]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/tree_plugin.h
locktorture: Document boot/module parameters
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / tree_plugin.h
CommitLineData
f41d911f
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
6cc68793 4 * or preemptible semantics.
f41d911f
PM
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
87de1cfd
PM
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
f41d911f
PM
19 *
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
22 *
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25 */
26
d9a3da06 27#include <linux/delay.h>
3fbfbf7a 28#include <linux/gfp.h>
b626c1b6 29#include <linux/oom.h>
62ab7072 30#include <linux/smpboot.h>
4102adab 31#include "../time/tick-internal.h"
f41d911f 32
5b61b0ba
MG
33#define RCU_KTHREAD_PRIO 1
34
35#ifdef CONFIG_RCU_BOOST
abaa93d9 36#include "../locking/rtmutex_common.h"
5b61b0ba
MG
37#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
38#else
39#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
40#endif
41
3fbfbf7a
PM
42#ifdef CONFIG_RCU_NOCB_CPU
43static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
44static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
1b0048a4 45static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
3fbfbf7a
PM
46static char __initdata nocb_buf[NR_CPUS * 5];
47#endif /* #ifdef CONFIG_RCU_NOCB_CPU */
48
26845c28
PM
49/*
50 * Check the RCU kernel configuration parameters and print informative
51 * messages about anything out of the ordinary. If you like #ifdef, you
52 * will love this function.
53 */
54static void __init rcu_bootup_announce_oddness(void)
55{
56#ifdef CONFIG_RCU_TRACE
efc151c3 57 pr_info("\tRCU debugfs-based tracing is enabled.\n");
26845c28
PM
58#endif
59#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
efc151c3 60 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
26845c28
PM
61 CONFIG_RCU_FANOUT);
62#endif
63#ifdef CONFIG_RCU_FANOUT_EXACT
efc151c3 64 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
26845c28
PM
65#endif
66#ifdef CONFIG_RCU_FAST_NO_HZ
efc151c3 67 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
26845c28
PM
68#endif
69#ifdef CONFIG_PROVE_RCU
efc151c3 70 pr_info("\tRCU lockdep checking is enabled.\n");
26845c28
PM
71#endif
72#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
efc151c3 73 pr_info("\tRCU torture testing starts during boot.\n");
26845c28 74#endif
81a294c4 75#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
efc151c3 76 pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
a858af28
PM
77#endif
78#if defined(CONFIG_RCU_CPU_STALL_INFO)
efc151c3 79 pr_info("\tAdditional per-CPU info printed with stalls.\n");
26845c28
PM
80#endif
81#if NUM_RCU_LVL_4 != 0
efc151c3 82 pr_info("\tFour-level hierarchy is enabled.\n");
26845c28 83#endif
f885b7f2 84 if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
9a5739d7 85 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
cca6f393 86 if (nr_cpu_ids != NR_CPUS)
efc151c3 87 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
26845c28
PM
88}
89
f41d911f
PM
90#ifdef CONFIG_TREE_PREEMPT_RCU
91
a41bfeb2 92RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
e534165b 93static struct rcu_state *rcu_state_p = &rcu_preempt_state;
f41d911f 94
d9a3da06
PM
95static int rcu_preempted_readers_exp(struct rcu_node *rnp);
96
f41d911f
PM
97/*
98 * Tell them what RCU they are running.
99 */
0e0fc1c2 100static void __init rcu_bootup_announce(void)
f41d911f 101{
efc151c3 102 pr_info("Preemptible hierarchical RCU implementation.\n");
26845c28 103 rcu_bootup_announce_oddness();
f41d911f
PM
104}
105
106/*
107 * Return the number of RCU-preempt batches processed thus far
108 * for debug and statistics.
109 */
bf33eb1a 110static long rcu_batches_completed_preempt(void)
f41d911f
PM
111{
112 return rcu_preempt_state.completed;
113}
114EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
115
116/*
117 * Return the number of RCU batches processed thus far for debug & stats.
118 */
119long rcu_batches_completed(void)
120{
121 return rcu_batches_completed_preempt();
122}
123EXPORT_SYMBOL_GPL(rcu_batches_completed);
124
125/*
6cc68793 126 * Record a preemptible-RCU quiescent state for the specified CPU. Note
f41d911f
PM
127 * that this just means that the task currently running on the CPU is
128 * not in a quiescent state. There might be any number of tasks blocked
129 * while in an RCU read-side critical section.
25502a6c 130 *
1d082fd0
PM
131 * As with the other rcu_*_qs() functions, callers to this function
132 * must disable preemption.
f41d911f 133 */
284a8c93 134static void rcu_preempt_qs(void)
f41d911f 135{
284a8c93
PM
136 if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
137 trace_rcu_grace_period(TPS("rcu_preempt"),
138 __this_cpu_read(rcu_preempt_data.gpnum),
139 TPS("cpuqs"));
140 __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
141 barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
142 current->rcu_read_unlock_special.b.need_qs = false;
143 }
f41d911f
PM
144}
145
146/*
c3422bea
PM
147 * We have entered the scheduler, and the current task might soon be
148 * context-switched away from. If this task is in an RCU read-side
149 * critical section, we will no longer be able to rely on the CPU to
12f5f524
PM
150 * record that fact, so we enqueue the task on the blkd_tasks list.
151 * The task will dequeue itself when it exits the outermost enclosing
152 * RCU read-side critical section. Therefore, the current grace period
153 * cannot be permitted to complete until the blkd_tasks list entries
154 * predating the current grace period drain, in other words, until
155 * rnp->gp_tasks becomes NULL.
c3422bea
PM
156 *
157 * Caller must disable preemption.
f41d911f 158 */
cba6d0d6 159static void rcu_preempt_note_context_switch(int cpu)
f41d911f
PM
160{
161 struct task_struct *t = current;
c3422bea 162 unsigned long flags;
f41d911f
PM
163 struct rcu_data *rdp;
164 struct rcu_node *rnp;
165
10f39bb1 166 if (t->rcu_read_lock_nesting > 0 &&
1d082fd0 167 !t->rcu_read_unlock_special.b.blocked) {
f41d911f
PM
168
169 /* Possibly blocking in an RCU read-side critical section. */
cba6d0d6 170 rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
f41d911f 171 rnp = rdp->mynode;
1304afb2 172 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 173 smp_mb__after_unlock_lock();
1d082fd0 174 t->rcu_read_unlock_special.b.blocked = true;
86848966 175 t->rcu_blocked_node = rnp;
f41d911f
PM
176
177 /*
178 * If this CPU has already checked in, then this task
179 * will hold up the next grace period rather than the
180 * current grace period. Queue the task accordingly.
181 * If the task is queued for the current grace period
182 * (i.e., this CPU has not yet passed through a quiescent
183 * state for the current grace period), then as long
184 * as that task remains queued, the current grace period
12f5f524
PM
185 * cannot end. Note that there is some uncertainty as
186 * to exactly when the current grace period started.
187 * We take a conservative approach, which can result
188 * in unnecessarily waiting on tasks that started very
189 * slightly after the current grace period began. C'est
190 * la vie!!!
b0e165c0
PM
191 *
192 * But first, note that the current CPU must still be
193 * on line!
f41d911f 194 */
b0e165c0 195 WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
e7d8842e 196 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
12f5f524
PM
197 if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
198 list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
199 rnp->gp_tasks = &t->rcu_node_entry;
27f4d280
PM
200#ifdef CONFIG_RCU_BOOST
201 if (rnp->boost_tasks != NULL)
202 rnp->boost_tasks = rnp->gp_tasks;
203#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524
PM
204 } else {
205 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
206 if (rnp->qsmask & rdp->grpmask)
207 rnp->gp_tasks = &t->rcu_node_entry;
208 }
d4c08f2a
PM
209 trace_rcu_preempt_task(rdp->rsp->name,
210 t->pid,
211 (rnp->qsmask & rdp->grpmask)
212 ? rnp->gpnum
213 : rnp->gpnum + 1);
1304afb2 214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
10f39bb1 215 } else if (t->rcu_read_lock_nesting < 0 &&
1d082fd0 216 t->rcu_read_unlock_special.s) {
10f39bb1
PM
217
218 /*
219 * Complete exit from RCU read-side critical section on
220 * behalf of preempted instance of __rcu_read_unlock().
221 */
222 rcu_read_unlock_special(t);
f41d911f
PM
223 }
224
225 /*
226 * Either we were not in an RCU read-side critical section to
227 * begin with, or we have now recorded that critical section
228 * globally. Either way, we can now note a quiescent state
229 * for this CPU. Again, if we were in an RCU read-side critical
230 * section, and if that critical section was blocking the current
231 * grace period, then the fact that the task has been enqueued
232 * means that we continue to block the current grace period.
233 */
284a8c93 234 rcu_preempt_qs();
f41d911f
PM
235}
236
fc2219d4
PM
237/*
238 * Check for preempted RCU readers blocking the current grace period
239 * for the specified rcu_node structure. If the caller needs a reliable
240 * answer, it must hold the rcu_node's ->lock.
241 */
27f4d280 242static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4 243{
12f5f524 244 return rnp->gp_tasks != NULL;
fc2219d4
PM
245}
246
b668c9cf
PM
247/*
248 * Record a quiescent state for all tasks that were previously queued
249 * on the specified rcu_node structure and that were blocking the current
250 * RCU grace period. The caller must hold the specified rnp->lock with
251 * irqs disabled, and this lock is released upon return, but irqs remain
252 * disabled.
253 */
d3f6bad3 254static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b668c9cf
PM
255 __releases(rnp->lock)
256{
257 unsigned long mask;
258 struct rcu_node *rnp_p;
259
27f4d280 260 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1304afb2 261 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
262 return; /* Still need more quiescent states! */
263 }
264
265 rnp_p = rnp->parent;
266 if (rnp_p == NULL) {
267 /*
268 * Either there is only one rcu_node in the tree,
269 * or tasks were kicked up to root rcu_node due to
270 * CPUs going offline.
271 */
d3f6bad3 272 rcu_report_qs_rsp(&rcu_preempt_state, flags);
b668c9cf
PM
273 return;
274 }
275
276 /* Report up the rest of the hierarchy. */
277 mask = rnp->grpmask;
1304afb2
PM
278 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
279 raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
6303b9c8 280 smp_mb__after_unlock_lock();
d3f6bad3 281 rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
b668c9cf
PM
282}
283
12f5f524
PM
284/*
285 * Advance a ->blkd_tasks-list pointer to the next entry, instead
286 * returning NULL if at the end of the list.
287 */
288static struct list_head *rcu_next_node_entry(struct task_struct *t,
289 struct rcu_node *rnp)
290{
291 struct list_head *np;
292
293 np = t->rcu_node_entry.next;
294 if (np == &rnp->blkd_tasks)
295 np = NULL;
296 return np;
297}
298
b668c9cf
PM
299/*
300 * Handle special cases during rcu_read_unlock(), such as needing to
301 * notify RCU core processing or task having blocked during the RCU
302 * read-side critical section.
303 */
2a3fa843 304void rcu_read_unlock_special(struct task_struct *t)
f41d911f
PM
305{
306 int empty;
d9a3da06 307 int empty_exp;
389abd48 308 int empty_exp_now;
f41d911f 309 unsigned long flags;
12f5f524 310 struct list_head *np;
82e78d80 311#ifdef CONFIG_RCU_BOOST
abaa93d9 312 bool drop_boost_mutex = false;
82e78d80 313#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f 314 struct rcu_node *rnp;
1d082fd0 315 union rcu_special special;
f41d911f
PM
316
317 /* NMI handlers cannot block and cannot safely manipulate state. */
318 if (in_nmi())
319 return;
320
321 local_irq_save(flags);
322
323 /*
324 * If RCU core is waiting for this CPU to exit critical section,
1d082fd0
PM
325 * let it know that we have done so. Because irqs are disabled,
326 * t->rcu_read_unlock_special cannot change.
f41d911f
PM
327 */
328 special = t->rcu_read_unlock_special;
1d082fd0 329 if (special.b.need_qs) {
284a8c93 330 rcu_preempt_qs();
1d082fd0 331 if (!t->rcu_read_unlock_special.s) {
79a62f95
LJ
332 local_irq_restore(flags);
333 return;
334 }
f41d911f
PM
335 }
336
79a62f95
LJ
337 /* Hardware IRQ handlers cannot block, complain if they get here. */
338 if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
f41d911f
PM
339 local_irq_restore(flags);
340 return;
341 }
342
343 /* Clean up if blocked during RCU read-side critical section. */
1d082fd0
PM
344 if (special.b.blocked) {
345 t->rcu_read_unlock_special.b.blocked = false;
f41d911f 346
dd5d19ba
PM
347 /*
348 * Remove this task from the list it blocked on. The
349 * task can migrate while we acquire the lock, but at
350 * most one time. So at most two passes through loop.
351 */
352 for (;;) {
86848966 353 rnp = t->rcu_blocked_node;
1304afb2 354 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 355 smp_mb__after_unlock_lock();
86848966 356 if (rnp == t->rcu_blocked_node)
dd5d19ba 357 break;
1304afb2 358 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
dd5d19ba 359 }
27f4d280 360 empty = !rcu_preempt_blocked_readers_cgp(rnp);
d9a3da06
PM
361 empty_exp = !rcu_preempted_readers_exp(rnp);
362 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
12f5f524 363 np = rcu_next_node_entry(t, rnp);
f41d911f 364 list_del_init(&t->rcu_node_entry);
82e78d80 365 t->rcu_blocked_node = NULL;
f7f7bac9 366 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
d4c08f2a 367 rnp->gpnum, t->pid);
12f5f524
PM
368 if (&t->rcu_node_entry == rnp->gp_tasks)
369 rnp->gp_tasks = np;
370 if (&t->rcu_node_entry == rnp->exp_tasks)
371 rnp->exp_tasks = np;
27f4d280
PM
372#ifdef CONFIG_RCU_BOOST
373 if (&t->rcu_node_entry == rnp->boost_tasks)
374 rnp->boost_tasks = np;
abaa93d9
PM
375 /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
376 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
27f4d280 377#endif /* #ifdef CONFIG_RCU_BOOST */
f41d911f
PM
378
379 /*
380 * If this was the last task on the current list, and if
381 * we aren't waiting on any CPUs, report the quiescent state.
389abd48
PM
382 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
383 * so we must take a snapshot of the expedited state.
f41d911f 384 */
389abd48 385 empty_exp_now = !rcu_preempted_readers_exp(rnp);
d4c08f2a 386 if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
f7f7bac9 387 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
d4c08f2a
PM
388 rnp->gpnum,
389 0, rnp->qsmask,
390 rnp->level,
391 rnp->grplo,
392 rnp->grphi,
393 !!rnp->gp_tasks);
d3f6bad3 394 rcu_report_unblock_qs_rnp(rnp, flags);
c701d5d9 395 } else {
d4c08f2a 396 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 397 }
d9a3da06 398
27f4d280
PM
399#ifdef CONFIG_RCU_BOOST
400 /* Unboost if we were boosted. */
abaa93d9
PM
401 if (drop_boost_mutex) {
402 rt_mutex_unlock(&rnp->boost_mtx);
dfeb9765
PM
403 complete(&rnp->boost_completion);
404 }
27f4d280
PM
405#endif /* #ifdef CONFIG_RCU_BOOST */
406
d9a3da06
PM
407 /*
408 * If this was the last task on the expedited lists,
409 * then we need to report up the rcu_node hierarchy.
410 */
389abd48 411 if (!empty_exp && empty_exp_now)
b40d293e 412 rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
b668c9cf
PM
413 } else {
414 local_irq_restore(flags);
f41d911f 415 }
f41d911f
PM
416}
417
1ed509a2
PM
418#ifdef CONFIG_RCU_CPU_STALL_VERBOSE
419
420/*
421 * Dump detailed information for all tasks blocking the current RCU
422 * grace period on the specified rcu_node structure.
423 */
424static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
425{
426 unsigned long flags;
1ed509a2
PM
427 struct task_struct *t;
428
12f5f524 429 raw_spin_lock_irqsave(&rnp->lock, flags);
5fd4dc06
PM
430 if (!rcu_preempt_blocked_readers_cgp(rnp)) {
431 raw_spin_unlock_irqrestore(&rnp->lock, flags);
432 return;
433 }
12f5f524
PM
434 t = list_entry(rnp->gp_tasks,
435 struct task_struct, rcu_node_entry);
436 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
437 sched_show_task(t);
438 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1ed509a2
PM
439}
440
441/*
442 * Dump detailed information for all tasks blocking the current RCU
443 * grace period.
444 */
445static void rcu_print_detail_task_stall(struct rcu_state *rsp)
446{
447 struct rcu_node *rnp = rcu_get_root(rsp);
448
449 rcu_print_detail_task_stall_rnp(rnp);
450 rcu_for_each_leaf_node(rsp, rnp)
451 rcu_print_detail_task_stall_rnp(rnp);
452}
453
454#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
455
456static void rcu_print_detail_task_stall(struct rcu_state *rsp)
457{
458}
459
460#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
461
a858af28
PM
462#ifdef CONFIG_RCU_CPU_STALL_INFO
463
464static void rcu_print_task_stall_begin(struct rcu_node *rnp)
465{
efc151c3 466 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
a858af28
PM
467 rnp->level, rnp->grplo, rnp->grphi);
468}
469
470static void rcu_print_task_stall_end(void)
471{
efc151c3 472 pr_cont("\n");
a858af28
PM
473}
474
475#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
476
477static void rcu_print_task_stall_begin(struct rcu_node *rnp)
478{
479}
480
481static void rcu_print_task_stall_end(void)
482{
483}
484
485#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
486
f41d911f
PM
487/*
488 * Scan the current list of tasks blocked within RCU read-side critical
489 * sections, printing out the tid of each.
490 */
9bc8b558 491static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 492{
f41d911f 493 struct task_struct *t;
9bc8b558 494 int ndetected = 0;
f41d911f 495
27f4d280 496 if (!rcu_preempt_blocked_readers_cgp(rnp))
9bc8b558 497 return 0;
a858af28 498 rcu_print_task_stall_begin(rnp);
12f5f524
PM
499 t = list_entry(rnp->gp_tasks,
500 struct task_struct, rcu_node_entry);
9bc8b558 501 list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
efc151c3 502 pr_cont(" P%d", t->pid);
9bc8b558
PM
503 ndetected++;
504 }
a858af28 505 rcu_print_task_stall_end();
9bc8b558 506 return ndetected;
f41d911f
PM
507}
508
b0e165c0
PM
509/*
510 * Check that the list of blocked tasks for the newly completed grace
511 * period is in fact empty. It is a serious bug to complete a grace
512 * period that still has RCU readers blocked! This function must be
513 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
514 * must be held by the caller.
12f5f524
PM
515 *
516 * Also, if there are blocked tasks on the list, they automatically
517 * block the newly created grace period, so set up ->gp_tasks accordingly.
b0e165c0
PM
518 */
519static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
520{
27f4d280 521 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
12f5f524
PM
522 if (!list_empty(&rnp->blkd_tasks))
523 rnp->gp_tasks = rnp->blkd_tasks.next;
28ecd580 524 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
525}
526
33f76148
PM
527#ifdef CONFIG_HOTPLUG_CPU
528
dd5d19ba
PM
529/*
530 * Handle tasklist migration for case in which all CPUs covered by the
531 * specified rcu_node have gone offline. Move them up to the root
532 * rcu_node. The reason for not just moving them to the immediate
533 * parent is to remove the need for rcu_read_unlock_special() to
534 * make more than two attempts to acquire the target rcu_node's lock.
b668c9cf
PM
535 * Returns true if there were tasks blocking the current RCU grace
536 * period.
dd5d19ba 537 *
237c80c5
PM
538 * Returns 1 if there was previously a task blocking the current grace
539 * period on the specified rcu_node structure.
540 *
dd5d19ba
PM
541 * The caller must hold rnp->lock with irqs disabled.
542 */
237c80c5
PM
543static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
544 struct rcu_node *rnp,
545 struct rcu_data *rdp)
dd5d19ba 546{
dd5d19ba
PM
547 struct list_head *lp;
548 struct list_head *lp_root;
d9a3da06 549 int retval = 0;
dd5d19ba 550 struct rcu_node *rnp_root = rcu_get_root(rsp);
12f5f524 551 struct task_struct *t;
dd5d19ba 552
86848966
PM
553 if (rnp == rnp_root) {
554 WARN_ONCE(1, "Last CPU thought to be offlined?");
237c80c5 555 return 0; /* Shouldn't happen: at least one CPU online. */
86848966 556 }
12f5f524
PM
557
558 /* If we are on an internal node, complain bitterly. */
559 WARN_ON_ONCE(rnp != rdp->mynode);
dd5d19ba
PM
560
561 /*
12f5f524
PM
562 * Move tasks up to root rcu_node. Don't try to get fancy for
563 * this corner-case operation -- just put this node's tasks
564 * at the head of the root node's list, and update the root node's
565 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
566 * if non-NULL. This might result in waiting for more tasks than
567 * absolutely necessary, but this is a good performance/complexity
568 * tradeoff.
dd5d19ba 569 */
2036d94a 570 if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
d9a3da06
PM
571 retval |= RCU_OFL_TASKS_NORM_GP;
572 if (rcu_preempted_readers_exp(rnp))
573 retval |= RCU_OFL_TASKS_EXP_GP;
12f5f524
PM
574 lp = &rnp->blkd_tasks;
575 lp_root = &rnp_root->blkd_tasks;
576 while (!list_empty(lp)) {
577 t = list_entry(lp->next, typeof(*t), rcu_node_entry);
578 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 579 smp_mb__after_unlock_lock();
12f5f524
PM
580 list_del(&t->rcu_node_entry);
581 t->rcu_blocked_node = rnp_root;
582 list_add(&t->rcu_node_entry, lp_root);
583 if (&t->rcu_node_entry == rnp->gp_tasks)
584 rnp_root->gp_tasks = rnp->gp_tasks;
585 if (&t->rcu_node_entry == rnp->exp_tasks)
586 rnp_root->exp_tasks = rnp->exp_tasks;
27f4d280
PM
587#ifdef CONFIG_RCU_BOOST
588 if (&t->rcu_node_entry == rnp->boost_tasks)
589 rnp_root->boost_tasks = rnp->boost_tasks;
590#endif /* #ifdef CONFIG_RCU_BOOST */
12f5f524 591 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
dd5d19ba 592 }
27f4d280 593
1e3fd2b3
PM
594 rnp->gp_tasks = NULL;
595 rnp->exp_tasks = NULL;
27f4d280 596#ifdef CONFIG_RCU_BOOST
1e3fd2b3 597 rnp->boost_tasks = NULL;
5cc900cf
PM
598 /*
599 * In case root is being boosted and leaf was not. Make sure
600 * that we boost the tasks blocking the current grace period
601 * in this case.
602 */
27f4d280 603 raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
6303b9c8 604 smp_mb__after_unlock_lock();
27f4d280 605 if (rnp_root->boost_tasks != NULL &&
5cc900cf
PM
606 rnp_root->boost_tasks != rnp_root->gp_tasks &&
607 rnp_root->boost_tasks != rnp_root->exp_tasks)
27f4d280
PM
608 rnp_root->boost_tasks = rnp_root->gp_tasks;
609 raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
610#endif /* #ifdef CONFIG_RCU_BOOST */
611
237c80c5 612 return retval;
dd5d19ba
PM
613}
614
e5601400
PM
615#endif /* #ifdef CONFIG_HOTPLUG_CPU */
616
f41d911f
PM
617/*
618 * Check for a quiescent state from the current CPU. When a task blocks,
619 * the task is recorded in the corresponding CPU's rcu_node structure,
620 * which is checked elsewhere.
621 *
622 * Caller must disable hard irqs.
623 */
624static void rcu_preempt_check_callbacks(int cpu)
625{
626 struct task_struct *t = current;
627
628 if (t->rcu_read_lock_nesting == 0) {
284a8c93 629 rcu_preempt_qs();
f41d911f
PM
630 return;
631 }
10f39bb1 632 if (t->rcu_read_lock_nesting > 0 &&
284a8c93
PM
633 per_cpu(rcu_preempt_data, cpu).qs_pending &&
634 !per_cpu(rcu_preempt_data, cpu).passed_quiesce)
1d082fd0 635 t->rcu_read_unlock_special.b.need_qs = true;
f41d911f
PM
636}
637
a46e0899
PM
638#ifdef CONFIG_RCU_BOOST
639
09223371
SL
640static void rcu_preempt_do_callbacks(void)
641{
c9d4b0af 642 rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
09223371
SL
643}
644
a46e0899
PM
645#endif /* #ifdef CONFIG_RCU_BOOST */
646
f41d911f 647/*
6cc68793 648 * Queue a preemptible-RCU callback for invocation after a grace period.
f41d911f
PM
649 */
650void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
651{
3fbfbf7a 652 __call_rcu(head, func, &rcu_preempt_state, -1, 0);
f41d911f
PM
653}
654EXPORT_SYMBOL_GPL(call_rcu);
655
6ebb237b
PM
656/**
657 * synchronize_rcu - wait until a grace period has elapsed.
658 *
659 * Control will return to the caller some time after a full grace
660 * period has elapsed, in other words after all currently executing RCU
77d8485a
PM
661 * read-side critical sections have completed. Note, however, that
662 * upon return from synchronize_rcu(), the caller might well be executing
663 * concurrently with new RCU read-side critical sections that began while
664 * synchronize_rcu() was waiting. RCU read-side critical sections are
665 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
f0a0e6f2
PM
666 *
667 * See the description of synchronize_sched() for more detailed information
668 * on memory ordering guarantees.
6ebb237b
PM
669 */
670void synchronize_rcu(void)
671{
fe15d706
PM
672 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
673 !lock_is_held(&rcu_lock_map) &&
674 !lock_is_held(&rcu_sched_lock_map),
675 "Illegal synchronize_rcu() in RCU read-side critical section");
6ebb237b
PM
676 if (!rcu_scheduler_active)
677 return;
3705b88d
AM
678 if (rcu_expedited)
679 synchronize_rcu_expedited();
680 else
681 wait_rcu_gp(call_rcu);
6ebb237b
PM
682}
683EXPORT_SYMBOL_GPL(synchronize_rcu);
684
d9a3da06 685static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
bcfa57ce 686static unsigned long sync_rcu_preempt_exp_count;
d9a3da06
PM
687static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
688
689/*
690 * Return non-zero if there are any tasks in RCU read-side critical
691 * sections blocking the current preemptible-RCU expedited grace period.
692 * If there is no preemptible-RCU expedited grace period currently in
693 * progress, returns zero unconditionally.
694 */
695static int rcu_preempted_readers_exp(struct rcu_node *rnp)
696{
12f5f524 697 return rnp->exp_tasks != NULL;
d9a3da06
PM
698}
699
700/*
701 * return non-zero if there is no RCU expedited grace period in progress
702 * for the specified rcu_node structure, in other words, if all CPUs and
703 * tasks covered by the specified rcu_node structure have done their bit
704 * for the current expedited grace period. Works only for preemptible
705 * RCU -- other RCU implementation use other means.
706 *
707 * Caller must hold sync_rcu_preempt_exp_mutex.
708 */
709static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
710{
711 return !rcu_preempted_readers_exp(rnp) &&
712 ACCESS_ONCE(rnp->expmask) == 0;
713}
714
715/*
716 * Report the exit from RCU read-side critical section for the last task
717 * that queued itself during or before the current expedited preemptible-RCU
718 * grace period. This event is reported either to the rcu_node structure on
719 * which the task was queued or to one of that rcu_node structure's ancestors,
720 * recursively up the tree. (Calm down, calm down, we do the recursion
721 * iteratively!)
722 *
b40d293e
TG
723 * Most callers will set the "wake" flag, but the task initiating the
724 * expedited grace period need not wake itself.
725 *
d9a3da06
PM
726 * Caller must hold sync_rcu_preempt_exp_mutex.
727 */
b40d293e
TG
728static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
729 bool wake)
d9a3da06
PM
730{
731 unsigned long flags;
732 unsigned long mask;
733
1304afb2 734 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 735 smp_mb__after_unlock_lock();
d9a3da06 736 for (;;) {
131906b0
PM
737 if (!sync_rcu_preempt_exp_done(rnp)) {
738 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06 739 break;
131906b0 740 }
d9a3da06 741 if (rnp->parent == NULL) {
131906b0 742 raw_spin_unlock_irqrestore(&rnp->lock, flags);
78e4bc34
PM
743 if (wake) {
744 smp_mb(); /* EGP done before wake_up(). */
b40d293e 745 wake_up(&sync_rcu_preempt_exp_wq);
78e4bc34 746 }
d9a3da06
PM
747 break;
748 }
749 mask = rnp->grpmask;
1304afb2 750 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
d9a3da06 751 rnp = rnp->parent;
1304afb2 752 raw_spin_lock(&rnp->lock); /* irqs already disabled */
6303b9c8 753 smp_mb__after_unlock_lock();
d9a3da06
PM
754 rnp->expmask &= ~mask;
755 }
d9a3da06
PM
756}
757
758/*
759 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
760 * grace period for the specified rcu_node structure. If there are no such
761 * tasks, report it up the rcu_node hierarchy.
762 *
7b2e6011
PM
763 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
764 * CPU hotplug operations.
d9a3da06
PM
765 */
766static void
767sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
768{
1217ed1b 769 unsigned long flags;
12f5f524 770 int must_wait = 0;
d9a3da06 771
1217ed1b 772 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 773 smp_mb__after_unlock_lock();
c701d5d9 774 if (list_empty(&rnp->blkd_tasks)) {
1217ed1b 775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c701d5d9 776 } else {
12f5f524 777 rnp->exp_tasks = rnp->blkd_tasks.next;
1217ed1b 778 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
12f5f524
PM
779 must_wait = 1;
780 }
d9a3da06 781 if (!must_wait)
b40d293e 782 rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
d9a3da06
PM
783}
784
236fefaf
PM
785/**
786 * synchronize_rcu_expedited - Brute-force RCU grace period
787 *
788 * Wait for an RCU-preempt grace period, but expedite it. The basic
789 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
790 * the ->blkd_tasks lists and wait for this list to drain. This consumes
791 * significant time on all CPUs and is unfriendly to real-time workloads,
792 * so is thus not recommended for any sort of common-case code.
793 * In fact, if you are using synchronize_rcu_expedited() in a loop,
794 * please restructure your code to batch your updates, and then Use a
795 * single synchronize_rcu() instead.
796 *
797 * Note that it is illegal to call this function while holding any lock
798 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
799 * to call this function from a CPU-hotplug notifier. Failing to observe
800 * these restriction will result in deadlock.
019129d5
PM
801 */
802void synchronize_rcu_expedited(void)
803{
d9a3da06
PM
804 unsigned long flags;
805 struct rcu_node *rnp;
806 struct rcu_state *rsp = &rcu_preempt_state;
bcfa57ce 807 unsigned long snap;
d9a3da06
PM
808 int trycount = 0;
809
810 smp_mb(); /* Caller's modifications seen first by other CPUs. */
811 snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
812 smp_mb(); /* Above access cannot bleed into critical section. */
813
1943c89d
PM
814 /*
815 * Block CPU-hotplug operations. This means that any CPU-hotplug
816 * operation that finds an rcu_node structure with tasks in the
817 * process of being boosted will know that all tasks blocking
818 * this expedited grace period will already be in the process of
819 * being boosted. This simplifies the process of moving tasks
820 * from leaf to root rcu_node structures.
821 */
822 get_online_cpus();
823
d9a3da06
PM
824 /*
825 * Acquire lock, falling back to synchronize_rcu() if too many
826 * lock-acquisition failures. Of course, if someone does the
827 * expedited grace period for us, just leave.
828 */
829 while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
1943c89d
PM
830 if (ULONG_CMP_LT(snap,
831 ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
832 put_online_cpus();
833 goto mb_ret; /* Others did our work for us. */
834 }
c701d5d9 835 if (trycount++ < 10) {
d9a3da06 836 udelay(trycount * num_online_cpus());
c701d5d9 837 } else {
1943c89d 838 put_online_cpus();
3705b88d 839 wait_rcu_gp(call_rcu);
d9a3da06
PM
840 return;
841 }
d9a3da06 842 }
1943c89d
PM
843 if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
844 put_online_cpus();
d9a3da06 845 goto unlock_mb_ret; /* Others did our work for us. */
1943c89d 846 }
d9a3da06 847
12f5f524 848 /* force all RCU readers onto ->blkd_tasks lists. */
d9a3da06
PM
849 synchronize_sched_expedited();
850
d9a3da06
PM
851 /* Initialize ->expmask for all non-leaf rcu_node structures. */
852 rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
1943c89d 853 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 854 smp_mb__after_unlock_lock();
d9a3da06 855 rnp->expmask = rnp->qsmaskinit;
1943c89d 856 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d9a3da06
PM
857 }
858
12f5f524 859 /* Snapshot current state of ->blkd_tasks lists. */
d9a3da06
PM
860 rcu_for_each_leaf_node(rsp, rnp)
861 sync_rcu_preempt_exp_init(rsp, rnp);
862 if (NUM_RCU_NODES > 1)
863 sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
864
1943c89d 865 put_online_cpus();
d9a3da06 866
12f5f524 867 /* Wait for snapshotted ->blkd_tasks lists to drain. */
d9a3da06
PM
868 rnp = rcu_get_root(rsp);
869 wait_event(sync_rcu_preempt_exp_wq,
870 sync_rcu_preempt_exp_done(rnp));
871
872 /* Clean up and exit. */
873 smp_mb(); /* ensure expedited GP seen before counter increment. */
4de376a1
PK
874 ACCESS_ONCE(sync_rcu_preempt_exp_count) =
875 sync_rcu_preempt_exp_count + 1;
d9a3da06
PM
876unlock_mb_ret:
877 mutex_unlock(&sync_rcu_preempt_exp_mutex);
878mb_ret:
879 smp_mb(); /* ensure subsequent action seen after grace period. */
019129d5
PM
880}
881EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
882
e74f4c45
PM
883/**
884 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
f0a0e6f2
PM
885 *
886 * Note that this primitive does not necessarily wait for an RCU grace period
887 * to complete. For example, if there are no RCU callbacks queued anywhere
888 * in the system, then rcu_barrier() is within its rights to return
889 * immediately, without waiting for anything, much less an RCU grace period.
e74f4c45
PM
890 */
891void rcu_barrier(void)
892{
037b64ed 893 _rcu_barrier(&rcu_preempt_state);
e74f4c45
PM
894}
895EXPORT_SYMBOL_GPL(rcu_barrier);
896
1eba8f84 897/*
6cc68793 898 * Initialize preemptible RCU's state structures.
1eba8f84
PM
899 */
900static void __init __rcu_init_preempt(void)
901{
394f99a9 902 rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
1eba8f84
PM
903}
904
2439b696
PM
905/*
906 * Check for a task exiting while in a preemptible-RCU read-side
907 * critical section, clean up if so. No need to issue warnings,
908 * as debug_check_no_locks_held() already does this if lockdep
909 * is enabled.
910 */
911void exit_rcu(void)
912{
913 struct task_struct *t = current;
914
915 if (likely(list_empty(&current->rcu_node_entry)))
916 return;
917 t->rcu_read_lock_nesting = 1;
918 barrier();
1d082fd0 919 t->rcu_read_unlock_special.b.blocked = true;
2439b696
PM
920 __rcu_read_unlock();
921}
922
f41d911f
PM
923#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
924
e534165b 925static struct rcu_state *rcu_state_p = &rcu_sched_state;
27f4d280 926
f41d911f
PM
927/*
928 * Tell them what RCU they are running.
929 */
0e0fc1c2 930static void __init rcu_bootup_announce(void)
f41d911f 931{
efc151c3 932 pr_info("Hierarchical RCU implementation.\n");
26845c28 933 rcu_bootup_announce_oddness();
f41d911f
PM
934}
935
936/*
937 * Return the number of RCU batches processed thus far for debug & stats.
938 */
939long rcu_batches_completed(void)
940{
941 return rcu_batches_completed_sched();
942}
943EXPORT_SYMBOL_GPL(rcu_batches_completed);
944
cba6d0d6
PM
945/*
946 * Because preemptible RCU does not exist, we never have to check for
947 * CPUs being in quiescent states.
948 */
949static void rcu_preempt_note_context_switch(int cpu)
950{
951}
952
fc2219d4 953/*
6cc68793 954 * Because preemptible RCU does not exist, there are never any preempted
fc2219d4
PM
955 * RCU readers.
956 */
27f4d280 957static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
fc2219d4
PM
958{
959 return 0;
960}
961
b668c9cf
PM
962#ifdef CONFIG_HOTPLUG_CPU
963
964/* Because preemptible RCU does not exist, no quieting of tasks. */
d3f6bad3 965static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
b41d1b92 966 __releases(rnp->lock)
b668c9cf 967{
1304afb2 968 raw_spin_unlock_irqrestore(&rnp->lock, flags);
b668c9cf
PM
969}
970
971#endif /* #ifdef CONFIG_HOTPLUG_CPU */
972
1ed509a2 973/*
6cc68793 974 * Because preemptible RCU does not exist, we never have to check for
1ed509a2
PM
975 * tasks blocked within RCU read-side critical sections.
976 */
977static void rcu_print_detail_task_stall(struct rcu_state *rsp)
978{
979}
980
f41d911f 981/*
6cc68793 982 * Because preemptible RCU does not exist, we never have to check for
f41d911f
PM
983 * tasks blocked within RCU read-side critical sections.
984 */
9bc8b558 985static int rcu_print_task_stall(struct rcu_node *rnp)
f41d911f 986{
9bc8b558 987 return 0;
f41d911f
PM
988}
989
b0e165c0 990/*
6cc68793 991 * Because there is no preemptible RCU, there can be no readers blocked,
49e29126
PM
992 * so there is no need to check for blocked tasks. So check only for
993 * bogus qsmask values.
b0e165c0
PM
994 */
995static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
996{
49e29126 997 WARN_ON_ONCE(rnp->qsmask);
b0e165c0
PM
998}
999
33f76148
PM
1000#ifdef CONFIG_HOTPLUG_CPU
1001
dd5d19ba 1002/*
6cc68793 1003 * Because preemptible RCU does not exist, it never needs to migrate
237c80c5
PM
1004 * tasks that were blocked within RCU read-side critical sections, and
1005 * such non-existent tasks cannot possibly have been blocking the current
1006 * grace period.
dd5d19ba 1007 */
237c80c5
PM
1008static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
1009 struct rcu_node *rnp,
1010 struct rcu_data *rdp)
dd5d19ba 1011{
237c80c5 1012 return 0;
dd5d19ba
PM
1013}
1014
e5601400
PM
1015#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1016
f41d911f 1017/*
6cc68793 1018 * Because preemptible RCU does not exist, it never has any callbacks
f41d911f
PM
1019 * to check.
1020 */
1eba8f84 1021static void rcu_preempt_check_callbacks(int cpu)
f41d911f
PM
1022{
1023}
1024
019129d5
PM
1025/*
1026 * Wait for an rcu-preempt grace period, but make it happen quickly.
6cc68793 1027 * But because preemptible RCU does not exist, map to rcu-sched.
019129d5
PM
1028 */
1029void synchronize_rcu_expedited(void)
1030{
1031 synchronize_sched_expedited();
1032}
1033EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
1034
d9a3da06
PM
1035#ifdef CONFIG_HOTPLUG_CPU
1036
1037/*
6cc68793 1038 * Because preemptible RCU does not exist, there is never any need to
d9a3da06
PM
1039 * report on tasks preempted in RCU read-side critical sections during
1040 * expedited RCU grace periods.
1041 */
b40d293e
TG
1042static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
1043 bool wake)
d9a3da06 1044{
d9a3da06
PM
1045}
1046
1047#endif /* #ifdef CONFIG_HOTPLUG_CPU */
1048
e74f4c45 1049/*
6cc68793 1050 * Because preemptible RCU does not exist, rcu_barrier() is just
e74f4c45
PM
1051 * another name for rcu_barrier_sched().
1052 */
1053void rcu_barrier(void)
1054{
1055 rcu_barrier_sched();
1056}
1057EXPORT_SYMBOL_GPL(rcu_barrier);
1058
1eba8f84 1059/*
6cc68793 1060 * Because preemptible RCU does not exist, it need not be initialized.
1eba8f84
PM
1061 */
1062static void __init __rcu_init_preempt(void)
1063{
1064}
1065
2439b696
PM
1066/*
1067 * Because preemptible RCU does not exist, tasks cannot possibly exit
1068 * while in preemptible RCU read-side critical sections.
1069 */
1070void exit_rcu(void)
1071{
1072}
1073
f41d911f 1074#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
8bd93a2c 1075
27f4d280
PM
1076#ifdef CONFIG_RCU_BOOST
1077
1696a8be 1078#include "../locking/rtmutex_common.h"
27f4d280 1079
0ea1f2eb
PM
1080#ifdef CONFIG_RCU_TRACE
1081
1082static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1083{
1084 if (list_empty(&rnp->blkd_tasks))
1085 rnp->n_balk_blkd_tasks++;
1086 else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
1087 rnp->n_balk_exp_gp_tasks++;
1088 else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
1089 rnp->n_balk_boost_tasks++;
1090 else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
1091 rnp->n_balk_notblocked++;
1092 else if (rnp->gp_tasks != NULL &&
a9f4793d 1093 ULONG_CMP_LT(jiffies, rnp->boost_time))
0ea1f2eb
PM
1094 rnp->n_balk_notyet++;
1095 else
1096 rnp->n_balk_nos++;
1097}
1098
1099#else /* #ifdef CONFIG_RCU_TRACE */
1100
1101static void rcu_initiate_boost_trace(struct rcu_node *rnp)
1102{
1103}
1104
1105#endif /* #else #ifdef CONFIG_RCU_TRACE */
1106
5d01bbd1
TG
1107static void rcu_wake_cond(struct task_struct *t, int status)
1108{
1109 /*
1110 * If the thread is yielding, only wake it when this
1111 * is invoked from idle
1112 */
1113 if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
1114 wake_up_process(t);
1115}
1116
27f4d280
PM
1117/*
1118 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1119 * or ->boost_tasks, advancing the pointer to the next task in the
1120 * ->blkd_tasks list.
1121 *
1122 * Note that irqs must be enabled: boosting the task can block.
1123 * Returns 1 if there are more tasks needing to be boosted.
1124 */
1125static int rcu_boost(struct rcu_node *rnp)
1126{
1127 unsigned long flags;
27f4d280
PM
1128 struct task_struct *t;
1129 struct list_head *tb;
1130
1131 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
1132 return 0; /* Nothing left to boost. */
1133
1134 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1135 smp_mb__after_unlock_lock();
27f4d280
PM
1136
1137 /*
1138 * Recheck under the lock: all tasks in need of boosting
1139 * might exit their RCU read-side critical sections on their own.
1140 */
1141 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
1142 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1143 return 0;
1144 }
1145
1146 /*
1147 * Preferentially boost tasks blocking expedited grace periods.
1148 * This cannot starve the normal grace periods because a second
1149 * expedited grace period must boost all blocked tasks, including
1150 * those blocking the pre-existing normal grace period.
1151 */
0ea1f2eb 1152 if (rnp->exp_tasks != NULL) {
27f4d280 1153 tb = rnp->exp_tasks;
0ea1f2eb
PM
1154 rnp->n_exp_boosts++;
1155 } else {
27f4d280 1156 tb = rnp->boost_tasks;
0ea1f2eb
PM
1157 rnp->n_normal_boosts++;
1158 }
1159 rnp->n_tasks_boosted++;
27f4d280
PM
1160
1161 /*
1162 * We boost task t by manufacturing an rt_mutex that appears to
1163 * be held by task t. We leave a pointer to that rt_mutex where
1164 * task t can find it, and task t will release the mutex when it
1165 * exits its outermost RCU read-side critical section. Then
1166 * simply acquiring this artificial rt_mutex will boost task
1167 * t's priority. (Thanks to tglx for suggesting this approach!)
1168 *
1169 * Note that task t must acquire rnp->lock to remove itself from
1170 * the ->blkd_tasks list, which it will do from exit() if from
1171 * nowhere else. We therefore are guaranteed that task t will
1172 * stay around at least until we drop rnp->lock. Note that
1173 * rnp->lock also resolves races between our priority boosting
1174 * and task t's exiting its outermost RCU read-side critical
1175 * section.
1176 */
1177 t = container_of(tb, struct task_struct, rcu_node_entry);
abaa93d9 1178 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
dfeb9765 1179 init_completion(&rnp->boost_completion);
27f4d280 1180 raw_spin_unlock_irqrestore(&rnp->lock, flags);
abaa93d9
PM
1181 /* Lock only for side effect: boosts task t's priority. */
1182 rt_mutex_lock(&rnp->boost_mtx);
1183 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
27f4d280 1184
abaa93d9 1185 /* Wait for boostee to be done w/boost_mtx before reinitializing. */
dfeb9765 1186 wait_for_completion(&rnp->boost_completion);
27f4d280 1187
4f89b336
PM
1188 return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
1189 ACCESS_ONCE(rnp->boost_tasks) != NULL;
27f4d280
PM
1190}
1191
27f4d280
PM
1192/*
1193 * Priority-boosting kthread. One per leaf rcu_node and one for the
1194 * root rcu_node.
1195 */
1196static int rcu_boost_kthread(void *arg)
1197{
1198 struct rcu_node *rnp = (struct rcu_node *)arg;
1199 int spincnt = 0;
1200 int more2boost;
1201
f7f7bac9 1202 trace_rcu_utilization(TPS("Start boost kthread@init"));
27f4d280 1203 for (;;) {
d71df90e 1204 rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
f7f7bac9 1205 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
08bca60a 1206 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
f7f7bac9 1207 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
d71df90e 1208 rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
27f4d280
PM
1209 more2boost = rcu_boost(rnp);
1210 if (more2boost)
1211 spincnt++;
1212 else
1213 spincnt = 0;
1214 if (spincnt > 10) {
5d01bbd1 1215 rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
f7f7bac9 1216 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
5d01bbd1 1217 schedule_timeout_interruptible(2);
f7f7bac9 1218 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
27f4d280
PM
1219 spincnt = 0;
1220 }
1221 }
1217ed1b 1222 /* NOTREACHED */
f7f7bac9 1223 trace_rcu_utilization(TPS("End boost kthread@notreached"));
27f4d280
PM
1224 return 0;
1225}
1226
1227/*
1228 * Check to see if it is time to start boosting RCU readers that are
1229 * blocking the current grace period, and, if so, tell the per-rcu_node
1230 * kthread to start boosting them. If there is an expedited grace
1231 * period in progress, it is always time to boost.
1232 *
b065a853
PM
1233 * The caller must hold rnp->lock, which this function releases.
1234 * The ->boost_kthread_task is immortal, so we don't need to worry
1235 * about it going away.
27f4d280 1236 */
1217ed1b 1237static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1238 __releases(rnp->lock)
27f4d280
PM
1239{
1240 struct task_struct *t;
1241
0ea1f2eb
PM
1242 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1243 rnp->n_balk_exp_gp_tasks++;
1217ed1b 1244 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1245 return;
0ea1f2eb 1246 }
27f4d280
PM
1247 if (rnp->exp_tasks != NULL ||
1248 (rnp->gp_tasks != NULL &&
1249 rnp->boost_tasks == NULL &&
1250 rnp->qsmask == 0 &&
1251 ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1252 if (rnp->exp_tasks == NULL)
1253 rnp->boost_tasks = rnp->gp_tasks;
1217ed1b 1254 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280 1255 t = rnp->boost_kthread_task;
5d01bbd1
TG
1256 if (t)
1257 rcu_wake_cond(t, rnp->boost_kthread_status);
1217ed1b 1258 } else {
0ea1f2eb 1259 rcu_initiate_boost_trace(rnp);
1217ed1b
PM
1260 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1261 }
27f4d280
PM
1262}
1263
a46e0899
PM
1264/*
1265 * Wake up the per-CPU kthread to invoke RCU callbacks.
1266 */
1267static void invoke_rcu_callbacks_kthread(void)
1268{
1269 unsigned long flags;
1270
1271 local_irq_save(flags);
1272 __this_cpu_write(rcu_cpu_has_work, 1);
1eb52121 1273 if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
5d01bbd1
TG
1274 current != __this_cpu_read(rcu_cpu_kthread_task)) {
1275 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1276 __this_cpu_read(rcu_cpu_kthread_status));
1277 }
a46e0899
PM
1278 local_irq_restore(flags);
1279}
1280
dff1672d
PM
1281/*
1282 * Is the current CPU running the RCU-callbacks kthread?
1283 * Caller must have preemption disabled.
1284 */
1285static bool rcu_is_callbacks_kthread(void)
1286{
c9d4b0af 1287 return __this_cpu_read(rcu_cpu_kthread_task) == current;
dff1672d
PM
1288}
1289
27f4d280
PM
1290#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1291
1292/*
1293 * Do priority-boost accounting for the start of a new grace period.
1294 */
1295static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1296{
1297 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1298}
1299
27f4d280
PM
1300/*
1301 * Create an RCU-boost kthread for the specified node if one does not
1302 * already exist. We only create this kthread for preemptible RCU.
1303 * Returns zero if all is well, a negated errno otherwise.
1304 */
49fb4c62 1305static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
5d01bbd1 1306 struct rcu_node *rnp)
27f4d280 1307{
5d01bbd1 1308 int rnp_index = rnp - &rsp->node[0];
27f4d280
PM
1309 unsigned long flags;
1310 struct sched_param sp;
1311 struct task_struct *t;
1312
1313 if (&rcu_preempt_state != rsp)
1314 return 0;
5d01bbd1
TG
1315
1316 if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
1317 return 0;
1318
a46e0899 1319 rsp->boost = 1;
27f4d280
PM
1320 if (rnp->boost_kthread_task != NULL)
1321 return 0;
1322 t = kthread_create(rcu_boost_kthread, (void *)rnp,
5b61b0ba 1323 "rcub/%d", rnp_index);
27f4d280
PM
1324 if (IS_ERR(t))
1325 return PTR_ERR(t);
1326 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 1327 smp_mb__after_unlock_lock();
27f4d280
PM
1328 rnp->boost_kthread_task = t;
1329 raw_spin_unlock_irqrestore(&rnp->lock, flags);
5b61b0ba 1330 sp.sched_priority = RCU_BOOST_PRIO;
27f4d280 1331 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
9a432736 1332 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
27f4d280
PM
1333 return 0;
1334}
1335
f8b7fc6b
PM
1336static void rcu_kthread_do_work(void)
1337{
c9d4b0af
CL
1338 rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1339 rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
f8b7fc6b
PM
1340 rcu_preempt_do_callbacks();
1341}
1342
62ab7072 1343static void rcu_cpu_kthread_setup(unsigned int cpu)
f8b7fc6b 1344{
f8b7fc6b 1345 struct sched_param sp;
f8b7fc6b 1346
62ab7072
PM
1347 sp.sched_priority = RCU_KTHREAD_PRIO;
1348 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
f8b7fc6b
PM
1349}
1350
62ab7072 1351static void rcu_cpu_kthread_park(unsigned int cpu)
f8b7fc6b 1352{
62ab7072 1353 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
f8b7fc6b
PM
1354}
1355
62ab7072 1356static int rcu_cpu_kthread_should_run(unsigned int cpu)
f8b7fc6b 1357{
c9d4b0af 1358 return __this_cpu_read(rcu_cpu_has_work);
f8b7fc6b
PM
1359}
1360
1361/*
1362 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
e0f23060
PM
1363 * RCU softirq used in flavors and configurations of RCU that do not
1364 * support RCU priority boosting.
f8b7fc6b 1365 */
62ab7072 1366static void rcu_cpu_kthread(unsigned int cpu)
f8b7fc6b 1367{
c9d4b0af
CL
1368 unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1369 char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
62ab7072 1370 int spincnt;
f8b7fc6b 1371
62ab7072 1372 for (spincnt = 0; spincnt < 10; spincnt++) {
f7f7bac9 1373 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
f8b7fc6b 1374 local_bh_disable();
f8b7fc6b 1375 *statusp = RCU_KTHREAD_RUNNING;
62ab7072
PM
1376 this_cpu_inc(rcu_cpu_kthread_loops);
1377 local_irq_disable();
f8b7fc6b
PM
1378 work = *workp;
1379 *workp = 0;
62ab7072 1380 local_irq_enable();
f8b7fc6b
PM
1381 if (work)
1382 rcu_kthread_do_work();
1383 local_bh_enable();
62ab7072 1384 if (*workp == 0) {
f7f7bac9 1385 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
62ab7072
PM
1386 *statusp = RCU_KTHREAD_WAITING;
1387 return;
f8b7fc6b
PM
1388 }
1389 }
62ab7072 1390 *statusp = RCU_KTHREAD_YIELDING;
f7f7bac9 1391 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
62ab7072 1392 schedule_timeout_interruptible(2);
f7f7bac9 1393 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
62ab7072 1394 *statusp = RCU_KTHREAD_WAITING;
f8b7fc6b
PM
1395}
1396
1397/*
1398 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1399 * served by the rcu_node in question. The CPU hotplug lock is still
1400 * held, so the value of rnp->qsmaskinit will be stable.
1401 *
1402 * We don't include outgoingcpu in the affinity set, use -1 if there is
1403 * no outgoing CPU. If there are no CPUs left in the affinity set,
1404 * this function allows the kthread to execute on any CPU.
1405 */
5d01bbd1 1406static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b 1407{
5d01bbd1
TG
1408 struct task_struct *t = rnp->boost_kthread_task;
1409 unsigned long mask = rnp->qsmaskinit;
f8b7fc6b
PM
1410 cpumask_var_t cm;
1411 int cpu;
f8b7fc6b 1412
5d01bbd1 1413 if (!t)
f8b7fc6b 1414 return;
5d01bbd1 1415 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
f8b7fc6b 1416 return;
f8b7fc6b
PM
1417 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1418 if ((mask & 0x1) && cpu != outgoingcpu)
1419 cpumask_set_cpu(cpu, cm);
1420 if (cpumask_weight(cm) == 0) {
1421 cpumask_setall(cm);
1422 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1423 cpumask_clear_cpu(cpu, cm);
1424 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1425 }
5d01bbd1 1426 set_cpus_allowed_ptr(t, cm);
f8b7fc6b
PM
1427 free_cpumask_var(cm);
1428}
1429
62ab7072
PM
1430static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1431 .store = &rcu_cpu_kthread_task,
1432 .thread_should_run = rcu_cpu_kthread_should_run,
1433 .thread_fn = rcu_cpu_kthread,
1434 .thread_comm = "rcuc/%u",
1435 .setup = rcu_cpu_kthread_setup,
1436 .park = rcu_cpu_kthread_park,
1437};
f8b7fc6b
PM
1438
1439/*
9386c0b7 1440 * Spawn boost kthreads -- called as soon as the scheduler is running.
f8b7fc6b 1441 */
9386c0b7 1442static void __init rcu_spawn_boost_kthreads(void)
f8b7fc6b 1443{
f8b7fc6b 1444 struct rcu_node *rnp;
5d01bbd1 1445 int cpu;
f8b7fc6b 1446
62ab7072 1447 for_each_possible_cpu(cpu)
f8b7fc6b 1448 per_cpu(rcu_cpu_has_work, cpu) = 0;
62ab7072 1449 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
e534165b
US
1450 rnp = rcu_get_root(rcu_state_p);
1451 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1452 if (NUM_RCU_NODES > 1) {
e534165b
US
1453 rcu_for_each_leaf_node(rcu_state_p, rnp)
1454 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b 1455 }
f8b7fc6b 1456}
f8b7fc6b 1457
49fb4c62 1458static void rcu_prepare_kthreads(int cpu)
f8b7fc6b 1459{
e534165b 1460 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
f8b7fc6b
PM
1461 struct rcu_node *rnp = rdp->mynode;
1462
1463 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
62ab7072 1464 if (rcu_scheduler_fully_active)
e534165b 1465 (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
f8b7fc6b
PM
1466}
1467
27f4d280
PM
1468#else /* #ifdef CONFIG_RCU_BOOST */
1469
1217ed1b 1470static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
615e41c6 1471 __releases(rnp->lock)
27f4d280 1472{
1217ed1b 1473 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27f4d280
PM
1474}
1475
a46e0899 1476static void invoke_rcu_callbacks_kthread(void)
27f4d280 1477{
a46e0899 1478 WARN_ON_ONCE(1);
27f4d280
PM
1479}
1480
dff1672d
PM
1481static bool rcu_is_callbacks_kthread(void)
1482{
1483 return false;
1484}
1485
27f4d280
PM
1486static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1487{
1488}
1489
5d01bbd1 1490static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
f8b7fc6b
PM
1491{
1492}
1493
9386c0b7 1494static void __init rcu_spawn_boost_kthreads(void)
b0d30417 1495{
b0d30417 1496}
b0d30417 1497
49fb4c62 1498static void rcu_prepare_kthreads(int cpu)
f8b7fc6b
PM
1499{
1500}
1501
27f4d280
PM
1502#endif /* #else #ifdef CONFIG_RCU_BOOST */
1503
8bd93a2c
PM
1504#if !defined(CONFIG_RCU_FAST_NO_HZ)
1505
1506/*
1507 * Check to see if any future RCU-related work will need to be done
1508 * by the current CPU, even if none need be done immediately, returning
1509 * 1 if so. This function is part of the RCU implementation; it is -not-
1510 * an exported member of the RCU API.
1511 *
7cb92499
PM
1512 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1513 * any flavor of RCU.
8bd93a2c 1514 */
ffa83fb5 1515#ifndef CONFIG_RCU_NOCB_CPU_ALL
aa9b1630 1516int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
8bd93a2c 1517{
aa9b1630 1518 *delta_jiffies = ULONG_MAX;
c0f4dfd4 1519 return rcu_cpu_has_callbacks(cpu, NULL);
7cb92499 1520}
ffa83fb5 1521#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
7cb92499
PM
1522
1523/*
1524 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1525 * after it.
1526 */
1527static void rcu_cleanup_after_idle(int cpu)
1528{
1529}
1530
aea1b35e 1531/*
a858af28 1532 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
aea1b35e
PM
1533 * is nothing.
1534 */
1535static void rcu_prepare_for_idle(int cpu)
1536{
1537}
1538
c57afe80
PM
1539/*
1540 * Don't bother keeping a running count of the number of RCU callbacks
1541 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1542 */
1543static void rcu_idle_count_callbacks_posted(void)
1544{
1545}
1546
8bd93a2c
PM
1547#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1548
f23f7fa1
PM
1549/*
1550 * This code is invoked when a CPU goes idle, at which point we want
1551 * to have the CPU do everything required for RCU so that it can enter
1552 * the energy-efficient dyntick-idle mode. This is handled by a
1553 * state machine implemented by rcu_prepare_for_idle() below.
1554 *
1555 * The following three proprocessor symbols control this state machine:
1556 *
f23f7fa1
PM
1557 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1558 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1559 * is sized to be roughly one RCU grace period. Those energy-efficiency
1560 * benchmarkers who might otherwise be tempted to set this to a large
1561 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1562 * system. And if you are -that- concerned about energy efficiency,
1563 * just power the system down and be done with it!
778d250a
PM
1564 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1565 * permitted to sleep in dyntick-idle mode with only lazy RCU
1566 * callbacks pending. Setting this too high can OOM your system.
f23f7fa1
PM
1567 *
1568 * The values below work well in practice. If future workloads require
1569 * adjustment, they can be converted into kernel config parameters, though
1570 * making the state machine smarter might be a better option.
1571 */
e84c48ae 1572#define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
778d250a 1573#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
f23f7fa1 1574
5e44ce35
PM
1575static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1576module_param(rcu_idle_gp_delay, int, 0644);
1577static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1578module_param(rcu_idle_lazy_gp_delay, int, 0644);
486e2593 1579
d689fe22 1580extern int tick_nohz_active;
486e2593
PM
1581
1582/*
c229828c
PM
1583 * Try to advance callbacks for all flavors of RCU on the current CPU, but
1584 * only if it has been awhile since the last time we did so. Afterwards,
1585 * if there are any callbacks ready for immediate invocation, return true.
486e2593 1586 */
f1f399d1 1587static bool __maybe_unused rcu_try_advance_all_cbs(void)
486e2593 1588{
c0f4dfd4
PM
1589 bool cbs_ready = false;
1590 struct rcu_data *rdp;
c229828c 1591 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
c0f4dfd4
PM
1592 struct rcu_node *rnp;
1593 struct rcu_state *rsp;
486e2593 1594
c229828c
PM
1595 /* Exit early if we advanced recently. */
1596 if (jiffies == rdtp->last_advance_all)
d0bc90fd 1597 return false;
c229828c
PM
1598 rdtp->last_advance_all = jiffies;
1599
c0f4dfd4
PM
1600 for_each_rcu_flavor(rsp) {
1601 rdp = this_cpu_ptr(rsp->rda);
1602 rnp = rdp->mynode;
486e2593 1603
c0f4dfd4
PM
1604 /*
1605 * Don't bother checking unless a grace period has
1606 * completed since we last checked and there are
1607 * callbacks not yet ready to invoke.
1608 */
1609 if (rdp->completed != rnp->completed &&
1610 rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
470716fc 1611 note_gp_changes(rsp, rdp);
486e2593 1612
c0f4dfd4
PM
1613 if (cpu_has_callbacks_ready_to_invoke(rdp))
1614 cbs_ready = true;
1615 }
1616 return cbs_ready;
486e2593
PM
1617}
1618
aa9b1630 1619/*
c0f4dfd4
PM
1620 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1621 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1622 * caller to set the timeout based on whether or not there are non-lazy
1623 * callbacks.
aa9b1630 1624 *
c0f4dfd4 1625 * The caller must have disabled interrupts.
aa9b1630 1626 */
ffa83fb5 1627#ifndef CONFIG_RCU_NOCB_CPU_ALL
c0f4dfd4 1628int rcu_needs_cpu(int cpu, unsigned long *dj)
aa9b1630
PM
1629{
1630 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1631
c0f4dfd4
PM
1632 /* Snapshot to detect later posting of non-lazy callback. */
1633 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1634
aa9b1630 1635 /* If no callbacks, RCU doesn't need the CPU. */
c0f4dfd4
PM
1636 if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
1637 *dj = ULONG_MAX;
aa9b1630
PM
1638 return 0;
1639 }
c0f4dfd4
PM
1640
1641 /* Attempt to advance callbacks. */
1642 if (rcu_try_advance_all_cbs()) {
1643 /* Some ready to invoke, so initiate later invocation. */
1644 invoke_rcu_core();
aa9b1630
PM
1645 return 1;
1646 }
c0f4dfd4
PM
1647 rdtp->last_accelerate = jiffies;
1648
1649 /* Request timer delay depending on laziness, and round. */
6faf7283 1650 if (!rdtp->all_lazy) {
c0f4dfd4
PM
1651 *dj = round_up(rcu_idle_gp_delay + jiffies,
1652 rcu_idle_gp_delay) - jiffies;
e84c48ae 1653 } else {
c0f4dfd4 1654 *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
e84c48ae 1655 }
aa9b1630
PM
1656 return 0;
1657}
ffa83fb5 1658#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
aa9b1630 1659
21e52e15 1660/*
c0f4dfd4
PM
1661 * Prepare a CPU for idle from an RCU perspective. The first major task
1662 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1663 * The second major task is to check to see if a non-lazy callback has
1664 * arrived at a CPU that previously had only lazy callbacks. The third
1665 * major task is to accelerate (that is, assign grace-period numbers to)
1666 * any recently arrived callbacks.
aea1b35e
PM
1667 *
1668 * The caller must have disabled interrupts.
8bd93a2c 1669 */
aea1b35e 1670static void rcu_prepare_for_idle(int cpu)
8bd93a2c 1671{
f1f399d1 1672#ifndef CONFIG_RCU_NOCB_CPU_ALL
48a7639c 1673 bool needwake;
c0f4dfd4 1674 struct rcu_data *rdp;
5955f7ee 1675 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4
PM
1676 struct rcu_node *rnp;
1677 struct rcu_state *rsp;
9d2ad243
PM
1678 int tne;
1679
1680 /* Handle nohz enablement switches conservatively. */
d689fe22 1681 tne = ACCESS_ONCE(tick_nohz_active);
9d2ad243 1682 if (tne != rdtp->tick_nohz_enabled_snap) {
c0f4dfd4 1683 if (rcu_cpu_has_callbacks(cpu, NULL))
9d2ad243
PM
1684 invoke_rcu_core(); /* force nohz to see update. */
1685 rdtp->tick_nohz_enabled_snap = tne;
1686 return;
1687 }
1688 if (!tne)
1689 return;
f511fc62 1690
c0f4dfd4 1691 /* If this is a no-CBs CPU, no callbacks, just return. */
534c97b0 1692 if (rcu_is_nocb_cpu(cpu))
9a0c6fef 1693 return;
9a0c6fef 1694
c57afe80 1695 /*
c0f4dfd4
PM
1696 * If a non-lazy callback arrived at a CPU having only lazy
1697 * callbacks, invoke RCU core for the side-effect of recalculating
1698 * idle duration on re-entry to idle.
c57afe80 1699 */
c0f4dfd4
PM
1700 if (rdtp->all_lazy &&
1701 rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
c337f8f5
PM
1702 rdtp->all_lazy = false;
1703 rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
c0f4dfd4 1704 invoke_rcu_core();
c57afe80
PM
1705 return;
1706 }
c57afe80 1707
3084f2f8 1708 /*
c0f4dfd4
PM
1709 * If we have not yet accelerated this jiffy, accelerate all
1710 * callbacks on this CPU.
3084f2f8 1711 */
c0f4dfd4 1712 if (rdtp->last_accelerate == jiffies)
aea1b35e 1713 return;
c0f4dfd4
PM
1714 rdtp->last_accelerate = jiffies;
1715 for_each_rcu_flavor(rsp) {
1716 rdp = per_cpu_ptr(rsp->rda, cpu);
1717 if (!*rdp->nxttail[RCU_DONE_TAIL])
1718 continue;
1719 rnp = rdp->mynode;
1720 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
6303b9c8 1721 smp_mb__after_unlock_lock();
48a7639c 1722 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
c0f4dfd4 1723 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
48a7639c
PM
1724 if (needwake)
1725 rcu_gp_kthread_wake(rsp);
77e38ed3 1726 }
f1f399d1 1727#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
c0f4dfd4 1728}
3084f2f8 1729
c0f4dfd4
PM
1730/*
1731 * Clean up for exit from idle. Attempt to advance callbacks based on
1732 * any grace periods that elapsed while the CPU was idle, and if any
1733 * callbacks are now ready to invoke, initiate invocation.
1734 */
1735static void rcu_cleanup_after_idle(int cpu)
1736{
f1f399d1 1737#ifndef CONFIG_RCU_NOCB_CPU_ALL
534c97b0 1738 if (rcu_is_nocb_cpu(cpu))
aea1b35e 1739 return;
7a497c96
PM
1740 if (rcu_try_advance_all_cbs())
1741 invoke_rcu_core();
f1f399d1 1742#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
8bd93a2c
PM
1743}
1744
c57afe80 1745/*
98248a0e
PM
1746 * Keep a running count of the number of non-lazy callbacks posted
1747 * on this CPU. This running counter (which is never decremented) allows
1748 * rcu_prepare_for_idle() to detect when something out of the idle loop
1749 * posts a callback, even if an equal number of callbacks are invoked.
1750 * Of course, callbacks should only be posted from within a trace event
1751 * designed to be called from idle or from within RCU_NONIDLE().
c57afe80
PM
1752 */
1753static void rcu_idle_count_callbacks_posted(void)
1754{
5955f7ee 1755 __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
c57afe80
PM
1756}
1757
b626c1b6
PM
1758/*
1759 * Data for flushing lazy RCU callbacks at OOM time.
1760 */
1761static atomic_t oom_callback_count;
1762static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1763
1764/*
1765 * RCU OOM callback -- decrement the outstanding count and deliver the
1766 * wake-up if we are the last one.
1767 */
1768static void rcu_oom_callback(struct rcu_head *rhp)
1769{
1770 if (atomic_dec_and_test(&oom_callback_count))
1771 wake_up(&oom_callback_wq);
1772}
1773
1774/*
1775 * Post an rcu_oom_notify callback on the current CPU if it has at
1776 * least one lazy callback. This will unnecessarily post callbacks
1777 * to CPUs that already have a non-lazy callback at the end of their
1778 * callback list, but this is an infrequent operation, so accept some
1779 * extra overhead to keep things simple.
1780 */
1781static void rcu_oom_notify_cpu(void *unused)
1782{
1783 struct rcu_state *rsp;
1784 struct rcu_data *rdp;
1785
1786 for_each_rcu_flavor(rsp) {
fa07a58f 1787 rdp = raw_cpu_ptr(rsp->rda);
b626c1b6
PM
1788 if (rdp->qlen_lazy != 0) {
1789 atomic_inc(&oom_callback_count);
1790 rsp->call(&rdp->oom_head, rcu_oom_callback);
1791 }
1792 }
1793}
1794
1795/*
1796 * If low on memory, ensure that each CPU has a non-lazy callback.
1797 * This will wake up CPUs that have only lazy callbacks, in turn
1798 * ensuring that they free up the corresponding memory in a timely manner.
1799 * Because an uncertain amount of memory will be freed in some uncertain
1800 * timeframe, we do not claim to have freed anything.
1801 */
1802static int rcu_oom_notify(struct notifier_block *self,
1803 unsigned long notused, void *nfreed)
1804{
1805 int cpu;
1806
1807 /* Wait for callbacks from earlier instance to complete. */
1808 wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
78e4bc34 1809 smp_mb(); /* Ensure callback reuse happens after callback invocation. */
b626c1b6
PM
1810
1811 /*
1812 * Prevent premature wakeup: ensure that all increments happen
1813 * before there is a chance of the counter reaching zero.
1814 */
1815 atomic_set(&oom_callback_count, 1);
1816
1817 get_online_cpus();
1818 for_each_online_cpu(cpu) {
1819 smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
bde6c3aa 1820 cond_resched_rcu_qs();
b626c1b6
PM
1821 }
1822 put_online_cpus();
1823
1824 /* Unconditionally decrement: no need to wake ourselves up. */
1825 atomic_dec(&oom_callback_count);
1826
1827 return NOTIFY_OK;
1828}
1829
1830static struct notifier_block rcu_oom_nb = {
1831 .notifier_call = rcu_oom_notify
1832};
1833
1834static int __init rcu_register_oom_notifier(void)
1835{
1836 register_oom_notifier(&rcu_oom_nb);
1837 return 0;
1838}
1839early_initcall(rcu_register_oom_notifier);
1840
8bd93a2c 1841#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
a858af28
PM
1842
1843#ifdef CONFIG_RCU_CPU_STALL_INFO
1844
1845#ifdef CONFIG_RCU_FAST_NO_HZ
1846
1847static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1848{
5955f7ee 1849 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
c0f4dfd4 1850 unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
a858af28 1851
c0f4dfd4
PM
1852 sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1853 rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1854 ulong2long(nlpd),
1855 rdtp->all_lazy ? 'L' : '.',
1856 rdtp->tick_nohz_enabled_snap ? '.' : 'D');
a858af28
PM
1857}
1858
1859#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1860
1861static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1862{
1c17e4d4 1863 *cp = '\0';
a858af28
PM
1864}
1865
1866#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1867
1868/* Initiate the stall-info list. */
1869static void print_cpu_stall_info_begin(void)
1870{
efc151c3 1871 pr_cont("\n");
a858af28
PM
1872}
1873
1874/*
1875 * Print out diagnostic information for the specified stalled CPU.
1876 *
1877 * If the specified CPU is aware of the current RCU grace period
1878 * (flavor specified by rsp), then print the number of scheduling
1879 * clock interrupts the CPU has taken during the time that it has
1880 * been aware. Otherwise, print the number of RCU grace periods
1881 * that this CPU is ignorant of, for example, "1" if the CPU was
1882 * aware of the previous grace period.
1883 *
1884 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1885 */
1886static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1887{
1888 char fast_no_hz[72];
1889 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1890 struct rcu_dynticks *rdtp = rdp->dynticks;
1891 char *ticks_title;
1892 unsigned long ticks_value;
1893
1894 if (rsp->gpnum == rdp->gpnum) {
1895 ticks_title = "ticks this GP";
1896 ticks_value = rdp->ticks_this_gp;
1897 } else {
1898 ticks_title = "GPs behind";
1899 ticks_value = rsp->gpnum - rdp->gpnum;
1900 }
1901 print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
efc151c3 1902 pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
a858af28
PM
1903 cpu, ticks_value, ticks_title,
1904 atomic_read(&rdtp->dynticks) & 0xfff,
1905 rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
6231069b 1906 rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
a858af28
PM
1907 fast_no_hz);
1908}
1909
1910/* Terminate the stall-info list. */
1911static void print_cpu_stall_info_end(void)
1912{
efc151c3 1913 pr_err("\t");
a858af28
PM
1914}
1915
1916/* Zero ->ticks_this_gp for all flavors of RCU. */
1917static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1918{
1919 rdp->ticks_this_gp = 0;
6231069b 1920 rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
a858af28
PM
1921}
1922
1923/* Increment ->ticks_this_gp for all flavors of RCU. */
1924static void increment_cpu_stall_ticks(void)
1925{
115f7a7c
PM
1926 struct rcu_state *rsp;
1927
1928 for_each_rcu_flavor(rsp)
fa07a58f 1929 raw_cpu_inc(rsp->rda->ticks_this_gp);
a858af28
PM
1930}
1931
1932#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
1933
1934static void print_cpu_stall_info_begin(void)
1935{
efc151c3 1936 pr_cont(" {");
a858af28
PM
1937}
1938
1939static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1940{
efc151c3 1941 pr_cont(" %d", cpu);
a858af28
PM
1942}
1943
1944static void print_cpu_stall_info_end(void)
1945{
efc151c3 1946 pr_cont("} ");
a858af28
PM
1947}
1948
1949static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1950{
1951}
1952
1953static void increment_cpu_stall_ticks(void)
1954{
1955}
1956
1957#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
3fbfbf7a
PM
1958
1959#ifdef CONFIG_RCU_NOCB_CPU
1960
1961/*
1962 * Offload callback processing from the boot-time-specified set of CPUs
1963 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1964 * kthread created that pulls the callbacks from the corresponding CPU,
1965 * waits for a grace period to elapse, and invokes the callbacks.
1966 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1967 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1968 * has been specified, in which case each kthread actively polls its
1969 * CPU. (Which isn't so great for energy efficiency, but which does
1970 * reduce RCU's overhead on that CPU.)
1971 *
1972 * This is intended to be used in conjunction with Frederic Weisbecker's
1973 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1974 * running CPU-bound user-mode computations.
1975 *
1976 * Offloading of callback processing could also in theory be used as
1977 * an energy-efficiency measure because CPUs with no RCU callbacks
1978 * queued are more aggressive about entering dyntick-idle mode.
1979 */
1980
1981
1982/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1983static int __init rcu_nocb_setup(char *str)
1984{
1985 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1986 have_rcu_nocb_mask = true;
1987 cpulist_parse(str, rcu_nocb_mask);
1988 return 1;
1989}
1990__setup("rcu_nocbs=", rcu_nocb_setup);
1991
1b0048a4
PG
1992static int __init parse_rcu_nocb_poll(char *arg)
1993{
1994 rcu_nocb_poll = 1;
1995 return 0;
1996}
1997early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1998
dae6e64d 1999/*
0446be48
PM
2000 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
2001 * grace period.
dae6e64d 2002 */
0446be48 2003static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
dae6e64d 2004{
0446be48 2005 wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
dae6e64d
PM
2006}
2007
2008/*
8b425aa8 2009 * Set the root rcu_node structure's ->need_future_gp field
dae6e64d
PM
2010 * based on the sum of those of all rcu_node structures. This does
2011 * double-count the root rcu_node structure's requests, but this
2012 * is necessary to handle the possibility of a rcu_nocb_kthread()
2013 * having awakened during the time that the rcu_node structures
2014 * were being updated for the end of the previous grace period.
34ed6246 2015 */
dae6e64d
PM
2016static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2017{
8b425aa8 2018 rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
dae6e64d
PM
2019}
2020
2021static void rcu_init_one_nocb(struct rcu_node *rnp)
34ed6246 2022{
dae6e64d
PM
2023 init_waitqueue_head(&rnp->nocb_gp_wq[0]);
2024 init_waitqueue_head(&rnp->nocb_gp_wq[1]);
34ed6246
PM
2025}
2026
2f33b512 2027#ifndef CONFIG_RCU_NOCB_CPU_ALL
24342c96 2028/* Is the specified CPU a no-CBs CPU? */
d1e43fa5 2029bool rcu_is_nocb_cpu(int cpu)
3fbfbf7a
PM
2030{
2031 if (have_rcu_nocb_mask)
2032 return cpumask_test_cpu(cpu, rcu_nocb_mask);
2033 return false;
2034}
2f33b512 2035#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
3fbfbf7a 2036
fbce7497
PM
2037/*
2038 * Kick the leader kthread for this NOCB group.
2039 */
2040static void wake_nocb_leader(struct rcu_data *rdp, bool force)
2041{
2042 struct rcu_data *rdp_leader = rdp->nocb_leader;
2043
2044 if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
2045 return;
11ed7f93 2046 if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
39953dfd 2047 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
11ed7f93 2048 ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
fbce7497
PM
2049 wake_up(&rdp_leader->nocb_wq);
2050 }
2051}
2052
3fbfbf7a
PM
2053/*
2054 * Enqueue the specified string of rcu_head structures onto the specified
2055 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2056 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2057 * counts are supplied by rhcount and rhcount_lazy.
2058 *
2059 * If warranted, also wake up the kthread servicing this CPUs queues.
2060 */
2061static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
2062 struct rcu_head *rhp,
2063 struct rcu_head **rhtp,
96d3fd0d
PM
2064 int rhcount, int rhcount_lazy,
2065 unsigned long flags)
3fbfbf7a
PM
2066{
2067 int len;
2068 struct rcu_head **old_rhpp;
2069 struct task_struct *t;
2070
2071 /* Enqueue the callback on the nocb list and update counts. */
2072 old_rhpp = xchg(&rdp->nocb_tail, rhtp);
2073 ACCESS_ONCE(*old_rhpp) = rhp;
2074 atomic_long_add(rhcount, &rdp->nocb_q_count);
2075 atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
39953dfd 2076 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
3fbfbf7a
PM
2077
2078 /* If we are not being polled and there is a kthread, awaken it ... */
2079 t = ACCESS_ONCE(rdp->nocb_kthread);
25e03a74 2080 if (rcu_nocb_poll || !t) {
9261dd0d
PM
2081 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2082 TPS("WakeNotPoll"));
3fbfbf7a 2083 return;
9261dd0d 2084 }
3fbfbf7a
PM
2085 len = atomic_long_read(&rdp->nocb_q_count);
2086 if (old_rhpp == &rdp->nocb_head) {
96d3fd0d 2087 if (!irqs_disabled_flags(flags)) {
fbce7497
PM
2088 /* ... if queue was empty ... */
2089 wake_nocb_leader(rdp, false);
96d3fd0d
PM
2090 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2091 TPS("WakeEmpty"));
2092 } else {
9fdd3bc9 2093 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
96d3fd0d
PM
2094 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2095 TPS("WakeEmptyIsDeferred"));
2096 }
3fbfbf7a
PM
2097 rdp->qlen_last_fqs_check = 0;
2098 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
fbce7497 2099 /* ... or if many callbacks queued. */
9fdd3bc9
PM
2100 if (!irqs_disabled_flags(flags)) {
2101 wake_nocb_leader(rdp, true);
2102 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2103 TPS("WakeOvf"));
2104 } else {
2105 rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
2106 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2107 TPS("WakeOvfIsDeferred"));
2108 }
3fbfbf7a 2109 rdp->qlen_last_fqs_check = LONG_MAX / 2;
9261dd0d
PM
2110 } else {
2111 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
3fbfbf7a
PM
2112 }
2113 return;
2114}
2115
2116/*
2117 * This is a helper for __call_rcu(), which invokes this when the normal
2118 * callback queue is inoperable. If this is not a no-CBs CPU, this
2119 * function returns failure back to __call_rcu(), which can complain
2120 * appropriately.
2121 *
2122 * Otherwise, this function queues the callback where the corresponding
2123 * "rcuo" kthread can find it.
2124 */
2125static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2126 bool lazy, unsigned long flags)
3fbfbf7a
PM
2127{
2128
d1e43fa5 2129 if (!rcu_is_nocb_cpu(rdp->cpu))
c271d3a9 2130 return false;
96d3fd0d 2131 __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
21e7a608
PM
2132 if (__is_kfree_rcu_offset((unsigned long)rhp->func))
2133 trace_rcu_kfree_callback(rdp->rsp->name, rhp,
2134 (unsigned long)rhp->func,
756cbf6b
PM
2135 -atomic_long_read(&rdp->nocb_q_count_lazy),
2136 -atomic_long_read(&rdp->nocb_q_count));
21e7a608
PM
2137 else
2138 trace_rcu_callback(rdp->rsp->name, rhp,
756cbf6b
PM
2139 -atomic_long_read(&rdp->nocb_q_count_lazy),
2140 -atomic_long_read(&rdp->nocb_q_count));
1772947b
PM
2141
2142 /*
2143 * If called from an extended quiescent state with interrupts
2144 * disabled, invoke the RCU core in order to allow the idle-entry
2145 * deferred-wakeup check to function.
2146 */
2147 if (irqs_disabled_flags(flags) &&
2148 !rcu_is_watching() &&
2149 cpu_online(smp_processor_id()))
2150 invoke_rcu_core();
2151
c271d3a9 2152 return true;
3fbfbf7a
PM
2153}
2154
2155/*
2156 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2157 * not a no-CBs CPU.
2158 */
2159static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2160 struct rcu_data *rdp,
2161 unsigned long flags)
3fbfbf7a
PM
2162{
2163 long ql = rsp->qlen;
2164 long qll = rsp->qlen_lazy;
2165
2166 /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
d1e43fa5 2167 if (!rcu_is_nocb_cpu(smp_processor_id()))
0a9e1e11 2168 return false;
3fbfbf7a
PM
2169 rsp->qlen = 0;
2170 rsp->qlen_lazy = 0;
2171
2172 /* First, enqueue the donelist, if any. This preserves CB ordering. */
2173 if (rsp->orphan_donelist != NULL) {
2174 __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
96d3fd0d 2175 rsp->orphan_donetail, ql, qll, flags);
3fbfbf7a
PM
2176 ql = qll = 0;
2177 rsp->orphan_donelist = NULL;
2178 rsp->orphan_donetail = &rsp->orphan_donelist;
2179 }
2180 if (rsp->orphan_nxtlist != NULL) {
2181 __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
96d3fd0d 2182 rsp->orphan_nxttail, ql, qll, flags);
3fbfbf7a
PM
2183 ql = qll = 0;
2184 rsp->orphan_nxtlist = NULL;
2185 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2186 }
0a9e1e11 2187 return true;
3fbfbf7a
PM
2188}
2189
2190/*
34ed6246
PM
2191 * If necessary, kick off a new grace period, and either way wait
2192 * for a subsequent grace period to complete.
3fbfbf7a 2193 */
34ed6246 2194static void rcu_nocb_wait_gp(struct rcu_data *rdp)
3fbfbf7a 2195{
34ed6246 2196 unsigned long c;
dae6e64d 2197 bool d;
34ed6246 2198 unsigned long flags;
48a7639c 2199 bool needwake;
34ed6246
PM
2200 struct rcu_node *rnp = rdp->mynode;
2201
2202 raw_spin_lock_irqsave(&rnp->lock, flags);
6303b9c8 2203 smp_mb__after_unlock_lock();
48a7639c 2204 needwake = rcu_start_future_gp(rnp, rdp, &c);
0446be48 2205 raw_spin_unlock_irqrestore(&rnp->lock, flags);
48a7639c
PM
2206 if (needwake)
2207 rcu_gp_kthread_wake(rdp->rsp);
3fbfbf7a
PM
2208
2209 /*
34ed6246
PM
2210 * Wait for the grace period. Do so interruptibly to avoid messing
2211 * up the load average.
3fbfbf7a 2212 */
f7f7bac9 2213 trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
34ed6246 2214 for (;;) {
dae6e64d
PM
2215 wait_event_interruptible(
2216 rnp->nocb_gp_wq[c & 0x1],
2217 (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
2218 if (likely(d))
34ed6246 2219 break;
73a860cd 2220 WARN_ON(signal_pending(current));
f7f7bac9 2221 trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
34ed6246 2222 }
f7f7bac9 2223 trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
34ed6246 2224 smp_mb(); /* Ensure that CB invocation happens after GP end. */
3fbfbf7a
PM
2225}
2226
fbce7497
PM
2227/*
2228 * Leaders come here to wait for additional callbacks to show up.
2229 * This function does not return until callbacks appear.
2230 */
2231static void nocb_leader_wait(struct rcu_data *my_rdp)
2232{
2233 bool firsttime = true;
2234 bool gotcbs;
2235 struct rcu_data *rdp;
2236 struct rcu_head **tail;
2237
2238wait_again:
2239
2240 /* Wait for callbacks to appear. */
2241 if (!rcu_nocb_poll) {
2242 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
2243 wait_event_interruptible(my_rdp->nocb_wq,
11ed7f93 2244 !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
fbce7497
PM
2245 /* Memory barrier handled by smp_mb() calls below and repoll. */
2246 } else if (firsttime) {
2247 firsttime = false; /* Don't drown trace log with "Poll"! */
2248 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
2249 }
2250
2251 /*
2252 * Each pass through the following loop checks a follower for CBs.
2253 * We are our own first follower. Any CBs found are moved to
2254 * nocb_gp_head, where they await a grace period.
2255 */
2256 gotcbs = false;
2257 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2258 rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
2259 if (!rdp->nocb_gp_head)
2260 continue; /* No CBs here, try next follower. */
2261
2262 /* Move callbacks to wait-for-GP list, which is empty. */
2263 ACCESS_ONCE(rdp->nocb_head) = NULL;
2264 rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2265 rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
2266 rdp->nocb_gp_count_lazy =
2267 atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
2268 gotcbs = true;
2269 }
2270
2271 /*
2272 * If there were no callbacks, sleep a bit, rescan after a
2273 * memory barrier, and go retry.
2274 */
2275 if (unlikely(!gotcbs)) {
2276 if (!rcu_nocb_poll)
2277 trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2278 "WokeEmpty");
73a860cd 2279 WARN_ON(signal_pending(current));
fbce7497
PM
2280 schedule_timeout_interruptible(1);
2281
2282 /* Rescan in case we were a victim of memory ordering. */
11ed7f93
PK
2283 my_rdp->nocb_leader_sleep = true;
2284 smp_mb(); /* Ensure _sleep true before scan. */
fbce7497
PM
2285 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
2286 if (ACCESS_ONCE(rdp->nocb_head)) {
2287 /* Found CB, so short-circuit next wait. */
11ed7f93 2288 my_rdp->nocb_leader_sleep = false;
fbce7497
PM
2289 break;
2290 }
2291 goto wait_again;
2292 }
2293
2294 /* Wait for one grace period. */
2295 rcu_nocb_wait_gp(my_rdp);
2296
2297 /*
11ed7f93
PK
2298 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
2299 * We set it now, but recheck for new callbacks while
fbce7497
PM
2300 * traversing our follower list.
2301 */
11ed7f93
PK
2302 my_rdp->nocb_leader_sleep = true;
2303 smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
fbce7497
PM
2304
2305 /* Each pass through the following loop wakes a follower, if needed. */
2306 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2307 if (ACCESS_ONCE(rdp->nocb_head))
11ed7f93 2308 my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
fbce7497
PM
2309 if (!rdp->nocb_gp_head)
2310 continue; /* No CBs, so no need to wake follower. */
2311
2312 /* Append callbacks to follower's "done" list. */
2313 tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
2314 *tail = rdp->nocb_gp_head;
2315 atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
2316 atomic_long_add(rdp->nocb_gp_count_lazy,
2317 &rdp->nocb_follower_count_lazy);
c847f142 2318 smp_mb__after_atomic(); /* Store *tail before wakeup. */
fbce7497
PM
2319 if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2320 /*
2321 * List was empty, wake up the follower.
2322 * Memory barriers supplied by atomic_long_add().
2323 */
2324 wake_up(&rdp->nocb_wq);
2325 }
2326 }
2327
2328 /* If we (the leader) don't have CBs, go wait some more. */
2329 if (!my_rdp->nocb_follower_head)
2330 goto wait_again;
2331}
2332
2333/*
2334 * Followers come here to wait for additional callbacks to show up.
2335 * This function does not return until callbacks appear.
2336 */
2337static void nocb_follower_wait(struct rcu_data *rdp)
2338{
2339 bool firsttime = true;
2340
2341 for (;;) {
2342 if (!rcu_nocb_poll) {
2343 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2344 "FollowerSleep");
2345 wait_event_interruptible(rdp->nocb_wq,
2346 ACCESS_ONCE(rdp->nocb_follower_head));
2347 } else if (firsttime) {
2348 /* Don't drown trace log with "Poll"! */
2349 firsttime = false;
2350 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
2351 }
2352 if (smp_load_acquire(&rdp->nocb_follower_head)) {
2353 /* ^^^ Ensure CB invocation follows _head test. */
2354 return;
2355 }
2356 if (!rcu_nocb_poll)
2357 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2358 "WokeEmpty");
73a860cd 2359 WARN_ON(signal_pending(current));
fbce7497
PM
2360 schedule_timeout_interruptible(1);
2361 }
2362}
2363
3fbfbf7a
PM
2364/*
2365 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
fbce7497
PM
2366 * callbacks queued by the corresponding no-CBs CPU, however, there is
2367 * an optional leader-follower relationship so that the grace-period
2368 * kthreads don't have to do quite so many wakeups.
3fbfbf7a
PM
2369 */
2370static int rcu_nocb_kthread(void *arg)
2371{
2372 int c, cl;
2373 struct rcu_head *list;
2374 struct rcu_head *next;
2375 struct rcu_head **tail;
2376 struct rcu_data *rdp = arg;
2377
2378 /* Each pass through this loop invokes one batch of callbacks */
2379 for (;;) {
fbce7497
PM
2380 /* Wait for callbacks. */
2381 if (rdp->nocb_leader == rdp)
2382 nocb_leader_wait(rdp);
2383 else
2384 nocb_follower_wait(rdp);
2385
2386 /* Pull the ready-to-invoke callbacks onto local list. */
2387 list = ACCESS_ONCE(rdp->nocb_follower_head);
2388 BUG_ON(!list);
2389 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
2390 ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
2391 tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
2392 c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
2393 cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
2394 rdp->nocb_p_count += c;
2395 rdp->nocb_p_count_lazy += cl;
3fbfbf7a
PM
2396
2397 /* Each pass through the following loop invokes a callback. */
2398 trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
2399 c = cl = 0;
2400 while (list) {
2401 next = list->next;
2402 /* Wait for enqueuing to complete, if needed. */
2403 while (next == NULL && &list->next != tail) {
69a79bb1
PM
2404 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2405 TPS("WaitQueue"));
3fbfbf7a 2406 schedule_timeout_interruptible(1);
69a79bb1
PM
2407 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2408 TPS("WokeQueue"));
3fbfbf7a
PM
2409 next = list->next;
2410 }
2411 debug_rcu_head_unqueue(list);
2412 local_bh_disable();
2413 if (__rcu_reclaim(rdp->rsp->name, list))
2414 cl++;
2415 c++;
2416 local_bh_enable();
2417 list = next;
2418 }
2419 trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
4de376a1
PK
2420 ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
2421 ACCESS_ONCE(rdp->nocb_p_count_lazy) =
2422 rdp->nocb_p_count_lazy - cl;
c635a4e1 2423 rdp->n_nocbs_invoked += c;
3fbfbf7a
PM
2424 }
2425 return 0;
2426}
2427
96d3fd0d 2428/* Is a deferred wakeup of rcu_nocb_kthread() required? */
9fdd3bc9 2429static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2430{
2431 return ACCESS_ONCE(rdp->nocb_defer_wakeup);
2432}
2433
2434/* Do a deferred wakeup of rcu_nocb_kthread(). */
2435static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2436{
9fdd3bc9
PM
2437 int ndw;
2438
96d3fd0d
PM
2439 if (!rcu_nocb_need_deferred_wakeup(rdp))
2440 return;
9fdd3bc9
PM
2441 ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
2442 ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
2443 wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
2444 trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
96d3fd0d
PM
2445}
2446
f4579fc5
PM
2447void __init rcu_init_nohz(void)
2448{
2449 int cpu;
2450 bool need_rcu_nocb_mask = true;
2451 struct rcu_state *rsp;
2452
2453#ifdef CONFIG_RCU_NOCB_CPU_NONE
2454 need_rcu_nocb_mask = false;
2455#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
2456
2457#if defined(CONFIG_NO_HZ_FULL)
2458 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2459 need_rcu_nocb_mask = true;
2460#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2461
2462 if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
949cccdb
PK
2463 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2464 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2465 return;
2466 }
f4579fc5
PM
2467 have_rcu_nocb_mask = true;
2468 }
2469 if (!have_rcu_nocb_mask)
2470 return;
2471
2472#ifdef CONFIG_RCU_NOCB_CPU_ZERO
2473 pr_info("\tOffload RCU callbacks from CPU 0\n");
2474 cpumask_set_cpu(0, rcu_nocb_mask);
2475#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
2476#ifdef CONFIG_RCU_NOCB_CPU_ALL
2477 pr_info("\tOffload RCU callbacks from all CPUs\n");
2478 cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
2479#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
2480#if defined(CONFIG_NO_HZ_FULL)
2481 if (tick_nohz_full_running)
2482 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2483#endif /* #if defined(CONFIG_NO_HZ_FULL) */
2484
2485 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2486 pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2487 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2488 rcu_nocb_mask);
2489 }
2490 cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
2491 pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
2492 if (rcu_nocb_poll)
2493 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2494
2495 for_each_rcu_flavor(rsp) {
2496 for_each_cpu(cpu, rcu_nocb_mask) {
2497 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2498
2499 /*
2500 * If there are early callbacks, they will need
2501 * to be moved to the nocb lists.
2502 */
2503 WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
2504 &rdp->nxtlist &&
2505 rdp->nxttail[RCU_NEXT_TAIL] != NULL);
2506 init_nocb_callback_list(rdp);
2507 }
35ce7f29 2508 rcu_organize_nocb_kthreads(rsp);
f4579fc5 2509 }
96d3fd0d
PM
2510}
2511
3fbfbf7a
PM
2512/* Initialize per-rcu_data variables for no-CBs CPUs. */
2513static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2514{
2515 rdp->nocb_tail = &rdp->nocb_head;
2516 init_waitqueue_head(&rdp->nocb_wq);
fbce7497 2517 rdp->nocb_follower_tail = &rdp->nocb_follower_head;
3fbfbf7a
PM
2518}
2519
35ce7f29
PM
2520/*
2521 * If the specified CPU is a no-CBs CPU that does not already have its
2522 * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
2523 * brought online out of order, this can require re-organizing the
2524 * leader-follower relationships.
2525 */
2526static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2527{
2528 struct rcu_data *rdp;
2529 struct rcu_data *rdp_last;
2530 struct rcu_data *rdp_old_leader;
2531 struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2532 struct task_struct *t;
2533
2534 /*
2535 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2536 * then nothing to do.
2537 */
2538 if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2539 return;
2540
2541 /* If we didn't spawn the leader first, reorganize! */
2542 rdp_old_leader = rdp_spawn->nocb_leader;
2543 if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2544 rdp_last = NULL;
2545 rdp = rdp_old_leader;
2546 do {
2547 rdp->nocb_leader = rdp_spawn;
2548 if (rdp_last && rdp != rdp_spawn)
2549 rdp_last->nocb_next_follower = rdp;
2550 rdp_last = rdp;
2551 rdp = rdp->nocb_next_follower;
2552 rdp_last->nocb_next_follower = NULL;
2553 } while (rdp);
2554 rdp_spawn->nocb_next_follower = rdp_old_leader;
2555 }
2556
2557 /* Spawn the kthread for this CPU and RCU flavor. */
2558 t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2559 "rcuo%c/%d", rsp->abbr, cpu);
2560 BUG_ON(IS_ERR(t));
2561 ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
2562}
2563
2564/*
2565 * If the specified CPU is a no-CBs CPU that does not already have its
2566 * rcuo kthreads, spawn them.
2567 */
2568static void rcu_spawn_all_nocb_kthreads(int cpu)
2569{
2570 struct rcu_state *rsp;
2571
2572 if (rcu_scheduler_fully_active)
2573 for_each_rcu_flavor(rsp)
2574 rcu_spawn_one_nocb_kthread(rsp, cpu);
2575}
2576
2577/*
2578 * Once the scheduler is running, spawn rcuo kthreads for all online
2579 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2580 * non-boot CPUs come online -- if this changes, we will need to add
2581 * some mutual exclusion.
2582 */
2583static void __init rcu_spawn_nocb_kthreads(void)
2584{
2585 int cpu;
2586
2587 for_each_online_cpu(cpu)
2588 rcu_spawn_all_nocb_kthreads(cpu);
2589}
2590
fbce7497
PM
2591/* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2592static int rcu_nocb_leader_stride = -1;
2593module_param(rcu_nocb_leader_stride, int, 0444);
2594
2595/*
35ce7f29 2596 * Initialize leader-follower relationships for all no-CBs CPU.
fbce7497 2597 */
35ce7f29 2598static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
3fbfbf7a
PM
2599{
2600 int cpu;
fbce7497
PM
2601 int ls = rcu_nocb_leader_stride;
2602 int nl = 0; /* Next leader. */
3fbfbf7a 2603 struct rcu_data *rdp;
fbce7497
PM
2604 struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
2605 struct rcu_data *rdp_prev = NULL;
3fbfbf7a 2606
22c2f669 2607 if (!have_rcu_nocb_mask)
3fbfbf7a 2608 return;
fbce7497
PM
2609 if (ls == -1) {
2610 ls = int_sqrt(nr_cpu_ids);
2611 rcu_nocb_leader_stride = ls;
2612 }
2613
2614 /*
2615 * Each pass through this loop sets up one rcu_data structure and
2616 * spawns one rcu_nocb_kthread().
2617 */
3fbfbf7a
PM
2618 for_each_cpu(cpu, rcu_nocb_mask) {
2619 rdp = per_cpu_ptr(rsp->rda, cpu);
fbce7497
PM
2620 if (rdp->cpu >= nl) {
2621 /* New leader, set up for followers & next leader. */
2622 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2623 rdp->nocb_leader = rdp;
2624 rdp_leader = rdp;
2625 } else {
2626 /* Another follower, link to previous leader. */
2627 rdp->nocb_leader = rdp_leader;
2628 rdp_prev->nocb_next_follower = rdp;
2629 }
2630 rdp_prev = rdp;
3fbfbf7a
PM
2631 }
2632}
2633
2634/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
34ed6246 2635static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2636{
22c2f669 2637 if (!rcu_is_nocb_cpu(rdp->cpu))
34ed6246 2638 return false;
22c2f669 2639
3fbfbf7a 2640 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
34ed6246 2641 return true;
3fbfbf7a
PM
2642}
2643
34ed6246
PM
2644#else /* #ifdef CONFIG_RCU_NOCB_CPU */
2645
0446be48 2646static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
3fbfbf7a 2647{
3fbfbf7a
PM
2648}
2649
dae6e64d
PM
2650static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2651{
2652}
2653
2654static void rcu_init_one_nocb(struct rcu_node *rnp)
2655{
2656}
3fbfbf7a 2657
3fbfbf7a 2658static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
96d3fd0d 2659 bool lazy, unsigned long flags)
3fbfbf7a 2660{
4afc7e26 2661 return false;
3fbfbf7a
PM
2662}
2663
2664static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
96d3fd0d
PM
2665 struct rcu_data *rdp,
2666 unsigned long flags)
3fbfbf7a 2667{
f4aa84ba 2668 return false;
3fbfbf7a
PM
2669}
2670
3fbfbf7a
PM
2671static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2672{
2673}
2674
9fdd3bc9 2675static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
96d3fd0d
PM
2676{
2677 return false;
2678}
2679
2680static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2681{
2682}
2683
35ce7f29
PM
2684static void rcu_spawn_all_nocb_kthreads(int cpu)
2685{
2686}
2687
2688static void __init rcu_spawn_nocb_kthreads(void)
3fbfbf7a
PM
2689{
2690}
2691
34ed6246 2692static bool init_nocb_callback_list(struct rcu_data *rdp)
3fbfbf7a 2693{
34ed6246 2694 return false;
3fbfbf7a
PM
2695}
2696
2697#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
65d798f0
PM
2698
2699/*
2700 * An adaptive-ticks CPU can potentially execute in kernel mode for an
2701 * arbitrarily long period of time with the scheduling-clock tick turned
2702 * off. RCU will be paying attention to this CPU because it is in the
2703 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2704 * machine because the scheduling-clock tick has been disabled. Therefore,
2705 * if an adaptive-ticks CPU is failing to respond to the current grace
2706 * period and has not be idle from an RCU perspective, kick it.
2707 */
4a81e832 2708static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
65d798f0
PM
2709{
2710#ifdef CONFIG_NO_HZ_FULL
2711 if (tick_nohz_full_cpu(cpu))
2712 smp_send_reschedule(cpu);
2713#endif /* #ifdef CONFIG_NO_HZ_FULL */
2714}
2333210b
PM
2715
2716
2717#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
2718
0edd1b17 2719static int full_sysidle_state; /* Current system-idle state. */
d4bd54fb
PM
2720#define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
2721#define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
2722#define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
2723#define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
2724#define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
2725
eb348b89
PM
2726/*
2727 * Invoked to note exit from irq or task transition to idle. Note that
2728 * usermode execution does -not- count as idle here! After all, we want
2729 * to detect full-system idle states, not RCU quiescent states and grace
2730 * periods. The caller must have disabled interrupts.
2731 */
2732static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
2733{
2734 unsigned long j;
2735
663e1310
PM
2736 /* If there are no nohz_full= CPUs, no need to track this. */
2737 if (!tick_nohz_full_enabled())
2738 return;
2739
eb348b89
PM
2740 /* Adjust nesting, check for fully idle. */
2741 if (irq) {
2742 rdtp->dynticks_idle_nesting--;
2743 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2744 if (rdtp->dynticks_idle_nesting != 0)
2745 return; /* Still not fully idle. */
2746 } else {
2747 if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
2748 DYNTICK_TASK_NEST_VALUE) {
2749 rdtp->dynticks_idle_nesting = 0;
2750 } else {
2751 rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
2752 WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
2753 return; /* Still not fully idle. */
2754 }
2755 }
2756
2757 /* Record start of fully idle period. */
2758 j = jiffies;
2759 ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
4e857c58 2760 smp_mb__before_atomic();
eb348b89 2761 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2762 smp_mb__after_atomic();
eb348b89
PM
2763 WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
2764}
2765
0edd1b17
PM
2766/*
2767 * Unconditionally force exit from full system-idle state. This is
2768 * invoked when a normal CPU exits idle, but must be called separately
2769 * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
2770 * is that the timekeeping CPU is permitted to take scheduling-clock
2771 * interrupts while the system is in system-idle state, and of course
2772 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
2773 * interrupt from any other type of interrupt.
2774 */
2775void rcu_sysidle_force_exit(void)
2776{
2777 int oldstate = ACCESS_ONCE(full_sysidle_state);
2778 int newoldstate;
2779
2780 /*
2781 * Each pass through the following loop attempts to exit full
2782 * system-idle state. If contention proves to be a problem,
2783 * a trylock-based contention tree could be used here.
2784 */
2785 while (oldstate > RCU_SYSIDLE_SHORT) {
2786 newoldstate = cmpxchg(&full_sysidle_state,
2787 oldstate, RCU_SYSIDLE_NOT);
2788 if (oldstate == newoldstate &&
2789 oldstate == RCU_SYSIDLE_FULL_NOTED) {
2790 rcu_kick_nohz_cpu(tick_do_timer_cpu);
2791 return; /* We cleared it, done! */
2792 }
2793 oldstate = newoldstate;
2794 }
2795 smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
2796}
2797
eb348b89
PM
2798/*
2799 * Invoked to note entry to irq or task transition from idle. Note that
2800 * usermode execution does -not- count as idle here! The caller must
2801 * have disabled interrupts.
2802 */
2803static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
2804{
663e1310
PM
2805 /* If there are no nohz_full= CPUs, no need to track this. */
2806 if (!tick_nohz_full_enabled())
2807 return;
2808
eb348b89
PM
2809 /* Adjust nesting, check for already non-idle. */
2810 if (irq) {
2811 rdtp->dynticks_idle_nesting++;
2812 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2813 if (rdtp->dynticks_idle_nesting != 1)
2814 return; /* Already non-idle. */
2815 } else {
2816 /*
2817 * Allow for irq misnesting. Yes, it really is possible
2818 * to enter an irq handler then never leave it, and maybe
2819 * also vice versa. Handle both possibilities.
2820 */
2821 if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
2822 rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
2823 WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
2824 return; /* Already non-idle. */
2825 } else {
2826 rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
2827 }
2828 }
2829
2830 /* Record end of idle period. */
4e857c58 2831 smp_mb__before_atomic();
eb348b89 2832 atomic_inc(&rdtp->dynticks_idle);
4e857c58 2833 smp_mb__after_atomic();
eb348b89 2834 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
0edd1b17
PM
2835
2836 /*
2837 * If we are the timekeeping CPU, we are permitted to be non-idle
2838 * during a system-idle state. This must be the case, because
2839 * the timekeeping CPU has to take scheduling-clock interrupts
2840 * during the time that the system is transitioning to full
2841 * system-idle state. This means that the timekeeping CPU must
2842 * invoke rcu_sysidle_force_exit() directly if it does anything
2843 * more than take a scheduling-clock interrupt.
2844 */
2845 if (smp_processor_id() == tick_do_timer_cpu)
2846 return;
2847
2848 /* Update system-idle state: We are clearly no longer fully idle! */
2849 rcu_sysidle_force_exit();
2850}
2851
2852/*
2853 * Check to see if the current CPU is idle. Note that usermode execution
2854 * does not count as idle. The caller must have disabled interrupts.
2855 */
2856static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
2857 unsigned long *maxj)
2858{
2859 int cur;
2860 unsigned long j;
2861 struct rcu_dynticks *rdtp = rdp->dynticks;
2862
663e1310
PM
2863 /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
2864 if (!tick_nohz_full_enabled())
2865 return;
2866
0edd1b17
PM
2867 /*
2868 * If some other CPU has already reported non-idle, if this is
2869 * not the flavor of RCU that tracks sysidle state, or if this
2870 * is an offline or the timekeeping CPU, nothing to do.
2871 */
417e8d26 2872 if (!*isidle || rdp->rsp != rcu_state_p ||
0edd1b17
PM
2873 cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
2874 return;
eb75767b
PM
2875 if (rcu_gp_in_progress(rdp->rsp))
2876 WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
0edd1b17
PM
2877
2878 /* Pick up current idle and NMI-nesting counter and check. */
2879 cur = atomic_read(&rdtp->dynticks_idle);
2880 if (cur & 0x1) {
2881 *isidle = false; /* We are not idle! */
2882 return;
2883 }
2884 smp_mb(); /* Read counters before timestamps. */
2885
2886 /* Pick up timestamps. */
2887 j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
2888 /* If this CPU entered idle more recently, update maxj timestamp. */
2889 if (ULONG_CMP_LT(*maxj, j))
2890 *maxj = j;
2891}
2892
2893/*
2894 * Is this the flavor of RCU that is handling full-system idle?
2895 */
2896static bool is_sysidle_rcu_state(struct rcu_state *rsp)
2897{
417e8d26 2898 return rsp == rcu_state_p;
0edd1b17
PM
2899}
2900
2901/*
2902 * Return a delay in jiffies based on the number of CPUs, rcu_node
2903 * leaf fanout, and jiffies tick rate. The idea is to allow larger
2904 * systems more time to transition to full-idle state in order to
2905 * avoid the cache thrashing that otherwise occur on the state variable.
2906 * Really small systems (less than a couple of tens of CPUs) should
2907 * instead use a single global atomically incremented counter, and later
2908 * versions of this will automatically reconfigure themselves accordingly.
2909 */
2910static unsigned long rcu_sysidle_delay(void)
2911{
2912 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2913 return 0;
2914 return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
2915}
2916
2917/*
2918 * Advance the full-system-idle state. This is invoked when all of
2919 * the non-timekeeping CPUs are idle.
2920 */
2921static void rcu_sysidle(unsigned long j)
2922{
2923 /* Check the current state. */
2924 switch (ACCESS_ONCE(full_sysidle_state)) {
2925 case RCU_SYSIDLE_NOT:
2926
2927 /* First time all are idle, so note a short idle period. */
2928 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
2929 break;
2930
2931 case RCU_SYSIDLE_SHORT:
2932
2933 /*
2934 * Idle for a bit, time to advance to next state?
2935 * cmpxchg failure means race with non-idle, let them win.
2936 */
2937 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2938 (void)cmpxchg(&full_sysidle_state,
2939 RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
2940 break;
2941
2942 case RCU_SYSIDLE_LONG:
2943
2944 /*
2945 * Do an additional check pass before advancing to full.
2946 * cmpxchg failure means race with non-idle, let them win.
2947 */
2948 if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
2949 (void)cmpxchg(&full_sysidle_state,
2950 RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
2951 break;
2952
2953 default:
2954 break;
2955 }
2956}
2957
2958/*
2959 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
2960 * back to the beginning.
2961 */
2962static void rcu_sysidle_cancel(void)
2963{
2964 smp_mb();
becb41bf
PM
2965 if (full_sysidle_state > RCU_SYSIDLE_SHORT)
2966 ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
0edd1b17
PM
2967}
2968
2969/*
2970 * Update the sysidle state based on the results of a force-quiescent-state
2971 * scan of the CPUs' dyntick-idle state.
2972 */
2973static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
2974 unsigned long maxj, bool gpkt)
2975{
417e8d26 2976 if (rsp != rcu_state_p)
0edd1b17
PM
2977 return; /* Wrong flavor, ignore. */
2978 if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
2979 return; /* Running state machine from timekeeping CPU. */
2980 if (isidle)
2981 rcu_sysidle(maxj); /* More idle! */
2982 else
2983 rcu_sysidle_cancel(); /* Idle is over. */
2984}
2985
2986/*
2987 * Wrapper for rcu_sysidle_report() when called from the grace-period
2988 * kthread's context.
2989 */
2990static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
2991 unsigned long maxj)
2992{
663e1310
PM
2993 /* If there are no nohz_full= CPUs, no need to track this. */
2994 if (!tick_nohz_full_enabled())
2995 return;
2996
0edd1b17
PM
2997 rcu_sysidle_report(rsp, isidle, maxj, true);
2998}
2999
3000/* Callback and function for forcing an RCU grace period. */
3001struct rcu_sysidle_head {
3002 struct rcu_head rh;
3003 int inuse;
3004};
3005
3006static void rcu_sysidle_cb(struct rcu_head *rhp)
3007{
3008 struct rcu_sysidle_head *rshp;
3009
3010 /*
3011 * The following memory barrier is needed to replace the
3012 * memory barriers that would normally be in the memory
3013 * allocator.
3014 */
3015 smp_mb(); /* grace period precedes setting inuse. */
3016
3017 rshp = container_of(rhp, struct rcu_sysidle_head, rh);
3018 ACCESS_ONCE(rshp->inuse) = 0;
3019}
3020
3021/*
3022 * Check to see if the system is fully idle, other than the timekeeping CPU.
663e1310
PM
3023 * The caller must have disabled interrupts. This is not intended to be
3024 * called unless tick_nohz_full_enabled().
0edd1b17
PM
3025 */
3026bool rcu_sys_is_idle(void)
3027{
3028 static struct rcu_sysidle_head rsh;
3029 int rss = ACCESS_ONCE(full_sysidle_state);
3030
3031 if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
3032 return false;
3033
3034 /* Handle small-system case by doing a full scan of CPUs. */
3035 if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
3036 int oldrss = rss - 1;
3037
3038 /*
3039 * One pass to advance to each state up to _FULL.
3040 * Give up if any pass fails to advance the state.
3041 */
3042 while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
3043 int cpu;
3044 bool isidle = true;
3045 unsigned long maxj = jiffies - ULONG_MAX / 4;
3046 struct rcu_data *rdp;
3047
3048 /* Scan all the CPUs looking for nonidle CPUs. */
3049 for_each_possible_cpu(cpu) {
417e8d26 3050 rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
0edd1b17
PM
3051 rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
3052 if (!isidle)
3053 break;
3054 }
417e8d26 3055 rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
0edd1b17
PM
3056 oldrss = rss;
3057 rss = ACCESS_ONCE(full_sysidle_state);
3058 }
3059 }
3060
3061 /* If this is the first observation of an idle period, record it. */
3062 if (rss == RCU_SYSIDLE_FULL) {
3063 rss = cmpxchg(&full_sysidle_state,
3064 RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
3065 return rss == RCU_SYSIDLE_FULL;
3066 }
3067
3068 smp_mb(); /* ensure rss load happens before later caller actions. */
3069
3070 /* If already fully idle, tell the caller (in case of races). */
3071 if (rss == RCU_SYSIDLE_FULL_NOTED)
3072 return true;
3073
3074 /*
3075 * If we aren't there yet, and a grace period is not in flight,
3076 * initiate a grace period. Either way, tell the caller that
3077 * we are not there yet. We use an xchg() rather than an assignment
3078 * to make up for the memory barriers that would otherwise be
3079 * provided by the memory allocator.
3080 */
3081 if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
417e8d26 3082 !rcu_gp_in_progress(rcu_state_p) &&
0edd1b17
PM
3083 !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
3084 call_rcu(&rsh.rh, rcu_sysidle_cb);
3085 return false;
eb348b89
PM
3086}
3087
2333210b
PM
3088/*
3089 * Initialize dynticks sysidle state for CPUs coming online.
3090 */
3091static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3092{
3093 rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
3094}
3095
3096#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3097
eb348b89
PM
3098static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
3099{
3100}
3101
3102static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
3103{
3104}
3105
0edd1b17
PM
3106static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
3107 unsigned long *maxj)
3108{
3109}
3110
3111static bool is_sysidle_rcu_state(struct rcu_state *rsp)
3112{
3113 return false;
3114}
3115
3116static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
3117 unsigned long maxj)
3118{
3119}
3120
2333210b
PM
3121static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
3122{
3123}
3124
3125#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
a096932f
PM
3126
3127/*
3128 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
3129 * grace-period kthread will do force_quiescent_state() processing?
3130 * The idea is to avoid waking up RCU core processing on such a
3131 * CPU unless the grace period has extended for too long.
3132 *
3133 * This code relies on the fact that all NO_HZ_FULL CPUs are also
52e2bb95 3134 * CONFIG_RCU_NOCB_CPU CPUs.
a096932f
PM
3135 */
3136static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
3137{
3138#ifdef CONFIG_NO_HZ_FULL
3139 if (tick_nohz_full_cpu(smp_processor_id()) &&
3140 (!rcu_gp_in_progress(rsp) ||
3141 ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
3142 return 1;
3143#endif /* #ifdef CONFIG_NO_HZ_FULL */
3144 return 0;
3145}
5057f55e
PM
3146
3147/*
3148 * Bind the grace-period kthread for the sysidle flavor of RCU to the
3149 * timekeeping CPU.
3150 */
3151static void rcu_bind_gp_kthread(void)
3152{
c0f489d2 3153 int __maybe_unused cpu;
5057f55e 3154
c0f489d2 3155 if (!tick_nohz_full_enabled())
5057f55e 3156 return;
c0f489d2
PM
3157#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
3158 cpu = tick_do_timer_cpu;
3159 if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
5057f55e 3160 set_cpus_allowed_ptr(current, cpumask_of(cpu));
c0f489d2
PM
3161#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
3162 if (!is_housekeeping_cpu(raw_smp_processor_id()))
3163 housekeeping_affine(current);
3164#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
5057f55e 3165}
176f8f7a
PM
3166
3167/* Record the current task on dyntick-idle entry. */
3168static void rcu_dynticks_task_enter(void)
3169{
3170#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3171 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
3172#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3173}
3174
3175/* Record no current task on dyntick-idle exit. */
3176static void rcu_dynticks_task_exit(void)
3177{
3178#if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
3179 ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
3180#endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
3181}