]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcutree.c
Merge branches 'bigrtm.2012.07.04a', 'doctorture.2012.07.02a', 'fixes.2012.07.06a...
[mirror_ubuntu-artful-kernel.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 74 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 75 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
6c90cc7b 76 .name = #sname, \
64db4cff
PM
77}
78
037b64ed
PM
79struct rcu_state rcu_sched_state =
80 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 81DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 82
037b64ed 83struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 84DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 85
27f4d280 86static struct rcu_state *rcu_state;
6ce75a23 87LIST_HEAD(rcu_struct_flavors);
27f4d280 88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
0f962a5e 142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
fc2219d4
PM
158/*
159 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
160 * permit this function to be invoked without holding the root rcu_node
161 * structure's ->lock, but of course results can be subject to change.
162 */
163static int rcu_gp_in_progress(struct rcu_state *rsp)
164{
165 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
166}
167
b1f77b05 168/*
d6714c22 169 * Note a quiescent state. Because we do not need to know
b1f77b05 170 * how many quiescent states passed, just if there was at least
d6714c22 171 * one since the start of the grace period, this just sets a flag.
e4cc1f22 172 * The caller must have disabled preemption.
b1f77b05 173 */
d6714c22 174void rcu_sched_qs(int cpu)
b1f77b05 175{
25502a6c 176 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 177
e4cc1f22 178 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 179 barrier();
e4cc1f22 180 if (rdp->passed_quiesce == 0)
d4c08f2a 181 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 182 rdp->passed_quiesce = 1;
b1f77b05
IM
183}
184
d6714c22 185void rcu_bh_qs(int cpu)
b1f77b05 186{
25502a6c 187 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 188
e4cc1f22 189 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 190 barrier();
e4cc1f22 191 if (rdp->passed_quiesce == 0)
d4c08f2a 192 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 193 rdp->passed_quiesce = 1;
b1f77b05 194}
64db4cff 195
25502a6c
PM
196/*
197 * Note a context switch. This is a quiescent state for RCU-sched,
198 * and requires special handling for preemptible RCU.
e4cc1f22 199 * The caller must have disabled preemption.
25502a6c
PM
200 */
201void rcu_note_context_switch(int cpu)
202{
300df91c 203 trace_rcu_utilization("Start context switch");
25502a6c 204 rcu_sched_qs(cpu);
cba6d0d6 205 rcu_preempt_note_context_switch(cpu);
300df91c 206 trace_rcu_utilization("End context switch");
25502a6c 207}
29ce8310 208EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 209
90a4d2c0 210DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 211 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 212 .dynticks = ATOMIC_INIT(1),
90a4d2c0 213};
64db4cff 214
e0f23060 215static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
216static int qhimark = 10000; /* If this many pending, ignore blimit. */
217static int qlowmark = 100; /* Once only this many pending, use blimit. */
218
3d76c082
PM
219module_param(blimit, int, 0);
220module_param(qhimark, int, 0);
221module_param(qlowmark, int, 0);
222
13cfcca0
PM
223int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
224int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
225
f2e0dd70 226module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 227module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 228
64db4cff 229static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 230static int rcu_pending(int cpu);
64db4cff
PM
231
232/*
d6714c22 233 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 234 */
d6714c22 235long rcu_batches_completed_sched(void)
64db4cff 236{
d6714c22 237 return rcu_sched_state.completed;
64db4cff 238}
d6714c22 239EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
240
241/*
242 * Return the number of RCU BH batches processed thus far for debug & stats.
243 */
244long rcu_batches_completed_bh(void)
245{
246 return rcu_bh_state.completed;
247}
248EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
249
bf66f18e
PM
250/*
251 * Force a quiescent state for RCU BH.
252 */
253void rcu_bh_force_quiescent_state(void)
254{
255 force_quiescent_state(&rcu_bh_state, 0);
256}
257EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
258
4a298656
PM
259/*
260 * Record the number of times rcutorture tests have been initiated and
261 * terminated. This information allows the debugfs tracing stats to be
262 * correlated to the rcutorture messages, even when the rcutorture module
263 * is being repeatedly loaded and unloaded. In other words, we cannot
264 * store this state in rcutorture itself.
265 */
266void rcutorture_record_test_transition(void)
267{
268 rcutorture_testseq++;
269 rcutorture_vernum = 0;
270}
271EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
272
273/*
274 * Record the number of writer passes through the current rcutorture test.
275 * This is also used to correlate debugfs tracing stats with the rcutorture
276 * messages.
277 */
278void rcutorture_record_progress(unsigned long vernum)
279{
280 rcutorture_vernum++;
281}
282EXPORT_SYMBOL_GPL(rcutorture_record_progress);
283
bf66f18e
PM
284/*
285 * Force a quiescent state for RCU-sched.
286 */
287void rcu_sched_force_quiescent_state(void)
288{
289 force_quiescent_state(&rcu_sched_state, 0);
290}
291EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
292
64db4cff
PM
293/*
294 * Does the CPU have callbacks ready to be invoked?
295 */
296static int
297cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
298{
299 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
300}
301
302/*
303 * Does the current CPU require a yet-as-unscheduled grace period?
304 */
305static int
306cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
307{
fc2219d4 308 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
309}
310
311/*
312 * Return the root node of the specified rcu_state structure.
313 */
314static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
315{
316 return &rsp->node[0];
317}
318
64db4cff
PM
319/*
320 * If the specified CPU is offline, tell the caller that it is in
321 * a quiescent state. Otherwise, whack it with a reschedule IPI.
322 * Grace periods can end up waiting on an offline CPU when that
323 * CPU is in the process of coming online -- it will be added to the
324 * rcu_node bitmasks before it actually makes it online. The same thing
325 * can happen while a CPU is in the process of coming online. Because this
326 * race is quite rare, we check for it after detecting that the grace
327 * period has been delayed rather than checking each and every CPU
328 * each and every time we start a new grace period.
329 */
330static int rcu_implicit_offline_qs(struct rcu_data *rdp)
331{
332 /*
2036d94a
PM
333 * If the CPU is offline for more than a jiffy, it is in a quiescent
334 * state. We can trust its state not to change because interrupts
335 * are disabled. The reason for the jiffy's worth of slack is to
336 * handle CPUs initializing on the way up and finding their way
337 * to the idle loop on the way down.
64db4cff 338 */
2036d94a
PM
339 if (cpu_is_offline(rdp->cpu) &&
340 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 341 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
342 rdp->offline_fqs++;
343 return 1;
344 }
64db4cff
PM
345 return 0;
346}
347
9b2e4f18
PM
348/*
349 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
350 *
351 * If the new value of the ->dynticks_nesting counter now is zero,
352 * we really have entered idle, and must do the appropriate accounting.
353 * The caller must have disabled interrupts.
354 */
4145fa7f 355static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 356{
facc4e15 357 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 358 if (!is_idle_task(current)) {
0989cb46
PM
359 struct task_struct *idle = idle_task(smp_processor_id());
360
facc4e15 361 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 362 ftrace_dump(DUMP_ORIG);
0989cb46
PM
363 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
364 current->pid, current->comm,
365 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 366 }
aea1b35e 367 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
368 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
369 smp_mb__before_atomic_inc(); /* See above. */
370 atomic_inc(&rdtp->dynticks);
371 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
372 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
373
374 /*
375 * The idle task is not permitted to enter the idle loop while
376 * in an RCU read-side critical section.
377 */
378 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
379 "Illegal idle entry in RCU read-side critical section.");
380 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
381 "Illegal idle entry in RCU-bh read-side critical section.");
382 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
383 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 384}
64db4cff
PM
385
386/**
9b2e4f18 387 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 388 *
9b2e4f18 389 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 390 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
391 * critical sections can occur in irq handlers in idle, a possibility
392 * handled by irq_enter() and irq_exit().)
393 *
394 * We crowbar the ->dynticks_nesting field to zero to allow for
395 * the possibility of usermode upcalls having messed up our count
396 * of interrupt nesting level during the prior busy period.
64db4cff 397 */
9b2e4f18 398void rcu_idle_enter(void)
64db4cff
PM
399{
400 unsigned long flags;
4145fa7f 401 long long oldval;
64db4cff
PM
402 struct rcu_dynticks *rdtp;
403
64db4cff
PM
404 local_irq_save(flags);
405 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 406 oldval = rdtp->dynticks_nesting;
29e37d81
PM
407 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
408 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
409 rdtp->dynticks_nesting = 0;
410 else
411 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 412 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
413 local_irq_restore(flags);
414}
8a2ecf47 415EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 416
9b2e4f18
PM
417/**
418 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
419 *
420 * Exit from an interrupt handler, which might possibly result in entering
421 * idle mode, in other words, leaving the mode in which read-side critical
422 * sections can occur.
64db4cff 423 *
9b2e4f18
PM
424 * This code assumes that the idle loop never does anything that might
425 * result in unbalanced calls to irq_enter() and irq_exit(). If your
426 * architecture violates this assumption, RCU will give you what you
427 * deserve, good and hard. But very infrequently and irreproducibly.
428 *
429 * Use things like work queues to work around this limitation.
430 *
431 * You have been warned.
64db4cff 432 */
9b2e4f18 433void rcu_irq_exit(void)
64db4cff
PM
434{
435 unsigned long flags;
4145fa7f 436 long long oldval;
64db4cff
PM
437 struct rcu_dynticks *rdtp;
438
439 local_irq_save(flags);
440 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 441 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
442 rdtp->dynticks_nesting--;
443 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
444 if (rdtp->dynticks_nesting)
445 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
446 else
447 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
448 local_irq_restore(flags);
449}
450
451/*
452 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
453 *
454 * If the new value of the ->dynticks_nesting counter was previously zero,
455 * we really have exited idle, and must do the appropriate accounting.
456 * The caller must have disabled interrupts.
457 */
458static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
459{
23b5c8fa
PM
460 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
461 atomic_inc(&rdtp->dynticks);
462 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
463 smp_mb__after_atomic_inc(); /* See above. */
464 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 465 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 466 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 467 if (!is_idle_task(current)) {
0989cb46
PM
468 struct task_struct *idle = idle_task(smp_processor_id());
469
4145fa7f
PM
470 trace_rcu_dyntick("Error on exit: not idle task",
471 oldval, rdtp->dynticks_nesting);
bf1304e9 472 ftrace_dump(DUMP_ORIG);
0989cb46
PM
473 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
474 current->pid, current->comm,
475 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
476 }
477}
478
479/**
480 * rcu_idle_exit - inform RCU that current CPU is leaving idle
481 *
482 * Exit idle mode, in other words, -enter- the mode in which RCU
483 * read-side critical sections can occur.
484 *
29e37d81 485 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 486 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
487 * of interrupt nesting level during the busy period that is just
488 * now starting.
489 */
490void rcu_idle_exit(void)
491{
492 unsigned long flags;
493 struct rcu_dynticks *rdtp;
494 long long oldval;
495
496 local_irq_save(flags);
497 rdtp = &__get_cpu_var(rcu_dynticks);
498 oldval = rdtp->dynticks_nesting;
29e37d81
PM
499 WARN_ON_ONCE(oldval < 0);
500 if (oldval & DYNTICK_TASK_NEST_MASK)
501 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
502 else
503 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
504 rcu_idle_exit_common(rdtp, oldval);
505 local_irq_restore(flags);
506}
8a2ecf47 507EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
508
509/**
510 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
511 *
512 * Enter an interrupt handler, which might possibly result in exiting
513 * idle mode, in other words, entering the mode in which read-side critical
514 * sections can occur.
515 *
516 * Note that the Linux kernel is fully capable of entering an interrupt
517 * handler that it never exits, for example when doing upcalls to
518 * user mode! This code assumes that the idle loop never does upcalls to
519 * user mode. If your architecture does do upcalls from the idle loop (or
520 * does anything else that results in unbalanced calls to the irq_enter()
521 * and irq_exit() functions), RCU will give you what you deserve, good
522 * and hard. But very infrequently and irreproducibly.
523 *
524 * Use things like work queues to work around this limitation.
525 *
526 * You have been warned.
527 */
528void rcu_irq_enter(void)
529{
530 unsigned long flags;
531 struct rcu_dynticks *rdtp;
532 long long oldval;
533
534 local_irq_save(flags);
535 rdtp = &__get_cpu_var(rcu_dynticks);
536 oldval = rdtp->dynticks_nesting;
537 rdtp->dynticks_nesting++;
538 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
539 if (oldval)
540 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
541 else
542 rcu_idle_exit_common(rdtp, oldval);
64db4cff 543 local_irq_restore(flags);
64db4cff
PM
544}
545
546/**
547 * rcu_nmi_enter - inform RCU of entry to NMI context
548 *
549 * If the CPU was idle with dynamic ticks active, and there is no
550 * irq handler running, this updates rdtp->dynticks_nmi to let the
551 * RCU grace-period handling know that the CPU is active.
552 */
553void rcu_nmi_enter(void)
554{
555 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
556
23b5c8fa
PM
557 if (rdtp->dynticks_nmi_nesting == 0 &&
558 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 559 return;
23b5c8fa
PM
560 rdtp->dynticks_nmi_nesting++;
561 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
562 atomic_inc(&rdtp->dynticks);
563 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
564 smp_mb__after_atomic_inc(); /* See above. */
565 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
566}
567
568/**
569 * rcu_nmi_exit - inform RCU of exit from NMI context
570 *
571 * If the CPU was idle with dynamic ticks active, and there is no
572 * irq handler running, this updates rdtp->dynticks_nmi to let the
573 * RCU grace-period handling know that the CPU is no longer active.
574 */
575void rcu_nmi_exit(void)
576{
577 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
578
23b5c8fa
PM
579 if (rdtp->dynticks_nmi_nesting == 0 ||
580 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 581 return;
23b5c8fa
PM
582 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
583 smp_mb__before_atomic_inc(); /* See above. */
584 atomic_inc(&rdtp->dynticks);
585 smp_mb__after_atomic_inc(); /* Force delay to next write. */
586 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
587}
588
589/**
9b2e4f18 590 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 591 *
9b2e4f18 592 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 593 * or NMI handler, return true.
64db4cff 594 */
9b2e4f18 595int rcu_is_cpu_idle(void)
64db4cff 596{
34240697
PM
597 int ret;
598
599 preempt_disable();
600 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
601 preempt_enable();
602 return ret;
64db4cff 603}
e6b80a3b 604EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 605
62fde6ed 606#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
607
608/*
609 * Is the current CPU online? Disable preemption to avoid false positives
610 * that could otherwise happen due to the current CPU number being sampled,
611 * this task being preempted, its old CPU being taken offline, resuming
612 * on some other CPU, then determining that its old CPU is now offline.
613 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
614 * the check for rcu_scheduler_fully_active. Note also that it is OK
615 * for a CPU coming online to use RCU for one jiffy prior to marking itself
616 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
617 * offline to continue to use RCU for one jiffy after marking itself
618 * offline in the cpu_online_mask. This leniency is necessary given the
619 * non-atomic nature of the online and offline processing, for example,
620 * the fact that a CPU enters the scheduler after completing the CPU_DYING
621 * notifiers.
622 *
623 * This is also why RCU internally marks CPUs online during the
624 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
625 *
626 * Disable checking if in an NMI handler because we cannot safely report
627 * errors from NMI handlers anyway.
628 */
629bool rcu_lockdep_current_cpu_online(void)
630{
2036d94a
PM
631 struct rcu_data *rdp;
632 struct rcu_node *rnp;
c0d6d01b
PM
633 bool ret;
634
635 if (in_nmi())
636 return 1;
637 preempt_disable();
2036d94a
PM
638 rdp = &__get_cpu_var(rcu_sched_data);
639 rnp = rdp->mynode;
640 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
641 !rcu_scheduler_fully_active;
642 preempt_enable();
643 return ret;
644}
645EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
646
62fde6ed 647#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 648
64db4cff 649/**
9b2e4f18 650 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 651 *
9b2e4f18
PM
652 * If the current CPU is idle or running at a first-level (not nested)
653 * interrupt from idle, return true. The caller must have at least
654 * disabled preemption.
64db4cff 655 */
9b2e4f18 656int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 657{
9b2e4f18 658 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
659}
660
64db4cff
PM
661/*
662 * Snapshot the specified CPU's dynticks counter so that we can later
663 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 664 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
665 */
666static int dyntick_save_progress_counter(struct rcu_data *rdp)
667{
23b5c8fa 668 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 669 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
670}
671
672/*
673 * Return true if the specified CPU has passed through a quiescent
674 * state by virtue of being in or having passed through an dynticks
675 * idle state since the last call to dyntick_save_progress_counter()
676 * for this same CPU.
677 */
678static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
679{
7eb4f455
PM
680 unsigned int curr;
681 unsigned int snap;
64db4cff 682
7eb4f455
PM
683 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
684 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
685
686 /*
687 * If the CPU passed through or entered a dynticks idle phase with
688 * no active irq/NMI handlers, then we can safely pretend that the CPU
689 * already acknowledged the request to pass through a quiescent
690 * state. Either way, that CPU cannot possibly be in an RCU
691 * read-side critical section that started before the beginning
692 * of the current RCU grace period.
693 */
7eb4f455 694 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 695 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
696 rdp->dynticks_fqs++;
697 return 1;
698 }
699
700 /* Go check for the CPU being offline. */
701 return rcu_implicit_offline_qs(rdp);
702}
703
13cfcca0
PM
704static int jiffies_till_stall_check(void)
705{
706 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
707
708 /*
709 * Limit check must be consistent with the Kconfig limits
710 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
711 */
712 if (till_stall_check < 3) {
713 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
714 till_stall_check = 3;
715 } else if (till_stall_check > 300) {
716 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
717 till_stall_check = 300;
718 }
719 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
720}
721
64db4cff
PM
722static void record_gp_stall_check_time(struct rcu_state *rsp)
723{
724 rsp->gp_start = jiffies;
13cfcca0 725 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
726}
727
728static void print_other_cpu_stall(struct rcu_state *rsp)
729{
730 int cpu;
731 long delta;
732 unsigned long flags;
285fe294 733 int ndetected = 0;
64db4cff 734 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
735
736 /* Only let one CPU complain about others per time interval. */
737
1304afb2 738 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 739 delta = jiffies - rsp->jiffies_stall;
fc2219d4 740 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 741 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
742 return;
743 }
13cfcca0 744 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 745 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 746
8cdd32a9
PM
747 /*
748 * OK, time to rat on our buddy...
749 * See Documentation/RCU/stallwarn.txt for info on how to debug
750 * RCU CPU stall warnings.
751 */
a858af28 752 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 753 rsp->name);
a858af28 754 print_cpu_stall_info_begin();
a0b6c9a7 755 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 756 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 757 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 758 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 759 if (rnp->qsmask == 0)
64db4cff 760 continue;
a0b6c9a7 761 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 762 if (rnp->qsmask & (1UL << cpu)) {
a858af28 763 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
764 ndetected++;
765 }
64db4cff 766 }
a858af28
PM
767
768 /*
769 * Now rat on any tasks that got kicked up to the root rcu_node
770 * due to CPU offlining.
771 */
772 rnp = rcu_get_root(rsp);
773 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 774 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
775 raw_spin_unlock_irqrestore(&rnp->lock, flags);
776
777 print_cpu_stall_info_end();
778 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 779 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
780 if (ndetected == 0)
781 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
782 else if (!trigger_all_cpu_backtrace())
4627e240 783 dump_stack();
c1dc0b9c 784
1ed509a2
PM
785 /* If so configured, complain about tasks blocking the grace period. */
786
787 rcu_print_detail_task_stall(rsp);
788
64db4cff
PM
789 force_quiescent_state(rsp, 0); /* Kick them all. */
790}
791
792static void print_cpu_stall(struct rcu_state *rsp)
793{
794 unsigned long flags;
795 struct rcu_node *rnp = rcu_get_root(rsp);
796
8cdd32a9
PM
797 /*
798 * OK, time to rat on ourselves...
799 * See Documentation/RCU/stallwarn.txt for info on how to debug
800 * RCU CPU stall warnings.
801 */
a858af28
PM
802 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
803 print_cpu_stall_info_begin();
804 print_cpu_stall_info(rsp, smp_processor_id());
805 print_cpu_stall_info_end();
806 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
807 if (!trigger_all_cpu_backtrace())
808 dump_stack();
c1dc0b9c 809
1304afb2 810 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 811 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
812 rsp->jiffies_stall = jiffies +
813 3 * jiffies_till_stall_check() + 3;
1304afb2 814 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 815
64db4cff
PM
816 set_need_resched(); /* kick ourselves to get things going. */
817}
818
819static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
820{
bad6e139
PM
821 unsigned long j;
822 unsigned long js;
64db4cff
PM
823 struct rcu_node *rnp;
824
742734ee 825 if (rcu_cpu_stall_suppress)
c68de209 826 return;
bad6e139
PM
827 j = ACCESS_ONCE(jiffies);
828 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 829 rnp = rdp->mynode;
bad6e139 830 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
831
832 /* We haven't checked in, so go dump stack. */
833 print_cpu_stall(rsp);
834
bad6e139
PM
835 } else if (rcu_gp_in_progress(rsp) &&
836 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 837
bad6e139 838 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
839 print_other_cpu_stall(rsp);
840 }
841}
842
c68de209
PM
843static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
844{
742734ee 845 rcu_cpu_stall_suppress = 1;
c68de209
PM
846 return NOTIFY_DONE;
847}
848
53d84e00
PM
849/**
850 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
851 *
852 * Set the stall-warning timeout way off into the future, thus preventing
853 * any RCU CPU stall-warning messages from appearing in the current set of
854 * RCU grace periods.
855 *
856 * The caller must disable hard irqs.
857 */
858void rcu_cpu_stall_reset(void)
859{
6ce75a23
PM
860 struct rcu_state *rsp;
861
862 for_each_rcu_flavor(rsp)
863 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
864}
865
c68de209
PM
866static struct notifier_block rcu_panic_block = {
867 .notifier_call = rcu_panic,
868};
869
870static void __init check_cpu_stall_init(void)
871{
872 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
873}
874
64db4cff
PM
875/*
876 * Update CPU-local rcu_data state to record the newly noticed grace period.
877 * This is used both when we started the grace period and when we notice
9160306e
PM
878 * that someone else started the grace period. The caller must hold the
879 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
880 * and must have irqs disabled.
64db4cff 881 */
9160306e
PM
882static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
883{
884 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
885 /*
886 * If the current grace period is waiting for this CPU,
887 * set up to detect a quiescent state, otherwise don't
888 * go looking for one.
889 */
9160306e 890 rdp->gpnum = rnp->gpnum;
d4c08f2a 891 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
892 if (rnp->qsmask & rdp->grpmask) {
893 rdp->qs_pending = 1;
e4cc1f22 894 rdp->passed_quiesce = 0;
121dfc4b
PM
895 } else
896 rdp->qs_pending = 0;
a858af28 897 zero_cpu_stall_ticks(rdp);
9160306e
PM
898 }
899}
900
64db4cff
PM
901static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
902{
9160306e
PM
903 unsigned long flags;
904 struct rcu_node *rnp;
905
906 local_irq_save(flags);
907 rnp = rdp->mynode;
908 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 909 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
910 local_irq_restore(flags);
911 return;
912 }
913 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 914 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
915}
916
917/*
918 * Did someone else start a new RCU grace period start since we last
919 * checked? Update local state appropriately if so. Must be called
920 * on the CPU corresponding to rdp.
921 */
922static int
923check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
924{
925 unsigned long flags;
926 int ret = 0;
927
928 local_irq_save(flags);
929 if (rdp->gpnum != rsp->gpnum) {
930 note_new_gpnum(rsp, rdp);
931 ret = 1;
932 }
933 local_irq_restore(flags);
934 return ret;
935}
936
3f5d3ea6
PM
937/*
938 * Initialize the specified rcu_data structure's callback list to empty.
939 */
940static void init_callback_list(struct rcu_data *rdp)
941{
942 int i;
943
944 rdp->nxtlist = NULL;
945 for (i = 0; i < RCU_NEXT_SIZE; i++)
946 rdp->nxttail[i] = &rdp->nxtlist;
947}
948
d09b62df
PM
949/*
950 * Advance this CPU's callbacks, but only if the current grace period
951 * has ended. This may be called only from the CPU to whom the rdp
952 * belongs. In addition, the corresponding leaf rcu_node structure's
953 * ->lock must be held by the caller, with irqs disabled.
954 */
955static void
956__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
957{
958 /* Did another grace period end? */
959 if (rdp->completed != rnp->completed) {
960
961 /* Advance callbacks. No harm if list empty. */
962 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
963 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
964 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
965
966 /* Remember that we saw this grace-period completion. */
967 rdp->completed = rnp->completed;
d4c08f2a 968 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 969
5ff8e6f0
FW
970 /*
971 * If we were in an extended quiescent state, we may have
121dfc4b 972 * missed some grace periods that others CPUs handled on
5ff8e6f0 973 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
974 * spurious new grace periods. If another grace period
975 * has started, then rnp->gpnum will have advanced, so
976 * we will detect this later on.
5ff8e6f0 977 */
121dfc4b 978 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
979 rdp->gpnum = rdp->completed;
980
20377f32 981 /*
121dfc4b
PM
982 * If RCU does not need a quiescent state from this CPU,
983 * then make sure that this CPU doesn't go looking for one.
20377f32 984 */
121dfc4b 985 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 986 rdp->qs_pending = 0;
d09b62df
PM
987 }
988}
989
990/*
991 * Advance this CPU's callbacks, but only if the current grace period
992 * has ended. This may be called only from the CPU to whom the rdp
993 * belongs.
994 */
995static void
996rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
997{
998 unsigned long flags;
999 struct rcu_node *rnp;
1000
1001 local_irq_save(flags);
1002 rnp = rdp->mynode;
1003 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1004 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1005 local_irq_restore(flags);
1006 return;
1007 }
1008 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1009 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1010}
1011
1012/*
1013 * Do per-CPU grace-period initialization for running CPU. The caller
1014 * must hold the lock of the leaf rcu_node structure corresponding to
1015 * this CPU.
1016 */
1017static void
1018rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1019{
1020 /* Prior grace period ended, so advance callbacks for current CPU. */
1021 __rcu_process_gp_end(rsp, rnp, rdp);
1022
1023 /*
1024 * Because this CPU just now started the new grace period, we know
1025 * that all of its callbacks will be covered by this upcoming grace
1026 * period, even the ones that were registered arbitrarily recently.
1027 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1028 *
1029 * Other CPUs cannot be sure exactly when the grace period started.
1030 * Therefore, their recently registered callbacks must pass through
1031 * an additional RCU_NEXT_READY stage, so that they will be handled
1032 * by the next RCU grace period.
1033 */
1034 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1035 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1036
1037 /* Set state so that this CPU will detect the next quiescent state. */
1038 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1039}
1040
64db4cff
PM
1041/*
1042 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1043 * in preparation for detecting the next grace period. The caller must hold
1044 * the root node's ->lock, which is released before return. Hard irqs must
1045 * be disabled.
e5601400
PM
1046 *
1047 * Note that it is legal for a dying CPU (which is marked as offline) to
1048 * invoke this function. This can happen when the dying CPU reports its
1049 * quiescent state.
64db4cff
PM
1050 */
1051static void
1052rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1053 __releases(rcu_get_root(rsp)->lock)
1054{
394f99a9 1055 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1056 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1057
037067a1 1058 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1059 !cpu_needs_another_gp(rsp, rdp)) {
1060 /*
1061 * Either the scheduler hasn't yet spawned the first
1062 * non-idle task or this CPU does not need another
1063 * grace period. Either way, don't start a new grace
1064 * period.
1065 */
1066 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1067 return;
1068 }
b32e9eb6 1069
afe24b12 1070 if (rsp->fqs_active) {
b32e9eb6 1071 /*
afe24b12
PM
1072 * This CPU needs a grace period, but force_quiescent_state()
1073 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1074 */
afe24b12
PM
1075 rsp->fqs_need_gp = 1;
1076 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1077 return;
1078 }
1079
1080 /* Advance to a new grace period and initialize state. */
1081 rsp->gpnum++;
d4c08f2a 1082 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1083 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1084 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1085 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1086 record_gp_stall_check_time(rsp);
1304afb2 1087 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1088
64db4cff 1089 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1090 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1091
1092 /*
b835db1f
PM
1093 * Set the quiescent-state-needed bits in all the rcu_node
1094 * structures for all currently online CPUs in breadth-first
1095 * order, starting from the root rcu_node structure. This
1096 * operation relies on the layout of the hierarchy within the
1097 * rsp->node[] array. Note that other CPUs will access only
1098 * the leaves of the hierarchy, which still indicate that no
1099 * grace period is in progress, at least until the corresponding
1100 * leaf node has been initialized. In addition, we have excluded
1101 * CPU-hotplug operations.
64db4cff
PM
1102 *
1103 * Note that the grace period cannot complete until we finish
1104 * the initialization process, as there will be at least one
1105 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1106 * one corresponding to this CPU, due to the fact that we have
1107 * irqs disabled.
64db4cff 1108 */
a0b6c9a7 1109 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1110 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1111 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1112 rnp->qsmask = rnp->qsmaskinit;
de078d87 1113 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1114 rnp->completed = rsp->completed;
1115 if (rnp == rdp->mynode)
1116 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1117 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1118 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1119 rnp->level, rnp->grplo,
1120 rnp->grphi, rnp->qsmask);
1304afb2 1121 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1122 }
1123
83f5b01f 1124 rnp = rcu_get_root(rsp);
1304afb2 1125 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1126 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1127 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1128 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1129}
1130
f41d911f 1131/*
d3f6bad3
PM
1132 * Report a full set of quiescent states to the specified rcu_state
1133 * data structure. This involves cleaning up after the prior grace
1134 * period and letting rcu_start_gp() start up the next grace period
1135 * if one is needed. Note that the caller must hold rnp->lock, as
1136 * required by rcu_start_gp(), which will release it.
f41d911f 1137 */
d3f6bad3 1138static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1139 __releases(rcu_get_root(rsp)->lock)
f41d911f 1140{
15ba0ba8 1141 unsigned long gp_duration;
afe24b12
PM
1142 struct rcu_node *rnp = rcu_get_root(rsp);
1143 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1144
fc2219d4 1145 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1146
1147 /*
1148 * Ensure that all grace-period and pre-grace-period activity
1149 * is seen before the assignment to rsp->completed.
1150 */
1151 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1152 gp_duration = jiffies - rsp->gp_start;
1153 if (gp_duration > rsp->gp_max)
1154 rsp->gp_max = gp_duration;
afe24b12
PM
1155
1156 /*
1157 * We know the grace period is complete, but to everyone else
1158 * it appears to still be ongoing. But it is also the case
1159 * that to everyone else it looks like there is nothing that
1160 * they can do to advance the grace period. It is therefore
1161 * safe for us to drop the lock in order to mark the grace
1162 * period as completed in all of the rcu_node structures.
1163 *
1164 * But if this CPU needs another grace period, it will take
1165 * care of this while initializing the next grace period.
1166 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1167 * because the callbacks have not yet been advanced: Those
1168 * callbacks are waiting on the grace period that just now
1169 * completed.
1170 */
1171 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1172 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1173
1174 /*
1175 * Propagate new ->completed value to rcu_node structures
1176 * so that other CPUs don't have to wait until the start
1177 * of the next grace period to process their callbacks.
1178 */
1179 rcu_for_each_node_breadth_first(rsp, rnp) {
1180 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1181 rnp->completed = rsp->gpnum;
1182 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1183 }
1184 rnp = rcu_get_root(rsp);
1185 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1186 }
1187
1188 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1189 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1190 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1191 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1192}
1193
64db4cff 1194/*
d3f6bad3
PM
1195 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1196 * Allows quiescent states for a group of CPUs to be reported at one go
1197 * to the specified rcu_node structure, though all the CPUs in the group
1198 * must be represented by the same rcu_node structure (which need not be
1199 * a leaf rcu_node structure, though it often will be). That structure's
1200 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1201 */
1202static void
d3f6bad3
PM
1203rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1204 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1205 __releases(rnp->lock)
1206{
28ecd580
PM
1207 struct rcu_node *rnp_c;
1208
64db4cff
PM
1209 /* Walk up the rcu_node hierarchy. */
1210 for (;;) {
1211 if (!(rnp->qsmask & mask)) {
1212
1213 /* Our bit has already been cleared, so done. */
1304afb2 1214 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1215 return;
1216 }
1217 rnp->qsmask &= ~mask;
d4c08f2a
PM
1218 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1219 mask, rnp->qsmask, rnp->level,
1220 rnp->grplo, rnp->grphi,
1221 !!rnp->gp_tasks);
27f4d280 1222 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1223
1224 /* Other bits still set at this level, so done. */
1304afb2 1225 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1226 return;
1227 }
1228 mask = rnp->grpmask;
1229 if (rnp->parent == NULL) {
1230
1231 /* No more levels. Exit loop holding root lock. */
1232
1233 break;
1234 }
1304afb2 1235 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1236 rnp_c = rnp;
64db4cff 1237 rnp = rnp->parent;
1304afb2 1238 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1239 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1240 }
1241
1242 /*
1243 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1244 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1245 * to clean up and start the next grace period if one is needed.
64db4cff 1246 */
d3f6bad3 1247 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1248}
1249
1250/*
d3f6bad3
PM
1251 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1252 * structure. This must be either called from the specified CPU, or
1253 * called when the specified CPU is known to be offline (and when it is
1254 * also known that no other CPU is concurrently trying to help the offline
1255 * CPU). The lastcomp argument is used to make sure we are still in the
1256 * grace period of interest. We don't want to end the current grace period
1257 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1258 */
1259static void
e4cc1f22 1260rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1261{
1262 unsigned long flags;
1263 unsigned long mask;
1264 struct rcu_node *rnp;
1265
1266 rnp = rdp->mynode;
1304afb2 1267 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1268 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1269
1270 /*
e4cc1f22
PM
1271 * The grace period in which this quiescent state was
1272 * recorded has ended, so don't report it upwards.
1273 * We will instead need a new quiescent state that lies
1274 * within the current grace period.
64db4cff 1275 */
e4cc1f22 1276 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1278 return;
1279 }
1280 mask = rdp->grpmask;
1281 if ((rnp->qsmask & mask) == 0) {
1304afb2 1282 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1283 } else {
1284 rdp->qs_pending = 0;
1285
1286 /*
1287 * This GP can't end until cpu checks in, so all of our
1288 * callbacks can be processed during the next GP.
1289 */
64db4cff
PM
1290 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1291
d3f6bad3 1292 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1293 }
1294}
1295
1296/*
1297 * Check to see if there is a new grace period of which this CPU
1298 * is not yet aware, and if so, set up local rcu_data state for it.
1299 * Otherwise, see if this CPU has just passed through its first
1300 * quiescent state for this grace period, and record that fact if so.
1301 */
1302static void
1303rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1304{
1305 /* If there is now a new grace period, record and return. */
1306 if (check_for_new_grace_period(rsp, rdp))
1307 return;
1308
1309 /*
1310 * Does this CPU still need to do its part for current grace period?
1311 * If no, return and let the other CPUs do their part as well.
1312 */
1313 if (!rdp->qs_pending)
1314 return;
1315
1316 /*
1317 * Was there a quiescent state since the beginning of the grace
1318 * period? If no, then exit and wait for the next call.
1319 */
e4cc1f22 1320 if (!rdp->passed_quiesce)
64db4cff
PM
1321 return;
1322
d3f6bad3
PM
1323 /*
1324 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1325 * judge of that).
1326 */
e4cc1f22 1327 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1328}
1329
1330#ifdef CONFIG_HOTPLUG_CPU
1331
e74f4c45 1332/*
b1420f1c
PM
1333 * Send the specified CPU's RCU callbacks to the orphanage. The
1334 * specified CPU must be offline, and the caller must hold the
1335 * ->onofflock.
e74f4c45 1336 */
b1420f1c
PM
1337static void
1338rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1339 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1340{
b1420f1c
PM
1341 /*
1342 * Orphan the callbacks. First adjust the counts. This is safe
1343 * because ->onofflock excludes _rcu_barrier()'s adoption of
1344 * the callbacks, thus no memory barrier is required.
1345 */
a50c3af9 1346 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1347 rsp->qlen_lazy += rdp->qlen_lazy;
1348 rsp->qlen += rdp->qlen;
1349 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1350 rdp->qlen_lazy = 0;
1d1fb395 1351 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1352 }
1353
1354 /*
b1420f1c
PM
1355 * Next, move those callbacks still needing a grace period to
1356 * the orphanage, where some other CPU will pick them up.
1357 * Some of the callbacks might have gone partway through a grace
1358 * period, but that is too bad. They get to start over because we
1359 * cannot assume that grace periods are synchronized across CPUs.
1360 * We don't bother updating the ->nxttail[] array yet, instead
1361 * we just reset the whole thing later on.
a50c3af9 1362 */
b1420f1c
PM
1363 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1364 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1365 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1366 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1367 }
1368
1369 /*
b1420f1c
PM
1370 * Then move the ready-to-invoke callbacks to the orphanage,
1371 * where some other CPU will pick them up. These will not be
1372 * required to pass though another grace period: They are done.
a50c3af9 1373 */
e5601400 1374 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1375 *rsp->orphan_donetail = rdp->nxtlist;
1376 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1377 }
e74f4c45 1378
b1420f1c 1379 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1380 init_callback_list(rdp);
b1420f1c
PM
1381}
1382
1383/*
1384 * Adopt the RCU callbacks from the specified rcu_state structure's
1385 * orphanage. The caller must hold the ->onofflock.
1386 */
1387static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1388{
1389 int i;
1390 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1391
a50c3af9 1392 /*
b1420f1c
PM
1393 * If there is an rcu_barrier() operation in progress, then
1394 * only the task doing that operation is permitted to adopt
1395 * callbacks. To do otherwise breaks rcu_barrier() and friends
1396 * by causing them to fail to wait for the callbacks in the
1397 * orphanage.
a50c3af9 1398 */
b1420f1c
PM
1399 if (rsp->rcu_barrier_in_progress &&
1400 rsp->rcu_barrier_in_progress != current)
1401 return;
1402
1403 /* Do the accounting first. */
1404 rdp->qlen_lazy += rsp->qlen_lazy;
1405 rdp->qlen += rsp->qlen;
1406 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1407 if (rsp->qlen_lazy != rsp->qlen)
1408 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1409 rsp->qlen_lazy = 0;
1410 rsp->qlen = 0;
1411
1412 /*
1413 * We do not need a memory barrier here because the only way we
1414 * can get here if there is an rcu_barrier() in flight is if
1415 * we are the task doing the rcu_barrier().
1416 */
1417
1418 /* First adopt the ready-to-invoke callbacks. */
1419 if (rsp->orphan_donelist != NULL) {
1420 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1421 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1422 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1423 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1424 rdp->nxttail[i] = rsp->orphan_donetail;
1425 rsp->orphan_donelist = NULL;
1426 rsp->orphan_donetail = &rsp->orphan_donelist;
1427 }
1428
1429 /* And then adopt the callbacks that still need a grace period. */
1430 if (rsp->orphan_nxtlist != NULL) {
1431 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1432 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1433 rsp->orphan_nxtlist = NULL;
1434 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1435 }
1436}
1437
1438/*
1439 * Trace the fact that this CPU is going offline.
1440 */
1441static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1442{
1443 RCU_TRACE(unsigned long mask);
1444 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1445 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1446
1447 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1448 trace_rcu_grace_period(rsp->name,
1449 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1450 "cpuofl");
64db4cff
PM
1451}
1452
1453/*
e5601400 1454 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1455 * this fact from process context. Do the remainder of the cleanup,
1456 * including orphaning the outgoing CPU's RCU callbacks, and also
1457 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1458 * There can only be one CPU hotplug operation at a time, so no other
1459 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1460 */
e5601400 1461static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1462{
2036d94a
PM
1463 unsigned long flags;
1464 unsigned long mask;
1465 int need_report = 0;
e5601400 1466 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1467 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1468
2036d94a 1469 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1470 rcu_stop_cpu_kthread(cpu);
1471 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1472
b1420f1c 1473 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1474
1475 /* Exclude any attempts to start a new grace period. */
1476 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1477
b1420f1c
PM
1478 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1479 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1480 rcu_adopt_orphan_cbs(rsp);
1481
2036d94a
PM
1482 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1483 mask = rdp->grpmask; /* rnp->grplo is constant. */
1484 do {
1485 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1486 rnp->qsmaskinit &= ~mask;
1487 if (rnp->qsmaskinit != 0) {
1488 if (rnp != rdp->mynode)
1489 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1490 break;
1491 }
1492 if (rnp == rdp->mynode)
1493 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1494 else
1495 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1496 mask = rnp->grpmask;
1497 rnp = rnp->parent;
1498 } while (rnp != NULL);
1499
1500 /*
1501 * We still hold the leaf rcu_node structure lock here, and
1502 * irqs are still disabled. The reason for this subterfuge is
1503 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1504 * held leads to deadlock.
1505 */
1506 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1507 rnp = rdp->mynode;
1508 if (need_report & RCU_OFL_TASKS_NORM_GP)
1509 rcu_report_unblock_qs_rnp(rnp, flags);
1510 else
1511 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1512 if (need_report & RCU_OFL_TASKS_EXP_GP)
1513 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1514 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1515 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1516 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
1517}
1518
1519#else /* #ifdef CONFIG_HOTPLUG_CPU */
1520
b1420f1c
PM
1521static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1522{
1523}
1524
e5601400 1525static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1526{
1527}
1528
e5601400 1529static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1530{
1531}
1532
1533#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1534
1535/*
1536 * Invoke any RCU callbacks that have made it to the end of their grace
1537 * period. Thottle as specified by rdp->blimit.
1538 */
37c72e56 1539static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1540{
1541 unsigned long flags;
1542 struct rcu_head *next, *list, **tail;
b41772ab 1543 int bl, count, count_lazy, i;
64db4cff
PM
1544
1545 /* If no callbacks are ready, just return.*/
29c00b4a 1546 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1547 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1548 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1549 need_resched(), is_idle_task(current),
1550 rcu_is_callbacks_kthread());
64db4cff 1551 return;
29c00b4a 1552 }
64db4cff
PM
1553
1554 /*
1555 * Extract the list of ready callbacks, disabling to prevent
1556 * races with call_rcu() from interrupt handlers.
1557 */
1558 local_irq_save(flags);
8146c4e2 1559 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1560 bl = rdp->blimit;
486e2593 1561 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1562 list = rdp->nxtlist;
1563 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1564 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1565 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1566 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1567 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1568 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1569 local_irq_restore(flags);
1570
1571 /* Invoke callbacks. */
486e2593 1572 count = count_lazy = 0;
64db4cff
PM
1573 while (list) {
1574 next = list->next;
1575 prefetch(next);
551d55a9 1576 debug_rcu_head_unqueue(list);
486e2593
PM
1577 if (__rcu_reclaim(rsp->name, list))
1578 count_lazy++;
64db4cff 1579 list = next;
dff1672d
PM
1580 /* Stop only if limit reached and CPU has something to do. */
1581 if (++count >= bl &&
1582 (need_resched() ||
1583 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1584 break;
1585 }
1586
1587 local_irq_save(flags);
4968c300
PM
1588 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1589 is_idle_task(current),
1590 rcu_is_callbacks_kthread());
64db4cff
PM
1591
1592 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1593 if (list != NULL) {
1594 *tail = rdp->nxtlist;
1595 rdp->nxtlist = list;
b41772ab
PM
1596 for (i = 0; i < RCU_NEXT_SIZE; i++)
1597 if (&rdp->nxtlist == rdp->nxttail[i])
1598 rdp->nxttail[i] = tail;
64db4cff
PM
1599 else
1600 break;
1601 }
b1420f1c
PM
1602 smp_mb(); /* List handling before counting for rcu_barrier(). */
1603 rdp->qlen_lazy -= count_lazy;
1d1fb395 1604 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1605 rdp->n_cbs_invoked += count;
64db4cff
PM
1606
1607 /* Reinstate batch limit if we have worked down the excess. */
1608 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1609 rdp->blimit = blimit;
1610
37c72e56
PM
1611 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1612 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1613 rdp->qlen_last_fqs_check = 0;
1614 rdp->n_force_qs_snap = rsp->n_force_qs;
1615 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1616 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1617 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1618
64db4cff
PM
1619 local_irq_restore(flags);
1620
e0f23060 1621 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1622 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1623 invoke_rcu_core();
64db4cff
PM
1624}
1625
1626/*
1627 * Check to see if this CPU is in a non-context-switch quiescent state
1628 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1629 * Also schedule RCU core processing.
64db4cff 1630 *
9b2e4f18 1631 * This function must be called from hardirq context. It is normally
64db4cff
PM
1632 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1633 * false, there is no point in invoking rcu_check_callbacks().
1634 */
1635void rcu_check_callbacks(int cpu, int user)
1636{
300df91c 1637 trace_rcu_utilization("Start scheduler-tick");
a858af28 1638 increment_cpu_stall_ticks();
9b2e4f18 1639 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1640
1641 /*
1642 * Get here if this CPU took its interrupt from user
1643 * mode or from the idle loop, and if this is not a
1644 * nested interrupt. In this case, the CPU is in
d6714c22 1645 * a quiescent state, so note it.
64db4cff
PM
1646 *
1647 * No memory barrier is required here because both
d6714c22
PM
1648 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1649 * variables that other CPUs neither access nor modify,
1650 * at least not while the corresponding CPU is online.
64db4cff
PM
1651 */
1652
d6714c22
PM
1653 rcu_sched_qs(cpu);
1654 rcu_bh_qs(cpu);
64db4cff
PM
1655
1656 } else if (!in_softirq()) {
1657
1658 /*
1659 * Get here if this CPU did not take its interrupt from
1660 * softirq, in other words, if it is not interrupting
1661 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1662 * critical section, so note it.
64db4cff
PM
1663 */
1664
d6714c22 1665 rcu_bh_qs(cpu);
64db4cff 1666 }
f41d911f 1667 rcu_preempt_check_callbacks(cpu);
d21670ac 1668 if (rcu_pending(cpu))
a46e0899 1669 invoke_rcu_core();
300df91c 1670 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1671}
1672
64db4cff
PM
1673/*
1674 * Scan the leaf rcu_node structures, processing dyntick state for any that
1675 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1676 * Also initiate boosting for any threads blocked on the root rcu_node.
1677 *
ee47eb9f 1678 * The caller must have suppressed start of new grace periods.
64db4cff 1679 */
45f014c5 1680static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1681{
1682 unsigned long bit;
1683 int cpu;
1684 unsigned long flags;
1685 unsigned long mask;
a0b6c9a7 1686 struct rcu_node *rnp;
64db4cff 1687
a0b6c9a7 1688 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1689 mask = 0;
1304afb2 1690 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1691 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1692 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1693 return;
64db4cff 1694 }
a0b6c9a7 1695 if (rnp->qsmask == 0) {
1217ed1b 1696 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1697 continue;
1698 }
a0b6c9a7 1699 cpu = rnp->grplo;
64db4cff 1700 bit = 1;
a0b6c9a7 1701 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1702 if ((rnp->qsmask & bit) != 0 &&
1703 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1704 mask |= bit;
1705 }
45f014c5 1706 if (mask != 0) {
64db4cff 1707
d3f6bad3
PM
1708 /* rcu_report_qs_rnp() releases rnp->lock. */
1709 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1710 continue;
1711 }
1304afb2 1712 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1713 }
27f4d280 1714 rnp = rcu_get_root(rsp);
1217ed1b
PM
1715 if (rnp->qsmask == 0) {
1716 raw_spin_lock_irqsave(&rnp->lock, flags);
1717 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1718 }
64db4cff
PM
1719}
1720
1721/*
1722 * Force quiescent states on reluctant CPUs, and also detect which
1723 * CPUs are in dyntick-idle mode.
1724 */
1725static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1726{
1727 unsigned long flags;
64db4cff 1728 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1729
300df91c
PM
1730 trace_rcu_utilization("Start fqs");
1731 if (!rcu_gp_in_progress(rsp)) {
1732 trace_rcu_utilization("End fqs");
64db4cff 1733 return; /* No grace period in progress, nothing to force. */
300df91c 1734 }
1304afb2 1735 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1736 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1737 trace_rcu_utilization("End fqs");
64db4cff
PM
1738 return; /* Someone else is already on the job. */
1739 }
20133cfc 1740 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1741 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1742 rsp->n_force_qs++;
1304afb2 1743 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1744 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1745 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1746 rsp->n_force_qs_ngp++;
1304afb2 1747 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1748 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1749 }
07079d53 1750 rsp->fqs_active = 1;
af446b70 1751 switch (rsp->fqs_state) {
83f5b01f 1752 case RCU_GP_IDLE:
64db4cff
PM
1753 case RCU_GP_INIT:
1754
83f5b01f 1755 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1756
1757 case RCU_SAVE_DYNTICK:
64db4cff 1758
f261414f
LJ
1759 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1760
64db4cff 1761 /* Record dyntick-idle state. */
45f014c5 1762 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1763 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1764 if (rcu_gp_in_progress(rsp))
af446b70 1765 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1766 break;
64db4cff
PM
1767
1768 case RCU_FORCE_QS:
1769
1770 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1771 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1772 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1773
1774 /* Leave state in case more forcing is required. */
1775
1304afb2 1776 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1777 break;
64db4cff 1778 }
07079d53 1779 rsp->fqs_active = 0;
46a1e34e 1780 if (rsp->fqs_need_gp) {
1304afb2 1781 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1782 rsp->fqs_need_gp = 0;
1783 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1784 trace_rcu_utilization("End fqs");
46a1e34e
PM
1785 return;
1786 }
1304afb2 1787 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1788unlock_fqs_ret:
1304afb2 1789 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1790 trace_rcu_utilization("End fqs");
64db4cff
PM
1791}
1792
64db4cff 1793/*
e0f23060
PM
1794 * This does the RCU core processing work for the specified rcu_state
1795 * and rcu_data structures. This may be called only from the CPU to
1796 * whom the rdp belongs.
64db4cff
PM
1797 */
1798static void
1bca8cf1 1799__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1800{
1801 unsigned long flags;
1bca8cf1 1802 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1803
2e597558
PM
1804 WARN_ON_ONCE(rdp->beenonline == 0);
1805
64db4cff
PM
1806 /*
1807 * If an RCU GP has gone long enough, go check for dyntick
1808 * idle CPUs and, if needed, send resched IPIs.
1809 */
20133cfc 1810 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1811 force_quiescent_state(rsp, 1);
1812
1813 /*
1814 * Advance callbacks in response to end of earlier grace
1815 * period that some other CPU ended.
1816 */
1817 rcu_process_gp_end(rsp, rdp);
1818
1819 /* Update RCU state based on any recent quiescent states. */
1820 rcu_check_quiescent_state(rsp, rdp);
1821
1822 /* Does this CPU require a not-yet-started grace period? */
1823 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1824 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1825 rcu_start_gp(rsp, flags); /* releases above lock */
1826 }
1827
1828 /* If there are callbacks ready, invoke them. */
09223371 1829 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1830 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1831}
1832
64db4cff 1833/*
e0f23060 1834 * Do RCU core processing for the current CPU.
64db4cff 1835 */
09223371 1836static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1837{
6ce75a23
PM
1838 struct rcu_state *rsp;
1839
300df91c 1840 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1841 for_each_rcu_flavor(rsp)
1842 __rcu_process_callbacks(rsp);
300df91c 1843 trace_rcu_utilization("End RCU core");
64db4cff
PM
1844}
1845
a26ac245 1846/*
e0f23060
PM
1847 * Schedule RCU callback invocation. If the specified type of RCU
1848 * does not support RCU priority boosting, just do a direct call,
1849 * otherwise wake up the per-CPU kernel kthread. Note that because we
1850 * are running on the current CPU with interrupts disabled, the
1851 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1852 */
a46e0899 1853static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1854{
b0d30417
PM
1855 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1856 return;
a46e0899
PM
1857 if (likely(!rsp->boost)) {
1858 rcu_do_batch(rsp, rdp);
a26ac245
PM
1859 return;
1860 }
a46e0899 1861 invoke_rcu_callbacks_kthread();
a26ac245
PM
1862}
1863
a46e0899 1864static void invoke_rcu_core(void)
09223371
SL
1865{
1866 raise_softirq(RCU_SOFTIRQ);
1867}
1868
29154c57
PM
1869/*
1870 * Handle any core-RCU processing required by a call_rcu() invocation.
1871 */
1872static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1873 struct rcu_head *head, unsigned long flags)
64db4cff 1874{
62fde6ed
PM
1875 /*
1876 * If called from an extended quiescent state, invoke the RCU
1877 * core in order to force a re-evaluation of RCU's idleness.
1878 */
a16b7a69 1879 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1880 invoke_rcu_core();
1881
a16b7a69 1882 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1883 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1884 return;
64db4cff 1885
37c72e56
PM
1886 /*
1887 * Force the grace period if too many callbacks or too long waiting.
1888 * Enforce hysteresis, and don't invoke force_quiescent_state()
1889 * if some other CPU has recently done so. Also, don't bother
1890 * invoking force_quiescent_state() if the newly enqueued callback
1891 * is the only one waiting for a grace period to complete.
1892 */
2655d57e 1893 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1894
1895 /* Are we ignoring a completed grace period? */
1896 rcu_process_gp_end(rsp, rdp);
1897 check_for_new_grace_period(rsp, rdp);
1898
1899 /* Start a new grace period if one not already started. */
1900 if (!rcu_gp_in_progress(rsp)) {
1901 unsigned long nestflag;
1902 struct rcu_node *rnp_root = rcu_get_root(rsp);
1903
1904 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1905 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1906 } else {
1907 /* Give the grace period a kick. */
1908 rdp->blimit = LONG_MAX;
1909 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1910 *rdp->nxttail[RCU_DONE_TAIL] != head)
1911 force_quiescent_state(rsp, 0);
1912 rdp->n_force_qs_snap = rsp->n_force_qs;
1913 rdp->qlen_last_fqs_check = rdp->qlen;
1914 }
20133cfc 1915 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff 1916 force_quiescent_state(rsp, 1);
29154c57
PM
1917}
1918
64db4cff
PM
1919static void
1920__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1921 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1922{
1923 unsigned long flags;
1924 struct rcu_data *rdp;
1925
0bb7b59d 1926 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1927 debug_rcu_head_queue(head);
64db4cff
PM
1928 head->func = func;
1929 head->next = NULL;
1930
1931 smp_mb(); /* Ensure RCU update seen before callback registry. */
1932
1933 /*
1934 * Opportunistically note grace-period endings and beginnings.
1935 * Note that we might see a beginning right after we see an
1936 * end, but never vice versa, since this CPU has to pass through
1937 * a quiescent state betweentimes.
1938 */
1939 local_irq_save(flags);
394f99a9 1940 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1941
1942 /* Add the callback to our list. */
29154c57 1943 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
1944 if (lazy)
1945 rdp->qlen_lazy++;
c57afe80
PM
1946 else
1947 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1948 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1949 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1950 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1951
d4c08f2a
PM
1952 if (__is_kfree_rcu_offset((unsigned long)func))
1953 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1954 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1955 else
486e2593 1956 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1957
29154c57
PM
1958 /* Go handle any RCU core processing required. */
1959 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
1960 local_irq_restore(flags);
1961}
1962
1963/*
d6714c22 1964 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1965 */
d6714c22 1966void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1967{
486e2593 1968 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1969}
d6714c22 1970EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1971
1972/*
486e2593 1973 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1974 */
1975void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1976{
486e2593 1977 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1978}
1979EXPORT_SYMBOL_GPL(call_rcu_bh);
1980
6d813391
PM
1981/*
1982 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1983 * any blocking grace-period wait automatically implies a grace period
1984 * if there is only one CPU online at any point time during execution
1985 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1986 * occasionally incorrectly indicate that there are multiple CPUs online
1987 * when there was in fact only one the whole time, as this just adds
1988 * some overhead: RCU still operates correctly.
6d813391
PM
1989 */
1990static inline int rcu_blocking_is_gp(void)
1991{
95f0c1de
PM
1992 int ret;
1993
6d813391 1994 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
1995 preempt_disable();
1996 ret = num_online_cpus() <= 1;
1997 preempt_enable();
1998 return ret;
6d813391
PM
1999}
2000
6ebb237b
PM
2001/**
2002 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2003 *
2004 * Control will return to the caller some time after a full rcu-sched
2005 * grace period has elapsed, in other words after all currently executing
2006 * rcu-sched read-side critical sections have completed. These read-side
2007 * critical sections are delimited by rcu_read_lock_sched() and
2008 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2009 * local_irq_disable(), and so on may be used in place of
2010 * rcu_read_lock_sched().
2011 *
2012 * This means that all preempt_disable code sequences, including NMI and
2013 * hardware-interrupt handlers, in progress on entry will have completed
2014 * before this primitive returns. However, this does not guarantee that
2015 * softirq handlers will have completed, since in some kernels, these
2016 * handlers can run in process context, and can block.
2017 *
2018 * This primitive provides the guarantees made by the (now removed)
2019 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2020 * guarantees that rcu_read_lock() sections will have completed.
2021 * In "classic RCU", these two guarantees happen to be one and
2022 * the same, but can differ in realtime RCU implementations.
2023 */
2024void synchronize_sched(void)
2025{
fe15d706
PM
2026 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2027 !lock_is_held(&rcu_lock_map) &&
2028 !lock_is_held(&rcu_sched_lock_map),
2029 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2030 if (rcu_blocking_is_gp())
2031 return;
2c42818e 2032 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2033}
2034EXPORT_SYMBOL_GPL(synchronize_sched);
2035
2036/**
2037 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2038 *
2039 * Control will return to the caller some time after a full rcu_bh grace
2040 * period has elapsed, in other words after all currently executing rcu_bh
2041 * read-side critical sections have completed. RCU read-side critical
2042 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2043 * and may be nested.
2044 */
2045void synchronize_rcu_bh(void)
2046{
fe15d706
PM
2047 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2048 !lock_is_held(&rcu_lock_map) &&
2049 !lock_is_held(&rcu_sched_lock_map),
2050 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2051 if (rcu_blocking_is_gp())
2052 return;
2c42818e 2053 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2054}
2055EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2056
3d3b7db0
PM
2057static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2058static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2059
2060static int synchronize_sched_expedited_cpu_stop(void *data)
2061{
2062 /*
2063 * There must be a full memory barrier on each affected CPU
2064 * between the time that try_stop_cpus() is called and the
2065 * time that it returns.
2066 *
2067 * In the current initial implementation of cpu_stop, the
2068 * above condition is already met when the control reaches
2069 * this point and the following smp_mb() is not strictly
2070 * necessary. Do smp_mb() anyway for documentation and
2071 * robustness against future implementation changes.
2072 */
2073 smp_mb(); /* See above comment block. */
2074 return 0;
2075}
2076
236fefaf
PM
2077/**
2078 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2079 *
2080 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2081 * approach to force the grace period to end quickly. This consumes
2082 * significant time on all CPUs and is unfriendly to real-time workloads,
2083 * so is thus not recommended for any sort of common-case code. In fact,
2084 * if you are using synchronize_sched_expedited() in a loop, please
2085 * restructure your code to batch your updates, and then use a single
2086 * synchronize_sched() instead.
3d3b7db0 2087 *
236fefaf
PM
2088 * Note that it is illegal to call this function while holding any lock
2089 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2090 * to call this function from a CPU-hotplug notifier. Failing to observe
2091 * these restriction will result in deadlock.
3d3b7db0
PM
2092 *
2093 * This implementation can be thought of as an application of ticket
2094 * locking to RCU, with sync_sched_expedited_started and
2095 * sync_sched_expedited_done taking on the roles of the halves
2096 * of the ticket-lock word. Each task atomically increments
2097 * sync_sched_expedited_started upon entry, snapshotting the old value,
2098 * then attempts to stop all the CPUs. If this succeeds, then each
2099 * CPU will have executed a context switch, resulting in an RCU-sched
2100 * grace period. We are then done, so we use atomic_cmpxchg() to
2101 * update sync_sched_expedited_done to match our snapshot -- but
2102 * only if someone else has not already advanced past our snapshot.
2103 *
2104 * On the other hand, if try_stop_cpus() fails, we check the value
2105 * of sync_sched_expedited_done. If it has advanced past our
2106 * initial snapshot, then someone else must have forced a grace period
2107 * some time after we took our snapshot. In this case, our work is
2108 * done for us, and we can simply return. Otherwise, we try again,
2109 * but keep our initial snapshot for purposes of checking for someone
2110 * doing our work for us.
2111 *
2112 * If we fail too many times in a row, we fall back to synchronize_sched().
2113 */
2114void synchronize_sched_expedited(void)
2115{
2116 int firstsnap, s, snap, trycount = 0;
2117
2118 /* Note that atomic_inc_return() implies full memory barrier. */
2119 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2120 get_online_cpus();
1cc85961 2121 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2122
2123 /*
2124 * Each pass through the following loop attempts to force a
2125 * context switch on each CPU.
2126 */
2127 while (try_stop_cpus(cpu_online_mask,
2128 synchronize_sched_expedited_cpu_stop,
2129 NULL) == -EAGAIN) {
2130 put_online_cpus();
2131
2132 /* No joy, try again later. Or just synchronize_sched(). */
2133 if (trycount++ < 10)
2134 udelay(trycount * num_online_cpus());
2135 else {
2136 synchronize_sched();
2137 return;
2138 }
2139
2140 /* Check to see if someone else did our work for us. */
2141 s = atomic_read(&sync_sched_expedited_done);
2142 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2143 smp_mb(); /* ensure test happens before caller kfree */
2144 return;
2145 }
2146
2147 /*
2148 * Refetching sync_sched_expedited_started allows later
2149 * callers to piggyback on our grace period. We subtract
2150 * 1 to get the same token that the last incrementer got.
2151 * We retry after they started, so our grace period works
2152 * for them, and they started after our first try, so their
2153 * grace period works for us.
2154 */
2155 get_online_cpus();
2156 snap = atomic_read(&sync_sched_expedited_started);
2157 smp_mb(); /* ensure read is before try_stop_cpus(). */
2158 }
2159
2160 /*
2161 * Everyone up to our most recent fetch is covered by our grace
2162 * period. Update the counter, but only if our work is still
2163 * relevant -- which it won't be if someone who started later
2164 * than we did beat us to the punch.
2165 */
2166 do {
2167 s = atomic_read(&sync_sched_expedited_done);
2168 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2169 smp_mb(); /* ensure test happens before caller kfree */
2170 break;
2171 }
2172 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2173
2174 put_online_cpus();
2175}
2176EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2177
64db4cff
PM
2178/*
2179 * Check to see if there is any immediate RCU-related work to be done
2180 * by the current CPU, for the specified type of RCU, returning 1 if so.
2181 * The checks are in order of increasing expense: checks that can be
2182 * carried out against CPU-local state are performed first. However,
2183 * we must check for CPU stalls first, else we might not get a chance.
2184 */
2185static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2186{
2f51f988
PM
2187 struct rcu_node *rnp = rdp->mynode;
2188
64db4cff
PM
2189 rdp->n_rcu_pending++;
2190
2191 /* Check for CPU stalls, if enabled. */
2192 check_cpu_stall(rsp, rdp);
2193
2194 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2195 if (rcu_scheduler_fully_active &&
2196 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2197
2198 /*
2199 * If force_quiescent_state() coming soon and this CPU
2200 * needs a quiescent state, and this is either RCU-sched
2201 * or RCU-bh, force a local reschedule.
2202 */
d21670ac 2203 rdp->n_rp_qs_pending++;
6cc68793 2204 if (!rdp->preemptible &&
d25eb944
PM
2205 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2206 jiffies))
2207 set_need_resched();
e4cc1f22 2208 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2209 rdp->n_rp_report_qs++;
64db4cff 2210 return 1;
7ba5c840 2211 }
64db4cff
PM
2212
2213 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2214 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2215 rdp->n_rp_cb_ready++;
64db4cff 2216 return 1;
7ba5c840 2217 }
64db4cff
PM
2218
2219 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2220 if (cpu_needs_another_gp(rsp, rdp)) {
2221 rdp->n_rp_cpu_needs_gp++;
64db4cff 2222 return 1;
7ba5c840 2223 }
64db4cff
PM
2224
2225 /* Has another RCU grace period completed? */
2f51f988 2226 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2227 rdp->n_rp_gp_completed++;
64db4cff 2228 return 1;
7ba5c840 2229 }
64db4cff
PM
2230
2231 /* Has a new RCU grace period started? */
2f51f988 2232 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2233 rdp->n_rp_gp_started++;
64db4cff 2234 return 1;
7ba5c840 2235 }
64db4cff
PM
2236
2237 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2238 if (rcu_gp_in_progress(rsp) &&
20133cfc 2239 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2240 rdp->n_rp_need_fqs++;
64db4cff 2241 return 1;
7ba5c840 2242 }
64db4cff
PM
2243
2244 /* nothing to do */
7ba5c840 2245 rdp->n_rp_need_nothing++;
64db4cff
PM
2246 return 0;
2247}
2248
2249/*
2250 * Check to see if there is any immediate RCU-related work to be done
2251 * by the current CPU, returning 1 if so. This function is part of the
2252 * RCU implementation; it is -not- an exported member of the RCU API.
2253 */
a157229c 2254static int rcu_pending(int cpu)
64db4cff 2255{
6ce75a23
PM
2256 struct rcu_state *rsp;
2257
2258 for_each_rcu_flavor(rsp)
2259 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2260 return 1;
2261 return 0;
64db4cff
PM
2262}
2263
2264/*
2265 * Check to see if any future RCU-related work will need to be done
2266 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2267 * 1 if so.
64db4cff 2268 */
aea1b35e 2269static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2270{
6ce75a23
PM
2271 struct rcu_state *rsp;
2272
64db4cff 2273 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2274 for_each_rcu_flavor(rsp)
2275 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2276 return 1;
2277 return 0;
64db4cff
PM
2278}
2279
a83eff0a
PM
2280/*
2281 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2282 * the compiler is expected to optimize this away.
2283 */
2284static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2285 int cpu, unsigned long done)
2286{
2287 trace_rcu_barrier(rsp->name, s, cpu,
2288 atomic_read(&rsp->barrier_cpu_count), done);
2289}
2290
b1420f1c
PM
2291/*
2292 * RCU callback function for _rcu_barrier(). If we are last, wake
2293 * up the task executing _rcu_barrier().
2294 */
24ebbca8 2295static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2296{
24ebbca8
PM
2297 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2298 struct rcu_state *rsp = rdp->rsp;
2299
a83eff0a
PM
2300 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2301 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2302 complete(&rsp->barrier_completion);
a83eff0a
PM
2303 } else {
2304 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2305 }
d0ec774c
PM
2306}
2307
2308/*
2309 * Called with preemption disabled, and from cross-cpu IRQ context.
2310 */
2311static void rcu_barrier_func(void *type)
2312{
037b64ed 2313 struct rcu_state *rsp = type;
06668efa 2314 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2315
a83eff0a 2316 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2317 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2318 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2319}
2320
d0ec774c
PM
2321/*
2322 * Orchestrate the specified type of RCU barrier, waiting for all
2323 * RCU callbacks of the specified type to complete.
2324 */
037b64ed 2325static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2326{
b1420f1c
PM
2327 int cpu;
2328 unsigned long flags;
2329 struct rcu_data *rdp;
24ebbca8 2330 struct rcu_data rd;
cf3a9c48
PM
2331 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2332 unsigned long snap_done;
b1420f1c 2333
24ebbca8 2334 init_rcu_head_on_stack(&rd.barrier_head);
a83eff0a 2335 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2336
e74f4c45 2337 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2338 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2339
cf3a9c48
PM
2340 /*
2341 * Ensure that all prior references, including to ->n_barrier_done,
2342 * are ordered before the _rcu_barrier() machinery.
2343 */
2344 smp_mb(); /* See above block comment. */
2345
2346 /*
2347 * Recheck ->n_barrier_done to see if others did our work for us.
2348 * This means checking ->n_barrier_done for an even-to-odd-to-even
2349 * transition. The "if" expression below therefore rounds the old
2350 * value up to the next even number and adds two before comparing.
2351 */
2352 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2353 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2354 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2355 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2356 smp_mb(); /* caller's subsequent code after above check. */
2357 mutex_unlock(&rsp->barrier_mutex);
2358 return;
2359 }
2360
2361 /*
2362 * Increment ->n_barrier_done to avoid duplicate work. Use
2363 * ACCESS_ONCE() to prevent the compiler from speculating
2364 * the increment to precede the early-exit check.
2365 */
2366 ACCESS_ONCE(rsp->n_barrier_done)++;
2367 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2368 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2369 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2370
d0ec774c 2371 /*
b1420f1c
PM
2372 * Initialize the count to one rather than to zero in order to
2373 * avoid a too-soon return to zero in case of a short grace period
2374 * (or preemption of this task). Also flag this task as doing
2375 * an rcu_barrier(). This will prevent anyone else from adopting
2376 * orphaned callbacks, which could cause otherwise failure if a
2377 * CPU went offline and quickly came back online. To see this,
2378 * consider the following sequence of events:
2379 *
2380 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2381 * 2. CPU 1 goes offline, orphaning its callbacks.
2382 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2383 * 4. CPU 1 comes back online.
2384 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2385 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2386 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2387 */
7db74df8 2388 init_completion(&rsp->barrier_completion);
24ebbca8 2389 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2390 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2391 rsp->rcu_barrier_in_progress = current;
2392 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2393
2394 /*
2395 * Force every CPU with callbacks to register a new callback
2396 * that will tell us when all the preceding callbacks have
2397 * been invoked. If an offline CPU has callbacks, wait for
2398 * it to either come back online or to finish orphaning those
2399 * callbacks.
2400 */
2401 for_each_possible_cpu(cpu) {
2402 preempt_disable();
2403 rdp = per_cpu_ptr(rsp->rda, cpu);
2404 if (cpu_is_offline(cpu)) {
a83eff0a
PM
2405 _rcu_barrier_trace(rsp, "Offline", cpu,
2406 rsp->n_barrier_done);
b1420f1c
PM
2407 preempt_enable();
2408 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2409 schedule_timeout_interruptible(1);
2410 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2411 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2412 rsp->n_barrier_done);
037b64ed 2413 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2414 preempt_enable();
2415 } else {
a83eff0a
PM
2416 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2417 rsp->n_barrier_done);
b1420f1c
PM
2418 preempt_enable();
2419 }
2420 }
2421
2422 /*
2423 * Now that all online CPUs have rcu_barrier_callback() callbacks
2424 * posted, we can adopt all of the orphaned callbacks and place
2425 * an rcu_barrier_callback() callback after them. When that is done,
2426 * we are guaranteed to have an rcu_barrier_callback() callback
2427 * following every callback that could possibly have been
2428 * registered before _rcu_barrier() was called.
2429 */
2430 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2431 rcu_adopt_orphan_cbs(rsp);
2432 rsp->rcu_barrier_in_progress = NULL;
2433 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2434 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2435 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2436 rd.rsp = rsp;
2437 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2438
2439 /*
2440 * Now that we have an rcu_barrier_callback() callback on each
2441 * CPU, and thus each counted, remove the initial count.
2442 */
24ebbca8 2443 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2444 complete(&rsp->barrier_completion);
b1420f1c 2445
cf3a9c48
PM
2446 /* Increment ->n_barrier_done to prevent duplicate work. */
2447 smp_mb(); /* Keep increment after above mechanism. */
2448 ACCESS_ONCE(rsp->n_barrier_done)++;
2449 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2450 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2451 smp_mb(); /* Keep increment before caller's subsequent code. */
2452
b1420f1c 2453 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2454 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2455
2456 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2457 mutex_unlock(&rsp->barrier_mutex);
b1420f1c 2458
24ebbca8 2459 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2460}
d0ec774c
PM
2461
2462/**
2463 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2464 */
2465void rcu_barrier_bh(void)
2466{
037b64ed 2467 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2468}
2469EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2470
2471/**
2472 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2473 */
2474void rcu_barrier_sched(void)
2475{
037b64ed 2476 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2477}
2478EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2479
64db4cff 2480/*
27569620 2481 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2482 */
27569620
PM
2483static void __init
2484rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2485{
2486 unsigned long flags;
394f99a9 2487 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2488 struct rcu_node *rnp = rcu_get_root(rsp);
2489
2490 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2491 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2492 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2493 init_callback_list(rdp);
486e2593 2494 rdp->qlen_lazy = 0;
1d1fb395 2495 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2496 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2497 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2498 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2499 rdp->cpu = cpu;
d4c08f2a 2500 rdp->rsp = rsp;
1304afb2 2501 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2502}
2503
2504/*
2505 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2506 * offline event can be happening at a given time. Note also that we
2507 * can accept some slop in the rsp->completed access due to the fact
2508 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2509 */
e4fa4c97 2510static void __cpuinit
6cc68793 2511rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2512{
2513 unsigned long flags;
64db4cff 2514 unsigned long mask;
394f99a9 2515 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2516 struct rcu_node *rnp = rcu_get_root(rsp);
2517
2518 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2519 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2520 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2521 rdp->preemptible = preemptible;
37c72e56
PM
2522 rdp->qlen_last_fqs_check = 0;
2523 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2524 rdp->blimit = blimit;
29e37d81 2525 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2526 atomic_set(&rdp->dynticks->dynticks,
2527 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2528 rcu_prepare_for_idle_init(cpu);
1304afb2 2529 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2530
2531 /*
2532 * A new grace period might start here. If so, we won't be part
2533 * of it, but that is OK, as we are currently in a quiescent state.
2534 */
2535
2536 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2537 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2538
2539 /* Add CPU to rcu_node bitmasks. */
2540 rnp = rdp->mynode;
2541 mask = rdp->grpmask;
2542 do {
2543 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2544 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2545 rnp->qsmaskinit |= mask;
2546 mask = rnp->grpmask;
d09b62df 2547 if (rnp == rdp->mynode) {
06ae115a
PM
2548 /*
2549 * If there is a grace period in progress, we will
2550 * set up to wait for it next time we run the
2551 * RCU core code.
2552 */
2553 rdp->gpnum = rnp->completed;
d09b62df 2554 rdp->completed = rnp->completed;
06ae115a
PM
2555 rdp->passed_quiesce = 0;
2556 rdp->qs_pending = 0;
e4cc1f22 2557 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2558 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2559 }
1304afb2 2560 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2561 rnp = rnp->parent;
2562 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2563
1304afb2 2564 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2565}
2566
d72bce0e 2567static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2568{
6ce75a23
PM
2569 struct rcu_state *rsp;
2570
2571 for_each_rcu_flavor(rsp)
2572 rcu_init_percpu_data(cpu, rsp,
2573 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2574}
2575
2576/*
f41d911f 2577 * Handle CPU online/offline notification events.
64db4cff 2578 */
9f680ab4
PM
2579static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2580 unsigned long action, void *hcpu)
64db4cff
PM
2581{
2582 long cpu = (long)hcpu;
27f4d280 2583 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2584 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2585 struct rcu_state *rsp;
64db4cff 2586
300df91c 2587 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2588 switch (action) {
2589 case CPU_UP_PREPARE:
2590 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2591 rcu_prepare_cpu(cpu);
2592 rcu_prepare_kthreads(cpu);
a26ac245
PM
2593 break;
2594 case CPU_ONLINE:
0f962a5e
PM
2595 case CPU_DOWN_FAILED:
2596 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2597 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2598 break;
2599 case CPU_DOWN_PREPARE:
2600 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2601 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2602 break;
d0ec774c
PM
2603 case CPU_DYING:
2604 case CPU_DYING_FROZEN:
2605 /*
2d999e03
PM
2606 * The whole machine is "stopped" except this CPU, so we can
2607 * touch any data without introducing corruption. We send the
2608 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2609 */
6ce75a23
PM
2610 for_each_rcu_flavor(rsp)
2611 rcu_cleanup_dying_cpu(rsp);
7cb92499 2612 rcu_cleanup_after_idle(cpu);
d0ec774c 2613 break;
64db4cff
PM
2614 case CPU_DEAD:
2615 case CPU_DEAD_FROZEN:
2616 case CPU_UP_CANCELED:
2617 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2618 for_each_rcu_flavor(rsp)
2619 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2620 break;
2621 default:
2622 break;
2623 }
300df91c 2624 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2625 return NOTIFY_OK;
2626}
2627
bbad9379
PM
2628/*
2629 * This function is invoked towards the end of the scheduler's initialization
2630 * process. Before this is called, the idle task might contain
2631 * RCU read-side critical sections (during which time, this idle
2632 * task is booting the system). After this function is called, the
2633 * idle tasks are prohibited from containing RCU read-side critical
2634 * sections. This function also enables RCU lockdep checking.
2635 */
2636void rcu_scheduler_starting(void)
2637{
2638 WARN_ON(num_online_cpus() != 1);
2639 WARN_ON(nr_context_switches() > 0);
2640 rcu_scheduler_active = 1;
2641}
2642
64db4cff
PM
2643/*
2644 * Compute the per-level fanout, either using the exact fanout specified
2645 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2646 */
2647#ifdef CONFIG_RCU_FANOUT_EXACT
2648static void __init rcu_init_levelspread(struct rcu_state *rsp)
2649{
2650 int i;
2651
f885b7f2 2652 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2653 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2654 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2655}
2656#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2657static void __init rcu_init_levelspread(struct rcu_state *rsp)
2658{
2659 int ccur;
2660 int cprv;
2661 int i;
2662
2663 cprv = NR_CPUS;
f885b7f2 2664 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2665 ccur = rsp->levelcnt[i];
2666 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2667 cprv = ccur;
2668 }
2669}
2670#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2671
2672/*
2673 * Helper function for rcu_init() that initializes one rcu_state structure.
2674 */
394f99a9
LJ
2675static void __init rcu_init_one(struct rcu_state *rsp,
2676 struct rcu_data __percpu *rda)
64db4cff 2677{
b6407e86
PM
2678 static char *buf[] = { "rcu_node_level_0",
2679 "rcu_node_level_1",
2680 "rcu_node_level_2",
2681 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2682 int cpustride = 1;
2683 int i;
2684 int j;
2685 struct rcu_node *rnp;
2686
b6407e86
PM
2687 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2688
64db4cff
PM
2689 /* Initialize the level-tracking arrays. */
2690
f885b7f2
PM
2691 for (i = 0; i < rcu_num_lvls; i++)
2692 rsp->levelcnt[i] = num_rcu_lvl[i];
2693 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2694 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2695 rcu_init_levelspread(rsp);
2696
2697 /* Initialize the elements themselves, starting from the leaves. */
2698
f885b7f2 2699 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2700 cpustride *= rsp->levelspread[i];
2701 rnp = rsp->level[i];
2702 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2703 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2704 lockdep_set_class_and_name(&rnp->lock,
2705 &rcu_node_class[i], buf[i]);
f41d911f 2706 rnp->gpnum = 0;
64db4cff
PM
2707 rnp->qsmask = 0;
2708 rnp->qsmaskinit = 0;
2709 rnp->grplo = j * cpustride;
2710 rnp->grphi = (j + 1) * cpustride - 1;
2711 if (rnp->grphi >= NR_CPUS)
2712 rnp->grphi = NR_CPUS - 1;
2713 if (i == 0) {
2714 rnp->grpnum = 0;
2715 rnp->grpmask = 0;
2716 rnp->parent = NULL;
2717 } else {
2718 rnp->grpnum = j % rsp->levelspread[i - 1];
2719 rnp->grpmask = 1UL << rnp->grpnum;
2720 rnp->parent = rsp->level[i - 1] +
2721 j / rsp->levelspread[i - 1];
2722 }
2723 rnp->level = i;
12f5f524 2724 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2725 }
2726 }
0c34029a 2727
394f99a9 2728 rsp->rda = rda;
f885b7f2 2729 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2730 for_each_possible_cpu(i) {
4a90a068 2731 while (i > rnp->grphi)
0c34029a 2732 rnp++;
394f99a9 2733 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2734 rcu_boot_init_percpu_data(i, rsp);
2735 }
6ce75a23 2736 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2737}
2738
f885b7f2
PM
2739/*
2740 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2741 * replace the definitions in rcutree.h because those are needed to size
2742 * the ->node array in the rcu_state structure.
2743 */
2744static void __init rcu_init_geometry(void)
2745{
2746 int i;
2747 int j;
cca6f393 2748 int n = nr_cpu_ids;
f885b7f2
PM
2749 int rcu_capacity[MAX_RCU_LVLS + 1];
2750
2751 /* If the compile-time values are accurate, just leave. */
2752 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2753 return;
2754
2755 /*
2756 * Compute number of nodes that can be handled an rcu_node tree
2757 * with the given number of levels. Setting rcu_capacity[0] makes
2758 * some of the arithmetic easier.
2759 */
2760 rcu_capacity[0] = 1;
2761 rcu_capacity[1] = rcu_fanout_leaf;
2762 for (i = 2; i <= MAX_RCU_LVLS; i++)
2763 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2764
2765 /*
2766 * The boot-time rcu_fanout_leaf parameter is only permitted
2767 * to increase the leaf-level fanout, not decrease it. Of course,
2768 * the leaf-level fanout cannot exceed the number of bits in
2769 * the rcu_node masks. Finally, the tree must be able to accommodate
2770 * the configured number of CPUs. Complain and fall back to the
2771 * compile-time values if these limits are exceeded.
2772 */
2773 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2774 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2775 n > rcu_capacity[MAX_RCU_LVLS]) {
2776 WARN_ON(1);
2777 return;
2778 }
2779
2780 /* Calculate the number of rcu_nodes at each level of the tree. */
2781 for (i = 1; i <= MAX_RCU_LVLS; i++)
2782 if (n <= rcu_capacity[i]) {
2783 for (j = 0; j <= i; j++)
2784 num_rcu_lvl[j] =
2785 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2786 rcu_num_lvls = i;
2787 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2788 num_rcu_lvl[j] = 0;
2789 break;
2790 }
2791
2792 /* Calculate the total number of rcu_node structures. */
2793 rcu_num_nodes = 0;
2794 for (i = 0; i <= MAX_RCU_LVLS; i++)
2795 rcu_num_nodes += num_rcu_lvl[i];
2796 rcu_num_nodes -= n;
2797}
2798
9f680ab4 2799void __init rcu_init(void)
64db4cff 2800{
017c4261 2801 int cpu;
9f680ab4 2802
f41d911f 2803 rcu_bootup_announce();
f885b7f2 2804 rcu_init_geometry();
394f99a9
LJ
2805 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2806 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2807 __rcu_init_preempt();
09223371 2808 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2809
2810 /*
2811 * We don't need protection against CPU-hotplug here because
2812 * this is called early in boot, before either interrupts
2813 * or the scheduler are operational.
2814 */
2815 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2816 for_each_online_cpu(cpu)
2817 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2818 check_cpu_stall_init();
64db4cff
PM
2819}
2820
1eba8f84 2821#include "rcutree_plugin.h"