]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree_plugin.h
rcu: Improve diagnostics for blocked critical sections in irq
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba 33#ifdef CONFIG_RCU_BOOST
61cfd097 34
abaa93d9 35#include "../locking/rtmutex_common.h"
21871d7e 36
61cfd097
PM
37/*
38 * Control variables for per-CPU and per-rcu_node kthreads. These
39 * handle all flavors of RCU.
40 */
41static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
42DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
43DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
44DEFINE_PER_CPU(char, rcu_cpu_has_work);
45
21871d7e 46#endif /* #ifdef CONFIG_RCU_BOOST */
5b61b0ba 47
3fbfbf7a
PM
48#ifdef CONFIG_RCU_NOCB_CPU
49static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
50static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 51static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
52#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
53
26845c28
PM
54/*
55 * Check the RCU kernel configuration parameters and print informative
56 * messages about anything out of the ordinary. If you like #ifdef, you
57 * will love this function.
58 */
59static void __init rcu_bootup_announce_oddness(void)
60{
61#ifdef CONFIG_RCU_TRACE
efc151c3 62 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
63#endif
64#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 65 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
66 CONFIG_RCU_FANOUT);
67#endif
68#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 69 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
70#endif
71#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 72 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
73#endif
74#ifdef CONFIG_PROVE_RCU
efc151c3 75 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
76#endif
77#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 78 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 79#endif
a858af28 80#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 81 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
82#endif
83#if NUM_RCU_LVL_4 != 0
efc151c3 84 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 85#endif
f885b7f2 86 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 87 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 88 if (nr_cpu_ids != NR_CPUS)
efc151c3 89 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
21871d7e
CW
90#ifdef CONFIG_RCU_BOOST
91 pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
92#endif
26845c28
PM
93}
94
28f6569a 95#ifdef CONFIG_PREEMPT_RCU
f41d911f 96
a41bfeb2 97RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 98static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 99
d9a3da06 100static int rcu_preempted_readers_exp(struct rcu_node *rnp);
d19fb8d1
PM
101static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
102 bool wake);
d9a3da06 103
f41d911f
PM
104/*
105 * Tell them what RCU they are running.
106 */
0e0fc1c2 107static void __init rcu_bootup_announce(void)
f41d911f 108{
efc151c3 109 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 110 rcu_bootup_announce_oddness();
f41d911f
PM
111}
112
f41d911f 113/*
6cc68793 114 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
115 * that this just means that the task currently running on the CPU is
116 * not in a quiescent state. There might be any number of tasks blocked
117 * while in an RCU read-side critical section.
25502a6c 118 *
1d082fd0
PM
119 * As with the other rcu_*_qs() functions, callers to this function
120 * must disable preemption.
f41d911f 121 */
284a8c93 122static void rcu_preempt_qs(void)
f41d911f 123{
284a8c93
PM
124 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
125 trace_rcu_grace_period(TPS("rcu_preempt"),
126 __this_cpu_read(rcu_preempt_data.gpnum),
127 TPS("cpuqs"));
128 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
129 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
130 current->rcu_read_unlock_special.b.need_qs = false;
131 }
f41d911f
PM
132}
133
134/*
c3422bea
PM
135 * We have entered the scheduler, and the current task might soon be
136 * context-switched away from. If this task is in an RCU read-side
137 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
138 * record that fact, so we enqueue the task on the blkd_tasks list.
139 * The task will dequeue itself when it exits the outermost enclosing
140 * RCU read-side critical section. Therefore, the current grace period
141 * cannot be permitted to complete until the blkd_tasks list entries
142 * predating the current grace period drain, in other words, until
143 * rnp->gp_tasks becomes NULL.
c3422bea
PM
144 *
145 * Caller must disable preemption.
f41d911f 146 */
38200cf2 147static void rcu_preempt_note_context_switch(void)
f41d911f
PM
148{
149 struct task_struct *t = current;
c3422bea 150 unsigned long flags;
f41d911f
PM
151 struct rcu_data *rdp;
152 struct rcu_node *rnp;
153
10f39bb1 154 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 155 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
156
157 /* Possibly blocking in an RCU read-side critical section. */
38200cf2 158 rdp = this_cpu_ptr(rcu_preempt_state.rda);
f41d911f 159 rnp = rdp->mynode;
1304afb2 160 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 161 smp_mb__after_unlock_lock();
1d082fd0 162 t->rcu_read_unlock_special.b.blocked = true;
86848966 163 t->rcu_blocked_node = rnp;
f41d911f
PM
164
165 /*
166 * If this CPU has already checked in, then this task
167 * will hold up the next grace period rather than the
168 * current grace period. Queue the task accordingly.
169 * If the task is queued for the current grace period
170 * (i.e., this CPU has not yet passed through a quiescent
171 * state for the current grace period), then as long
172 * as that task remains queued, the current grace period
12f5f524
PM
173 * cannot end. Note that there is some uncertainty as
174 * to exactly when the current grace period started.
175 * We take a conservative approach, which can result
176 * in unnecessarily waiting on tasks that started very
177 * slightly after the current grace period began. C'est
178 * la vie!!!
b0e165c0
PM
179 *
180 * But first, note that the current CPU must still be
181 * on line!
f41d911f 182 */
b0e165c0 183 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 184 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
185 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
186 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
187 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
188#ifdef CONFIG_RCU_BOOST
189 if (rnp->boost_tasks != NULL)
190 rnp->boost_tasks = rnp->gp_tasks;
191#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
192 } else {
193 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
194 if (rnp->qsmask & rdp->grpmask)
195 rnp->gp_tasks = &t->rcu_node_entry;
196 }
d4c08f2a
PM
197 trace_rcu_preempt_task(rdp->rsp->name,
198 t->pid,
199 (rnp->qsmask & rdp->grpmask)
200 ? rnp->gpnum
201 : rnp->gpnum + 1);
1304afb2 202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 203 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 204 t->rcu_read_unlock_special.s) {
10f39bb1
PM
205
206 /*
207 * Complete exit from RCU read-side critical section on
208 * behalf of preempted instance of __rcu_read_unlock().
209 */
210 rcu_read_unlock_special(t);
f41d911f
PM
211 }
212
213 /*
214 * Either we were not in an RCU read-side critical section to
215 * begin with, or we have now recorded that critical section
216 * globally. Either way, we can now note a quiescent state
217 * for this CPU. Again, if we were in an RCU read-side critical
218 * section, and if that critical section was blocking the current
219 * grace period, then the fact that the task has been enqueued
220 * means that we continue to block the current grace period.
221 */
284a8c93 222 rcu_preempt_qs();
f41d911f
PM
223}
224
fc2219d4
PM
225/*
226 * Check for preempted RCU readers blocking the current grace period
227 * for the specified rcu_node structure. If the caller needs a reliable
228 * answer, it must hold the rcu_node's ->lock.
229 */
27f4d280 230static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 231{
12f5f524 232 return rnp->gp_tasks != NULL;
fc2219d4
PM
233}
234
b668c9cf
PM
235/*
236 * Record a quiescent state for all tasks that were previously queued
237 * on the specified rcu_node structure and that were blocking the current
238 * RCU grace period. The caller must hold the specified rnp->lock with
239 * irqs disabled, and this lock is released upon return, but irqs remain
240 * disabled.
241 */
d3f6bad3 242static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
243 __releases(rnp->lock)
244{
245 unsigned long mask;
246 struct rcu_node *rnp_p;
247
27f4d280 248 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 249 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
250 return; /* Still need more quiescent states! */
251 }
252
253 rnp_p = rnp->parent;
254 if (rnp_p == NULL) {
255 /*
256 * Either there is only one rcu_node in the tree,
257 * or tasks were kicked up to root rcu_node due to
258 * CPUs going offline.
259 */
d3f6bad3 260 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
261 return;
262 }
263
264 /* Report up the rest of the hierarchy. */
265 mask = rnp->grpmask;
1304afb2
PM
266 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
267 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 268 smp_mb__after_unlock_lock();
d3f6bad3 269 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
270}
271
12f5f524
PM
272/*
273 * Advance a ->blkd_tasks-list pointer to the next entry, instead
274 * returning NULL if at the end of the list.
275 */
276static struct list_head *rcu_next_node_entry(struct task_struct *t,
277 struct rcu_node *rnp)
278{
279 struct list_head *np;
280
281 np = t->rcu_node_entry.next;
282 if (np == &rnp->blkd_tasks)
283 np = NULL;
284 return np;
285}
286
8af3a5e7
PM
287/*
288 * Return true if the specified rcu_node structure has tasks that were
289 * preempted within an RCU read-side critical section.
290 */
291static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
292{
293 return !list_empty(&rnp->blkd_tasks);
294}
295
b668c9cf
PM
296/*
297 * Handle special cases during rcu_read_unlock(), such as needing to
298 * notify RCU core processing or task having blocked during the RCU
299 * read-side critical section.
300 */
2a3fa843 301void rcu_read_unlock_special(struct task_struct *t)
f41d911f 302{
b6a932d1
PM
303 bool empty;
304 bool empty_exp;
305 bool empty_norm;
306 bool empty_exp_now;
f41d911f 307 unsigned long flags;
12f5f524 308 struct list_head *np;
82e78d80 309#ifdef CONFIG_RCU_BOOST
abaa93d9 310 bool drop_boost_mutex = false;
82e78d80 311#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 312 struct rcu_node *rnp;
1d082fd0 313 union rcu_special special;
f41d911f
PM
314
315 /* NMI handlers cannot block and cannot safely manipulate state. */
316 if (in_nmi())
317 return;
318
319 local_irq_save(flags);
320
321 /*
322 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
323 * let it know that we have done so. Because irqs are disabled,
324 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
325 */
326 special = t->rcu_read_unlock_special;
1d082fd0 327 if (special.b.need_qs) {
284a8c93 328 rcu_preempt_qs();
c0135d07 329 t->rcu_read_unlock_special.b.need_qs = false;
1d082fd0 330 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
331 local_irq_restore(flags);
332 return;
333 }
f41d911f
PM
334 }
335
79a62f95 336 /* Hardware IRQ handlers cannot block, complain if they get here. */
d24209bb
PM
337 if (in_irq() || in_serving_softirq()) {
338 lockdep_rcu_suspicious(__FILE__, __LINE__,
339 "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
340 pr_alert("->rcu_read_unlock_special: %#x (b: %d, nq: %d)\n",
341 t->rcu_read_unlock_special.s,
342 t->rcu_read_unlock_special.b.blocked,
343 t->rcu_read_unlock_special.b.need_qs);
f41d911f
PM
344 local_irq_restore(flags);
345 return;
346 }
347
348 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
349 if (special.b.blocked) {
350 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 351
dd5d19ba
PM
352 /*
353 * Remove this task from the list it blocked on. The
354 * task can migrate while we acquire the lock, but at
355 * most one time. So at most two passes through loop.
356 */
357 for (;;) {
86848966 358 rnp = t->rcu_blocked_node;
1304afb2 359 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 360 smp_mb__after_unlock_lock();
86848966 361 if (rnp == t->rcu_blocked_node)
dd5d19ba 362 break;
1304afb2 363 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 364 }
b6a932d1 365 empty = !rcu_preempt_has_tasks(rnp);
74e871ac 366 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
367 empty_exp = !rcu_preempted_readers_exp(rnp);
368 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 369 np = rcu_next_node_entry(t, rnp);
f41d911f 370 list_del_init(&t->rcu_node_entry);
82e78d80 371 t->rcu_blocked_node = NULL;
f7f7bac9 372 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 373 rnp->gpnum, t->pid);
12f5f524
PM
374 if (&t->rcu_node_entry == rnp->gp_tasks)
375 rnp->gp_tasks = np;
376 if (&t->rcu_node_entry == rnp->exp_tasks)
377 rnp->exp_tasks = np;
27f4d280
PM
378#ifdef CONFIG_RCU_BOOST
379 if (&t->rcu_node_entry == rnp->boost_tasks)
380 rnp->boost_tasks = np;
abaa93d9
PM
381 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
382 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 383#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 384
b6a932d1
PM
385 /*
386 * If this was the last task on the list, go see if we
387 * need to propagate ->qsmaskinit bit clearing up the
388 * rcu_node tree.
389 */
390 if (!empty && !rcu_preempt_has_tasks(rnp))
391 rcu_cleanup_dead_rnp(rnp);
392
f41d911f
PM
393 /*
394 * If this was the last task on the current list, and if
395 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
396 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
397 * so we must take a snapshot of the expedited state.
f41d911f 398 */
389abd48 399 empty_exp_now = !rcu_preempted_readers_exp(rnp);
74e871ac 400 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 401 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
402 rnp->gpnum,
403 0, rnp->qsmask,
404 rnp->level,
405 rnp->grplo,
406 rnp->grphi,
407 !!rnp->gp_tasks);
d3f6bad3 408 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 409 } else {
d4c08f2a 410 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 411 }
d9a3da06 412
27f4d280
PM
413#ifdef CONFIG_RCU_BOOST
414 /* Unboost if we were boosted. */
abaf3f9d 415 if (drop_boost_mutex)
abaa93d9 416 rt_mutex_unlock(&rnp->boost_mtx);
27f4d280
PM
417#endif /* #ifdef CONFIG_RCU_BOOST */
418
d9a3da06
PM
419 /*
420 * If this was the last task on the expedited lists,
421 * then we need to report up the rcu_node hierarchy.
422 */
389abd48 423 if (!empty_exp && empty_exp_now)
b40d293e 424 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
425 } else {
426 local_irq_restore(flags);
f41d911f 427 }
f41d911f
PM
428}
429
1ed509a2
PM
430/*
431 * Dump detailed information for all tasks blocking the current RCU
432 * grace period on the specified rcu_node structure.
433 */
434static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
435{
436 unsigned long flags;
1ed509a2
PM
437 struct task_struct *t;
438
12f5f524 439 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
440 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
441 raw_spin_unlock_irqrestore(&rnp->lock, flags);
442 return;
443 }
12f5f524
PM
444 t = list_entry(rnp->gp_tasks,
445 struct task_struct, rcu_node_entry);
446 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
447 sched_show_task(t);
448 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
449}
450
451/*
452 * Dump detailed information for all tasks blocking the current RCU
453 * grace period.
454 */
455static void rcu_print_detail_task_stall(struct rcu_state *rsp)
456{
457 struct rcu_node *rnp = rcu_get_root(rsp);
458
459 rcu_print_detail_task_stall_rnp(rnp);
460 rcu_for_each_leaf_node(rsp, rnp)
461 rcu_print_detail_task_stall_rnp(rnp);
462}
463
a858af28
PM
464#ifdef CONFIG_RCU_CPU_STALL_INFO
465
466static void rcu_print_task_stall_begin(struct rcu_node *rnp)
467{
efc151c3 468 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
469 rnp->level, rnp->grplo, rnp->grphi);
470}
471
472static void rcu_print_task_stall_end(void)
473{
efc151c3 474 pr_cont("\n");
a858af28
PM
475}
476
477#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
478
479static void rcu_print_task_stall_begin(struct rcu_node *rnp)
480{
481}
482
483static void rcu_print_task_stall_end(void)
484{
485}
486
487#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
488
f41d911f
PM
489/*
490 * Scan the current list of tasks blocked within RCU read-side critical
491 * sections, printing out the tid of each.
492 */
9bc8b558 493static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 494{
f41d911f 495 struct task_struct *t;
9bc8b558 496 int ndetected = 0;
f41d911f 497
27f4d280 498 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 499 return 0;
a858af28 500 rcu_print_task_stall_begin(rnp);
12f5f524
PM
501 t = list_entry(rnp->gp_tasks,
502 struct task_struct, rcu_node_entry);
9bc8b558 503 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 504 pr_cont(" P%d", t->pid);
9bc8b558
PM
505 ndetected++;
506 }
a858af28 507 rcu_print_task_stall_end();
9bc8b558 508 return ndetected;
f41d911f
PM
509}
510
b0e165c0
PM
511/*
512 * Check that the list of blocked tasks for the newly completed grace
513 * period is in fact empty. It is a serious bug to complete a grace
514 * period that still has RCU readers blocked! This function must be
515 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
516 * must be held by the caller.
12f5f524
PM
517 *
518 * Also, if there are blocked tasks on the list, they automatically
519 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
520 */
521static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
522{
27f4d280 523 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
96e92021 524 if (rcu_preempt_has_tasks(rnp))
12f5f524 525 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 526 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
527}
528
33f76148
PM
529#ifdef CONFIG_HOTPLUG_CPU
530
e5601400
PM
531#endif /* #ifdef CONFIG_HOTPLUG_CPU */
532
f41d911f
PM
533/*
534 * Check for a quiescent state from the current CPU. When a task blocks,
535 * the task is recorded in the corresponding CPU's rcu_node structure,
536 * which is checked elsewhere.
537 *
538 * Caller must disable hard irqs.
539 */
86aea0e6 540static void rcu_preempt_check_callbacks(void)
f41d911f
PM
541{
542 struct task_struct *t = current;
543
544 if (t->rcu_read_lock_nesting == 0) {
284a8c93 545 rcu_preempt_qs();
f41d911f
PM
546 return;
547 }
10f39bb1 548 if (t->rcu_read_lock_nesting > 0 &&
86aea0e6
PM
549 __this_cpu_read(rcu_preempt_data.qs_pending) &&
550 !__this_cpu_read(rcu_preempt_data.passed_quiesce))
1d082fd0 551 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
552}
553
a46e0899
PM
554#ifdef CONFIG_RCU_BOOST
555
09223371
SL
556static void rcu_preempt_do_callbacks(void)
557{
c9d4b0af 558 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
559}
560
a46e0899
PM
561#endif /* #ifdef CONFIG_RCU_BOOST */
562
f41d911f 563/*
6cc68793 564 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
565 */
566void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
567{
3fbfbf7a 568 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
569}
570EXPORT_SYMBOL_GPL(call_rcu);
571
6ebb237b
PM
572/**
573 * synchronize_rcu - wait until a grace period has elapsed.
574 *
575 * Control will return to the caller some time after a full grace
576 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
577 * read-side critical sections have completed. Note, however, that
578 * upon return from synchronize_rcu(), the caller might well be executing
579 * concurrently with new RCU read-side critical sections that began while
580 * synchronize_rcu() was waiting. RCU read-side critical sections are
581 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
582 *
583 * See the description of synchronize_sched() for more detailed information
584 * on memory ordering guarantees.
6ebb237b
PM
585 */
586void synchronize_rcu(void)
587{
fe15d706
PM
588 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
589 !lock_is_held(&rcu_lock_map) &&
590 !lock_is_held(&rcu_sched_lock_map),
591 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
592 if (!rcu_scheduler_active)
593 return;
3705b88d
AM
594 if (rcu_expedited)
595 synchronize_rcu_expedited();
596 else
597 wait_rcu_gp(call_rcu);
6ebb237b
PM
598}
599EXPORT_SYMBOL_GPL(synchronize_rcu);
600
d9a3da06 601static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 602static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
603static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
604
605/*
606 * Return non-zero if there are any tasks in RCU read-side critical
607 * sections blocking the current preemptible-RCU expedited grace period.
608 * If there is no preemptible-RCU expedited grace period currently in
609 * progress, returns zero unconditionally.
610 */
611static int rcu_preempted_readers_exp(struct rcu_node *rnp)
612{
12f5f524 613 return rnp->exp_tasks != NULL;
d9a3da06
PM
614}
615
616/*
617 * return non-zero if there is no RCU expedited grace period in progress
618 * for the specified rcu_node structure, in other words, if all CPUs and
619 * tasks covered by the specified rcu_node structure have done their bit
620 * for the current expedited grace period. Works only for preemptible
621 * RCU -- other RCU implementation use other means.
622 *
623 * Caller must hold sync_rcu_preempt_exp_mutex.
624 */
625static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
626{
627 return !rcu_preempted_readers_exp(rnp) &&
628 ACCESS_ONCE(rnp->expmask) == 0;
629}
630
631/*
632 * Report the exit from RCU read-side critical section for the last task
633 * that queued itself during or before the current expedited preemptible-RCU
634 * grace period. This event is reported either to the rcu_node structure on
635 * which the task was queued or to one of that rcu_node structure's ancestors,
636 * recursively up the tree. (Calm down, calm down, we do the recursion
637 * iteratively!)
638 *
b40d293e
TG
639 * Most callers will set the "wake" flag, but the task initiating the
640 * expedited grace period need not wake itself.
641 *
d9a3da06
PM
642 * Caller must hold sync_rcu_preempt_exp_mutex.
643 */
b40d293e
TG
644static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
645 bool wake)
d9a3da06
PM
646{
647 unsigned long flags;
648 unsigned long mask;
649
1304afb2 650 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 651 smp_mb__after_unlock_lock();
d9a3da06 652 for (;;) {
131906b0
PM
653 if (!sync_rcu_preempt_exp_done(rnp)) {
654 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 655 break;
131906b0 656 }
d9a3da06 657 if (rnp->parent == NULL) {
131906b0 658 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
659 if (wake) {
660 smp_mb(); /* EGP done before wake_up(). */
b40d293e 661 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 662 }
d9a3da06
PM
663 break;
664 }
665 mask = rnp->grpmask;
1304afb2 666 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 667 rnp = rnp->parent;
1304afb2 668 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 669 smp_mb__after_unlock_lock();
d9a3da06
PM
670 rnp->expmask &= ~mask;
671 }
d9a3da06
PM
672}
673
674/*
675 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
676 * grace period for the specified rcu_node structure. If there are no such
677 * tasks, report it up the rcu_node hierarchy.
678 *
7b2e6011
PM
679 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
680 * CPU hotplug operations.
d9a3da06
PM
681 */
682static void
683sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
684{
1217ed1b 685 unsigned long flags;
12f5f524 686 int must_wait = 0;
d9a3da06 687
1217ed1b 688 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 689 smp_mb__after_unlock_lock();
96e92021 690 if (!rcu_preempt_has_tasks(rnp)) {
1217ed1b 691 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 692 } else {
12f5f524 693 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 694 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
695 must_wait = 1;
696 }
d9a3da06 697 if (!must_wait)
b40d293e 698 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
699}
700
236fefaf
PM
701/**
702 * synchronize_rcu_expedited - Brute-force RCU grace period
703 *
704 * Wait for an RCU-preempt grace period, but expedite it. The basic
705 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
706 * the ->blkd_tasks lists and wait for this list to drain. This consumes
707 * significant time on all CPUs and is unfriendly to real-time workloads,
708 * so is thus not recommended for any sort of common-case code.
709 * In fact, if you are using synchronize_rcu_expedited() in a loop,
710 * please restructure your code to batch your updates, and then Use a
711 * single synchronize_rcu() instead.
019129d5
PM
712 */
713void synchronize_rcu_expedited(void)
714{
d9a3da06
PM
715 unsigned long flags;
716 struct rcu_node *rnp;
717 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 718 unsigned long snap;
d9a3da06
PM
719 int trycount = 0;
720
721 smp_mb(); /* Caller's modifications seen first by other CPUs. */
722 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
723 smp_mb(); /* Above access cannot bleed into critical section. */
724
1943c89d
PM
725 /*
726 * Block CPU-hotplug operations. This means that any CPU-hotplug
727 * operation that finds an rcu_node structure with tasks in the
728 * process of being boosted will know that all tasks blocking
729 * this expedited grace period will already be in the process of
730 * being boosted. This simplifies the process of moving tasks
731 * from leaf to root rcu_node structures.
732 */
dd56af42
PM
733 if (!try_get_online_cpus()) {
734 /* CPU-hotplug operation in flight, fall back to normal GP. */
735 wait_rcu_gp(call_rcu);
736 return;
737 }
1943c89d 738
d9a3da06
PM
739 /*
740 * Acquire lock, falling back to synchronize_rcu() if too many
741 * lock-acquisition failures. Of course, if someone does the
742 * expedited grace period for us, just leave.
743 */
744 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
745 if (ULONG_CMP_LT(snap,
746 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
747 put_online_cpus();
748 goto mb_ret; /* Others did our work for us. */
749 }
c701d5d9 750 if (trycount++ < 10) {
d9a3da06 751 udelay(trycount * num_online_cpus());
c701d5d9 752 } else {
1943c89d 753 put_online_cpus();
3705b88d 754 wait_rcu_gp(call_rcu);
d9a3da06
PM
755 return;
756 }
d9a3da06 757 }
1943c89d
PM
758 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
759 put_online_cpus();
d9a3da06 760 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 761 }
d9a3da06 762
12f5f524 763 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
764 synchronize_sched_expedited();
765
d9a3da06
PM
766 /* Initialize ->expmask for all non-leaf rcu_node structures. */
767 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 768 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 769 smp_mb__after_unlock_lock();
d9a3da06 770 rnp->expmask = rnp->qsmaskinit;
1943c89d 771 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
772 }
773
12f5f524 774 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
775 rcu_for_each_leaf_node(rsp, rnp)
776 sync_rcu_preempt_exp_init(rsp, rnp);
777 if (NUM_RCU_NODES > 1)
778 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
779
1943c89d 780 put_online_cpus();
d9a3da06 781
12f5f524 782 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
783 rnp = rcu_get_root(rsp);
784 wait_event(sync_rcu_preempt_exp_wq,
785 sync_rcu_preempt_exp_done(rnp));
786
787 /* Clean up and exit. */
788 smp_mb(); /* ensure expedited GP seen before counter increment. */
4de376a1
PK
789 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
790 sync_rcu_preempt_exp_count + 1;
d9a3da06
PM
791unlock_mb_ret:
792 mutex_unlock(&sync_rcu_preempt_exp_mutex);
793mb_ret:
794 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
795}
796EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
797
e74f4c45
PM
798/**
799 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
800 *
801 * Note that this primitive does not necessarily wait for an RCU grace period
802 * to complete. For example, if there are no RCU callbacks queued anywhere
803 * in the system, then rcu_barrier() is within its rights to return
804 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
805 */
806void rcu_barrier(void)
807{
037b64ed 808 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
809}
810EXPORT_SYMBOL_GPL(rcu_barrier);
811
1eba8f84 812/*
6cc68793 813 * Initialize preemptible RCU's state structures.
1eba8f84
PM
814 */
815static void __init __rcu_init_preempt(void)
816{
394f99a9 817 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
818}
819
2439b696
PM
820/*
821 * Check for a task exiting while in a preemptible-RCU read-side
822 * critical section, clean up if so. No need to issue warnings,
823 * as debug_check_no_locks_held() already does this if lockdep
824 * is enabled.
825 */
826void exit_rcu(void)
827{
828 struct task_struct *t = current;
829
830 if (likely(list_empty(&current->rcu_node_entry)))
831 return;
832 t->rcu_read_lock_nesting = 1;
833 barrier();
1d082fd0 834 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
835 __rcu_read_unlock();
836}
837
28f6569a 838#else /* #ifdef CONFIG_PREEMPT_RCU */
f41d911f 839
e534165b 840static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 841
f41d911f
PM
842/*
843 * Tell them what RCU they are running.
844 */
0e0fc1c2 845static void __init rcu_bootup_announce(void)
f41d911f 846{
efc151c3 847 pr_info("Hierarchical RCU implementation.\n");
26845c28 848 rcu_bootup_announce_oddness();
f41d911f
PM
849}
850
cba6d0d6
PM
851/*
852 * Because preemptible RCU does not exist, we never have to check for
853 * CPUs being in quiescent states.
854 */
38200cf2 855static void rcu_preempt_note_context_switch(void)
cba6d0d6
PM
856{
857}
858
fc2219d4 859/*
6cc68793 860 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
861 * RCU readers.
862 */
27f4d280 863static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
864{
865 return 0;
866}
867
b668c9cf
PM
868#ifdef CONFIG_HOTPLUG_CPU
869
8af3a5e7
PM
870/*
871 * Because there is no preemptible RCU, there can be no readers blocked.
872 */
873static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
b668c9cf 874{
8af3a5e7 875 return false;
b668c9cf
PM
876}
877
878#endif /* #ifdef CONFIG_HOTPLUG_CPU */
879
1ed509a2 880/*
6cc68793 881 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
882 * tasks blocked within RCU read-side critical sections.
883 */
884static void rcu_print_detail_task_stall(struct rcu_state *rsp)
885{
886}
887
f41d911f 888/*
6cc68793 889 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
890 * tasks blocked within RCU read-side critical sections.
891 */
9bc8b558 892static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 893{
9bc8b558 894 return 0;
f41d911f
PM
895}
896
b0e165c0 897/*
6cc68793 898 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
899 * so there is no need to check for blocked tasks. So check only for
900 * bogus qsmask values.
b0e165c0
PM
901 */
902static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
903{
49e29126 904 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
905}
906
f41d911f 907/*
6cc68793 908 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
909 * to check.
910 */
86aea0e6 911static void rcu_preempt_check_callbacks(void)
f41d911f
PM
912{
913}
914
019129d5
PM
915/*
916 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 917 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
918 */
919void synchronize_rcu_expedited(void)
920{
921 synchronize_sched_expedited();
922}
923EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
924
e74f4c45 925/*
6cc68793 926 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
927 * another name for rcu_barrier_sched().
928 */
929void rcu_barrier(void)
930{
931 rcu_barrier_sched();
932}
933EXPORT_SYMBOL_GPL(rcu_barrier);
934
1eba8f84 935/*
6cc68793 936 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
937 */
938static void __init __rcu_init_preempt(void)
939{
940}
941
2439b696
PM
942/*
943 * Because preemptible RCU does not exist, tasks cannot possibly exit
944 * while in preemptible RCU read-side critical sections.
945 */
946void exit_rcu(void)
947{
948}
949
28f6569a 950#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
8bd93a2c 951
27f4d280
PM
952#ifdef CONFIG_RCU_BOOST
953
1696a8be 954#include "../locking/rtmutex_common.h"
27f4d280 955
0ea1f2eb
PM
956#ifdef CONFIG_RCU_TRACE
957
958static void rcu_initiate_boost_trace(struct rcu_node *rnp)
959{
96e92021 960 if (!rcu_preempt_has_tasks(rnp))
0ea1f2eb
PM
961 rnp->n_balk_blkd_tasks++;
962 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
963 rnp->n_balk_exp_gp_tasks++;
964 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
965 rnp->n_balk_boost_tasks++;
966 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
967 rnp->n_balk_notblocked++;
968 else if (rnp->gp_tasks != NULL &&
a9f4793d 969 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
970 rnp->n_balk_notyet++;
971 else
972 rnp->n_balk_nos++;
973}
974
975#else /* #ifdef CONFIG_RCU_TRACE */
976
977static void rcu_initiate_boost_trace(struct rcu_node *rnp)
978{
979}
980
981#endif /* #else #ifdef CONFIG_RCU_TRACE */
982
5d01bbd1
TG
983static void rcu_wake_cond(struct task_struct *t, int status)
984{
985 /*
986 * If the thread is yielding, only wake it when this
987 * is invoked from idle
988 */
989 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
990 wake_up_process(t);
991}
992
27f4d280
PM
993/*
994 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
995 * or ->boost_tasks, advancing the pointer to the next task in the
996 * ->blkd_tasks list.
997 *
998 * Note that irqs must be enabled: boosting the task can block.
999 * Returns 1 if there are more tasks needing to be boosted.
1000 */
1001static int rcu_boost(struct rcu_node *rnp)
1002{
1003 unsigned long flags;
27f4d280
PM
1004 struct task_struct *t;
1005 struct list_head *tb;
1006
b08ea27d
PM
1007 if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
1008 ACCESS_ONCE(rnp->boost_tasks) == NULL)
27f4d280
PM
1009 return 0; /* Nothing left to boost. */
1010
1011 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1012 smp_mb__after_unlock_lock();
27f4d280
PM
1013
1014 /*
1015 * Recheck under the lock: all tasks in need of boosting
1016 * might exit their RCU read-side critical sections on their own.
1017 */
1018 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1019 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1020 return 0;
1021 }
1022
1023 /*
1024 * Preferentially boost tasks blocking expedited grace periods.
1025 * This cannot starve the normal grace periods because a second
1026 * expedited grace period must boost all blocked tasks, including
1027 * those blocking the pre-existing normal grace period.
1028 */
0ea1f2eb 1029 if (rnp->exp_tasks != NULL) {
27f4d280 1030 tb = rnp->exp_tasks;
0ea1f2eb
PM
1031 rnp->n_exp_boosts++;
1032 } else {
27f4d280 1033 tb = rnp->boost_tasks;
0ea1f2eb
PM
1034 rnp->n_normal_boosts++;
1035 }
1036 rnp->n_tasks_boosted++;
27f4d280
PM
1037
1038 /*
1039 * We boost task t by manufacturing an rt_mutex that appears to
1040 * be held by task t. We leave a pointer to that rt_mutex where
1041 * task t can find it, and task t will release the mutex when it
1042 * exits its outermost RCU read-side critical section. Then
1043 * simply acquiring this artificial rt_mutex will boost task
1044 * t's priority. (Thanks to tglx for suggesting this approach!)
1045 *
1046 * Note that task t must acquire rnp->lock to remove itself from
1047 * the ->blkd_tasks list, which it will do from exit() if from
1048 * nowhere else. We therefore are guaranteed that task t will
1049 * stay around at least until we drop rnp->lock. Note that
1050 * rnp->lock also resolves races between our priority boosting
1051 * and task t's exiting its outermost RCU read-side critical
1052 * section.
1053 */
1054 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1055 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
27f4d280 1056 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1057 /* Lock only for side effect: boosts task t's priority. */
1058 rt_mutex_lock(&rnp->boost_mtx);
1059 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1060
4f89b336
PM
1061 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1062 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1063}
1064
27f4d280
PM
1065/*
1066 * Priority-boosting kthread. One per leaf rcu_node and one for the
1067 * root rcu_node.
1068 */
1069static int rcu_boost_kthread(void *arg)
1070{
1071 struct rcu_node *rnp = (struct rcu_node *)arg;
1072 int spincnt = 0;
1073 int more2boost;
1074
f7f7bac9 1075 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1076 for (;;) {
d71df90e 1077 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1078 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1079 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1080 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1081 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1082 more2boost = rcu_boost(rnp);
1083 if (more2boost)
1084 spincnt++;
1085 else
1086 spincnt = 0;
1087 if (spincnt > 10) {
5d01bbd1 1088 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1089 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1090 schedule_timeout_interruptible(2);
f7f7bac9 1091 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1092 spincnt = 0;
1093 }
1094 }
1217ed1b 1095 /* NOTREACHED */
f7f7bac9 1096 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1097 return 0;
1098}
1099
1100/*
1101 * Check to see if it is time to start boosting RCU readers that are
1102 * blocking the current grace period, and, if so, tell the per-rcu_node
1103 * kthread to start boosting them. If there is an expedited grace
1104 * period in progress, it is always time to boost.
1105 *
b065a853
PM
1106 * The caller must hold rnp->lock, which this function releases.
1107 * The ->boost_kthread_task is immortal, so we don't need to worry
1108 * about it going away.
27f4d280 1109 */
1217ed1b 1110static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1111 __releases(rnp->lock)
27f4d280
PM
1112{
1113 struct task_struct *t;
1114
0ea1f2eb
PM
1115 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1116 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1117 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1118 return;
0ea1f2eb 1119 }
27f4d280
PM
1120 if (rnp->exp_tasks != NULL ||
1121 (rnp->gp_tasks != NULL &&
1122 rnp->boost_tasks == NULL &&
1123 rnp->qsmask == 0 &&
1124 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1125 if (rnp->exp_tasks == NULL)
1126 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1127 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1128 t = rnp->boost_kthread_task;
5d01bbd1
TG
1129 if (t)
1130 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1131 } else {
0ea1f2eb 1132 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1133 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1134 }
27f4d280
PM
1135}
1136
a46e0899
PM
1137/*
1138 * Wake up the per-CPU kthread to invoke RCU callbacks.
1139 */
1140static void invoke_rcu_callbacks_kthread(void)
1141{
1142 unsigned long flags;
1143
1144 local_irq_save(flags);
1145 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1146 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1147 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1148 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1149 __this_cpu_read(rcu_cpu_kthread_status));
1150 }
a46e0899
PM
1151 local_irq_restore(flags);
1152}
1153
dff1672d
PM
1154/*
1155 * Is the current CPU running the RCU-callbacks kthread?
1156 * Caller must have preemption disabled.
1157 */
1158static bool rcu_is_callbacks_kthread(void)
1159{
c9d4b0af 1160 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1161}
1162
27f4d280
PM
1163#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1164
1165/*
1166 * Do priority-boost accounting for the start of a new grace period.
1167 */
1168static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1169{
1170 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1171}
1172
27f4d280
PM
1173/*
1174 * Create an RCU-boost kthread for the specified node if one does not
1175 * already exist. We only create this kthread for preemptible RCU.
1176 * Returns zero if all is well, a negated errno otherwise.
1177 */
49fb4c62 1178static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1179 struct rcu_node *rnp)
27f4d280 1180{
5d01bbd1 1181 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1182 unsigned long flags;
1183 struct sched_param sp;
1184 struct task_struct *t;
1185
1186 if (&rcu_preempt_state != rsp)
1187 return 0;
5d01bbd1
TG
1188
1189 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1190 return 0;
1191
a46e0899 1192 rsp->boost = 1;
27f4d280
PM
1193 if (rnp->boost_kthread_task != NULL)
1194 return 0;
1195 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1196 "rcub/%d", rnp_index);
27f4d280
PM
1197 if (IS_ERR(t))
1198 return PTR_ERR(t);
1199 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1200 smp_mb__after_unlock_lock();
27f4d280
PM
1201 rnp->boost_kthread_task = t;
1202 raw_spin_unlock_irqrestore(&rnp->lock, flags);
21871d7e 1203 sp.sched_priority = kthread_prio;
27f4d280 1204 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1205 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1206 return 0;
1207}
1208
f8b7fc6b
PM
1209static void rcu_kthread_do_work(void)
1210{
c9d4b0af
CL
1211 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1212 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1213 rcu_preempt_do_callbacks();
1214}
1215
62ab7072 1216static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1217{
f8b7fc6b 1218 struct sched_param sp;
f8b7fc6b 1219
21871d7e 1220 sp.sched_priority = kthread_prio;
62ab7072 1221 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1222}
1223
62ab7072 1224static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1225{
62ab7072 1226 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1227}
1228
62ab7072 1229static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1230{
c9d4b0af 1231 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1232}
1233
1234/*
1235 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1236 * RCU softirq used in flavors and configurations of RCU that do not
1237 * support RCU priority boosting.
f8b7fc6b 1238 */
62ab7072 1239static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1240{
c9d4b0af
CL
1241 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1242 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1243 int spincnt;
f8b7fc6b 1244
62ab7072 1245 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1246 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1247 local_bh_disable();
f8b7fc6b 1248 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1249 this_cpu_inc(rcu_cpu_kthread_loops);
1250 local_irq_disable();
f8b7fc6b
PM
1251 work = *workp;
1252 *workp = 0;
62ab7072 1253 local_irq_enable();
f8b7fc6b
PM
1254 if (work)
1255 rcu_kthread_do_work();
1256 local_bh_enable();
62ab7072 1257 if (*workp == 0) {
f7f7bac9 1258 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1259 *statusp = RCU_KTHREAD_WAITING;
1260 return;
f8b7fc6b
PM
1261 }
1262 }
62ab7072 1263 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1264 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1265 schedule_timeout_interruptible(2);
f7f7bac9 1266 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1267 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1268}
1269
1270/*
1271 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1272 * served by the rcu_node in question. The CPU hotplug lock is still
1273 * held, so the value of rnp->qsmaskinit will be stable.
1274 *
1275 * We don't include outgoingcpu in the affinity set, use -1 if there is
1276 * no outgoing CPU. If there are no CPUs left in the affinity set,
1277 * this function allows the kthread to execute on any CPU.
1278 */
5d01bbd1 1279static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1280{
5d01bbd1
TG
1281 struct task_struct *t = rnp->boost_kthread_task;
1282 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1283 cpumask_var_t cm;
1284 int cpu;
f8b7fc6b 1285
5d01bbd1 1286 if (!t)
f8b7fc6b 1287 return;
5d01bbd1 1288 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1289 return;
f8b7fc6b
PM
1290 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1291 if ((mask & 0x1) && cpu != outgoingcpu)
1292 cpumask_set_cpu(cpu, cm);
5d0b0249 1293 if (cpumask_weight(cm) == 0)
f8b7fc6b 1294 cpumask_setall(cm);
5d01bbd1 1295 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1296 free_cpumask_var(cm);
1297}
1298
62ab7072
PM
1299static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1300 .store = &rcu_cpu_kthread_task,
1301 .thread_should_run = rcu_cpu_kthread_should_run,
1302 .thread_fn = rcu_cpu_kthread,
1303 .thread_comm = "rcuc/%u",
1304 .setup = rcu_cpu_kthread_setup,
1305 .park = rcu_cpu_kthread_park,
1306};
f8b7fc6b
PM
1307
1308/*
9386c0b7 1309 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1310 */
9386c0b7 1311static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1312{
f8b7fc6b 1313 struct rcu_node *rnp;
5d01bbd1 1314 int cpu;
f8b7fc6b 1315
62ab7072 1316 for_each_possible_cpu(cpu)
f8b7fc6b 1317 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1318 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
3e9f5c70
PM
1319 rcu_for_each_leaf_node(rcu_state_p, rnp)
1320 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1321}
f8b7fc6b 1322
49fb4c62 1323static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1324{
e534165b 1325 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1326 struct rcu_node *rnp = rdp->mynode;
1327
1328 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1329 if (rcu_scheduler_fully_active)
e534165b 1330 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1331}
1332
27f4d280
PM
1333#else /* #ifdef CONFIG_RCU_BOOST */
1334
1217ed1b 1335static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1336 __releases(rnp->lock)
27f4d280 1337{
1217ed1b 1338 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1339}
1340
a46e0899 1341static void invoke_rcu_callbacks_kthread(void)
27f4d280 1342{
a46e0899 1343 WARN_ON_ONCE(1);
27f4d280
PM
1344}
1345
dff1672d
PM
1346static bool rcu_is_callbacks_kthread(void)
1347{
1348 return false;
1349}
1350
27f4d280
PM
1351static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1352{
1353}
1354
5d01bbd1 1355static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1356{
1357}
1358
9386c0b7 1359static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1360{
b0d30417 1361}
b0d30417 1362
49fb4c62 1363static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1364{
1365}
1366
27f4d280
PM
1367#endif /* #else #ifdef CONFIG_RCU_BOOST */
1368
8bd93a2c
PM
1369#if !defined(CONFIG_RCU_FAST_NO_HZ)
1370
1371/*
1372 * Check to see if any future RCU-related work will need to be done
1373 * by the current CPU, even if none need be done immediately, returning
1374 * 1 if so. This function is part of the RCU implementation; it is -not-
1375 * an exported member of the RCU API.
1376 *
7cb92499
PM
1377 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1378 * any flavor of RCU.
8bd93a2c 1379 */
ffa83fb5 1380#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa6da514 1381int rcu_needs_cpu(unsigned long *delta_jiffies)
8bd93a2c 1382{
aa9b1630 1383 *delta_jiffies = ULONG_MAX;
aa6da514 1384 return rcu_cpu_has_callbacks(NULL);
7cb92499 1385}
ffa83fb5 1386#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1387
1388/*
1389 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1390 * after it.
1391 */
8fa7845d 1392static void rcu_cleanup_after_idle(void)
7cb92499
PM
1393{
1394}
1395
aea1b35e 1396/*
a858af28 1397 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1398 * is nothing.
1399 */
198bbf81 1400static void rcu_prepare_for_idle(void)
aea1b35e
PM
1401{
1402}
1403
c57afe80
PM
1404/*
1405 * Don't bother keeping a running count of the number of RCU callbacks
1406 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1407 */
1408static void rcu_idle_count_callbacks_posted(void)
1409{
1410}
1411
8bd93a2c
PM
1412#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1413
f23f7fa1
PM
1414/*
1415 * This code is invoked when a CPU goes idle, at which point we want
1416 * to have the CPU do everything required for RCU so that it can enter
1417 * the energy-efficient dyntick-idle mode. This is handled by a
1418 * state machine implemented by rcu_prepare_for_idle() below.
1419 *
1420 * The following three proprocessor symbols control this state machine:
1421 *
f23f7fa1
PM
1422 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1423 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1424 * is sized to be roughly one RCU grace period. Those energy-efficiency
1425 * benchmarkers who might otherwise be tempted to set this to a large
1426 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1427 * system. And if you are -that- concerned about energy efficiency,
1428 * just power the system down and be done with it!
778d250a
PM
1429 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1430 * permitted to sleep in dyntick-idle mode with only lazy RCU
1431 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1432 *
1433 * The values below work well in practice. If future workloads require
1434 * adjustment, they can be converted into kernel config parameters, though
1435 * making the state machine smarter might be a better option.
1436 */
e84c48ae 1437#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1438#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1439
5e44ce35
PM
1440static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1441module_param(rcu_idle_gp_delay, int, 0644);
1442static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1443module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1444
d689fe22 1445extern int tick_nohz_active;
486e2593
PM
1446
1447/*
c229828c
PM
1448 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1449 * only if it has been awhile since the last time we did so. Afterwards,
1450 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1451 */
f1f399d1 1452static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1453{
c0f4dfd4
PM
1454 bool cbs_ready = false;
1455 struct rcu_data *rdp;
c229828c 1456 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1457 struct rcu_node *rnp;
1458 struct rcu_state *rsp;
486e2593 1459
c229828c
PM
1460 /* Exit early if we advanced recently. */
1461 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1462 return false;
c229828c
PM
1463 rdtp->last_advance_all = jiffies;
1464
c0f4dfd4
PM
1465 for_each_rcu_flavor(rsp) {
1466 rdp = this_cpu_ptr(rsp->rda);
1467 rnp = rdp->mynode;
486e2593 1468
c0f4dfd4
PM
1469 /*
1470 * Don't bother checking unless a grace period has
1471 * completed since we last checked and there are
1472 * callbacks not yet ready to invoke.
1473 */
e3663b10
PM
1474 if ((rdp->completed != rnp->completed ||
1475 unlikely(ACCESS_ONCE(rdp->gpwrap))) &&
c0f4dfd4 1476 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1477 note_gp_changes(rsp, rdp);
486e2593 1478
c0f4dfd4
PM
1479 if (cpu_has_callbacks_ready_to_invoke(rdp))
1480 cbs_ready = true;
1481 }
1482 return cbs_ready;
486e2593
PM
1483}
1484
aa9b1630 1485/*
c0f4dfd4
PM
1486 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1487 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1488 * caller to set the timeout based on whether or not there are non-lazy
1489 * callbacks.
aa9b1630 1490 *
c0f4dfd4 1491 * The caller must have disabled interrupts.
aa9b1630 1492 */
ffa83fb5 1493#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa6da514 1494int rcu_needs_cpu(unsigned long *dj)
aa9b1630 1495{
aa6da514 1496 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
aa9b1630 1497
c0f4dfd4
PM
1498 /* Snapshot to detect later posting of non-lazy callback. */
1499 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1500
aa9b1630 1501 /* If no callbacks, RCU doesn't need the CPU. */
aa6da514 1502 if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
c0f4dfd4 1503 *dj = ULONG_MAX;
aa9b1630
PM
1504 return 0;
1505 }
c0f4dfd4
PM
1506
1507 /* Attempt to advance callbacks. */
1508 if (rcu_try_advance_all_cbs()) {
1509 /* Some ready to invoke, so initiate later invocation. */
1510 invoke_rcu_core();
aa9b1630
PM
1511 return 1;
1512 }
c0f4dfd4
PM
1513 rdtp->last_accelerate = jiffies;
1514
1515 /* Request timer delay depending on laziness, and round. */
6faf7283 1516 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1517 *dj = round_up(rcu_idle_gp_delay + jiffies,
1518 rcu_idle_gp_delay) - jiffies;
e84c48ae 1519 } else {
c0f4dfd4 1520 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1521 }
aa9b1630
PM
1522 return 0;
1523}
ffa83fb5 1524#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1525
21e52e15 1526/*
c0f4dfd4
PM
1527 * Prepare a CPU for idle from an RCU perspective. The first major task
1528 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1529 * The second major task is to check to see if a non-lazy callback has
1530 * arrived at a CPU that previously had only lazy callbacks. The third
1531 * major task is to accelerate (that is, assign grace-period numbers to)
1532 * any recently arrived callbacks.
aea1b35e
PM
1533 *
1534 * The caller must have disabled interrupts.
8bd93a2c 1535 */
198bbf81 1536static void rcu_prepare_for_idle(void)
8bd93a2c 1537{
f1f399d1 1538#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1539 bool needwake;
c0f4dfd4 1540 struct rcu_data *rdp;
198bbf81 1541 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1542 struct rcu_node *rnp;
1543 struct rcu_state *rsp;
9d2ad243
PM
1544 int tne;
1545
1546 /* Handle nohz enablement switches conservatively. */
d689fe22 1547 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1548 if (tne != rdtp->tick_nohz_enabled_snap) {
aa6da514 1549 if (rcu_cpu_has_callbacks(NULL))
9d2ad243
PM
1550 invoke_rcu_core(); /* force nohz to see update. */
1551 rdtp->tick_nohz_enabled_snap = tne;
1552 return;
1553 }
1554 if (!tne)
1555 return;
f511fc62 1556
c0f4dfd4 1557 /* If this is a no-CBs CPU, no callbacks, just return. */
198bbf81 1558 if (rcu_is_nocb_cpu(smp_processor_id()))
9a0c6fef 1559 return;
9a0c6fef 1560
c57afe80 1561 /*
c0f4dfd4
PM
1562 * If a non-lazy callback arrived at a CPU having only lazy
1563 * callbacks, invoke RCU core for the side-effect of recalculating
1564 * idle duration on re-entry to idle.
c57afe80 1565 */
c0f4dfd4
PM
1566 if (rdtp->all_lazy &&
1567 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1568 rdtp->all_lazy = false;
1569 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1570 invoke_rcu_core();
c57afe80
PM
1571 return;
1572 }
c57afe80 1573
3084f2f8 1574 /*
c0f4dfd4
PM
1575 * If we have not yet accelerated this jiffy, accelerate all
1576 * callbacks on this CPU.
3084f2f8 1577 */
c0f4dfd4 1578 if (rdtp->last_accelerate == jiffies)
aea1b35e 1579 return;
c0f4dfd4
PM
1580 rdtp->last_accelerate = jiffies;
1581 for_each_rcu_flavor(rsp) {
198bbf81 1582 rdp = this_cpu_ptr(rsp->rda);
c0f4dfd4
PM
1583 if (!*rdp->nxttail[RCU_DONE_TAIL])
1584 continue;
1585 rnp = rdp->mynode;
1586 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1587 smp_mb__after_unlock_lock();
48a7639c 1588 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1589 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1590 if (needwake)
1591 rcu_gp_kthread_wake(rsp);
77e38ed3 1592 }
f1f399d1 1593#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1594}
3084f2f8 1595
c0f4dfd4
PM
1596/*
1597 * Clean up for exit from idle. Attempt to advance callbacks based on
1598 * any grace periods that elapsed while the CPU was idle, and if any
1599 * callbacks are now ready to invoke, initiate invocation.
1600 */
8fa7845d 1601static void rcu_cleanup_after_idle(void)
c0f4dfd4 1602{
f1f399d1 1603#ifndef CONFIG_RCU_NOCB_CPU_ALL
8fa7845d 1604 if (rcu_is_nocb_cpu(smp_processor_id()))
aea1b35e 1605 return;
7a497c96
PM
1606 if (rcu_try_advance_all_cbs())
1607 invoke_rcu_core();
f1f399d1 1608#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1609}
1610
c57afe80 1611/*
98248a0e
PM
1612 * Keep a running count of the number of non-lazy callbacks posted
1613 * on this CPU. This running counter (which is never decremented) allows
1614 * rcu_prepare_for_idle() to detect when something out of the idle loop
1615 * posts a callback, even if an equal number of callbacks are invoked.
1616 * Of course, callbacks should only be posted from within a trace event
1617 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1618 */
1619static void rcu_idle_count_callbacks_posted(void)
1620{
5955f7ee 1621 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1622}
1623
b626c1b6
PM
1624/*
1625 * Data for flushing lazy RCU callbacks at OOM time.
1626 */
1627static atomic_t oom_callback_count;
1628static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1629
1630/*
1631 * RCU OOM callback -- decrement the outstanding count and deliver the
1632 * wake-up if we are the last one.
1633 */
1634static void rcu_oom_callback(struct rcu_head *rhp)
1635{
1636 if (atomic_dec_and_test(&oom_callback_count))
1637 wake_up(&oom_callback_wq);
1638}
1639
1640/*
1641 * Post an rcu_oom_notify callback on the current CPU if it has at
1642 * least one lazy callback. This will unnecessarily post callbacks
1643 * to CPUs that already have a non-lazy callback at the end of their
1644 * callback list, but this is an infrequent operation, so accept some
1645 * extra overhead to keep things simple.
1646 */
1647static void rcu_oom_notify_cpu(void *unused)
1648{
1649 struct rcu_state *rsp;
1650 struct rcu_data *rdp;
1651
1652 for_each_rcu_flavor(rsp) {
fa07a58f 1653 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1654 if (rdp->qlen_lazy != 0) {
1655 atomic_inc(&oom_callback_count);
1656 rsp->call(&rdp->oom_head, rcu_oom_callback);
1657 }
1658 }
1659}
1660
1661/*
1662 * If low on memory, ensure that each CPU has a non-lazy callback.
1663 * This will wake up CPUs that have only lazy callbacks, in turn
1664 * ensuring that they free up the corresponding memory in a timely manner.
1665 * Because an uncertain amount of memory will be freed in some uncertain
1666 * timeframe, we do not claim to have freed anything.
1667 */
1668static int rcu_oom_notify(struct notifier_block *self,
1669 unsigned long notused, void *nfreed)
1670{
1671 int cpu;
1672
1673 /* Wait for callbacks from earlier instance to complete. */
1674 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1675 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1676
1677 /*
1678 * Prevent premature wakeup: ensure that all increments happen
1679 * before there is a chance of the counter reaching zero.
1680 */
1681 atomic_set(&oom_callback_count, 1);
1682
1683 get_online_cpus();
1684 for_each_online_cpu(cpu) {
1685 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1686 cond_resched_rcu_qs();
b626c1b6
PM
1687 }
1688 put_online_cpus();
1689
1690 /* Unconditionally decrement: no need to wake ourselves up. */
1691 atomic_dec(&oom_callback_count);
1692
1693 return NOTIFY_OK;
1694}
1695
1696static struct notifier_block rcu_oom_nb = {
1697 .notifier_call = rcu_oom_notify
1698};
1699
1700static int __init rcu_register_oom_notifier(void)
1701{
1702 register_oom_notifier(&rcu_oom_nb);
1703 return 0;
1704}
1705early_initcall(rcu_register_oom_notifier);
1706
8bd93a2c 1707#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1708
1709#ifdef CONFIG_RCU_CPU_STALL_INFO
1710
1711#ifdef CONFIG_RCU_FAST_NO_HZ
1712
1713static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1714{
5955f7ee 1715 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1716 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1717
c0f4dfd4
PM
1718 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1719 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1720 ulong2long(nlpd),
1721 rdtp->all_lazy ? 'L' : '.',
1722 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1723}
1724
1725#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1726
1727static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1728{
1c17e4d4 1729 *cp = '\0';
a858af28
PM
1730}
1731
1732#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1733
1734/* Initiate the stall-info list. */
1735static void print_cpu_stall_info_begin(void)
1736{
efc151c3 1737 pr_cont("\n");
a858af28
PM
1738}
1739
1740/*
1741 * Print out diagnostic information for the specified stalled CPU.
1742 *
1743 * If the specified CPU is aware of the current RCU grace period
1744 * (flavor specified by rsp), then print the number of scheduling
1745 * clock interrupts the CPU has taken during the time that it has
1746 * been aware. Otherwise, print the number of RCU grace periods
1747 * that this CPU is ignorant of, for example, "1" if the CPU was
1748 * aware of the previous grace period.
1749 *
1750 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1751 */
1752static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1753{
1754 char fast_no_hz[72];
1755 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1756 struct rcu_dynticks *rdtp = rdp->dynticks;
1757 char *ticks_title;
1758 unsigned long ticks_value;
1759
1760 if (rsp->gpnum == rdp->gpnum) {
1761 ticks_title = "ticks this GP";
1762 ticks_value = rdp->ticks_this_gp;
1763 } else {
1764 ticks_title = "GPs behind";
1765 ticks_value = rsp->gpnum - rdp->gpnum;
1766 }
1767 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
fc908ed3 1768 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
a858af28
PM
1769 cpu, ticks_value, ticks_title,
1770 atomic_read(&rdtp->dynticks) & 0xfff,
1771 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1772 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
fc908ed3 1773 ACCESS_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
a858af28
PM
1774 fast_no_hz);
1775}
1776
1777/* Terminate the stall-info list. */
1778static void print_cpu_stall_info_end(void)
1779{
efc151c3 1780 pr_err("\t");
a858af28
PM
1781}
1782
1783/* Zero ->ticks_this_gp for all flavors of RCU. */
1784static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1785{
1786 rdp->ticks_this_gp = 0;
6231069b 1787 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1788}
1789
1790/* Increment ->ticks_this_gp for all flavors of RCU. */
1791static void increment_cpu_stall_ticks(void)
1792{
115f7a7c
PM
1793 struct rcu_state *rsp;
1794
1795 for_each_rcu_flavor(rsp)
fa07a58f 1796 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1797}
1798
1799#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1800
1801static void print_cpu_stall_info_begin(void)
1802{
efc151c3 1803 pr_cont(" {");
a858af28
PM
1804}
1805
1806static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1807{
efc151c3 1808 pr_cont(" %d", cpu);
a858af28
PM
1809}
1810
1811static void print_cpu_stall_info_end(void)
1812{
efc151c3 1813 pr_cont("} ");
a858af28
PM
1814}
1815
1816static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1817{
1818}
1819
1820static void increment_cpu_stall_ticks(void)
1821{
1822}
1823
1824#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1825
1826#ifdef CONFIG_RCU_NOCB_CPU
1827
1828/*
1829 * Offload callback processing from the boot-time-specified set of CPUs
1830 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1831 * kthread created that pulls the callbacks from the corresponding CPU,
1832 * waits for a grace period to elapse, and invokes the callbacks.
1833 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1834 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1835 * has been specified, in which case each kthread actively polls its
1836 * CPU. (Which isn't so great for energy efficiency, but which does
1837 * reduce RCU's overhead on that CPU.)
1838 *
1839 * This is intended to be used in conjunction with Frederic Weisbecker's
1840 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1841 * running CPU-bound user-mode computations.
1842 *
1843 * Offloading of callback processing could also in theory be used as
1844 * an energy-efficiency measure because CPUs with no RCU callbacks
1845 * queued are more aggressive about entering dyntick-idle mode.
1846 */
1847
1848
1849/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1850static int __init rcu_nocb_setup(char *str)
1851{
1852 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1853 have_rcu_nocb_mask = true;
1854 cpulist_parse(str, rcu_nocb_mask);
1855 return 1;
1856}
1857__setup("rcu_nocbs=", rcu_nocb_setup);
1858
1b0048a4
PG
1859static int __init parse_rcu_nocb_poll(char *arg)
1860{
1861 rcu_nocb_poll = 1;
1862 return 0;
1863}
1864early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1865
dae6e64d 1866/*
0446be48
PM
1867 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1868 * grace period.
dae6e64d 1869 */
0446be48 1870static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 1871{
0446be48 1872 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
1873}
1874
1875/*
8b425aa8 1876 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
1877 * based on the sum of those of all rcu_node structures. This does
1878 * double-count the root rcu_node structure's requests, but this
1879 * is necessary to handle the possibility of a rcu_nocb_kthread()
1880 * having awakened during the time that the rcu_node structures
1881 * were being updated for the end of the previous grace period.
34ed6246 1882 */
dae6e64d
PM
1883static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1884{
8b425aa8 1885 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
1886}
1887
1888static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 1889{
dae6e64d
PM
1890 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
1891 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
1892}
1893
2f33b512 1894#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 1895/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 1896bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
1897{
1898 if (have_rcu_nocb_mask)
1899 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1900 return false;
1901}
2f33b512 1902#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 1903
fbce7497
PM
1904/*
1905 * Kick the leader kthread for this NOCB group.
1906 */
1907static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1908{
1909 struct rcu_data *rdp_leader = rdp->nocb_leader;
1910
1911 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
1912 return;
11ed7f93 1913 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 1914 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
11ed7f93 1915 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
1916 wake_up(&rdp_leader->nocb_wq);
1917 }
1918}
1919
d7e29933
PM
1920/*
1921 * Does the specified CPU need an RCU callback for the specified flavor
1922 * of rcu_barrier()?
1923 */
1924static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1925{
1926 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
41050a00
PM
1927 unsigned long ret;
1928#ifdef CONFIG_PROVE_RCU
d7e29933 1929 struct rcu_head *rhp;
41050a00 1930#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1931
41050a00
PM
1932 /*
1933 * Check count of all no-CBs callbacks awaiting invocation.
1934 * There needs to be a barrier before this function is called,
1935 * but associated with a prior determination that no more
1936 * callbacks would be posted. In the worst case, the first
1937 * barrier in _rcu_barrier() suffices (but the caller cannot
1938 * necessarily rely on this, not a substitute for the caller
1939 * getting the concurrency design right!). There must also be
1940 * a barrier between the following load an posting of a callback
1941 * (if a callback is in fact needed). This is associated with an
1942 * atomic_inc() in the caller.
1943 */
1944 ret = atomic_long_read(&rdp->nocb_q_count);
d7e29933 1945
41050a00 1946#ifdef CONFIG_PROVE_RCU
d7e29933
PM
1947 rhp = ACCESS_ONCE(rdp->nocb_head);
1948 if (!rhp)
1949 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
1950 if (!rhp)
1951 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
1952
1953 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
1954 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
1955 /* RCU callback enqueued before CPU first came online??? */
1956 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1957 cpu, rhp->func);
1958 WARN_ON_ONCE(1);
1959 }
41050a00 1960#endif /* #ifdef CONFIG_PROVE_RCU */
d7e29933 1961
41050a00 1962 return !!ret;
d7e29933
PM
1963}
1964
3fbfbf7a
PM
1965/*
1966 * Enqueue the specified string of rcu_head structures onto the specified
1967 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
1968 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
1969 * counts are supplied by rhcount and rhcount_lazy.
1970 *
1971 * If warranted, also wake up the kthread servicing this CPUs queues.
1972 */
1973static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1974 struct rcu_head *rhp,
1975 struct rcu_head **rhtp,
96d3fd0d
PM
1976 int rhcount, int rhcount_lazy,
1977 unsigned long flags)
3fbfbf7a
PM
1978{
1979 int len;
1980 struct rcu_head **old_rhpp;
1981 struct task_struct *t;
1982
1983 /* Enqueue the callback on the nocb list and update counts. */
41050a00
PM
1984 atomic_long_add(rhcount, &rdp->nocb_q_count);
1985 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
3fbfbf7a
PM
1986 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1987 ACCESS_ONCE(*old_rhpp) = rhp;
3fbfbf7a 1988 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 1989 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
1990
1991 /* If we are not being polled and there is a kthread, awaken it ... */
1992 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 1993 if (rcu_nocb_poll || !t) {
9261dd0d
PM
1994 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1995 TPS("WakeNotPoll"));
3fbfbf7a 1996 return;
9261dd0d 1997 }
3fbfbf7a
PM
1998 len = atomic_long_read(&rdp->nocb_q_count);
1999 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2000 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2001 /* ... if queue was empty ... */
2002 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2003 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2004 TPS("WakeEmpty"));
2005 } else {
9fdd3bc9 2006 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
2007 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2008 TPS("WakeEmptyIsDeferred"));
2009 }
3fbfbf7a
PM
2010 rdp->qlen_last_fqs_check = 0;
2011 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2012 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2013 if (!irqs_disabled_flags(flags)) {
2014 wake_nocb_leader(rdp, true);
2015 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2016 TPS("WakeOvf"));
2017 } else {
2018 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2019 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2020 TPS("WakeOvfIsDeferred"));
2021 }
3fbfbf7a 2022 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2023 } else {
2024 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2025 }
2026 return;
2027}
2028
2029/*
2030 * This is a helper for __call_rcu(), which invokes this when the normal
2031 * callback queue is inoperable. If this is not a no-CBs CPU, this
2032 * function returns failure back to __call_rcu(), which can complain
2033 * appropriately.
2034 *
2035 * Otherwise, this function queues the callback where the corresponding
2036 * "rcuo" kthread can find it.
2037 */
2038static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2039 bool lazy, unsigned long flags)
3fbfbf7a
PM
2040{
2041
d1e43fa5 2042 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2043 return false;
96d3fd0d 2044 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2045 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2046 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2047 (unsigned long)rhp->func,
756cbf6b
PM
2048 -atomic_long_read(&rdp->nocb_q_count_lazy),
2049 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2050 else
2051 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2052 -atomic_long_read(&rdp->nocb_q_count_lazy),
2053 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2054
2055 /*
2056 * If called from an extended quiescent state with interrupts
2057 * disabled, invoke the RCU core in order to allow the idle-entry
2058 * deferred-wakeup check to function.
2059 */
2060 if (irqs_disabled_flags(flags) &&
2061 !rcu_is_watching() &&
2062 cpu_online(smp_processor_id()))
2063 invoke_rcu_core();
2064
c271d3a9 2065 return true;
3fbfbf7a
PM
2066}
2067
2068/*
2069 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2070 * not a no-CBs CPU.
2071 */
2072static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2073 struct rcu_data *rdp,
2074 unsigned long flags)
3fbfbf7a
PM
2075{
2076 long ql = rsp->qlen;
2077 long qll = rsp->qlen_lazy;
2078
2079 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2080 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2081 return false;
3fbfbf7a
PM
2082 rsp->qlen = 0;
2083 rsp->qlen_lazy = 0;
2084
2085 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2086 if (rsp->orphan_donelist != NULL) {
2087 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2088 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2089 ql = qll = 0;
2090 rsp->orphan_donelist = NULL;
2091 rsp->orphan_donetail = &rsp->orphan_donelist;
2092 }
2093 if (rsp->orphan_nxtlist != NULL) {
2094 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2095 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2096 ql = qll = 0;
2097 rsp->orphan_nxtlist = NULL;
2098 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2099 }
0a9e1e11 2100 return true;
3fbfbf7a
PM
2101}
2102
2103/*
34ed6246
PM
2104 * If necessary, kick off a new grace period, and either way wait
2105 * for a subsequent grace period to complete.
3fbfbf7a 2106 */
34ed6246 2107static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2108{
34ed6246 2109 unsigned long c;
dae6e64d 2110 bool d;
34ed6246 2111 unsigned long flags;
48a7639c 2112 bool needwake;
34ed6246
PM
2113 struct rcu_node *rnp = rdp->mynode;
2114
2115 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2116 smp_mb__after_unlock_lock();
48a7639c 2117 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2118 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2119 if (needwake)
2120 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2121
2122 /*
34ed6246
PM
2123 * Wait for the grace period. Do so interruptibly to avoid messing
2124 * up the load average.
3fbfbf7a 2125 */
f7f7bac9 2126 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2127 for (;;) {
dae6e64d
PM
2128 wait_event_interruptible(
2129 rnp->nocb_gp_wq[c & 0x1],
2130 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2131 if (likely(d))
34ed6246 2132 break;
73a860cd 2133 WARN_ON(signal_pending(current));
f7f7bac9 2134 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2135 }
f7f7bac9 2136 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2137 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2138}
2139
fbce7497
PM
2140/*
2141 * Leaders come here to wait for additional callbacks to show up.
2142 * This function does not return until callbacks appear.
2143 */
2144static void nocb_leader_wait(struct rcu_data *my_rdp)
2145{
2146 bool firsttime = true;
2147 bool gotcbs;
2148 struct rcu_data *rdp;
2149 struct rcu_head **tail;
2150
2151wait_again:
2152
2153 /* Wait for callbacks to appear. */
2154 if (!rcu_nocb_poll) {
2155 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2156 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2157 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2158 /* Memory barrier handled by smp_mb() calls below and repoll. */
2159 } else if (firsttime) {
2160 firsttime = false; /* Don't drown trace log with "Poll"! */
2161 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2162 }
2163
2164 /*
2165 * Each pass through the following loop checks a follower for CBs.
2166 * We are our own first follower. Any CBs found are moved to
2167 * nocb_gp_head, where they await a grace period.
2168 */
2169 gotcbs = false;
2170 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2171 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2172 if (!rdp->nocb_gp_head)
2173 continue; /* No CBs here, try next follower. */
2174
2175 /* Move callbacks to wait-for-GP list, which is empty. */
2176 ACCESS_ONCE(rdp->nocb_head) = NULL;
2177 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
fbce7497
PM
2178 gotcbs = true;
2179 }
2180
2181 /*
2182 * If there were no callbacks, sleep a bit, rescan after a
2183 * memory barrier, and go retry.
2184 */
2185 if (unlikely(!gotcbs)) {
2186 if (!rcu_nocb_poll)
2187 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2188 "WokeEmpty");
73a860cd 2189 WARN_ON(signal_pending(current));
fbce7497
PM
2190 schedule_timeout_interruptible(1);
2191
2192 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2193 my_rdp->nocb_leader_sleep = true;
2194 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2195 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2196 if (ACCESS_ONCE(rdp->nocb_head)) {
2197 /* Found CB, so short-circuit next wait. */
11ed7f93 2198 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2199 break;
2200 }
2201 goto wait_again;
2202 }
2203
2204 /* Wait for one grace period. */
2205 rcu_nocb_wait_gp(my_rdp);
2206
2207 /*
11ed7f93
PK
2208 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2209 * We set it now, but recheck for new callbacks while
fbce7497
PM
2210 * traversing our follower list.
2211 */
11ed7f93
PK
2212 my_rdp->nocb_leader_sleep = true;
2213 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2214
2215 /* Each pass through the following loop wakes a follower, if needed. */
2216 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2217 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2218 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2219 if (!rdp->nocb_gp_head)
2220 continue; /* No CBs, so no need to wake follower. */
2221
2222 /* Append callbacks to follower's "done" list. */
2223 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2224 *tail = rdp->nocb_gp_head;
c847f142 2225 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2226 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2227 /*
2228 * List was empty, wake up the follower.
2229 * Memory barriers supplied by atomic_long_add().
2230 */
2231 wake_up(&rdp->nocb_wq);
2232 }
2233 }
2234
2235 /* If we (the leader) don't have CBs, go wait some more. */
2236 if (!my_rdp->nocb_follower_head)
2237 goto wait_again;
2238}
2239
2240/*
2241 * Followers come here to wait for additional callbacks to show up.
2242 * This function does not return until callbacks appear.
2243 */
2244static void nocb_follower_wait(struct rcu_data *rdp)
2245{
2246 bool firsttime = true;
2247
2248 for (;;) {
2249 if (!rcu_nocb_poll) {
2250 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2251 "FollowerSleep");
2252 wait_event_interruptible(rdp->nocb_wq,
2253 ACCESS_ONCE(rdp->nocb_follower_head));
2254 } else if (firsttime) {
2255 /* Don't drown trace log with "Poll"! */
2256 firsttime = false;
2257 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2258 }
2259 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2260 /* ^^^ Ensure CB invocation follows _head test. */
2261 return;
2262 }
2263 if (!rcu_nocb_poll)
2264 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2265 "WokeEmpty");
73a860cd 2266 WARN_ON(signal_pending(current));
fbce7497
PM
2267 schedule_timeout_interruptible(1);
2268 }
2269}
2270
3fbfbf7a
PM
2271/*
2272 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2273 * callbacks queued by the corresponding no-CBs CPU, however, there is
2274 * an optional leader-follower relationship so that the grace-period
2275 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2276 */
2277static int rcu_nocb_kthread(void *arg)
2278{
2279 int c, cl;
2280 struct rcu_head *list;
2281 struct rcu_head *next;
2282 struct rcu_head **tail;
2283 struct rcu_data *rdp = arg;
2284
2285 /* Each pass through this loop invokes one batch of callbacks */
2286 for (;;) {
fbce7497
PM
2287 /* Wait for callbacks. */
2288 if (rdp->nocb_leader == rdp)
2289 nocb_leader_wait(rdp);
2290 else
2291 nocb_follower_wait(rdp);
2292
2293 /* Pull the ready-to-invoke callbacks onto local list. */
2294 list = ACCESS_ONCE(rdp->nocb_follower_head);
2295 BUG_ON(!list);
2296 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2297 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2298 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
3fbfbf7a
PM
2299
2300 /* Each pass through the following loop invokes a callback. */
41050a00
PM
2301 trace_rcu_batch_start(rdp->rsp->name,
2302 atomic_long_read(&rdp->nocb_q_count_lazy),
2303 atomic_long_read(&rdp->nocb_q_count), -1);
3fbfbf7a
PM
2304 c = cl = 0;
2305 while (list) {
2306 next = list->next;
2307 /* Wait for enqueuing to complete, if needed. */
2308 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2309 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2310 TPS("WaitQueue"));
3fbfbf7a 2311 schedule_timeout_interruptible(1);
69a79bb1
PM
2312 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2313 TPS("WokeQueue"));
3fbfbf7a
PM
2314 next = list->next;
2315 }
2316 debug_rcu_head_unqueue(list);
2317 local_bh_disable();
2318 if (__rcu_reclaim(rdp->rsp->name, list))
2319 cl++;
2320 c++;
2321 local_bh_enable();
2322 list = next;
2323 }
2324 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
41050a00
PM
2325 smp_mb__before_atomic(); /* _add after CB invocation. */
2326 atomic_long_add(-c, &rdp->nocb_q_count);
2327 atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
c635a4e1 2328 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2329 }
2330 return 0;
2331}
2332
96d3fd0d 2333/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2334static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2335{
2336 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2337}
2338
2339/* Do a deferred wakeup of rcu_nocb_kthread(). */
2340static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2341{
9fdd3bc9
PM
2342 int ndw;
2343
96d3fd0d
PM
2344 if (!rcu_nocb_need_deferred_wakeup(rdp))
2345 return;
9fdd3bc9
PM
2346 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2347 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2348 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2349 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2350}
2351
f4579fc5
PM
2352void __init rcu_init_nohz(void)
2353{
2354 int cpu;
2355 bool need_rcu_nocb_mask = true;
2356 struct rcu_state *rsp;
2357
2358#ifdef CONFIG_RCU_NOCB_CPU_NONE
2359 need_rcu_nocb_mask = false;
2360#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2361
2362#if defined(CONFIG_NO_HZ_FULL)
2363 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2364 need_rcu_nocb_mask = true;
2365#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2366
2367 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2368 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2369 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2370 return;
2371 }
f4579fc5
PM
2372 have_rcu_nocb_mask = true;
2373 }
2374 if (!have_rcu_nocb_mask)
2375 return;
2376
2377#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2378 pr_info("\tOffload RCU callbacks from CPU 0\n");
2379 cpumask_set_cpu(0, rcu_nocb_mask);
2380#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2381#ifdef CONFIG_RCU_NOCB_CPU_ALL
2382 pr_info("\tOffload RCU callbacks from all CPUs\n");
2383 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2384#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2385#if defined(CONFIG_NO_HZ_FULL)
2386 if (tick_nohz_full_running)
2387 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2388#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2389
2390 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2391 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2392 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2393 rcu_nocb_mask);
2394 }
ad853b48
TH
2395 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2396 cpumask_pr_args(rcu_nocb_mask));
f4579fc5
PM
2397 if (rcu_nocb_poll)
2398 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2399
2400 for_each_rcu_flavor(rsp) {
2401 for_each_cpu(cpu, rcu_nocb_mask) {
2402 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2403
2404 /*
2405 * If there are early callbacks, they will need
2406 * to be moved to the nocb lists.
2407 */
2408 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2409 &rdp->nxtlist &&
2410 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2411 init_nocb_callback_list(rdp);
2412 }
35ce7f29 2413 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2414 }
96d3fd0d
PM
2415}
2416
3fbfbf7a
PM
2417/* Initialize per-rcu_data variables for no-CBs CPUs. */
2418static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2419{
2420 rdp->nocb_tail = &rdp->nocb_head;
2421 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2422 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2423}
2424
35ce7f29
PM
2425/*
2426 * If the specified CPU is a no-CBs CPU that does not already have its
2427 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2428 * brought online out of order, this can require re-organizing the
2429 * leader-follower relationships.
2430 */
2431static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2432{
2433 struct rcu_data *rdp;
2434 struct rcu_data *rdp_last;
2435 struct rcu_data *rdp_old_leader;
2436 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2437 struct task_struct *t;
2438
2439 /*
2440 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2441 * then nothing to do.
2442 */
2443 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2444 return;
2445
2446 /* If we didn't spawn the leader first, reorganize! */
2447 rdp_old_leader = rdp_spawn->nocb_leader;
2448 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2449 rdp_last = NULL;
2450 rdp = rdp_old_leader;
2451 do {
2452 rdp->nocb_leader = rdp_spawn;
2453 if (rdp_last && rdp != rdp_spawn)
2454 rdp_last->nocb_next_follower = rdp;
bbe5d7a9
PM
2455 if (rdp == rdp_spawn) {
2456 rdp = rdp->nocb_next_follower;
2457 } else {
2458 rdp_last = rdp;
2459 rdp = rdp->nocb_next_follower;
2460 rdp_last->nocb_next_follower = NULL;
2461 }
35ce7f29
PM
2462 } while (rdp);
2463 rdp_spawn->nocb_next_follower = rdp_old_leader;
2464 }
2465
2466 /* Spawn the kthread for this CPU and RCU flavor. */
2467 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2468 "rcuo%c/%d", rsp->abbr, cpu);
2469 BUG_ON(IS_ERR(t));
2470 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2471}
2472
2473/*
2474 * If the specified CPU is a no-CBs CPU that does not already have its
2475 * rcuo kthreads, spawn them.
2476 */
2477static void rcu_spawn_all_nocb_kthreads(int cpu)
2478{
2479 struct rcu_state *rsp;
2480
2481 if (rcu_scheduler_fully_active)
2482 for_each_rcu_flavor(rsp)
2483 rcu_spawn_one_nocb_kthread(rsp, cpu);
2484}
2485
2486/*
2487 * Once the scheduler is running, spawn rcuo kthreads for all online
2488 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2489 * non-boot CPUs come online -- if this changes, we will need to add
2490 * some mutual exclusion.
2491 */
2492static void __init rcu_spawn_nocb_kthreads(void)
2493{
2494 int cpu;
2495
2496 for_each_online_cpu(cpu)
2497 rcu_spawn_all_nocb_kthreads(cpu);
2498}
2499
fbce7497
PM
2500/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2501static int rcu_nocb_leader_stride = -1;
2502module_param(rcu_nocb_leader_stride, int, 0444);
2503
2504/*
35ce7f29 2505 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2506 */
35ce7f29 2507static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2508{
2509 int cpu;
fbce7497
PM
2510 int ls = rcu_nocb_leader_stride;
2511 int nl = 0; /* Next leader. */
3fbfbf7a 2512 struct rcu_data *rdp;
fbce7497
PM
2513 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2514 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2515
22c2f669 2516 if (!have_rcu_nocb_mask)
3fbfbf7a 2517 return;
fbce7497
PM
2518 if (ls == -1) {
2519 ls = int_sqrt(nr_cpu_ids);
2520 rcu_nocb_leader_stride = ls;
2521 }
2522
2523 /*
2524 * Each pass through this loop sets up one rcu_data structure and
2525 * spawns one rcu_nocb_kthread().
2526 */
3fbfbf7a
PM
2527 for_each_cpu(cpu, rcu_nocb_mask) {
2528 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2529 if (rdp->cpu >= nl) {
2530 /* New leader, set up for followers & next leader. */
2531 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2532 rdp->nocb_leader = rdp;
2533 rdp_leader = rdp;
2534 } else {
2535 /* Another follower, link to previous leader. */
2536 rdp->nocb_leader = rdp_leader;
2537 rdp_prev->nocb_next_follower = rdp;
2538 }
2539 rdp_prev = rdp;
3fbfbf7a
PM
2540 }
2541}
2542
2543/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2544static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2545{
22c2f669 2546 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2547 return false;
22c2f669 2548
3fbfbf7a 2549 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2550 return true;
3fbfbf7a
PM
2551}
2552
34ed6246
PM
2553#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2554
d7e29933
PM
2555static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2556{
2557 WARN_ON_ONCE(1); /* Should be dead code. */
2558 return false;
2559}
2560
0446be48 2561static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2562{
3fbfbf7a
PM
2563}
2564
dae6e64d
PM
2565static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2566{
2567}
2568
2569static void rcu_init_one_nocb(struct rcu_node *rnp)
2570{
2571}
3fbfbf7a 2572
3fbfbf7a 2573static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2574 bool lazy, unsigned long flags)
3fbfbf7a 2575{
4afc7e26 2576 return false;
3fbfbf7a
PM
2577}
2578
2579static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2580 struct rcu_data *rdp,
2581 unsigned long flags)
3fbfbf7a 2582{
f4aa84ba 2583 return false;
3fbfbf7a
PM
2584}
2585
3fbfbf7a
PM
2586static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2587{
2588}
2589
9fdd3bc9 2590static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2591{
2592 return false;
2593}
2594
2595static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2596{
2597}
2598
35ce7f29
PM
2599static void rcu_spawn_all_nocb_kthreads(int cpu)
2600{
2601}
2602
2603static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2604{
2605}
2606
34ed6246 2607static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2608{
34ed6246 2609 return false;
3fbfbf7a
PM
2610}
2611
2612#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2613
2614/*
2615 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2616 * arbitrarily long period of time with the scheduling-clock tick turned
2617 * off. RCU will be paying attention to this CPU because it is in the
2618 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2619 * machine because the scheduling-clock tick has been disabled. Therefore,
2620 * if an adaptive-ticks CPU is failing to respond to the current grace
2621 * period and has not be idle from an RCU perspective, kick it.
2622 */
4a81e832 2623static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2624{
2625#ifdef CONFIG_NO_HZ_FULL
2626 if (tick_nohz_full_cpu(cpu))
2627 smp_send_reschedule(cpu);
2628#endif /* #ifdef CONFIG_NO_HZ_FULL */
2629}
2333210b
PM
2630
2631
2632#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2633
0edd1b17 2634static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2635#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2636#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2637#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2638#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2639#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2640
eb348b89
PM
2641/*
2642 * Invoked to note exit from irq or task transition to idle. Note that
2643 * usermode execution does -not- count as idle here! After all, we want
2644 * to detect full-system idle states, not RCU quiescent states and grace
2645 * periods. The caller must have disabled interrupts.
2646 */
28ced795 2647static void rcu_sysidle_enter(int irq)
eb348b89
PM
2648{
2649 unsigned long j;
28ced795 2650 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
eb348b89 2651
663e1310
PM
2652 /* If there are no nohz_full= CPUs, no need to track this. */
2653 if (!tick_nohz_full_enabled())
2654 return;
2655
eb348b89
PM
2656 /* Adjust nesting, check for fully idle. */
2657 if (irq) {
2658 rdtp->dynticks_idle_nesting--;
2659 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2660 if (rdtp->dynticks_idle_nesting != 0)
2661 return; /* Still not fully idle. */
2662 } else {
2663 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2664 DYNTICK_TASK_NEST_VALUE) {
2665 rdtp->dynticks_idle_nesting = 0;
2666 } else {
2667 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2668 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2669 return; /* Still not fully idle. */
2670 }
2671 }
2672
2673 /* Record start of fully idle period. */
2674 j = jiffies;
2675 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2676 smp_mb__before_atomic();
eb348b89 2677 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2678 smp_mb__after_atomic();
eb348b89
PM
2679 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2680}
2681
0edd1b17
PM
2682/*
2683 * Unconditionally force exit from full system-idle state. This is
2684 * invoked when a normal CPU exits idle, but must be called separately
2685 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2686 * is that the timekeeping CPU is permitted to take scheduling-clock
2687 * interrupts while the system is in system-idle state, and of course
2688 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2689 * interrupt from any other type of interrupt.
2690 */
2691void rcu_sysidle_force_exit(void)
2692{
2693 int oldstate = ACCESS_ONCE(full_sysidle_state);
2694 int newoldstate;
2695
2696 /*
2697 * Each pass through the following loop attempts to exit full
2698 * system-idle state. If contention proves to be a problem,
2699 * a trylock-based contention tree could be used here.
2700 */
2701 while (oldstate > RCU_SYSIDLE_SHORT) {
2702 newoldstate = cmpxchg(&full_sysidle_state,
2703 oldstate, RCU_SYSIDLE_NOT);
2704 if (oldstate == newoldstate &&
2705 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2706 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2707 return; /* We cleared it, done! */
2708 }
2709 oldstate = newoldstate;
2710 }
2711 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2712}
2713
eb348b89
PM
2714/*
2715 * Invoked to note entry to irq or task transition from idle. Note that
2716 * usermode execution does -not- count as idle here! The caller must
2717 * have disabled interrupts.
2718 */
28ced795 2719static void rcu_sysidle_exit(int irq)
eb348b89 2720{
28ced795
CL
2721 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
2722
663e1310
PM
2723 /* If there are no nohz_full= CPUs, no need to track this. */
2724 if (!tick_nohz_full_enabled())
2725 return;
2726
eb348b89
PM
2727 /* Adjust nesting, check for already non-idle. */
2728 if (irq) {
2729 rdtp->dynticks_idle_nesting++;
2730 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2731 if (rdtp->dynticks_idle_nesting != 1)
2732 return; /* Already non-idle. */
2733 } else {
2734 /*
2735 * Allow for irq misnesting. Yes, it really is possible
2736 * to enter an irq handler then never leave it, and maybe
2737 * also vice versa. Handle both possibilities.
2738 */
2739 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2740 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2741 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2742 return; /* Already non-idle. */
2743 } else {
2744 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2745 }
2746 }
2747
2748 /* Record end of idle period. */
4e857c58 2749 smp_mb__before_atomic();
eb348b89 2750 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2751 smp_mb__after_atomic();
eb348b89 2752 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2753
2754 /*
2755 * If we are the timekeeping CPU, we are permitted to be non-idle
2756 * during a system-idle state. This must be the case, because
2757 * the timekeeping CPU has to take scheduling-clock interrupts
2758 * during the time that the system is transitioning to full
2759 * system-idle state. This means that the timekeeping CPU must
2760 * invoke rcu_sysidle_force_exit() directly if it does anything
2761 * more than take a scheduling-clock interrupt.
2762 */
2763 if (smp_processor_id() == tick_do_timer_cpu)
2764 return;
2765
2766 /* Update system-idle state: We are clearly no longer fully idle! */
2767 rcu_sysidle_force_exit();
2768}
2769
2770/*
2771 * Check to see if the current CPU is idle. Note that usermode execution
2772 * does not count as idle. The caller must have disabled interrupts.
2773 */
2774static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2775 unsigned long *maxj)
2776{
2777 int cur;
2778 unsigned long j;
2779 struct rcu_dynticks *rdtp = rdp->dynticks;
2780
663e1310
PM
2781 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2782 if (!tick_nohz_full_enabled())
2783 return;
2784
0edd1b17
PM
2785 /*
2786 * If some other CPU has already reported non-idle, if this is
2787 * not the flavor of RCU that tracks sysidle state, or if this
2788 * is an offline or the timekeeping CPU, nothing to do.
2789 */
417e8d26 2790 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2791 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2792 return;
eb75767b
PM
2793 if (rcu_gp_in_progress(rdp->rsp))
2794 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2795
2796 /* Pick up current idle and NMI-nesting counter and check. */
2797 cur = atomic_read(&rdtp->dynticks_idle);
2798 if (cur & 0x1) {
2799 *isidle = false; /* We are not idle! */
2800 return;
2801 }
2802 smp_mb(); /* Read counters before timestamps. */
2803
2804 /* Pick up timestamps. */
2805 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2806 /* If this CPU entered idle more recently, update maxj timestamp. */
2807 if (ULONG_CMP_LT(*maxj, j))
2808 *maxj = j;
2809}
2810
2811/*
2812 * Is this the flavor of RCU that is handling full-system idle?
2813 */
2814static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2815{
417e8d26 2816 return rsp == rcu_state_p;
0edd1b17
PM
2817}
2818
2819/*
2820 * Return a delay in jiffies based on the number of CPUs, rcu_node
2821 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2822 * systems more time to transition to full-idle state in order to
2823 * avoid the cache thrashing that otherwise occur on the state variable.
2824 * Really small systems (less than a couple of tens of CPUs) should
2825 * instead use a single global atomically incremented counter, and later
2826 * versions of this will automatically reconfigure themselves accordingly.
2827 */
2828static unsigned long rcu_sysidle_delay(void)
2829{
2830 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2831 return 0;
2832 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2833}
2834
2835/*
2836 * Advance the full-system-idle state. This is invoked when all of
2837 * the non-timekeeping CPUs are idle.
2838 */
2839static void rcu_sysidle(unsigned long j)
2840{
2841 /* Check the current state. */
2842 switch (ACCESS_ONCE(full_sysidle_state)) {
2843 case RCU_SYSIDLE_NOT:
2844
2845 /* First time all are idle, so note a short idle period. */
2846 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2847 break;
2848
2849 case RCU_SYSIDLE_SHORT:
2850
2851 /*
2852 * Idle for a bit, time to advance to next state?
2853 * cmpxchg failure means race with non-idle, let them win.
2854 */
2855 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2856 (void)cmpxchg(&full_sysidle_state,
2857 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2858 break;
2859
2860 case RCU_SYSIDLE_LONG:
2861
2862 /*
2863 * Do an additional check pass before advancing to full.
2864 * cmpxchg failure means race with non-idle, let them win.
2865 */
2866 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2867 (void)cmpxchg(&full_sysidle_state,
2868 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2869 break;
2870
2871 default:
2872 break;
2873 }
2874}
2875
2876/*
2877 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2878 * back to the beginning.
2879 */
2880static void rcu_sysidle_cancel(void)
2881{
2882 smp_mb();
becb41bf
PM
2883 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2884 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2885}
2886
2887/*
2888 * Update the sysidle state based on the results of a force-quiescent-state
2889 * scan of the CPUs' dyntick-idle state.
2890 */
2891static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2892 unsigned long maxj, bool gpkt)
2893{
417e8d26 2894 if (rsp != rcu_state_p)
0edd1b17
PM
2895 return; /* Wrong flavor, ignore. */
2896 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2897 return; /* Running state machine from timekeeping CPU. */
2898 if (isidle)
2899 rcu_sysidle(maxj); /* More idle! */
2900 else
2901 rcu_sysidle_cancel(); /* Idle is over. */
2902}
2903
2904/*
2905 * Wrapper for rcu_sysidle_report() when called from the grace-period
2906 * kthread's context.
2907 */
2908static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2909 unsigned long maxj)
2910{
663e1310
PM
2911 /* If there are no nohz_full= CPUs, no need to track this. */
2912 if (!tick_nohz_full_enabled())
2913 return;
2914
0edd1b17
PM
2915 rcu_sysidle_report(rsp, isidle, maxj, true);
2916}
2917
2918/* Callback and function for forcing an RCU grace period. */
2919struct rcu_sysidle_head {
2920 struct rcu_head rh;
2921 int inuse;
2922};
2923
2924static void rcu_sysidle_cb(struct rcu_head *rhp)
2925{
2926 struct rcu_sysidle_head *rshp;
2927
2928 /*
2929 * The following memory barrier is needed to replace the
2930 * memory barriers that would normally be in the memory
2931 * allocator.
2932 */
2933 smp_mb(); /* grace period precedes setting inuse. */
2934
2935 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
2936 ACCESS_ONCE(rshp->inuse) = 0;
2937}
2938
2939/*
2940 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
2941 * The caller must have disabled interrupts. This is not intended to be
2942 * called unless tick_nohz_full_enabled().
0edd1b17
PM
2943 */
2944bool rcu_sys_is_idle(void)
2945{
2946 static struct rcu_sysidle_head rsh;
2947 int rss = ACCESS_ONCE(full_sysidle_state);
2948
2949 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
2950 return false;
2951
2952 /* Handle small-system case by doing a full scan of CPUs. */
2953 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
2954 int oldrss = rss - 1;
2955
2956 /*
2957 * One pass to advance to each state up to _FULL.
2958 * Give up if any pass fails to advance the state.
2959 */
2960 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
2961 int cpu;
2962 bool isidle = true;
2963 unsigned long maxj = jiffies - ULONG_MAX / 4;
2964 struct rcu_data *rdp;
2965
2966 /* Scan all the CPUs looking for nonidle CPUs. */
2967 for_each_possible_cpu(cpu) {
417e8d26 2968 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
2969 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
2970 if (!isidle)
2971 break;
2972 }
417e8d26 2973 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17
PM
2974 oldrss = rss;
2975 rss = ACCESS_ONCE(full_sysidle_state);
2976 }
2977 }
2978
2979 /* If this is the first observation of an idle period, record it. */
2980 if (rss == RCU_SYSIDLE_FULL) {
2981 rss = cmpxchg(&full_sysidle_state,
2982 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
2983 return rss == RCU_SYSIDLE_FULL;
2984 }
2985
2986 smp_mb(); /* ensure rss load happens before later caller actions. */
2987
2988 /* If already fully idle, tell the caller (in case of races). */
2989 if (rss == RCU_SYSIDLE_FULL_NOTED)
2990 return true;
2991
2992 /*
2993 * If we aren't there yet, and a grace period is not in flight,
2994 * initiate a grace period. Either way, tell the caller that
2995 * we are not there yet. We use an xchg() rather than an assignment
2996 * to make up for the memory barriers that would otherwise be
2997 * provided by the memory allocator.
2998 */
2999 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 3000 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
3001 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3002 call_rcu(&rsh.rh, rcu_sysidle_cb);
3003 return false;
eb348b89
PM
3004}
3005
2333210b
PM
3006/*
3007 * Initialize dynticks sysidle state for CPUs coming online.
3008 */
3009static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3010{
3011 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3012}
3013
3014#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3015
28ced795 3016static void rcu_sysidle_enter(int irq)
eb348b89
PM
3017{
3018}
3019
28ced795 3020static void rcu_sysidle_exit(int irq)
eb348b89
PM
3021{
3022}
3023
0edd1b17
PM
3024static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3025 unsigned long *maxj)
3026{
3027}
3028
3029static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3030{
3031 return false;
3032}
3033
3034static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3035 unsigned long maxj)
3036{
3037}
3038
2333210b
PM
3039static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3040{
3041}
3042
3043#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3044
3045/*
3046 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3047 * grace-period kthread will do force_quiescent_state() processing?
3048 * The idea is to avoid waking up RCU core processing on such a
3049 * CPU unless the grace period has extended for too long.
3050 *
3051 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3052 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3053 */
3054static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3055{
3056#ifdef CONFIG_NO_HZ_FULL
3057 if (tick_nohz_full_cpu(smp_processor_id()) &&
3058 (!rcu_gp_in_progress(rsp) ||
3059 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3060 return 1;
3061#endif /* #ifdef CONFIG_NO_HZ_FULL */
3062 return 0;
3063}
5057f55e
PM
3064
3065/*
3066 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3067 * timekeeping CPU.
3068 */
3069static void rcu_bind_gp_kthread(void)
3070{
c0f489d2 3071 int __maybe_unused cpu;
5057f55e 3072
c0f489d2 3073 if (!tick_nohz_full_enabled())
5057f55e 3074 return;
c0f489d2
PM
3075#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3076 cpu = tick_do_timer_cpu;
3077 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3078 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3079#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3080 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3081 housekeeping_affine(current);
3082#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3083}
176f8f7a
PM
3084
3085/* Record the current task on dyntick-idle entry. */
3086static void rcu_dynticks_task_enter(void)
3087{
3088#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3089 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3090#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3091}
3092
3093/* Record no current task on dyntick-idle exit. */
3094static void rcu_dynticks_task_exit(void)
3095{
3096#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3097 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3098#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3099}