]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcu/update.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / kernel / rcu / update.c
CommitLineData
1da177e4
LT
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
87de1cfd
PM
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
1da177e4 17 *
01c1c660 18 * Copyright IBM Corporation, 2001
1da177e4
LT
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
a71fca58 22 *
1da177e4
LT
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * Papers:
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 *
29 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 30 * http://lse.sourceforge.net/locking/rcupdate.html
1da177e4
LT
31 *
32 */
33#include <linux/types.h>
34#include <linux/kernel.h>
35#include <linux/init.h>
36#include <linux/spinlock.h>
37#include <linux/smp.h>
38#include <linux/interrupt.h>
3f07c014 39#include <linux/sched/signal.h>
b17b0153 40#include <linux/sched/debug.h>
60063497 41#include <linux/atomic.h>
1da177e4 42#include <linux/bitops.h>
1da177e4
LT
43#include <linux/percpu.h>
44#include <linux/notifier.h>
1da177e4 45#include <linux/cpu.h>
9331b315 46#include <linux/mutex.h>
9984de1a 47#include <linux/export.h>
e3818b8d 48#include <linux/hardirq.h>
e3ebfb96 49#include <linux/delay.h>
e77b7041 50#include <linux/moduleparam.h>
8315f422 51#include <linux/kthread.h>
4ff475ed 52#include <linux/tick.h>
f9411ebe 53#include <linux/rcupdate_wait.h>
1da177e4 54
29c00b4a 55#define CREATE_TRACE_POINTS
29c00b4a
PM
56
57#include "rcu.h"
58
4102adab
PM
59#ifdef MODULE_PARAM_PREFIX
60#undef MODULE_PARAM_PREFIX
61#endif
62#define MODULE_PARAM_PREFIX "rcupdate."
63
79cfea02 64#ifndef CONFIG_TINY_RCU
3705b88d 65module_param(rcu_expedited, int, 0);
5a9be7c6 66module_param(rcu_normal, int, 0);
3e42ec1a
PM
67static int rcu_normal_after_boot;
68module_param(rcu_normal_after_boot, int, 0);
79cfea02 69#endif /* #ifndef CONFIG_TINY_RCU */
3e42ec1a 70
293e2421 71#ifdef CONFIG_DEBUG_LOCK_ALLOC
d5671f6b
DV
72/**
73 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
74 *
75 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
76 * RCU-sched read-side critical section. In absence of
77 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
78 * critical section unless it can prove otherwise. Note that disabling
79 * of preemption (including disabling irqs) counts as an RCU-sched
80 * read-side critical section. This is useful for debug checks in functions
81 * that required that they be called within an RCU-sched read-side
82 * critical section.
83 *
84 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
85 * and while lockdep is disabled.
86 *
87 * Note that if the CPU is in the idle loop from an RCU point of
88 * view (ie: that we are in the section between rcu_idle_enter() and
89 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
90 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
91 * that are in such a section, considering these as in extended quiescent
92 * state, so such a CPU is effectively never in an RCU read-side critical
93 * section regardless of what RCU primitives it invokes. This state of
94 * affairs is required --- we need to keep an RCU-free window in idle
95 * where the CPU may possibly enter into low power mode. This way we can
96 * notice an extended quiescent state to other CPUs that started a grace
97 * period. Otherwise we would delay any grace period as long as we run in
98 * the idle task.
99 *
100 * Similarly, we avoid claiming an SRCU read lock held if the current
101 * CPU is offline.
102 */
103int rcu_read_lock_sched_held(void)
104{
105 int lockdep_opinion = 0;
106
107 if (!debug_lockdep_rcu_enabled())
108 return 1;
109 if (!rcu_is_watching())
110 return 0;
111 if (!rcu_lockdep_current_cpu_online())
112 return 0;
113 if (debug_locks)
114 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
293e2421 115 return lockdep_opinion || !preemptible();
d5671f6b
DV
116}
117EXPORT_SYMBOL(rcu_read_lock_sched_held);
118#endif
119
0d39482c
PM
120#ifndef CONFIG_TINY_RCU
121
5a9be7c6
PM
122/*
123 * Should expedited grace-period primitives always fall back to their
124 * non-expedited counterparts? Intended for use within RCU. Note
125 * that if the user specifies both rcu_expedited and rcu_normal, then
52d7e48b
PM
126 * rcu_normal wins. (Except during the time period during boot from
127 * when the first task is spawned until the rcu_exp_runtime_mode()
128 * core_initcall() is invoked, at which point everything is expedited.)
5a9be7c6
PM
129 */
130bool rcu_gp_is_normal(void)
131{
52d7e48b
PM
132 return READ_ONCE(rcu_normal) &&
133 rcu_scheduler_active != RCU_SCHEDULER_INIT;
5a9be7c6 134}
4f2a848c 135EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
5a9be7c6 136
7c6094db 137static atomic_t rcu_expedited_nesting = ATOMIC_INIT(1);
0d39482c
PM
138
139/*
140 * Should normal grace-period primitives be expedited? Intended for
141 * use within RCU. Note that this function takes the rcu_expedited
52d7e48b
PM
142 * sysfs/boot variable and rcu_scheduler_active into account as well
143 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
144 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
0d39482c
PM
145 */
146bool rcu_gp_is_expedited(void)
147{
52d7e48b
PM
148 return rcu_expedited || atomic_read(&rcu_expedited_nesting) ||
149 rcu_scheduler_active == RCU_SCHEDULER_INIT;
0d39482c
PM
150}
151EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
152
153/**
154 * rcu_expedite_gp - Expedite future RCU grace periods
155 *
156 * After a call to this function, future calls to synchronize_rcu() and
157 * friends act as the corresponding synchronize_rcu_expedited() function
158 * had instead been called.
159 */
160void rcu_expedite_gp(void)
161{
162 atomic_inc(&rcu_expedited_nesting);
163}
164EXPORT_SYMBOL_GPL(rcu_expedite_gp);
165
166/**
167 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
168 *
169 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
170 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
171 * and if the rcu_expedited sysfs/boot parameter is not set, then all
172 * subsequent calls to synchronize_rcu() and friends will return to
173 * their normal non-expedited behavior.
174 */
175void rcu_unexpedite_gp(void)
176{
177 atomic_dec(&rcu_expedited_nesting);
178}
179EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
180
ee42571f
PM
181/*
182 * Inform RCU of the end of the in-kernel boot sequence.
183 */
184void rcu_end_inkernel_boot(void)
185{
7c6094db 186 rcu_unexpedite_gp();
3e42ec1a
PM
187 if (rcu_normal_after_boot)
188 WRITE_ONCE(rcu_normal, 1);
ee42571f 189}
0d39482c 190
79cfea02
PM
191#endif /* #ifndef CONFIG_TINY_RCU */
192
9dd8fb16
PM
193#ifdef CONFIG_PREEMPT_RCU
194
2a3fa843
PM
195/*
196 * Preemptible RCU implementation for rcu_read_lock().
197 * Just increment ->rcu_read_lock_nesting, shared state will be updated
198 * if we block.
199 */
200void __rcu_read_lock(void)
201{
202 current->rcu_read_lock_nesting++;
203 barrier(); /* critical section after entry code. */
204}
205EXPORT_SYMBOL_GPL(__rcu_read_lock);
206
207/*
208 * Preemptible RCU implementation for rcu_read_unlock().
209 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
210 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
211 * invoke rcu_read_unlock_special() to clean up after a context switch
212 * in an RCU read-side critical section and other special cases.
213 */
214void __rcu_read_unlock(void)
215{
216 struct task_struct *t = current;
217
218 if (t->rcu_read_lock_nesting != 1) {
219 --t->rcu_read_lock_nesting;
220 } else {
221 barrier(); /* critical section before exit code. */
222 t->rcu_read_lock_nesting = INT_MIN;
223 barrier(); /* assign before ->rcu_read_unlock_special load */
7d0ae808 224 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
2a3fa843
PM
225 rcu_read_unlock_special(t);
226 barrier(); /* ->rcu_read_unlock_special load before assign */
227 t->rcu_read_lock_nesting = 0;
228 }
229#ifdef CONFIG_PROVE_LOCKING
230 {
7d0ae808 231 int rrln = READ_ONCE(t->rcu_read_lock_nesting);
2a3fa843
PM
232
233 WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
234 }
235#endif /* #ifdef CONFIG_PROVE_LOCKING */
236}
237EXPORT_SYMBOL_GPL(__rcu_read_unlock);
238
2439b696 239#endif /* #ifdef CONFIG_PREEMPT_RCU */
9dd8fb16 240
162cc279
PM
241#ifdef CONFIG_DEBUG_LOCK_ALLOC
242static struct lock_class_key rcu_lock_key;
243struct lockdep_map rcu_lock_map =
244 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
245EXPORT_SYMBOL_GPL(rcu_lock_map);
632ee200
PM
246
247static struct lock_class_key rcu_bh_lock_key;
248struct lockdep_map rcu_bh_lock_map =
249 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
250EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
251
252static struct lock_class_key rcu_sched_lock_key;
253struct lockdep_map rcu_sched_lock_map =
254 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
255EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
e3818b8d 256
24ef659a
PM
257static struct lock_class_key rcu_callback_key;
258struct lockdep_map rcu_callback_map =
259 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
260EXPORT_SYMBOL_GPL(rcu_callback_map);
261
a0a5a056 262int notrace debug_lockdep_rcu_enabled(void)
bc293d62 263{
52d7e48b 264 return rcu_scheduler_active != RCU_SCHEDULER_INACTIVE && debug_locks &&
bc293d62
PM
265 current->lockdep_recursion == 0;
266}
267EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
268
85b39d30
ON
269/**
270 * rcu_read_lock_held() - might we be in RCU read-side critical section?
271 *
272 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
273 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
274 * this assumes we are in an RCU read-side critical section unless it can
275 * prove otherwise. This is useful for debug checks in functions that
276 * require that they be called within an RCU read-side critical section.
277 *
278 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
279 * and while lockdep is disabled.
280 *
281 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
282 * occur in the same context, for example, it is illegal to invoke
283 * rcu_read_unlock() in process context if the matching rcu_read_lock()
284 * was invoked from within an irq handler.
285 *
286 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
287 * offline from an RCU perspective, so check for those as well.
288 */
289int rcu_read_lock_held(void)
290{
291 if (!debug_lockdep_rcu_enabled())
292 return 1;
293 if (!rcu_is_watching())
294 return 0;
295 if (!rcu_lockdep_current_cpu_online())
296 return 0;
297 return lock_is_held(&rcu_lock_map);
298}
299EXPORT_SYMBOL_GPL(rcu_read_lock_held);
300
e3818b8d 301/**
ca5ecddf 302 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
e3818b8d
PM
303 *
304 * Check for bottom half being disabled, which covers both the
305 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
306 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
ca5ecddf
PM
307 * will show the situation. This is useful for debug checks in functions
308 * that require that they be called within an RCU read-side critical
309 * section.
e3818b8d
PM
310 *
311 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
c0d6d01b
PM
312 *
313 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
314 * offline from an RCU perspective, so check for those as well.
e3818b8d
PM
315 */
316int rcu_read_lock_bh_held(void)
317{
318 if (!debug_lockdep_rcu_enabled())
319 return 1;
5c173eb8 320 if (!rcu_is_watching())
e6b80a3b 321 return 0;
c0d6d01b
PM
322 if (!rcu_lockdep_current_cpu_online())
323 return 0;
773e3f93 324 return in_softirq() || irqs_disabled();
e3818b8d
PM
325}
326EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
327
328#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
329
ee376dbd
PM
330/**
331 * wakeme_after_rcu() - Callback function to awaken a task after grace period
332 * @head: Pointer to rcu_head member within rcu_synchronize structure
333 *
334 * Awaken the corresponding task now that a grace period has elapsed.
fbf6bfca 335 */
ee376dbd 336void wakeme_after_rcu(struct rcu_head *head)
21a1ea9e 337{
01c1c660
PM
338 struct rcu_synchronize *rcu;
339
340 rcu = container_of(head, struct rcu_synchronize, head);
341 complete(&rcu->completion);
21a1ea9e 342}
ec90a194 343EXPORT_SYMBOL_GPL(wakeme_after_rcu);
ee84b824 344
ec90a194
PM
345void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
346 struct rcu_synchronize *rs_array)
2c42818e 347{
ec90a194
PM
348 int i;
349
350 /* Initialize and register callbacks for each flavor specified. */
351 for (i = 0; i < n; i++) {
352 if (checktiny &&
353 (crcu_array[i] == call_rcu ||
354 crcu_array[i] == call_rcu_bh)) {
355 might_sleep();
356 continue;
357 }
358 init_rcu_head_on_stack(&rs_array[i].head);
359 init_completion(&rs_array[i].completion);
360 (crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
361 }
362
363 /* Wait for all callbacks to be invoked. */
364 for (i = 0; i < n; i++) {
365 if (checktiny &&
366 (crcu_array[i] == call_rcu ||
367 crcu_array[i] == call_rcu_bh))
368 continue;
369 wait_for_completion(&rs_array[i].completion);
370 destroy_rcu_head_on_stack(&rs_array[i].head);
371 }
2c42818e 372}
ec90a194 373EXPORT_SYMBOL_GPL(__wait_rcu_gp);
2c42818e 374
551d55a9 375#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
546a9d85 376void init_rcu_head(struct rcu_head *head)
551d55a9
MD
377{
378 debug_object_init(head, &rcuhead_debug_descr);
379}
380
546a9d85 381void destroy_rcu_head(struct rcu_head *head)
551d55a9
MD
382{
383 debug_object_free(head, &rcuhead_debug_descr);
384}
385
b9fdac7f 386static bool rcuhead_is_static_object(void *addr)
551d55a9 387{
b9fdac7f 388 return true;
551d55a9
MD
389}
390
391/**
392 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
393 * @head: pointer to rcu_head structure to be initialized
394 *
395 * This function informs debugobjects of a new rcu_head structure that
396 * has been allocated as an auto variable on the stack. This function
397 * is not required for rcu_head structures that are statically defined or
398 * that are dynamically allocated on the heap. This function has no
399 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
400 */
401void init_rcu_head_on_stack(struct rcu_head *head)
402{
403 debug_object_init_on_stack(head, &rcuhead_debug_descr);
404}
405EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
406
407/**
408 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
409 * @head: pointer to rcu_head structure to be initialized
410 *
411 * This function informs debugobjects that an on-stack rcu_head structure
412 * is about to go out of scope. As with init_rcu_head_on_stack(), this
413 * function is not required for rcu_head structures that are statically
414 * defined or that are dynamically allocated on the heap. Also as with
415 * init_rcu_head_on_stack(), this function has no effect for
416 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
417 */
418void destroy_rcu_head_on_stack(struct rcu_head *head)
419{
420 debug_object_free(head, &rcuhead_debug_descr);
421}
422EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
423
424struct debug_obj_descr rcuhead_debug_descr = {
425 .name = "rcu_head",
b9fdac7f 426 .is_static_object = rcuhead_is_static_object,
551d55a9
MD
427};
428EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
429#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
91afaf30 430
28f6569a 431#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
e66c33d5 432void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
52494535
PM
433 unsigned long secs,
434 unsigned long c_old, unsigned long c)
91afaf30 435{
52494535 436 trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
91afaf30
PM
437}
438EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
439#else
52494535
PM
440#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
441 do { } while (0)
91afaf30 442#endif
6bfc09e2
PM
443
444#ifdef CONFIG_RCU_STALL_COMMON
445
446#ifdef CONFIG_PROVE_RCU
447#define RCU_STALL_DELAY_DELTA (5 * HZ)
448#else
449#define RCU_STALL_DELAY_DELTA 0
450#endif
451
452int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
01896f7e 453static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
6bfc09e2
PM
454
455module_param(rcu_cpu_stall_suppress, int, 0644);
456module_param(rcu_cpu_stall_timeout, int, 0644);
457
458int rcu_jiffies_till_stall_check(void)
459{
7d0ae808 460 int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
6bfc09e2
PM
461
462 /*
463 * Limit check must be consistent with the Kconfig limits
464 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
465 */
466 if (till_stall_check < 3) {
7d0ae808 467 WRITE_ONCE(rcu_cpu_stall_timeout, 3);
6bfc09e2
PM
468 till_stall_check = 3;
469 } else if (till_stall_check > 300) {
7d0ae808 470 WRITE_ONCE(rcu_cpu_stall_timeout, 300);
6bfc09e2
PM
471 till_stall_check = 300;
472 }
473 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
474}
475
61f38db3
RR
476void rcu_sysrq_start(void)
477{
478 if (!rcu_cpu_stall_suppress)
479 rcu_cpu_stall_suppress = 2;
480}
481
482void rcu_sysrq_end(void)
483{
484 if (rcu_cpu_stall_suppress == 2)
485 rcu_cpu_stall_suppress = 0;
486}
487
6bfc09e2
PM
488static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
489{
490 rcu_cpu_stall_suppress = 1;
491 return NOTIFY_DONE;
492}
493
494static struct notifier_block rcu_panic_block = {
495 .notifier_call = rcu_panic,
496};
497
498static int __init check_cpu_stall_init(void)
499{
500 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
501 return 0;
502}
503early_initcall(check_cpu_stall_init);
504
505#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
8315f422
PM
506
507#ifdef CONFIG_TASKS_RCU
508
509/*
510 * Simple variant of RCU whose quiescent states are voluntary context switch,
511 * user-space execution, and idle. As such, grace periods can take one good
512 * long time. There are no read-side primitives similar to rcu_read_lock()
513 * and rcu_read_unlock() because this implementation is intended to get
514 * the system into a safe state for some of the manipulations involved in
515 * tracing and the like. Finally, this implementation does not support
516 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
517 * per-CPU callback lists will be needed.
518 */
519
520/* Global list of callbacks and associated lock. */
521static struct rcu_head *rcu_tasks_cbs_head;
522static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
c7b24d2b 523static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
8315f422
PM
524static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
525
3f95aa81
PM
526/* Track exiting tasks in order to allow them to be waited for. */
527DEFINE_SRCU(tasks_rcu_exit_srcu);
528
529/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
52db30ab 530static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
3f95aa81
PM
531module_param(rcu_task_stall_timeout, int, 0644);
532
84a8f446 533static void rcu_spawn_tasks_kthread(void);
4929c913 534static struct task_struct *rcu_tasks_kthread_ptr;
84a8f446
PM
535
536/*
537 * Post an RCU-tasks callback. First call must be from process context
538 * after the scheduler if fully operational.
539 */
b6a4ae76 540void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
8315f422
PM
541{
542 unsigned long flags;
c7b24d2b 543 bool needwake;
4929c913 544 bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
8315f422
PM
545
546 rhp->next = NULL;
547 rhp->func = func;
548 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
c7b24d2b 549 needwake = !rcu_tasks_cbs_head;
8315f422
PM
550 *rcu_tasks_cbs_tail = rhp;
551 rcu_tasks_cbs_tail = &rhp->next;
552 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
4929c913
PM
553 /* We can't create the thread unless interrupts are enabled. */
554 if ((needwake && havetask) ||
555 (!havetask && !irqs_disabled_flags(flags))) {
84a8f446 556 rcu_spawn_tasks_kthread();
c7b24d2b 557 wake_up(&rcu_tasks_cbs_wq);
84a8f446 558 }
8315f422
PM
559}
560EXPORT_SYMBOL_GPL(call_rcu_tasks);
561
53c6d4ed
PM
562/**
563 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
564 *
565 * Control will return to the caller some time after a full rcu-tasks
566 * grace period has elapsed, in other words after all currently
567 * executing rcu-tasks read-side critical sections have elapsed. These
568 * read-side critical sections are delimited by calls to schedule(),
569 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
570 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
571 *
572 * This is a very specialized primitive, intended only for a few uses in
573 * tracing and other situations requiring manipulation of function
574 * preambles and profiling hooks. The synchronize_rcu_tasks() function
575 * is not (yet) intended for heavy use from multiple CPUs.
576 *
577 * Note that this guarantee implies further memory-ordering guarantees.
578 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
579 * each CPU is guaranteed to have executed a full memory barrier since the
580 * end of its last RCU-tasks read-side critical section whose beginning
581 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
582 * having an RCU-tasks read-side critical section that extends beyond
583 * the return from synchronize_rcu_tasks() is guaranteed to have executed
584 * a full memory barrier after the beginning of synchronize_rcu_tasks()
585 * and before the beginning of that RCU-tasks read-side critical section.
586 * Note that these guarantees include CPUs that are offline, idle, or
587 * executing in user mode, as well as CPUs that are executing in the kernel.
588 *
589 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
590 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
591 * to have executed a full memory barrier during the execution of
592 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
593 * (but again only if the system has more than one CPU).
594 */
595void synchronize_rcu_tasks(void)
596{
597 /* Complain if the scheduler has not started. */
52d7e48b 598 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
f78f5b90 599 "synchronize_rcu_tasks called too soon");
53c6d4ed
PM
600
601 /* Wait for the grace period. */
602 wait_rcu_gp(call_rcu_tasks);
603}
06c2a923 604EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
53c6d4ed
PM
605
606/**
607 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
608 *
609 * Although the current implementation is guaranteed to wait, it is not
610 * obligated to, for example, if there are no pending callbacks.
611 */
612void rcu_barrier_tasks(void)
613{
614 /* There is only one callback queue, so this is easy. ;-) */
615 synchronize_rcu_tasks();
616}
06c2a923 617EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
53c6d4ed 618
52db30ab
PM
619/* See if tasks are still holding out, complain if so. */
620static void check_holdout_task(struct task_struct *t,
621 bool needreport, bool *firstreport)
8315f422 622{
4ff475ed
PM
623 int cpu;
624
7d0ae808
PM
625 if (!READ_ONCE(t->rcu_tasks_holdout) ||
626 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
627 !READ_ONCE(t->on_rq) ||
176f8f7a
PM
628 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
629 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
7d0ae808 630 WRITE_ONCE(t->rcu_tasks_holdout, false);
8f20a5e8 631 list_del_init(&t->rcu_tasks_holdout_list);
8315f422 632 put_task_struct(t);
52db30ab 633 return;
8315f422 634 }
52db30ab
PM
635 if (!needreport)
636 return;
637 if (*firstreport) {
638 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
639 *firstreport = false;
640 }
4ff475ed
PM
641 cpu = task_cpu(t);
642 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
643 t, ".I"[is_idle_task(t)],
644 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
645 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
646 t->rcu_tasks_idle_cpu, cpu);
52db30ab 647 sched_show_task(t);
8315f422
PM
648}
649
650/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
651static int __noreturn rcu_tasks_kthread(void *arg)
652{
653 unsigned long flags;
654 struct task_struct *g, *t;
52db30ab 655 unsigned long lastreport;
8315f422
PM
656 struct rcu_head *list;
657 struct rcu_head *next;
658 LIST_HEAD(rcu_tasks_holdouts);
659
60ced495
PM
660 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
661 housekeeping_affine(current);
8315f422
PM
662
663 /*
664 * Each pass through the following loop makes one check for
665 * newly arrived callbacks, and, if there are some, waits for
666 * one RCU-tasks grace period and then invokes the callbacks.
667 * This loop is terminated by the system going down. ;-)
668 */
669 for (;;) {
670
671 /* Pick up any new callbacks. */
672 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
673 list = rcu_tasks_cbs_head;
674 rcu_tasks_cbs_head = NULL;
675 rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
676 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
677
678 /* If there were none, wait a bit and start over. */
679 if (!list) {
c7b24d2b
PM
680 wait_event_interruptible(rcu_tasks_cbs_wq,
681 rcu_tasks_cbs_head);
682 if (!rcu_tasks_cbs_head) {
683 WARN_ON(signal_pending(current));
684 schedule_timeout_interruptible(HZ/10);
685 }
8315f422
PM
686 continue;
687 }
688
689 /*
690 * Wait for all pre-existing t->on_rq and t->nvcsw
691 * transitions to complete. Invoking synchronize_sched()
692 * suffices because all these transitions occur with
693 * interrupts disabled. Without this synchronize_sched(),
694 * a read-side critical section that started before the
695 * grace period might be incorrectly seen as having started
696 * after the grace period.
697 *
698 * This synchronize_sched() also dispenses with the
699 * need for a memory barrier on the first store to
700 * ->rcu_tasks_holdout, as it forces the store to happen
701 * after the beginning of the grace period.
702 */
703 synchronize_sched();
704
705 /*
706 * There were callbacks, so we need to wait for an
707 * RCU-tasks grace period. Start off by scanning
708 * the task list for tasks that are not already
709 * voluntarily blocked. Mark these tasks and make
710 * a list of them in rcu_tasks_holdouts.
711 */
712 rcu_read_lock();
713 for_each_process_thread(g, t) {
7d0ae808 714 if (t != current && READ_ONCE(t->on_rq) &&
8315f422
PM
715 !is_idle_task(t)) {
716 get_task_struct(t);
7d0ae808
PM
717 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
718 WRITE_ONCE(t->rcu_tasks_holdout, true);
8315f422
PM
719 list_add(&t->rcu_tasks_holdout_list,
720 &rcu_tasks_holdouts);
721 }
722 }
723 rcu_read_unlock();
724
3f95aa81
PM
725 /*
726 * Wait for tasks that are in the process of exiting.
727 * This does only part of the job, ensuring that all
728 * tasks that were previously exiting reach the point
729 * where they have disabled preemption, allowing the
730 * later synchronize_sched() to finish the job.
731 */
732 synchronize_srcu(&tasks_rcu_exit_srcu);
733
8315f422
PM
734 /*
735 * Each pass through the following loop scans the list
736 * of holdout tasks, removing any that are no longer
737 * holdouts. When the list is empty, we are done.
738 */
52db30ab 739 lastreport = jiffies;
8315f422 740 while (!list_empty(&rcu_tasks_holdouts)) {
52db30ab
PM
741 bool firstreport;
742 bool needreport;
743 int rtst;
8f20a5e8 744 struct task_struct *t1;
52db30ab 745
8315f422 746 schedule_timeout_interruptible(HZ);
7d0ae808 747 rtst = READ_ONCE(rcu_task_stall_timeout);
52db30ab
PM
748 needreport = rtst > 0 &&
749 time_after(jiffies, lastreport + rtst);
750 if (needreport)
751 lastreport = jiffies;
752 firstreport = true;
8315f422 753 WARN_ON(signal_pending(current));
8f20a5e8
PM
754 list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
755 rcu_tasks_holdout_list) {
52db30ab 756 check_holdout_task(t, needreport, &firstreport);
8f20a5e8
PM
757 cond_resched();
758 }
8315f422
PM
759 }
760
761 /*
762 * Because ->on_rq and ->nvcsw are not guaranteed
763 * to have a full memory barriers prior to them in the
764 * schedule() path, memory reordering on other CPUs could
765 * cause their RCU-tasks read-side critical sections to
766 * extend past the end of the grace period. However,
767 * because these ->nvcsw updates are carried out with
768 * interrupts disabled, we can use synchronize_sched()
769 * to force the needed ordering on all such CPUs.
770 *
771 * This synchronize_sched() also confines all
772 * ->rcu_tasks_holdout accesses to be within the grace
773 * period, avoiding the need for memory barriers for
774 * ->rcu_tasks_holdout accesses.
3f95aa81
PM
775 *
776 * In addition, this synchronize_sched() waits for exiting
777 * tasks to complete their final preempt_disable() region
778 * of execution, cleaning up after the synchronize_srcu()
779 * above.
8315f422
PM
780 */
781 synchronize_sched();
782
783 /* Invoke the callbacks. */
784 while (list) {
785 next = list->next;
786 local_bh_disable();
787 list->func(list);
788 local_bh_enable();
789 list = next;
790 cond_resched();
791 }
c7b24d2b 792 schedule_timeout_uninterruptible(HZ/10);
8315f422
PM
793 }
794}
795
84a8f446
PM
796/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
797static void rcu_spawn_tasks_kthread(void)
8315f422 798{
84a8f446 799 static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
84a8f446 800 struct task_struct *t;
8315f422 801
7d0ae808 802 if (READ_ONCE(rcu_tasks_kthread_ptr)) {
84a8f446
PM
803 smp_mb(); /* Ensure caller sees full kthread. */
804 return;
805 }
806 mutex_lock(&rcu_tasks_kthread_mutex);
807 if (rcu_tasks_kthread_ptr) {
808 mutex_unlock(&rcu_tasks_kthread_mutex);
809 return;
810 }
8315f422
PM
811 t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
812 BUG_ON(IS_ERR(t));
84a8f446 813 smp_mb(); /* Ensure others see full kthread. */
7d0ae808 814 WRITE_ONCE(rcu_tasks_kthread_ptr, t);
84a8f446 815 mutex_unlock(&rcu_tasks_kthread_mutex);
8315f422 816}
8315f422
PM
817
818#endif /* #ifdef CONFIG_TASKS_RCU */
aa23c6fb 819
52d7e48b
PM
820/*
821 * Test each non-SRCU synchronous grace-period wait API. This is
822 * useful just after a change in mode for these primitives, and
823 * during early boot.
824 */
825void rcu_test_sync_prims(void)
826{
827 if (!IS_ENABLED(CONFIG_PROVE_RCU))
828 return;
829 synchronize_rcu();
830 synchronize_rcu_bh();
831 synchronize_sched();
832 synchronize_rcu_expedited();
833 synchronize_rcu_bh_expedited();
834 synchronize_sched_expedited();
835}
836
aa23c6fb
PK
837#ifdef CONFIG_PROVE_RCU
838
839/*
840 * Early boot self test parameters, one for each flavor
841 */
842static bool rcu_self_test;
843static bool rcu_self_test_bh;
844static bool rcu_self_test_sched;
845
846module_param(rcu_self_test, bool, 0444);
847module_param(rcu_self_test_bh, bool, 0444);
848module_param(rcu_self_test_sched, bool, 0444);
849
850static int rcu_self_test_counter;
851
852static void test_callback(struct rcu_head *r)
853{
854 rcu_self_test_counter++;
855 pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
856}
857
858static void early_boot_test_call_rcu(void)
859{
860 static struct rcu_head head;
861
862 call_rcu(&head, test_callback);
863}
864
865static void early_boot_test_call_rcu_bh(void)
866{
867 static struct rcu_head head;
868
869 call_rcu_bh(&head, test_callback);
870}
871
872static void early_boot_test_call_rcu_sched(void)
873{
874 static struct rcu_head head;
875
876 call_rcu_sched(&head, test_callback);
877}
878
879void rcu_early_boot_tests(void)
880{
881 pr_info("Running RCU self tests\n");
882
883 if (rcu_self_test)
884 early_boot_test_call_rcu();
885 if (rcu_self_test_bh)
886 early_boot_test_call_rcu_bh();
887 if (rcu_self_test_sched)
888 early_boot_test_call_rcu_sched();
52d7e48b 889 rcu_test_sync_prims();
aa23c6fb
PK
890}
891
892static int rcu_verify_early_boot_tests(void)
893{
894 int ret = 0;
895 int early_boot_test_counter = 0;
896
897 if (rcu_self_test) {
898 early_boot_test_counter++;
899 rcu_barrier();
900 }
901 if (rcu_self_test_bh) {
902 early_boot_test_counter++;
903 rcu_barrier_bh();
904 }
905 if (rcu_self_test_sched) {
906 early_boot_test_counter++;
907 rcu_barrier_sched();
908 }
909
910 if (rcu_self_test_counter != early_boot_test_counter) {
911 WARN_ON(1);
912 ret = -1;
913 }
914
915 return ret;
916}
917late_initcall(rcu_verify_early_boot_tests);
918#else
919void rcu_early_boot_tests(void) {}
920#endif /* CONFIG_PROVE_RCU */