]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/rcutree.c
rcu: Add random PROVE_RCU_DELAY to grace-period initialization
[mirror_ubuntu-artful-kernel.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
64db4cff 56
9f77da9f 57#include "rcutree.h"
29c00b4a
PM
58#include <trace/events/rcu.h>
59
60#include "rcu.h"
9f77da9f 61
64db4cff
PM
62/* Data structures. */
63
f885b7f2 64static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 65static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 66
037b64ed 67#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 68 .level = { &sname##_state.node[0] }, \
037b64ed 69 .call = cr, \
af446b70 70 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
71 .gpnum = -300, \
72 .completed = -300, \
6c90cc7b
PM
73 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
74 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
75 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 76 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
6c90cc7b 77 .name = #sname, \
64db4cff
PM
78}
79
037b64ed
PM
80struct rcu_state rcu_sched_state =
81 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 82DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 83
037b64ed 84struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 85DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 86
27f4d280 87static struct rcu_state *rcu_state;
6ce75a23 88LIST_HEAD(rcu_struct_flavors);
27f4d280 89
f885b7f2
PM
90/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
91static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 92module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
93int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
94static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
95 NUM_RCU_LVL_0,
96 NUM_RCU_LVL_1,
97 NUM_RCU_LVL_2,
98 NUM_RCU_LVL_3,
99 NUM_RCU_LVL_4,
100};
101int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
102
b0d30417
PM
103/*
104 * The rcu_scheduler_active variable transitions from zero to one just
105 * before the first task is spawned. So when this variable is zero, RCU
106 * can assume that there is but one task, allowing RCU to (for example)
107 * optimized synchronize_sched() to a simple barrier(). When this variable
108 * is one, RCU must actually do all the hard work required to detect real
109 * grace periods. This variable is also used to suppress boot-time false
110 * positives from lockdep-RCU error checking.
111 */
bbad9379
PM
112int rcu_scheduler_active __read_mostly;
113EXPORT_SYMBOL_GPL(rcu_scheduler_active);
114
b0d30417
PM
115/*
116 * The rcu_scheduler_fully_active variable transitions from zero to one
117 * during the early_initcall() processing, which is after the scheduler
118 * is capable of creating new tasks. So RCU processing (for example,
119 * creating tasks for RCU priority boosting) must be delayed until after
120 * rcu_scheduler_fully_active transitions from zero to one. We also
121 * currently delay invocation of any RCU callbacks until after this point.
122 *
123 * It might later prove better for people registering RCU callbacks during
124 * early boot to take responsibility for these callbacks, but one step at
125 * a time.
126 */
127static int rcu_scheduler_fully_active __read_mostly;
128
a46e0899
PM
129#ifdef CONFIG_RCU_BOOST
130
a26ac245
PM
131/*
132 * Control variables for per-CPU and per-rcu_node kthreads. These
133 * handle all flavors of RCU.
134 */
135static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 136DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 137DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 138DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 139DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 140
a46e0899
PM
141#endif /* #ifdef CONFIG_RCU_BOOST */
142
0f962a5e 143static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
144static void invoke_rcu_core(void);
145static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 146
4a298656
PM
147/*
148 * Track the rcutorture test sequence number and the update version
149 * number within a given test. The rcutorture_testseq is incremented
150 * on every rcutorture module load and unload, so has an odd value
151 * when a test is running. The rcutorture_vernum is set to zero
152 * when rcutorture starts and is incremented on each rcutorture update.
153 * These variables enable correlating rcutorture output with the
154 * RCU tracing information.
155 */
156unsigned long rcutorture_testseq;
157unsigned long rcutorture_vernum;
158
fc2219d4
PM
159/*
160 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
161 * permit this function to be invoked without holding the root rcu_node
162 * structure's ->lock, but of course results can be subject to change.
163 */
164static int rcu_gp_in_progress(struct rcu_state *rsp)
165{
166 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
167}
168
b1f77b05 169/*
d6714c22 170 * Note a quiescent state. Because we do not need to know
b1f77b05 171 * how many quiescent states passed, just if there was at least
d6714c22 172 * one since the start of the grace period, this just sets a flag.
e4cc1f22 173 * The caller must have disabled preemption.
b1f77b05 174 */
d6714c22 175void rcu_sched_qs(int cpu)
b1f77b05 176{
25502a6c 177 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 178
e4cc1f22 179 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 180 barrier();
e4cc1f22 181 if (rdp->passed_quiesce == 0)
d4c08f2a 182 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 183 rdp->passed_quiesce = 1;
b1f77b05
IM
184}
185
d6714c22 186void rcu_bh_qs(int cpu)
b1f77b05 187{
25502a6c 188 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 189
e4cc1f22 190 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 191 barrier();
e4cc1f22 192 if (rdp->passed_quiesce == 0)
d4c08f2a 193 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 194 rdp->passed_quiesce = 1;
b1f77b05 195}
64db4cff 196
25502a6c
PM
197/*
198 * Note a context switch. This is a quiescent state for RCU-sched,
199 * and requires special handling for preemptible RCU.
e4cc1f22 200 * The caller must have disabled preemption.
25502a6c
PM
201 */
202void rcu_note_context_switch(int cpu)
203{
300df91c 204 trace_rcu_utilization("Start context switch");
25502a6c 205 rcu_sched_qs(cpu);
cba6d0d6 206 rcu_preempt_note_context_switch(cpu);
300df91c 207 trace_rcu_utilization("End context switch");
25502a6c 208}
29ce8310 209EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 210
90a4d2c0 211DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 212 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 213 .dynticks = ATOMIC_INIT(1),
90a4d2c0 214};
64db4cff 215
e0f23060 216static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
217static int qhimark = 10000; /* If this many pending, ignore blimit. */
218static int qlowmark = 100; /* Once only this many pending, use blimit. */
219
7e5c2dfb
PM
220module_param(blimit, int, 0444);
221module_param(qhimark, int, 0444);
222module_param(qlowmark, int, 0444);
3d76c082 223
13cfcca0
PM
224int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
225int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
226
f2e0dd70 227module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 228module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 229
d40011f6
PM
230static ulong jiffies_till_first_fqs = RCU_JIFFIES_TILL_FORCE_QS;
231static ulong jiffies_till_next_fqs = RCU_JIFFIES_TILL_FORCE_QS;
232
233module_param(jiffies_till_first_fqs, ulong, 0644);
234module_param(jiffies_till_next_fqs, ulong, 0644);
235
4cdfc175
PM
236static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
237static void force_quiescent_state(struct rcu_state *rsp);
a157229c 238static int rcu_pending(int cpu);
64db4cff
PM
239
240/*
d6714c22 241 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 242 */
d6714c22 243long rcu_batches_completed_sched(void)
64db4cff 244{
d6714c22 245 return rcu_sched_state.completed;
64db4cff 246}
d6714c22 247EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
248
249/*
250 * Return the number of RCU BH batches processed thus far for debug & stats.
251 */
252long rcu_batches_completed_bh(void)
253{
254 return rcu_bh_state.completed;
255}
256EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
257
bf66f18e
PM
258/*
259 * Force a quiescent state for RCU BH.
260 */
261void rcu_bh_force_quiescent_state(void)
262{
4cdfc175 263 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
264}
265EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
266
4a298656
PM
267/*
268 * Record the number of times rcutorture tests have been initiated and
269 * terminated. This information allows the debugfs tracing stats to be
270 * correlated to the rcutorture messages, even when the rcutorture module
271 * is being repeatedly loaded and unloaded. In other words, we cannot
272 * store this state in rcutorture itself.
273 */
274void rcutorture_record_test_transition(void)
275{
276 rcutorture_testseq++;
277 rcutorture_vernum = 0;
278}
279EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
280
281/*
282 * Record the number of writer passes through the current rcutorture test.
283 * This is also used to correlate debugfs tracing stats with the rcutorture
284 * messages.
285 */
286void rcutorture_record_progress(unsigned long vernum)
287{
288 rcutorture_vernum++;
289}
290EXPORT_SYMBOL_GPL(rcutorture_record_progress);
291
bf66f18e
PM
292/*
293 * Force a quiescent state for RCU-sched.
294 */
295void rcu_sched_force_quiescent_state(void)
296{
4cdfc175 297 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
298}
299EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
300
64db4cff
PM
301/*
302 * Does the CPU have callbacks ready to be invoked?
303 */
304static int
305cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
306{
307 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
308}
309
310/*
311 * Does the current CPU require a yet-as-unscheduled grace period?
312 */
313static int
314cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
315{
a10d206e
PM
316 return *rdp->nxttail[RCU_DONE_TAIL +
317 ACCESS_ONCE(rsp->completed) != rdp->completed] &&
318 !rcu_gp_in_progress(rsp);
64db4cff
PM
319}
320
321/*
322 * Return the root node of the specified rcu_state structure.
323 */
324static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
325{
326 return &rsp->node[0];
327}
328
64db4cff
PM
329/*
330 * If the specified CPU is offline, tell the caller that it is in
331 * a quiescent state. Otherwise, whack it with a reschedule IPI.
332 * Grace periods can end up waiting on an offline CPU when that
333 * CPU is in the process of coming online -- it will be added to the
334 * rcu_node bitmasks before it actually makes it online. The same thing
335 * can happen while a CPU is in the process of coming online. Because this
336 * race is quite rare, we check for it after detecting that the grace
337 * period has been delayed rather than checking each and every CPU
338 * each and every time we start a new grace period.
339 */
340static int rcu_implicit_offline_qs(struct rcu_data *rdp)
341{
342 /*
2036d94a
PM
343 * If the CPU is offline for more than a jiffy, it is in a quiescent
344 * state. We can trust its state not to change because interrupts
345 * are disabled. The reason for the jiffy's worth of slack is to
346 * handle CPUs initializing on the way up and finding their way
347 * to the idle loop on the way down.
64db4cff 348 */
2036d94a
PM
349 if (cpu_is_offline(rdp->cpu) &&
350 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 351 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
352 rdp->offline_fqs++;
353 return 1;
354 }
64db4cff
PM
355 return 0;
356}
357
9b2e4f18
PM
358/*
359 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
360 *
361 * If the new value of the ->dynticks_nesting counter now is zero,
362 * we really have entered idle, and must do the appropriate accounting.
363 * The caller must have disabled interrupts.
364 */
4145fa7f 365static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 366{
facc4e15 367 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 368 if (!is_idle_task(current)) {
0989cb46
PM
369 struct task_struct *idle = idle_task(smp_processor_id());
370
facc4e15 371 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
bf1304e9 372 ftrace_dump(DUMP_ORIG);
0989cb46
PM
373 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
374 current->pid, current->comm,
375 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 376 }
aea1b35e 377 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
378 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
379 smp_mb__before_atomic_inc(); /* See above. */
380 atomic_inc(&rdtp->dynticks);
381 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
382 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
383
384 /*
385 * The idle task is not permitted to enter the idle loop while
386 * in an RCU read-side critical section.
387 */
388 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
389 "Illegal idle entry in RCU read-side critical section.");
390 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
391 "Illegal idle entry in RCU-bh read-side critical section.");
392 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
393 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 394}
64db4cff
PM
395
396/**
9b2e4f18 397 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 398 *
9b2e4f18 399 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 400 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
401 * critical sections can occur in irq handlers in idle, a possibility
402 * handled by irq_enter() and irq_exit().)
403 *
404 * We crowbar the ->dynticks_nesting field to zero to allow for
405 * the possibility of usermode upcalls having messed up our count
406 * of interrupt nesting level during the prior busy period.
64db4cff 407 */
9b2e4f18 408void rcu_idle_enter(void)
64db4cff
PM
409{
410 unsigned long flags;
4145fa7f 411 long long oldval;
64db4cff
PM
412 struct rcu_dynticks *rdtp;
413
64db4cff
PM
414 local_irq_save(flags);
415 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 416 oldval = rdtp->dynticks_nesting;
29e37d81
PM
417 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
418 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
419 rdtp->dynticks_nesting = 0;
420 else
421 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 422 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
423 local_irq_restore(flags);
424}
8a2ecf47 425EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 426
9b2e4f18
PM
427/**
428 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
429 *
430 * Exit from an interrupt handler, which might possibly result in entering
431 * idle mode, in other words, leaving the mode in which read-side critical
432 * sections can occur.
64db4cff 433 *
9b2e4f18
PM
434 * This code assumes that the idle loop never does anything that might
435 * result in unbalanced calls to irq_enter() and irq_exit(). If your
436 * architecture violates this assumption, RCU will give you what you
437 * deserve, good and hard. But very infrequently and irreproducibly.
438 *
439 * Use things like work queues to work around this limitation.
440 *
441 * You have been warned.
64db4cff 442 */
9b2e4f18 443void rcu_irq_exit(void)
64db4cff
PM
444{
445 unsigned long flags;
4145fa7f 446 long long oldval;
64db4cff
PM
447 struct rcu_dynticks *rdtp;
448
449 local_irq_save(flags);
450 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 451 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
452 rdtp->dynticks_nesting--;
453 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
454 if (rdtp->dynticks_nesting)
455 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
456 else
457 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
458 local_irq_restore(flags);
459}
460
461/*
462 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
463 *
464 * If the new value of the ->dynticks_nesting counter was previously zero,
465 * we really have exited idle, and must do the appropriate accounting.
466 * The caller must have disabled interrupts.
467 */
468static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
469{
23b5c8fa
PM
470 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
471 atomic_inc(&rdtp->dynticks);
472 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
473 smp_mb__after_atomic_inc(); /* See above. */
474 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 475 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 476 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 477 if (!is_idle_task(current)) {
0989cb46
PM
478 struct task_struct *idle = idle_task(smp_processor_id());
479
4145fa7f
PM
480 trace_rcu_dyntick("Error on exit: not idle task",
481 oldval, rdtp->dynticks_nesting);
bf1304e9 482 ftrace_dump(DUMP_ORIG);
0989cb46
PM
483 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
484 current->pid, current->comm,
485 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
486 }
487}
488
489/**
490 * rcu_idle_exit - inform RCU that current CPU is leaving idle
491 *
492 * Exit idle mode, in other words, -enter- the mode in which RCU
493 * read-side critical sections can occur.
494 *
29e37d81 495 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 496 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
497 * of interrupt nesting level during the busy period that is just
498 * now starting.
499 */
500void rcu_idle_exit(void)
501{
502 unsigned long flags;
503 struct rcu_dynticks *rdtp;
504 long long oldval;
505
506 local_irq_save(flags);
507 rdtp = &__get_cpu_var(rcu_dynticks);
508 oldval = rdtp->dynticks_nesting;
29e37d81
PM
509 WARN_ON_ONCE(oldval < 0);
510 if (oldval & DYNTICK_TASK_NEST_MASK)
511 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
512 else
513 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
514 rcu_idle_exit_common(rdtp, oldval);
515 local_irq_restore(flags);
516}
8a2ecf47 517EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
518
519/**
520 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
521 *
522 * Enter an interrupt handler, which might possibly result in exiting
523 * idle mode, in other words, entering the mode in which read-side critical
524 * sections can occur.
525 *
526 * Note that the Linux kernel is fully capable of entering an interrupt
527 * handler that it never exits, for example when doing upcalls to
528 * user mode! This code assumes that the idle loop never does upcalls to
529 * user mode. If your architecture does do upcalls from the idle loop (or
530 * does anything else that results in unbalanced calls to the irq_enter()
531 * and irq_exit() functions), RCU will give you what you deserve, good
532 * and hard. But very infrequently and irreproducibly.
533 *
534 * Use things like work queues to work around this limitation.
535 *
536 * You have been warned.
537 */
538void rcu_irq_enter(void)
539{
540 unsigned long flags;
541 struct rcu_dynticks *rdtp;
542 long long oldval;
543
544 local_irq_save(flags);
545 rdtp = &__get_cpu_var(rcu_dynticks);
546 oldval = rdtp->dynticks_nesting;
547 rdtp->dynticks_nesting++;
548 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
549 if (oldval)
550 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
551 else
552 rcu_idle_exit_common(rdtp, oldval);
64db4cff 553 local_irq_restore(flags);
64db4cff
PM
554}
555
556/**
557 * rcu_nmi_enter - inform RCU of entry to NMI context
558 *
559 * If the CPU was idle with dynamic ticks active, and there is no
560 * irq handler running, this updates rdtp->dynticks_nmi to let the
561 * RCU grace-period handling know that the CPU is active.
562 */
563void rcu_nmi_enter(void)
564{
565 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
566
23b5c8fa
PM
567 if (rdtp->dynticks_nmi_nesting == 0 &&
568 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 569 return;
23b5c8fa
PM
570 rdtp->dynticks_nmi_nesting++;
571 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
572 atomic_inc(&rdtp->dynticks);
573 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
574 smp_mb__after_atomic_inc(); /* See above. */
575 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
576}
577
578/**
579 * rcu_nmi_exit - inform RCU of exit from NMI context
580 *
581 * If the CPU was idle with dynamic ticks active, and there is no
582 * irq handler running, this updates rdtp->dynticks_nmi to let the
583 * RCU grace-period handling know that the CPU is no longer active.
584 */
585void rcu_nmi_exit(void)
586{
587 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
588
23b5c8fa
PM
589 if (rdtp->dynticks_nmi_nesting == 0 ||
590 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 591 return;
23b5c8fa
PM
592 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
593 smp_mb__before_atomic_inc(); /* See above. */
594 atomic_inc(&rdtp->dynticks);
595 smp_mb__after_atomic_inc(); /* Force delay to next write. */
596 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
597}
598
599/**
9b2e4f18 600 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 601 *
9b2e4f18 602 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 603 * or NMI handler, return true.
64db4cff 604 */
9b2e4f18 605int rcu_is_cpu_idle(void)
64db4cff 606{
34240697
PM
607 int ret;
608
609 preempt_disable();
610 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
611 preempt_enable();
612 return ret;
64db4cff 613}
e6b80a3b 614EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 615
62fde6ed 616#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
617
618/*
619 * Is the current CPU online? Disable preemption to avoid false positives
620 * that could otherwise happen due to the current CPU number being sampled,
621 * this task being preempted, its old CPU being taken offline, resuming
622 * on some other CPU, then determining that its old CPU is now offline.
623 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
624 * the check for rcu_scheduler_fully_active. Note also that it is OK
625 * for a CPU coming online to use RCU for one jiffy prior to marking itself
626 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
627 * offline to continue to use RCU for one jiffy after marking itself
628 * offline in the cpu_online_mask. This leniency is necessary given the
629 * non-atomic nature of the online and offline processing, for example,
630 * the fact that a CPU enters the scheduler after completing the CPU_DYING
631 * notifiers.
632 *
633 * This is also why RCU internally marks CPUs online during the
634 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
635 *
636 * Disable checking if in an NMI handler because we cannot safely report
637 * errors from NMI handlers anyway.
638 */
639bool rcu_lockdep_current_cpu_online(void)
640{
2036d94a
PM
641 struct rcu_data *rdp;
642 struct rcu_node *rnp;
c0d6d01b
PM
643 bool ret;
644
645 if (in_nmi())
646 return 1;
647 preempt_disable();
2036d94a
PM
648 rdp = &__get_cpu_var(rcu_sched_data);
649 rnp = rdp->mynode;
650 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
651 !rcu_scheduler_fully_active;
652 preempt_enable();
653 return ret;
654}
655EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
656
62fde6ed 657#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 658
64db4cff 659/**
9b2e4f18 660 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 661 *
9b2e4f18
PM
662 * If the current CPU is idle or running at a first-level (not nested)
663 * interrupt from idle, return true. The caller must have at least
664 * disabled preemption.
64db4cff 665 */
9b2e4f18 666int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 667{
9b2e4f18 668 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
669}
670
64db4cff
PM
671/*
672 * Snapshot the specified CPU's dynticks counter so that we can later
673 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 674 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
675 */
676static int dyntick_save_progress_counter(struct rcu_data *rdp)
677{
23b5c8fa 678 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 679 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
680}
681
682/*
683 * Return true if the specified CPU has passed through a quiescent
684 * state by virtue of being in or having passed through an dynticks
685 * idle state since the last call to dyntick_save_progress_counter()
686 * for this same CPU.
687 */
688static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
689{
7eb4f455
PM
690 unsigned int curr;
691 unsigned int snap;
64db4cff 692
7eb4f455
PM
693 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
694 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
695
696 /*
697 * If the CPU passed through or entered a dynticks idle phase with
698 * no active irq/NMI handlers, then we can safely pretend that the CPU
699 * already acknowledged the request to pass through a quiescent
700 * state. Either way, that CPU cannot possibly be in an RCU
701 * read-side critical section that started before the beginning
702 * of the current RCU grace period.
703 */
7eb4f455 704 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 705 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
706 rdp->dynticks_fqs++;
707 return 1;
708 }
709
710 /* Go check for the CPU being offline. */
711 return rcu_implicit_offline_qs(rdp);
712}
713
13cfcca0
PM
714static int jiffies_till_stall_check(void)
715{
716 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
717
718 /*
719 * Limit check must be consistent with the Kconfig limits
720 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
721 */
722 if (till_stall_check < 3) {
723 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
724 till_stall_check = 3;
725 } else if (till_stall_check > 300) {
726 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
727 till_stall_check = 300;
728 }
729 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
730}
731
64db4cff
PM
732static void record_gp_stall_check_time(struct rcu_state *rsp)
733{
734 rsp->gp_start = jiffies;
13cfcca0 735 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
736}
737
738static void print_other_cpu_stall(struct rcu_state *rsp)
739{
740 int cpu;
741 long delta;
742 unsigned long flags;
285fe294 743 int ndetected = 0;
64db4cff 744 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
745
746 /* Only let one CPU complain about others per time interval. */
747
1304afb2 748 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 749 delta = jiffies - rsp->jiffies_stall;
fc2219d4 750 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 751 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
752 return;
753 }
13cfcca0 754 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 755 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 756
8cdd32a9
PM
757 /*
758 * OK, time to rat on our buddy...
759 * See Documentation/RCU/stallwarn.txt for info on how to debug
760 * RCU CPU stall warnings.
761 */
a858af28 762 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 763 rsp->name);
a858af28 764 print_cpu_stall_info_begin();
a0b6c9a7 765 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 766 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 767 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 768 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 769 if (rnp->qsmask == 0)
64db4cff 770 continue;
a0b6c9a7 771 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 772 if (rnp->qsmask & (1UL << cpu)) {
a858af28 773 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
774 ndetected++;
775 }
64db4cff 776 }
a858af28
PM
777
778 /*
779 * Now rat on any tasks that got kicked up to the root rcu_node
780 * due to CPU offlining.
781 */
782 rnp = rcu_get_root(rsp);
783 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 784 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
785 raw_spin_unlock_irqrestore(&rnp->lock, flags);
786
787 print_cpu_stall_info_end();
788 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 789 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
790 if (ndetected == 0)
791 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
792 else if (!trigger_all_cpu_backtrace())
4627e240 793 dump_stack();
c1dc0b9c 794
4cdfc175 795 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
796
797 rcu_print_detail_task_stall(rsp);
798
4cdfc175 799 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
800}
801
802static void print_cpu_stall(struct rcu_state *rsp)
803{
804 unsigned long flags;
805 struct rcu_node *rnp = rcu_get_root(rsp);
806
8cdd32a9
PM
807 /*
808 * OK, time to rat on ourselves...
809 * See Documentation/RCU/stallwarn.txt for info on how to debug
810 * RCU CPU stall warnings.
811 */
a858af28
PM
812 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
813 print_cpu_stall_info_begin();
814 print_cpu_stall_info(rsp, smp_processor_id());
815 print_cpu_stall_info_end();
816 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
817 if (!trigger_all_cpu_backtrace())
818 dump_stack();
c1dc0b9c 819
1304afb2 820 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 821 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
822 rsp->jiffies_stall = jiffies +
823 3 * jiffies_till_stall_check() + 3;
1304afb2 824 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 825
64db4cff
PM
826 set_need_resched(); /* kick ourselves to get things going. */
827}
828
829static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
830{
bad6e139
PM
831 unsigned long j;
832 unsigned long js;
64db4cff
PM
833 struct rcu_node *rnp;
834
742734ee 835 if (rcu_cpu_stall_suppress)
c68de209 836 return;
bad6e139
PM
837 j = ACCESS_ONCE(jiffies);
838 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 839 rnp = rdp->mynode;
bad6e139 840 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
841
842 /* We haven't checked in, so go dump stack. */
843 print_cpu_stall(rsp);
844
bad6e139
PM
845 } else if (rcu_gp_in_progress(rsp) &&
846 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 847
bad6e139 848 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
849 print_other_cpu_stall(rsp);
850 }
851}
852
c68de209
PM
853static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
854{
742734ee 855 rcu_cpu_stall_suppress = 1;
c68de209
PM
856 return NOTIFY_DONE;
857}
858
53d84e00
PM
859/**
860 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
861 *
862 * Set the stall-warning timeout way off into the future, thus preventing
863 * any RCU CPU stall-warning messages from appearing in the current set of
864 * RCU grace periods.
865 *
866 * The caller must disable hard irqs.
867 */
868void rcu_cpu_stall_reset(void)
869{
6ce75a23
PM
870 struct rcu_state *rsp;
871
872 for_each_rcu_flavor(rsp)
873 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
874}
875
c68de209
PM
876static struct notifier_block rcu_panic_block = {
877 .notifier_call = rcu_panic,
878};
879
880static void __init check_cpu_stall_init(void)
881{
882 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
883}
884
64db4cff
PM
885/*
886 * Update CPU-local rcu_data state to record the newly noticed grace period.
887 * This is used both when we started the grace period and when we notice
9160306e
PM
888 * that someone else started the grace period. The caller must hold the
889 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
890 * and must have irqs disabled.
64db4cff 891 */
9160306e
PM
892static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
893{
894 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
895 /*
896 * If the current grace period is waiting for this CPU,
897 * set up to detect a quiescent state, otherwise don't
898 * go looking for one.
899 */
9160306e 900 rdp->gpnum = rnp->gpnum;
d4c08f2a 901 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
902 if (rnp->qsmask & rdp->grpmask) {
903 rdp->qs_pending = 1;
e4cc1f22 904 rdp->passed_quiesce = 0;
c701d5d9 905 } else {
121dfc4b 906 rdp->qs_pending = 0;
c701d5d9 907 }
a858af28 908 zero_cpu_stall_ticks(rdp);
9160306e
PM
909 }
910}
911
64db4cff
PM
912static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
913{
9160306e
PM
914 unsigned long flags;
915 struct rcu_node *rnp;
916
917 local_irq_save(flags);
918 rnp = rdp->mynode;
919 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 920 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
921 local_irq_restore(flags);
922 return;
923 }
924 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 925 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
926}
927
928/*
929 * Did someone else start a new RCU grace period start since we last
930 * checked? Update local state appropriately if so. Must be called
931 * on the CPU corresponding to rdp.
932 */
933static int
934check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
935{
936 unsigned long flags;
937 int ret = 0;
938
939 local_irq_save(flags);
940 if (rdp->gpnum != rsp->gpnum) {
941 note_new_gpnum(rsp, rdp);
942 ret = 1;
943 }
944 local_irq_restore(flags);
945 return ret;
946}
947
3f5d3ea6
PM
948/*
949 * Initialize the specified rcu_data structure's callback list to empty.
950 */
951static void init_callback_list(struct rcu_data *rdp)
952{
953 int i;
954
955 rdp->nxtlist = NULL;
956 for (i = 0; i < RCU_NEXT_SIZE; i++)
957 rdp->nxttail[i] = &rdp->nxtlist;
958}
959
d09b62df
PM
960/*
961 * Advance this CPU's callbacks, but only if the current grace period
962 * has ended. This may be called only from the CPU to whom the rdp
963 * belongs. In addition, the corresponding leaf rcu_node structure's
964 * ->lock must be held by the caller, with irqs disabled.
965 */
966static void
967__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
968{
969 /* Did another grace period end? */
970 if (rdp->completed != rnp->completed) {
971
972 /* Advance callbacks. No harm if list empty. */
973 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
974 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
975 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
976
977 /* Remember that we saw this grace-period completion. */
978 rdp->completed = rnp->completed;
d4c08f2a 979 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 980
5ff8e6f0
FW
981 /*
982 * If we were in an extended quiescent state, we may have
121dfc4b 983 * missed some grace periods that others CPUs handled on
5ff8e6f0 984 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
985 * spurious new grace periods. If another grace period
986 * has started, then rnp->gpnum will have advanced, so
987 * we will detect this later on.
5ff8e6f0 988 */
121dfc4b 989 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
990 rdp->gpnum = rdp->completed;
991
20377f32 992 /*
121dfc4b
PM
993 * If RCU does not need a quiescent state from this CPU,
994 * then make sure that this CPU doesn't go looking for one.
20377f32 995 */
121dfc4b 996 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 997 rdp->qs_pending = 0;
d09b62df
PM
998 }
999}
1000
1001/*
1002 * Advance this CPU's callbacks, but only if the current grace period
1003 * has ended. This may be called only from the CPU to whom the rdp
1004 * belongs.
1005 */
1006static void
1007rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
1008{
1009 unsigned long flags;
1010 struct rcu_node *rnp;
1011
1012 local_irq_save(flags);
1013 rnp = rdp->mynode;
1014 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1015 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1016 local_irq_restore(flags);
1017 return;
1018 }
1019 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1020 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1021}
1022
1023/*
1024 * Do per-CPU grace-period initialization for running CPU. The caller
1025 * must hold the lock of the leaf rcu_node structure corresponding to
1026 * this CPU.
1027 */
1028static void
1029rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1030{
1031 /* Prior grace period ended, so advance callbacks for current CPU. */
1032 __rcu_process_gp_end(rsp, rnp, rdp);
1033
9160306e
PM
1034 /* Set state so that this CPU will detect the next quiescent state. */
1035 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1036}
1037
b3dbec76 1038/*
7fdefc10 1039 * Initialize a new grace period.
b3dbec76 1040 */
7fdefc10 1041static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1042{
1043 struct rcu_data *rdp;
7fdefc10 1044 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1045
7fdefc10 1046 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1047 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1048
7fdefc10
PM
1049 if (rcu_gp_in_progress(rsp)) {
1050 /* Grace period already in progress, don't start another. */
1051 raw_spin_unlock_irq(&rnp->lock);
1052 return 0;
1053 }
1054
7fdefc10
PM
1055 /* Advance to a new grace period and initialize state. */
1056 rsp->gpnum++;
1057 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
7fdefc10
PM
1058 record_gp_stall_check_time(rsp);
1059 raw_spin_unlock_irq(&rnp->lock);
1060
1061 /* Exclude any concurrent CPU-hotplug operations. */
1062 get_online_cpus();
1063
1064 /*
1065 * Set the quiescent-state-needed bits in all the rcu_node
1066 * structures for all currently online CPUs in breadth-first order,
1067 * starting from the root rcu_node structure, relying on the layout
1068 * of the tree within the rsp->node[] array. Note that other CPUs
1069 * will access only the leaves of the hierarchy, thus seeing that no
1070 * grace period is in progress, at least until the corresponding
1071 * leaf node has been initialized. In addition, we have excluded
1072 * CPU-hotplug operations.
1073 *
1074 * The grace period cannot complete until the initialization
1075 * process finishes, because this kthread handles both.
1076 */
1077 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1078 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1079 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1080 rcu_preempt_check_blocked_tasks(rnp);
1081 rnp->qsmask = rnp->qsmaskinit;
1082 rnp->gpnum = rsp->gpnum;
1083 rnp->completed = rsp->completed;
1084 if (rnp == rdp->mynode)
1085 rcu_start_gp_per_cpu(rsp, rnp, rdp);
1086 rcu_preempt_boost_start_gp(rnp);
1087 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1088 rnp->level, rnp->grplo,
1089 rnp->grphi, rnp->qsmask);
1090 raw_spin_unlock_irq(&rnp->lock);
661a85dc
PM
1091#ifdef CONFIG_PROVE_RCU_DELAY
1092 if ((random32() % (rcu_num_nodes * 8)) == 0)
1093 schedule_timeout_uninterruptible(2);
1094#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1095 cond_resched();
1096 }
b3dbec76 1097
7fdefc10
PM
1098 put_online_cpus();
1099 return 1;
1100}
b3dbec76 1101
4cdfc175
PM
1102/*
1103 * Do one round of quiescent-state forcing.
1104 */
1105int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1106{
1107 int fqs_state = fqs_state_in;
1108 struct rcu_node *rnp = rcu_get_root(rsp);
1109
1110 rsp->n_force_qs++;
1111 if (fqs_state == RCU_SAVE_DYNTICK) {
1112 /* Collect dyntick-idle snapshots. */
1113 force_qs_rnp(rsp, dyntick_save_progress_counter);
1114 fqs_state = RCU_FORCE_QS;
1115 } else {
1116 /* Handle dyntick-idle and offline CPUs. */
1117 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1118 }
1119 /* Clear flag to prevent immediate re-entry. */
1120 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1121 raw_spin_lock_irq(&rnp->lock);
1122 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1123 raw_spin_unlock_irq(&rnp->lock);
1124 }
1125 return fqs_state;
1126}
1127
7fdefc10
PM
1128/*
1129 * Clean up after the old grace period.
1130 */
4cdfc175 1131static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1132{
1133 unsigned long gp_duration;
1134 struct rcu_data *rdp;
1135 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1136
7fdefc10
PM
1137 raw_spin_lock_irq(&rnp->lock);
1138 gp_duration = jiffies - rsp->gp_start;
1139 if (gp_duration > rsp->gp_max)
1140 rsp->gp_max = gp_duration;
b3dbec76 1141
7fdefc10
PM
1142 /*
1143 * We know the grace period is complete, but to everyone else
1144 * it appears to still be ongoing. But it is also the case
1145 * that to everyone else it looks like there is nothing that
1146 * they can do to advance the grace period. It is therefore
1147 * safe for us to drop the lock in order to mark the grace
1148 * period as completed in all of the rcu_node structures.
7fdefc10 1149 */
5d4b8659 1150 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1151
5d4b8659
PM
1152 /*
1153 * Propagate new ->completed value to rcu_node structures so
1154 * that other CPUs don't have to wait until the start of the next
1155 * grace period to process their callbacks. This also avoids
1156 * some nasty RCU grace-period initialization races by forcing
1157 * the end of the current grace period to be completely recorded in
1158 * all of the rcu_node structures before the beginning of the next
1159 * grace period is recorded in any of the rcu_node structures.
1160 */
1161 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1162 raw_spin_lock_irq(&rnp->lock);
5d4b8659
PM
1163 rnp->completed = rsp->gpnum;
1164 raw_spin_unlock_irq(&rnp->lock);
1165 cond_resched();
7fdefc10 1166 }
5d4b8659
PM
1167 rnp = rcu_get_root(rsp);
1168 raw_spin_lock_irq(&rnp->lock);
7fdefc10
PM
1169
1170 rsp->completed = rsp->gpnum; /* Declare grace period done. */
1171 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
1172 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1173 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1174 if (cpu_needs_another_gp(rsp, rdp))
1175 rsp->gp_flags = 1;
1176 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1177}
1178
1179/*
1180 * Body of kthread that handles grace periods.
1181 */
1182static int __noreturn rcu_gp_kthread(void *arg)
1183{
4cdfc175 1184 int fqs_state;
d40011f6 1185 unsigned long j;
4cdfc175 1186 int ret;
7fdefc10
PM
1187 struct rcu_state *rsp = arg;
1188 struct rcu_node *rnp = rcu_get_root(rsp);
1189
1190 for (;;) {
1191
1192 /* Handle grace-period start. */
1193 for (;;) {
4cdfc175
PM
1194 wait_event_interruptible(rsp->gp_wq,
1195 rsp->gp_flags &
1196 RCU_GP_FLAG_INIT);
1197 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1198 rcu_gp_init(rsp))
7fdefc10
PM
1199 break;
1200 cond_resched();
1201 flush_signals(current);
1202 }
cabc49c1 1203
4cdfc175
PM
1204 /* Handle quiescent-state forcing. */
1205 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1206 j = jiffies_till_first_fqs;
1207 if (j > HZ) {
1208 j = HZ;
1209 jiffies_till_first_fqs = HZ;
1210 }
cabc49c1 1211 for (;;) {
d40011f6 1212 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1213 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1214 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1215 (!ACCESS_ONCE(rnp->qsmask) &&
1216 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1217 j);
4cdfc175 1218 /* If grace period done, leave loop. */
cabc49c1 1219 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1220 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1221 break;
4cdfc175
PM
1222 /* If time for quiescent-state forcing, do it. */
1223 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1224 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1225 cond_resched();
1226 } else {
1227 /* Deal with stray signal. */
1228 cond_resched();
1229 flush_signals(current);
1230 }
d40011f6
PM
1231 j = jiffies_till_next_fqs;
1232 if (j > HZ) {
1233 j = HZ;
1234 jiffies_till_next_fqs = HZ;
1235 } else if (j < 1) {
1236 j = 1;
1237 jiffies_till_next_fqs = 1;
1238 }
cabc49c1 1239 }
4cdfc175
PM
1240
1241 /* Handle grace-period end. */
1242 rcu_gp_cleanup(rsp);
b3dbec76 1243 }
b3dbec76
PM
1244}
1245
64db4cff
PM
1246/*
1247 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1248 * in preparation for detecting the next grace period. The caller must hold
1249 * the root node's ->lock, which is released before return. Hard irqs must
1250 * be disabled.
e5601400
PM
1251 *
1252 * Note that it is legal for a dying CPU (which is marked as offline) to
1253 * invoke this function. This can happen when the dying CPU reports its
1254 * quiescent state.
64db4cff
PM
1255 */
1256static void
1257rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1258 __releases(rcu_get_root(rsp)->lock)
1259{
394f99a9 1260 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1261 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1262
b3dbec76 1263 if (!rsp->gp_kthread ||
afe24b12
PM
1264 !cpu_needs_another_gp(rsp, rdp)) {
1265 /*
b3dbec76
PM
1266 * Either we have not yet spawned the grace-period
1267 * task or this CPU does not need another grace period.
1268 * Either way, don't start a new grace period.
afe24b12
PM
1269 */
1270 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1271 return;
1272 }
b32e9eb6 1273
4cdfc175 1274 rsp->gp_flags = RCU_GP_FLAG_INIT;
b3dbec76
PM
1275 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1276 wake_up(&rsp->gp_wq);
64db4cff
PM
1277}
1278
f41d911f 1279/*
d3f6bad3
PM
1280 * Report a full set of quiescent states to the specified rcu_state
1281 * data structure. This involves cleaning up after the prior grace
1282 * period and letting rcu_start_gp() start up the next grace period
1283 * if one is needed. Note that the caller must hold rnp->lock, as
1284 * required by rcu_start_gp(), which will release it.
f41d911f 1285 */
d3f6bad3 1286static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1287 __releases(rcu_get_root(rsp)->lock)
f41d911f 1288{
fc2219d4 1289 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1290 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1291 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1292}
1293
64db4cff 1294/*
d3f6bad3
PM
1295 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1296 * Allows quiescent states for a group of CPUs to be reported at one go
1297 * to the specified rcu_node structure, though all the CPUs in the group
1298 * must be represented by the same rcu_node structure (which need not be
1299 * a leaf rcu_node structure, though it often will be). That structure's
1300 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1301 */
1302static void
d3f6bad3
PM
1303rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1304 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1305 __releases(rnp->lock)
1306{
28ecd580
PM
1307 struct rcu_node *rnp_c;
1308
64db4cff
PM
1309 /* Walk up the rcu_node hierarchy. */
1310 for (;;) {
1311 if (!(rnp->qsmask & mask)) {
1312
1313 /* Our bit has already been cleared, so done. */
1304afb2 1314 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1315 return;
1316 }
1317 rnp->qsmask &= ~mask;
d4c08f2a
PM
1318 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1319 mask, rnp->qsmask, rnp->level,
1320 rnp->grplo, rnp->grphi,
1321 !!rnp->gp_tasks);
27f4d280 1322 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1323
1324 /* Other bits still set at this level, so done. */
1304afb2 1325 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1326 return;
1327 }
1328 mask = rnp->grpmask;
1329 if (rnp->parent == NULL) {
1330
1331 /* No more levels. Exit loop holding root lock. */
1332
1333 break;
1334 }
1304afb2 1335 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1336 rnp_c = rnp;
64db4cff 1337 rnp = rnp->parent;
1304afb2 1338 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1339 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1340 }
1341
1342 /*
1343 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1344 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1345 * to clean up and start the next grace period if one is needed.
64db4cff 1346 */
d3f6bad3 1347 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1348}
1349
1350/*
d3f6bad3
PM
1351 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1352 * structure. This must be either called from the specified CPU, or
1353 * called when the specified CPU is known to be offline (and when it is
1354 * also known that no other CPU is concurrently trying to help the offline
1355 * CPU). The lastcomp argument is used to make sure we are still in the
1356 * grace period of interest. We don't want to end the current grace period
1357 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1358 */
1359static void
e4cc1f22 1360rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1361{
1362 unsigned long flags;
1363 unsigned long mask;
1364 struct rcu_node *rnp;
1365
1366 rnp = rdp->mynode;
1304afb2 1367 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1368 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1369
1370 /*
e4cc1f22
PM
1371 * The grace period in which this quiescent state was
1372 * recorded has ended, so don't report it upwards.
1373 * We will instead need a new quiescent state that lies
1374 * within the current grace period.
64db4cff 1375 */
e4cc1f22 1376 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1377 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1378 return;
1379 }
1380 mask = rdp->grpmask;
1381 if ((rnp->qsmask & mask) == 0) {
1304afb2 1382 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1383 } else {
1384 rdp->qs_pending = 0;
1385
1386 /*
1387 * This GP can't end until cpu checks in, so all of our
1388 * callbacks can be processed during the next GP.
1389 */
64db4cff
PM
1390 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1391
d3f6bad3 1392 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1393 }
1394}
1395
1396/*
1397 * Check to see if there is a new grace period of which this CPU
1398 * is not yet aware, and if so, set up local rcu_data state for it.
1399 * Otherwise, see if this CPU has just passed through its first
1400 * quiescent state for this grace period, and record that fact if so.
1401 */
1402static void
1403rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1404{
1405 /* If there is now a new grace period, record and return. */
1406 if (check_for_new_grace_period(rsp, rdp))
1407 return;
1408
1409 /*
1410 * Does this CPU still need to do its part for current grace period?
1411 * If no, return and let the other CPUs do their part as well.
1412 */
1413 if (!rdp->qs_pending)
1414 return;
1415
1416 /*
1417 * Was there a quiescent state since the beginning of the grace
1418 * period? If no, then exit and wait for the next call.
1419 */
e4cc1f22 1420 if (!rdp->passed_quiesce)
64db4cff
PM
1421 return;
1422
d3f6bad3
PM
1423 /*
1424 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1425 * judge of that).
1426 */
e4cc1f22 1427 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1428}
1429
1430#ifdef CONFIG_HOTPLUG_CPU
1431
e74f4c45 1432/*
b1420f1c
PM
1433 * Send the specified CPU's RCU callbacks to the orphanage. The
1434 * specified CPU must be offline, and the caller must hold the
1435 * ->onofflock.
e74f4c45 1436 */
b1420f1c
PM
1437static void
1438rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1439 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1440{
b1420f1c
PM
1441 /*
1442 * Orphan the callbacks. First adjust the counts. This is safe
1443 * because ->onofflock excludes _rcu_barrier()'s adoption of
1444 * the callbacks, thus no memory barrier is required.
1445 */
a50c3af9 1446 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1447 rsp->qlen_lazy += rdp->qlen_lazy;
1448 rsp->qlen += rdp->qlen;
1449 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1450 rdp->qlen_lazy = 0;
1d1fb395 1451 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1452 }
1453
1454 /*
b1420f1c
PM
1455 * Next, move those callbacks still needing a grace period to
1456 * the orphanage, where some other CPU will pick them up.
1457 * Some of the callbacks might have gone partway through a grace
1458 * period, but that is too bad. They get to start over because we
1459 * cannot assume that grace periods are synchronized across CPUs.
1460 * We don't bother updating the ->nxttail[] array yet, instead
1461 * we just reset the whole thing later on.
a50c3af9 1462 */
b1420f1c
PM
1463 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1464 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1465 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1466 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1467 }
1468
1469 /*
b1420f1c
PM
1470 * Then move the ready-to-invoke callbacks to the orphanage,
1471 * where some other CPU will pick them up. These will not be
1472 * required to pass though another grace period: They are done.
a50c3af9 1473 */
e5601400 1474 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1475 *rsp->orphan_donetail = rdp->nxtlist;
1476 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1477 }
e74f4c45 1478
b1420f1c 1479 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1480 init_callback_list(rdp);
b1420f1c
PM
1481}
1482
1483/*
1484 * Adopt the RCU callbacks from the specified rcu_state structure's
1485 * orphanage. The caller must hold the ->onofflock.
1486 */
1487static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1488{
1489 int i;
1490 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1491
a50c3af9 1492 /*
b1420f1c
PM
1493 * If there is an rcu_barrier() operation in progress, then
1494 * only the task doing that operation is permitted to adopt
1495 * callbacks. To do otherwise breaks rcu_barrier() and friends
1496 * by causing them to fail to wait for the callbacks in the
1497 * orphanage.
a50c3af9 1498 */
b1420f1c
PM
1499 if (rsp->rcu_barrier_in_progress &&
1500 rsp->rcu_barrier_in_progress != current)
1501 return;
1502
1503 /* Do the accounting first. */
1504 rdp->qlen_lazy += rsp->qlen_lazy;
1505 rdp->qlen += rsp->qlen;
1506 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1507 if (rsp->qlen_lazy != rsp->qlen)
1508 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1509 rsp->qlen_lazy = 0;
1510 rsp->qlen = 0;
1511
1512 /*
1513 * We do not need a memory barrier here because the only way we
1514 * can get here if there is an rcu_barrier() in flight is if
1515 * we are the task doing the rcu_barrier().
1516 */
1517
1518 /* First adopt the ready-to-invoke callbacks. */
1519 if (rsp->orphan_donelist != NULL) {
1520 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1521 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1522 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1523 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1524 rdp->nxttail[i] = rsp->orphan_donetail;
1525 rsp->orphan_donelist = NULL;
1526 rsp->orphan_donetail = &rsp->orphan_donelist;
1527 }
1528
1529 /* And then adopt the callbacks that still need a grace period. */
1530 if (rsp->orphan_nxtlist != NULL) {
1531 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1532 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1533 rsp->orphan_nxtlist = NULL;
1534 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1535 }
1536}
1537
1538/*
1539 * Trace the fact that this CPU is going offline.
1540 */
1541static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1542{
1543 RCU_TRACE(unsigned long mask);
1544 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1545 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1546
1547 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1548 trace_rcu_grace_period(rsp->name,
1549 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1550 "cpuofl");
64db4cff
PM
1551}
1552
1553/*
e5601400 1554 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1555 * this fact from process context. Do the remainder of the cleanup,
1556 * including orphaning the outgoing CPU's RCU callbacks, and also
1557 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1558 * There can only be one CPU hotplug operation at a time, so no other
1559 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1560 */
e5601400 1561static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1562{
2036d94a
PM
1563 unsigned long flags;
1564 unsigned long mask;
1565 int need_report = 0;
e5601400 1566 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1567 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1568
2036d94a 1569 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1570 rcu_stop_cpu_kthread(cpu);
1571 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1572
b1420f1c 1573 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1574
1575 /* Exclude any attempts to start a new grace period. */
1576 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1577
b1420f1c
PM
1578 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1579 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1580 rcu_adopt_orphan_cbs(rsp);
1581
2036d94a
PM
1582 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1583 mask = rdp->grpmask; /* rnp->grplo is constant. */
1584 do {
1585 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1586 rnp->qsmaskinit &= ~mask;
1587 if (rnp->qsmaskinit != 0) {
1588 if (rnp != rdp->mynode)
1589 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1590 break;
1591 }
1592 if (rnp == rdp->mynode)
1593 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1594 else
1595 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1596 mask = rnp->grpmask;
1597 rnp = rnp->parent;
1598 } while (rnp != NULL);
1599
1600 /*
1601 * We still hold the leaf rcu_node structure lock here, and
1602 * irqs are still disabled. The reason for this subterfuge is
1603 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1604 * held leads to deadlock.
1605 */
1606 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1607 rnp = rdp->mynode;
1608 if (need_report & RCU_OFL_TASKS_NORM_GP)
1609 rcu_report_unblock_qs_rnp(rnp, flags);
1610 else
1611 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1612 if (need_report & RCU_OFL_TASKS_EXP_GP)
1613 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1614 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1615 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1616 cpu, rdp->qlen, rdp->nxtlist);
64db4cff
PM
1617}
1618
1619#else /* #ifdef CONFIG_HOTPLUG_CPU */
1620
b1420f1c
PM
1621static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1622{
1623}
1624
e5601400 1625static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1626{
1627}
1628
e5601400 1629static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1630{
1631}
1632
1633#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1634
1635/*
1636 * Invoke any RCU callbacks that have made it to the end of their grace
1637 * period. Thottle as specified by rdp->blimit.
1638 */
37c72e56 1639static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1640{
1641 unsigned long flags;
1642 struct rcu_head *next, *list, **tail;
b41772ab 1643 int bl, count, count_lazy, i;
64db4cff
PM
1644
1645 /* If no callbacks are ready, just return.*/
29c00b4a 1646 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1647 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1648 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1649 need_resched(), is_idle_task(current),
1650 rcu_is_callbacks_kthread());
64db4cff 1651 return;
29c00b4a 1652 }
64db4cff
PM
1653
1654 /*
1655 * Extract the list of ready callbacks, disabling to prevent
1656 * races with call_rcu() from interrupt handlers.
1657 */
1658 local_irq_save(flags);
8146c4e2 1659 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1660 bl = rdp->blimit;
486e2593 1661 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1662 list = rdp->nxtlist;
1663 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1664 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1665 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1666 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1667 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1668 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1669 local_irq_restore(flags);
1670
1671 /* Invoke callbacks. */
486e2593 1672 count = count_lazy = 0;
64db4cff
PM
1673 while (list) {
1674 next = list->next;
1675 prefetch(next);
551d55a9 1676 debug_rcu_head_unqueue(list);
486e2593
PM
1677 if (__rcu_reclaim(rsp->name, list))
1678 count_lazy++;
64db4cff 1679 list = next;
dff1672d
PM
1680 /* Stop only if limit reached and CPU has something to do. */
1681 if (++count >= bl &&
1682 (need_resched() ||
1683 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1684 break;
1685 }
1686
1687 local_irq_save(flags);
4968c300
PM
1688 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1689 is_idle_task(current),
1690 rcu_is_callbacks_kthread());
64db4cff
PM
1691
1692 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1693 if (list != NULL) {
1694 *tail = rdp->nxtlist;
1695 rdp->nxtlist = list;
b41772ab
PM
1696 for (i = 0; i < RCU_NEXT_SIZE; i++)
1697 if (&rdp->nxtlist == rdp->nxttail[i])
1698 rdp->nxttail[i] = tail;
64db4cff
PM
1699 else
1700 break;
1701 }
b1420f1c
PM
1702 smp_mb(); /* List handling before counting for rcu_barrier(). */
1703 rdp->qlen_lazy -= count_lazy;
1d1fb395 1704 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1705 rdp->n_cbs_invoked += count;
64db4cff
PM
1706
1707 /* Reinstate batch limit if we have worked down the excess. */
1708 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1709 rdp->blimit = blimit;
1710
37c72e56
PM
1711 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1712 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1713 rdp->qlen_last_fqs_check = 0;
1714 rdp->n_force_qs_snap = rsp->n_force_qs;
1715 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1716 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 1717 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 1718
64db4cff
PM
1719 local_irq_restore(flags);
1720
e0f23060 1721 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1722 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1723 invoke_rcu_core();
64db4cff
PM
1724}
1725
1726/*
1727 * Check to see if this CPU is in a non-context-switch quiescent state
1728 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1729 * Also schedule RCU core processing.
64db4cff 1730 *
9b2e4f18 1731 * This function must be called from hardirq context. It is normally
64db4cff
PM
1732 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1733 * false, there is no point in invoking rcu_check_callbacks().
1734 */
1735void rcu_check_callbacks(int cpu, int user)
1736{
300df91c 1737 trace_rcu_utilization("Start scheduler-tick");
a858af28 1738 increment_cpu_stall_ticks();
9b2e4f18 1739 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1740
1741 /*
1742 * Get here if this CPU took its interrupt from user
1743 * mode or from the idle loop, and if this is not a
1744 * nested interrupt. In this case, the CPU is in
d6714c22 1745 * a quiescent state, so note it.
64db4cff
PM
1746 *
1747 * No memory barrier is required here because both
d6714c22
PM
1748 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1749 * variables that other CPUs neither access nor modify,
1750 * at least not while the corresponding CPU is online.
64db4cff
PM
1751 */
1752
d6714c22
PM
1753 rcu_sched_qs(cpu);
1754 rcu_bh_qs(cpu);
64db4cff
PM
1755
1756 } else if (!in_softirq()) {
1757
1758 /*
1759 * Get here if this CPU did not take its interrupt from
1760 * softirq, in other words, if it is not interrupting
1761 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1762 * critical section, so note it.
64db4cff
PM
1763 */
1764
d6714c22 1765 rcu_bh_qs(cpu);
64db4cff 1766 }
f41d911f 1767 rcu_preempt_check_callbacks(cpu);
d21670ac 1768 if (rcu_pending(cpu))
a46e0899 1769 invoke_rcu_core();
300df91c 1770 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1771}
1772
64db4cff
PM
1773/*
1774 * Scan the leaf rcu_node structures, processing dyntick state for any that
1775 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1776 * Also initiate boosting for any threads blocked on the root rcu_node.
1777 *
ee47eb9f 1778 * The caller must have suppressed start of new grace periods.
64db4cff 1779 */
45f014c5 1780static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1781{
1782 unsigned long bit;
1783 int cpu;
1784 unsigned long flags;
1785 unsigned long mask;
a0b6c9a7 1786 struct rcu_node *rnp;
64db4cff 1787
a0b6c9a7 1788 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 1789 cond_resched();
64db4cff 1790 mask = 0;
1304afb2 1791 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1792 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1793 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1794 return;
64db4cff 1795 }
a0b6c9a7 1796 if (rnp->qsmask == 0) {
1217ed1b 1797 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1798 continue;
1799 }
a0b6c9a7 1800 cpu = rnp->grplo;
64db4cff 1801 bit = 1;
a0b6c9a7 1802 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1803 if ((rnp->qsmask & bit) != 0 &&
1804 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1805 mask |= bit;
1806 }
45f014c5 1807 if (mask != 0) {
64db4cff 1808
d3f6bad3
PM
1809 /* rcu_report_qs_rnp() releases rnp->lock. */
1810 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1811 continue;
1812 }
1304afb2 1813 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1814 }
27f4d280 1815 rnp = rcu_get_root(rsp);
1217ed1b
PM
1816 if (rnp->qsmask == 0) {
1817 raw_spin_lock_irqsave(&rnp->lock, flags);
1818 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1819 }
64db4cff
PM
1820}
1821
1822/*
1823 * Force quiescent states on reluctant CPUs, and also detect which
1824 * CPUs are in dyntick-idle mode.
1825 */
4cdfc175 1826static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
1827{
1828 unsigned long flags;
394f2769
PM
1829 bool ret;
1830 struct rcu_node *rnp;
1831 struct rcu_node *rnp_old = NULL;
1832
1833 /* Funnel through hierarchy to reduce memory contention. */
1834 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
1835 for (; rnp != NULL; rnp = rnp->parent) {
1836 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
1837 !raw_spin_trylock(&rnp->fqslock);
1838 if (rnp_old != NULL)
1839 raw_spin_unlock(&rnp_old->fqslock);
1840 if (ret) {
1841 rsp->n_force_qs_lh++;
1842 return;
1843 }
1844 rnp_old = rnp;
1845 }
1846 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 1847
394f2769
PM
1848 /* Reached the root of the rcu_node tree, acquire lock. */
1849 raw_spin_lock_irqsave(&rnp_old->lock, flags);
1850 raw_spin_unlock(&rnp_old->fqslock);
1851 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1852 rsp->n_force_qs_lh++;
1853 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 1854 return; /* Someone beat us to it. */
46a1e34e 1855 }
4cdfc175 1856 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 1857 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 1858 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
1859}
1860
64db4cff 1861/*
e0f23060
PM
1862 * This does the RCU core processing work for the specified rcu_state
1863 * and rcu_data structures. This may be called only from the CPU to
1864 * whom the rdp belongs.
64db4cff
PM
1865 */
1866static void
1bca8cf1 1867__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
1868{
1869 unsigned long flags;
1bca8cf1 1870 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 1871
2e597558
PM
1872 WARN_ON_ONCE(rdp->beenonline == 0);
1873
64db4cff
PM
1874 /*
1875 * Advance callbacks in response to end of earlier grace
1876 * period that some other CPU ended.
1877 */
1878 rcu_process_gp_end(rsp, rdp);
1879
1880 /* Update RCU state based on any recent quiescent states. */
1881 rcu_check_quiescent_state(rsp, rdp);
1882
1883 /* Does this CPU require a not-yet-started grace period? */
1884 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1885 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1886 rcu_start_gp(rsp, flags); /* releases above lock */
1887 }
1888
1889 /* If there are callbacks ready, invoke them. */
09223371 1890 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1891 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1892}
1893
64db4cff 1894/*
e0f23060 1895 * Do RCU core processing for the current CPU.
64db4cff 1896 */
09223371 1897static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1898{
6ce75a23
PM
1899 struct rcu_state *rsp;
1900
bfa00b4c
PM
1901 if (cpu_is_offline(smp_processor_id()))
1902 return;
300df91c 1903 trace_rcu_utilization("Start RCU core");
6ce75a23
PM
1904 for_each_rcu_flavor(rsp)
1905 __rcu_process_callbacks(rsp);
300df91c 1906 trace_rcu_utilization("End RCU core");
64db4cff
PM
1907}
1908
a26ac245 1909/*
e0f23060
PM
1910 * Schedule RCU callback invocation. If the specified type of RCU
1911 * does not support RCU priority boosting, just do a direct call,
1912 * otherwise wake up the per-CPU kernel kthread. Note that because we
1913 * are running on the current CPU with interrupts disabled, the
1914 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1915 */
a46e0899 1916static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1917{
b0d30417
PM
1918 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1919 return;
a46e0899
PM
1920 if (likely(!rsp->boost)) {
1921 rcu_do_batch(rsp, rdp);
a26ac245
PM
1922 return;
1923 }
a46e0899 1924 invoke_rcu_callbacks_kthread();
a26ac245
PM
1925}
1926
a46e0899 1927static void invoke_rcu_core(void)
09223371
SL
1928{
1929 raise_softirq(RCU_SOFTIRQ);
1930}
1931
29154c57
PM
1932/*
1933 * Handle any core-RCU processing required by a call_rcu() invocation.
1934 */
1935static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1936 struct rcu_head *head, unsigned long flags)
64db4cff 1937{
62fde6ed
PM
1938 /*
1939 * If called from an extended quiescent state, invoke the RCU
1940 * core in order to force a re-evaluation of RCU's idleness.
1941 */
a16b7a69 1942 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1943 invoke_rcu_core();
1944
a16b7a69 1945 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1946 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1947 return;
64db4cff 1948
37c72e56
PM
1949 /*
1950 * Force the grace period if too many callbacks or too long waiting.
1951 * Enforce hysteresis, and don't invoke force_quiescent_state()
1952 * if some other CPU has recently done so. Also, don't bother
1953 * invoking force_quiescent_state() if the newly enqueued callback
1954 * is the only one waiting for a grace period to complete.
1955 */
2655d57e 1956 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1957
1958 /* Are we ignoring a completed grace period? */
1959 rcu_process_gp_end(rsp, rdp);
1960 check_for_new_grace_period(rsp, rdp);
1961
1962 /* Start a new grace period if one not already started. */
1963 if (!rcu_gp_in_progress(rsp)) {
1964 unsigned long nestflag;
1965 struct rcu_node *rnp_root = rcu_get_root(rsp);
1966
1967 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1968 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1969 } else {
1970 /* Give the grace period a kick. */
1971 rdp->blimit = LONG_MAX;
1972 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1973 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 1974 force_quiescent_state(rsp);
b52573d2
PM
1975 rdp->n_force_qs_snap = rsp->n_force_qs;
1976 rdp->qlen_last_fqs_check = rdp->qlen;
1977 }
4cdfc175 1978 }
29154c57
PM
1979}
1980
64db4cff
PM
1981static void
1982__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1983 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1984{
1985 unsigned long flags;
1986 struct rcu_data *rdp;
1987
0bb7b59d 1988 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1989 debug_rcu_head_queue(head);
64db4cff
PM
1990 head->func = func;
1991 head->next = NULL;
1992
1993 smp_mb(); /* Ensure RCU update seen before callback registry. */
1994
1995 /*
1996 * Opportunistically note grace-period endings and beginnings.
1997 * Note that we might see a beginning right after we see an
1998 * end, but never vice versa, since this CPU has to pass through
1999 * a quiescent state betweentimes.
2000 */
2001 local_irq_save(flags);
394f99a9 2002 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2003
2004 /* Add the callback to our list. */
29154c57 2005 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2006 if (lazy)
2007 rdp->qlen_lazy++;
c57afe80
PM
2008 else
2009 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2010 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2011 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2012 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2013
d4c08f2a
PM
2014 if (__is_kfree_rcu_offset((unsigned long)func))
2015 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2016 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2017 else
486e2593 2018 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2019
29154c57
PM
2020 /* Go handle any RCU core processing required. */
2021 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2022 local_irq_restore(flags);
2023}
2024
2025/*
d6714c22 2026 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2027 */
d6714c22 2028void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2029{
486e2593 2030 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 2031}
d6714c22 2032EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2033
2034/*
486e2593 2035 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2036 */
2037void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2038{
486e2593 2039 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
2040}
2041EXPORT_SYMBOL_GPL(call_rcu_bh);
2042
6d813391
PM
2043/*
2044 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2045 * any blocking grace-period wait automatically implies a grace period
2046 * if there is only one CPU online at any point time during execution
2047 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2048 * occasionally incorrectly indicate that there are multiple CPUs online
2049 * when there was in fact only one the whole time, as this just adds
2050 * some overhead: RCU still operates correctly.
6d813391
PM
2051 */
2052static inline int rcu_blocking_is_gp(void)
2053{
95f0c1de
PM
2054 int ret;
2055
6d813391 2056 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2057 preempt_disable();
2058 ret = num_online_cpus() <= 1;
2059 preempt_enable();
2060 return ret;
6d813391
PM
2061}
2062
6ebb237b
PM
2063/**
2064 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2065 *
2066 * Control will return to the caller some time after a full rcu-sched
2067 * grace period has elapsed, in other words after all currently executing
2068 * rcu-sched read-side critical sections have completed. These read-side
2069 * critical sections are delimited by rcu_read_lock_sched() and
2070 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2071 * local_irq_disable(), and so on may be used in place of
2072 * rcu_read_lock_sched().
2073 *
2074 * This means that all preempt_disable code sequences, including NMI and
2075 * hardware-interrupt handlers, in progress on entry will have completed
2076 * before this primitive returns. However, this does not guarantee that
2077 * softirq handlers will have completed, since in some kernels, these
2078 * handlers can run in process context, and can block.
2079 *
2080 * This primitive provides the guarantees made by the (now removed)
2081 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2082 * guarantees that rcu_read_lock() sections will have completed.
2083 * In "classic RCU", these two guarantees happen to be one and
2084 * the same, but can differ in realtime RCU implementations.
2085 */
2086void synchronize_sched(void)
2087{
fe15d706
PM
2088 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2089 !lock_is_held(&rcu_lock_map) &&
2090 !lock_is_held(&rcu_sched_lock_map),
2091 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2092 if (rcu_blocking_is_gp())
2093 return;
2c42818e 2094 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2095}
2096EXPORT_SYMBOL_GPL(synchronize_sched);
2097
2098/**
2099 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2100 *
2101 * Control will return to the caller some time after a full rcu_bh grace
2102 * period has elapsed, in other words after all currently executing rcu_bh
2103 * read-side critical sections have completed. RCU read-side critical
2104 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2105 * and may be nested.
2106 */
2107void synchronize_rcu_bh(void)
2108{
fe15d706
PM
2109 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2110 !lock_is_held(&rcu_lock_map) &&
2111 !lock_is_held(&rcu_sched_lock_map),
2112 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2113 if (rcu_blocking_is_gp())
2114 return;
2c42818e 2115 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2116}
2117EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2118
3d3b7db0
PM
2119static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2120static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2121
2122static int synchronize_sched_expedited_cpu_stop(void *data)
2123{
2124 /*
2125 * There must be a full memory barrier on each affected CPU
2126 * between the time that try_stop_cpus() is called and the
2127 * time that it returns.
2128 *
2129 * In the current initial implementation of cpu_stop, the
2130 * above condition is already met when the control reaches
2131 * this point and the following smp_mb() is not strictly
2132 * necessary. Do smp_mb() anyway for documentation and
2133 * robustness against future implementation changes.
2134 */
2135 smp_mb(); /* See above comment block. */
2136 return 0;
2137}
2138
236fefaf
PM
2139/**
2140 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2141 *
2142 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2143 * approach to force the grace period to end quickly. This consumes
2144 * significant time on all CPUs and is unfriendly to real-time workloads,
2145 * so is thus not recommended for any sort of common-case code. In fact,
2146 * if you are using synchronize_sched_expedited() in a loop, please
2147 * restructure your code to batch your updates, and then use a single
2148 * synchronize_sched() instead.
3d3b7db0 2149 *
236fefaf
PM
2150 * Note that it is illegal to call this function while holding any lock
2151 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2152 * to call this function from a CPU-hotplug notifier. Failing to observe
2153 * these restriction will result in deadlock.
3d3b7db0
PM
2154 *
2155 * This implementation can be thought of as an application of ticket
2156 * locking to RCU, with sync_sched_expedited_started and
2157 * sync_sched_expedited_done taking on the roles of the halves
2158 * of the ticket-lock word. Each task atomically increments
2159 * sync_sched_expedited_started upon entry, snapshotting the old value,
2160 * then attempts to stop all the CPUs. If this succeeds, then each
2161 * CPU will have executed a context switch, resulting in an RCU-sched
2162 * grace period. We are then done, so we use atomic_cmpxchg() to
2163 * update sync_sched_expedited_done to match our snapshot -- but
2164 * only if someone else has not already advanced past our snapshot.
2165 *
2166 * On the other hand, if try_stop_cpus() fails, we check the value
2167 * of sync_sched_expedited_done. If it has advanced past our
2168 * initial snapshot, then someone else must have forced a grace period
2169 * some time after we took our snapshot. In this case, our work is
2170 * done for us, and we can simply return. Otherwise, we try again,
2171 * but keep our initial snapshot for purposes of checking for someone
2172 * doing our work for us.
2173 *
2174 * If we fail too many times in a row, we fall back to synchronize_sched().
2175 */
2176void synchronize_sched_expedited(void)
2177{
2178 int firstsnap, s, snap, trycount = 0;
2179
2180 /* Note that atomic_inc_return() implies full memory barrier. */
2181 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2182 get_online_cpus();
1cc85961 2183 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2184
2185 /*
2186 * Each pass through the following loop attempts to force a
2187 * context switch on each CPU.
2188 */
2189 while (try_stop_cpus(cpu_online_mask,
2190 synchronize_sched_expedited_cpu_stop,
2191 NULL) == -EAGAIN) {
2192 put_online_cpus();
2193
2194 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2195 if (trycount++ < 10) {
3d3b7db0 2196 udelay(trycount * num_online_cpus());
c701d5d9 2197 } else {
3d3b7db0
PM
2198 synchronize_sched();
2199 return;
2200 }
2201
2202 /* Check to see if someone else did our work for us. */
2203 s = atomic_read(&sync_sched_expedited_done);
2204 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2205 smp_mb(); /* ensure test happens before caller kfree */
2206 return;
2207 }
2208
2209 /*
2210 * Refetching sync_sched_expedited_started allows later
2211 * callers to piggyback on our grace period. We subtract
2212 * 1 to get the same token that the last incrementer got.
2213 * We retry after they started, so our grace period works
2214 * for them, and they started after our first try, so their
2215 * grace period works for us.
2216 */
2217 get_online_cpus();
2218 snap = atomic_read(&sync_sched_expedited_started);
2219 smp_mb(); /* ensure read is before try_stop_cpus(). */
2220 }
2221
2222 /*
2223 * Everyone up to our most recent fetch is covered by our grace
2224 * period. Update the counter, but only if our work is still
2225 * relevant -- which it won't be if someone who started later
2226 * than we did beat us to the punch.
2227 */
2228 do {
2229 s = atomic_read(&sync_sched_expedited_done);
2230 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2231 smp_mb(); /* ensure test happens before caller kfree */
2232 break;
2233 }
2234 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2235
2236 put_online_cpus();
2237}
2238EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2239
64db4cff
PM
2240/*
2241 * Check to see if there is any immediate RCU-related work to be done
2242 * by the current CPU, for the specified type of RCU, returning 1 if so.
2243 * The checks are in order of increasing expense: checks that can be
2244 * carried out against CPU-local state are performed first. However,
2245 * we must check for CPU stalls first, else we might not get a chance.
2246 */
2247static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2248{
2f51f988
PM
2249 struct rcu_node *rnp = rdp->mynode;
2250
64db4cff
PM
2251 rdp->n_rcu_pending++;
2252
2253 /* Check for CPU stalls, if enabled. */
2254 check_cpu_stall(rsp, rdp);
2255
2256 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2257 if (rcu_scheduler_fully_active &&
2258 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2259 rdp->n_rp_qs_pending++;
e4cc1f22 2260 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2261 rdp->n_rp_report_qs++;
64db4cff 2262 return 1;
7ba5c840 2263 }
64db4cff
PM
2264
2265 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2266 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2267 rdp->n_rp_cb_ready++;
64db4cff 2268 return 1;
7ba5c840 2269 }
64db4cff
PM
2270
2271 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2272 if (cpu_needs_another_gp(rsp, rdp)) {
2273 rdp->n_rp_cpu_needs_gp++;
64db4cff 2274 return 1;
7ba5c840 2275 }
64db4cff
PM
2276
2277 /* Has another RCU grace period completed? */
2f51f988 2278 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2279 rdp->n_rp_gp_completed++;
64db4cff 2280 return 1;
7ba5c840 2281 }
64db4cff
PM
2282
2283 /* Has a new RCU grace period started? */
2f51f988 2284 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2285 rdp->n_rp_gp_started++;
64db4cff 2286 return 1;
7ba5c840 2287 }
64db4cff 2288
64db4cff 2289 /* nothing to do */
7ba5c840 2290 rdp->n_rp_need_nothing++;
64db4cff
PM
2291 return 0;
2292}
2293
2294/*
2295 * Check to see if there is any immediate RCU-related work to be done
2296 * by the current CPU, returning 1 if so. This function is part of the
2297 * RCU implementation; it is -not- an exported member of the RCU API.
2298 */
a157229c 2299static int rcu_pending(int cpu)
64db4cff 2300{
6ce75a23
PM
2301 struct rcu_state *rsp;
2302
2303 for_each_rcu_flavor(rsp)
2304 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2305 return 1;
2306 return 0;
64db4cff
PM
2307}
2308
2309/*
2310 * Check to see if any future RCU-related work will need to be done
2311 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2312 * 1 if so.
64db4cff 2313 */
aea1b35e 2314static int rcu_cpu_has_callbacks(int cpu)
64db4cff 2315{
6ce75a23
PM
2316 struct rcu_state *rsp;
2317
64db4cff 2318 /* RCU callbacks either ready or pending? */
6ce75a23
PM
2319 for_each_rcu_flavor(rsp)
2320 if (per_cpu_ptr(rsp->rda, cpu)->nxtlist)
2321 return 1;
2322 return 0;
64db4cff
PM
2323}
2324
a83eff0a
PM
2325/*
2326 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2327 * the compiler is expected to optimize this away.
2328 */
2329static void _rcu_barrier_trace(struct rcu_state *rsp, char *s,
2330 int cpu, unsigned long done)
2331{
2332 trace_rcu_barrier(rsp->name, s, cpu,
2333 atomic_read(&rsp->barrier_cpu_count), done);
2334}
2335
b1420f1c
PM
2336/*
2337 * RCU callback function for _rcu_barrier(). If we are last, wake
2338 * up the task executing _rcu_barrier().
2339 */
24ebbca8 2340static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2341{
24ebbca8
PM
2342 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2343 struct rcu_state *rsp = rdp->rsp;
2344
a83eff0a
PM
2345 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2346 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2347 complete(&rsp->barrier_completion);
a83eff0a
PM
2348 } else {
2349 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2350 }
d0ec774c
PM
2351}
2352
2353/*
2354 * Called with preemption disabled, and from cross-cpu IRQ context.
2355 */
2356static void rcu_barrier_func(void *type)
2357{
037b64ed 2358 struct rcu_state *rsp = type;
06668efa 2359 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2360
a83eff0a 2361 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2362 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2363 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2364}
2365
d0ec774c
PM
2366/*
2367 * Orchestrate the specified type of RCU barrier, waiting for all
2368 * RCU callbacks of the specified type to complete.
2369 */
037b64ed 2370static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2371{
b1420f1c
PM
2372 int cpu;
2373 unsigned long flags;
2374 struct rcu_data *rdp;
24ebbca8 2375 struct rcu_data rd;
cf3a9c48
PM
2376 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2377 unsigned long snap_done;
b1420f1c 2378
24ebbca8 2379 init_rcu_head_on_stack(&rd.barrier_head);
a83eff0a 2380 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2381
e74f4c45 2382 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2383 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2384
cf3a9c48
PM
2385 /*
2386 * Ensure that all prior references, including to ->n_barrier_done,
2387 * are ordered before the _rcu_barrier() machinery.
2388 */
2389 smp_mb(); /* See above block comment. */
2390
2391 /*
2392 * Recheck ->n_barrier_done to see if others did our work for us.
2393 * This means checking ->n_barrier_done for an even-to-odd-to-even
2394 * transition. The "if" expression below therefore rounds the old
2395 * value up to the next even number and adds two before comparing.
2396 */
2397 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2398 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2399 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2400 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2401 smp_mb(); /* caller's subsequent code after above check. */
2402 mutex_unlock(&rsp->barrier_mutex);
2403 return;
2404 }
2405
2406 /*
2407 * Increment ->n_barrier_done to avoid duplicate work. Use
2408 * ACCESS_ONCE() to prevent the compiler from speculating
2409 * the increment to precede the early-exit check.
2410 */
2411 ACCESS_ONCE(rsp->n_barrier_done)++;
2412 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2413 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2414 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2415
d0ec774c 2416 /*
b1420f1c
PM
2417 * Initialize the count to one rather than to zero in order to
2418 * avoid a too-soon return to zero in case of a short grace period
2419 * (or preemption of this task). Also flag this task as doing
2420 * an rcu_barrier(). This will prevent anyone else from adopting
2421 * orphaned callbacks, which could cause otherwise failure if a
2422 * CPU went offline and quickly came back online. To see this,
2423 * consider the following sequence of events:
2424 *
2425 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2426 * 2. CPU 1 goes offline, orphaning its callbacks.
2427 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2428 * 4. CPU 1 comes back online.
2429 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2430 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2431 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2432 */
7db74df8 2433 init_completion(&rsp->barrier_completion);
24ebbca8 2434 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2435 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2436 rsp->rcu_barrier_in_progress = current;
2437 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2438
2439 /*
2440 * Force every CPU with callbacks to register a new callback
2441 * that will tell us when all the preceding callbacks have
2442 * been invoked. If an offline CPU has callbacks, wait for
2443 * it to either come back online or to finish orphaning those
2444 * callbacks.
2445 */
2446 for_each_possible_cpu(cpu) {
2447 preempt_disable();
2448 rdp = per_cpu_ptr(rsp->rda, cpu);
2449 if (cpu_is_offline(cpu)) {
a83eff0a
PM
2450 _rcu_barrier_trace(rsp, "Offline", cpu,
2451 rsp->n_barrier_done);
b1420f1c
PM
2452 preempt_enable();
2453 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2454 schedule_timeout_interruptible(1);
2455 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2456 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2457 rsp->n_barrier_done);
037b64ed 2458 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2459 preempt_enable();
2460 } else {
a83eff0a
PM
2461 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2462 rsp->n_barrier_done);
b1420f1c
PM
2463 preempt_enable();
2464 }
2465 }
2466
2467 /*
2468 * Now that all online CPUs have rcu_barrier_callback() callbacks
2469 * posted, we can adopt all of the orphaned callbacks and place
2470 * an rcu_barrier_callback() callback after them. When that is done,
2471 * we are guaranteed to have an rcu_barrier_callback() callback
2472 * following every callback that could possibly have been
2473 * registered before _rcu_barrier() was called.
2474 */
2475 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2476 rcu_adopt_orphan_cbs(rsp);
2477 rsp->rcu_barrier_in_progress = NULL;
2478 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2479 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2480 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2481 rd.rsp = rsp;
2482 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2483
2484 /*
2485 * Now that we have an rcu_barrier_callback() callback on each
2486 * CPU, and thus each counted, remove the initial count.
2487 */
24ebbca8 2488 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2489 complete(&rsp->barrier_completion);
b1420f1c 2490
cf3a9c48
PM
2491 /* Increment ->n_barrier_done to prevent duplicate work. */
2492 smp_mb(); /* Keep increment after above mechanism. */
2493 ACCESS_ONCE(rsp->n_barrier_done)++;
2494 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2495 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2496 smp_mb(); /* Keep increment before caller's subsequent code. */
2497
b1420f1c 2498 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2499 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2500
2501 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2502 mutex_unlock(&rsp->barrier_mutex);
b1420f1c 2503
24ebbca8 2504 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2505}
d0ec774c
PM
2506
2507/**
2508 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2509 */
2510void rcu_barrier_bh(void)
2511{
037b64ed 2512 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2513}
2514EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2515
2516/**
2517 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2518 */
2519void rcu_barrier_sched(void)
2520{
037b64ed 2521 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2522}
2523EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2524
64db4cff 2525/*
27569620 2526 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2527 */
27569620
PM
2528static void __init
2529rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2530{
2531 unsigned long flags;
394f99a9 2532 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2533 struct rcu_node *rnp = rcu_get_root(rsp);
2534
2535 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2536 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2537 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2538 init_callback_list(rdp);
486e2593 2539 rdp->qlen_lazy = 0;
1d1fb395 2540 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2541 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2542 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2543 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2544 rdp->cpu = cpu;
d4c08f2a 2545 rdp->rsp = rsp;
1304afb2 2546 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2547}
2548
2549/*
2550 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2551 * offline event can be happening at a given time. Note also that we
2552 * can accept some slop in the rsp->completed access due to the fact
2553 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2554 */
e4fa4c97 2555static void __cpuinit
6cc68793 2556rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2557{
2558 unsigned long flags;
64db4cff 2559 unsigned long mask;
394f99a9 2560 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2561 struct rcu_node *rnp = rcu_get_root(rsp);
2562
2563 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2564 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2565 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2566 rdp->preemptible = preemptible;
37c72e56
PM
2567 rdp->qlen_last_fqs_check = 0;
2568 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2569 rdp->blimit = blimit;
29e37d81 2570 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2571 atomic_set(&rdp->dynticks->dynticks,
2572 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2573 rcu_prepare_for_idle_init(cpu);
1304afb2 2574 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2575
2576 /*
2577 * A new grace period might start here. If so, we won't be part
2578 * of it, but that is OK, as we are currently in a quiescent state.
2579 */
2580
2581 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2582 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2583
2584 /* Add CPU to rcu_node bitmasks. */
2585 rnp = rdp->mynode;
2586 mask = rdp->grpmask;
2587 do {
2588 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2589 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2590 rnp->qsmaskinit |= mask;
2591 mask = rnp->grpmask;
d09b62df 2592 if (rnp == rdp->mynode) {
06ae115a
PM
2593 /*
2594 * If there is a grace period in progress, we will
2595 * set up to wait for it next time we run the
2596 * RCU core code.
2597 */
2598 rdp->gpnum = rnp->completed;
d09b62df 2599 rdp->completed = rnp->completed;
06ae115a
PM
2600 rdp->passed_quiesce = 0;
2601 rdp->qs_pending = 0;
e4cc1f22 2602 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2603 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2604 }
1304afb2 2605 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2606 rnp = rnp->parent;
2607 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2608
1304afb2 2609 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2610}
2611
d72bce0e 2612static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2613{
6ce75a23
PM
2614 struct rcu_state *rsp;
2615
2616 for_each_rcu_flavor(rsp)
2617 rcu_init_percpu_data(cpu, rsp,
2618 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
2619}
2620
2621/*
f41d911f 2622 * Handle CPU online/offline notification events.
64db4cff 2623 */
9f680ab4
PM
2624static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2625 unsigned long action, void *hcpu)
64db4cff
PM
2626{
2627 long cpu = (long)hcpu;
27f4d280 2628 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2629 struct rcu_node *rnp = rdp->mynode;
6ce75a23 2630 struct rcu_state *rsp;
64db4cff 2631
300df91c 2632 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2633 switch (action) {
2634 case CPU_UP_PREPARE:
2635 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2636 rcu_prepare_cpu(cpu);
2637 rcu_prepare_kthreads(cpu);
a26ac245
PM
2638 break;
2639 case CPU_ONLINE:
0f962a5e
PM
2640 case CPU_DOWN_FAILED:
2641 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2642 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2643 break;
2644 case CPU_DOWN_PREPARE:
2645 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2646 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2647 break;
d0ec774c
PM
2648 case CPU_DYING:
2649 case CPU_DYING_FROZEN:
2650 /*
2d999e03
PM
2651 * The whole machine is "stopped" except this CPU, so we can
2652 * touch any data without introducing corruption. We send the
2653 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2654 */
6ce75a23
PM
2655 for_each_rcu_flavor(rsp)
2656 rcu_cleanup_dying_cpu(rsp);
7cb92499 2657 rcu_cleanup_after_idle(cpu);
d0ec774c 2658 break;
64db4cff
PM
2659 case CPU_DEAD:
2660 case CPU_DEAD_FROZEN:
2661 case CPU_UP_CANCELED:
2662 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
2663 for_each_rcu_flavor(rsp)
2664 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
2665 break;
2666 default:
2667 break;
2668 }
300df91c 2669 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2670 return NOTIFY_OK;
2671}
2672
b3dbec76
PM
2673/*
2674 * Spawn the kthread that handles this RCU flavor's grace periods.
2675 */
2676static int __init rcu_spawn_gp_kthread(void)
2677{
2678 unsigned long flags;
2679 struct rcu_node *rnp;
2680 struct rcu_state *rsp;
2681 struct task_struct *t;
2682
2683 for_each_rcu_flavor(rsp) {
2684 t = kthread_run(rcu_gp_kthread, rsp, rsp->name);
2685 BUG_ON(IS_ERR(t));
2686 rnp = rcu_get_root(rsp);
2687 raw_spin_lock_irqsave(&rnp->lock, flags);
2688 rsp->gp_kthread = t;
2689 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2690 }
2691 return 0;
2692}
2693early_initcall(rcu_spawn_gp_kthread);
2694
bbad9379
PM
2695/*
2696 * This function is invoked towards the end of the scheduler's initialization
2697 * process. Before this is called, the idle task might contain
2698 * RCU read-side critical sections (during which time, this idle
2699 * task is booting the system). After this function is called, the
2700 * idle tasks are prohibited from containing RCU read-side critical
2701 * sections. This function also enables RCU lockdep checking.
2702 */
2703void rcu_scheduler_starting(void)
2704{
2705 WARN_ON(num_online_cpus() != 1);
2706 WARN_ON(nr_context_switches() > 0);
2707 rcu_scheduler_active = 1;
2708}
2709
64db4cff
PM
2710/*
2711 * Compute the per-level fanout, either using the exact fanout specified
2712 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2713 */
2714#ifdef CONFIG_RCU_FANOUT_EXACT
2715static void __init rcu_init_levelspread(struct rcu_state *rsp)
2716{
2717 int i;
2718
f885b7f2 2719 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2720 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2721 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2722}
2723#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2724static void __init rcu_init_levelspread(struct rcu_state *rsp)
2725{
2726 int ccur;
2727 int cprv;
2728 int i;
2729
2730 cprv = NR_CPUS;
f885b7f2 2731 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2732 ccur = rsp->levelcnt[i];
2733 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2734 cprv = ccur;
2735 }
2736}
2737#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2738
2739/*
2740 * Helper function for rcu_init() that initializes one rcu_state structure.
2741 */
394f99a9
LJ
2742static void __init rcu_init_one(struct rcu_state *rsp,
2743 struct rcu_data __percpu *rda)
64db4cff 2744{
394f2769
PM
2745 static char *buf[] = { "rcu_node_0",
2746 "rcu_node_1",
2747 "rcu_node_2",
2748 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
2749 static char *fqs[] = { "rcu_node_fqs_0",
2750 "rcu_node_fqs_1",
2751 "rcu_node_fqs_2",
2752 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2753 int cpustride = 1;
2754 int i;
2755 int j;
2756 struct rcu_node *rnp;
2757
b6407e86
PM
2758 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2759
64db4cff
PM
2760 /* Initialize the level-tracking arrays. */
2761
f885b7f2
PM
2762 for (i = 0; i < rcu_num_lvls; i++)
2763 rsp->levelcnt[i] = num_rcu_lvl[i];
2764 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2765 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2766 rcu_init_levelspread(rsp);
2767
2768 /* Initialize the elements themselves, starting from the leaves. */
2769
f885b7f2 2770 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2771 cpustride *= rsp->levelspread[i];
2772 rnp = rsp->level[i];
2773 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2774 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2775 lockdep_set_class_and_name(&rnp->lock,
2776 &rcu_node_class[i], buf[i]);
394f2769
PM
2777 raw_spin_lock_init(&rnp->fqslock);
2778 lockdep_set_class_and_name(&rnp->fqslock,
2779 &rcu_fqs_class[i], fqs[i]);
f41d911f 2780 rnp->gpnum = 0;
64db4cff
PM
2781 rnp->qsmask = 0;
2782 rnp->qsmaskinit = 0;
2783 rnp->grplo = j * cpustride;
2784 rnp->grphi = (j + 1) * cpustride - 1;
2785 if (rnp->grphi >= NR_CPUS)
2786 rnp->grphi = NR_CPUS - 1;
2787 if (i == 0) {
2788 rnp->grpnum = 0;
2789 rnp->grpmask = 0;
2790 rnp->parent = NULL;
2791 } else {
2792 rnp->grpnum = j % rsp->levelspread[i - 1];
2793 rnp->grpmask = 1UL << rnp->grpnum;
2794 rnp->parent = rsp->level[i - 1] +
2795 j / rsp->levelspread[i - 1];
2796 }
2797 rnp->level = i;
12f5f524 2798 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2799 }
2800 }
0c34029a 2801
394f99a9 2802 rsp->rda = rda;
b3dbec76 2803 init_waitqueue_head(&rsp->gp_wq);
f885b7f2 2804 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2805 for_each_possible_cpu(i) {
4a90a068 2806 while (i > rnp->grphi)
0c34029a 2807 rnp++;
394f99a9 2808 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2809 rcu_boot_init_percpu_data(i, rsp);
2810 }
6ce75a23 2811 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
2812}
2813
f885b7f2
PM
2814/*
2815 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2816 * replace the definitions in rcutree.h because those are needed to size
2817 * the ->node array in the rcu_state structure.
2818 */
2819static void __init rcu_init_geometry(void)
2820{
2821 int i;
2822 int j;
cca6f393 2823 int n = nr_cpu_ids;
f885b7f2
PM
2824 int rcu_capacity[MAX_RCU_LVLS + 1];
2825
2826 /* If the compile-time values are accurate, just leave. */
2827 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2828 return;
2829
2830 /*
2831 * Compute number of nodes that can be handled an rcu_node tree
2832 * with the given number of levels. Setting rcu_capacity[0] makes
2833 * some of the arithmetic easier.
2834 */
2835 rcu_capacity[0] = 1;
2836 rcu_capacity[1] = rcu_fanout_leaf;
2837 for (i = 2; i <= MAX_RCU_LVLS; i++)
2838 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2839
2840 /*
2841 * The boot-time rcu_fanout_leaf parameter is only permitted
2842 * to increase the leaf-level fanout, not decrease it. Of course,
2843 * the leaf-level fanout cannot exceed the number of bits in
2844 * the rcu_node masks. Finally, the tree must be able to accommodate
2845 * the configured number of CPUs. Complain and fall back to the
2846 * compile-time values if these limits are exceeded.
2847 */
2848 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2849 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2850 n > rcu_capacity[MAX_RCU_LVLS]) {
2851 WARN_ON(1);
2852 return;
2853 }
2854
2855 /* Calculate the number of rcu_nodes at each level of the tree. */
2856 for (i = 1; i <= MAX_RCU_LVLS; i++)
2857 if (n <= rcu_capacity[i]) {
2858 for (j = 0; j <= i; j++)
2859 num_rcu_lvl[j] =
2860 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2861 rcu_num_lvls = i;
2862 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2863 num_rcu_lvl[j] = 0;
2864 break;
2865 }
2866
2867 /* Calculate the total number of rcu_node structures. */
2868 rcu_num_nodes = 0;
2869 for (i = 0; i <= MAX_RCU_LVLS; i++)
2870 rcu_num_nodes += num_rcu_lvl[i];
2871 rcu_num_nodes -= n;
2872}
2873
9f680ab4 2874void __init rcu_init(void)
64db4cff 2875{
017c4261 2876 int cpu;
9f680ab4 2877
f41d911f 2878 rcu_bootup_announce();
f885b7f2 2879 rcu_init_geometry();
394f99a9
LJ
2880 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2881 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2882 __rcu_init_preempt();
09223371 2883 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2884
2885 /*
2886 * We don't need protection against CPU-hotplug here because
2887 * this is called early in boot, before either interrupts
2888 * or the scheduler are operational.
2889 */
2890 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2891 for_each_online_cpu(cpu)
2892 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2893 check_cpu_stall_init();
64db4cff
PM
2894}
2895
1eba8f84 2896#include "rcutree_plugin.h"