]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/rcu/update.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-bionic-kernel.git] / kernel / rcu / update.c
CommitLineData
1da177e4
LT
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
1da177e4 17 *
01c1c660 18 * Copyright IBM Corporation, 2001
1da177e4
LT
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
a71fca58 22 *
1da177e4
LT
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 30 * http://lse.sourceforge.net/locking/rcupdate.html
1da177e4
LT
31 *
32 */
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
38#include <linux/interrupt.h>
39#include <linux/sched.h>
60063497 40#include <linux/atomic.h>
1da177e4 41#include <linux/bitops.h>
1da177e4
LT
42#include <linux/percpu.h>
43#include <linux/notifier.h>
1da177e4 44#include <linux/cpu.h>
9331b315 45#include <linux/mutex.h>
9984de1a 46#include <linux/export.h>
e3818b8d 47#include <linux/hardirq.h>
e3ebfb96 48#include <linux/delay.h>
e77b7041 49#include <linux/moduleparam.h>
8315f422 50#include <linux/kthread.h>
4ff475ed 51#include <linux/tick.h>
1da177e4 52
29c00b4a 53#define CREATE_TRACE_POINTS
29c00b4a
PM
54
55#include "rcu.h"
56
4102adab
PM
57#ifdef MODULE_PARAM_PREFIX
58#undef MODULE_PARAM_PREFIX
59#endif
60#define MODULE_PARAM_PREFIX "rcupdate."
61
79cfea02 62#ifndef CONFIG_TINY_RCU
3705b88d 63module_param(rcu_expedited, int, 0);
5a9be7c6 64module_param(rcu_normal, int, 0);
3e42ec1a
PM
65static int rcu_normal_after_boot;
66module_param(rcu_normal_after_boot, int, 0);
79cfea02 67#endif /* #ifndef CONFIG_TINY_RCU */
3e42ec1a 68
293e2421 69#ifdef CONFIG_DEBUG_LOCK_ALLOC
d5671f6b
DV
70/**
71 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
72 *
73 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74 * RCU-sched read-side critical section. In absence of
75 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76 * critical section unless it can prove otherwise. Note that disabling
77 * of preemption (including disabling irqs) counts as an RCU-sched
78 * read-side critical section. This is useful for debug checks in functions
79 * that required that they be called within an RCU-sched read-side
80 * critical section.
81 *
82 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83 * and while lockdep is disabled.
84 *
85 * Note that if the CPU is in the idle loop from an RCU point of
86 * view (ie: that we are in the section between rcu_idle_enter() and
87 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
89 * that are in such a section, considering these as in extended quiescent
90 * state, so such a CPU is effectively never in an RCU read-side critical
91 * section regardless of what RCU primitives it invokes. This state of
92 * affairs is required --- we need to keep an RCU-free window in idle
93 * where the CPU may possibly enter into low power mode. This way we can
94 * notice an extended quiescent state to other CPUs that started a grace
95 * period. Otherwise we would delay any grace period as long as we run in
96 * the idle task.
97 *
98 * Similarly, we avoid claiming an SRCU read lock held if the current
99 * CPU is offline.
100 */
101int rcu_read_lock_sched_held(void)
102{
103 int lockdep_opinion = 0;
104
105 if (!debug_lockdep_rcu_enabled())
106 return 1;
107 if (!rcu_is_watching())
108 return 0;
109 if (!rcu_lockdep_current_cpu_online())
110 return 0;
111 if (debug_locks)
112 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
293e2421 113 return lockdep_opinion || !preemptible();
d5671f6b
DV
114}
115EXPORT_SYMBOL(rcu_read_lock_sched_held);
116#endif
117
0d39482c
PM
118#ifndef CONFIG_TINY_RCU
119
5a9be7c6
PM
120/*
121 * Should expedited grace-period primitives always fall back to their
122 * non-expedited counterparts? Intended for use within RCU. Note
123 * that if the user specifies both rcu_expedited and rcu_normal, then
124 * rcu_normal wins.
125 */
126bool rcu_gp_is_normal(void)
127{
128 return READ_ONCE(rcu_normal);
129}
4f2a848c 130EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
5a9be7c6 131
ee42571f
PM
132static atomic_t rcu_expedited_nesting =
133 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
0d39482c
PM
134
135/*
136 * Should normal grace-period primitives be expedited? Intended for
137 * use within RCU. Note that this function takes the rcu_expedited
138 * sysfs/boot variable into account as well as the rcu_expedite_gp()
139 * nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
140 * returns false is a -really- bad idea.
141 */
142bool rcu_gp_is_expedited(void)
143{
144 return rcu_expedited || atomic_read(&rcu_expedited_nesting);
145}
146EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
147
148/**
149 * rcu_expedite_gp - Expedite future RCU grace periods
150 *
151 * After a call to this function, future calls to synchronize_rcu() and
152 * friends act as the corresponding synchronize_rcu_expedited() function
153 * had instead been called.
154 */
155void rcu_expedite_gp(void)
156{
157 atomic_inc(&rcu_expedited_nesting);
158}
159EXPORT_SYMBOL_GPL(rcu_expedite_gp);
160
161/**
162 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
163 *
164 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
165 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
166 * and if the rcu_expedited sysfs/boot parameter is not set, then all
167 * subsequent calls to synchronize_rcu() and friends will return to
168 * their normal non-expedited behavior.
169 */
170void rcu_unexpedite_gp(void)
171{
172 atomic_dec(&rcu_expedited_nesting);
173}
174EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
175
ee42571f
PM
176/*
177 * Inform RCU of the end of the in-kernel boot sequence.
178 */
179void rcu_end_inkernel_boot(void)
180{
181 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
182 rcu_unexpedite_gp();
3e42ec1a
PM
183 if (rcu_normal_after_boot)
184 WRITE_ONCE(rcu_normal, 1);
ee42571f 185}
0d39482c 186
79cfea02
PM
187#endif /* #ifndef CONFIG_TINY_RCU */
188
9dd8fb16
PM
189#ifdef CONFIG_PREEMPT_RCU
190
2a3fa843
PM
191/*
192 * Preemptible RCU implementation for rcu_read_lock().
193 * Just increment ->rcu_read_lock_nesting, shared state will be updated
194 * if we block.
195 */
196void __rcu_read_lock(void)
197{
198 current->rcu_read_lock_nesting++;
199 barrier(); /* critical section after entry code. */
200}
201EXPORT_SYMBOL_GPL(__rcu_read_lock);
202
203/*
204 * Preemptible RCU implementation for rcu_read_unlock().
205 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
206 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
207 * invoke rcu_read_unlock_special() to clean up after a context switch
208 * in an RCU read-side critical section and other special cases.
209 */
210void __rcu_read_unlock(void)
211{
212 struct task_struct *t = current;
213
214 if (t->rcu_read_lock_nesting != 1) {
215 --t->rcu_read_lock_nesting;
216 } else {
217 barrier(); /* critical section before exit code. */
218 t->rcu_read_lock_nesting = INT_MIN;
219 barrier(); /* assign before ->rcu_read_unlock_special load */
7d0ae808 220 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
2a3fa843
PM
221 rcu_read_unlock_special(t);
222 barrier(); /* ->rcu_read_unlock_special load before assign */
223 t->rcu_read_lock_nesting = 0;
224 }
225#ifdef CONFIG_PROVE_LOCKING
226 {
7d0ae808 227 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
2a3fa843
PM
228
229 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
230 }
231#endif /* #ifdef CONFIG_PROVE_LOCKING */
232}
233EXPORT_SYMBOL_GPL(__rcu_read_unlock);
234
2439b696 235#endif /* #ifdef CONFIG_PREEMPT_RCU */
9dd8fb16 236
162cc279
PM
237#ifdef CONFIG_DEBUG_LOCK_ALLOC
238static struct lock_class_key rcu_lock_key;
239struct lockdep_map rcu_lock_map =
240 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
241EXPORT_SYMBOL_GPL(rcu_lock_map);
632ee200
PM
242
243static struct lock_class_key rcu_bh_lock_key;
244struct lockdep_map rcu_bh_lock_map =
245 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
246EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
247
248static struct lock_class_key rcu_sched_lock_key;
249struct lockdep_map rcu_sched_lock_map =
250 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
251EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
e3818b8d 252
24ef659a
PM
253static struct lock_class_key rcu_callback_key;
254struct lockdep_map rcu_callback_map =
255 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
256EXPORT_SYMBOL_GPL(rcu_callback_map);
257
a0a5a056 258int notrace debug_lockdep_rcu_enabled(void)
bc293d62
PM
259{
260 return rcu_scheduler_active && debug_locks &&
261 current->lockdep_recursion == 0;
262}
263EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
264
85b39d30
ON
265/**
266 * rcu_read_lock_held() - might we be in RCU read-side critical section?
267 *
268 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
269 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
270 * this assumes we are in an RCU read-side critical section unless it can
271 * prove otherwise. This is useful for debug checks in functions that
272 * require that they be called within an RCU read-side critical section.
273 *
274 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
275 * and while lockdep is disabled.
276 *
277 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
278 * occur in the same context, for example, it is illegal to invoke
279 * rcu_read_unlock() in process context if the matching rcu_read_lock()
280 * was invoked from within an irq handler.
281 *
282 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
283 * offline from an RCU perspective, so check for those as well.
284 */
285int rcu_read_lock_held(void)
286{
287 if (!debug_lockdep_rcu_enabled())
288 return 1;
289 if (!rcu_is_watching())
290 return 0;
291 if (!rcu_lockdep_current_cpu_online())
292 return 0;
293 return lock_is_held(&rcu_lock_map);
294}
295EXPORT_SYMBOL_GPL(rcu_read_lock_held);
296
e3818b8d 297/**
ca5ecddf 298 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
e3818b8d
PM
299 *
300 * Check for bottom half being disabled, which covers both the
301 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
302 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
ca5ecddf
PM
303 * will show the situation. This is useful for debug checks in functions
304 * that require that they be called within an RCU read-side critical
305 * section.
e3818b8d
PM
306 *
307 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
c0d6d01b
PM
308 *
309 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
310 * offline from an RCU perspective, so check for those as well.
e3818b8d
PM
311 */
312int rcu_read_lock_bh_held(void)
313{
314 if (!debug_lockdep_rcu_enabled())
315 return 1;
5c173eb8 316 if (!rcu_is_watching())
e6b80a3b 317 return 0;
c0d6d01b
PM
318 if (!rcu_lockdep_current_cpu_online())
319 return 0;
773e3f93 320 return in_softirq() || irqs_disabled();
e3818b8d
PM
321}
322EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
323
324#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
325
ee376dbd
PM
326/**
327 * wakeme_after_rcu() - Callback function to awaken a task after grace period
328 * @head: Pointer to rcu_head member within rcu_synchronize structure
329 *
330 * Awaken the corresponding task now that a grace period has elapsed.
fbf6bfca 331 */
ee376dbd 332void wakeme_after_rcu(struct rcu_head *head)
21a1ea9e 333{
01c1c660
PM
334 struct rcu_synchronize *rcu;
335
336 rcu = container_of(head, struct rcu_synchronize, head);
337 complete(&rcu->completion);
21a1ea9e 338}
ec90a194 339EXPORT_SYMBOL_GPL(wakeme_after_rcu);
ee84b824 340
ec90a194
PM
341void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
342 struct rcu_synchronize *rs_array)
2c42818e 343{
ec90a194
PM
344 int i;
345
346 /* Initialize and register callbacks for each flavor specified. */
347 for (i = 0; i < n; i++) {
348 if (checktiny &&
349 (crcu_array[i] == call_rcu ||
350 crcu_array[i] == call_rcu_bh)) {
351 might_sleep();
352 continue;
353 }
354 init_rcu_head_on_stack(&rs_array[i].head);
355 init_completion(&rs_array[i].completion);
356 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
357 }
358
359 /* Wait for all callbacks to be invoked. */
360 for (i = 0; i < n; i++) {
361 if (checktiny &&
362 (crcu_array[i] == call_rcu ||
363 crcu_array[i] == call_rcu_bh))
364 continue;
365 wait_for_completion(&rs_array[i].completion);
366 destroy_rcu_head_on_stack(&rs_array[i].head);
367 }
2c42818e 368}
ec90a194 369EXPORT_SYMBOL_GPL(__wait_rcu_gp);
2c42818e 370
551d55a9 371#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
546a9d85 372void init_rcu_head(struct rcu_head *head)
551d55a9
MD
373{
374 debug_object_init(head, &rcuhead_debug_descr);
375}
376
546a9d85 377void destroy_rcu_head(struct rcu_head *head)
551d55a9
MD
378{
379 debug_object_free(head, &rcuhead_debug_descr);
380}
381
b9fdac7f 382static bool rcuhead_is_static_object(void *addr)
551d55a9 383{
b9fdac7f 384 return true;
551d55a9
MD
385}
386
387/**
388 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
389 * @head: pointer to rcu_head structure to be initialized
390 *
391 * This function informs debugobjects of a new rcu_head structure that
392 * has been allocated as an auto variable on the stack. This function
393 * is not required for rcu_head structures that are statically defined or
394 * that are dynamically allocated on the heap. This function has no
395 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
396 */
397void init_rcu_head_on_stack(struct rcu_head *head)
398{
399 debug_object_init_on_stack(head, &rcuhead_debug_descr);
400}
401EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
402
403/**
404 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
405 * @head: pointer to rcu_head structure to be initialized
406 *
407 * This function informs debugobjects that an on-stack rcu_head structure
408 * is about to go out of scope. As with init_rcu_head_on_stack(), this
409 * function is not required for rcu_head structures that are statically
410 * defined or that are dynamically allocated on the heap. Also as with
411 * init_rcu_head_on_stack(), this function has no effect for
412 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
413 */
414void destroy_rcu_head_on_stack(struct rcu_head *head)
415{
416 debug_object_free(head, &rcuhead_debug_descr);
417}
418EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
419
420struct debug_obj_descr rcuhead_debug_descr = {
421 .name = "rcu_head",
b9fdac7f 422 .is_static_object = rcuhead_is_static_object,
551d55a9
MD
423};
424EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
425#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
91afaf30 426
28f6569a 427#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
e66c33d5 428void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
52494535
PM
429 unsigned long secs,
430 unsigned long c_old, unsigned long c)
91afaf30 431{
52494535 432 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
91afaf30
PM
433}
434EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
435#else
52494535
PM
436#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
437 do { } while (0)
91afaf30 438#endif
6bfc09e2
PM
439
440#ifdef CONFIG_RCU_STALL_COMMON
441
442#ifdef CONFIG_PROVE_RCU
443#define RCU_STALL_DELAY_DELTA (5 * HZ)
444#else
445#define RCU_STALL_DELAY_DELTA 0
446#endif
447
448int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
01896f7e 449static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
6bfc09e2
PM
450
451module_param(rcu_cpu_stall_suppress, int, 0644);
452module_param(rcu_cpu_stall_timeout, int, 0644);
453
454int rcu_jiffies_till_stall_check(void)
455{
7d0ae808 456 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
6bfc09e2
PM
457
458 /*
459 * Limit check must be consistent with the Kconfig limits
460 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
461 */
462 if (till_stall_check < 3) {
7d0ae808 463 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
6bfc09e2
PM
464 till_stall_check = 3;
465 } else if (till_stall_check > 300) {
7d0ae808 466 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
6bfc09e2
PM
467 till_stall_check = 300;
468 }
469 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
470}
471
61f38db3
RR
472void rcu_sysrq_start(void)
473{
474 if (!rcu_cpu_stall_suppress)
475 rcu_cpu_stall_suppress = 2;
476}
477
478void rcu_sysrq_end(void)
479{
480 if (rcu_cpu_stall_suppress == 2)
481 rcu_cpu_stall_suppress = 0;
482}
483
6bfc09e2
PM
484static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
485{
486 rcu_cpu_stall_suppress = 1;
487 return NOTIFY_DONE;
488}
489
490static struct notifier_block rcu_panic_block = {
491 .notifier_call = rcu_panic,
492};
493
494static int __init check_cpu_stall_init(void)
495{
496 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
497 return 0;
498}
499early_initcall(check_cpu_stall_init);
500
501#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
8315f422
PM
502
503#ifdef CONFIG_TASKS_RCU
504
505/*
506 * Simple variant of RCU whose quiescent states are voluntary context switch,
507 * user-space execution, and idle. As such, grace periods can take one good
508 * long time. There are no read-side primitives similar to rcu_read_lock()
509 * and rcu_read_unlock() because this implementation is intended to get
510 * the system into a safe state for some of the manipulations involved in
511 * tracing and the like. Finally, this implementation does not support
512 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
513 * per-CPU callback lists will be needed.
514 */
515
516/* Global list of callbacks and associated lock. */
517static struct rcu_head *rcu_tasks_cbs_head;
518static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
c7b24d2b 519static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
8315f422
PM
520static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
521
3f95aa81
PM
522/* Track exiting tasks in order to allow them to be waited for. */
523DEFINE_SRCU(tasks_rcu_exit_srcu);
524
525/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
52db30ab 526static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
3f95aa81
PM
527module_param(rcu_task_stall_timeout, int, 0644);
528
84a8f446 529static void rcu_spawn_tasks_kthread(void);
4929c913 530static struct task_struct *rcu_tasks_kthread_ptr;
84a8f446
PM
531
532/*
533 * Post an RCU-tasks callback. First call must be from process context
534 * after the scheduler if fully operational.
535 */
b6a4ae76 536void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
8315f422
PM
537{
538 unsigned long flags;
c7b24d2b 539 bool needwake;
4929c913 540 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
8315f422
PM
541
542 rhp->next = NULL;
543 rhp->func = func;
544 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
c7b24d2b 545 needwake = !rcu_tasks_cbs_head;
8315f422
PM
546 *rcu_tasks_cbs_tail = rhp;
547 rcu_tasks_cbs_tail = &rhp->next;
548 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
4929c913
PM
549 /* We can't create the thread unless interrupts are enabled. */
550 if ((needwake && havetask) ||
551 (!havetask && !irqs_disabled_flags(flags))) {
84a8f446 552 rcu_spawn_tasks_kthread();
c7b24d2b 553 wake_up(&rcu_tasks_cbs_wq);
84a8f446 554 }
8315f422
PM
555}
556EXPORT_SYMBOL_GPL(call_rcu_tasks);
557
53c6d4ed
PM
558/**
559 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
560 *
561 * Control will return to the caller some time after a full rcu-tasks
562 * grace period has elapsed, in other words after all currently
563 * executing rcu-tasks read-side critical sections have elapsed. These
564 * read-side critical sections are delimited by calls to schedule(),
565 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
566 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
567 *
568 * This is a very specialized primitive, intended only for a few uses in
569 * tracing and other situations requiring manipulation of function
570 * preambles and profiling hooks. The synchronize_rcu_tasks() function
571 * is not (yet) intended for heavy use from multiple CPUs.
572 *
573 * Note that this guarantee implies further memory-ordering guarantees.
574 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
575 * each CPU is guaranteed to have executed a full memory barrier since the
576 * end of its last RCU-tasks read-side critical section whose beginning
577 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
578 * having an RCU-tasks read-side critical section that extends beyond
579 * the return from synchronize_rcu_tasks() is guaranteed to have executed
580 * a full memory barrier after the beginning of synchronize_rcu_tasks()
581 * and before the beginning of that RCU-tasks read-side critical section.
582 * Note that these guarantees include CPUs that are offline, idle, or
583 * executing in user mode, as well as CPUs that are executing in the kernel.
584 *
585 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
586 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
587 * to have executed a full memory barrier during the execution of
588 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
589 * (but again only if the system has more than one CPU).
590 */
591void synchronize_rcu_tasks(void)
592{
593 /* Complain if the scheduler has not started. */
a76a9a48 594 RCU_LOCKDEP_WARN(!rcu_scheduler_active,
f78f5b90 595 "synchronize_rcu_tasks called too soon");
53c6d4ed
PM
596
597 /* Wait for the grace period. */
598 wait_rcu_gp(call_rcu_tasks);
599}
06c2a923 600EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
53c6d4ed
PM
601
602/**
603 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
604 *
605 * Although the current implementation is guaranteed to wait, it is not
606 * obligated to, for example, if there are no pending callbacks.
607 */
608void rcu_barrier_tasks(void)
609{
610 /* There is only one callback queue, so this is easy. ;-) */
611 synchronize_rcu_tasks();
612}
06c2a923 613EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
53c6d4ed 614
52db30ab
PM
615/* See if tasks are still holding out, complain if so. */
616static void check_holdout_task(struct task_struct *t,
617 bool needreport, bool *firstreport)
8315f422 618{
4ff475ed
PM
619 int cpu;
620
7d0ae808
PM
621 if (!READ_ONCE(t->rcu_tasks_holdout) ||
622 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
623 !READ_ONCE(t->on_rq) ||
176f8f7a
PM
624 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
625 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
7d0ae808 626 WRITE_ONCE(t->rcu_tasks_holdout, false);
8f20a5e8 627 list_del_init(&t->rcu_tasks_holdout_list);
8315f422 628 put_task_struct(t);
52db30ab 629 return;
8315f422 630 }
52db30ab
PM
631 if (!needreport)
632 return;
633 if (*firstreport) {
634 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
635 *firstreport = false;
636 }
4ff475ed
PM
637 cpu = task_cpu(t);
638 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
639 t, ".I"[is_idle_task(t)],
640 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
641 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
642 t->rcu_tasks_idle_cpu, cpu);
52db30ab 643 sched_show_task(t);
8315f422
PM
644}
645
646/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
647static int __noreturn rcu_tasks_kthread(void *arg)
648{
649 unsigned long flags;
650 struct task_struct *g, *t;
52db30ab 651 unsigned long lastreport;
8315f422
PM
652 struct rcu_head *list;
653 struct rcu_head *next;
654 LIST_HEAD(rcu_tasks_holdouts);
655
60ced495
PM
656 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
657 housekeeping_affine(current);
8315f422
PM
658
659 /*
660 * Each pass through the following loop makes one check for
661 * newly arrived callbacks, and, if there are some, waits for
662 * one RCU-tasks grace period and then invokes the callbacks.
663 * This loop is terminated by the system going down. ;-)
664 */
665 for (;;) {
666
667 /* Pick up any new callbacks. */
668 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
669 list = rcu_tasks_cbs_head;
670 rcu_tasks_cbs_head = NULL;
671 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
672 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
673
674 /* If there were none, wait a bit and start over. */
675 if (!list) {
c7b24d2b
PM
676 wait_event_interruptible(rcu_tasks_cbs_wq,
677 rcu_tasks_cbs_head);
678 if (!rcu_tasks_cbs_head) {
679 WARN_ON(signal_pending(current));
680 schedule_timeout_interruptible(HZ/10);
681 }
8315f422
PM
682 continue;
683 }
684
685 /*
686 * Wait for all pre-existing t->on_rq and t->nvcsw
687 * transitions to complete. Invoking synchronize_sched()
688 * suffices because all these transitions occur with
689 * interrupts disabled. Without this synchronize_sched(),
690 * a read-side critical section that started before the
691 * grace period might be incorrectly seen as having started
692 * after the grace period.
693 *
694 * This synchronize_sched() also dispenses with the
695 * need for a memory barrier on the first store to
696 * ->rcu_tasks_holdout, as it forces the store to happen
697 * after the beginning of the grace period.
698 */
699 synchronize_sched();
700
701 /*
702 * There were callbacks, so we need to wait for an
703 * RCU-tasks grace period. Start off by scanning
704 * the task list for tasks that are not already
705 * voluntarily blocked. Mark these tasks and make
706 * a list of them in rcu_tasks_holdouts.
707 */
708 rcu_read_lock();
709 for_each_process_thread(g, t) {
7d0ae808 710 if (t != current && READ_ONCE(t->on_rq) &&
8315f422
PM
711 !is_idle_task(t)) {
712 get_task_struct(t);
7d0ae808
PM
713 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
714 WRITE_ONCE(t->rcu_tasks_holdout, true);
8315f422
PM
715 list_add(&t->rcu_tasks_holdout_list,
716 &rcu_tasks_holdouts);
717 }
718 }
719 rcu_read_unlock();
720
3f95aa81
PM
721 /*
722 * Wait for tasks that are in the process of exiting.
723 * This does only part of the job, ensuring that all
724 * tasks that were previously exiting reach the point
725 * where they have disabled preemption, allowing the
726 * later synchronize_sched() to finish the job.
727 */
728 synchronize_srcu(&tasks_rcu_exit_srcu);
729
8315f422
PM
730 /*
731 * Each pass through the following loop scans the list
732 * of holdout tasks, removing any that are no longer
733 * holdouts. When the list is empty, we are done.
734 */
52db30ab 735 lastreport = jiffies;
8315f422 736 while (!list_empty(&rcu_tasks_holdouts)) {
52db30ab
PM
737 bool firstreport;
738 bool needreport;
739 int rtst;
8f20a5e8 740 struct task_struct *t1;
52db30ab 741
8315f422 742 schedule_timeout_interruptible(HZ);
7d0ae808 743 rtst = READ_ONCE(rcu_task_stall_timeout);
52db30ab
PM
744 needreport = rtst > 0 &&
745 time_after(jiffies, lastreport + rtst);
746 if (needreport)
747 lastreport = jiffies;
748 firstreport = true;
8315f422 749 WARN_ON(signal_pending(current));
8f20a5e8
PM
750 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
751 rcu_tasks_holdout_list) {
52db30ab 752 check_holdout_task(t, needreport, &firstreport);
8f20a5e8
PM
753 cond_resched();
754 }
8315f422
PM
755 }
756
757 /*
758 * Because ->on_rq and ->nvcsw are not guaranteed
759 * to have a full memory barriers prior to them in the
760 * schedule() path, memory reordering on other CPUs could
761 * cause their RCU-tasks read-side critical sections to
762 * extend past the end of the grace period. However,
763 * because these ->nvcsw updates are carried out with
764 * interrupts disabled, we can use synchronize_sched()
765 * to force the needed ordering on all such CPUs.
766 *
767 * This synchronize_sched() also confines all
768 * ->rcu_tasks_holdout accesses to be within the grace
769 * period, avoiding the need for memory barriers for
770 * ->rcu_tasks_holdout accesses.
3f95aa81
PM
771 *
772 * In addition, this synchronize_sched() waits for exiting
773 * tasks to complete their final preempt_disable() region
774 * of execution, cleaning up after the synchronize_srcu()
775 * above.
8315f422
PM
776 */
777 synchronize_sched();
778
779 /* Invoke the callbacks. */
780 while (list) {
781 next = list->next;
782 local_bh_disable();
783 list->func(list);
784 local_bh_enable();
785 list = next;
786 cond_resched();
787 }
c7b24d2b 788 schedule_timeout_uninterruptible(HZ/10);
8315f422
PM
789 }
790}
791
84a8f446
PM
792/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
793static void rcu_spawn_tasks_kthread(void)
8315f422 794{
84a8f446 795 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
84a8f446 796 struct task_struct *t;
8315f422 797
7d0ae808 798 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
84a8f446
PM
799 smp_mb(); /* Ensure caller sees full kthread. */
800 return;
801 }
802 mutex_lock(&rcu_tasks_kthread_mutex);
803 if (rcu_tasks_kthread_ptr) {
804 mutex_unlock(&rcu_tasks_kthread_mutex);
805 return;
806 }
8315f422
PM
807 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
808 BUG_ON(IS_ERR(t));
84a8f446 809 smp_mb(); /* Ensure others see full kthread. */
7d0ae808 810 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
84a8f446 811 mutex_unlock(&rcu_tasks_kthread_mutex);
8315f422 812}
8315f422
PM
813
814#endif /* #ifdef CONFIG_TASKS_RCU */
aa23c6fb
PK
815
816#ifdef CONFIG_PROVE_RCU
817
818/*
819 * Early boot self test parameters, one for each flavor
820 */
821static bool rcu_self_test;
822static bool rcu_self_test_bh;
823static bool rcu_self_test_sched;
824
825module_param(rcu_self_test, bool, 0444);
826module_param(rcu_self_test_bh, bool, 0444);
827module_param(rcu_self_test_sched, bool, 0444);
828
829static int rcu_self_test_counter;
830
831static void test_callback(struct rcu_head *r)
832{
833 rcu_self_test_counter++;
834 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
835}
836
837static void early_boot_test_call_rcu(void)
838{
839 static struct rcu_head head;
840
841 call_rcu(&head, test_callback);
842}
843
844static void early_boot_test_call_rcu_bh(void)
845{
846 static struct rcu_head head;
847
848 call_rcu_bh(&head, test_callback);
849}
850
851static void early_boot_test_call_rcu_sched(void)
852{
853 static struct rcu_head head;
854
855 call_rcu_sched(&head, test_callback);
856}
857
858void rcu_early_boot_tests(void)
859{
860 pr_info("Running RCU self tests\n");
861
862 if (rcu_self_test)
863 early_boot_test_call_rcu();
864 if (rcu_self_test_bh)
865 early_boot_test_call_rcu_bh();
866 if (rcu_self_test_sched)
867 early_boot_test_call_rcu_sched();
868}
869
870static int rcu_verify_early_boot_tests(void)
871{
872 int ret = 0;
873 int early_boot_test_counter = 0;
874
875 if (rcu_self_test) {
876 early_boot_test_counter++;
877 rcu_barrier();
878 }
879 if (rcu_self_test_bh) {
880 early_boot_test_counter++;
881 rcu_barrier_bh();
882 }
883 if (rcu_self_test_sched) {
884 early_boot_test_counter++;
885 rcu_barrier_sched();
886 }
887
888 if (rcu_self_test_counter != early_boot_test_counter) {
889 WARN_ON(1);
890 ret = -1;
891 }
892
893 return ret;
894}
895late_initcall(rcu_verify_early_boot_tests);
896#else
897void rcu_early_boot_tests(void) {}
898#endif /* CONFIG_PROVE_RCU */