]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/rcu/tree_plugin.h
rcu: Check both root and current rcu_node when setting up future grace period
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
36#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
37#else
38#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
39#endif
40
3fbfbf7a
PM
41#ifdef CONFIG_RCU_NOCB_CPU
42static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
43static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 44static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
45static char __initdata nocb_buf[NR_CPUS * 5];
46#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
47
26845c28
PM
48/*
49 * Check the RCU kernel configuration parameters and print informative
50 * messages about anything out of the ordinary. If you like #ifdef, you
51 * will love this function.
52 */
53static void __init rcu_bootup_announce_oddness(void)
54{
55#ifdef CONFIG_RCU_TRACE
efc151c3 56 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
57#endif
58#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 59 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
60 CONFIG_RCU_FANOUT);
61#endif
62#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 63 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
64#endif
65#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 66 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
67#endif
68#ifdef CONFIG_PROVE_RCU
efc151c3 69 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
70#endif
71#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 72 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 73#endif
81a294c4 74#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 75 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
76#endif
77#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 78 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
79#endif
80#if NUM_RCU_LVL_4 != 0
efc151c3 81 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 82#endif
f885b7f2 83 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 84 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 85 if (nr_cpu_ids != NR_CPUS)
efc151c3 86 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
3fbfbf7a 87#ifdef CONFIG_RCU_NOCB_CPU
911af505
PM
88#ifndef CONFIG_RCU_NOCB_CPU_NONE
89 if (!have_rcu_nocb_mask) {
615ee544 90 zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
911af505
PM
91 have_rcu_nocb_mask = true;
92 }
93#ifdef CONFIG_RCU_NOCB_CPU_ZERO
9a5739d7 94 pr_info("\tOffload RCU callbacks from CPU 0\n");
911af505
PM
95 cpumask_set_cpu(0, rcu_nocb_mask);
96#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
97#ifdef CONFIG_RCU_NOCB_CPU_ALL
9a5739d7 98 pr_info("\tOffload RCU callbacks from all CPUs\n");
5d5a0800 99 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
911af505
PM
100#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
101#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
3fbfbf7a 102 if (have_rcu_nocb_mask) {
5d5a0800
KT
103 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
104 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
105 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
106 rcu_nocb_mask);
107 }
3fbfbf7a 108 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
9a5739d7 109 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
3fbfbf7a 110 if (rcu_nocb_poll)
9a5739d7 111 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
3fbfbf7a
PM
112 }
113#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
26845c28
PM
114}
115
f41d911f
PM
116#ifdef CONFIG_TREE_PREEMPT_RCU
117
a41bfeb2 118RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 119static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 120
d9a3da06
PM
121static int rcu_preempted_readers_exp(struct rcu_node *rnp);
122
f41d911f
PM
123/*
124 * Tell them what RCU they are running.
125 */
0e0fc1c2 126static void __init rcu_bootup_announce(void)
f41d911f 127{
efc151c3 128 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 129 rcu_bootup_announce_oddness();
f41d911f
PM
130}
131
132/*
133 * Return the number of RCU-preempt batches processed thus far
134 * for debug and statistics.
135 */
136long rcu_batches_completed_preempt(void)
137{
138 return rcu_preempt_state.completed;
139}
140EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
141
142/*
143 * Return the number of RCU batches processed thus far for debug & stats.
144 */
145long rcu_batches_completed(void)
146{
147 return rcu_batches_completed_preempt();
148}
149EXPORT_SYMBOL_GPL(rcu_batches_completed);
150
151/*
6cc68793 152 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
153 * that this just means that the task currently running on the CPU is
154 * not in a quiescent state. There might be any number of tasks blocked
155 * while in an RCU read-side critical section.
25502a6c
PM
156 *
157 * Unlike the other rcu_*_qs() functions, callers to this function
158 * must disable irqs in order to protect the assignment to
159 * ->rcu_read_unlock_special.
f41d911f 160 */
c3422bea 161static void rcu_preempt_qs(int cpu)
f41d911f
PM
162{
163 struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
25502a6c 164
e4cc1f22 165 if (rdp->passed_quiesce == 0)
f7f7bac9 166 trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 167 rdp->passed_quiesce = 1;
25502a6c 168 current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
169}
170
171/*
c3422bea
PM
172 * We have entered the scheduler, and the current task might soon be
173 * context-switched away from. If this task is in an RCU read-side
174 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
175 * record that fact, so we enqueue the task on the blkd_tasks list.
176 * The task will dequeue itself when it exits the outermost enclosing
177 * RCU read-side critical section. Therefore, the current grace period
178 * cannot be permitted to complete until the blkd_tasks list entries
179 * predating the current grace period drain, in other words, until
180 * rnp->gp_tasks becomes NULL.
c3422bea
PM
181 *
182 * Caller must disable preemption.
f41d911f 183 */
cba6d0d6 184static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
185{
186 struct task_struct *t = current;
c3422bea 187 unsigned long flags;
f41d911f
PM
188 struct rcu_data *rdp;
189 struct rcu_node *rnp;
190
10f39bb1 191 if (t->rcu_read_lock_nesting > 0 &&
f41d911f
PM
192 (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
193
194 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 195 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 196 rnp = rdp->mynode;
1304afb2 197 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 198 smp_mb__after_unlock_lock();
f41d911f 199 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
86848966 200 t->rcu_blocked_node = rnp;
f41d911f
PM
201
202 /*
203 * If this CPU has already checked in, then this task
204 * will hold up the next grace period rather than the
205 * current grace period. Queue the task accordingly.
206 * If the task is queued for the current grace period
207 * (i.e., this CPU has not yet passed through a quiescent
208 * state for the current grace period), then as long
209 * as that task remains queued, the current grace period
12f5f524
PM
210 * cannot end. Note that there is some uncertainty as
211 * to exactly when the current grace period started.
212 * We take a conservative approach, which can result
213 * in unnecessarily waiting on tasks that started very
214 * slightly after the current grace period began. C'est
215 * la vie!!!
b0e165c0
PM
216 *
217 * But first, note that the current CPU must still be
218 * on line!
f41d911f 219 */
b0e165c0 220 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 221 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
222 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
223 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
224 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
225#ifdef CONFIG_RCU_BOOST
226 if (rnp->boost_tasks != NULL)
227 rnp->boost_tasks = rnp->gp_tasks;
228#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
229 } else {
230 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
231 if (rnp->qsmask & rdp->grpmask)
232 rnp->gp_tasks = &t->rcu_node_entry;
233 }
d4c08f2a
PM
234 trace_rcu_preempt_task(rdp->rsp->name,
235 t->pid,
236 (rnp->qsmask & rdp->grpmask)
237 ? rnp->gpnum
238 : rnp->gpnum + 1);
1304afb2 239 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1
PM
240 } else if (t->rcu_read_lock_nesting < 0 &&
241 t->rcu_read_unlock_special) {
242
243 /*
244 * Complete exit from RCU read-side critical section on
245 * behalf of preempted instance of __rcu_read_unlock().
246 */
247 rcu_read_unlock_special(t);
f41d911f
PM
248 }
249
250 /*
251 * Either we were not in an RCU read-side critical section to
252 * begin with, or we have now recorded that critical section
253 * globally. Either way, we can now note a quiescent state
254 * for this CPU. Again, if we were in an RCU read-side critical
255 * section, and if that critical section was blocking the current
256 * grace period, then the fact that the task has been enqueued
257 * means that we continue to block the current grace period.
258 */
e7d8842e 259 local_irq_save(flags);
cba6d0d6 260 rcu_preempt_qs(cpu);
e7d8842e 261 local_irq_restore(flags);
f41d911f
PM
262}
263
fc2219d4
PM
264/*
265 * Check for preempted RCU readers blocking the current grace period
266 * for the specified rcu_node structure. If the caller needs a reliable
267 * answer, it must hold the rcu_node's ->lock.
268 */
27f4d280 269static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 270{
12f5f524 271 return rnp->gp_tasks != NULL;
fc2219d4
PM
272}
273
b668c9cf
PM
274/*
275 * Record a quiescent state for all tasks that were previously queued
276 * on the specified rcu_node structure and that were blocking the current
277 * RCU grace period. The caller must hold the specified rnp->lock with
278 * irqs disabled, and this lock is released upon return, but irqs remain
279 * disabled.
280 */
d3f6bad3 281static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
282 __releases(rnp->lock)
283{
284 unsigned long mask;
285 struct rcu_node *rnp_p;
286
27f4d280 287 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 288 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
289 return; /* Still need more quiescent states! */
290 }
291
292 rnp_p = rnp->parent;
293 if (rnp_p == NULL) {
294 /*
295 * Either there is only one rcu_node in the tree,
296 * or tasks were kicked up to root rcu_node due to
297 * CPUs going offline.
298 */
d3f6bad3 299 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
300 return;
301 }
302
303 /* Report up the rest of the hierarchy. */
304 mask = rnp->grpmask;
1304afb2
PM
305 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
306 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 307 smp_mb__after_unlock_lock();
d3f6bad3 308 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
309}
310
12f5f524
PM
311/*
312 * Advance a ->blkd_tasks-list pointer to the next entry, instead
313 * returning NULL if at the end of the list.
314 */
315static struct list_head *rcu_next_node_entry(struct task_struct *t,
316 struct rcu_node *rnp)
317{
318 struct list_head *np;
319
320 np = t->rcu_node_entry.next;
321 if (np == &rnp->blkd_tasks)
322 np = NULL;
323 return np;
324}
325
b668c9cf
PM
326/*
327 * Handle special cases during rcu_read_unlock(), such as needing to
328 * notify RCU core processing or task having blocked during the RCU
329 * read-side critical section.
330 */
2a3fa843 331void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
332{
333 int empty;
d9a3da06 334 int empty_exp;
389abd48 335 int empty_exp_now;
f41d911f 336 unsigned long flags;
12f5f524 337 struct list_head *np;
82e78d80
PM
338#ifdef CONFIG_RCU_BOOST
339 struct rt_mutex *rbmp = NULL;
340#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
341 struct rcu_node *rnp;
342 int special;
343
344 /* NMI handlers cannot block and cannot safely manipulate state. */
345 if (in_nmi())
346 return;
347
348 local_irq_save(flags);
349
350 /*
351 * If RCU core is waiting for this CPU to exit critical section,
352 * let it know that we have done so.
353 */
354 special = t->rcu_read_unlock_special;
355 if (special & RCU_READ_UNLOCK_NEED_QS) {
c3422bea 356 rcu_preempt_qs(smp_processor_id());
79a62f95
LJ
357 if (!t->rcu_read_unlock_special) {
358 local_irq_restore(flags);
359 return;
360 }
f41d911f
PM
361 }
362
79a62f95
LJ
363 /* Hardware IRQ handlers cannot block, complain if they get here. */
364 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
365 local_irq_restore(flags);
366 return;
367 }
368
369 /* Clean up if blocked during RCU read-side critical section. */
370 if (special & RCU_READ_UNLOCK_BLOCKED) {
371 t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
372
dd5d19ba
PM
373 /*
374 * Remove this task from the list it blocked on. The
375 * task can migrate while we acquire the lock, but at
376 * most one time. So at most two passes through loop.
377 */
378 for (;;) {
86848966 379 rnp = t->rcu_blocked_node;
1304afb2 380 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 381 smp_mb__after_unlock_lock();
86848966 382 if (rnp == t->rcu_blocked_node)
dd5d19ba 383 break;
1304afb2 384 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 385 }
27f4d280 386 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
387 empty_exp = !rcu_preempted_readers_exp(rnp);
388 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 389 np = rcu_next_node_entry(t, rnp);
f41d911f 390 list_del_init(&t->rcu_node_entry);
82e78d80 391 t->rcu_blocked_node = NULL;
f7f7bac9 392 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 393 rnp->gpnum, t->pid);
12f5f524
PM
394 if (&t->rcu_node_entry == rnp->gp_tasks)
395 rnp->gp_tasks = np;
396 if (&t->rcu_node_entry == rnp->exp_tasks)
397 rnp->exp_tasks = np;
27f4d280
PM
398#ifdef CONFIG_RCU_BOOST
399 if (&t->rcu_node_entry == rnp->boost_tasks)
400 rnp->boost_tasks = np;
82e78d80
PM
401 /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
402 if (t->rcu_boost_mutex) {
403 rbmp = t->rcu_boost_mutex;
404 t->rcu_boost_mutex = NULL;
7765be2f 405 }
27f4d280 406#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
407
408 /*
409 * If this was the last task on the current list, and if
410 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
411 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
412 * so we must take a snapshot of the expedited state.
f41d911f 413 */
389abd48 414 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 415 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 416 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
417 rnp->gpnum,
418 0, rnp->qsmask,
419 rnp->level,
420 rnp->grplo,
421 rnp->grphi,
422 !!rnp->gp_tasks);
d3f6bad3 423 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 424 } else {
d4c08f2a 425 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 426 }
d9a3da06 427
27f4d280
PM
428#ifdef CONFIG_RCU_BOOST
429 /* Unboost if we were boosted. */
dfeb9765 430 if (rbmp) {
82e78d80 431 rt_mutex_unlock(rbmp);
dfeb9765
PM
432 complete(&rnp->boost_completion);
433 }
27f4d280
PM
434#endif /* #ifdef CONFIG_RCU_BOOST */
435
d9a3da06
PM
436 /*
437 * If this was the last task on the expedited lists,
438 * then we need to report up the rcu_node hierarchy.
439 */
389abd48 440 if (!empty_exp && empty_exp_now)
b40d293e 441 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
442 } else {
443 local_irq_restore(flags);
f41d911f 444 }
f41d911f
PM
445}
446
1ed509a2
PM
447#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
448
449/*
450 * Dump detailed information for all tasks blocking the current RCU
451 * grace period on the specified rcu_node structure.
452 */
453static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
454{
455 unsigned long flags;
1ed509a2
PM
456 struct task_struct *t;
457
12f5f524 458 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
459 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
460 raw_spin_unlock_irqrestore(&rnp->lock, flags);
461 return;
462 }
12f5f524
PM
463 t = list_entry(rnp->gp_tasks,
464 struct task_struct, rcu_node_entry);
465 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
466 sched_show_task(t);
467 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
468}
469
470/*
471 * Dump detailed information for all tasks blocking the current RCU
472 * grace period.
473 */
474static void rcu_print_detail_task_stall(struct rcu_state *rsp)
475{
476 struct rcu_node *rnp = rcu_get_root(rsp);
477
478 rcu_print_detail_task_stall_rnp(rnp);
479 rcu_for_each_leaf_node(rsp, rnp)
480 rcu_print_detail_task_stall_rnp(rnp);
481}
482
483#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
484
485static void rcu_print_detail_task_stall(struct rcu_state *rsp)
486{
487}
488
489#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
490
a858af28
PM
491#ifdef CONFIG_RCU_CPU_STALL_INFO
492
493static void rcu_print_task_stall_begin(struct rcu_node *rnp)
494{
efc151c3 495 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
496 rnp->level, rnp->grplo, rnp->grphi);
497}
498
499static void rcu_print_task_stall_end(void)
500{
efc151c3 501 pr_cont("\n");
a858af28
PM
502}
503
504#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
505
506static void rcu_print_task_stall_begin(struct rcu_node *rnp)
507{
508}
509
510static void rcu_print_task_stall_end(void)
511{
512}
513
514#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
515
f41d911f
PM
516/*
517 * Scan the current list of tasks blocked within RCU read-side critical
518 * sections, printing out the tid of each.
519 */
9bc8b558 520static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 521{
f41d911f 522 struct task_struct *t;
9bc8b558 523 int ndetected = 0;
f41d911f 524
27f4d280 525 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 526 return 0;
a858af28 527 rcu_print_task_stall_begin(rnp);
12f5f524
PM
528 t = list_entry(rnp->gp_tasks,
529 struct task_struct, rcu_node_entry);
9bc8b558 530 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 531 pr_cont(" P%d", t->pid);
9bc8b558
PM
532 ndetected++;
533 }
a858af28 534 rcu_print_task_stall_end();
9bc8b558 535 return ndetected;
f41d911f
PM
536}
537
b0e165c0
PM
538/*
539 * Check that the list of blocked tasks for the newly completed grace
540 * period is in fact empty. It is a serious bug to complete a grace
541 * period that still has RCU readers blocked! This function must be
542 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
543 * must be held by the caller.
12f5f524
PM
544 *
545 * Also, if there are blocked tasks on the list, they automatically
546 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
547 */
548static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
549{
27f4d280 550 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
551 if (!list_empty(&rnp->blkd_tasks))
552 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 553 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
554}
555
33f76148
PM
556#ifdef CONFIG_HOTPLUG_CPU
557
dd5d19ba
PM
558/*
559 * Handle tasklist migration for case in which all CPUs covered by the
560 * specified rcu_node have gone offline. Move them up to the root
561 * rcu_node. The reason for not just moving them to the immediate
562 * parent is to remove the need for rcu_read_unlock_special() to
563 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
564 * Returns true if there were tasks blocking the current RCU grace
565 * period.
dd5d19ba 566 *
237c80c5
PM
567 * Returns 1 if there was previously a task blocking the current grace
568 * period on the specified rcu_node structure.
569 *
dd5d19ba
PM
570 * The caller must hold rnp->lock with irqs disabled.
571 */
237c80c5
PM
572static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
573 struct rcu_node *rnp,
574 struct rcu_data *rdp)
dd5d19ba 575{
dd5d19ba
PM
576 struct list_head *lp;
577 struct list_head *lp_root;
d9a3da06 578 int retval = 0;
dd5d19ba 579 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 580 struct task_struct *t;
dd5d19ba 581
86848966
PM
582 if (rnp == rnp_root) {
583 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 584 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 585 }
12f5f524
PM
586
587 /* If we are on an internal node, complain bitterly. */
588 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
589
590 /*
12f5f524
PM
591 * Move tasks up to root rcu_node. Don't try to get fancy for
592 * this corner-case operation -- just put this node's tasks
593 * at the head of the root node's list, and update the root node's
594 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
595 * if non-NULL. This might result in waiting for more tasks than
596 * absolutely necessary, but this is a good performance/complexity
597 * tradeoff.
dd5d19ba 598 */
2036d94a 599 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
600 retval |= RCU_OFL_TASKS_NORM_GP;
601 if (rcu_preempted_readers_exp(rnp))
602 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
603 lp = &rnp->blkd_tasks;
604 lp_root = &rnp_root->blkd_tasks;
605 while (!list_empty(lp)) {
606 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
607 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 608 smp_mb__after_unlock_lock();
12f5f524
PM
609 list_del(&t->rcu_node_entry);
610 t->rcu_blocked_node = rnp_root;
611 list_add(&t->rcu_node_entry, lp_root);
612 if (&t->rcu_node_entry == rnp->gp_tasks)
613 rnp_root->gp_tasks = rnp->gp_tasks;
614 if (&t->rcu_node_entry == rnp->exp_tasks)
615 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
616#ifdef CONFIG_RCU_BOOST
617 if (&t->rcu_node_entry == rnp->boost_tasks)
618 rnp_root->boost_tasks = rnp->boost_tasks;
619#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 620 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 621 }
27f4d280 622
1e3fd2b3
PM
623 rnp->gp_tasks = NULL;
624 rnp->exp_tasks = NULL;
27f4d280 625#ifdef CONFIG_RCU_BOOST
1e3fd2b3 626 rnp->boost_tasks = NULL;
5cc900cf
PM
627 /*
628 * In case root is being boosted and leaf was not. Make sure
629 * that we boost the tasks blocking the current grace period
630 * in this case.
631 */
27f4d280 632 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 633 smp_mb__after_unlock_lock();
27f4d280 634 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
635 rnp_root->boost_tasks != rnp_root->gp_tasks &&
636 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
637 rnp_root->boost_tasks = rnp_root->gp_tasks;
638 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
639#endif /* #ifdef CONFIG_RCU_BOOST */
640
237c80c5 641 return retval;
dd5d19ba
PM
642}
643
e5601400
PM
644#endif /* #ifdef CONFIG_HOTPLUG_CPU */
645
f41d911f
PM
646/*
647 * Check for a quiescent state from the current CPU. When a task blocks,
648 * the task is recorded in the corresponding CPU's rcu_node structure,
649 * which is checked elsewhere.
650 *
651 * Caller must disable hard irqs.
652 */
653static void rcu_preempt_check_callbacks(int cpu)
654{
655 struct task_struct *t = current;
656
657 if (t->rcu_read_lock_nesting == 0) {
c3422bea 658 rcu_preempt_qs(cpu);
f41d911f
PM
659 return;
660 }
10f39bb1
PM
661 if (t->rcu_read_lock_nesting > 0 &&
662 per_cpu(rcu_preempt_data, cpu).qs_pending)
c3422bea 663 t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
f41d911f
PM
664}
665
a46e0899
PM
666#ifdef CONFIG_RCU_BOOST
667
09223371
SL
668static void rcu_preempt_do_callbacks(void)
669{
c9d4b0af 670 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
671}
672
a46e0899
PM
673#endif /* #ifdef CONFIG_RCU_BOOST */
674
f41d911f 675/*
6cc68793 676 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
677 */
678void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
679{
3fbfbf7a 680 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
681}
682EXPORT_SYMBOL_GPL(call_rcu);
683
6ebb237b
PM
684/**
685 * synchronize_rcu - wait until a grace period has elapsed.
686 *
687 * Control will return to the caller some time after a full grace
688 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
689 * read-side critical sections have completed. Note, however, that
690 * upon return from synchronize_rcu(), the caller might well be executing
691 * concurrently with new RCU read-side critical sections that began while
692 * synchronize_rcu() was waiting. RCU read-side critical sections are
693 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
694 *
695 * See the description of synchronize_sched() for more detailed information
696 * on memory ordering guarantees.
6ebb237b
PM
697 */
698void synchronize_rcu(void)
699{
fe15d706
PM
700 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
701 !lock_is_held(&rcu_lock_map) &&
702 !lock_is_held(&rcu_sched_lock_map),
703 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
704 if (!rcu_scheduler_active)
705 return;
3705b88d
AM
706 if (rcu_expedited)
707 synchronize_rcu_expedited();
708 else
709 wait_rcu_gp(call_rcu);
6ebb237b
PM
710}
711EXPORT_SYMBOL_GPL(synchronize_rcu);
712
d9a3da06 713static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 714static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
715static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
716
717/*
718 * Return non-zero if there are any tasks in RCU read-side critical
719 * sections blocking the current preemptible-RCU expedited grace period.
720 * If there is no preemptible-RCU expedited grace period currently in
721 * progress, returns zero unconditionally.
722 */
723static int rcu_preempted_readers_exp(struct rcu_node *rnp)
724{
12f5f524 725 return rnp->exp_tasks != NULL;
d9a3da06
PM
726}
727
728/*
729 * return non-zero if there is no RCU expedited grace period in progress
730 * for the specified rcu_node structure, in other words, if all CPUs and
731 * tasks covered by the specified rcu_node structure have done their bit
732 * for the current expedited grace period. Works only for preemptible
733 * RCU -- other RCU implementation use other means.
734 *
735 * Caller must hold sync_rcu_preempt_exp_mutex.
736 */
737static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
738{
739 return !rcu_preempted_readers_exp(rnp) &&
740 ACCESS_ONCE(rnp->expmask) == 0;
741}
742
743/*
744 * Report the exit from RCU read-side critical section for the last task
745 * that queued itself during or before the current expedited preemptible-RCU
746 * grace period. This event is reported either to the rcu_node structure on
747 * which the task was queued or to one of that rcu_node structure's ancestors,
748 * recursively up the tree. (Calm down, calm down, we do the recursion
749 * iteratively!)
750 *
b40d293e
TG
751 * Most callers will set the "wake" flag, but the task initiating the
752 * expedited grace period need not wake itself.
753 *
d9a3da06
PM
754 * Caller must hold sync_rcu_preempt_exp_mutex.
755 */
b40d293e
TG
756static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
757 bool wake)
d9a3da06
PM
758{
759 unsigned long flags;
760 unsigned long mask;
761
1304afb2 762 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 763 smp_mb__after_unlock_lock();
d9a3da06 764 for (;;) {
131906b0
PM
765 if (!sync_rcu_preempt_exp_done(rnp)) {
766 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 767 break;
131906b0 768 }
d9a3da06 769 if (rnp->parent == NULL) {
131906b0 770 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
771 if (wake) {
772 smp_mb(); /* EGP done before wake_up(). */
b40d293e 773 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 774 }
d9a3da06
PM
775 break;
776 }
777 mask = rnp->grpmask;
1304afb2 778 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 779 rnp = rnp->parent;
1304afb2 780 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 781 smp_mb__after_unlock_lock();
d9a3da06
PM
782 rnp->expmask &= ~mask;
783 }
d9a3da06
PM
784}
785
786/*
787 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
788 * grace period for the specified rcu_node structure. If there are no such
789 * tasks, report it up the rcu_node hierarchy.
790 *
7b2e6011
PM
791 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
792 * CPU hotplug operations.
d9a3da06
PM
793 */
794static void
795sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
796{
1217ed1b 797 unsigned long flags;
12f5f524 798 int must_wait = 0;
d9a3da06 799
1217ed1b 800 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 801 smp_mb__after_unlock_lock();
c701d5d9 802 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 803 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 804 } else {
12f5f524 805 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 806 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
807 must_wait = 1;
808 }
d9a3da06 809 if (!must_wait)
b40d293e 810 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
811}
812
236fefaf
PM
813/**
814 * synchronize_rcu_expedited - Brute-force RCU grace period
815 *
816 * Wait for an RCU-preempt grace period, but expedite it. The basic
817 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
818 * the ->blkd_tasks lists and wait for this list to drain. This consumes
819 * significant time on all CPUs and is unfriendly to real-time workloads,
820 * so is thus not recommended for any sort of common-case code.
821 * In fact, if you are using synchronize_rcu_expedited() in a loop,
822 * please restructure your code to batch your updates, and then Use a
823 * single synchronize_rcu() instead.
824 *
825 * Note that it is illegal to call this function while holding any lock
826 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
827 * to call this function from a CPU-hotplug notifier. Failing to observe
828 * these restriction will result in deadlock.
019129d5
PM
829 */
830void synchronize_rcu_expedited(void)
831{
d9a3da06
PM
832 unsigned long flags;
833 struct rcu_node *rnp;
834 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 835 unsigned long snap;
d9a3da06
PM
836 int trycount = 0;
837
838 smp_mb(); /* Caller's modifications seen first by other CPUs. */
839 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
840 smp_mb(); /* Above access cannot bleed into critical section. */
841
1943c89d
PM
842 /*
843 * Block CPU-hotplug operations. This means that any CPU-hotplug
844 * operation that finds an rcu_node structure with tasks in the
845 * process of being boosted will know that all tasks blocking
846 * this expedited grace period will already be in the process of
847 * being boosted. This simplifies the process of moving tasks
848 * from leaf to root rcu_node structures.
849 */
850 get_online_cpus();
851
d9a3da06
PM
852 /*
853 * Acquire lock, falling back to synchronize_rcu() if too many
854 * lock-acquisition failures. Of course, if someone does the
855 * expedited grace period for us, just leave.
856 */
857 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
858 if (ULONG_CMP_LT(snap,
859 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
860 put_online_cpus();
861 goto mb_ret; /* Others did our work for us. */
862 }
c701d5d9 863 if (trycount++ < 10) {
d9a3da06 864 udelay(trycount * num_online_cpus());
c701d5d9 865 } else {
1943c89d 866 put_online_cpus();
3705b88d 867 wait_rcu_gp(call_rcu);
d9a3da06
PM
868 return;
869 }
d9a3da06 870 }
1943c89d
PM
871 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
872 put_online_cpus();
d9a3da06 873 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 874 }
d9a3da06 875
12f5f524 876 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
877 synchronize_sched_expedited();
878
d9a3da06
PM
879 /* Initialize ->expmask for all non-leaf rcu_node structures. */
880 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 881 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 882 smp_mb__after_unlock_lock();
d9a3da06 883 rnp->expmask = rnp->qsmaskinit;
1943c89d 884 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
885 }
886
12f5f524 887 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
888 rcu_for_each_leaf_node(rsp, rnp)
889 sync_rcu_preempt_exp_init(rsp, rnp);
890 if (NUM_RCU_NODES > 1)
891 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
892
1943c89d 893 put_online_cpus();
d9a3da06 894
12f5f524 895 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
896 rnp = rcu_get_root(rsp);
897 wait_event(sync_rcu_preempt_exp_wq,
898 sync_rcu_preempt_exp_done(rnp));
899
900 /* Clean up and exit. */
901 smp_mb(); /* ensure expedited GP seen before counter increment. */
902 ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
903unlock_mb_ret:
904 mutex_unlock(&sync_rcu_preempt_exp_mutex);
905mb_ret:
906 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
907}
908EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
909
e74f4c45
PM
910/**
911 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
912 *
913 * Note that this primitive does not necessarily wait for an RCU grace period
914 * to complete. For example, if there are no RCU callbacks queued anywhere
915 * in the system, then rcu_barrier() is within its rights to return
916 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
917 */
918void rcu_barrier(void)
919{
037b64ed 920 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
921}
922EXPORT_SYMBOL_GPL(rcu_barrier);
923
1eba8f84 924/*
6cc68793 925 * Initialize preemptible RCU's state structures.
1eba8f84
PM
926 */
927static void __init __rcu_init_preempt(void)
928{
394f99a9 929 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
930}
931
2439b696
PM
932/*
933 * Check for a task exiting while in a preemptible-RCU read-side
934 * critical section, clean up if so. No need to issue warnings,
935 * as debug_check_no_locks_held() already does this if lockdep
936 * is enabled.
937 */
938void exit_rcu(void)
939{
940 struct task_struct *t = current;
941
942 if (likely(list_empty(&current->rcu_node_entry)))
943 return;
944 t->rcu_read_lock_nesting = 1;
945 barrier();
946 t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
947 __rcu_read_unlock();
948}
949
f41d911f
PM
950#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
951
e534165b 952static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 953
f41d911f
PM
954/*
955 * Tell them what RCU they are running.
956 */
0e0fc1c2 957static void __init rcu_bootup_announce(void)
f41d911f 958{
efc151c3 959 pr_info("Hierarchical RCU implementation.\n");
26845c28 960 rcu_bootup_announce_oddness();
f41d911f
PM
961}
962
963/*
964 * Return the number of RCU batches processed thus far for debug & stats.
965 */
966long rcu_batches_completed(void)
967{
968 return rcu_batches_completed_sched();
969}
970EXPORT_SYMBOL_GPL(rcu_batches_completed);
971
cba6d0d6
PM
972/*
973 * Because preemptible RCU does not exist, we never have to check for
974 * CPUs being in quiescent states.
975 */
976static void rcu_preempt_note_context_switch(int cpu)
977{
978}
979
fc2219d4 980/*
6cc68793 981 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
982 * RCU readers.
983 */
27f4d280 984static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
985{
986 return 0;
987}
988
b668c9cf
PM
989#ifdef CONFIG_HOTPLUG_CPU
990
991/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 992static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf 993{
1304afb2 994 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
995}
996
997#endif /* #ifdef CONFIG_HOTPLUG_CPU */
998
1ed509a2 999/*
6cc68793 1000 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
1001 * tasks blocked within RCU read-side critical sections.
1002 */
1003static void rcu_print_detail_task_stall(struct rcu_state *rsp)
1004{
1005}
1006
f41d911f 1007/*
6cc68793 1008 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
1009 * tasks blocked within RCU read-side critical sections.
1010 */
9bc8b558 1011static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 1012{
9bc8b558 1013 return 0;
f41d911f
PM
1014}
1015
b0e165c0 1016/*
6cc68793 1017 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1018 * so there is no need to check for blocked tasks. So check only for
1019 * bogus qsmask values.
b0e165c0
PM
1020 */
1021static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1022{
49e29126 1023 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1024}
1025
33f76148
PM
1026#ifdef CONFIG_HOTPLUG_CPU
1027
dd5d19ba 1028/*
6cc68793 1029 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1030 * tasks that were blocked within RCU read-side critical sections, and
1031 * such non-existent tasks cannot possibly have been blocking the current
1032 * grace period.
dd5d19ba 1033 */
237c80c5
PM
1034static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1035 struct rcu_node *rnp,
1036 struct rcu_data *rdp)
dd5d19ba 1037{
237c80c5 1038 return 0;
dd5d19ba
PM
1039}
1040
e5601400
PM
1041#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1042
f41d911f 1043/*
6cc68793 1044 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1045 * to check.
1046 */
1eba8f84 1047static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1048{
1049}
1050
019129d5
PM
1051/*
1052 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1053 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1054 */
1055void synchronize_rcu_expedited(void)
1056{
1057 synchronize_sched_expedited();
1058}
1059EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1060
d9a3da06
PM
1061#ifdef CONFIG_HOTPLUG_CPU
1062
1063/*
6cc68793 1064 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1065 * report on tasks preempted in RCU read-side critical sections during
1066 * expedited RCU grace periods.
1067 */
b40d293e
TG
1068static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1069 bool wake)
d9a3da06 1070{
d9a3da06
PM
1071}
1072
1073#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1074
e74f4c45 1075/*
6cc68793 1076 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1077 * another name for rcu_barrier_sched().
1078 */
1079void rcu_barrier(void)
1080{
1081 rcu_barrier_sched();
1082}
1083EXPORT_SYMBOL_GPL(rcu_barrier);
1084
1eba8f84 1085/*
6cc68793 1086 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1087 */
1088static void __init __rcu_init_preempt(void)
1089{
1090}
1091
2439b696
PM
1092/*
1093 * Because preemptible RCU does not exist, tasks cannot possibly exit
1094 * while in preemptible RCU read-side critical sections.
1095 */
1096void exit_rcu(void)
1097{
1098}
1099
f41d911f 1100#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1101
27f4d280
PM
1102#ifdef CONFIG_RCU_BOOST
1103
1696a8be 1104#include "../locking/rtmutex_common.h"
27f4d280 1105
0ea1f2eb
PM
1106#ifdef CONFIG_RCU_TRACE
1107
1108static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1109{
1110 if (list_empty(&rnp->blkd_tasks))
1111 rnp->n_balk_blkd_tasks++;
1112 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1113 rnp->n_balk_exp_gp_tasks++;
1114 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1115 rnp->n_balk_boost_tasks++;
1116 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1117 rnp->n_balk_notblocked++;
1118 else if (rnp->gp_tasks != NULL &&
a9f4793d 1119 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1120 rnp->n_balk_notyet++;
1121 else
1122 rnp->n_balk_nos++;
1123}
1124
1125#else /* #ifdef CONFIG_RCU_TRACE */
1126
1127static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1128{
1129}
1130
1131#endif /* #else #ifdef CONFIG_RCU_TRACE */
1132
5d01bbd1
TG
1133static void rcu_wake_cond(struct task_struct *t, int status)
1134{
1135 /*
1136 * If the thread is yielding, only wake it when this
1137 * is invoked from idle
1138 */
1139 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1140 wake_up_process(t);
1141}
1142
27f4d280
PM
1143/*
1144 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1145 * or ->boost_tasks, advancing the pointer to the next task in the
1146 * ->blkd_tasks list.
1147 *
1148 * Note that irqs must be enabled: boosting the task can block.
1149 * Returns 1 if there are more tasks needing to be boosted.
1150 */
1151static int rcu_boost(struct rcu_node *rnp)
1152{
1153 unsigned long flags;
1154 struct rt_mutex mtx;
1155 struct task_struct *t;
1156 struct list_head *tb;
1157
1158 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1159 return 0; /* Nothing left to boost. */
1160
1161 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1162 smp_mb__after_unlock_lock();
27f4d280
PM
1163
1164 /*
1165 * Recheck under the lock: all tasks in need of boosting
1166 * might exit their RCU read-side critical sections on their own.
1167 */
1168 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1169 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1170 return 0;
1171 }
1172
1173 /*
1174 * Preferentially boost tasks blocking expedited grace periods.
1175 * This cannot starve the normal grace periods because a second
1176 * expedited grace period must boost all blocked tasks, including
1177 * those blocking the pre-existing normal grace period.
1178 */
0ea1f2eb 1179 if (rnp->exp_tasks != NULL) {
27f4d280 1180 tb = rnp->exp_tasks;
0ea1f2eb
PM
1181 rnp->n_exp_boosts++;
1182 } else {
27f4d280 1183 tb = rnp->boost_tasks;
0ea1f2eb
PM
1184 rnp->n_normal_boosts++;
1185 }
1186 rnp->n_tasks_boosted++;
27f4d280
PM
1187
1188 /*
1189 * We boost task t by manufacturing an rt_mutex that appears to
1190 * be held by task t. We leave a pointer to that rt_mutex where
1191 * task t can find it, and task t will release the mutex when it
1192 * exits its outermost RCU read-side critical section. Then
1193 * simply acquiring this artificial rt_mutex will boost task
1194 * t's priority. (Thanks to tglx for suggesting this approach!)
1195 *
1196 * Note that task t must acquire rnp->lock to remove itself from
1197 * the ->blkd_tasks list, which it will do from exit() if from
1198 * nowhere else. We therefore are guaranteed that task t will
1199 * stay around at least until we drop rnp->lock. Note that
1200 * rnp->lock also resolves races between our priority boosting
1201 * and task t's exiting its outermost RCU read-side critical
1202 * section.
1203 */
1204 t = container_of(tb, struct task_struct, rcu_node_entry);
1205 rt_mutex_init_proxy_locked(&mtx, t);
1206 t->rcu_boost_mutex = &mtx;
dfeb9765 1207 init_completion(&rnp->boost_completion);
27f4d280
PM
1208 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1209 rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
1210 rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
1211
dfeb9765
PM
1212 /* Wait until boostee is done accessing mtx before reinitializing. */
1213 wait_for_completion(&rnp->boost_completion);
1214
4f89b336
PM
1215 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1216 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1217}
1218
27f4d280
PM
1219/*
1220 * Priority-boosting kthread. One per leaf rcu_node and one for the
1221 * root rcu_node.
1222 */
1223static int rcu_boost_kthread(void *arg)
1224{
1225 struct rcu_node *rnp = (struct rcu_node *)arg;
1226 int spincnt = 0;
1227 int more2boost;
1228
f7f7bac9 1229 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1230 for (;;) {
d71df90e 1231 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1232 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1233 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1234 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1235 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1236 more2boost = rcu_boost(rnp);
1237 if (more2boost)
1238 spincnt++;
1239 else
1240 spincnt = 0;
1241 if (spincnt > 10) {
5d01bbd1 1242 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1243 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1244 schedule_timeout_interruptible(2);
f7f7bac9 1245 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1246 spincnt = 0;
1247 }
1248 }
1217ed1b 1249 /* NOTREACHED */
f7f7bac9 1250 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1251 return 0;
1252}
1253
1254/*
1255 * Check to see if it is time to start boosting RCU readers that are
1256 * blocking the current grace period, and, if so, tell the per-rcu_node
1257 * kthread to start boosting them. If there is an expedited grace
1258 * period in progress, it is always time to boost.
1259 *
b065a853
PM
1260 * The caller must hold rnp->lock, which this function releases.
1261 * The ->boost_kthread_task is immortal, so we don't need to worry
1262 * about it going away.
27f4d280 1263 */
1217ed1b 1264static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280
PM
1265{
1266 struct task_struct *t;
1267
0ea1f2eb
PM
1268 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1269 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1271 return;
0ea1f2eb 1272 }
27f4d280
PM
1273 if (rnp->exp_tasks != NULL ||
1274 (rnp->gp_tasks != NULL &&
1275 rnp->boost_tasks == NULL &&
1276 rnp->qsmask == 0 &&
1277 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1278 if (rnp->exp_tasks == NULL)
1279 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1280 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1281 t = rnp->boost_kthread_task;
5d01bbd1
TG
1282 if (t)
1283 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1284 } else {
0ea1f2eb 1285 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1286 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1287 }
27f4d280
PM
1288}
1289
a46e0899
PM
1290/*
1291 * Wake up the per-CPU kthread to invoke RCU callbacks.
1292 */
1293static void invoke_rcu_callbacks_kthread(void)
1294{
1295 unsigned long flags;
1296
1297 local_irq_save(flags);
1298 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1299 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1300 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1301 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1302 __this_cpu_read(rcu_cpu_kthread_status));
1303 }
a46e0899
PM
1304 local_irq_restore(flags);
1305}
1306
dff1672d
PM
1307/*
1308 * Is the current CPU running the RCU-callbacks kthread?
1309 * Caller must have preemption disabled.
1310 */
1311static bool rcu_is_callbacks_kthread(void)
1312{
c9d4b0af 1313 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1314}
1315
27f4d280
PM
1316#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1317
1318/*
1319 * Do priority-boost accounting for the start of a new grace period.
1320 */
1321static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1322{
1323 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1324}
1325
27f4d280
PM
1326/*
1327 * Create an RCU-boost kthread for the specified node if one does not
1328 * already exist. We only create this kthread for preemptible RCU.
1329 * Returns zero if all is well, a negated errno otherwise.
1330 */
49fb4c62 1331static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1332 struct rcu_node *rnp)
27f4d280 1333{
5d01bbd1 1334 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1335 unsigned long flags;
1336 struct sched_param sp;
1337 struct task_struct *t;
1338
1339 if (&rcu_preempt_state != rsp)
1340 return 0;
5d01bbd1
TG
1341
1342 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1343 return 0;
1344
a46e0899 1345 rsp->boost = 1;
27f4d280
PM
1346 if (rnp->boost_kthread_task != NULL)
1347 return 0;
1348 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1349 "rcub/%d", rnp_index);
27f4d280
PM
1350 if (IS_ERR(t))
1351 return PTR_ERR(t);
1352 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1353 smp_mb__after_unlock_lock();
27f4d280
PM
1354 rnp->boost_kthread_task = t;
1355 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1356 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1357 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1358 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1359 return 0;
1360}
1361
f8b7fc6b
PM
1362static void rcu_kthread_do_work(void)
1363{
c9d4b0af
CL
1364 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1365 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1366 rcu_preempt_do_callbacks();
1367}
1368
62ab7072 1369static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1370{
f8b7fc6b 1371 struct sched_param sp;
f8b7fc6b 1372
62ab7072
PM
1373 sp.sched_priority = RCU_KTHREAD_PRIO;
1374 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1375}
1376
62ab7072 1377static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1378{
62ab7072 1379 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1380}
1381
62ab7072 1382static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1383{
c9d4b0af 1384 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1385}
1386
1387/*
1388 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1389 * RCU softirq used in flavors and configurations of RCU that do not
1390 * support RCU priority boosting.
f8b7fc6b 1391 */
62ab7072 1392static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1393{
c9d4b0af
CL
1394 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1395 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1396 int spincnt;
f8b7fc6b 1397
62ab7072 1398 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1399 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1400 local_bh_disable();
f8b7fc6b 1401 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1402 this_cpu_inc(rcu_cpu_kthread_loops);
1403 local_irq_disable();
f8b7fc6b
PM
1404 work = *workp;
1405 *workp = 0;
62ab7072 1406 local_irq_enable();
f8b7fc6b
PM
1407 if (work)
1408 rcu_kthread_do_work();
1409 local_bh_enable();
62ab7072 1410 if (*workp == 0) {
f7f7bac9 1411 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1412 *statusp = RCU_KTHREAD_WAITING;
1413 return;
f8b7fc6b
PM
1414 }
1415 }
62ab7072 1416 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1417 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1418 schedule_timeout_interruptible(2);
f7f7bac9 1419 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1420 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1421}
1422
1423/*
1424 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1425 * served by the rcu_node in question. The CPU hotplug lock is still
1426 * held, so the value of rnp->qsmaskinit will be stable.
1427 *
1428 * We don't include outgoingcpu in the affinity set, use -1 if there is
1429 * no outgoing CPU. If there are no CPUs left in the affinity set,
1430 * this function allows the kthread to execute on any CPU.
1431 */
5d01bbd1 1432static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1433{
5d01bbd1
TG
1434 struct task_struct *t = rnp->boost_kthread_task;
1435 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1436 cpumask_var_t cm;
1437 int cpu;
f8b7fc6b 1438
5d01bbd1 1439 if (!t)
f8b7fc6b 1440 return;
5d01bbd1 1441 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1442 return;
f8b7fc6b
PM
1443 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1444 if ((mask & 0x1) && cpu != outgoingcpu)
1445 cpumask_set_cpu(cpu, cm);
1446 if (cpumask_weight(cm) == 0) {
1447 cpumask_setall(cm);
1448 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1449 cpumask_clear_cpu(cpu, cm);
1450 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1451 }
5d01bbd1 1452 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1453 free_cpumask_var(cm);
1454}
1455
62ab7072
PM
1456static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1457 .store = &rcu_cpu_kthread_task,
1458 .thread_should_run = rcu_cpu_kthread_should_run,
1459 .thread_fn = rcu_cpu_kthread,
1460 .thread_comm = "rcuc/%u",
1461 .setup = rcu_cpu_kthread_setup,
1462 .park = rcu_cpu_kthread_park,
1463};
f8b7fc6b
PM
1464
1465/*
1466 * Spawn all kthreads -- called as soon as the scheduler is running.
1467 */
1468static int __init rcu_spawn_kthreads(void)
1469{
f8b7fc6b 1470 struct rcu_node *rnp;
5d01bbd1 1471 int cpu;
f8b7fc6b 1472
b0d30417 1473 rcu_scheduler_fully_active = 1;
62ab7072 1474 for_each_possible_cpu(cpu)
f8b7fc6b 1475 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1476 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1477 rnp = rcu_get_root(rcu_state_p);
1478 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1479 if (NUM_RCU_NODES > 1) {
e534165b
US
1480 rcu_for_each_leaf_node(rcu_state_p, rnp)
1481 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1482 }
1483 return 0;
1484}
1485early_initcall(rcu_spawn_kthreads);
1486
49fb4c62 1487static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1488{
e534165b 1489 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1490 struct rcu_node *rnp = rdp->mynode;
1491
1492 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1493 if (rcu_scheduler_fully_active)
e534165b 1494 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1495}
1496
27f4d280
PM
1497#else /* #ifdef CONFIG_RCU_BOOST */
1498
1217ed1b 1499static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
27f4d280 1500{
1217ed1b 1501 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1502}
1503
a46e0899 1504static void invoke_rcu_callbacks_kthread(void)
27f4d280 1505{
a46e0899 1506 WARN_ON_ONCE(1);
27f4d280
PM
1507}
1508
dff1672d
PM
1509static bool rcu_is_callbacks_kthread(void)
1510{
1511 return false;
1512}
1513
27f4d280
PM
1514static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1515{
1516}
1517
5d01bbd1 1518static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1519{
1520}
1521
b0d30417
PM
1522static int __init rcu_scheduler_really_started(void)
1523{
1524 rcu_scheduler_fully_active = 1;
1525 return 0;
1526}
1527early_initcall(rcu_scheduler_really_started);
1528
49fb4c62 1529static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1530{
1531}
1532
27f4d280
PM
1533#endif /* #else #ifdef CONFIG_RCU_BOOST */
1534
8bd93a2c
PM
1535#if !defined(CONFIG_RCU_FAST_NO_HZ)
1536
1537/*
1538 * Check to see if any future RCU-related work will need to be done
1539 * by the current CPU, even if none need be done immediately, returning
1540 * 1 if so. This function is part of the RCU implementation; it is -not-
1541 * an exported member of the RCU API.
1542 *
7cb92499
PM
1543 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1544 * any flavor of RCU.
8bd93a2c 1545 */
ffa83fb5 1546#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1547int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1548{
aa9b1630 1549 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1550 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1551}
ffa83fb5 1552#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1553
1554/*
1555 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1556 * after it.
1557 */
1558static void rcu_cleanup_after_idle(int cpu)
1559{
1560}
1561
aea1b35e 1562/*
a858af28 1563 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1564 * is nothing.
1565 */
1566static void rcu_prepare_for_idle(int cpu)
1567{
1568}
1569
c57afe80
PM
1570/*
1571 * Don't bother keeping a running count of the number of RCU callbacks
1572 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1573 */
1574static void rcu_idle_count_callbacks_posted(void)
1575{
1576}
1577
8bd93a2c
PM
1578#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1579
f23f7fa1
PM
1580/*
1581 * This code is invoked when a CPU goes idle, at which point we want
1582 * to have the CPU do everything required for RCU so that it can enter
1583 * the energy-efficient dyntick-idle mode. This is handled by a
1584 * state machine implemented by rcu_prepare_for_idle() below.
1585 *
1586 * The following three proprocessor symbols control this state machine:
1587 *
f23f7fa1
PM
1588 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1589 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1590 * is sized to be roughly one RCU grace period. Those energy-efficiency
1591 * benchmarkers who might otherwise be tempted to set this to a large
1592 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1593 * system. And if you are -that- concerned about energy efficiency,
1594 * just power the system down and be done with it!
778d250a
PM
1595 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1596 * permitted to sleep in dyntick-idle mode with only lazy RCU
1597 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1598 *
1599 * The values below work well in practice. If future workloads require
1600 * adjustment, they can be converted into kernel config parameters, though
1601 * making the state machine smarter might be a better option.
1602 */
e84c48ae 1603#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1604#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1605
5e44ce35
PM
1606static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1607module_param(rcu_idle_gp_delay, int, 0644);
1608static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1609module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1610
d689fe22 1611extern int tick_nohz_active;
486e2593
PM
1612
1613/*
c229828c
PM
1614 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1615 * only if it has been awhile since the last time we did so. Afterwards,
1616 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1617 */
f1f399d1 1618static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1619{
c0f4dfd4
PM
1620 bool cbs_ready = false;
1621 struct rcu_data *rdp;
c229828c 1622 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1623 struct rcu_node *rnp;
1624 struct rcu_state *rsp;
486e2593 1625
c229828c
PM
1626 /* Exit early if we advanced recently. */
1627 if (jiffies == rdtp->last_advance_all)
1628 return 0;
1629 rdtp->last_advance_all = jiffies;
1630
c0f4dfd4
PM
1631 for_each_rcu_flavor(rsp) {
1632 rdp = this_cpu_ptr(rsp->rda);
1633 rnp = rdp->mynode;
486e2593 1634
c0f4dfd4
PM
1635 /*
1636 * Don't bother checking unless a grace period has
1637 * completed since we last checked and there are
1638 * callbacks not yet ready to invoke.
1639 */
1640 if (rdp->completed != rnp->completed &&
1641 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1642 note_gp_changes(rsp, rdp);
486e2593 1643
c0f4dfd4
PM
1644 if (cpu_has_callbacks_ready_to_invoke(rdp))
1645 cbs_ready = true;
1646 }
1647 return cbs_ready;
486e2593
PM
1648}
1649
aa9b1630 1650/*
c0f4dfd4
PM
1651 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1652 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1653 * caller to set the timeout based on whether or not there are non-lazy
1654 * callbacks.
aa9b1630 1655 *
c0f4dfd4 1656 * The caller must have disabled interrupts.
aa9b1630 1657 */
ffa83fb5 1658#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1659int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1660{
1661 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1662
c0f4dfd4
PM
1663 /* Snapshot to detect later posting of non-lazy callback. */
1664 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1665
aa9b1630 1666 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1667 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1668 *dj = ULONG_MAX;
aa9b1630
PM
1669 return 0;
1670 }
c0f4dfd4
PM
1671
1672 /* Attempt to advance callbacks. */
1673 if (rcu_try_advance_all_cbs()) {
1674 /* Some ready to invoke, so initiate later invocation. */
1675 invoke_rcu_core();
aa9b1630
PM
1676 return 1;
1677 }
c0f4dfd4
PM
1678 rdtp->last_accelerate = jiffies;
1679
1680 /* Request timer delay depending on laziness, and round. */
6faf7283 1681 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1682 *dj = round_up(rcu_idle_gp_delay + jiffies,
1683 rcu_idle_gp_delay) - jiffies;
e84c48ae 1684 } else {
c0f4dfd4 1685 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1686 }
aa9b1630
PM
1687 return 0;
1688}
ffa83fb5 1689#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1690
21e52e15 1691/*
c0f4dfd4
PM
1692 * Prepare a CPU for idle from an RCU perspective. The first major task
1693 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1694 * The second major task is to check to see if a non-lazy callback has
1695 * arrived at a CPU that previously had only lazy callbacks. The third
1696 * major task is to accelerate (that is, assign grace-period numbers to)
1697 * any recently arrived callbacks.
aea1b35e
PM
1698 *
1699 * The caller must have disabled interrupts.
8bd93a2c 1700 */
aea1b35e 1701static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1702{
f1f399d1 1703#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1704 bool needwake;
c0f4dfd4 1705 struct rcu_data *rdp;
5955f7ee 1706 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1707 struct rcu_node *rnp;
1708 struct rcu_state *rsp;
9d2ad243
PM
1709 int tne;
1710
1711 /* Handle nohz enablement switches conservatively. */
d689fe22 1712 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1713 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1714 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1715 invoke_rcu_core(); /* force nohz to see update. */
1716 rdtp->tick_nohz_enabled_snap = tne;
1717 return;
1718 }
1719 if (!tne)
1720 return;
f511fc62 1721
c0f4dfd4 1722 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1723 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1724 return;
9a0c6fef 1725
c57afe80 1726 /*
c0f4dfd4
PM
1727 * If a non-lazy callback arrived at a CPU having only lazy
1728 * callbacks, invoke RCU core for the side-effect of recalculating
1729 * idle duration on re-entry to idle.
c57afe80 1730 */
c0f4dfd4
PM
1731 if (rdtp->all_lazy &&
1732 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1733 rdtp->all_lazy = false;
1734 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1735 invoke_rcu_core();
c57afe80
PM
1736 return;
1737 }
c57afe80 1738
3084f2f8 1739 /*
c0f4dfd4
PM
1740 * If we have not yet accelerated this jiffy, accelerate all
1741 * callbacks on this CPU.
3084f2f8 1742 */
c0f4dfd4 1743 if (rdtp->last_accelerate == jiffies)
aea1b35e 1744 return;
c0f4dfd4
PM
1745 rdtp->last_accelerate = jiffies;
1746 for_each_rcu_flavor(rsp) {
1747 rdp = per_cpu_ptr(rsp->rda, cpu);
1748 if (!*rdp->nxttail[RCU_DONE_TAIL])
1749 continue;
1750 rnp = rdp->mynode;
1751 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1752 smp_mb__after_unlock_lock();
48a7639c 1753 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1754 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1755 if (needwake)
1756 rcu_gp_kthread_wake(rsp);
77e38ed3 1757 }
f1f399d1 1758#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1759}
3084f2f8 1760
c0f4dfd4
PM
1761/*
1762 * Clean up for exit from idle. Attempt to advance callbacks based on
1763 * any grace periods that elapsed while the CPU was idle, and if any
1764 * callbacks are now ready to invoke, initiate invocation.
1765 */
1766static void rcu_cleanup_after_idle(int cpu)
1767{
f1f399d1 1768#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1769 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1770 return;
7a497c96
PM
1771 if (rcu_try_advance_all_cbs())
1772 invoke_rcu_core();
f1f399d1 1773#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1774}
1775
c57afe80 1776/*
98248a0e
PM
1777 * Keep a running count of the number of non-lazy callbacks posted
1778 * on this CPU. This running counter (which is never decremented) allows
1779 * rcu_prepare_for_idle() to detect when something out of the idle loop
1780 * posts a callback, even if an equal number of callbacks are invoked.
1781 * Of course, callbacks should only be posted from within a trace event
1782 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1783 */
1784static void rcu_idle_count_callbacks_posted(void)
1785{
5955f7ee 1786 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1787}
1788
b626c1b6
PM
1789/*
1790 * Data for flushing lazy RCU callbacks at OOM time.
1791 */
1792static atomic_t oom_callback_count;
1793static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1794
1795/*
1796 * RCU OOM callback -- decrement the outstanding count and deliver the
1797 * wake-up if we are the last one.
1798 */
1799static void rcu_oom_callback(struct rcu_head *rhp)
1800{
1801 if (atomic_dec_and_test(&oom_callback_count))
1802 wake_up(&oom_callback_wq);
1803}
1804
1805/*
1806 * Post an rcu_oom_notify callback on the current CPU if it has at
1807 * least one lazy callback. This will unnecessarily post callbacks
1808 * to CPUs that already have a non-lazy callback at the end of their
1809 * callback list, but this is an infrequent operation, so accept some
1810 * extra overhead to keep things simple.
1811 */
1812static void rcu_oom_notify_cpu(void *unused)
1813{
1814 struct rcu_state *rsp;
1815 struct rcu_data *rdp;
1816
1817 for_each_rcu_flavor(rsp) {
fa07a58f 1818 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1819 if (rdp->qlen_lazy != 0) {
1820 atomic_inc(&oom_callback_count);
1821 rsp->call(&rdp->oom_head, rcu_oom_callback);
1822 }
1823 }
1824}
1825
1826/*
1827 * If low on memory, ensure that each CPU has a non-lazy callback.
1828 * This will wake up CPUs that have only lazy callbacks, in turn
1829 * ensuring that they free up the corresponding memory in a timely manner.
1830 * Because an uncertain amount of memory will be freed in some uncertain
1831 * timeframe, we do not claim to have freed anything.
1832 */
1833static int rcu_oom_notify(struct notifier_block *self,
1834 unsigned long notused, void *nfreed)
1835{
1836 int cpu;
1837
1838 /* Wait for callbacks from earlier instance to complete. */
1839 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1840 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1841
1842 /*
1843 * Prevent premature wakeup: ensure that all increments happen
1844 * before there is a chance of the counter reaching zero.
1845 */
1846 atomic_set(&oom_callback_count, 1);
1847
1848 get_online_cpus();
1849 for_each_online_cpu(cpu) {
1850 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1851 cond_resched();
1852 }
1853 put_online_cpus();
1854
1855 /* Unconditionally decrement: no need to wake ourselves up. */
1856 atomic_dec(&oom_callback_count);
1857
1858 return NOTIFY_OK;
1859}
1860
1861static struct notifier_block rcu_oom_nb = {
1862 .notifier_call = rcu_oom_notify
1863};
1864
1865static int __init rcu_register_oom_notifier(void)
1866{
1867 register_oom_notifier(&rcu_oom_nb);
1868 return 0;
1869}
1870early_initcall(rcu_register_oom_notifier);
1871
8bd93a2c 1872#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1873
1874#ifdef CONFIG_RCU_CPU_STALL_INFO
1875
1876#ifdef CONFIG_RCU_FAST_NO_HZ
1877
1878static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1879{
5955f7ee 1880 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1881 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1882
c0f4dfd4
PM
1883 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1884 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1885 ulong2long(nlpd),
1886 rdtp->all_lazy ? 'L' : '.',
1887 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1888}
1889
1890#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1891
1892static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1893{
1c17e4d4 1894 *cp = '\0';
a858af28
PM
1895}
1896
1897#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1898
1899/* Initiate the stall-info list. */
1900static void print_cpu_stall_info_begin(void)
1901{
efc151c3 1902 pr_cont("\n");
a858af28
PM
1903}
1904
1905/*
1906 * Print out diagnostic information for the specified stalled CPU.
1907 *
1908 * If the specified CPU is aware of the current RCU grace period
1909 * (flavor specified by rsp), then print the number of scheduling
1910 * clock interrupts the CPU has taken during the time that it has
1911 * been aware. Otherwise, print the number of RCU grace periods
1912 * that this CPU is ignorant of, for example, "1" if the CPU was
1913 * aware of the previous grace period.
1914 *
1915 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1916 */
1917static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1918{
1919 char fast_no_hz[72];
1920 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1921 struct rcu_dynticks *rdtp = rdp->dynticks;
1922 char *ticks_title;
1923 unsigned long ticks_value;
1924
1925 if (rsp->gpnum == rdp->gpnum) {
1926 ticks_title = "ticks this GP";
1927 ticks_value = rdp->ticks_this_gp;
1928 } else {
1929 ticks_title = "GPs behind";
1930 ticks_value = rsp->gpnum - rdp->gpnum;
1931 }
1932 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1933 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1934 cpu, ticks_value, ticks_title,
1935 atomic_read(&rdtp->dynticks) & 0xfff,
1936 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1937 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1938 fast_no_hz);
1939}
1940
1941/* Terminate the stall-info list. */
1942static void print_cpu_stall_info_end(void)
1943{
efc151c3 1944 pr_err("\t");
a858af28
PM
1945}
1946
1947/* Zero ->ticks_this_gp for all flavors of RCU. */
1948static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1949{
1950 rdp->ticks_this_gp = 0;
6231069b 1951 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1952}
1953
1954/* Increment ->ticks_this_gp for all flavors of RCU. */
1955static void increment_cpu_stall_ticks(void)
1956{
115f7a7c
PM
1957 struct rcu_state *rsp;
1958
1959 for_each_rcu_flavor(rsp)
fa07a58f 1960 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1961}
1962
1963#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1964
1965static void print_cpu_stall_info_begin(void)
1966{
efc151c3 1967 pr_cont(" {");
a858af28
PM
1968}
1969
1970static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1971{
efc151c3 1972 pr_cont(" %d", cpu);
a858af28
PM
1973}
1974
1975static void print_cpu_stall_info_end(void)
1976{
efc151c3 1977 pr_cont("} ");
a858af28
PM
1978}
1979
1980static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1981{
1982}
1983
1984static void increment_cpu_stall_ticks(void)
1985{
1986}
1987
1988#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1989
1990#ifdef CONFIG_RCU_NOCB_CPU
1991
1992/*
1993 * Offload callback processing from the boot-time-specified set of CPUs
1994 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1995 * kthread created that pulls the callbacks from the corresponding CPU,
1996 * waits for a grace period to elapse, and invokes the callbacks.
1997 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1998 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1999 * has been specified, in which case each kthread actively polls its
2000 * CPU. (Which isn't so great for energy efficiency, but which does
2001 * reduce RCU's overhead on that CPU.)
2002 *
2003 * This is intended to be used in conjunction with Frederic Weisbecker's
2004 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
2005 * running CPU-bound user-mode computations.
2006 *
2007 * Offloading of callback processing could also in theory be used as
2008 * an energy-efficiency measure because CPUs with no RCU callbacks
2009 * queued are more aggressive about entering dyntick-idle mode.
2010 */
2011
2012
2013/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
2014static int __init rcu_nocb_setup(char *str)
2015{
2016 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
2017 have_rcu_nocb_mask = true;
2018 cpulist_parse(str, rcu_nocb_mask);
2019 return 1;
2020}
2021__setup("rcu_nocbs=", rcu_nocb_setup);
2022
1b0048a4
PG
2023static int __init parse_rcu_nocb_poll(char *arg)
2024{
2025 rcu_nocb_poll = 1;
2026 return 0;
2027}
2028early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2029
dae6e64d 2030/*
0446be48
PM
2031 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2032 * grace period.
dae6e64d 2033 */
0446be48 2034static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2035{
0446be48 2036 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2037}
2038
2039/*
8b425aa8 2040 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2041 * based on the sum of those of all rcu_node structures. This does
2042 * double-count the root rcu_node structure's requests, but this
2043 * is necessary to handle the possibility of a rcu_nocb_kthread()
2044 * having awakened during the time that the rcu_node structures
2045 * were being updated for the end of the previous grace period.
34ed6246 2046 */
dae6e64d
PM
2047static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2048{
8b425aa8 2049 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2050}
2051
2052static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2053{
dae6e64d
PM
2054 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2055 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2056}
2057
2f33b512 2058#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2059/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2060bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2061{
2062 if (have_rcu_nocb_mask)
2063 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2064 return false;
2065}
2f33b512 2066#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a
PM
2067
2068/*
2069 * Enqueue the specified string of rcu_head structures onto the specified
2070 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2071 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2072 * counts are supplied by rhcount and rhcount_lazy.
2073 *
2074 * If warranted, also wake up the kthread servicing this CPUs queues.
2075 */
2076static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2077 struct rcu_head *rhp,
2078 struct rcu_head **rhtp,
96d3fd0d
PM
2079 int rhcount, int rhcount_lazy,
2080 unsigned long flags)
3fbfbf7a
PM
2081{
2082 int len;
2083 struct rcu_head **old_rhpp;
2084 struct task_struct *t;
2085
2086 /* Enqueue the callback on the nocb list and update counts. */
2087 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2088 ACCESS_ONCE(*old_rhpp) = rhp;
2089 atomic_long_add(rhcount, &rdp->nocb_q_count);
2090 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
2091
2092 /* If we are not being polled and there is a kthread, awaken it ... */
2093 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2094 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2095 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2096 TPS("WakeNotPoll"));
3fbfbf7a 2097 return;
9261dd0d 2098 }
3fbfbf7a
PM
2099 len = atomic_long_read(&rdp->nocb_q_count);
2100 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d
PM
2101 if (!irqs_disabled_flags(flags)) {
2102 wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
2103 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2104 TPS("WakeEmpty"));
2105 } else {
2106 rdp->nocb_defer_wakeup = true;
2107 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2108 TPS("WakeEmptyIsDeferred"));
2109 }
3fbfbf7a
PM
2110 rdp->qlen_last_fqs_check = 0;
2111 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
2112 wake_up_process(t); /* ... or if many callbacks queued. */
2113 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2114 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
2115 } else {
2116 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2117 }
2118 return;
2119}
2120
2121/*
2122 * This is a helper for __call_rcu(), which invokes this when the normal
2123 * callback queue is inoperable. If this is not a no-CBs CPU, this
2124 * function returns failure back to __call_rcu(), which can complain
2125 * appropriately.
2126 *
2127 * Otherwise, this function queues the callback where the corresponding
2128 * "rcuo" kthread can find it.
2129 */
2130static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2131 bool lazy, unsigned long flags)
3fbfbf7a
PM
2132{
2133
d1e43fa5 2134 if (!rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a 2135 return 0;
96d3fd0d 2136 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2137 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2138 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2139 (unsigned long)rhp->func,
756cbf6b
PM
2140 -atomic_long_read(&rdp->nocb_q_count_lazy),
2141 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2142 else
2143 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2144 -atomic_long_read(&rdp->nocb_q_count_lazy),
2145 -atomic_long_read(&rdp->nocb_q_count));
3fbfbf7a
PM
2146 return 1;
2147}
2148
2149/*
2150 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2151 * not a no-CBs CPU.
2152 */
2153static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2154 struct rcu_data *rdp,
2155 unsigned long flags)
3fbfbf7a
PM
2156{
2157 long ql = rsp->qlen;
2158 long qll = rsp->qlen_lazy;
2159
2160 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2161 if (!rcu_is_nocb_cpu(smp_processor_id()))
3fbfbf7a
PM
2162 return 0;
2163 rsp->qlen = 0;
2164 rsp->qlen_lazy = 0;
2165
2166 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2167 if (rsp->orphan_donelist != NULL) {
2168 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2169 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2170 ql = qll = 0;
2171 rsp->orphan_donelist = NULL;
2172 rsp->orphan_donetail = &rsp->orphan_donelist;
2173 }
2174 if (rsp->orphan_nxtlist != NULL) {
2175 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2176 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2177 ql = qll = 0;
2178 rsp->orphan_nxtlist = NULL;
2179 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2180 }
2181 return 1;
2182}
2183
2184/*
34ed6246
PM
2185 * If necessary, kick off a new grace period, and either way wait
2186 * for a subsequent grace period to complete.
3fbfbf7a 2187 */
34ed6246 2188static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2189{
34ed6246 2190 unsigned long c;
dae6e64d 2191 bool d;
34ed6246 2192 unsigned long flags;
48a7639c 2193 bool needwake;
34ed6246
PM
2194 struct rcu_node *rnp = rdp->mynode;
2195
2196 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2197 smp_mb__after_unlock_lock();
48a7639c 2198 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2199 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2200 if (needwake)
2201 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2202
2203 /*
34ed6246
PM
2204 * Wait for the grace period. Do so interruptibly to avoid messing
2205 * up the load average.
3fbfbf7a 2206 */
f7f7bac9 2207 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2208 for (;;) {
dae6e64d
PM
2209 wait_event_interruptible(
2210 rnp->nocb_gp_wq[c & 0x1],
2211 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2212 if (likely(d))
34ed6246 2213 break;
dae6e64d 2214 flush_signals(current);
f7f7bac9 2215 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2216 }
f7f7bac9 2217 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2218 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2219}
2220
2221/*
2222 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2223 * callbacks queued by the corresponding no-CBs CPU.
2224 */
2225static int rcu_nocb_kthread(void *arg)
2226{
2227 int c, cl;
69a79bb1 2228 bool firsttime = 1;
3fbfbf7a
PM
2229 struct rcu_head *list;
2230 struct rcu_head *next;
2231 struct rcu_head **tail;
2232 struct rcu_data *rdp = arg;
2233
2234 /* Each pass through this loop invokes one batch of callbacks */
2235 for (;;) {
2236 /* If not polling, wait for next batch of callbacks. */
69a79bb1
PM
2237 if (!rcu_nocb_poll) {
2238 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2239 TPS("Sleep"));
353af9c9 2240 wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
78e4bc34 2241 /* Memory barrier provide by xchg() below. */
69a79bb1
PM
2242 } else if (firsttime) {
2243 firsttime = 0;
2244 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2245 TPS("Poll"));
2246 }
3fbfbf7a
PM
2247 list = ACCESS_ONCE(rdp->nocb_head);
2248 if (!list) {
9261dd0d
PM
2249 if (!rcu_nocb_poll)
2250 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2251 TPS("WokeEmpty"));
3fbfbf7a 2252 schedule_timeout_interruptible(1);
353af9c9 2253 flush_signals(current);
3fbfbf7a
PM
2254 continue;
2255 }
69a79bb1 2256 firsttime = 1;
9261dd0d
PM
2257 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2258 TPS("WokeNonEmpty"));
3fbfbf7a
PM
2259
2260 /*
2261 * Extract queued callbacks, update counts, and wait
2262 * for a grace period to elapse.
2263 */
2264 ACCESS_ONCE(rdp->nocb_head) = NULL;
2265 tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2266 c = atomic_long_xchg(&rdp->nocb_q_count, 0);
2267 cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2268 ACCESS_ONCE(rdp->nocb_p_count) += c;
2269 ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
34ed6246 2270 rcu_nocb_wait_gp(rdp);
3fbfbf7a
PM
2271
2272 /* Each pass through the following loop invokes a callback. */
2273 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2274 c = cl = 0;
2275 while (list) {
2276 next = list->next;
2277 /* Wait for enqueuing to complete, if needed. */
2278 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2279 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2280 TPS("WaitQueue"));
3fbfbf7a 2281 schedule_timeout_interruptible(1);
69a79bb1
PM
2282 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2283 TPS("WokeQueue"));
3fbfbf7a
PM
2284 next = list->next;
2285 }
2286 debug_rcu_head_unqueue(list);
2287 local_bh_disable();
2288 if (__rcu_reclaim(rdp->rsp->name, list))
2289 cl++;
2290 c++;
2291 local_bh_enable();
2292 list = next;
2293 }
2294 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2295 ACCESS_ONCE(rdp->nocb_p_count) -= c;
2296 ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
c635a4e1 2297 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2298 }
2299 return 0;
2300}
2301
96d3fd0d
PM
2302/* Is a deferred wakeup of rcu_nocb_kthread() required? */
2303static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2304{
2305 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2306}
2307
2308/* Do a deferred wakeup of rcu_nocb_kthread(). */
2309static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2310{
2311 if (!rcu_nocb_need_deferred_wakeup(rdp))
2312 return;
2313 ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
2314 wake_up(&rdp->nocb_wq);
2315 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
2316}
2317
3fbfbf7a
PM
2318/* Initialize per-rcu_data variables for no-CBs CPUs. */
2319static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2320{
2321 rdp->nocb_tail = &rdp->nocb_head;
2322 init_waitqueue_head(&rdp->nocb_wq);
2323}
2324
2325/* Create a kthread for each RCU flavor for each no-CBs CPU. */
2326static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2327{
2328 int cpu;
2329 struct rcu_data *rdp;
2330 struct task_struct *t;
2331
2332 if (rcu_nocb_mask == NULL)
2333 return;
2334 for_each_cpu(cpu, rcu_nocb_mask) {
2335 rdp = per_cpu_ptr(rsp->rda, cpu);
a4889858
PM
2336 t = kthread_run(rcu_nocb_kthread, rdp,
2337 "rcuo%c/%d", rsp->abbr, cpu);
3fbfbf7a
PM
2338 BUG_ON(IS_ERR(t));
2339 ACCESS_ONCE(rdp->nocb_kthread) = t;
2340 }
2341}
2342
2343/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2344static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a
PM
2345{
2346 if (rcu_nocb_mask == NULL ||
2347 !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
34ed6246 2348 return false;
3fbfbf7a 2349 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2350 return true;
3fbfbf7a
PM
2351}
2352
34ed6246
PM
2353#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2354
0446be48 2355static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2356{
3fbfbf7a
PM
2357}
2358
dae6e64d
PM
2359static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2360{
2361}
2362
2363static void rcu_init_one_nocb(struct rcu_node *rnp)
2364{
2365}
3fbfbf7a 2366
3fbfbf7a 2367static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2368 bool lazy, unsigned long flags)
3fbfbf7a
PM
2369{
2370 return 0;
2371}
2372
2373static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2374 struct rcu_data *rdp,
2375 unsigned long flags)
3fbfbf7a
PM
2376{
2377 return 0;
2378}
2379
3fbfbf7a
PM
2380static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2381{
2382}
2383
96d3fd0d
PM
2384static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2385{
2386 return false;
2387}
2388
2389static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2390{
2391}
2392
3fbfbf7a
PM
2393static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
2394{
2395}
2396
34ed6246 2397static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2398{
34ed6246 2399 return false;
3fbfbf7a
PM
2400}
2401
2402#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2403
2404/*
2405 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2406 * arbitrarily long period of time with the scheduling-clock tick turned
2407 * off. RCU will be paying attention to this CPU because it is in the
2408 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2409 * machine because the scheduling-clock tick has been disabled. Therefore,
2410 * if an adaptive-ticks CPU is failing to respond to the current grace
2411 * period and has not be idle from an RCU perspective, kick it.
2412 */
4a81e832 2413static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2414{
2415#ifdef CONFIG_NO_HZ_FULL
2416 if (tick_nohz_full_cpu(cpu))
2417 smp_send_reschedule(cpu);
2418#endif /* #ifdef CONFIG_NO_HZ_FULL */
2419}
2333210b
PM
2420
2421
2422#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2423
d4bd54fb
PM
2424/*
2425 * Define RCU flavor that holds sysidle state. This needs to be the
2426 * most active flavor of RCU.
2427 */
2428#ifdef CONFIG_PREEMPT_RCU
0edd1b17 2429static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
d4bd54fb 2430#else /* #ifdef CONFIG_PREEMPT_RCU */
0edd1b17 2431static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
d4bd54fb
PM
2432#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
2433
0edd1b17 2434static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2435#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2436#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2437#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2438#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2439#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2440
eb348b89
PM
2441/*
2442 * Invoked to note exit from irq or task transition to idle. Note that
2443 * usermode execution does -not- count as idle here! After all, we want
2444 * to detect full-system idle states, not RCU quiescent states and grace
2445 * periods. The caller must have disabled interrupts.
2446 */
2447static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2448{
2449 unsigned long j;
2450
2451 /* Adjust nesting, check for fully idle. */
2452 if (irq) {
2453 rdtp->dynticks_idle_nesting--;
2454 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2455 if (rdtp->dynticks_idle_nesting != 0)
2456 return; /* Still not fully idle. */
2457 } else {
2458 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2459 DYNTICK_TASK_NEST_VALUE) {
2460 rdtp->dynticks_idle_nesting = 0;
2461 } else {
2462 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2463 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2464 return; /* Still not fully idle. */
2465 }
2466 }
2467
2468 /* Record start of fully idle period. */
2469 j = jiffies;
2470 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2471 smp_mb__before_atomic();
eb348b89 2472 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2473 smp_mb__after_atomic();
eb348b89
PM
2474 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2475}
2476
0edd1b17
PM
2477/*
2478 * Unconditionally force exit from full system-idle state. This is
2479 * invoked when a normal CPU exits idle, but must be called separately
2480 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2481 * is that the timekeeping CPU is permitted to take scheduling-clock
2482 * interrupts while the system is in system-idle state, and of course
2483 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2484 * interrupt from any other type of interrupt.
2485 */
2486void rcu_sysidle_force_exit(void)
2487{
2488 int oldstate = ACCESS_ONCE(full_sysidle_state);
2489 int newoldstate;
2490
2491 /*
2492 * Each pass through the following loop attempts to exit full
2493 * system-idle state. If contention proves to be a problem,
2494 * a trylock-based contention tree could be used here.
2495 */
2496 while (oldstate > RCU_SYSIDLE_SHORT) {
2497 newoldstate = cmpxchg(&full_sysidle_state,
2498 oldstate, RCU_SYSIDLE_NOT);
2499 if (oldstate == newoldstate &&
2500 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2501 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2502 return; /* We cleared it, done! */
2503 }
2504 oldstate = newoldstate;
2505 }
2506 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2507}
2508
eb348b89
PM
2509/*
2510 * Invoked to note entry to irq or task transition from idle. Note that
2511 * usermode execution does -not- count as idle here! The caller must
2512 * have disabled interrupts.
2513 */
2514static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2515{
2516 /* Adjust nesting, check for already non-idle. */
2517 if (irq) {
2518 rdtp->dynticks_idle_nesting++;
2519 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2520 if (rdtp->dynticks_idle_nesting != 1)
2521 return; /* Already non-idle. */
2522 } else {
2523 /*
2524 * Allow for irq misnesting. Yes, it really is possible
2525 * to enter an irq handler then never leave it, and maybe
2526 * also vice versa. Handle both possibilities.
2527 */
2528 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2529 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2530 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2531 return; /* Already non-idle. */
2532 } else {
2533 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2534 }
2535 }
2536
2537 /* Record end of idle period. */
4e857c58 2538 smp_mb__before_atomic();
eb348b89 2539 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2540 smp_mb__after_atomic();
eb348b89 2541 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2542
2543 /*
2544 * If we are the timekeeping CPU, we are permitted to be non-idle
2545 * during a system-idle state. This must be the case, because
2546 * the timekeeping CPU has to take scheduling-clock interrupts
2547 * during the time that the system is transitioning to full
2548 * system-idle state. This means that the timekeeping CPU must
2549 * invoke rcu_sysidle_force_exit() directly if it does anything
2550 * more than take a scheduling-clock interrupt.
2551 */
2552 if (smp_processor_id() == tick_do_timer_cpu)
2553 return;
2554
2555 /* Update system-idle state: We are clearly no longer fully idle! */
2556 rcu_sysidle_force_exit();
2557}
2558
2559/*
2560 * Check to see if the current CPU is idle. Note that usermode execution
2561 * does not count as idle. The caller must have disabled interrupts.
2562 */
2563static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2564 unsigned long *maxj)
2565{
2566 int cur;
2567 unsigned long j;
2568 struct rcu_dynticks *rdtp = rdp->dynticks;
2569
2570 /*
2571 * If some other CPU has already reported non-idle, if this is
2572 * not the flavor of RCU that tracks sysidle state, or if this
2573 * is an offline or the timekeeping CPU, nothing to do.
2574 */
2575 if (!*isidle || rdp->rsp != rcu_sysidle_state ||
2576 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2577 return;
eb75767b
PM
2578 if (rcu_gp_in_progress(rdp->rsp))
2579 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2580
2581 /* Pick up current idle and NMI-nesting counter and check. */
2582 cur = atomic_read(&rdtp->dynticks_idle);
2583 if (cur & 0x1) {
2584 *isidle = false; /* We are not idle! */
2585 return;
2586 }
2587 smp_mb(); /* Read counters before timestamps. */
2588
2589 /* Pick up timestamps. */
2590 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2591 /* If this CPU entered idle more recently, update maxj timestamp. */
2592 if (ULONG_CMP_LT(*maxj, j))
2593 *maxj = j;
2594}
2595
2596/*
2597 * Is this the flavor of RCU that is handling full-system idle?
2598 */
2599static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2600{
2601 return rsp == rcu_sysidle_state;
2602}
2603
2604/*
2605 * Return a delay in jiffies based on the number of CPUs, rcu_node
2606 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2607 * systems more time to transition to full-idle state in order to
2608 * avoid the cache thrashing that otherwise occur on the state variable.
2609 * Really small systems (less than a couple of tens of CPUs) should
2610 * instead use a single global atomically incremented counter, and later
2611 * versions of this will automatically reconfigure themselves accordingly.
2612 */
2613static unsigned long rcu_sysidle_delay(void)
2614{
2615 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2616 return 0;
2617 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2618}
2619
2620/*
2621 * Advance the full-system-idle state. This is invoked when all of
2622 * the non-timekeeping CPUs are idle.
2623 */
2624static void rcu_sysidle(unsigned long j)
2625{
2626 /* Check the current state. */
2627 switch (ACCESS_ONCE(full_sysidle_state)) {
2628 case RCU_SYSIDLE_NOT:
2629
2630 /* First time all are idle, so note a short idle period. */
2631 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2632 break;
2633
2634 case RCU_SYSIDLE_SHORT:
2635
2636 /*
2637 * Idle for a bit, time to advance to next state?
2638 * cmpxchg failure means race with non-idle, let them win.
2639 */
2640 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2641 (void)cmpxchg(&full_sysidle_state,
2642 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2643 break;
2644
2645 case RCU_SYSIDLE_LONG:
2646
2647 /*
2648 * Do an additional check pass before advancing to full.
2649 * cmpxchg failure means race with non-idle, let them win.
2650 */
2651 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2652 (void)cmpxchg(&full_sysidle_state,
2653 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2654 break;
2655
2656 default:
2657 break;
2658 }
2659}
2660
2661/*
2662 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2663 * back to the beginning.
2664 */
2665static void rcu_sysidle_cancel(void)
2666{
2667 smp_mb();
becb41bf
PM
2668 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2669 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2670}
2671
2672/*
2673 * Update the sysidle state based on the results of a force-quiescent-state
2674 * scan of the CPUs' dyntick-idle state.
2675 */
2676static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2677 unsigned long maxj, bool gpkt)
2678{
2679 if (rsp != rcu_sysidle_state)
2680 return; /* Wrong flavor, ignore. */
2681 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2682 return; /* Running state machine from timekeeping CPU. */
2683 if (isidle)
2684 rcu_sysidle(maxj); /* More idle! */
2685 else
2686 rcu_sysidle_cancel(); /* Idle is over. */
2687}
2688
2689/*
2690 * Wrapper for rcu_sysidle_report() when called from the grace-period
2691 * kthread's context.
2692 */
2693static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2694 unsigned long maxj)
2695{
2696 rcu_sysidle_report(rsp, isidle, maxj, true);
2697}
2698
2699/* Callback and function for forcing an RCU grace period. */
2700struct rcu_sysidle_head {
2701 struct rcu_head rh;
2702 int inuse;
2703};
2704
2705static void rcu_sysidle_cb(struct rcu_head *rhp)
2706{
2707 struct rcu_sysidle_head *rshp;
2708
2709 /*
2710 * The following memory barrier is needed to replace the
2711 * memory barriers that would normally be in the memory
2712 * allocator.
2713 */
2714 smp_mb(); /* grace period precedes setting inuse. */
2715
2716 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2717 ACCESS_ONCE(rshp->inuse) = 0;
2718}
2719
2720/*
2721 * Check to see if the system is fully idle, other than the timekeeping CPU.
2722 * The caller must have disabled interrupts.
2723 */
2724bool rcu_sys_is_idle(void)
2725{
2726 static struct rcu_sysidle_head rsh;
2727 int rss = ACCESS_ONCE(full_sysidle_state);
2728
2729 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2730 return false;
2731
2732 /* Handle small-system case by doing a full scan of CPUs. */
2733 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2734 int oldrss = rss - 1;
2735
2736 /*
2737 * One pass to advance to each state up to _FULL.
2738 * Give up if any pass fails to advance the state.
2739 */
2740 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2741 int cpu;
2742 bool isidle = true;
2743 unsigned long maxj = jiffies - ULONG_MAX / 4;
2744 struct rcu_data *rdp;
2745
2746 /* Scan all the CPUs looking for nonidle CPUs. */
2747 for_each_possible_cpu(cpu) {
2748 rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
2749 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2750 if (!isidle)
2751 break;
2752 }
2753 rcu_sysidle_report(rcu_sysidle_state,
2754 isidle, maxj, false);
2755 oldrss = rss;
2756 rss = ACCESS_ONCE(full_sysidle_state);
2757 }
2758 }
2759
2760 /* If this is the first observation of an idle period, record it. */
2761 if (rss == RCU_SYSIDLE_FULL) {
2762 rss = cmpxchg(&full_sysidle_state,
2763 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2764 return rss == RCU_SYSIDLE_FULL;
2765 }
2766
2767 smp_mb(); /* ensure rss load happens before later caller actions. */
2768
2769 /* If already fully idle, tell the caller (in case of races). */
2770 if (rss == RCU_SYSIDLE_FULL_NOTED)
2771 return true;
2772
2773 /*
2774 * If we aren't there yet, and a grace period is not in flight,
2775 * initiate a grace period. Either way, tell the caller that
2776 * we are not there yet. We use an xchg() rather than an assignment
2777 * to make up for the memory barriers that would otherwise be
2778 * provided by the memory allocator.
2779 */
2780 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
2781 !rcu_gp_in_progress(rcu_sysidle_state) &&
2782 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
2783 call_rcu(&rsh.rh, rcu_sysidle_cb);
2784 return false;
eb348b89
PM
2785}
2786
2333210b
PM
2787/*
2788 * Initialize dynticks sysidle state for CPUs coming online.
2789 */
2790static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2791{
2792 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
2793}
2794
2795#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
2796
eb348b89
PM
2797static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2798{
2799}
2800
2801static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2802{
2803}
2804
0edd1b17
PM
2805static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2806 unsigned long *maxj)
2807{
2808}
2809
2810static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2811{
2812 return false;
2813}
2814
2815static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2816 unsigned long maxj)
2817{
2818}
2819
2333210b
PM
2820static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
2821{
2822}
2823
2824#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
2825
2826/*
2827 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2828 * grace-period kthread will do force_quiescent_state() processing?
2829 * The idea is to avoid waking up RCU core processing on such a
2830 * CPU unless the grace period has extended for too long.
2831 *
2832 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 2833 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
2834 */
2835static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2836{
2837#ifdef CONFIG_NO_HZ_FULL
2838 if (tick_nohz_full_cpu(smp_processor_id()) &&
2839 (!rcu_gp_in_progress(rsp) ||
2840 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
2841 return 1;
2842#endif /* #ifdef CONFIG_NO_HZ_FULL */
2843 return 0;
2844}
5057f55e
PM
2845
2846/*
2847 * Bind the grace-period kthread for the sysidle flavor of RCU to the
2848 * timekeeping CPU.
2849 */
2850static void rcu_bind_gp_kthread(void)
2851{
2852#ifdef CONFIG_NO_HZ_FULL
4da117cf 2853 int cpu = tick_do_timer_cpu;
5057f55e
PM
2854
2855 if (cpu < 0 || cpu >= nr_cpu_ids)
2856 return;
2857 if (raw_smp_processor_id() != cpu)
2858 set_cpus_allowed_ptr(current, cpumask_of(cpu));
2859#endif /* #ifdef CONFIG_NO_HZ_FULL */
2860}