 struct task_struct *t = current;
da1df50d 288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
f41d911f
PM
289 struct rcu_node *rnp;
290
45975c7d 291 trace_rcu_utilization(TPS("Start context switch"));
b04db8e1 292 lockdep_assert_irqs_disabled();
5b72f964 293 WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
10f39bb1 294 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 295 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
296
297 /* Possibly blocking in an RCU read-side critical section. */
f41d911f 298 rnp = rdp->mynode;
46a5d164 299 raw_spin_lock_rcu_node(rnp);
1d082fd0 300 t->rcu_read_unlock_special.b.blocked = true;
86848966 301 t->rcu_blocked_node = rnp;
f41d911f
PM
302
303 /*
8203d6d0
PM
304 * Verify the CPU's sanity, trace the preemption, and
305 * then queue the task as required based on the states
306 * of any ongoing and expedited grace periods.
f41d911f 307 */
0aa04b05 308 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
e7d8842e 309 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
88d1bead 310 trace_rcu_preempt_task(rcu_state.name,
d4c08f2a
PM
311 t->pid,
312 (rnp->qsmask & rdp->grpmask)
598ce094
PM
313 ? rnp->gp_seq
314 : rcu_seq_snap(&rnp->gp_seq));
46a5d164 315 rcu_preempt_ctxt_queue(rnp, rdp);
3e310098
PM
316 } else {
317 rcu_preempt_deferred_qs(t);
f41d911f
PM
318 }
319
320 /*
321 * Either we were not in an RCU read-side critical section to
322 * begin with, or we have now recorded that critical section
323 * globally. Either way, we can now note a quiescent state
324 * for this CPU. Again, if we were in an RCU read-side critical
325 * section, and if that critical section was blocking the current
326 * grace period, then the fact that the task has been enqueued
327 * means that we continue to block the current grace period.
328 */
45975c7d 329 rcu_qs();
1bb33644 330 if (rdp->exp_deferred_qs)
63d4c8c9 331 rcu_report_exp_rdp(rdp);
45975c7d 332 trace_rcu_utilization(TPS("End context switch"));
f41d911f 333}
45975c7d 334EXPORT_SYMBOL_GPL(rcu_note_context_switch);
f41d911f 335
fc2219d4
PM
336/*
337 * Check for preempted RCU readers blocking the current grace period
338 * for the specified rcu_node structure. If the caller needs a reliable
339 * answer, it must hold the rcu_node's ->lock.
340 */
27f4d280 341static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 342{
6935c398 343 return READ_ONCE(rnp->gp_tasks) != NULL;
fc2219d4
PM
344}
345
5f1a6ef3
PM
346/* Bias and limit values for ->rcu_read_lock_nesting. */
347#define RCU_NEST_BIAS INT_MAX
348#define RCU_NEST_NMAX (-INT_MAX / 2)
349#define RCU_NEST_PMAX (INT_MAX / 2)
350
0e5da22e
PM
351/*
352 * Preemptible RCU implementation for rcu_read_lock().
353 * Just increment ->rcu_read_lock_nesting, shared state will be updated
354 * if we block.
355 */
356void __rcu_read_lock(void)
357{
358 current->rcu_read_lock_nesting++;
5f1a6ef3
PM
359 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
360 WARN_ON_ONCE(current->rcu_read_lock_nesting > RCU_NEST_PMAX);
0e5da22e
PM
361 barrier(); /* critical section after entry code. */
362}
363EXPORT_SYMBOL_GPL(__rcu_read_lock);
364
365/*
366 * Preemptible RCU implementation for rcu_read_unlock().
367 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
368 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
369 * invoke rcu_read_unlock_special() to clean up after a context switch
370 * in an RCU read-side critical section and other special cases.
371 */
372void __rcu_read_unlock(void)
373{
374 struct task_struct *t = current;
375
376 if (t->rcu_read_lock_nesting != 1) {
377 --t->rcu_read_lock_nesting;
378 } else {
379 barrier(); /* critical section before exit code. */
5f1a6ef3 380 t->rcu_read_lock_nesting = -RCU_NEST_BIAS;
0e5da22e
PM
381 barrier(); /* assign before ->rcu_read_unlock_special load */
382 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
383 rcu_read_unlock_special(t);
384 barrier(); /* ->rcu_read_unlock_special load before assign */
385 t->rcu_read_lock_nesting = 0;
386 }
5f1a6ef3
PM
387 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
388 int rrln = t->rcu_read_lock_nesting;
0e5da22e 389
5f1a6ef3 390 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
0e5da22e 391 }
0e5da22e
PM
392}
393EXPORT_SYMBOL_GPL(__rcu_read_unlock);
394
12f5f524
PM
395/*
396 * Advance a ->blkd_tasks-list pointer to the next entry, instead
397 * returning NULL if at the end of the list.
398 */
399static struct list_head *rcu_next_node_entry(struct task_struct *t,
400 struct rcu_node *rnp)
401{
402 struct list_head *np;
403
404 np = t->rcu_node_entry.next;
405 if (np == &rnp->blkd_tasks)
406 np = NULL;
407 return np;
408}
409
8af3a5e7
PM
410/*
411 * Return true if the specified rcu_node structure has tasks that were
412 * preempted within an RCU read-side critical section.
413 */
414static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
415{
416 return !list_empty(&rnp->blkd_tasks);
417}
418
b668c9cf 419/*
3e310098
PM
420 * Report deferred quiescent states. The deferral time can
421 * be quite short, for example, in the case of the call from
422 * rcu_read_unlock_special().
b668c9cf 423 */
3e310098
PM
424static void
425rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
f41d911f 426{
b6a932d1
PM
427 bool empty_exp;
428 bool empty_norm;
429 bool empty_exp_now;
12f5f524 430 struct list_head *np;
abaa93d9 431 bool drop_boost_mutex = false;
8203d6d0 432 struct rcu_data *rdp;
f41d911f 433 struct rcu_node *rnp;
1d082fd0 434 union rcu_special special;
f41d911f 435
f41d911f 436 /*
8203d6d0
PM
437 * If RCU core is waiting for this CPU to exit its critical section,
438 * report the fact that it has exited. Because irqs are disabled,
1d082fd0 439 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
440 */
441 special = t->rcu_read_unlock_special;
da1df50d 442 rdp = this_cpu_ptr(&rcu_data);
1bb33644 443 if (!special.s && !rdp->exp_deferred_qs) {
3e310098
PM
444 local_irq_restore(flags);
445 return;
446 }
3717e1e9
LJ
447 t->rcu_read_unlock_special.s = 0;
448 if (special.b.need_qs)
45975c7d 449 rcu_qs();
f41d911f 450
8203d6d0 451 /*
3e310098
PM
452 * Respond to a request by an expedited grace period for a
453 * quiescent state from this CPU. Note that requests from
454 * tasks are handled when removing the task from the
455 * blocked-tasks list below.
8203d6d0 456 */
3717e1e9 457 if (rdp->exp_deferred_qs)
63d4c8c9 458 rcu_report_exp_rdp(rdp);
8203d6d0 459
f41d911f 460 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0 461 if (special.b.blocked) {
f41d911f 462
dd5d19ba 463 /*
0a0ba1c9 464 * Remove this task from the list it blocked on. The task
8ba9153b
PM
465 * now remains queued on the rcu_node corresponding to the
466 * CPU it first blocked on, so there is no longer any need
467 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
dd5d19ba 468 */
8ba9153b
PM
469 rnp = t->rcu_blocked_node;
470 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
471 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
5b4c11d5 472 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
74e871ac 473 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d43a5d32 474 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
4bc8d555 475 (!empty_norm || rnp->qsmask));
8203d6d0 476 empty_exp = sync_rcu_preempt_exp_done(rnp);
d9a3da06 477 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 478 np = rcu_next_node_entry(t, rnp);
f41d911f 479 list_del_init(&t->rcu_node_entry);
82e78d80 480 t->rcu_blocked_node = NULL;
f7f7bac9 481 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
865aa1e0 482 rnp->gp_seq, t->pid);
12f5f524 483 if (&t->rcu_node_entry == rnp->gp_tasks)
6935c398 484 WRITE_ONCE(rnp->gp_tasks, np);
12f5f524
PM
485 if (&t->rcu_node_entry == rnp->exp_tasks)
486 rnp->exp_tasks = np;
727b705b 487 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
727b705b
PM
488 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
489 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
2dee9404
PM
490 if (&t->rcu_node_entry == rnp->boost_tasks)
491 rnp->boost_tasks = np;
727b705b 492 }
f41d911f
PM
493
494 /*
495 * If this was the last task on the current list, and if
496 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
497 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
498 * so we must take a snapshot of the expedited state.
f41d911f 499 */
8203d6d0 500 empty_exp_now = sync_rcu_preempt_exp_done(rnp);
74e871ac 501 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 502 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
db023296 503 rnp->gp_seq,
d4c08f2a
PM
504 0, rnp->qsmask,
505 rnp->level,
506 rnp->grplo,
507 rnp->grphi,
508 !!rnp->gp_tasks);
139ad4da 509 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 510 } else {
67c583a7 511 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
c701d5d9 512 }
d9a3da06 513
27f4d280 514 /* Unboost if we were boosted. */
727b705b 515 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
02a7c234 516 rt_mutex_futex_unlock(&rnp->boost_mtx);
27f4d280 517
d9a3da06
PM
518 /*
519 * If this was the last task on the expedited lists,
520 * then we need to report up the rcu_node hierarchy.
521 */
389abd48 522 if (!empty_exp && empty_exp_now)
63d4c8c9 523 rcu_report_exp_rnp(rnp, true);
b668c9cf
PM
524 } else {
525 local_irq_restore(flags);
f41d911f 526 }
f41d911f
PM
527}
528
3e310098
PM
529/*
530 * Is a deferred quiescent-state pending, and are we also not in
531 * an RCU read-side critical section? It is the caller's responsibility
532 * to ensure it is otherwise safe to report any deferred quiescent
533 * states. The reason for this is that it is safe to report a
534 * quiescent state during context switch even though preemption
535 * is disabled. This function cannot be expected to understand these
536 * nuances, so the caller must handle them.
537 */
538static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
539{
1bb33644 540 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
3e310098 541 READ_ONCE(t->rcu_read_unlock_special.s)) &&
27c744e3 542 t->rcu_read_lock_nesting <= 0;
3e310098
PM
543}
544
545/*
546 * Report a deferred quiescent state if needed and safe to do so.
547 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
548 * not being in an RCU read-side critical section. The caller must
549 * evaluate safety in terms of interrupt, softirq, and preemption
550 * disabling.
551 */
552static void rcu_preempt_deferred_qs(struct task_struct *t)
553{
554 unsigned long flags;
555 bool couldrecurse = t->rcu_read_lock_nesting >= 0;
556
557 if (!rcu_preempt_need_deferred_qs(t))
558 return;
559 if (couldrecurse)
5f1a6ef3 560 t->rcu_read_lock_nesting -= RCU_NEST_BIAS;
3e310098
PM
561 local_irq_save(flags);
562 rcu_preempt_deferred_qs_irqrestore(t, flags);
563 if (couldrecurse)
5f1a6ef3 564 t->rcu_read_lock_nesting += RCU_NEST_BIAS;
3e310098
PM
565}
566
0864f057
PM
567/*
568 * Minimal handler to give the scheduler a chance to re-evaluate.
569 */
570static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
571{
572 struct rcu_data *rdp;
573
574 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
575 rdp->defer_qs_iw_pending = false;
576}
577
3e310098
PM
578/*
579 * Handle special cases during rcu_read_unlock(), such as needing to
580 * notify RCU core processing or task having blocked during the RCU
581 * read-side critical section.
582 */
583static void rcu_read_unlock_special(struct task_struct *t)
584{
585 unsigned long flags;
586 bool preempt_bh_were_disabled =
587 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
588 bool irqs_were_disabled;
589
590 /* NMI handlers cannot block and cannot safely manipulate state. */
591 if (in_nmi())
592 return;
593
594 local_irq_save(flags);
595 irqs_were_disabled = irqs_disabled_flags(flags);
05f41571 596 if (preempt_bh_were_disabled || irqs_were_disabled) {
25102de6
PM
597 bool exp;
598 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
599 struct rcu_node *rnp = rdp->mynode;
600
25102de6
PM
601 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
602 (rdp->grpmask & rnp->expmask) ||
603 tick_nohz_full_cpu(rdp->cpu);
23634ebc 604 // Need to defer quiescent state until everything is enabled.
87446b48
PM
605 if (irqs_were_disabled && use_softirq &&
606 (in_interrupt() ||
607 (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
23634ebc
PM
608 // Using softirq, safe to awaken, and we get
609 // no help from enabling irqs, unlike bh/preempt.
05f41571
PM
610 raise_softirq_irqoff(RCU_SOFTIRQ);
611 } else {
23634ebc 612 // Enabling BH or preempt does reschedule, so...
25102de6 613 // Also if no expediting or NO_HZ_FULL, slow is OK.
05f41571
PM
614 set_tsk_need_resched(current);
615 set_preempt_need_resched();
d143b3d1 616 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
0864f057
PM
617 !rdp->defer_qs_iw_pending && exp) {
618 // Get scheduler to re-evaluate and call hooks.
619 // If !IRQ_WORK, FQS scan will eventually IPI.
620 init_irq_work(&rdp->defer_qs_iw,
621 rcu_preempt_deferred_qs_handler);
622 rdp->defer_qs_iw_pending = true;
623 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
624 }
05f41571 625 }
23634ebc 626 t->rcu_read_unlock_special.b.deferred_qs = true;
3e310098
PM
627 local_irq_restore(flags);
628 return;
629 }
630 rcu_preempt_deferred_qs_irqrestore(t, flags);
631}
632
b0e165c0
PM
633/*
634 * Check that the list of blocked tasks for the newly completed grace
635 * period is in fact empty. It is a serious bug to complete a grace
636 * period that still has RCU readers blocked! This function must be
03bd2983 637 * invoked -before- updating this rnp's ->gp_seq.
12f5f524
PM
638 *
639 * Also, if there are blocked tasks on the list, they automatically
640 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0 641 */
81ab59a3 642static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 643{
c5ebe66c
PM
644 struct task_struct *t;
645
ea9b0c8a 646 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
03bd2983 647 raw_lockdep_assert_held_rcu_node(rnp);
4bc8d555 648 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 649 dump_blkd_tasks(rnp, 10);
0b107d24
PM
650 if (rcu_preempt_has_tasks(rnp) &&
651 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
6935c398 652 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
c5ebe66c
PM
653 t = container_of(rnp->gp_tasks, struct task_struct,
654 rcu_node_entry);
655 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
865aa1e0 656 rnp->gp_seq, t->pid);
c5ebe66c 657 }
28ecd580 658 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
659}
660
f41d911f 661/*
c98cac60
PM
662 * Check for a quiescent state from the current CPU, including voluntary
663 * context switches for Tasks RCU. When a task blocks, the task is
664 * recorded in the corresponding CPU's rcu_node structure, which is checked
665 * elsewhere, hence this function need only check for quiescent states
666 * related to the current CPU, not to those related to tasks.
f41d911f 667 */
c98cac60 668static void rcu_flavor_sched_clock_irq(int user)
f41d911f
PM
669{
670 struct task_struct *t = current;
671
45975c7d
PM
672 if (user || rcu_is_cpu_rrupt_from_idle()) {
673 rcu_note_voluntary_context_switch(current);
674 }
3e310098
PM
675 if (t->rcu_read_lock_nesting > 0 ||
676 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
677 /* No QS, force context switch if deferred. */
fced9c8c
PM
678 if (rcu_preempt_need_deferred_qs(t)) {
679 set_tsk_need_resched(t);
680 set_preempt_need_resched();
681 }
3e310098
PM
682 } else if (rcu_preempt_need_deferred_qs(t)) {
683 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
684 return;
685 } else if (!t->rcu_read_lock_nesting) {
45975c7d 686 rcu_qs(); /* Report immediate QS. */
f41d911f
PM
687 return;
688 }
3e310098
PM
689
690 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
10f39bb1 691 if (t->rcu_read_lock_nesting > 0 &&
2280ee5a
PM
692 __this_cpu_read(rcu_data.core_needs_qs) &&
693 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
15651201 694 !t->rcu_read_unlock_special.b.need_qs &&
564a9ae6 695 time_after(jiffies, rcu_state.gp_start + HZ))
1d082fd0 696 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
697}
698
2439b696
PM
699/*
700 * Check for a task exiting while in a preemptible-RCU read-side
884157ce
PM
701 * critical section, clean up if so. No need to issue warnings, as
702 * debug_check_no_locks_held() already does this if lockdep is enabled.
703 * Besides, if this function does anything other than just immediately
704 * return, there was a bug of some sort. Spewing warnings from this
705 * function is like as not to simply obscure important prior warnings.
2439b696
PM
706 */
707void exit_rcu(void)
708{
709 struct task_struct *t = current;
710
884157ce
PM
711 if (unlikely(!list_empty(&current->rcu_node_entry))) {
712 t->rcu_read_lock_nesting = 1;
713 barrier();
add0d37b 714 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
884157ce
PM
715 } else if (unlikely(t->rcu_read_lock_nesting)) {
716 t->rcu_read_lock_nesting = 1;
717 } else {
2439b696 718 return;
884157ce 719 }
2439b696 720 __rcu_read_unlock();
3e310098 721 rcu_preempt_deferred_qs(current);
2439b696
PM
722}
723
4bc8d555
PM
724/*
725 * Dump the blocked-tasks state, but limit the list dump to the
726 * specified number of elements.
727 */
57738942 728static void
81ab59a3 729dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555 730{
57738942 731 int cpu;
4bc8d555
PM
732 int i;
733 struct list_head *lhp;
57738942
PM
734 bool onl;
735 struct rcu_data *rdp;
ff3cee39 736 struct rcu_node *rnp1;
4bc8d555 737
ce11fae8 738 raw_lockdep_assert_held_rcu_node(rnp);
ff3cee39 739 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
77cfc7bf 740 __func__, rnp->grplo, rnp->grphi, rnp->level,
ff3cee39
PM
741 (long)rnp->gp_seq, (long)rnp->completedqs);
742 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
743 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
744 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
77cfc7bf 745 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
6935c398
ED
746 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
747 rnp->exp_tasks);
77cfc7bf 748 pr_info("%s: ->blkd_tasks", __func__);
4bc8d555
PM
749 i = 0;
750 list_for_each(lhp, &rnp->blkd_tasks) {
751 pr_cont(" %p", lhp);
cd6d17b4 752 if (++i >= ncheck)
4bc8d555
PM
753 break;
754 }
755 pr_cont("\n");
57738942 756 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
da1df50d 757 rdp = per_cpu_ptr(&rcu_data, cpu);
57738942
PM
758 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
759 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
760 cpu, ".o"[onl],
761 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
762 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
763 }
4bc8d555
PM
764}
765
28f6569a 766#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f
PM
767
768/*
769 * Tell them what RCU they are running.
770 */
0e0fc1c2 771static void __init rcu_bootup_announce(void)
f41d911f 772{
efc151c3 773 pr_info("Hierarchical RCU implementation.\n");
26845c28 774 rcu_bootup_announce_oddness();
f41d911f
PM
775}
776
45975c7d 777/*
90326f05 778 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
45975c7d
PM
779 * how many quiescent states passed, just if there was at least one since
780 * the start of the grace period, this just sets a flag. The caller must
781 * have disabled preemption.
782 */
783static void rcu_qs(void)
d28139c4 784{
45975c7d
PM
785 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
786 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
787 return;
788 trace_rcu_grace_period(TPS("rcu_sched"),
789 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
790 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
791 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
792 return;
793 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
63d4c8c9 794 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
d28139c4
PM
795}
796
395a2f09
PM
797/*
798 * Register an urgently needed quiescent state. If there is an
799 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
800 * dyntick-idle quiescent state visible to other CPUs, which will in
801 * some cases serve for expedited as well as normal grace periods.
802 * Either way, register a lightweight quiescent state.
395a2f09
PM
803 */
804void rcu_all_qs(void)
805{
806 unsigned long flags;
807
2dba13f0 808 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
395a2f09
PM
809 return;
810 preempt_disable();
811 /* Load rcu_urgent_qs before other flags. */
2dba13f0 812 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
395a2f09
PM
813 preempt_enable();
814 return;
815 }
2dba13f0 816 this_cpu_write(rcu_data.rcu_urgent_qs, false);
2dba13f0 817 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
395a2f09
PM
818 local_irq_save(flags);
819 rcu_momentary_dyntick_idle();
820 local_irq_restore(flags);
821 }
7e28c5af 822 rcu_qs();
395a2f09
PM
823 preempt_enable();
824}
825EXPORT_SYMBOL_GPL(rcu_all_qs);
826
cba6d0d6 827/*
90326f05 828 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
cba6d0d6 829 */
45975c7d 830void rcu_note_context_switch(bool preempt)
cba6d0d6 831{
45975c7d
PM
832 trace_rcu_utilization(TPS("Start context switch"));
833 rcu_qs();
834 /* Load rcu_urgent_qs before other flags. */
2dba13f0 835 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
45975c7d 836 goto out;
2dba13f0
PM
837 this_cpu_write(rcu_data.rcu_urgent_qs, false);
838 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
45975c7d 839 rcu_momentary_dyntick_idle();
45975c7d
PM
840 if (!preempt)
841 rcu_tasks_qs(current);
842out:
843 trace_rcu_utilization(TPS("End context switch"));
cba6d0d6 844}
45975c7d 845EXPORT_SYMBOL_GPL(rcu_note_context_switch);
cba6d0d6 846
fc2219d4 847/*
6cc68793 848 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
849 * RCU readers.
850 */
27f4d280 851static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
852{
853 return 0;
854}
855
8af3a5e7
PM
856/*
857 * Because there is no preemptible RCU, there can be no readers blocked.
858 */
859static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 860{
8af3a5e7 861 return false;
b668c9cf
PM
862}
863
3e310098
PM
864/*
865 * Because there is no preemptible RCU, there can be no deferred quiescent
866 * states.
867 */
868static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
869{
870 return false;
871}
872static void rcu_preempt_deferred_qs(struct task_struct *t) { }
873
b0e165c0 874/*
6cc68793 875 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
876 * so there is no need to check for blocked tasks. So check only for
877 * bogus qsmask values.
b0e165c0 878 */
81ab59a3 879static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
b0e165c0 880{
49e29126 881 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
882}
883
f41d911f 884/*
c98cac60
PM
885 * Check to see if this CPU is in a non-context-switch quiescent state,
886 * namely user mode and idle loop.
f41d911f 887 */
c98cac60 888static void rcu_flavor_sched_clock_irq(int user)
f41d911f 889{
45975c7d 890 if (user || rcu_is_cpu_rrupt_from_idle()) {
f41d911f 891
45975c7d
PM
892 /*
893 * Get here if this CPU took its interrupt from user
894 * mode or from the idle loop, and if this is not a
895 * nested interrupt. In this case, the CPU is in
896 * a quiescent state, so note it.
897 *
898 * No memory barrier is required here because rcu_qs()
899 * references only CPU-local variables that other CPUs
900 * neither access nor modify, at least not while the
901 * corresponding CPU is online.
902 */
903
904 rcu_qs();
905 }
e74f4c45 906}
e74f4c45 907
2439b696
PM
908/*
909 * Because preemptible RCU does not exist, tasks cannot possibly exit
910 * while in preemptible RCU read-side critical sections.
911 */
912void exit_rcu(void)
913{
914}
915
4bc8d555
PM
916/*
917 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
918 */
57738942 919static void
81ab59a3 920dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
4bc8d555
PM
921{
922 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
923}
924
28f6569a 925#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 926
48d07c04
SAS
927/*
928 * If boosting, set rcuc kthreads to realtime priority.
929 */
930static void rcu_cpu_kthread_setup(unsigned int cpu)
931{
27f4d280 932#ifdef CONFIG_RCU_BOOST
48d07c04 933 struct sched_param sp;
27f4d280 934
48d07c04
SAS
935 sp.sched_priority = kthread_prio;
936 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
937#endif /* #ifdef CONFIG_RCU_BOOST */
5d01bbd1
TG
938}
939
48d07c04
SAS
940#ifdef CONFIG_RCU_BOOST
941
27f4d280
PM
942/*
943 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
944 * or ->boost_tasks, advancing the pointer to the next task in the
945 * ->blkd_tasks list.
946 *
947 * Note that irqs must be enabled: boosting the task can block.
948 * Returns 1 if there are more tasks needing to be boosted.
949 */
950static int rcu_boost(struct rcu_node *rnp)
951{
952 unsigned long flags;
27f4d280
PM
953 struct task_struct *t;
954 struct list_head *tb;
955
7d0ae808
PM
956 if (READ_ONCE(rnp->exp_tasks) == NULL &&
957 READ_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
958 return 0; /* Nothing left to boost. */
959
2a67e741 960 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280
PM
961
962 /*
963 * Recheck under the lock: all tasks in need of boosting
964 * might exit their RCU read-side critical sections on their own.
965 */
966 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
67c583a7 967 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
968 return 0;
969 }
970
971 /*
972 * Preferentially boost tasks blocking expedited grace periods.
973 * This cannot starve the normal grace periods because a second
974 * expedited grace period must boost all blocked tasks, including
975 * those blocking the pre-existing normal grace period.
976 */
bec06785 977 if (rnp->exp_tasks != NULL)
27f4d280 978 tb = rnp->exp_tasks;
bec06785 979 else
27f4d280
PM
980 tb = rnp->boost_tasks;
981
982 /*
983 * We boost task t by manufacturing an rt_mutex that appears to
984 * be held by task t. We leave a pointer to that rt_mutex where
985 * task t can find it, and task t will release the mutex when it
986 * exits its outermost RCU read-side critical section. Then
987 * simply acquiring this artificial rt_mutex will boost task
988 * t's priority. (Thanks to tglx for suggesting this approach!)
989 *
990 * Note that task t must acquire rnp->lock to remove itself from
991 * the ->blkd_tasks list, which it will do from exit() if from
992 * nowhere else. We therefore are guaranteed that task t will
993 * stay around at least until we drop rnp->lock. Note that
994 * rnp->lock also resolves races between our priority boosting
995 * and task t's exiting its outermost RCU read-side critical
996 * section.
997 */
998 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 999 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
67c583a7 1000 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
abaa93d9
PM
1001 /* Lock only for side effect: boosts task t's priority. */
1002 rt_mutex_lock(&rnp->boost_mtx);
1003 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1004
7d0ae808
PM
1005 return READ_ONCE(rnp->exp_tasks) != NULL ||
1006 READ_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1007}
1008
27f4d280 1009/*
bc17ea10 1010 * Priority-boosting kthread, one per leaf rcu_node.
27f4d280
PM
1011 */
1012static int rcu_boost_kthread(void *arg)
1013{
1014 struct rcu_node *rnp = (struct rcu_node *)arg;
1015 int spincnt = 0;
1016 int more2boost;
1017
f7f7bac9 1018 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1019 for (;;) {
d71df90e 1020 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1021 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1022 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1023 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1024 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1025 more2boost = rcu_boost(rnp);
1026 if (more2boost)
1027 spincnt++;
1028 else
1029 spincnt = 0;
1030 if (spincnt > 10) {
5d01bbd1 1031 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1032 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1033 schedule_timeout_interruptible(2);
f7f7bac9 1034 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1035 spincnt = 0;
1036 }
1037 }
1217ed1b 1038 /* NOTREACHED */
f7f7bac9 1039 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1040 return 0;
1041}
1042
1043/*
1044 * Check to see if it is time to start boosting RCU readers that are
1045 * blocking the current grace period, and, if so, tell the per-rcu_node
1046 * kthread to start boosting them. If there is an expedited grace
1047 * period in progress, it is always time to boost.
1048 *
b065a853
PM
1049 * The caller must hold rnp->lock, which this function releases.
1050 * The ->boost_kthread_task is immortal, so we don't need to worry
1051 * about it going away.
27f4d280 1052 */
1217ed1b 1053static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1054 __releases(rnp->lock)
27f4d280 1055{
a32e01ee 1056 raw_lockdep_assert_held_rcu_node(rnp);
0ea1f2eb 1057 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
67c583a7 1058 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280 1059 return;
0ea1f2eb 1060 }
27f4d280
PM
1061 if (rnp->exp_tasks != NULL ||
1062 (rnp->gp_tasks != NULL &&
1063 rnp->boost_tasks == NULL &&
1064 rnp->qsmask == 0 &&
1065 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1066 if (rnp->exp_tasks == NULL)
1067 rnp->boost_tasks = rnp->gp_tasks;
67c583a7 1068 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
a2badefa
PM
1069 rcu_wake_cond(rnp->boost_kthread_task,
1070 rnp->boost_kthread_status);
1217ed1b 1071 } else {
67c583a7 1072 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1217ed1b 1073 }
27f4d280
PM
1074}
1075
dff1672d
PM
1076/*
1077 * Is the current CPU running the RCU-callbacks kthread?
1078 * Caller must have preemption disabled.
1079 */
1080static bool rcu_is_callbacks_kthread(void)
1081{
37f62d7c 1082 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
dff1672d
PM
1083}
1084
27f4d280
PM
1085#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1086
1087/*
1088 * Do priority-boost accounting for the start of a new grace period.
1089 */
1090static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1091{
1092 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1093}
1094
27f4d280
PM
1095/*
1096 * Create an RCU-boost kthread for the specified node if one does not
1097 * already exist. We only create this kthread for preemptible RCU.
1098 * Returns zero if all is well, a negated errno otherwise.
1099 */
3545832f 1100static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
27f4d280 1101{
6dbfdc14 1102 int rnp_index = rnp - rcu_get_root();
27f4d280
PM
1103 unsigned long flags;
1104 struct sched_param sp;
1105 struct task_struct *t;
1106
6dbfdc14 1107 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
3545832f 1108 return;
5d01bbd1 1109
0aa04b05 1110 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
3545832f 1111 return;
5d01bbd1 1112
6dbfdc14 1113 rcu_state.boost = 1;
3545832f 1114
27f4d280 1115 if (rnp->boost_kthread_task != NULL)
3545832f
BP
1116 return;
1117
27f4d280 1118 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1119 "rcub/%d", rnp_index);
3545832f
BP
1120 if (WARN_ON_ONCE(IS_ERR(t)))
1121 return;
1122
2a67e741 1123 raw_spin_lock_irqsave_rcu_node(rnp, flags);
27f4d280 1124 rnp->boost_kthread_task = t;
67c583a7 1125 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
21871d7e 1126 sp.sched_priority = kthread_prio;
27f4d280 1127 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1128 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1129}
1130
f8b7fc6b
PM
1131/*
1132 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1133 * served by the rcu_node in question. The CPU hotplug lock is still
1134 * held, so the value of rnp->qsmaskinit will be stable.
1135 *
1136 * We don't include outgoingcpu in the affinity set, use -1 if there is
1137 * no outgoing CPU. If there are no CPUs left in the affinity set,
1138 * this function allows the kthread to execute on any CPU.
1139 */
5d01bbd1 1140static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1141{
5d01bbd1 1142 struct task_struct *t = rnp->boost_kthread_task;
0aa04b05 1143 unsigned long mask = rcu_rnp_online_cpus(rnp);
f8b7fc6b
PM
1144 cpumask_var_t cm;
1145 int cpu;
f8b7fc6b 1146
5d01bbd1 1147 if (!t)
f8b7fc6b 1148 return;
5d01bbd1 1149 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1150 return;
bc75e999
MR
1151 for_each_leaf_node_possible_cpu(rnp, cpu)
1152 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1153 cpu != outgoingcpu)
f8b7fc6b 1154 cpumask_set_cpu(cpu, cm);
5d0b0249 1155 if (cpumask_weight(cm) == 0)
f8b7fc6b 1156 cpumask_setall(cm);
5d01bbd1 1157 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1158 free_cpumask_var(cm);
1159}
1160
f8b7fc6b 1161/*
9386c0b7 1162 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1163 */
9386c0b7 1164static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1165{
f8b7fc6b
PM
1166 struct rcu_node *rnp;
1167
aedf4ba9 1168 rcu_for_each_leaf_node(rnp)
3545832f 1169 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b 1170}
f8b7fc6b 1171
49fb4c62 1172static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1173{
da1df50d 1174 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
f8b7fc6b
PM
1175 struct rcu_node *rnp = rdp->mynode;
1176
1177 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1178 if (rcu_scheduler_fully_active)
3545832f 1179 rcu_spawn_one_boost_kthread(rnp);
f8b7fc6b
PM
1180}
1181
27f4d280
PM
1182#else /* #ifdef CONFIG_RCU_BOOST */
1183
1217ed1b 1184static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1185 __releases(rnp->lock)
27f4d280 1186{
67c583a7 1187 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
27f4d280
PM
1188}
1189
dff1672d
PM
1190static bool rcu_is_callbacks_kthread(void)
1191{
1192 return false;
1193}
1194
27f4d280
PM
1195static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1196{
1197}
1198
5d01bbd1 1199static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1200{
1201}
1202
9386c0b7 1203static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1204{
b0d30417 1205}
b0d30417 1206
49fb4c62 1207static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1208{
1209}
1210
27f4d280
PM
1211#endif /* #else #ifdef CONFIG_RCU_BOOST */
1212
8bd93a2c
PM
1213#if !defined(CONFIG_RCU_FAST_NO_HZ)
1214
1215/*
0bd55c69
PM
1216 * Check to see if any future non-offloaded RCU-related work will need
1217 * to be done by the current CPU, even if none need be done immediately,
1218 * returning 1 if so. This function is part of the RCU implementation;
1219 * it is -not- an exported member of the RCU API.
8bd93a2c 1220 *
0ae86a27
PM
1221 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1222 * CPU has RCU callbacks queued.
8bd93a2c 1223 */
c1ad348b 1224int rcu_needs_cpu(u64 basemono, u64 *nextevt)
8bd93a2c 1225{
c1ad348b 1226 *nextevt = KTIME_MAX;
0bd55c69
PM
1227 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1228 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
7cb92499
PM
1229}
1230
1231/*
1232 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1233 * after it.
1234 */
8fa7845d 1235static void rcu_cleanup_after_idle(void)
7cb92499
PM
1236{
1237}
1238
aea1b35e 1239/*
a858af28 1240 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1241 * is nothing.
1242 */
198bbf81 1243static void rcu_prepare_for_idle(void)
aea1b35e
PM
1244{
1245}
1246
8bd93a2c
PM
1247#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1248
f23f7fa1
PM
1249/*
1250 * This code is invoked when a CPU goes idle, at which point we want
1251 * to have the CPU do everything required for RCU so that it can enter
1252 * the energy-efficient dyntick-idle mode. This is handled by a
1253 * state machine implemented by rcu_prepare_for_idle() below.
1254 *
1255 * The following three proprocessor symbols control this state machine:
1256 *
f23f7fa1
PM
1257 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1258 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1259 * is sized to be roughly one RCU grace period. Those energy-efficiency
1260 * benchmarkers who might otherwise be tempted to set this to a large
1261 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1262 * system. And if you are -that- concerned about energy efficiency,
1263 * just power the system down and be done with it!
778d250a
PM
1264 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1265 * permitted to sleep in dyntick-idle mode with only lazy RCU
1266 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1267 *
1268 * The values below work well in practice. If future workloads require
1269 * adjustment, they can be converted into kernel config parameters, though
1270 * making the state machine smarter might be a better option.
1271 */
e84c48ae 1272#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1273#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1274
5e44ce35
PM
1275static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1276module_param(rcu_idle_gp_delay, int, 0644);
1277static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1278module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1279
486e2593 1280/*
0ae86a27
PM
1281 * Try to advance callbacks on the current CPU, but only if it has been
1282 * awhile since the last time we did so. Afterwards, if there are any
1283 * callbacks ready for immediate invocation, return true.
486e2593 1284 */
f1f399d1 1285static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1286{
c0f4dfd4 1287 bool cbs_ready = false;
5998a75a 1288 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1289 struct rcu_node *rnp;
486e2593 1290
c229828c 1291 /* Exit early if we advanced recently. */
5998a75a 1292 if (jiffies == rdp->last_advance_all)
d0bc90fd 1293 return false;
5998a75a 1294 rdp->last_advance_all = jiffies;
c229828c 1295
b97d23c5 1296 rnp = rdp->mynode;
486e2593 1297
b97d23c5
PM
1298 /*
1299 * Don't bother checking unless a grace period has
1300 * completed since we last checked and there are
1301 * callbacks not yet ready to invoke.
1302 */
1303 if ((rcu_seq_completed_gp(rdp->gp_seq,
1304 rcu_seq_current(&rnp->gp_seq)) ||
1305 unlikely(READ_ONCE(rdp->gpwrap))) &&
1306 rcu_segcblist_pend_cbs(&rdp->cblist))
1307 note_gp_changes(rdp);
1308
1309 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1310 cbs_ready = true;
c0f4dfd4 1311 return cbs_ready;
486e2593
PM
1312}
1313
aa9b1630 1314/*
c0f4dfd4
PM
1315 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1316 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1317 * caller to set the timeout based on whether or not there are non-lazy
1318 * callbacks.
aa9b1630 1319 *
c0f4dfd4 1320 * The caller must have disabled interrupts.
aa9b1630 1321 */
c1ad348b 1322int rcu_needs_cpu(u64 basemono, u64 *nextevt)
aa9b1630 1323{
5998a75a 1324 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c1ad348b 1325 unsigned long dj;
aa9b1630 1326
b04db8e1 1327 lockdep_assert_irqs_disabled();
3382adbc 1328
0bd55c69
PM
1329 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1330 if (rcu_segcblist_empty(&rdp->cblist) ||
1331 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
c1ad348b 1332 *nextevt = KTIME_MAX;
aa9b1630
PM
1333 return 0;
1334 }
c0f4dfd4
PM
1335
1336 /* Attempt to advance callbacks. */
1337 if (rcu_try_advance_all_cbs()) {
1338 /* Some ready to invoke, so initiate later invocation. */
1339 invoke_rcu_core();
aa9b1630
PM
1340 return 1;
1341 }
5998a75a 1342 rdp->last_accelerate = jiffies;
c0f4dfd4
PM
1343
1344 /* Request timer delay depending on laziness, and round. */
260e1e4f
PM
1345 rdp->all_lazy = !rcu_segcblist_n_nonlazy_cbs(&rdp->cblist);
1346 if (rdp->all_lazy) {
1347 dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1348 } else {
c1ad348b 1349 dj = round_up(rcu_idle_gp_delay + jiffies,
c0f4dfd4 1350 rcu_idle_gp_delay) - jiffies;
e84c48ae 1351 }
c1ad348b 1352 *nextevt = basemono + dj * TICK_NSEC;
aa9b1630
PM
1353 return 0;
1354}
1355
21e52e15 1356/*
c0f4dfd4
PM
1357 * Prepare a CPU for idle from an RCU perspective. The first major task
1358 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1359 * The second major task is to check to see if a non-lazy callback has
1360 * arrived at a CPU that previously had only lazy callbacks. The third
1361 * major task is to accelerate (that is, assign grace-period numbers to)
1362 * any recently arrived callbacks.
aea1b35e
PM
1363 *
1364 * The caller must have disabled interrupts.
8bd93a2c 1365 */
198bbf81 1366static void rcu_prepare_for_idle(void)
8bd93a2c 1367{
48a7639c 1368 bool needwake;
0fd79e75 1369 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
c0f4dfd4 1370 struct rcu_node *rnp;
9d2ad243
PM
1371 int tne;
1372
b04db8e1 1373 lockdep_assert_irqs_disabled();
ce5215c1 1374 if (rcu_segcblist_is_offloaded(&rdp->cblist))
3382adbc
PM
1375 return;
1376
9d2ad243 1377 /* Handle nohz enablement switches conservatively. */
7d0ae808 1378 tne = READ_ONCE(tick_nohz_active);
0fd79e75 1379 if (tne != rdp->tick_nohz_enabled_snap) {
260e1e4f 1380 if (!rcu_segcblist_empty(&rdp->cblist))
9d2ad243 1381 invoke_rcu_core(); /* force nohz to see update. */
0fd79e75 1382 rdp->tick_nohz_enabled_snap = tne;
9d2ad243
PM
1383 return;
1384 }
1385 if (!tne)
1386 return;
f511fc62 1387
c57afe80 1388 /*
c0f4dfd4
PM
1389 * If a non-lazy callback arrived at a CPU having only lazy
1390 * callbacks, invoke RCU core for the side-effect of recalculating
1391 * idle duration on re-entry to idle.
c57afe80 1392 */
260e1e4f 1393 if (rdp->all_lazy && rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) {
c458a89e 1394 rdp->all_lazy = false;
c0f4dfd4 1395 invoke_rcu_core();
c57afe80
PM
1396 return;
1397 }
c57afe80 1398
3084f2f8 1399 /*
c0f4dfd4
PM
1400 * If we have not yet accelerated this jiffy, accelerate all
1401 * callbacks on this CPU.
3084f2f8 1402 */
5998a75a 1403 if (rdp->last_accelerate == jiffies)
aea1b35e 1404 return;
5998a75a 1405 rdp->last_accelerate = jiffies;
b97d23c5 1406 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
c0f4dfd4 1407 rnp = rdp->mynode;
2a67e741 1408 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1409 needwake = rcu_accelerate_cbs(rnp, rdp);
67c583a7 1410 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
48a7639c 1411 if (needwake)
532c00c9 1412 rcu_gp_kthread_wake();
77e38ed3 1413 }
c0f4dfd4 1414}
3084f2f8 1415
c0f4dfd4
PM
1416/*
1417 * Clean up for exit from idle. Attempt to advance callbacks based on
1418 * any grace periods that elapsed while the CPU was idle, and if any
1419 * callbacks are now ready to invoke, initiate invocation.
1420 */
8fa7845d 1421static void rcu_cleanup_after_idle(void)
c0f4dfd4 1422{
ce5215c1
PM
1423 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1424
b04db8e1 1425 lockdep_assert_irqs_disabled();
ce5215c1 1426 if (rcu_segcblist_is_offloaded(&rdp->cblist))
aea1b35e 1427 return;
7a497c96
PM
1428 if (rcu_try_advance_all_cbs())
1429 invoke_rcu_core();
8bd93a2c
PM
1430}
1431
1432#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28 1433
3fbfbf7a
PM
1434#ifdef CONFIG_RCU_NOCB_CPU
1435
1436/*
1437 * Offload callback processing from the boot-time-specified set of CPUs
a9fefdb2
PM
1438 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1439 * created that pull the callbacks from the corresponding CPU, wait for
1440 * a grace period to elapse, and invoke the callbacks. These kthreads
6484fe54
PM
1441 * are organized into GP kthreads, which manage incoming callbacks, wait for
1442 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1443 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1444 * do a wake_up() on their GP kthread when they insert a callback into any
a9fefdb2
PM
1445 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1446 * in which case each kthread actively polls its CPU. (Which isn't so great
1447 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
3fbfbf7a
PM
1448 *
1449 * This is intended to be used in conjunction with Frederic Weisbecker's
1450 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1451 * running CPU-bound user-mode computations.
1452 *
a9fefdb2
PM
1453 * Offloading of callbacks can also be used as an energy-efficiency
1454 * measure because CPUs with no RCU callbacks queued are more aggressive
1455 * about entering dyntick-idle mode.
3fbfbf7a
PM
1456 */
1457
1458
497e4260
PM
1459/*
1460 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1461 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1462 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1463 * given, a warning is emitted and all CPUs are offloaded.
1464 */
3fbfbf7a
PM
1465static int __init rcu_nocb_setup(char *str)
1466{
1467 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
da8739f2
PM
1468 if (!strcasecmp(str, "all"))
1469 cpumask_setall(rcu_nocb_mask);
1470 else
497e4260
PM
1471 if (cpulist_parse(str, rcu_nocb_mask)) {
1472 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1473 cpumask_setall(rcu_nocb_mask);
1474 }
3fbfbf7a
PM
1475 return 1;
1476}
1477__setup("rcu_nocbs=", rcu_nocb_setup);
1478
1b0048a4
PG
1479static int __init parse_rcu_nocb_poll(char *arg)
1480{
5455a7f6 1481 rcu_nocb_poll = true;
1b0048a4
PG
1482 return 0;
1483}
1484early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1485
5d6742b3 1486/*
d1b222c6
PM
1487 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1488 * After all, the main point of bypassing is to avoid lock contention
1489 * on ->nocb_lock, which only can happen at high call_rcu() rates.
5d6742b3 1490 */
d1b222c6
PM
1491int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1492module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1493
1494/*
1495 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1496 * lock isn't immediately available, increment ->nocb_lock_contended to
1497 * flag the contention.
1498 */
1499static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
5d6742b3 1500{
81c0b3d7 1501 lockdep_assert_irqs_disabled();
d1b222c6 1502 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
81c0b3d7
PM
1503 return;
1504 atomic_inc(&rdp->nocb_lock_contended);
6aacd88d 1505 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
81c0b3d7 1506 smp_mb__after_atomic(); /* atomic_inc() before lock. */
d1b222c6 1507 raw_spin_lock(&rdp->nocb_bypass_lock);
81c0b3d7
PM
1508 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1509 atomic_dec(&rdp->nocb_lock_contended);
1510}
1511
1512/*
1513 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1514 * not contended. Please note that this is extremely special-purpose,
1515 * relying on the fact that at most two kthreads and one CPU contend for
1516 * this lock, and also that the two kthreads are guaranteed to have frequent
1517 * grace-period-duration time intervals between successive acquisitions
1518 * of the lock. This allows us to use an extremely simple throttling
1519 * mechanism, and further to apply it only to the CPU doing floods of
1520 * call_rcu() invocations. Don't try this at home!
1521 */
1522static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1523{
6aacd88d
PM
1524 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1525 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
81c0b3d7 1526 cpu_relax();
5d6742b3
PM
1527}
1528
d1b222c6
PM
1529/*
1530 * Conditionally acquire the specified rcu_data structure's
1531 * ->nocb_bypass_lock.
1532 */
1533static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1534{
1535 lockdep_assert_irqs_disabled();
1536 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1537}
1538
1539/*
1540 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1541 */
1542static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1543{
1544 lockdep_assert_irqs_disabled();
1545 raw_spin_unlock(&rdp->nocb_bypass_lock);
1546}
1547
1548/*
1549 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1550 * if it corresponds to a no-CBs CPU.
1551 */
1552static void rcu_nocb_lock(struct rcu_data *rdp)
1553{
1554 lockdep_assert_irqs_disabled();
1555 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1556 return;
1557 raw_spin_lock(&rdp->nocb_lock);
1558}
1559
5d6742b3
PM
1560/*
1561 * Release the specified rcu_data structure's ->nocb_lock, but only
1562 * if it corresponds to a no-CBs CPU.
1563 */
1564static void rcu_nocb_unlock(struct rcu_data *rdp)
1565{
1566 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1567 lockdep_assert_irqs_disabled();
1568 raw_spin_unlock(&rdp->nocb_lock);
1569 }
1570}
1571
1572/*
1573 * Release the specified rcu_data structure's ->nocb_lock and restore
1574 * interrupts, but only if it corresponds to a no-CBs CPU.
1575 */
1576static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1577 unsigned long flags)
1578{
1579 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1580 lockdep_assert_irqs_disabled();
1581 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1582 } else {
1583 local_irq_restore(flags);
1584 }
1585}
1586
d1b222c6
PM
1587/* Lockdep check that ->cblist may be safely accessed. */
1588static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1589{
1590 lockdep_assert_irqs_disabled();
1591 if (rcu_segcblist_is_offloaded(&rdp->cblist) &&
1592 cpu_online(rdp->cpu))
1593 lockdep_assert_held(&rdp->nocb_lock);
1594}
1595
dae6e64d 1596/*
0446be48
PM
1597 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1598 * grace period.
dae6e64d 1599 */
abedf8e2 1600static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
dae6e64d 1601{
abedf8e2 1602 swake_up_all(sq);
dae6e64d
PM
1603}
1604
abedf8e2 1605static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c 1606{
e0da2374 1607 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
065bb78c
DW
1608}
1609
dae6e64d 1610static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1611{
abedf8e2
PG
1612 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1613 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1614}
1615
24342c96 1616/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1617bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a 1618{
84b12b75 1619 if (cpumask_available(rcu_nocb_mask))
3fbfbf7a
PM
1620 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1621 return false;
1622}
1623
fbce7497 1624/*
6484fe54 1625 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
8be6e1b1 1626 * and this function releases it.
fbce7497 1627 */
5d6742b3 1628static void wake_nocb_gp(struct rcu_data *rdp, bool force,
5f675ba6 1629 unsigned long flags)
8be6e1b1 1630 __releases(rdp->nocb_lock)
fbce7497 1631{
d1b222c6 1632 bool needwake = false;
5f675ba6 1633 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
fbce7497 1634
8be6e1b1 1635 lockdep_assert_held(&rdp->nocb_lock);
5f675ba6 1636 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
d1b222c6
PM
1637 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1638 TPS("AlreadyAwake"));
81c0b3d7 1639 rcu_nocb_unlock_irqrestore(rdp, flags);
fbce7497 1640 return;
8be6e1b1 1641 }
d1b222c6
PM
1642 del_timer(&rdp->nocb_timer);
1643 rcu_nocb_unlock_irqrestore(rdp, flags);
1644 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1645 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
5d6742b3 1646 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
d1b222c6
PM
1647 needwake = true;
1648 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
fbce7497 1649 }
d1b222c6
PM
1650 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1651 if (needwake)
1652 wake_up_process(rdp_gp->nocb_gp_kthread);
fbce7497
PM
1653}
1654
8be6e1b1 1655/*
6484fe54
PM
1656 * Arrange to wake the GP kthread for this NOCB group at some future
1657 * time when it is safe to do so.
8be6e1b1 1658 */
0d52a665
PM
1659static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1660 const char *reason)
8be6e1b1 1661{
8be6e1b1
PM
1662 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1663 mod_timer(&rdp->nocb_timer, jiffies + 1);
383e1332
PM
1664 if (rdp->nocb_defer_wakeup < waketype)
1665 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
88d1bead 1666 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
d7e29933
PM
1667}
1668
d1b222c6
PM
1669/*
1670 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1671 * However, if there is a callback to be enqueued and if ->nocb_bypass
1672 * proves to be initially empty, just return false because the no-CB GP
1673 * kthread may need to be awakened in this case.
1674 *
1675 * Note that this function always returns true if rhp is NULL.
1676 */
1677static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1678 unsigned long j)
1679{
1680 struct rcu_cblist rcl;
1681
1682 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1683 rcu_lockdep_assert_cblist_protected(rdp);
1684 lockdep_assert_held(&rdp->nocb_bypass_lock);
1685 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1686 raw_spin_unlock(&rdp->nocb_bypass_lock);
1687 return false;
1688 }
1689 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1690 if (rhp)
1691 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1692 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1693 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1694 WRITE_ONCE(rdp->nocb_bypass_first, j);
1695 rcu_nocb_bypass_unlock(rdp);
1696 return true;
1697}
1698
1699/*
1700 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1701 * However, if there is a callback to be enqueued and if ->nocb_bypass
1702 * proves to be initially empty, just return false because the no-CB GP
1703 * kthread may need to be awakened in this case.
1704 *
1705 * Note that this function always returns true if rhp is NULL.
1706 */
1707static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1708 unsigned long j)
1709{
1710 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1711 return true;
1712 rcu_lockdep_assert_cblist_protected(rdp);
1713 rcu_nocb_bypass_lock(rdp);
1714 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1715}
1716
1717/*
1718 * If the ->nocb_bypass_lock is immediately available, flush the
1719 * ->nocb_bypass queue into ->cblist.
1720 */
1721static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1722{
1723 rcu_lockdep_assert_cblist_protected(rdp);
1724 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1725 !rcu_nocb_bypass_trylock(rdp))
1726 return;
1727 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1728}
1729
1730/*
1731 * See whether it is appropriate to use the ->nocb_bypass list in order
1732 * to control contention on ->nocb_lock. A limited number of direct
1733 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1734 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1735 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1736 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1737 * used if ->cblist is empty, because otherwise callbacks can be stranded
1738 * on ->nocb_bypass because we cannot count on the current CPU ever again
1739 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1740 * non-empty, the corresponding no-CBs grace-period kthread must not be
1741 * in an indefinite sleep state.
1742 *
1743 * Finally, it is not permitted to use the bypass during early boot,
1744 * as doing so would confuse the auto-initialization code. Besides
1745 * which, there is no point in worrying about lock contention while
1746 * there is only one CPU in operation.
1747 */
1748static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1749 bool *was_alldone, unsigned long flags)
1750{
1751 unsigned long c;
1752 unsigned long cur_gp_seq;
1753 unsigned long j = jiffies;
1754 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1755
1756 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1757 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1758 return false; /* Not offloaded, no bypassing. */
1759 }
1760 lockdep_assert_irqs_disabled();
1761
1762 // Don't use ->nocb_bypass during early boot.
1763 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1764 rcu_nocb_lock(rdp);
1765 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1766 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1767 return false;
1768 }
1769
1770 // If we have advanced to a new jiffy, reset counts to allow
1771 // moving back from ->nocb_bypass to ->cblist.
1772 if (j == rdp->nocb_nobypass_last) {
1773 c = rdp->nocb_nobypass_count + 1;
1774 } else {
1775 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1776 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1777 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1778 nocb_nobypass_lim_per_jiffy))
1779 c = 0;
1780 else if (c > nocb_nobypass_lim_per_jiffy)
1781 c = nocb_nobypass_lim_per_jiffy;
1782 }
1783 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1784
1785 // If there hasn't yet been all that many ->cblist enqueues
1786 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1787 // ->nocb_bypass first.
1788 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1789 rcu_nocb_lock(rdp);
1790 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1791 if (*was_alldone)
1792 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1793 TPS("FirstQ"));
1794 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1795 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1796 return false; // Caller must enqueue the callback.
1797 }
1798
1799 // If ->nocb_bypass has been used too long or is too full,
1800 // flush ->nocb_bypass to ->cblist.
1801 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1802 ncbs >= qhimark) {
1803 rcu_nocb_lock(rdp);
1804 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1805 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1806 if (*was_alldone)
1807 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1808 TPS("FirstQ"));
1809 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1810 return false; // Caller must enqueue the callback.
1811 }
1812 if (j != rdp->nocb_gp_adv_time &&
1813 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1814 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1815 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1816 rdp->nocb_gp_adv_time = j;
1817 }
1818 rcu_nocb_unlock_irqrestore(rdp, flags);
1819 return true; // Callback already enqueued.
1820 }
1821
1822 // We need to use the bypass.
1823 rcu_nocb_wait_contended(rdp);
1824 rcu_nocb_bypass_lock(rdp);
1825 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1826 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1827 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1828 if (!ncbs) {
1829 WRITE_ONCE(rdp->nocb_bypass_first, j);
1830 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1831 }
1832 rcu_nocb_bypass_unlock(rdp);
1833 smp_mb(); /* Order enqueue before wake. */
1834 if (ncbs) {
1835 local_irq_restore(flags);
1836 } else {
1837 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1838 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1839 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1840 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1841 TPS("FirstBQwake"));
1842 __call_rcu_nocb_wake(rdp, true, flags);
1843 } else {
1844 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1845 TPS("FirstBQnoWake"));
1846 rcu_nocb_unlock_irqrestore(rdp, flags);
1847 }
1848 }
1849 return true; // Callback already enqueued.
1850}
1851
3fbfbf7a 1852/*
5d6742b3
PM
1853 * Awaken the no-CBs grace-period kthead if needed, either due to it
1854 * legitimately being asleep or due to overload conditions.
3fbfbf7a
PM
1855 *
1856 * If warranted, also wake up the kthread servicing this CPUs queues.
1857 */
5d6742b3
PM
1858static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1859 unsigned long flags)
1860 __releases(rdp->nocb_lock)
3fbfbf7a 1861{
296181d7
PM
1862 unsigned long cur_gp_seq;
1863 unsigned long j;
ce0a825e 1864 long len;
3fbfbf7a
PM
1865 struct task_struct *t;
1866
5d6742b3 1867 // If we are being polled or there is no kthread, just leave.
12f54c3a 1868 t = READ_ONCE(rdp->nocb_gp_kthread);
25e03a74 1869 if (rcu_nocb_poll || !t) {
88d1bead 1870 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
9261dd0d 1871 TPS("WakeNotPoll"));
5d6742b3 1872 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a 1873 return;
9261dd0d 1874 }
5d6742b3
PM
1875 // Need to actually to a wakeup.
1876 len = rcu_segcblist_n_cbs(&rdp->cblist);
1877 if (was_alldone) {
aeeacd9d 1878 rdp->qlen_last_fqs_check = len;
96d3fd0d 1879 if (!irqs_disabled_flags(flags)) {
fbce7497 1880 /* ... if queue was empty ... */
5d6742b3 1881 wake_nocb_gp(rdp, false, flags);
88d1bead 1882 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
96d3fd0d
PM
1883 TPS("WakeEmpty"));
1884 } else {
0d52a665
PM
1885 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1886 TPS("WakeEmptyIsDeferred"));
5d6742b3 1887 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 1888 }
3fbfbf7a 1889 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 1890 /* ... or if many callbacks queued. */
aeeacd9d 1891 rdp->qlen_last_fqs_check = len;
296181d7
PM
1892 j = jiffies;
1893 if (j != rdp->nocb_gp_adv_time &&
1894 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1895 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
faca5c25 1896 rcu_advance_cbs_nowake(rdp->mynode, rdp);
296181d7
PM
1897 rdp->nocb_gp_adv_time = j;
1898 }
f48fe4c5
PM
1899 smp_mb(); /* Enqueue before timer_pending(). */
1900 if ((rdp->nocb_cb_sleep ||
1901 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1902 !timer_pending(&rdp->nocb_bypass_timer))
273f0340
PM
1903 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1904 TPS("WakeOvfIsDeferred"));
273f0340 1905 rcu_nocb_unlock_irqrestore(rdp, flags);
9261dd0d 1906 } else {
88d1bead 1907 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
5d6742b3 1908 rcu_nocb_unlock_irqrestore(rdp, flags);
3fbfbf7a
PM
1909 }
1910 return;
1911}
1912
d1b222c6
PM
1913/* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1914static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1915{
1916 unsigned long flags;
1917 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1918
1919 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1920 rcu_nocb_lock_irqsave(rdp, flags);
f48fe4c5 1921 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
d1b222c6
PM
1922 __call_rcu_nocb_wake(rdp, true, flags);
1923}
1924
3fbfbf7a 1925/*
5d6742b3
PM
1926 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1927 * or for grace periods to end.
fbce7497 1928 */
12f54c3a 1929static void nocb_gp_wait(struct rcu_data *my_rdp)
fbce7497 1930{
d1b222c6
PM
1931 bool bypass = false;
1932 long bypass_ncbs;
5d6742b3
PM
1933 int __maybe_unused cpu = my_rdp->cpu;
1934 unsigned long cur_gp_seq;
8be6e1b1 1935 unsigned long flags;
b8889c9c 1936 bool gotcbs = false;
d1b222c6 1937 unsigned long j = jiffies;
969974e5 1938 bool needwait_gp = false; // This prevents actual uninitialized use.
5d6742b3
PM
1939 bool needwake;
1940 bool needwake_gp;
fbce7497 1941 struct rcu_data *rdp;
5d6742b3 1942 struct rcu_node *rnp;
969974e5 1943 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
fbce7497
PM
1944
1945 /*
5d6742b3
PM
1946 * Each pass through the following loop checks for CBs and for the
1947 * nearest grace period (if any) to wait for next. The CB kthreads
1948 * and the global grace-period kthread are awakened if needed.
fbce7497 1949 */
58bf6f77 1950 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
d1b222c6
PM
1951 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1952 rcu_nocb_lock_irqsave(rdp, flags);
1953 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1954 if (bypass_ncbs &&
1955 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1956 bypass_ncbs > 2 * qhimark)) {
1957 // Bypass full or old, so flush it.
1958 (void)rcu_nocb_try_flush_bypass(rdp, j);
1959 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1960 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1961 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 1962 continue; /* No callbacks here, try next. */
d1b222c6
PM
1963 }
1964 if (bypass_ncbs) {
1965 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1966 TPS("Bypass"));
1967 bypass = true;
1968 }
5d6742b3 1969 rnp = rdp->mynode;
d1b222c6
PM
1970 if (bypass) { // Avoid race with first bypass CB.
1971 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1972 RCU_NOCB_WAKE_NOT);
1973 del_timer(&my_rdp->nocb_timer);
1974 }
1975 // Advance callbacks if helpful and low contention.
1976 needwake_gp = false;
1977 if (!rcu_segcblist_restempty(&rdp->cblist,
1978 RCU_NEXT_READY_TAIL) ||
1979 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1980 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1981 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1982 needwake_gp = rcu_advance_cbs(rnp, rdp);
1983 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1984 }
5d6742b3 1985 // Need to wait on some grace period?
d1b222c6
PM
1986 WARN_ON_ONCE(!rcu_segcblist_restempty(&rdp->cblist,
1987 RCU_NEXT_READY_TAIL));
5d6742b3
PM
1988 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1989 if (!needwait_gp ||
1990 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1991 wait_gp_seq = cur_gp_seq;
1992 needwait_gp = true;
d1b222c6
PM
1993 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1994 TPS("NeedWaitGP"));
8be6e1b1 1995 }
5d6742b3
PM
1996 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1997 needwake = rdp->nocb_cb_sleep;
1998 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1999 smp_mb(); /* CB invocation -after- GP end. */
2000 } else {
2001 needwake = false;
8be6e1b1 2002 }
81c0b3d7 2003 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3 2004 if (needwake) {
12f54c3a 2005 swake_up_one(&rdp->nocb_cb_wq);
5d6742b3 2006 gotcbs = true;
fbce7497 2007 }
5d6742b3
PM
2008 if (needwake_gp)
2009 rcu_gp_kthread_wake();
2010 }
2011
f7a81b12
PM
2012 my_rdp->nocb_gp_bypass = bypass;
2013 my_rdp->nocb_gp_gp = needwait_gp;
2014 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
d1b222c6
PM
2015 if (bypass && !rcu_nocb_poll) {
2016 // At least one child with non-empty ->nocb_bypass, so set
2017 // timer in order to avoid stranding its callbacks.
2018 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2019 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2020 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2021 }
5d6742b3
PM
2022 if (rcu_nocb_poll) {
2023 /* Polling, so trace if first poll in the series. */
2024 if (gotcbs)
2025 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2026 schedule_timeout_interruptible(1);
2027 } else if (!needwait_gp) {
2028 /* Wait for callbacks to appear. */
2029 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2030 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2031 !READ_ONCE(my_rdp->nocb_gp_sleep));
d1b222c6 2032 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
5d6742b3
PM
2033 } else {
2034 rnp = my_rdp->mynode;
2035 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2036 swait_event_interruptible_exclusive(
2037 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2038 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2039 !READ_ONCE(my_rdp->nocb_gp_sleep));
2040 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2041 }
2042 if (!rcu_nocb_poll) {
4fd8c5f1 2043 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
d1b222c6
PM
2044 if (bypass)
2045 del_timer(&my_rdp->nocb_bypass_timer);
5d6742b3 2046 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
4fd8c5f1 2047 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
fbce7497 2048 }
f7a81b12 2049 my_rdp->nocb_gp_seq = -1;
5d6742b3 2050 WARN_ON(signal_pending(current));
12f54c3a 2051}
fbce7497 2052
12f54c3a
PM
2053/*
2054 * No-CBs grace-period-wait kthread. There is one of these per group
2055 * of CPUs, but only once at least one CPU in that group has come online
2056 * at least once since boot. This kthread checks for newly posted
2057 * callbacks from any of the CPUs it is responsible for, waits for a
2058 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2059 * that then have callback-invocation work to do.
2060 */
2061static int rcu_nocb_gp_kthread(void *arg)
2062{
2063 struct rcu_data *rdp = arg;
2064
5d6742b3 2065 for (;;) {
f7a81b12 2066 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
12f54c3a 2067 nocb_gp_wait(rdp);
5d6742b3
PM
2068 cond_resched_tasks_rcu_qs();
2069 }
12f54c3a 2070 return 0;
fbce7497
PM
2071}
2072
2073/*
5d6742b3
PM
2074 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2075 * then, if there are no more, wait for more to appear.
fbce7497 2076 */
5d6742b3 2077static void nocb_cb_wait(struct rcu_data *rdp)
fbce7497 2078{
1d5a81c1 2079 unsigned long cur_gp_seq;
5d6742b3
PM
2080 unsigned long flags;
2081 bool needwake_gp = false;
2082 struct rcu_node *rnp = rdp->mynode;
2083
2084 local_irq_save(flags);
2085 rcu_momentary_dyntick_idle();
2086 local_irq_restore(flags);
2087 local_bh_disable();
2088 rcu_do_batch(rdp);
2089 local_bh_enable();
2090 lockdep_assert_irqs_enabled();
81c0b3d7 2091 rcu_nocb_lock_irqsave(rdp, flags);
1d5a81c1
PM
2092 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2093 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2094 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
523bddd5
PM
2095 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2096 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2097 }
5d6742b3 2098 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
81c0b3d7 2099 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2100 if (needwake_gp)
2101 rcu_gp_kthread_wake();
2102 return;
2103 }
2104
f7c9a9b6 2105 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
5d6742b3 2106 WRITE_ONCE(rdp->nocb_cb_sleep, true);
81c0b3d7 2107 rcu_nocb_unlock_irqrestore(rdp, flags);
5d6742b3
PM
2108 if (needwake_gp)
2109 rcu_gp_kthread_wake();
12f54c3a 2110 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
5d6742b3
PM
2111 !READ_ONCE(rdp->nocb_cb_sleep));
2112 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2113 /* ^^^ Ensure CB invocation follows _sleep test. */
2114 return;
fbce7497 2115 }
12f54c3a
PM
2116 WARN_ON(signal_pending(current));
2117 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
fbce7497
PM
2118}
2119
3fbfbf7a 2120/*
5d6742b3
PM
2121 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2122 * nocb_cb_wait() to do the dirty work.
3fbfbf7a 2123 */
12f54c3a 2124static int rcu_nocb_cb_kthread(void *arg)
3fbfbf7a 2125{
3fbfbf7a
PM
2126 struct rcu_data *rdp = arg;
2127
5d6742b3
PM
2128 // Each pass through this loop does one callback batch, and,
2129 // if there are no more ready callbacks, waits for them.
3fbfbf7a 2130 for (;;) {
5d6742b3
PM
2131 nocb_cb_wait(rdp);
2132 cond_resched_tasks_rcu_qs();
3fbfbf7a
PM
2133 }
2134 return 0;
2135}
2136
96d3fd0d 2137/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2138static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d 2139{
7d0ae808 2140 return READ_ONCE(rdp->nocb_defer_wakeup);
96d3fd0d
PM
2141}
2142
2143/* Do a deferred wakeup of rcu_nocb_kthread(). */
8be6e1b1 2144static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
96d3fd0d 2145{
8be6e1b1 2146 unsigned long flags;
9fdd3bc9
PM
2147 int ndw;
2148
81c0b3d7 2149 rcu_nocb_lock_irqsave(rdp, flags);
8be6e1b1 2150 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
81c0b3d7 2151 rcu_nocb_unlock_irqrestore(rdp, flags);
96d3fd0d 2152 return;
8be6e1b1 2153 }
7d0ae808 2154 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
511324e4 2155 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
5d6742b3 2156 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
88d1bead 2157 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2158}
2159
8be6e1b1 2160/* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
fd30b717 2161static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
8be6e1b1 2162{
fd30b717
KC
2163 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2164
2165 do_nocb_deferred_wakeup_common(rdp);
8be6e1b1
PM
2166}
2167
2168/*
2169 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2170 * This means we do an inexact common-case check. Note that if
2171 * we miss, ->nocb_timer will eventually clean things up.
2172 */
2173static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2174{
2175 if (rcu_nocb_need_deferred_wakeup(rdp))
2176 do_nocb_deferred_wakeup_common(rdp);
2177}
2178
f4579fc5
PM
2179void __init rcu_init_nohz(void)
2180{
2181 int cpu;
ef126206 2182 bool need_rcu_nocb_mask = false;
e83e73f5 2183 struct rcu_data *rdp;
f4579fc5 2184
f4579fc5
PM
2185#if defined(CONFIG_NO_HZ_FULL)
2186 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2187 need_rcu_nocb_mask = true;
2188#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2189
84b12b75 2190 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
949cccdb
PK
2191 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2192 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2193 return;
2194 }
f4579fc5 2195 }
84b12b75 2196 if (!cpumask_available(rcu_nocb_mask))
f4579fc5
PM
2197 return;
2198
f4579fc5
PM
2199#if defined(CONFIG_NO_HZ_FULL)
2200 if (tick_nohz_full_running)
2201 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2202#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2203
2204 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
ef126206 2205 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
f4579fc5
PM
2206 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2207 rcu_nocb_mask);
2208 }
3016611e
PM
2209 if (cpumask_empty(rcu_nocb_mask))
2210 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2211 else
2212 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2213 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2214 if (rcu_nocb_poll)
2215 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2216
e83e73f5
PM
2217 for_each_cpu(cpu, rcu_nocb_mask) {
2218 rdp = per_cpu_ptr(&rcu_data, cpu);
2219 if (rcu_segcblist_empty(&rdp->cblist))
2220 rcu_segcblist_init(&rdp->cblist);
2221 rcu_segcblist_offload(&rdp->cblist);
2222 }
b97d23c5 2223 rcu_organize_nocb_kthreads();
96d3fd0d
PM
2224}
2225
3fbfbf7a
PM
2226/* Initialize per-rcu_data variables for no-CBs CPUs. */
2227static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2228{
12f54c3a
PM
2229 init_swait_queue_head(&rdp->nocb_cb_wq);
2230 init_swait_queue_head(&rdp->nocb_gp_wq);
8be6e1b1 2231 raw_spin_lock_init(&rdp->nocb_lock);
d1b222c6 2232 raw_spin_lock_init(&rdp->nocb_bypass_lock);
4fd8c5f1 2233 raw_spin_lock_init(&rdp->nocb_gp_lock);
fd30b717 2234 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
d1b222c6
PM
2235 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2236 rcu_cblist_init(&rdp->nocb_bypass);
3fbfbf7a
PM
2237}
2238
35ce7f29
PM
2239/*
2240 * If the specified CPU is a no-CBs CPU that does not already have its
12f54c3a
PM
2241 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2242 * for this CPU's group has not yet been created, spawn it as well.
35ce7f29 2243 */
4580b054 2244static void rcu_spawn_one_nocb_kthread(int cpu)
35ce7f29 2245{
12f54c3a
PM
2246 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2247 struct rcu_data *rdp_gp;
35ce7f29
PM
2248 struct task_struct *t;
2249
2250 /*
2251 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2252 * then nothing to do.
2253 */
12f54c3a 2254 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
35ce7f29
PM
2255 return;
2256
6484fe54 2257 /* If we didn't spawn the GP kthread first, reorganize! */
12f54c3a
PM
2258 rdp_gp = rdp->nocb_gp_rdp;
2259 if (!rdp_gp->nocb_gp_kthread) {
2260 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2261 "rcuog/%d", rdp_gp->cpu);
2262 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2263 return;
2264 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
35ce7f29
PM
2265 }
2266
0ae86a27 2267 /* Spawn the kthread for this CPU. */
12f54c3a 2268 t = kthread_run(rcu_nocb_cb_kthread, rdp,
4580b054 2269 "rcuo%c/%d", rcu_state.abbr, cpu);
12f54c3a 2270 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
9213784b 2271 return;
12f54c3a
PM
2272 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2273 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
35ce7f29
PM
2274}
2275
2276/*
2277 * If the specified CPU is a no-CBs CPU that does not already have its
ad368d15 2278 * rcuo kthread, spawn it.
35ce7f29 2279 */
ad368d15 2280static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29 2281{
35ce7f29 2282 if (rcu_scheduler_fully_active)
b97d23c5 2283 rcu_spawn_one_nocb_kthread(cpu);
35ce7f29
PM
2284}
2285
2286/*
2287 * Once the scheduler is running, spawn rcuo kthreads for all online
2288 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2289 * non-boot CPUs come online -- if this changes, we will need to add
2290 * some mutual exclusion.
2291 */
2292static void __init rcu_spawn_nocb_kthreads(void)
2293{
2294 int cpu;
2295
2296 for_each_online_cpu(cpu)
ad368d15 2297 rcu_spawn_cpu_nocb_kthread(cpu);
35ce7f29
PM
2298}
2299
6484fe54 2300/* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
f7c612b0
PM
2301static int rcu_nocb_gp_stride = -1;
2302module_param(rcu_nocb_gp_stride, int, 0444);
fbce7497
PM
2303
2304/*
6484fe54 2305 * Initialize GP-CB relationships for all no-CBs CPU.
fbce7497 2306 */
4580b054 2307static void __init rcu_organize_nocb_kthreads(void)
3fbfbf7a
PM
2308{
2309 int cpu;
18cd8c93 2310 bool firsttime = true;
610dea36
SR
2311 bool gotnocbs = false;
2312 bool gotnocbscbs = true;
f7c612b0 2313 int ls = rcu_nocb_gp_stride;
6484fe54 2314 int nl = 0; /* Next GP kthread. */
3fbfbf7a 2315 struct rcu_data *rdp;
0bdc33da 2316 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
fbce7497 2317 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2318
84b12b75 2319 if (!cpumask_available(rcu_nocb_mask))
3fbfbf7a 2320 return;
fbce7497 2321 if (ls == -1) {
9fcb09bd 2322 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
f7c612b0 2323 rcu_nocb_gp_stride = ls;
fbce7497
PM
2324 }
2325
2326 /*
9831ce3b
PM
2327 * Each pass through this loop sets up one rcu_data structure.
2328 * Should the corresponding CPU come online in the future, then
2329 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
fbce7497 2330 */
3fbfbf7a 2331 for_each_cpu(cpu, rcu_nocb_mask) {
da1df50d 2332 rdp = per_cpu_ptr(&rcu_data, cpu);
fbce7497 2333 if (rdp->cpu >= nl) {
6484fe54 2334 /* New GP kthread, set up for CBs & next GP. */
610dea36 2335 gotnocbs = true;
fbce7497 2336 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
58bf6f77 2337 rdp->nocb_gp_rdp = rdp;
0bdc33da 2338 rdp_gp = rdp;
610dea36
SR
2339 if (dump_tree) {
2340 if (!firsttime)
2341 pr_cont("%s\n", gotnocbscbs
2342 ? "" : " (self only)");
2343 gotnocbscbs = false;
2344 firsttime = false;
2345 pr_alert("%s: No-CB GP kthread CPU %d:",
2346 __func__, cpu);
2347 }
fbce7497 2348 } else {
6484fe54 2349 /* Another CB kthread, link to previous GP kthread. */
610dea36 2350 gotnocbscbs = true;
0bdc33da 2351 rdp->nocb_gp_rdp = rdp_gp;
58bf6f77 2352 rdp_prev->nocb_next_cb_rdp = rdp;
610dea36
SR
2353 if (dump_tree)
2354 pr_cont(" %d", cpu);
fbce7497
PM
2355 }
2356 rdp_prev = rdp;
3fbfbf7a 2357 }
610dea36
SR
2358 if (gotnocbs && dump_tree)
2359 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
3fbfbf7a
PM
2360}
2361
5ab7ab83
PM
2362/*
2363 * Bind the current task to the offloaded CPUs. If there are no offloaded
2364 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2365 */
2366void rcu_bind_current_to_nocb(void)
2367{
2368 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2369 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2370}
2371EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2372
f7a81b12
PM
2373/*
2374 * Dump out nocb grace-period kthread state for the specified rcu_data
2375 * structure.
2376 */
2377static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2378{
2379 struct rcu_node *rnp = rdp->mynode;
2380
2381 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2382 rdp->cpu,
2383 "kK"[!!rdp->nocb_gp_kthread],
2384 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2385 "dD"[!!rdp->nocb_defer_wakeup],
2386 "tT"[timer_pending(&rdp->nocb_timer)],
2387 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2388 "sS"[!!rdp->nocb_gp_sleep],
2389 ".W"[swait_active(&rdp->nocb_gp_wq)],
2390 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2391 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2392 ".B"[!!rdp->nocb_gp_bypass],
2393 ".G"[!!rdp->nocb_gp_gp],
2394 (long)rdp->nocb_gp_seq,
2395 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2396}
2397
2398/* Dump out nocb kthread state for the specified rcu_data structure. */
2399static void show_rcu_nocb_state(struct rcu_data *rdp)
2400{
2401 struct rcu_segcblist *rsclp = &rdp->cblist;
2402 bool waslocked;
2403 bool wastimer;
2404 bool wassleep;
2405
2406 if (rdp->nocb_gp_rdp == rdp)
2407 show_rcu_nocb_gp_state(rdp);
2408
2409 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2410 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2411 "kK"[!!rdp->nocb_cb_kthread],
2412 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2413 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2414 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2415 "sS"[!!rdp->nocb_cb_sleep],
2416 ".W"[swait_active(&rdp->nocb_cb_wq)],
2417 jiffies - rdp->nocb_bypass_first,
2418 jiffies - rdp->nocb_nobypass_last,
2419 rdp->nocb_nobypass_count,
2420 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2421 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2422 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2423 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2424 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2425 rcu_segcblist_n_cbs(&rdp->cblist));
2426
2427 /* It is OK for GP kthreads to have GP state. */
2428 if (rdp->nocb_gp_rdp == rdp)
2429 return;
2430
2431 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2432 wastimer = timer_pending(&rdp->nocb_timer);
2433 wassleep = swait_active(&rdp->nocb_gp_wq);
2434 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2435 !waslocked && !wastimer && !wassleep)
2436 return; /* Nothing untowards. */
2437
2438 pr_info(" !!! %c%c%c%c %c\n",
2439 "lL"[waslocked],
2440 "dD"[!!rdp->nocb_defer_wakeup],
2441 "tT"[wastimer],
2442 "sS"[!!rdp->nocb_gp_sleep],
2443 ".W"[wassleep]);
2444}
2445
34ed6246
PM
2446#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2447
5d6742b3
PM
2448/* No ->nocb_lock to acquire. */
2449static void rcu_nocb_lock(struct rcu_data *rdp)
d7e29933 2450{
5d6742b3
PM
2451}
2452
2453/* No ->nocb_lock to release. */
2454static void rcu_nocb_unlock(struct rcu_data *rdp)
2455{
2456}
2457
2458/* No ->nocb_lock to release. */
2459static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2460 unsigned long flags)
2461{
2462 local_irq_restore(flags);
d7e29933
PM
2463}
2464
d1b222c6
PM
2465/* Lockdep check that ->cblist may be safely accessed. */
2466static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2467{
2468 lockdep_assert_irqs_disabled();
2469}
2470
abedf8e2 2471static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
3fbfbf7a 2472{
3fbfbf7a
PM
2473}
2474
abedf8e2 2475static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
065bb78c
DW
2476{
2477 return NULL;
2478}
2479
dae6e64d
PM
2480static void rcu_init_one_nocb(struct rcu_node *rnp)
2481{
2482}
3fbfbf7a 2483
d1b222c6
PM
2484static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2485 unsigned long j)
2486{
2487 return true;
2488}
2489
2490static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2491 bool *was_alldone, unsigned long flags)
2492{
2493 return false;
2494}
2495
5d6742b3
PM
2496static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2497 unsigned long flags)
3fbfbf7a 2498{
5d6742b3 2499 WARN_ON_ONCE(1); /* Should be dead code! */
3fbfbf7a
PM
2500}
2501
3fbfbf7a
PM
2502static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2503{
2504}
2505
9fdd3bc9 2506static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2507{
2508 return false;
2509}
2510
2511static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2512{
2513}
2514
ad368d15 2515static void rcu_spawn_cpu_nocb_kthread(int cpu)
35ce7f29
PM
2516{
2517}
2518
2519static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2520{
2521}
2522
f7a81b12
PM
2523static void show_rcu_nocb_state(struct rcu_data *rdp)
2524{
2525}
2526
3fbfbf7a 2527#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0 2528
a096932f
PM
2529/*
2530 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2531 * grace-period kthread will do force_quiescent_state() processing?
2532 * The idea is to avoid waking up RCU core processing on such a
2533 * CPU unless the grace period has extended for too long.
2534 *
2535 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2536 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f 2537 */
4580b054 2538static bool rcu_nohz_full_cpu(void)
a096932f
PM
2539{
2540#ifdef CONFIG_NO_HZ_FULL
2541 if (tick_nohz_full_cpu(smp_processor_id()) &&
de8e8730 2542 (!rcu_gp_in_progress() ||
4580b054 2543 ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
5ce035fb 2544 return true;
a096932f 2545#endif /* #ifdef CONFIG_NO_HZ_FULL */
5ce035fb 2546 return false;
a096932f 2547}
5057f55e
PM
2548
2549/*
265f5f28 2550 * Bind the RCU grace-period kthreads to the housekeeping CPU.
5057f55e
PM
2551 */
2552static void rcu_bind_gp_kthread(void)
2553{
c0f489d2 2554 if (!tick_nohz_full_enabled())
5057f55e 2555 return;
de201559 2556 housekeeping_affine(current, HK_FLAG_RCU);
5057f55e 2557}
176f8f7a
PM
2558
2559/* Record the current task on dyntick-idle entry. */
2560static void rcu_dynticks_task_enter(void)
2561{
2562#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2563 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
176f8f7a
PM
2564#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2565}
2566
2567/* Record no current task on dyntick-idle exit. */
2568static void rcu_dynticks_task_exit(void)
2569{
2570#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
7d0ae808 2571 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
176f8f7a
PM
2572#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2573}