]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree_plugin.h
rcu: Avoid IPIing idle CPUs from synchronize_sched_expedited()
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
61cfd097 36
abaa93d9 37#include "../locking/rtmutex_common.h"
5b61b0ba 38#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
61cfd097
PM
39
40/*
41 * Control variables for per-CPU and per-rcu_node kthreads. These
42 * handle all flavors of RCU.
43 */
44static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
45DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
46DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
47DEFINE_PER_CPU(char, rcu_cpu_has_work);
48
49#else /* #ifdef CONFIG_RCU_BOOST */
50
5b61b0ba 51#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
61cfd097
PM
52
53#endif /* #else #ifdef CONFIG_RCU_BOOST */
5b61b0ba 54
3fbfbf7a
PM
55#ifdef CONFIG_RCU_NOCB_CPU
56static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
57static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 58static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
59static char __initdata nocb_buf[NR_CPUS * 5];
60#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
61
26845c28
PM
62/*
63 * Check the RCU kernel configuration parameters and print informative
64 * messages about anything out of the ordinary. If you like #ifdef, you
65 * will love this function.
66 */
67static void __init rcu_bootup_announce_oddness(void)
68{
69#ifdef CONFIG_RCU_TRACE
efc151c3 70 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
71#endif
72#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 73 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
74 CONFIG_RCU_FANOUT);
75#endif
76#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 77 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
78#endif
79#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 80 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
81#endif
82#ifdef CONFIG_PROVE_RCU
efc151c3 83 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
84#endif
85#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 86 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 87#endif
81a294c4 88#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 89 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
90#endif
91#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 92 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
93#endif
94#if NUM_RCU_LVL_4 != 0
efc151c3 95 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 96#endif
f885b7f2 97 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 98 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 99 if (nr_cpu_ids != NR_CPUS)
efc151c3 100 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
26845c28
PM
101}
102
f41d911f
PM
103#ifdef CONFIG_TREE_PREEMPT_RCU
104
a41bfeb2 105RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 106static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 107
d9a3da06
PM
108static int rcu_preempted_readers_exp(struct rcu_node *rnp);
109
f41d911f
PM
110/*
111 * Tell them what RCU they are running.
112 */
0e0fc1c2 113static void __init rcu_bootup_announce(void)
f41d911f 114{
efc151c3 115 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 116 rcu_bootup_announce_oddness();
f41d911f
PM
117}
118
119/*
120 * Return the number of RCU-preempt batches processed thus far
121 * for debug and statistics.
122 */
bf33eb1a 123static long rcu_batches_completed_preempt(void)
f41d911f
PM
124{
125 return rcu_preempt_state.completed;
126}
127EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
128
129/*
130 * Return the number of RCU batches processed thus far for debug & stats.
131 */
132long rcu_batches_completed(void)
133{
134 return rcu_batches_completed_preempt();
135}
136EXPORT_SYMBOL_GPL(rcu_batches_completed);
137
138/*
6cc68793 139 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
140 * that this just means that the task currently running on the CPU is
141 * not in a quiescent state. There might be any number of tasks blocked
142 * while in an RCU read-side critical section.
25502a6c 143 *
1d082fd0
PM
144 * As with the other rcu_*_qs() functions, callers to this function
145 * must disable preemption.
f41d911f 146 */
284a8c93 147static void rcu_preempt_qs(void)
f41d911f 148{
284a8c93
PM
149 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
150 trace_rcu_grace_period(TPS("rcu_preempt"),
151 __this_cpu_read(rcu_preempt_data.gpnum),
152 TPS("cpuqs"));
153 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
154 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
155 current->rcu_read_unlock_special.b.need_qs = false;
156 }
f41d911f
PM
157}
158
159/*
c3422bea
PM
160 * We have entered the scheduler, and the current task might soon be
161 * context-switched away from. If this task is in an RCU read-side
162 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
163 * record that fact, so we enqueue the task on the blkd_tasks list.
164 * The task will dequeue itself when it exits the outermost enclosing
165 * RCU read-side critical section. Therefore, the current grace period
166 * cannot be permitted to complete until the blkd_tasks list entries
167 * predating the current grace period drain, in other words, until
168 * rnp->gp_tasks becomes NULL.
c3422bea
PM
169 *
170 * Caller must disable preemption.
f41d911f 171 */
cba6d0d6 172static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
173{
174 struct task_struct *t = current;
c3422bea 175 unsigned long flags;
f41d911f
PM
176 struct rcu_data *rdp;
177 struct rcu_node *rnp;
178
10f39bb1 179 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 180 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
181
182 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 183 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 184 rnp = rdp->mynode;
1304afb2 185 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 186 smp_mb__after_unlock_lock();
1d082fd0 187 t->rcu_read_unlock_special.b.blocked = true;
86848966 188 t->rcu_blocked_node = rnp;
f41d911f
PM
189
190 /*
191 * If this CPU has already checked in, then this task
192 * will hold up the next grace period rather than the
193 * current grace period. Queue the task accordingly.
194 * If the task is queued for the current grace period
195 * (i.e., this CPU has not yet passed through a quiescent
196 * state for the current grace period), then as long
197 * as that task remains queued, the current grace period
12f5f524
PM
198 * cannot end. Note that there is some uncertainty as
199 * to exactly when the current grace period started.
200 * We take a conservative approach, which can result
201 * in unnecessarily waiting on tasks that started very
202 * slightly after the current grace period began. C'est
203 * la vie!!!
b0e165c0
PM
204 *
205 * But first, note that the current CPU must still be
206 * on line!
f41d911f 207 */
b0e165c0 208 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 209 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
210 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
211 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
212 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
213#ifdef CONFIG_RCU_BOOST
214 if (rnp->boost_tasks != NULL)
215 rnp->boost_tasks = rnp->gp_tasks;
216#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
217 } else {
218 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
219 if (rnp->qsmask & rdp->grpmask)
220 rnp->gp_tasks = &t->rcu_node_entry;
221 }
d4c08f2a
PM
222 trace_rcu_preempt_task(rdp->rsp->name,
223 t->pid,
224 (rnp->qsmask & rdp->grpmask)
225 ? rnp->gpnum
226 : rnp->gpnum + 1);
1304afb2 227 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 228 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 229 t->rcu_read_unlock_special.s) {
10f39bb1
PM
230
231 /*
232 * Complete exit from RCU read-side critical section on
233 * behalf of preempted instance of __rcu_read_unlock().
234 */
235 rcu_read_unlock_special(t);
f41d911f
PM
236 }
237
238 /*
239 * Either we were not in an RCU read-side critical section to
240 * begin with, or we have now recorded that critical section
241 * globally. Either way, we can now note a quiescent state
242 * for this CPU. Again, if we were in an RCU read-side critical
243 * section, and if that critical section was blocking the current
244 * grace period, then the fact that the task has been enqueued
245 * means that we continue to block the current grace period.
246 */
284a8c93 247 rcu_preempt_qs();
f41d911f
PM
248}
249
fc2219d4
PM
250/*
251 * Check for preempted RCU readers blocking the current grace period
252 * for the specified rcu_node structure. If the caller needs a reliable
253 * answer, it must hold the rcu_node's ->lock.
254 */
27f4d280 255static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 256{
12f5f524 257 return rnp->gp_tasks != NULL;
fc2219d4
PM
258}
259
b668c9cf
PM
260/*
261 * Record a quiescent state for all tasks that were previously queued
262 * on the specified rcu_node structure and that were blocking the current
263 * RCU grace period. The caller must hold the specified rnp->lock with
264 * irqs disabled, and this lock is released upon return, but irqs remain
265 * disabled.
266 */
d3f6bad3 267static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
268 __releases(rnp->lock)
269{
270 unsigned long mask;
271 struct rcu_node *rnp_p;
272
27f4d280 273 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 274 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
275 return; /* Still need more quiescent states! */
276 }
277
278 rnp_p = rnp->parent;
279 if (rnp_p == NULL) {
280 /*
281 * Either there is only one rcu_node in the tree,
282 * or tasks were kicked up to root rcu_node due to
283 * CPUs going offline.
284 */
d3f6bad3 285 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
286 return;
287 }
288
289 /* Report up the rest of the hierarchy. */
290 mask = rnp->grpmask;
1304afb2
PM
291 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
292 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 293 smp_mb__after_unlock_lock();
d3f6bad3 294 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
295}
296
12f5f524
PM
297/*
298 * Advance a ->blkd_tasks-list pointer to the next entry, instead
299 * returning NULL if at the end of the list.
300 */
301static struct list_head *rcu_next_node_entry(struct task_struct *t,
302 struct rcu_node *rnp)
303{
304 struct list_head *np;
305
306 np = t->rcu_node_entry.next;
307 if (np == &rnp->blkd_tasks)
308 np = NULL;
309 return np;
310}
311
b668c9cf
PM
312/*
313 * Handle special cases during rcu_read_unlock(), such as needing to
314 * notify RCU core processing or task having blocked during the RCU
315 * read-side critical section.
316 */
2a3fa843 317void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
318{
319 int empty;
d9a3da06 320 int empty_exp;
389abd48 321 int empty_exp_now;
f41d911f 322 unsigned long flags;
12f5f524 323 struct list_head *np;
82e78d80 324#ifdef CONFIG_RCU_BOOST
abaa93d9 325 bool drop_boost_mutex = false;
82e78d80 326#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 327 struct rcu_node *rnp;
1d082fd0 328 union rcu_special special;
f41d911f
PM
329
330 /* NMI handlers cannot block and cannot safely manipulate state. */
331 if (in_nmi())
332 return;
333
334 local_irq_save(flags);
335
336 /*
337 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
338 * let it know that we have done so. Because irqs are disabled,
339 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
340 */
341 special = t->rcu_read_unlock_special;
1d082fd0 342 if (special.b.need_qs) {
284a8c93 343 rcu_preempt_qs();
1d082fd0 344 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
345 local_irq_restore(flags);
346 return;
347 }
f41d911f
PM
348 }
349
79a62f95
LJ
350 /* Hardware IRQ handlers cannot block, complain if they get here. */
351 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
352 local_irq_restore(flags);
353 return;
354 }
355
356 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
357 if (special.b.blocked) {
358 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 359
dd5d19ba
PM
360 /*
361 * Remove this task from the list it blocked on. The
362 * task can migrate while we acquire the lock, but at
363 * most one time. So at most two passes through loop.
364 */
365 for (;;) {
86848966 366 rnp = t->rcu_blocked_node;
1304afb2 367 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 368 smp_mb__after_unlock_lock();
86848966 369 if (rnp == t->rcu_blocked_node)
dd5d19ba 370 break;
1304afb2 371 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 372 }
27f4d280 373 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
374 empty_exp = !rcu_preempted_readers_exp(rnp);
375 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 376 np = rcu_next_node_entry(t, rnp);
f41d911f 377 list_del_init(&t->rcu_node_entry);
82e78d80 378 t->rcu_blocked_node = NULL;
f7f7bac9 379 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 380 rnp->gpnum, t->pid);
12f5f524
PM
381 if (&t->rcu_node_entry == rnp->gp_tasks)
382 rnp->gp_tasks = np;
383 if (&t->rcu_node_entry == rnp->exp_tasks)
384 rnp->exp_tasks = np;
27f4d280
PM
385#ifdef CONFIG_RCU_BOOST
386 if (&t->rcu_node_entry == rnp->boost_tasks)
387 rnp->boost_tasks = np;
abaa93d9
PM
388 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
389 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 390#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
391
392 /*
393 * If this was the last task on the current list, and if
394 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
395 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
396 * so we must take a snapshot of the expedited state.
f41d911f 397 */
389abd48 398 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 399 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 400 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
401 rnp->gpnum,
402 0, rnp->qsmask,
403 rnp->level,
404 rnp->grplo,
405 rnp->grphi,
406 !!rnp->gp_tasks);
d3f6bad3 407 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 408 } else {
d4c08f2a 409 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 410 }
d9a3da06 411
27f4d280
PM
412#ifdef CONFIG_RCU_BOOST
413 /* Unboost if we were boosted. */
abaa93d9
PM
414 if (drop_boost_mutex) {
415 rt_mutex_unlock(&rnp->boost_mtx);
dfeb9765
PM
416 complete(&rnp->boost_completion);
417 }
27f4d280
PM
418#endif /* #ifdef CONFIG_RCU_BOOST */
419
d9a3da06
PM
420 /*
421 * If this was the last task on the expedited lists,
422 * then we need to report up the rcu_node hierarchy.
423 */
389abd48 424 if (!empty_exp && empty_exp_now)
b40d293e 425 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
426 } else {
427 local_irq_restore(flags);
f41d911f 428 }
f41d911f
PM
429}
430
1ed509a2
PM
431#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
432
433/*
434 * Dump detailed information for all tasks blocking the current RCU
435 * grace period on the specified rcu_node structure.
436 */
437static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
438{
439 unsigned long flags;
1ed509a2
PM
440 struct task_struct *t;
441
12f5f524 442 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
443 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
444 raw_spin_unlock_irqrestore(&rnp->lock, flags);
445 return;
446 }
12f5f524
PM
447 t = list_entry(rnp->gp_tasks,
448 struct task_struct, rcu_node_entry);
449 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
450 sched_show_task(t);
451 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
452}
453
454/*
455 * Dump detailed information for all tasks blocking the current RCU
456 * grace period.
457 */
458static void rcu_print_detail_task_stall(struct rcu_state *rsp)
459{
460 struct rcu_node *rnp = rcu_get_root(rsp);
461
462 rcu_print_detail_task_stall_rnp(rnp);
463 rcu_for_each_leaf_node(rsp, rnp)
464 rcu_print_detail_task_stall_rnp(rnp);
465}
466
467#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
468
469static void rcu_print_detail_task_stall(struct rcu_state *rsp)
470{
471}
472
473#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
474
a858af28
PM
475#ifdef CONFIG_RCU_CPU_STALL_INFO
476
477static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478{
efc151c3 479 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
480 rnp->level, rnp->grplo, rnp->grphi);
481}
482
483static void rcu_print_task_stall_end(void)
484{
efc151c3 485 pr_cont("\n");
a858af28
PM
486}
487
488#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
489
490static void rcu_print_task_stall_begin(struct rcu_node *rnp)
491{
492}
493
494static void rcu_print_task_stall_end(void)
495{
496}
497
498#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
499
f41d911f
PM
500/*
501 * Scan the current list of tasks blocked within RCU read-side critical
502 * sections, printing out the tid of each.
503 */
9bc8b558 504static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 505{
f41d911f 506 struct task_struct *t;
9bc8b558 507 int ndetected = 0;
f41d911f 508
27f4d280 509 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 510 return 0;
a858af28 511 rcu_print_task_stall_begin(rnp);
12f5f524
PM
512 t = list_entry(rnp->gp_tasks,
513 struct task_struct, rcu_node_entry);
9bc8b558 514 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 515 pr_cont(" P%d", t->pid);
9bc8b558
PM
516 ndetected++;
517 }
a858af28 518 rcu_print_task_stall_end();
9bc8b558 519 return ndetected;
f41d911f
PM
520}
521
b0e165c0
PM
522/*
523 * Check that the list of blocked tasks for the newly completed grace
524 * period is in fact empty. It is a serious bug to complete a grace
525 * period that still has RCU readers blocked! This function must be
526 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
527 * must be held by the caller.
12f5f524
PM
528 *
529 * Also, if there are blocked tasks on the list, they automatically
530 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
531 */
532static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
533{
27f4d280 534 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
535 if (!list_empty(&rnp->blkd_tasks))
536 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 537 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
538}
539
33f76148
PM
540#ifdef CONFIG_HOTPLUG_CPU
541
dd5d19ba
PM
542/*
543 * Handle tasklist migration for case in which all CPUs covered by the
544 * specified rcu_node have gone offline. Move them up to the root
545 * rcu_node. The reason for not just moving them to the immediate
546 * parent is to remove the need for rcu_read_unlock_special() to
547 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
548 * Returns true if there were tasks blocking the current RCU grace
549 * period.
dd5d19ba 550 *
237c80c5
PM
551 * Returns 1 if there was previously a task blocking the current grace
552 * period on the specified rcu_node structure.
553 *
dd5d19ba
PM
554 * The caller must hold rnp->lock with irqs disabled.
555 */
237c80c5
PM
556static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
557 struct rcu_node *rnp,
558 struct rcu_data *rdp)
dd5d19ba 559{
dd5d19ba
PM
560 struct list_head *lp;
561 struct list_head *lp_root;
d9a3da06 562 int retval = 0;
dd5d19ba 563 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 564 struct task_struct *t;
dd5d19ba 565
86848966
PM
566 if (rnp == rnp_root) {
567 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 568 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 569 }
12f5f524
PM
570
571 /* If we are on an internal node, complain bitterly. */
572 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
573
574 /*
12f5f524
PM
575 * Move tasks up to root rcu_node. Don't try to get fancy for
576 * this corner-case operation -- just put this node's tasks
577 * at the head of the root node's list, and update the root node's
578 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
579 * if non-NULL. This might result in waiting for more tasks than
580 * absolutely necessary, but this is a good performance/complexity
581 * tradeoff.
dd5d19ba 582 */
2036d94a 583 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
584 retval |= RCU_OFL_TASKS_NORM_GP;
585 if (rcu_preempted_readers_exp(rnp))
586 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
587 lp = &rnp->blkd_tasks;
588 lp_root = &rnp_root->blkd_tasks;
589 while (!list_empty(lp)) {
590 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
591 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 592 smp_mb__after_unlock_lock();
12f5f524
PM
593 list_del(&t->rcu_node_entry);
594 t->rcu_blocked_node = rnp_root;
595 list_add(&t->rcu_node_entry, lp_root);
596 if (&t->rcu_node_entry == rnp->gp_tasks)
597 rnp_root->gp_tasks = rnp->gp_tasks;
598 if (&t->rcu_node_entry == rnp->exp_tasks)
599 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
600#ifdef CONFIG_RCU_BOOST
601 if (&t->rcu_node_entry == rnp->boost_tasks)
602 rnp_root->boost_tasks = rnp->boost_tasks;
603#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 604 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 605 }
27f4d280 606
1e3fd2b3
PM
607 rnp->gp_tasks = NULL;
608 rnp->exp_tasks = NULL;
27f4d280 609#ifdef CONFIG_RCU_BOOST
1e3fd2b3 610 rnp->boost_tasks = NULL;
5cc900cf
PM
611 /*
612 * In case root is being boosted and leaf was not. Make sure
613 * that we boost the tasks blocking the current grace period
614 * in this case.
615 */
27f4d280 616 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 617 smp_mb__after_unlock_lock();
27f4d280 618 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
619 rnp_root->boost_tasks != rnp_root->gp_tasks &&
620 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
621 rnp_root->boost_tasks = rnp_root->gp_tasks;
622 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
623#endif /* #ifdef CONFIG_RCU_BOOST */
624
237c80c5 625 return retval;
dd5d19ba
PM
626}
627
e5601400
PM
628#endif /* #ifdef CONFIG_HOTPLUG_CPU */
629
f41d911f
PM
630/*
631 * Check for a quiescent state from the current CPU. When a task blocks,
632 * the task is recorded in the corresponding CPU's rcu_node structure,
633 * which is checked elsewhere.
634 *
635 * Caller must disable hard irqs.
636 */
637static void rcu_preempt_check_callbacks(int cpu)
638{
639 struct task_struct *t = current;
640
641 if (t->rcu_read_lock_nesting == 0) {
284a8c93 642 rcu_preempt_qs();
f41d911f
PM
643 return;
644 }
10f39bb1 645 if (t->rcu_read_lock_nesting > 0 &&
284a8c93
PM
646 per_cpu(rcu_preempt_data, cpu).qs_pending &&
647 !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
1d082fd0 648 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
649}
650
a46e0899
PM
651#ifdef CONFIG_RCU_BOOST
652
09223371
SL
653static void rcu_preempt_do_callbacks(void)
654{
c9d4b0af 655 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
656}
657
a46e0899
PM
658#endif /* #ifdef CONFIG_RCU_BOOST */
659
f41d911f 660/*
6cc68793 661 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
662 */
663void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
664{
3fbfbf7a 665 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
666}
667EXPORT_SYMBOL_GPL(call_rcu);
668
6ebb237b
PM
669/**
670 * synchronize_rcu - wait until a grace period has elapsed.
671 *
672 * Control will return to the caller some time after a full grace
673 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
674 * read-side critical sections have completed. Note, however, that
675 * upon return from synchronize_rcu(), the caller might well be executing
676 * concurrently with new RCU read-side critical sections that began while
677 * synchronize_rcu() was waiting. RCU read-side critical sections are
678 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
679 *
680 * See the description of synchronize_sched() for more detailed information
681 * on memory ordering guarantees.
6ebb237b
PM
682 */
683void synchronize_rcu(void)
684{
fe15d706
PM
685 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
686 !lock_is_held(&rcu_lock_map) &&
687 !lock_is_held(&rcu_sched_lock_map),
688 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
689 if (!rcu_scheduler_active)
690 return;
3705b88d
AM
691 if (rcu_expedited)
692 synchronize_rcu_expedited();
693 else
694 wait_rcu_gp(call_rcu);
6ebb237b
PM
695}
696EXPORT_SYMBOL_GPL(synchronize_rcu);
697
d9a3da06 698static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 699static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
700static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
701
702/*
703 * Return non-zero if there are any tasks in RCU read-side critical
704 * sections blocking the current preemptible-RCU expedited grace period.
705 * If there is no preemptible-RCU expedited grace period currently in
706 * progress, returns zero unconditionally.
707 */
708static int rcu_preempted_readers_exp(struct rcu_node *rnp)
709{
12f5f524 710 return rnp->exp_tasks != NULL;
d9a3da06
PM
711}
712
713/*
714 * return non-zero if there is no RCU expedited grace period in progress
715 * for the specified rcu_node structure, in other words, if all CPUs and
716 * tasks covered by the specified rcu_node structure have done their bit
717 * for the current expedited grace period. Works only for preemptible
718 * RCU -- other RCU implementation use other means.
719 *
720 * Caller must hold sync_rcu_preempt_exp_mutex.
721 */
722static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
723{
724 return !rcu_preempted_readers_exp(rnp) &&
725 ACCESS_ONCE(rnp->expmask) == 0;
726}
727
728/*
729 * Report the exit from RCU read-side critical section for the last task
730 * that queued itself during or before the current expedited preemptible-RCU
731 * grace period. This event is reported either to the rcu_node structure on
732 * which the task was queued or to one of that rcu_node structure's ancestors,
733 * recursively up the tree. (Calm down, calm down, we do the recursion
734 * iteratively!)
735 *
b40d293e
TG
736 * Most callers will set the "wake" flag, but the task initiating the
737 * expedited grace period need not wake itself.
738 *
d9a3da06
PM
739 * Caller must hold sync_rcu_preempt_exp_mutex.
740 */
b40d293e
TG
741static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
742 bool wake)
d9a3da06
PM
743{
744 unsigned long flags;
745 unsigned long mask;
746
1304afb2 747 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 748 smp_mb__after_unlock_lock();
d9a3da06 749 for (;;) {
131906b0
PM
750 if (!sync_rcu_preempt_exp_done(rnp)) {
751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 752 break;
131906b0 753 }
d9a3da06 754 if (rnp->parent == NULL) {
131906b0 755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
756 if (wake) {
757 smp_mb(); /* EGP done before wake_up(). */
b40d293e 758 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 759 }
d9a3da06
PM
760 break;
761 }
762 mask = rnp->grpmask;
1304afb2 763 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 764 rnp = rnp->parent;
1304afb2 765 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 766 smp_mb__after_unlock_lock();
d9a3da06
PM
767 rnp->expmask &= ~mask;
768 }
d9a3da06
PM
769}
770
771/*
772 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
773 * grace period for the specified rcu_node structure. If there are no such
774 * tasks, report it up the rcu_node hierarchy.
775 *
7b2e6011
PM
776 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
777 * CPU hotplug operations.
d9a3da06
PM
778 */
779static void
780sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
781{
1217ed1b 782 unsigned long flags;
12f5f524 783 int must_wait = 0;
d9a3da06 784
1217ed1b 785 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 786 smp_mb__after_unlock_lock();
c701d5d9 787 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 788 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 789 } else {
12f5f524 790 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 791 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
792 must_wait = 1;
793 }
d9a3da06 794 if (!must_wait)
b40d293e 795 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
796}
797
236fefaf
PM
798/**
799 * synchronize_rcu_expedited - Brute-force RCU grace period
800 *
801 * Wait for an RCU-preempt grace period, but expedite it. The basic
802 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
803 * the ->blkd_tasks lists and wait for this list to drain. This consumes
804 * significant time on all CPUs and is unfriendly to real-time workloads,
805 * so is thus not recommended for any sort of common-case code.
806 * In fact, if you are using synchronize_rcu_expedited() in a loop,
807 * please restructure your code to batch your updates, and then Use a
808 * single synchronize_rcu() instead.
019129d5
PM
809 */
810void synchronize_rcu_expedited(void)
811{
d9a3da06
PM
812 unsigned long flags;
813 struct rcu_node *rnp;
814 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 815 unsigned long snap;
d9a3da06
PM
816 int trycount = 0;
817
818 smp_mb(); /* Caller's modifications seen first by other CPUs. */
819 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
820 smp_mb(); /* Above access cannot bleed into critical section. */
821
1943c89d
PM
822 /*
823 * Block CPU-hotplug operations. This means that any CPU-hotplug
824 * operation that finds an rcu_node structure with tasks in the
825 * process of being boosted will know that all tasks blocking
826 * this expedited grace period will already be in the process of
827 * being boosted. This simplifies the process of moving tasks
828 * from leaf to root rcu_node structures.
829 */
dd56af42
PM
830 if (!try_get_online_cpus()) {
831 /* CPU-hotplug operation in flight, fall back to normal GP. */
832 wait_rcu_gp(call_rcu);
833 return;
834 }
1943c89d 835
d9a3da06
PM
836 /*
837 * Acquire lock, falling back to synchronize_rcu() if too many
838 * lock-acquisition failures. Of course, if someone does the
839 * expedited grace period for us, just leave.
840 */
841 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
842 if (ULONG_CMP_LT(snap,
843 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
844 put_online_cpus();
845 goto mb_ret; /* Others did our work for us. */
846 }
c701d5d9 847 if (trycount++ < 10) {
d9a3da06 848 udelay(trycount * num_online_cpus());
c701d5d9 849 } else {
1943c89d 850 put_online_cpus();
3705b88d 851 wait_rcu_gp(call_rcu);
d9a3da06
PM
852 return;
853 }
d9a3da06 854 }
1943c89d
PM
855 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
856 put_online_cpus();
d9a3da06 857 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 858 }
d9a3da06 859
12f5f524 860 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
861 synchronize_sched_expedited();
862
d9a3da06
PM
863 /* Initialize ->expmask for all non-leaf rcu_node structures. */
864 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 865 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 866 smp_mb__after_unlock_lock();
d9a3da06 867 rnp->expmask = rnp->qsmaskinit;
1943c89d 868 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
869 }
870
12f5f524 871 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
872 rcu_for_each_leaf_node(rsp, rnp)
873 sync_rcu_preempt_exp_init(rsp, rnp);
874 if (NUM_RCU_NODES > 1)
875 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
876
1943c89d 877 put_online_cpus();
d9a3da06 878
12f5f524 879 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
880 rnp = rcu_get_root(rsp);
881 wait_event(sync_rcu_preempt_exp_wq,
882 sync_rcu_preempt_exp_done(rnp));
883
884 /* Clean up and exit. */
885 smp_mb(); /* ensure expedited GP seen before counter increment. */
4de376a1
PK
886 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
887 sync_rcu_preempt_exp_count + 1;
d9a3da06
PM
888unlock_mb_ret:
889 mutex_unlock(&sync_rcu_preempt_exp_mutex);
890mb_ret:
891 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
892}
893EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
894
e74f4c45
PM
895/**
896 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
897 *
898 * Note that this primitive does not necessarily wait for an RCU grace period
899 * to complete. For example, if there are no RCU callbacks queued anywhere
900 * in the system, then rcu_barrier() is within its rights to return
901 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
902 */
903void rcu_barrier(void)
904{
037b64ed 905 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
906}
907EXPORT_SYMBOL_GPL(rcu_barrier);
908
1eba8f84 909/*
6cc68793 910 * Initialize preemptible RCU's state structures.
1eba8f84
PM
911 */
912static void __init __rcu_init_preempt(void)
913{
394f99a9 914 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
915}
916
2439b696
PM
917/*
918 * Check for a task exiting while in a preemptible-RCU read-side
919 * critical section, clean up if so. No need to issue warnings,
920 * as debug_check_no_locks_held() already does this if lockdep
921 * is enabled.
922 */
923void exit_rcu(void)
924{
925 struct task_struct *t = current;
926
927 if (likely(list_empty(&current->rcu_node_entry)))
928 return;
929 t->rcu_read_lock_nesting = 1;
930 barrier();
1d082fd0 931 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
932 __rcu_read_unlock();
933}
934
f41d911f
PM
935#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
936
e534165b 937static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 938
f41d911f
PM
939/*
940 * Tell them what RCU they are running.
941 */
0e0fc1c2 942static void __init rcu_bootup_announce(void)
f41d911f 943{
efc151c3 944 pr_info("Hierarchical RCU implementation.\n");
26845c28 945 rcu_bootup_announce_oddness();
f41d911f
PM
946}
947
948/*
949 * Return the number of RCU batches processed thus far for debug & stats.
950 */
951long rcu_batches_completed(void)
952{
953 return rcu_batches_completed_sched();
954}
955EXPORT_SYMBOL_GPL(rcu_batches_completed);
956
cba6d0d6
PM
957/*
958 * Because preemptible RCU does not exist, we never have to check for
959 * CPUs being in quiescent states.
960 */
961static void rcu_preempt_note_context_switch(int cpu)
962{
963}
964
fc2219d4 965/*
6cc68793 966 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
967 * RCU readers.
968 */
27f4d280 969static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
970{
971 return 0;
972}
973
b668c9cf
PM
974#ifdef CONFIG_HOTPLUG_CPU
975
976/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 977static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b41d1b92 978 __releases(rnp->lock)
b668c9cf 979{
1304afb2 980 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
981}
982
983#endif /* #ifdef CONFIG_HOTPLUG_CPU */
984
1ed509a2 985/*
6cc68793 986 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
987 * tasks blocked within RCU read-side critical sections.
988 */
989static void rcu_print_detail_task_stall(struct rcu_state *rsp)
990{
991}
992
f41d911f 993/*
6cc68793 994 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
995 * tasks blocked within RCU read-side critical sections.
996 */
9bc8b558 997static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 998{
9bc8b558 999 return 0;
f41d911f
PM
1000}
1001
b0e165c0 1002/*
6cc68793 1003 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
1004 * so there is no need to check for blocked tasks. So check only for
1005 * bogus qsmask values.
b0e165c0
PM
1006 */
1007static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
1008{
49e29126 1009 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
1010}
1011
33f76148
PM
1012#ifdef CONFIG_HOTPLUG_CPU
1013
dd5d19ba 1014/*
6cc68793 1015 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1016 * tasks that were blocked within RCU read-side critical sections, and
1017 * such non-existent tasks cannot possibly have been blocking the current
1018 * grace period.
dd5d19ba 1019 */
237c80c5
PM
1020static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1021 struct rcu_node *rnp,
1022 struct rcu_data *rdp)
dd5d19ba 1023{
237c80c5 1024 return 0;
dd5d19ba
PM
1025}
1026
e5601400
PM
1027#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1028
f41d911f 1029/*
6cc68793 1030 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1031 * to check.
1032 */
1eba8f84 1033static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1034{
1035}
1036
019129d5
PM
1037/*
1038 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1039 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1040 */
1041void synchronize_rcu_expedited(void)
1042{
1043 synchronize_sched_expedited();
1044}
1045EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1046
d9a3da06
PM
1047#ifdef CONFIG_HOTPLUG_CPU
1048
1049/*
6cc68793 1050 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1051 * report on tasks preempted in RCU read-side critical sections during
1052 * expedited RCU grace periods.
1053 */
b40d293e
TG
1054static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1055 bool wake)
d9a3da06 1056{
d9a3da06
PM
1057}
1058
1059#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1060
e74f4c45 1061/*
6cc68793 1062 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1063 * another name for rcu_barrier_sched().
1064 */
1065void rcu_barrier(void)
1066{
1067 rcu_barrier_sched();
1068}
1069EXPORT_SYMBOL_GPL(rcu_barrier);
1070
1eba8f84 1071/*
6cc68793 1072 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1073 */
1074static void __init __rcu_init_preempt(void)
1075{
1076}
1077
2439b696
PM
1078/*
1079 * Because preemptible RCU does not exist, tasks cannot possibly exit
1080 * while in preemptible RCU read-side critical sections.
1081 */
1082void exit_rcu(void)
1083{
1084}
1085
f41d911f 1086#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1087
27f4d280
PM
1088#ifdef CONFIG_RCU_BOOST
1089
1696a8be 1090#include "../locking/rtmutex_common.h"
27f4d280 1091
0ea1f2eb
PM
1092#ifdef CONFIG_RCU_TRACE
1093
1094static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1095{
1096 if (list_empty(&rnp->blkd_tasks))
1097 rnp->n_balk_blkd_tasks++;
1098 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1099 rnp->n_balk_exp_gp_tasks++;
1100 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1101 rnp->n_balk_boost_tasks++;
1102 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1103 rnp->n_balk_notblocked++;
1104 else if (rnp->gp_tasks != NULL &&
a9f4793d 1105 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1106 rnp->n_balk_notyet++;
1107 else
1108 rnp->n_balk_nos++;
1109}
1110
1111#else /* #ifdef CONFIG_RCU_TRACE */
1112
1113static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1114{
1115}
1116
1117#endif /* #else #ifdef CONFIG_RCU_TRACE */
1118
5d01bbd1
TG
1119static void rcu_wake_cond(struct task_struct *t, int status)
1120{
1121 /*
1122 * If the thread is yielding, only wake it when this
1123 * is invoked from idle
1124 */
1125 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1126 wake_up_process(t);
1127}
1128
27f4d280
PM
1129/*
1130 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1131 * or ->boost_tasks, advancing the pointer to the next task in the
1132 * ->blkd_tasks list.
1133 *
1134 * Note that irqs must be enabled: boosting the task can block.
1135 * Returns 1 if there are more tasks needing to be boosted.
1136 */
1137static int rcu_boost(struct rcu_node *rnp)
1138{
1139 unsigned long flags;
27f4d280
PM
1140 struct task_struct *t;
1141 struct list_head *tb;
1142
1143 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1144 return 0; /* Nothing left to boost. */
1145
1146 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1147 smp_mb__after_unlock_lock();
27f4d280
PM
1148
1149 /*
1150 * Recheck under the lock: all tasks in need of boosting
1151 * might exit their RCU read-side critical sections on their own.
1152 */
1153 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1154 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1155 return 0;
1156 }
1157
1158 /*
1159 * Preferentially boost tasks blocking expedited grace periods.
1160 * This cannot starve the normal grace periods because a second
1161 * expedited grace period must boost all blocked tasks, including
1162 * those blocking the pre-existing normal grace period.
1163 */
0ea1f2eb 1164 if (rnp->exp_tasks != NULL) {
27f4d280 1165 tb = rnp->exp_tasks;
0ea1f2eb
PM
1166 rnp->n_exp_boosts++;
1167 } else {
27f4d280 1168 tb = rnp->boost_tasks;
0ea1f2eb
PM
1169 rnp->n_normal_boosts++;
1170 }
1171 rnp->n_tasks_boosted++;
27f4d280
PM
1172
1173 /*
1174 * We boost task t by manufacturing an rt_mutex that appears to
1175 * be held by task t. We leave a pointer to that rt_mutex where
1176 * task t can find it, and task t will release the mutex when it
1177 * exits its outermost RCU read-side critical section. Then
1178 * simply acquiring this artificial rt_mutex will boost task
1179 * t's priority. (Thanks to tglx for suggesting this approach!)
1180 *
1181 * Note that task t must acquire rnp->lock to remove itself from
1182 * the ->blkd_tasks list, which it will do from exit() if from
1183 * nowhere else. We therefore are guaranteed that task t will
1184 * stay around at least until we drop rnp->lock. Note that
1185 * rnp->lock also resolves races between our priority boosting
1186 * and task t's exiting its outermost RCU read-side critical
1187 * section.
1188 */
1189 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1190 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
dfeb9765 1191 init_completion(&rnp->boost_completion);
27f4d280 1192 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1193 /* Lock only for side effect: boosts task t's priority. */
1194 rt_mutex_lock(&rnp->boost_mtx);
1195 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1196
abaa93d9 1197 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
dfeb9765 1198 wait_for_completion(&rnp->boost_completion);
27f4d280 1199
4f89b336
PM
1200 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1201 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1202}
1203
27f4d280
PM
1204/*
1205 * Priority-boosting kthread. One per leaf rcu_node and one for the
1206 * root rcu_node.
1207 */
1208static int rcu_boost_kthread(void *arg)
1209{
1210 struct rcu_node *rnp = (struct rcu_node *)arg;
1211 int spincnt = 0;
1212 int more2boost;
1213
f7f7bac9 1214 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1215 for (;;) {
d71df90e 1216 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1217 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1218 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1219 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1220 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1221 more2boost = rcu_boost(rnp);
1222 if (more2boost)
1223 spincnt++;
1224 else
1225 spincnt = 0;
1226 if (spincnt > 10) {
5d01bbd1 1227 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1228 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1229 schedule_timeout_interruptible(2);
f7f7bac9 1230 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1231 spincnt = 0;
1232 }
1233 }
1217ed1b 1234 /* NOTREACHED */
f7f7bac9 1235 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1236 return 0;
1237}
1238
1239/*
1240 * Check to see if it is time to start boosting RCU readers that are
1241 * blocking the current grace period, and, if so, tell the per-rcu_node
1242 * kthread to start boosting them. If there is an expedited grace
1243 * period in progress, it is always time to boost.
1244 *
b065a853
PM
1245 * The caller must hold rnp->lock, which this function releases.
1246 * The ->boost_kthread_task is immortal, so we don't need to worry
1247 * about it going away.
27f4d280 1248 */
1217ed1b 1249static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1250 __releases(rnp->lock)
27f4d280
PM
1251{
1252 struct task_struct *t;
1253
0ea1f2eb
PM
1254 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1255 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1256 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1257 return;
0ea1f2eb 1258 }
27f4d280
PM
1259 if (rnp->exp_tasks != NULL ||
1260 (rnp->gp_tasks != NULL &&
1261 rnp->boost_tasks == NULL &&
1262 rnp->qsmask == 0 &&
1263 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1264 if (rnp->exp_tasks == NULL)
1265 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1266 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1267 t = rnp->boost_kthread_task;
5d01bbd1
TG
1268 if (t)
1269 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1270 } else {
0ea1f2eb 1271 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1273 }
27f4d280
PM
1274}
1275
a46e0899
PM
1276/*
1277 * Wake up the per-CPU kthread to invoke RCU callbacks.
1278 */
1279static void invoke_rcu_callbacks_kthread(void)
1280{
1281 unsigned long flags;
1282
1283 local_irq_save(flags);
1284 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1285 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1286 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1287 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1288 __this_cpu_read(rcu_cpu_kthread_status));
1289 }
a46e0899
PM
1290 local_irq_restore(flags);
1291}
1292
dff1672d
PM
1293/*
1294 * Is the current CPU running the RCU-callbacks kthread?
1295 * Caller must have preemption disabled.
1296 */
1297static bool rcu_is_callbacks_kthread(void)
1298{
c9d4b0af 1299 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1300}
1301
27f4d280
PM
1302#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1303
1304/*
1305 * Do priority-boost accounting for the start of a new grace period.
1306 */
1307static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1308{
1309 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1310}
1311
27f4d280
PM
1312/*
1313 * Create an RCU-boost kthread for the specified node if one does not
1314 * already exist. We only create this kthread for preemptible RCU.
1315 * Returns zero if all is well, a negated errno otherwise.
1316 */
49fb4c62 1317static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1318 struct rcu_node *rnp)
27f4d280 1319{
5d01bbd1 1320 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1321 unsigned long flags;
1322 struct sched_param sp;
1323 struct task_struct *t;
1324
1325 if (&rcu_preempt_state != rsp)
1326 return 0;
5d01bbd1
TG
1327
1328 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1329 return 0;
1330
a46e0899 1331 rsp->boost = 1;
27f4d280
PM
1332 if (rnp->boost_kthread_task != NULL)
1333 return 0;
1334 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1335 "rcub/%d", rnp_index);
27f4d280
PM
1336 if (IS_ERR(t))
1337 return PTR_ERR(t);
1338 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1339 smp_mb__after_unlock_lock();
27f4d280
PM
1340 rnp->boost_kthread_task = t;
1341 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1342 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1343 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1344 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1345 return 0;
1346}
1347
f8b7fc6b
PM
1348static void rcu_kthread_do_work(void)
1349{
c9d4b0af
CL
1350 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1351 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1352 rcu_preempt_do_callbacks();
1353}
1354
62ab7072 1355static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1356{
f8b7fc6b 1357 struct sched_param sp;
f8b7fc6b 1358
62ab7072
PM
1359 sp.sched_priority = RCU_KTHREAD_PRIO;
1360 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1361}
1362
62ab7072 1363static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1364{
62ab7072 1365 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1366}
1367
62ab7072 1368static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1369{
c9d4b0af 1370 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1371}
1372
1373/*
1374 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1375 * RCU softirq used in flavors and configurations of RCU that do not
1376 * support RCU priority boosting.
f8b7fc6b 1377 */
62ab7072 1378static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1379{
c9d4b0af
CL
1380 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1381 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1382 int spincnt;
f8b7fc6b 1383
62ab7072 1384 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1385 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1386 local_bh_disable();
f8b7fc6b 1387 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1388 this_cpu_inc(rcu_cpu_kthread_loops);
1389 local_irq_disable();
f8b7fc6b
PM
1390 work = *workp;
1391 *workp = 0;
62ab7072 1392 local_irq_enable();
f8b7fc6b
PM
1393 if (work)
1394 rcu_kthread_do_work();
1395 local_bh_enable();
62ab7072 1396 if (*workp == 0) {
f7f7bac9 1397 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1398 *statusp = RCU_KTHREAD_WAITING;
1399 return;
f8b7fc6b
PM
1400 }
1401 }
62ab7072 1402 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1403 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1404 schedule_timeout_interruptible(2);
f7f7bac9 1405 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1406 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1407}
1408
1409/*
1410 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1411 * served by the rcu_node in question. The CPU hotplug lock is still
1412 * held, so the value of rnp->qsmaskinit will be stable.
1413 *
1414 * We don't include outgoingcpu in the affinity set, use -1 if there is
1415 * no outgoing CPU. If there are no CPUs left in the affinity set,
1416 * this function allows the kthread to execute on any CPU.
1417 */
5d01bbd1 1418static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1419{
5d01bbd1
TG
1420 struct task_struct *t = rnp->boost_kthread_task;
1421 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1422 cpumask_var_t cm;
1423 int cpu;
f8b7fc6b 1424
5d01bbd1 1425 if (!t)
f8b7fc6b 1426 return;
5d01bbd1 1427 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1428 return;
f8b7fc6b
PM
1429 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1430 if ((mask & 0x1) && cpu != outgoingcpu)
1431 cpumask_set_cpu(cpu, cm);
1432 if (cpumask_weight(cm) == 0) {
1433 cpumask_setall(cm);
1434 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1435 cpumask_clear_cpu(cpu, cm);
1436 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1437 }
5d01bbd1 1438 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1439 free_cpumask_var(cm);
1440}
1441
62ab7072
PM
1442static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1443 .store = &rcu_cpu_kthread_task,
1444 .thread_should_run = rcu_cpu_kthread_should_run,
1445 .thread_fn = rcu_cpu_kthread,
1446 .thread_comm = "rcuc/%u",
1447 .setup = rcu_cpu_kthread_setup,
1448 .park = rcu_cpu_kthread_park,
1449};
f8b7fc6b
PM
1450
1451/*
9386c0b7 1452 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1453 */
9386c0b7 1454static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1455{
f8b7fc6b 1456 struct rcu_node *rnp;
5d01bbd1 1457 int cpu;
f8b7fc6b 1458
62ab7072 1459 for_each_possible_cpu(cpu)
f8b7fc6b 1460 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1461 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1462 rnp = rcu_get_root(rcu_state_p);
1463 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1464 if (NUM_RCU_NODES > 1) {
e534165b
US
1465 rcu_for_each_leaf_node(rcu_state_p, rnp)
1466 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1467 }
f8b7fc6b 1468}
f8b7fc6b 1469
49fb4c62 1470static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1471{
e534165b 1472 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1473 struct rcu_node *rnp = rdp->mynode;
1474
1475 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1476 if (rcu_scheduler_fully_active)
e534165b 1477 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1478}
1479
27f4d280
PM
1480#else /* #ifdef CONFIG_RCU_BOOST */
1481
1217ed1b 1482static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1483 __releases(rnp->lock)
27f4d280 1484{
1217ed1b 1485 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1486}
1487
a46e0899 1488static void invoke_rcu_callbacks_kthread(void)
27f4d280 1489{
a46e0899 1490 WARN_ON_ONCE(1);
27f4d280
PM
1491}
1492
dff1672d
PM
1493static bool rcu_is_callbacks_kthread(void)
1494{
1495 return false;
1496}
1497
27f4d280
PM
1498static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1499{
1500}
1501
5d01bbd1 1502static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1503{
1504}
1505
9386c0b7 1506static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1507{
b0d30417 1508}
b0d30417 1509
49fb4c62 1510static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1511{
1512}
1513
27f4d280
PM
1514#endif /* #else #ifdef CONFIG_RCU_BOOST */
1515
8bd93a2c
PM
1516#if !defined(CONFIG_RCU_FAST_NO_HZ)
1517
1518/*
1519 * Check to see if any future RCU-related work will need to be done
1520 * by the current CPU, even if none need be done immediately, returning
1521 * 1 if so. This function is part of the RCU implementation; it is -not-
1522 * an exported member of the RCU API.
1523 *
7cb92499
PM
1524 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1525 * any flavor of RCU.
8bd93a2c 1526 */
ffa83fb5 1527#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1528int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1529{
aa9b1630 1530 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1531 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1532}
ffa83fb5 1533#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1534
1535/*
1536 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1537 * after it.
1538 */
1539static void rcu_cleanup_after_idle(int cpu)
1540{
1541}
1542
aea1b35e 1543/*
a858af28 1544 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1545 * is nothing.
1546 */
1547static void rcu_prepare_for_idle(int cpu)
1548{
1549}
1550
c57afe80
PM
1551/*
1552 * Don't bother keeping a running count of the number of RCU callbacks
1553 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1554 */
1555static void rcu_idle_count_callbacks_posted(void)
1556{
1557}
1558
8bd93a2c
PM
1559#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1560
f23f7fa1
PM
1561/*
1562 * This code is invoked when a CPU goes idle, at which point we want
1563 * to have the CPU do everything required for RCU so that it can enter
1564 * the energy-efficient dyntick-idle mode. This is handled by a
1565 * state machine implemented by rcu_prepare_for_idle() below.
1566 *
1567 * The following three proprocessor symbols control this state machine:
1568 *
f23f7fa1
PM
1569 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1570 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1571 * is sized to be roughly one RCU grace period. Those energy-efficiency
1572 * benchmarkers who might otherwise be tempted to set this to a large
1573 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1574 * system. And if you are -that- concerned about energy efficiency,
1575 * just power the system down and be done with it!
778d250a
PM
1576 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1577 * permitted to sleep in dyntick-idle mode with only lazy RCU
1578 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1579 *
1580 * The values below work well in practice. If future workloads require
1581 * adjustment, they can be converted into kernel config parameters, though
1582 * making the state machine smarter might be a better option.
1583 */
e84c48ae 1584#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1585#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1586
5e44ce35
PM
1587static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1588module_param(rcu_idle_gp_delay, int, 0644);
1589static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1590module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1591
d689fe22 1592extern int tick_nohz_active;
486e2593
PM
1593
1594/*
c229828c
PM
1595 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1596 * only if it has been awhile since the last time we did so. Afterwards,
1597 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1598 */
f1f399d1 1599static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1600{
c0f4dfd4
PM
1601 bool cbs_ready = false;
1602 struct rcu_data *rdp;
c229828c 1603 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1604 struct rcu_node *rnp;
1605 struct rcu_state *rsp;
486e2593 1606
c229828c
PM
1607 /* Exit early if we advanced recently. */
1608 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1609 return false;
c229828c
PM
1610 rdtp->last_advance_all = jiffies;
1611
c0f4dfd4
PM
1612 for_each_rcu_flavor(rsp) {
1613 rdp = this_cpu_ptr(rsp->rda);
1614 rnp = rdp->mynode;
486e2593 1615
c0f4dfd4
PM
1616 /*
1617 * Don't bother checking unless a grace period has
1618 * completed since we last checked and there are
1619 * callbacks not yet ready to invoke.
1620 */
1621 if (rdp->completed != rnp->completed &&
1622 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1623 note_gp_changes(rsp, rdp);
486e2593 1624
c0f4dfd4
PM
1625 if (cpu_has_callbacks_ready_to_invoke(rdp))
1626 cbs_ready = true;
1627 }
1628 return cbs_ready;
486e2593
PM
1629}
1630
aa9b1630 1631/*
c0f4dfd4
PM
1632 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1633 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1634 * caller to set the timeout based on whether or not there are non-lazy
1635 * callbacks.
aa9b1630 1636 *
c0f4dfd4 1637 * The caller must have disabled interrupts.
aa9b1630 1638 */
ffa83fb5 1639#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1640int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1641{
1642 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1643
c0f4dfd4
PM
1644 /* Snapshot to detect later posting of non-lazy callback. */
1645 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1646
aa9b1630 1647 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1648 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1649 *dj = ULONG_MAX;
aa9b1630
PM
1650 return 0;
1651 }
c0f4dfd4
PM
1652
1653 /* Attempt to advance callbacks. */
1654 if (rcu_try_advance_all_cbs()) {
1655 /* Some ready to invoke, so initiate later invocation. */
1656 invoke_rcu_core();
aa9b1630
PM
1657 return 1;
1658 }
c0f4dfd4
PM
1659 rdtp->last_accelerate = jiffies;
1660
1661 /* Request timer delay depending on laziness, and round. */
6faf7283 1662 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1663 *dj = round_up(rcu_idle_gp_delay + jiffies,
1664 rcu_idle_gp_delay) - jiffies;
e84c48ae 1665 } else {
c0f4dfd4 1666 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1667 }
aa9b1630
PM
1668 return 0;
1669}
ffa83fb5 1670#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1671
21e52e15 1672/*
c0f4dfd4
PM
1673 * Prepare a CPU for idle from an RCU perspective. The first major task
1674 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1675 * The second major task is to check to see if a non-lazy callback has
1676 * arrived at a CPU that previously had only lazy callbacks. The third
1677 * major task is to accelerate (that is, assign grace-period numbers to)
1678 * any recently arrived callbacks.
aea1b35e
PM
1679 *
1680 * The caller must have disabled interrupts.
8bd93a2c 1681 */
aea1b35e 1682static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1683{
f1f399d1 1684#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1685 bool needwake;
c0f4dfd4 1686 struct rcu_data *rdp;
5955f7ee 1687 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1688 struct rcu_node *rnp;
1689 struct rcu_state *rsp;
9d2ad243
PM
1690 int tne;
1691
1692 /* Handle nohz enablement switches conservatively. */
d689fe22 1693 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1694 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1695 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1696 invoke_rcu_core(); /* force nohz to see update. */
1697 rdtp->tick_nohz_enabled_snap = tne;
1698 return;
1699 }
1700 if (!tne)
1701 return;
f511fc62 1702
c0f4dfd4 1703 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1704 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1705 return;
9a0c6fef 1706
c57afe80 1707 /*
c0f4dfd4
PM
1708 * If a non-lazy callback arrived at a CPU having only lazy
1709 * callbacks, invoke RCU core for the side-effect of recalculating
1710 * idle duration on re-entry to idle.
c57afe80 1711 */
c0f4dfd4
PM
1712 if (rdtp->all_lazy &&
1713 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1714 rdtp->all_lazy = false;
1715 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1716 invoke_rcu_core();
c57afe80
PM
1717 return;
1718 }
c57afe80 1719
3084f2f8 1720 /*
c0f4dfd4
PM
1721 * If we have not yet accelerated this jiffy, accelerate all
1722 * callbacks on this CPU.
3084f2f8 1723 */
c0f4dfd4 1724 if (rdtp->last_accelerate == jiffies)
aea1b35e 1725 return;
c0f4dfd4
PM
1726 rdtp->last_accelerate = jiffies;
1727 for_each_rcu_flavor(rsp) {
1728 rdp = per_cpu_ptr(rsp->rda, cpu);
1729 if (!*rdp->nxttail[RCU_DONE_TAIL])
1730 continue;
1731 rnp = rdp->mynode;
1732 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1733 smp_mb__after_unlock_lock();
48a7639c 1734 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1735 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1736 if (needwake)
1737 rcu_gp_kthread_wake(rsp);
77e38ed3 1738 }
f1f399d1 1739#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1740}
3084f2f8 1741
c0f4dfd4
PM
1742/*
1743 * Clean up for exit from idle. Attempt to advance callbacks based on
1744 * any grace periods that elapsed while the CPU was idle, and if any
1745 * callbacks are now ready to invoke, initiate invocation.
1746 */
1747static void rcu_cleanup_after_idle(int cpu)
1748{
f1f399d1 1749#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1750 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1751 return;
7a497c96
PM
1752 if (rcu_try_advance_all_cbs())
1753 invoke_rcu_core();
f1f399d1 1754#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1755}
1756
c57afe80 1757/*
98248a0e
PM
1758 * Keep a running count of the number of non-lazy callbacks posted
1759 * on this CPU. This running counter (which is never decremented) allows
1760 * rcu_prepare_for_idle() to detect when something out of the idle loop
1761 * posts a callback, even if an equal number of callbacks are invoked.
1762 * Of course, callbacks should only be posted from within a trace event
1763 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1764 */
1765static void rcu_idle_count_callbacks_posted(void)
1766{
5955f7ee 1767 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1768}
1769
b626c1b6
PM
1770/*
1771 * Data for flushing lazy RCU callbacks at OOM time.
1772 */
1773static atomic_t oom_callback_count;
1774static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1775
1776/*
1777 * RCU OOM callback -- decrement the outstanding count and deliver the
1778 * wake-up if we are the last one.
1779 */
1780static void rcu_oom_callback(struct rcu_head *rhp)
1781{
1782 if (atomic_dec_and_test(&oom_callback_count))
1783 wake_up(&oom_callback_wq);
1784}
1785
1786/*
1787 * Post an rcu_oom_notify callback on the current CPU if it has at
1788 * least one lazy callback. This will unnecessarily post callbacks
1789 * to CPUs that already have a non-lazy callback at the end of their
1790 * callback list, but this is an infrequent operation, so accept some
1791 * extra overhead to keep things simple.
1792 */
1793static void rcu_oom_notify_cpu(void *unused)
1794{
1795 struct rcu_state *rsp;
1796 struct rcu_data *rdp;
1797
1798 for_each_rcu_flavor(rsp) {
fa07a58f 1799 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1800 if (rdp->qlen_lazy != 0) {
1801 atomic_inc(&oom_callback_count);
1802 rsp->call(&rdp->oom_head, rcu_oom_callback);
1803 }
1804 }
1805}
1806
1807/*
1808 * If low on memory, ensure that each CPU has a non-lazy callback.
1809 * This will wake up CPUs that have only lazy callbacks, in turn
1810 * ensuring that they free up the corresponding memory in a timely manner.
1811 * Because an uncertain amount of memory will be freed in some uncertain
1812 * timeframe, we do not claim to have freed anything.
1813 */
1814static int rcu_oom_notify(struct notifier_block *self,
1815 unsigned long notused, void *nfreed)
1816{
1817 int cpu;
1818
1819 /* Wait for callbacks from earlier instance to complete. */
1820 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1821 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1822
1823 /*
1824 * Prevent premature wakeup: ensure that all increments happen
1825 * before there is a chance of the counter reaching zero.
1826 */
1827 atomic_set(&oom_callback_count, 1);
1828
1829 get_online_cpus();
1830 for_each_online_cpu(cpu) {
1831 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1832 cond_resched_rcu_qs();
b626c1b6
PM
1833 }
1834 put_online_cpus();
1835
1836 /* Unconditionally decrement: no need to wake ourselves up. */
1837 atomic_dec(&oom_callback_count);
1838
1839 return NOTIFY_OK;
1840}
1841
1842static struct notifier_block rcu_oom_nb = {
1843 .notifier_call = rcu_oom_notify
1844};
1845
1846static int __init rcu_register_oom_notifier(void)
1847{
1848 register_oom_notifier(&rcu_oom_nb);
1849 return 0;
1850}
1851early_initcall(rcu_register_oom_notifier);
1852
8bd93a2c 1853#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1854
1855#ifdef CONFIG_RCU_CPU_STALL_INFO
1856
1857#ifdef CONFIG_RCU_FAST_NO_HZ
1858
1859static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1860{
5955f7ee 1861 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1862 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1863
c0f4dfd4
PM
1864 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1865 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1866 ulong2long(nlpd),
1867 rdtp->all_lazy ? 'L' : '.',
1868 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1869}
1870
1871#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1872
1873static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1874{
1c17e4d4 1875 *cp = '\0';
a858af28
PM
1876}
1877
1878#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1879
1880/* Initiate the stall-info list. */
1881static void print_cpu_stall_info_begin(void)
1882{
efc151c3 1883 pr_cont("\n");
a858af28
PM
1884}
1885
1886/*
1887 * Print out diagnostic information for the specified stalled CPU.
1888 *
1889 * If the specified CPU is aware of the current RCU grace period
1890 * (flavor specified by rsp), then print the number of scheduling
1891 * clock interrupts the CPU has taken during the time that it has
1892 * been aware. Otherwise, print the number of RCU grace periods
1893 * that this CPU is ignorant of, for example, "1" if the CPU was
1894 * aware of the previous grace period.
1895 *
1896 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1897 */
1898static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1899{
1900 char fast_no_hz[72];
1901 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1902 struct rcu_dynticks *rdtp = rdp->dynticks;
1903 char *ticks_title;
1904 unsigned long ticks_value;
1905
1906 if (rsp->gpnum == rdp->gpnum) {
1907 ticks_title = "ticks this GP";
1908 ticks_value = rdp->ticks_this_gp;
1909 } else {
1910 ticks_title = "GPs behind";
1911 ticks_value = rsp->gpnum - rdp->gpnum;
1912 }
1913 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1914 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1915 cpu, ticks_value, ticks_title,
1916 atomic_read(&rdtp->dynticks) & 0xfff,
1917 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1918 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1919 fast_no_hz);
1920}
1921
1922/* Terminate the stall-info list. */
1923static void print_cpu_stall_info_end(void)
1924{
efc151c3 1925 pr_err("\t");
a858af28
PM
1926}
1927
1928/* Zero ->ticks_this_gp for all flavors of RCU. */
1929static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1930{
1931 rdp->ticks_this_gp = 0;
6231069b 1932 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1933}
1934
1935/* Increment ->ticks_this_gp for all flavors of RCU. */
1936static void increment_cpu_stall_ticks(void)
1937{
115f7a7c
PM
1938 struct rcu_state *rsp;
1939
1940 for_each_rcu_flavor(rsp)
fa07a58f 1941 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1942}
1943
1944#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1945
1946static void print_cpu_stall_info_begin(void)
1947{
efc151c3 1948 pr_cont(" {");
a858af28
PM
1949}
1950
1951static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1952{
efc151c3 1953 pr_cont(" %d", cpu);
a858af28
PM
1954}
1955
1956static void print_cpu_stall_info_end(void)
1957{
efc151c3 1958 pr_cont("} ");
a858af28
PM
1959}
1960
1961static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1962{
1963}
1964
1965static void increment_cpu_stall_ticks(void)
1966{
1967}
1968
1969#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1970
1971#ifdef CONFIG_RCU_NOCB_CPU
1972
1973/*
1974 * Offload callback processing from the boot-time-specified set of CPUs
1975 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1976 * kthread created that pulls the callbacks from the corresponding CPU,
1977 * waits for a grace period to elapse, and invokes the callbacks.
1978 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1979 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1980 * has been specified, in which case each kthread actively polls its
1981 * CPU. (Which isn't so great for energy efficiency, but which does
1982 * reduce RCU's overhead on that CPU.)
1983 *
1984 * This is intended to be used in conjunction with Frederic Weisbecker's
1985 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1986 * running CPU-bound user-mode computations.
1987 *
1988 * Offloading of callback processing could also in theory be used as
1989 * an energy-efficiency measure because CPUs with no RCU callbacks
1990 * queued are more aggressive about entering dyntick-idle mode.
1991 */
1992
1993
1994/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1995static int __init rcu_nocb_setup(char *str)
1996{
1997 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1998 have_rcu_nocb_mask = true;
1999 cpulist_parse(str, rcu_nocb_mask);
2000 return 1;
2001}
2002__setup("rcu_nocbs=", rcu_nocb_setup);
2003
1b0048a4
PG
2004static int __init parse_rcu_nocb_poll(char *arg)
2005{
2006 rcu_nocb_poll = 1;
2007 return 0;
2008}
2009early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
2010
dae6e64d 2011/*
0446be48
PM
2012 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2013 * grace period.
dae6e64d 2014 */
0446be48 2015static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2016{
0446be48 2017 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2018}
2019
2020/*
8b425aa8 2021 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2022 * based on the sum of those of all rcu_node structures. This does
2023 * double-count the root rcu_node structure's requests, but this
2024 * is necessary to handle the possibility of a rcu_nocb_kthread()
2025 * having awakened during the time that the rcu_node structures
2026 * were being updated for the end of the previous grace period.
34ed6246 2027 */
dae6e64d
PM
2028static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2029{
8b425aa8 2030 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2031}
2032
2033static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2034{
dae6e64d
PM
2035 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2036 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2037}
2038
2f33b512 2039#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2040/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2041bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2042{
2043 if (have_rcu_nocb_mask)
2044 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2045 return false;
2046}
2f33b512 2047#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 2048
fbce7497
PM
2049/*
2050 * Kick the leader kthread for this NOCB group.
2051 */
2052static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2053{
2054 struct rcu_data *rdp_leader = rdp->nocb_leader;
2055
2056 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2057 return;
11ed7f93 2058 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 2059 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
11ed7f93 2060 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
2061 wake_up(&rdp_leader->nocb_wq);
2062 }
2063}
2064
d7e29933
PM
2065/*
2066 * Does the specified CPU need an RCU callback for the specified flavor
2067 * of rcu_barrier()?
2068 */
2069static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2070{
2071 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2072 struct rcu_head *rhp;
2073
2074 /* No-CBs CPUs might have callbacks on any of three lists. */
2075 rhp = ACCESS_ONCE(rdp->nocb_head);
2076 if (!rhp)
2077 rhp = ACCESS_ONCE(rdp->nocb_gp_head);
2078 if (!rhp)
2079 rhp = ACCESS_ONCE(rdp->nocb_follower_head);
2080
2081 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2082 if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
2083 /* RCU callback enqueued before CPU first came online??? */
2084 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2085 cpu, rhp->func);
2086 WARN_ON_ONCE(1);
2087 }
2088
2089 return !!rhp;
2090}
2091
3fbfbf7a
PM
2092/*
2093 * Enqueue the specified string of rcu_head structures onto the specified
2094 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2095 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2096 * counts are supplied by rhcount and rhcount_lazy.
2097 *
2098 * If warranted, also wake up the kthread servicing this CPUs queues.
2099 */
2100static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2101 struct rcu_head *rhp,
2102 struct rcu_head **rhtp,
96d3fd0d
PM
2103 int rhcount, int rhcount_lazy,
2104 unsigned long flags)
3fbfbf7a
PM
2105{
2106 int len;
2107 struct rcu_head **old_rhpp;
2108 struct task_struct *t;
2109
2110 /* Enqueue the callback on the nocb list and update counts. */
2111 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2112 ACCESS_ONCE(*old_rhpp) = rhp;
2113 atomic_long_add(rhcount, &rdp->nocb_q_count);
2114 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 2115 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
2116
2117 /* If we are not being polled and there is a kthread, awaken it ... */
2118 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2119 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2120 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2121 TPS("WakeNotPoll"));
3fbfbf7a 2122 return;
9261dd0d 2123 }
3fbfbf7a
PM
2124 len = atomic_long_read(&rdp->nocb_q_count);
2125 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2126 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2127 /* ... if queue was empty ... */
2128 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2129 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2130 TPS("WakeEmpty"));
2131 } else {
9fdd3bc9 2132 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
2133 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2134 TPS("WakeEmptyIsDeferred"));
2135 }
3fbfbf7a
PM
2136 rdp->qlen_last_fqs_check = 0;
2137 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2138 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2139 if (!irqs_disabled_flags(flags)) {
2140 wake_nocb_leader(rdp, true);
2141 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2142 TPS("WakeOvf"));
2143 } else {
2144 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2145 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2146 TPS("WakeOvfIsDeferred"));
2147 }
3fbfbf7a 2148 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2149 } else {
2150 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2151 }
2152 return;
2153}
2154
2155/*
2156 * This is a helper for __call_rcu(), which invokes this when the normal
2157 * callback queue is inoperable. If this is not a no-CBs CPU, this
2158 * function returns failure back to __call_rcu(), which can complain
2159 * appropriately.
2160 *
2161 * Otherwise, this function queues the callback where the corresponding
2162 * "rcuo" kthread can find it.
2163 */
2164static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2165 bool lazy, unsigned long flags)
3fbfbf7a
PM
2166{
2167
d1e43fa5 2168 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2169 return false;
96d3fd0d 2170 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2171 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2172 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2173 (unsigned long)rhp->func,
756cbf6b
PM
2174 -atomic_long_read(&rdp->nocb_q_count_lazy),
2175 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2176 else
2177 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2178 -atomic_long_read(&rdp->nocb_q_count_lazy),
2179 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2180
2181 /*
2182 * If called from an extended quiescent state with interrupts
2183 * disabled, invoke the RCU core in order to allow the idle-entry
2184 * deferred-wakeup check to function.
2185 */
2186 if (irqs_disabled_flags(flags) &&
2187 !rcu_is_watching() &&
2188 cpu_online(smp_processor_id()))
2189 invoke_rcu_core();
2190
c271d3a9 2191 return true;
3fbfbf7a
PM
2192}
2193
2194/*
2195 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2196 * not a no-CBs CPU.
2197 */
2198static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2199 struct rcu_data *rdp,
2200 unsigned long flags)
3fbfbf7a
PM
2201{
2202 long ql = rsp->qlen;
2203 long qll = rsp->qlen_lazy;
2204
2205 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2206 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2207 return false;
3fbfbf7a
PM
2208 rsp->qlen = 0;
2209 rsp->qlen_lazy = 0;
2210
2211 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2212 if (rsp->orphan_donelist != NULL) {
2213 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2214 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2215 ql = qll = 0;
2216 rsp->orphan_donelist = NULL;
2217 rsp->orphan_donetail = &rsp->orphan_donelist;
2218 }
2219 if (rsp->orphan_nxtlist != NULL) {
2220 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2221 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2222 ql = qll = 0;
2223 rsp->orphan_nxtlist = NULL;
2224 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2225 }
0a9e1e11 2226 return true;
3fbfbf7a
PM
2227}
2228
2229/*
34ed6246
PM
2230 * If necessary, kick off a new grace period, and either way wait
2231 * for a subsequent grace period to complete.
3fbfbf7a 2232 */
34ed6246 2233static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2234{
34ed6246 2235 unsigned long c;
dae6e64d 2236 bool d;
34ed6246 2237 unsigned long flags;
48a7639c 2238 bool needwake;
34ed6246
PM
2239 struct rcu_node *rnp = rdp->mynode;
2240
2241 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2242 smp_mb__after_unlock_lock();
48a7639c 2243 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2244 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2245 if (needwake)
2246 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2247
2248 /*
34ed6246
PM
2249 * Wait for the grace period. Do so interruptibly to avoid messing
2250 * up the load average.
3fbfbf7a 2251 */
f7f7bac9 2252 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2253 for (;;) {
dae6e64d
PM
2254 wait_event_interruptible(
2255 rnp->nocb_gp_wq[c & 0x1],
2256 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2257 if (likely(d))
34ed6246 2258 break;
73a860cd 2259 WARN_ON(signal_pending(current));
f7f7bac9 2260 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2261 }
f7f7bac9 2262 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2263 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2264}
2265
fbce7497
PM
2266/*
2267 * Leaders come here to wait for additional callbacks to show up.
2268 * This function does not return until callbacks appear.
2269 */
2270static void nocb_leader_wait(struct rcu_data *my_rdp)
2271{
2272 bool firsttime = true;
2273 bool gotcbs;
2274 struct rcu_data *rdp;
2275 struct rcu_head **tail;
2276
2277wait_again:
2278
2279 /* Wait for callbacks to appear. */
2280 if (!rcu_nocb_poll) {
2281 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2282 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2283 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2284 /* Memory barrier handled by smp_mb() calls below and repoll. */
2285 } else if (firsttime) {
2286 firsttime = false; /* Don't drown trace log with "Poll"! */
2287 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2288 }
2289
2290 /*
2291 * Each pass through the following loop checks a follower for CBs.
2292 * We are our own first follower. Any CBs found are moved to
2293 * nocb_gp_head, where they await a grace period.
2294 */
2295 gotcbs = false;
2296 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2297 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2298 if (!rdp->nocb_gp_head)
2299 continue; /* No CBs here, try next follower. */
2300
2301 /* Move callbacks to wait-for-GP list, which is empty. */
2302 ACCESS_ONCE(rdp->nocb_head) = NULL;
2303 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2304 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2305 rdp->nocb_gp_count_lazy =
2306 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2307 gotcbs = true;
2308 }
2309
2310 /*
2311 * If there were no callbacks, sleep a bit, rescan after a
2312 * memory barrier, and go retry.
2313 */
2314 if (unlikely(!gotcbs)) {
2315 if (!rcu_nocb_poll)
2316 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2317 "WokeEmpty");
73a860cd 2318 WARN_ON(signal_pending(current));
fbce7497
PM
2319 schedule_timeout_interruptible(1);
2320
2321 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2322 my_rdp->nocb_leader_sleep = true;
2323 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2324 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2325 if (ACCESS_ONCE(rdp->nocb_head)) {
2326 /* Found CB, so short-circuit next wait. */
11ed7f93 2327 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2328 break;
2329 }
2330 goto wait_again;
2331 }
2332
2333 /* Wait for one grace period. */
2334 rcu_nocb_wait_gp(my_rdp);
2335
2336 /*
11ed7f93
PK
2337 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2338 * We set it now, but recheck for new callbacks while
fbce7497
PM
2339 * traversing our follower list.
2340 */
11ed7f93
PK
2341 my_rdp->nocb_leader_sleep = true;
2342 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2343
2344 /* Each pass through the following loop wakes a follower, if needed. */
2345 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2346 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2347 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2348 if (!rdp->nocb_gp_head)
2349 continue; /* No CBs, so no need to wake follower. */
2350
2351 /* Append callbacks to follower's "done" list. */
2352 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2353 *tail = rdp->nocb_gp_head;
2354 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2355 atomic_long_add(rdp->nocb_gp_count_lazy,
2356 &rdp->nocb_follower_count_lazy);
c847f142 2357 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2358 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2359 /*
2360 * List was empty, wake up the follower.
2361 * Memory barriers supplied by atomic_long_add().
2362 */
2363 wake_up(&rdp->nocb_wq);
2364 }
2365 }
2366
2367 /* If we (the leader) don't have CBs, go wait some more. */
2368 if (!my_rdp->nocb_follower_head)
2369 goto wait_again;
2370}
2371
2372/*
2373 * Followers come here to wait for additional callbacks to show up.
2374 * This function does not return until callbacks appear.
2375 */
2376static void nocb_follower_wait(struct rcu_data *rdp)
2377{
2378 bool firsttime = true;
2379
2380 for (;;) {
2381 if (!rcu_nocb_poll) {
2382 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2383 "FollowerSleep");
2384 wait_event_interruptible(rdp->nocb_wq,
2385 ACCESS_ONCE(rdp->nocb_follower_head));
2386 } else if (firsttime) {
2387 /* Don't drown trace log with "Poll"! */
2388 firsttime = false;
2389 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2390 }
2391 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2392 /* ^^^ Ensure CB invocation follows _head test. */
2393 return;
2394 }
2395 if (!rcu_nocb_poll)
2396 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2397 "WokeEmpty");
73a860cd 2398 WARN_ON(signal_pending(current));
fbce7497
PM
2399 schedule_timeout_interruptible(1);
2400 }
2401}
2402
3fbfbf7a
PM
2403/*
2404 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2405 * callbacks queued by the corresponding no-CBs CPU, however, there is
2406 * an optional leader-follower relationship so that the grace-period
2407 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2408 */
2409static int rcu_nocb_kthread(void *arg)
2410{
2411 int c, cl;
2412 struct rcu_head *list;
2413 struct rcu_head *next;
2414 struct rcu_head **tail;
2415 struct rcu_data *rdp = arg;
2416
2417 /* Each pass through this loop invokes one batch of callbacks */
2418 for (;;) {
fbce7497
PM
2419 /* Wait for callbacks. */
2420 if (rdp->nocb_leader == rdp)
2421 nocb_leader_wait(rdp);
2422 else
2423 nocb_follower_wait(rdp);
2424
2425 /* Pull the ready-to-invoke callbacks onto local list. */
2426 list = ACCESS_ONCE(rdp->nocb_follower_head);
2427 BUG_ON(!list);
2428 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2429 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2430 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2431 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2432 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2433 rdp->nocb_p_count += c;
2434 rdp->nocb_p_count_lazy += cl;
3fbfbf7a
PM
2435
2436 /* Each pass through the following loop invokes a callback. */
2437 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2438 c = cl = 0;
2439 while (list) {
2440 next = list->next;
2441 /* Wait for enqueuing to complete, if needed. */
2442 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2443 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2444 TPS("WaitQueue"));
3fbfbf7a 2445 schedule_timeout_interruptible(1);
69a79bb1
PM
2446 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2447 TPS("WokeQueue"));
3fbfbf7a
PM
2448 next = list->next;
2449 }
2450 debug_rcu_head_unqueue(list);
2451 local_bh_disable();
2452 if (__rcu_reclaim(rdp->rsp->name, list))
2453 cl++;
2454 c++;
2455 local_bh_enable();
2456 list = next;
2457 }
2458 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
4de376a1
PK
2459 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2460 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2461 rdp->nocb_p_count_lazy - cl;
c635a4e1 2462 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2463 }
2464 return 0;
2465}
2466
96d3fd0d 2467/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2468static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2469{
2470 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2471}
2472
2473/* Do a deferred wakeup of rcu_nocb_kthread(). */
2474static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2475{
9fdd3bc9
PM
2476 int ndw;
2477
96d3fd0d
PM
2478 if (!rcu_nocb_need_deferred_wakeup(rdp))
2479 return;
9fdd3bc9
PM
2480 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2481 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2482 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2483 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2484}
2485
f4579fc5
PM
2486void __init rcu_init_nohz(void)
2487{
2488 int cpu;
2489 bool need_rcu_nocb_mask = true;
2490 struct rcu_state *rsp;
2491
2492#ifdef CONFIG_RCU_NOCB_CPU_NONE
2493 need_rcu_nocb_mask = false;
2494#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2495
2496#if defined(CONFIG_NO_HZ_FULL)
2497 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2498 need_rcu_nocb_mask = true;
2499#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2500
2501 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2502 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2503 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2504 return;
2505 }
f4579fc5
PM
2506 have_rcu_nocb_mask = true;
2507 }
2508 if (!have_rcu_nocb_mask)
2509 return;
2510
2511#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2512 pr_info("\tOffload RCU callbacks from CPU 0\n");
2513 cpumask_set_cpu(0, rcu_nocb_mask);
2514#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2515#ifdef CONFIG_RCU_NOCB_CPU_ALL
2516 pr_info("\tOffload RCU callbacks from all CPUs\n");
2517 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2518#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2519#if defined(CONFIG_NO_HZ_FULL)
2520 if (tick_nohz_full_running)
2521 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2522#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2523
2524 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2525 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2526 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2527 rcu_nocb_mask);
2528 }
2529 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2530 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2531 if (rcu_nocb_poll)
2532 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2533
2534 for_each_rcu_flavor(rsp) {
2535 for_each_cpu(cpu, rcu_nocb_mask) {
2536 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2537
2538 /*
2539 * If there are early callbacks, they will need
2540 * to be moved to the nocb lists.
2541 */
2542 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2543 &rdp->nxtlist &&
2544 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2545 init_nocb_callback_list(rdp);
2546 }
35ce7f29 2547 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2548 }
96d3fd0d
PM
2549}
2550
3fbfbf7a
PM
2551/* Initialize per-rcu_data variables for no-CBs CPUs. */
2552static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2553{
2554 rdp->nocb_tail = &rdp->nocb_head;
2555 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2556 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2557}
2558
35ce7f29
PM
2559/*
2560 * If the specified CPU is a no-CBs CPU that does not already have its
2561 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2562 * brought online out of order, this can require re-organizing the
2563 * leader-follower relationships.
2564 */
2565static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2566{
2567 struct rcu_data *rdp;
2568 struct rcu_data *rdp_last;
2569 struct rcu_data *rdp_old_leader;
2570 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2571 struct task_struct *t;
2572
2573 /*
2574 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2575 * then nothing to do.
2576 */
2577 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2578 return;
2579
2580 /* If we didn't spawn the leader first, reorganize! */
2581 rdp_old_leader = rdp_spawn->nocb_leader;
2582 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2583 rdp_last = NULL;
2584 rdp = rdp_old_leader;
2585 do {
2586 rdp->nocb_leader = rdp_spawn;
2587 if (rdp_last && rdp != rdp_spawn)
2588 rdp_last->nocb_next_follower = rdp;
2589 rdp_last = rdp;
2590 rdp = rdp->nocb_next_follower;
2591 rdp_last->nocb_next_follower = NULL;
2592 } while (rdp);
2593 rdp_spawn->nocb_next_follower = rdp_old_leader;
2594 }
2595
2596 /* Spawn the kthread for this CPU and RCU flavor. */
2597 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2598 "rcuo%c/%d", rsp->abbr, cpu);
2599 BUG_ON(IS_ERR(t));
2600 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2601}
2602
2603/*
2604 * If the specified CPU is a no-CBs CPU that does not already have its
2605 * rcuo kthreads, spawn them.
2606 */
2607static void rcu_spawn_all_nocb_kthreads(int cpu)
2608{
2609 struct rcu_state *rsp;
2610
2611 if (rcu_scheduler_fully_active)
2612 for_each_rcu_flavor(rsp)
2613 rcu_spawn_one_nocb_kthread(rsp, cpu);
2614}
2615
2616/*
2617 * Once the scheduler is running, spawn rcuo kthreads for all online
2618 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2619 * non-boot CPUs come online -- if this changes, we will need to add
2620 * some mutual exclusion.
2621 */
2622static void __init rcu_spawn_nocb_kthreads(void)
2623{
2624 int cpu;
2625
2626 for_each_online_cpu(cpu)
2627 rcu_spawn_all_nocb_kthreads(cpu);
2628}
2629
fbce7497
PM
2630/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2631static int rcu_nocb_leader_stride = -1;
2632module_param(rcu_nocb_leader_stride, int, 0444);
2633
2634/*
35ce7f29 2635 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2636 */
35ce7f29 2637static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2638{
2639 int cpu;
fbce7497
PM
2640 int ls = rcu_nocb_leader_stride;
2641 int nl = 0; /* Next leader. */
3fbfbf7a 2642 struct rcu_data *rdp;
fbce7497
PM
2643 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2644 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2645
22c2f669 2646 if (!have_rcu_nocb_mask)
3fbfbf7a 2647 return;
fbce7497
PM
2648 if (ls == -1) {
2649 ls = int_sqrt(nr_cpu_ids);
2650 rcu_nocb_leader_stride = ls;
2651 }
2652
2653 /*
2654 * Each pass through this loop sets up one rcu_data structure and
2655 * spawns one rcu_nocb_kthread().
2656 */
3fbfbf7a
PM
2657 for_each_cpu(cpu, rcu_nocb_mask) {
2658 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2659 if (rdp->cpu >= nl) {
2660 /* New leader, set up for followers & next leader. */
2661 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2662 rdp->nocb_leader = rdp;
2663 rdp_leader = rdp;
2664 } else {
2665 /* Another follower, link to previous leader. */
2666 rdp->nocb_leader = rdp_leader;
2667 rdp_prev->nocb_next_follower = rdp;
2668 }
2669 rdp_prev = rdp;
3fbfbf7a
PM
2670 }
2671}
2672
2673/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2674static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2675{
22c2f669 2676 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2677 return false;
22c2f669 2678
3fbfbf7a 2679 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2680 return true;
3fbfbf7a
PM
2681}
2682
34ed6246
PM
2683#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2684
d7e29933
PM
2685static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2686{
2687 WARN_ON_ONCE(1); /* Should be dead code. */
2688 return false;
2689}
2690
0446be48 2691static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2692{
3fbfbf7a
PM
2693}
2694
dae6e64d
PM
2695static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2696{
2697}
2698
2699static void rcu_init_one_nocb(struct rcu_node *rnp)
2700{
2701}
3fbfbf7a 2702
3fbfbf7a 2703static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2704 bool lazy, unsigned long flags)
3fbfbf7a 2705{
4afc7e26 2706 return false;
3fbfbf7a
PM
2707}
2708
2709static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2710 struct rcu_data *rdp,
2711 unsigned long flags)
3fbfbf7a 2712{
f4aa84ba 2713 return false;
3fbfbf7a
PM
2714}
2715
3fbfbf7a
PM
2716static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2717{
2718}
2719
9fdd3bc9 2720static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2721{
2722 return false;
2723}
2724
2725static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2726{
2727}
2728
35ce7f29
PM
2729static void rcu_spawn_all_nocb_kthreads(int cpu)
2730{
2731}
2732
2733static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2734{
2735}
2736
34ed6246 2737static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2738{
34ed6246 2739 return false;
3fbfbf7a
PM
2740}
2741
2742#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2743
2744/*
2745 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2746 * arbitrarily long period of time with the scheduling-clock tick turned
2747 * off. RCU will be paying attention to this CPU because it is in the
2748 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2749 * machine because the scheduling-clock tick has been disabled. Therefore,
2750 * if an adaptive-ticks CPU is failing to respond to the current grace
2751 * period and has not be idle from an RCU perspective, kick it.
2752 */
4a81e832 2753static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2754{
2755#ifdef CONFIG_NO_HZ_FULL
2756 if (tick_nohz_full_cpu(cpu))
2757 smp_send_reschedule(cpu);
2758#endif /* #ifdef CONFIG_NO_HZ_FULL */
2759}
2333210b
PM
2760
2761
2762#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2763
0edd1b17 2764static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2765#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2766#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2767#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2768#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2769#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2770
eb348b89
PM
2771/*
2772 * Invoked to note exit from irq or task transition to idle. Note that
2773 * usermode execution does -not- count as idle here! After all, we want
2774 * to detect full-system idle states, not RCU quiescent states and grace
2775 * periods. The caller must have disabled interrupts.
2776 */
2777static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2778{
2779 unsigned long j;
2780
663e1310
PM
2781 /* If there are no nohz_full= CPUs, no need to track this. */
2782 if (!tick_nohz_full_enabled())
2783 return;
2784
eb348b89
PM
2785 /* Adjust nesting, check for fully idle. */
2786 if (irq) {
2787 rdtp->dynticks_idle_nesting--;
2788 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2789 if (rdtp->dynticks_idle_nesting != 0)
2790 return; /* Still not fully idle. */
2791 } else {
2792 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2793 DYNTICK_TASK_NEST_VALUE) {
2794 rdtp->dynticks_idle_nesting = 0;
2795 } else {
2796 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2797 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2798 return; /* Still not fully idle. */
2799 }
2800 }
2801
2802 /* Record start of fully idle period. */
2803 j = jiffies;
2804 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2805 smp_mb__before_atomic();
eb348b89 2806 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2807 smp_mb__after_atomic();
eb348b89
PM
2808 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2809}
2810
0edd1b17
PM
2811/*
2812 * Unconditionally force exit from full system-idle state. This is
2813 * invoked when a normal CPU exits idle, but must be called separately
2814 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2815 * is that the timekeeping CPU is permitted to take scheduling-clock
2816 * interrupts while the system is in system-idle state, and of course
2817 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2818 * interrupt from any other type of interrupt.
2819 */
2820void rcu_sysidle_force_exit(void)
2821{
2822 int oldstate = ACCESS_ONCE(full_sysidle_state);
2823 int newoldstate;
2824
2825 /*
2826 * Each pass through the following loop attempts to exit full
2827 * system-idle state. If contention proves to be a problem,
2828 * a trylock-based contention tree could be used here.
2829 */
2830 while (oldstate > RCU_SYSIDLE_SHORT) {
2831 newoldstate = cmpxchg(&full_sysidle_state,
2832 oldstate, RCU_SYSIDLE_NOT);
2833 if (oldstate == newoldstate &&
2834 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2835 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2836 return; /* We cleared it, done! */
2837 }
2838 oldstate = newoldstate;
2839 }
2840 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2841}
2842
eb348b89
PM
2843/*
2844 * Invoked to note entry to irq or task transition from idle. Note that
2845 * usermode execution does -not- count as idle here! The caller must
2846 * have disabled interrupts.
2847 */
2848static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2849{
663e1310
PM
2850 /* If there are no nohz_full= CPUs, no need to track this. */
2851 if (!tick_nohz_full_enabled())
2852 return;
2853
eb348b89
PM
2854 /* Adjust nesting, check for already non-idle. */
2855 if (irq) {
2856 rdtp->dynticks_idle_nesting++;
2857 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2858 if (rdtp->dynticks_idle_nesting != 1)
2859 return; /* Already non-idle. */
2860 } else {
2861 /*
2862 * Allow for irq misnesting. Yes, it really is possible
2863 * to enter an irq handler then never leave it, and maybe
2864 * also vice versa. Handle both possibilities.
2865 */
2866 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2867 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2868 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2869 return; /* Already non-idle. */
2870 } else {
2871 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2872 }
2873 }
2874
2875 /* Record end of idle period. */
4e857c58 2876 smp_mb__before_atomic();
eb348b89 2877 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2878 smp_mb__after_atomic();
eb348b89 2879 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2880
2881 /*
2882 * If we are the timekeeping CPU, we are permitted to be non-idle
2883 * during a system-idle state. This must be the case, because
2884 * the timekeeping CPU has to take scheduling-clock interrupts
2885 * during the time that the system is transitioning to full
2886 * system-idle state. This means that the timekeeping CPU must
2887 * invoke rcu_sysidle_force_exit() directly if it does anything
2888 * more than take a scheduling-clock interrupt.
2889 */
2890 if (smp_processor_id() == tick_do_timer_cpu)
2891 return;
2892
2893 /* Update system-idle state: We are clearly no longer fully idle! */
2894 rcu_sysidle_force_exit();
2895}
2896
2897/*
2898 * Check to see if the current CPU is idle. Note that usermode execution
2899 * does not count as idle. The caller must have disabled interrupts.
2900 */
2901static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2902 unsigned long *maxj)
2903{
2904 int cur;
2905 unsigned long j;
2906 struct rcu_dynticks *rdtp = rdp->dynticks;
2907
663e1310
PM
2908 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2909 if (!tick_nohz_full_enabled())
2910 return;
2911
0edd1b17
PM
2912 /*
2913 * If some other CPU has already reported non-idle, if this is
2914 * not the flavor of RCU that tracks sysidle state, or if this
2915 * is an offline or the timekeeping CPU, nothing to do.
2916 */
417e8d26 2917 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2918 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2919 return;
eb75767b
PM
2920 if (rcu_gp_in_progress(rdp->rsp))
2921 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2922
2923 /* Pick up current idle and NMI-nesting counter and check. */
2924 cur = atomic_read(&rdtp->dynticks_idle);
2925 if (cur & 0x1) {
2926 *isidle = false; /* We are not idle! */
2927 return;
2928 }
2929 smp_mb(); /* Read counters before timestamps. */
2930
2931 /* Pick up timestamps. */
2932 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2933 /* If this CPU entered idle more recently, update maxj timestamp. */
2934 if (ULONG_CMP_LT(*maxj, j))
2935 *maxj = j;
2936}
2937
2938/*
2939 * Is this the flavor of RCU that is handling full-system idle?
2940 */
2941static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2942{
417e8d26 2943 return rsp == rcu_state_p;
0edd1b17
PM
2944}
2945
2946/*
2947 * Return a delay in jiffies based on the number of CPUs, rcu_node
2948 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2949 * systems more time to transition to full-idle state in order to
2950 * avoid the cache thrashing that otherwise occur on the state variable.
2951 * Really small systems (less than a couple of tens of CPUs) should
2952 * instead use a single global atomically incremented counter, and later
2953 * versions of this will automatically reconfigure themselves accordingly.
2954 */
2955static unsigned long rcu_sysidle_delay(void)
2956{
2957 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2958 return 0;
2959 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2960}
2961
2962/*
2963 * Advance the full-system-idle state. This is invoked when all of
2964 * the non-timekeeping CPUs are idle.
2965 */
2966static void rcu_sysidle(unsigned long j)
2967{
2968 /* Check the current state. */
2969 switch (ACCESS_ONCE(full_sysidle_state)) {
2970 case RCU_SYSIDLE_NOT:
2971
2972 /* First time all are idle, so note a short idle period. */
2973 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2974 break;
2975
2976 case RCU_SYSIDLE_SHORT:
2977
2978 /*
2979 * Idle for a bit, time to advance to next state?
2980 * cmpxchg failure means race with non-idle, let them win.
2981 */
2982 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2983 (void)cmpxchg(&full_sysidle_state,
2984 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2985 break;
2986
2987 case RCU_SYSIDLE_LONG:
2988
2989 /*
2990 * Do an additional check pass before advancing to full.
2991 * cmpxchg failure means race with non-idle, let them win.
2992 */
2993 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2994 (void)cmpxchg(&full_sysidle_state,
2995 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2996 break;
2997
2998 default:
2999 break;
3000 }
3001}
3002
3003/*
3004 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
3005 * back to the beginning.
3006 */
3007static void rcu_sysidle_cancel(void)
3008{
3009 smp_mb();
becb41bf
PM
3010 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
3011 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
3012}
3013
3014/*
3015 * Update the sysidle state based on the results of a force-quiescent-state
3016 * scan of the CPUs' dyntick-idle state.
3017 */
3018static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
3019 unsigned long maxj, bool gpkt)
3020{
417e8d26 3021 if (rsp != rcu_state_p)
0edd1b17
PM
3022 return; /* Wrong flavor, ignore. */
3023 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
3024 return; /* Running state machine from timekeeping CPU. */
3025 if (isidle)
3026 rcu_sysidle(maxj); /* More idle! */
3027 else
3028 rcu_sysidle_cancel(); /* Idle is over. */
3029}
3030
3031/*
3032 * Wrapper for rcu_sysidle_report() when called from the grace-period
3033 * kthread's context.
3034 */
3035static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3036 unsigned long maxj)
3037{
663e1310
PM
3038 /* If there are no nohz_full= CPUs, no need to track this. */
3039 if (!tick_nohz_full_enabled())
3040 return;
3041
0edd1b17
PM
3042 rcu_sysidle_report(rsp, isidle, maxj, true);
3043}
3044
3045/* Callback and function for forcing an RCU grace period. */
3046struct rcu_sysidle_head {
3047 struct rcu_head rh;
3048 int inuse;
3049};
3050
3051static void rcu_sysidle_cb(struct rcu_head *rhp)
3052{
3053 struct rcu_sysidle_head *rshp;
3054
3055 /*
3056 * The following memory barrier is needed to replace the
3057 * memory barriers that would normally be in the memory
3058 * allocator.
3059 */
3060 smp_mb(); /* grace period precedes setting inuse. */
3061
3062 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3063 ACCESS_ONCE(rshp->inuse) = 0;
3064}
3065
3066/*
3067 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
3068 * The caller must have disabled interrupts. This is not intended to be
3069 * called unless tick_nohz_full_enabled().
0edd1b17
PM
3070 */
3071bool rcu_sys_is_idle(void)
3072{
3073 static struct rcu_sysidle_head rsh;
3074 int rss = ACCESS_ONCE(full_sysidle_state);
3075
3076 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3077 return false;
3078
3079 /* Handle small-system case by doing a full scan of CPUs. */
3080 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3081 int oldrss = rss - 1;
3082
3083 /*
3084 * One pass to advance to each state up to _FULL.
3085 * Give up if any pass fails to advance the state.
3086 */
3087 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3088 int cpu;
3089 bool isidle = true;
3090 unsigned long maxj = jiffies - ULONG_MAX / 4;
3091 struct rcu_data *rdp;
3092
3093 /* Scan all the CPUs looking for nonidle CPUs. */
3094 for_each_possible_cpu(cpu) {
417e8d26 3095 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
3096 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3097 if (!isidle)
3098 break;
3099 }
417e8d26 3100 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17
PM
3101 oldrss = rss;
3102 rss = ACCESS_ONCE(full_sysidle_state);
3103 }
3104 }
3105
3106 /* If this is the first observation of an idle period, record it. */
3107 if (rss == RCU_SYSIDLE_FULL) {
3108 rss = cmpxchg(&full_sysidle_state,
3109 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3110 return rss == RCU_SYSIDLE_FULL;
3111 }
3112
3113 smp_mb(); /* ensure rss load happens before later caller actions. */
3114
3115 /* If already fully idle, tell the caller (in case of races). */
3116 if (rss == RCU_SYSIDLE_FULL_NOTED)
3117 return true;
3118
3119 /*
3120 * If we aren't there yet, and a grace period is not in flight,
3121 * initiate a grace period. Either way, tell the caller that
3122 * we are not there yet. We use an xchg() rather than an assignment
3123 * to make up for the memory barriers that would otherwise be
3124 * provided by the memory allocator.
3125 */
3126 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 3127 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
3128 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3129 call_rcu(&rsh.rh, rcu_sysidle_cb);
3130 return false;
eb348b89
PM
3131}
3132
2333210b
PM
3133/*
3134 * Initialize dynticks sysidle state for CPUs coming online.
3135 */
3136static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3137{
3138 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3139}
3140
3141#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3142
eb348b89
PM
3143static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3144{
3145}
3146
3147static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3148{
3149}
3150
0edd1b17
PM
3151static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3152 unsigned long *maxj)
3153{
3154}
3155
3156static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3157{
3158 return false;
3159}
3160
3161static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3162 unsigned long maxj)
3163{
3164}
3165
2333210b
PM
3166static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3167{
3168}
3169
3170#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3171
3172/*
3173 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3174 * grace-period kthread will do force_quiescent_state() processing?
3175 * The idea is to avoid waking up RCU core processing on such a
3176 * CPU unless the grace period has extended for too long.
3177 *
3178 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3179 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3180 */
3181static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3182{
3183#ifdef CONFIG_NO_HZ_FULL
3184 if (tick_nohz_full_cpu(smp_processor_id()) &&
3185 (!rcu_gp_in_progress(rsp) ||
3186 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3187 return 1;
3188#endif /* #ifdef CONFIG_NO_HZ_FULL */
3189 return 0;
3190}
5057f55e
PM
3191
3192/*
3193 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3194 * timekeeping CPU.
3195 */
3196static void rcu_bind_gp_kthread(void)
3197{
c0f489d2 3198 int __maybe_unused cpu;
5057f55e 3199
c0f489d2 3200 if (!tick_nohz_full_enabled())
5057f55e 3201 return;
c0f489d2
PM
3202#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3203 cpu = tick_do_timer_cpu;
3204 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3205 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3206#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3207 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3208 housekeeping_affine(current);
3209#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3210}
176f8f7a
PM
3211
3212/* Record the current task on dyntick-idle entry. */
3213static void rcu_dynticks_task_enter(void)
3214{
3215#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3216 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3217#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3218}
3219
3220/* Record no current task on dyntick-idle exit. */
3221static void rcu_dynticks_task_exit(void)
3222{
3223#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3224 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3225#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3226}