]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/rcutree.c
rcu: Make call_rcu() leak callbacks for debug-object errors
[mirror_ubuntu-zesty-kernel.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
661a85dc 55#include <linux/random.h>
f7f7bac9 56#include <linux/ftrace_event.h>
d1d74d14 57#include <linux/suspend.h>
64db4cff 58
9f77da9f 59#include "rcutree.h"
29c00b4a
PM
60#include <trace/events/rcu.h>
61
62#include "rcu.h"
9f77da9f 63
f7f7bac9
SRRH
64/*
65 * Strings used in tracepoints need to be exported via the
66 * tracing system such that tools like perf and trace-cmd can
67 * translate the string address pointers to actual text.
68 */
69#define TPS(x) tracepoint_string(x)
70
64db4cff
PM
71/* Data structures. */
72
f885b7f2 73static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
394f2769 74static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
88b91c7c 75
f7f7bac9
SRRH
76/*
77 * In order to export the rcu_state name to the tracing tools, it
78 * needs to be added in the __tracepoint_string section.
79 * This requires defining a separate variable tp_<sname>_varname
80 * that points to the string being used, and this will allow
81 * the tracing userspace tools to be able to decipher the string
82 * address to the matching string.
83 */
a41bfeb2 84#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
f7f7bac9
SRRH
85static char sname##_varname[] = #sname; \
86static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
a41bfeb2 87struct rcu_state sname##_state = { \
6c90cc7b 88 .level = { &sname##_state.node[0] }, \
037b64ed 89 .call = cr, \
af446b70 90 .fqs_state = RCU_GP_IDLE, \
42c3533e
PM
91 .gpnum = 0UL - 300UL, \
92 .completed = 0UL - 300UL, \
7b2e6011 93 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
6c90cc7b
PM
94 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
95 .orphan_donetail = &sname##_state.orphan_donelist, \
7be7f0be 96 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
a4fbe35a 97 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
f7f7bac9 98 .name = sname##_varname, \
a4889858 99 .abbr = sabbr, \
a41bfeb2
SRRH
100}; \
101DEFINE_PER_CPU(struct rcu_data, sname##_data)
64db4cff 102
a41bfeb2
SRRH
103RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
104RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
b1f77b05 105
27f4d280 106static struct rcu_state *rcu_state;
6ce75a23 107LIST_HEAD(rcu_struct_flavors);
27f4d280 108
f885b7f2
PM
109/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
7e5c2dfb 111module_param(rcu_fanout_leaf, int, 0444);
f885b7f2
PM
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
114 NUM_RCU_LVL_0,
115 NUM_RCU_LVL_1,
116 NUM_RCU_LVL_2,
117 NUM_RCU_LVL_3,
118 NUM_RCU_LVL_4,
119};
120int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
121
b0d30417
PM
122/*
123 * The rcu_scheduler_active variable transitions from zero to one just
124 * before the first task is spawned. So when this variable is zero, RCU
125 * can assume that there is but one task, allowing RCU to (for example)
b44f6656 126 * optimize synchronize_sched() to a simple barrier(). When this variable
b0d30417
PM
127 * is one, RCU must actually do all the hard work required to detect real
128 * grace periods. This variable is also used to suppress boot-time false
129 * positives from lockdep-RCU error checking.
130 */
bbad9379
PM
131int rcu_scheduler_active __read_mostly;
132EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133
b0d30417
PM
134/*
135 * The rcu_scheduler_fully_active variable transitions from zero to one
136 * during the early_initcall() processing, which is after the scheduler
137 * is capable of creating new tasks. So RCU processing (for example,
138 * creating tasks for RCU priority boosting) must be delayed until after
139 * rcu_scheduler_fully_active transitions from zero to one. We also
140 * currently delay invocation of any RCU callbacks until after this point.
141 *
142 * It might later prove better for people registering RCU callbacks during
143 * early boot to take responsibility for these callbacks, but one step at
144 * a time.
145 */
146static int rcu_scheduler_fully_active __read_mostly;
147
a46e0899
PM
148#ifdef CONFIG_RCU_BOOST
149
a26ac245
PM
150/*
151 * Control variables for per-CPU and per-rcu_node kthreads. These
152 * handle all flavors of RCU.
153 */
154static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 155DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
5ece5bab 156DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 157DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 158
a46e0899
PM
159#endif /* #ifdef CONFIG_RCU_BOOST */
160
5d01bbd1 161static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
162static void invoke_rcu_core(void);
163static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 164
4a298656
PM
165/*
166 * Track the rcutorture test sequence number and the update version
167 * number within a given test. The rcutorture_testseq is incremented
168 * on every rcutorture module load and unload, so has an odd value
169 * when a test is running. The rcutorture_vernum is set to zero
170 * when rcutorture starts and is incremented on each rcutorture update.
171 * These variables enable correlating rcutorture output with the
172 * RCU tracing information.
173 */
174unsigned long rcutorture_testseq;
175unsigned long rcutorture_vernum;
176
fc2219d4
PM
177/*
178 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
179 * permit this function to be invoked without holding the root rcu_node
180 * structure's ->lock, but of course results can be subject to change.
181 */
182static int rcu_gp_in_progress(struct rcu_state *rsp)
183{
184 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
185}
186
b1f77b05 187/*
d6714c22 188 * Note a quiescent state. Because we do not need to know
b1f77b05 189 * how many quiescent states passed, just if there was at least
d6714c22 190 * one since the start of the grace period, this just sets a flag.
e4cc1f22 191 * The caller must have disabled preemption.
b1f77b05 192 */
d6714c22 193void rcu_sched_qs(int cpu)
b1f77b05 194{
25502a6c 195 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 196
e4cc1f22 197 if (rdp->passed_quiesce == 0)
f7f7bac9 198 trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 199 rdp->passed_quiesce = 1;
b1f77b05
IM
200}
201
d6714c22 202void rcu_bh_qs(int cpu)
b1f77b05 203{
25502a6c 204 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 205
e4cc1f22 206 if (rdp->passed_quiesce == 0)
f7f7bac9 207 trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
e4cc1f22 208 rdp->passed_quiesce = 1;
b1f77b05 209}
64db4cff 210
25502a6c
PM
211/*
212 * Note a context switch. This is a quiescent state for RCU-sched,
213 * and requires special handling for preemptible RCU.
e4cc1f22 214 * The caller must have disabled preemption.
25502a6c
PM
215 */
216void rcu_note_context_switch(int cpu)
217{
f7f7bac9 218 trace_rcu_utilization(TPS("Start context switch"));
25502a6c 219 rcu_sched_qs(cpu);
cba6d0d6 220 rcu_preempt_note_context_switch(cpu);
f7f7bac9 221 trace_rcu_utilization(TPS("End context switch"));
25502a6c 222}
29ce8310 223EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 224
90a4d2c0 225DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 226 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 227 .dynticks = ATOMIC_INIT(1),
90a4d2c0 228};
64db4cff 229
878d7439
ED
230static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
231static long qhimark = 10000; /* If this many pending, ignore blimit. */
232static long qlowmark = 100; /* Once only this many pending, use blimit. */
64db4cff 233
878d7439
ED
234module_param(blimit, long, 0444);
235module_param(qhimark, long, 0444);
236module_param(qlowmark, long, 0444);
3d76c082 237
026ad283
PM
238static ulong jiffies_till_first_fqs = ULONG_MAX;
239static ulong jiffies_till_next_fqs = ULONG_MAX;
d40011f6
PM
240
241module_param(jiffies_till_first_fqs, ulong, 0644);
242module_param(jiffies_till_next_fqs, ulong, 0644);
243
910ee45d
PM
244static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
245 struct rcu_data *rdp);
4cdfc175
PM
246static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *));
247static void force_quiescent_state(struct rcu_state *rsp);
a157229c 248static int rcu_pending(int cpu);
64db4cff
PM
249
250/*
d6714c22 251 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 252 */
d6714c22 253long rcu_batches_completed_sched(void)
64db4cff 254{
d6714c22 255 return rcu_sched_state.completed;
64db4cff 256}
d6714c22 257EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
258
259/*
260 * Return the number of RCU BH batches processed thus far for debug & stats.
261 */
262long rcu_batches_completed_bh(void)
263{
264 return rcu_bh_state.completed;
265}
266EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
267
bf66f18e
PM
268/*
269 * Force a quiescent state for RCU BH.
270 */
271void rcu_bh_force_quiescent_state(void)
272{
4cdfc175 273 force_quiescent_state(&rcu_bh_state);
bf66f18e
PM
274}
275EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
276
4a298656
PM
277/*
278 * Record the number of times rcutorture tests have been initiated and
279 * terminated. This information allows the debugfs tracing stats to be
280 * correlated to the rcutorture messages, even when the rcutorture module
281 * is being repeatedly loaded and unloaded. In other words, we cannot
282 * store this state in rcutorture itself.
283 */
284void rcutorture_record_test_transition(void)
285{
286 rcutorture_testseq++;
287 rcutorture_vernum = 0;
288}
289EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
290
291/*
292 * Record the number of writer passes through the current rcutorture test.
293 * This is also used to correlate debugfs tracing stats with the rcutorture
294 * messages.
295 */
296void rcutorture_record_progress(unsigned long vernum)
297{
298 rcutorture_vernum++;
299}
300EXPORT_SYMBOL_GPL(rcutorture_record_progress);
301
bf66f18e
PM
302/*
303 * Force a quiescent state for RCU-sched.
304 */
305void rcu_sched_force_quiescent_state(void)
306{
4cdfc175 307 force_quiescent_state(&rcu_sched_state);
bf66f18e
PM
308}
309EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
310
64db4cff
PM
311/*
312 * Does the CPU have callbacks ready to be invoked?
313 */
314static int
315cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
316{
3fbfbf7a
PM
317 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
318 rdp->nxttail[RCU_DONE_TAIL] != NULL;
64db4cff
PM
319}
320
321/*
dc35c893
PM
322 * Does the current CPU require a not-yet-started grace period?
323 * The caller must have disabled interrupts to prevent races with
324 * normal callback registry.
64db4cff
PM
325 */
326static int
327cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
328{
dc35c893 329 int i;
3fbfbf7a 330
dc35c893
PM
331 if (rcu_gp_in_progress(rsp))
332 return 0; /* No, a grace period is already in progress. */
dae6e64d 333 if (rcu_nocb_needs_gp(rsp))
34ed6246 334 return 1; /* Yes, a no-CBs CPU needs one. */
dc35c893
PM
335 if (!rdp->nxttail[RCU_NEXT_TAIL])
336 return 0; /* No, this is a no-CBs (or offline) CPU. */
337 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
338 return 1; /* Yes, this CPU has newly registered callbacks. */
339 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
340 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
341 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
342 rdp->nxtcompleted[i]))
343 return 1; /* Yes, CBs for future grace period. */
344 return 0; /* No grace period needed. */
64db4cff
PM
345}
346
347/*
348 * Return the root node of the specified rcu_state structure.
349 */
350static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
351{
352 return &rsp->node[0];
353}
354
9b2e4f18 355/*
adf5091e 356 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
9b2e4f18
PM
357 *
358 * If the new value of the ->dynticks_nesting counter now is zero,
359 * we really have entered idle, and must do the appropriate accounting.
360 * The caller must have disabled interrupts.
361 */
adf5091e
FW
362static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
363 bool user)
9b2e4f18 364{
f7f7bac9 365 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
cb349ca9 366 if (!user && !is_idle_task(current)) {
0989cb46
PM
367 struct task_struct *idle = idle_task(smp_processor_id());
368
f7f7bac9 369 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
bf1304e9 370 ftrace_dump(DUMP_ORIG);
0989cb46
PM
371 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
372 current->pid, current->comm,
373 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 374 }
aea1b35e 375 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
376 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
377 smp_mb__before_atomic_inc(); /* See above. */
378 atomic_inc(&rdtp->dynticks);
379 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
380 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
381
382 /*
adf5091e 383 * It is illegal to enter an extended quiescent state while
c44e2cdd
PM
384 * in an RCU read-side critical section.
385 */
386 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
387 "Illegal idle entry in RCU read-side critical section.");
388 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
389 "Illegal idle entry in RCU-bh read-side critical section.");
390 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
391 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 392}
64db4cff 393
adf5091e
FW
394/*
395 * Enter an RCU extended quiescent state, which can be either the
396 * idle loop or adaptive-tickless usermode execution.
64db4cff 397 */
adf5091e 398static void rcu_eqs_enter(bool user)
64db4cff 399{
4145fa7f 400 long long oldval;
64db4cff
PM
401 struct rcu_dynticks *rdtp;
402
64db4cff 403 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 404 oldval = rdtp->dynticks_nesting;
29e37d81
PM
405 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
406 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
407 rdtp->dynticks_nesting = 0;
408 else
409 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
adf5091e 410 rcu_eqs_enter_common(rdtp, oldval, user);
64db4cff 411}
adf5091e
FW
412
413/**
414 * rcu_idle_enter - inform RCU that current CPU is entering idle
415 *
416 * Enter idle mode, in other words, -leave- the mode in which RCU
417 * read-side critical sections can occur. (Though RCU read-side
418 * critical sections can occur in irq handlers in idle, a possibility
419 * handled by irq_enter() and irq_exit().)
420 *
421 * We crowbar the ->dynticks_nesting field to zero to allow for
422 * the possibility of usermode upcalls having messed up our count
423 * of interrupt nesting level during the prior busy period.
424 */
425void rcu_idle_enter(void)
426{
c5d900bf
FW
427 unsigned long flags;
428
429 local_irq_save(flags);
cb349ca9 430 rcu_eqs_enter(false);
c5d900bf 431 local_irq_restore(flags);
adf5091e 432}
8a2ecf47 433EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 434
2b1d5024 435#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
436/**
437 * rcu_user_enter - inform RCU that we are resuming userspace.
438 *
439 * Enter RCU idle mode right before resuming userspace. No use of RCU
440 * is permitted between this call and rcu_user_exit(). This way the
441 * CPU doesn't need to maintain the tick for RCU maintenance purposes
442 * when the CPU runs in userspace.
443 */
444void rcu_user_enter(void)
445{
91d1aa43 446 rcu_eqs_enter(1);
adf5091e
FW
447}
448
19dd1591
FW
449/**
450 * rcu_user_enter_after_irq - inform RCU that we are going to resume userspace
451 * after the current irq returns.
452 *
453 * This is similar to rcu_user_enter() but in the context of a non-nesting
454 * irq. After this call, RCU enters into idle mode when the interrupt
455 * returns.
456 */
457void rcu_user_enter_after_irq(void)
458{
459 unsigned long flags;
460 struct rcu_dynticks *rdtp;
461
462 local_irq_save(flags);
463 rdtp = &__get_cpu_var(rcu_dynticks);
464 /* Ensure this irq is interrupting a non-idle RCU state. */
465 WARN_ON_ONCE(!(rdtp->dynticks_nesting & DYNTICK_TASK_MASK));
466 rdtp->dynticks_nesting = 1;
467 local_irq_restore(flags);
468}
2b1d5024 469#endif /* CONFIG_RCU_USER_QS */
19dd1591 470
9b2e4f18
PM
471/**
472 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
473 *
474 * Exit from an interrupt handler, which might possibly result in entering
475 * idle mode, in other words, leaving the mode in which read-side critical
476 * sections can occur.
64db4cff 477 *
9b2e4f18
PM
478 * This code assumes that the idle loop never does anything that might
479 * result in unbalanced calls to irq_enter() and irq_exit(). If your
480 * architecture violates this assumption, RCU will give you what you
481 * deserve, good and hard. But very infrequently and irreproducibly.
482 *
483 * Use things like work queues to work around this limitation.
484 *
485 * You have been warned.
64db4cff 486 */
9b2e4f18 487void rcu_irq_exit(void)
64db4cff
PM
488{
489 unsigned long flags;
4145fa7f 490 long long oldval;
64db4cff
PM
491 struct rcu_dynticks *rdtp;
492
493 local_irq_save(flags);
494 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 495 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
496 rdtp->dynticks_nesting--;
497 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020 498 if (rdtp->dynticks_nesting)
f7f7bac9 499 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
b6fc6020 500 else
cb349ca9 501 rcu_eqs_enter_common(rdtp, oldval, true);
9b2e4f18
PM
502 local_irq_restore(flags);
503}
504
505/*
adf5091e 506 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
9b2e4f18
PM
507 *
508 * If the new value of the ->dynticks_nesting counter was previously zero,
509 * we really have exited idle, and must do the appropriate accounting.
510 * The caller must have disabled interrupts.
511 */
adf5091e
FW
512static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
513 int user)
9b2e4f18 514{
23b5c8fa
PM
515 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
516 atomic_inc(&rdtp->dynticks);
517 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
518 smp_mb__after_atomic_inc(); /* See above. */
519 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 520 rcu_cleanup_after_idle(smp_processor_id());
f7f7bac9 521 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
cb349ca9 522 if (!user && !is_idle_task(current)) {
0989cb46
PM
523 struct task_struct *idle = idle_task(smp_processor_id());
524
f7f7bac9 525 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
4145fa7f 526 oldval, rdtp->dynticks_nesting);
bf1304e9 527 ftrace_dump(DUMP_ORIG);
0989cb46
PM
528 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
529 current->pid, current->comm,
530 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
531 }
532}
533
adf5091e
FW
534/*
535 * Exit an RCU extended quiescent state, which can be either the
536 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 537 */
adf5091e 538static void rcu_eqs_exit(bool user)
9b2e4f18 539{
9b2e4f18
PM
540 struct rcu_dynticks *rdtp;
541 long long oldval;
542
9b2e4f18
PM
543 rdtp = &__get_cpu_var(rcu_dynticks);
544 oldval = rdtp->dynticks_nesting;
29e37d81
PM
545 WARN_ON_ONCE(oldval < 0);
546 if (oldval & DYNTICK_TASK_NEST_MASK)
547 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
548 else
549 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
adf5091e 550 rcu_eqs_exit_common(rdtp, oldval, user);
9b2e4f18 551}
adf5091e
FW
552
553/**
554 * rcu_idle_exit - inform RCU that current CPU is leaving idle
555 *
556 * Exit idle mode, in other words, -enter- the mode in which RCU
557 * read-side critical sections can occur.
558 *
559 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
560 * allow for the possibility of usermode upcalls messing up our count
561 * of interrupt nesting level during the busy period that is just
562 * now starting.
563 */
564void rcu_idle_exit(void)
565{
c5d900bf
FW
566 unsigned long flags;
567
568 local_irq_save(flags);
cb349ca9 569 rcu_eqs_exit(false);
c5d900bf 570 local_irq_restore(flags);
adf5091e 571}
8a2ecf47 572EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18 573
2b1d5024 574#ifdef CONFIG_RCU_USER_QS
adf5091e
FW
575/**
576 * rcu_user_exit - inform RCU that we are exiting userspace.
577 *
578 * Exit RCU idle mode while entering the kernel because it can
579 * run a RCU read side critical section anytime.
580 */
581void rcu_user_exit(void)
582{
91d1aa43 583 rcu_eqs_exit(1);
adf5091e
FW
584}
585
19dd1591
FW
586/**
587 * rcu_user_exit_after_irq - inform RCU that we won't resume to userspace
588 * idle mode after the current non-nesting irq returns.
589 *
590 * This is similar to rcu_user_exit() but in the context of an irq.
591 * This is called when the irq has interrupted a userspace RCU idle mode
592 * context. When the current non-nesting interrupt returns after this call,
593 * the CPU won't restore the RCU idle mode.
594 */
595void rcu_user_exit_after_irq(void)
596{
597 unsigned long flags;
598 struct rcu_dynticks *rdtp;
599
600 local_irq_save(flags);
601 rdtp = &__get_cpu_var(rcu_dynticks);
602 /* Ensure we are interrupting an RCU idle mode. */
603 WARN_ON_ONCE(rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK);
604 rdtp->dynticks_nesting += DYNTICK_TASK_EXIT_IDLE;
605 local_irq_restore(flags);
606}
2b1d5024 607#endif /* CONFIG_RCU_USER_QS */
19dd1591 608
9b2e4f18
PM
609/**
610 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
611 *
612 * Enter an interrupt handler, which might possibly result in exiting
613 * idle mode, in other words, entering the mode in which read-side critical
614 * sections can occur.
615 *
616 * Note that the Linux kernel is fully capable of entering an interrupt
617 * handler that it never exits, for example when doing upcalls to
618 * user mode! This code assumes that the idle loop never does upcalls to
619 * user mode. If your architecture does do upcalls from the idle loop (or
620 * does anything else that results in unbalanced calls to the irq_enter()
621 * and irq_exit() functions), RCU will give you what you deserve, good
622 * and hard. But very infrequently and irreproducibly.
623 *
624 * Use things like work queues to work around this limitation.
625 *
626 * You have been warned.
627 */
628void rcu_irq_enter(void)
629{
630 unsigned long flags;
631 struct rcu_dynticks *rdtp;
632 long long oldval;
633
634 local_irq_save(flags);
635 rdtp = &__get_cpu_var(rcu_dynticks);
636 oldval = rdtp->dynticks_nesting;
637 rdtp->dynticks_nesting++;
638 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020 639 if (oldval)
f7f7bac9 640 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
b6fc6020 641 else
cb349ca9 642 rcu_eqs_exit_common(rdtp, oldval, true);
64db4cff 643 local_irq_restore(flags);
64db4cff
PM
644}
645
646/**
647 * rcu_nmi_enter - inform RCU of entry to NMI context
648 *
649 * If the CPU was idle with dynamic ticks active, and there is no
650 * irq handler running, this updates rdtp->dynticks_nmi to let the
651 * RCU grace-period handling know that the CPU is active.
652 */
653void rcu_nmi_enter(void)
654{
655 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
656
23b5c8fa
PM
657 if (rdtp->dynticks_nmi_nesting == 0 &&
658 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 659 return;
23b5c8fa
PM
660 rdtp->dynticks_nmi_nesting++;
661 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
662 atomic_inc(&rdtp->dynticks);
663 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
664 smp_mb__after_atomic_inc(); /* See above. */
665 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
666}
667
668/**
669 * rcu_nmi_exit - inform RCU of exit from NMI context
670 *
671 * If the CPU was idle with dynamic ticks active, and there is no
672 * irq handler running, this updates rdtp->dynticks_nmi to let the
673 * RCU grace-period handling know that the CPU is no longer active.
674 */
675void rcu_nmi_exit(void)
676{
677 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
678
23b5c8fa
PM
679 if (rdtp->dynticks_nmi_nesting == 0 ||
680 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 681 return;
23b5c8fa
PM
682 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
683 smp_mb__before_atomic_inc(); /* See above. */
684 atomic_inc(&rdtp->dynticks);
685 smp_mb__after_atomic_inc(); /* Force delay to next write. */
686 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
687}
688
689/**
9b2e4f18 690 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 691 *
9b2e4f18 692 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 693 * or NMI handler, return true.
64db4cff 694 */
9b2e4f18 695int rcu_is_cpu_idle(void)
64db4cff 696{
34240697
PM
697 int ret;
698
699 preempt_disable();
700 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
701 preempt_enable();
702 return ret;
64db4cff 703}
e6b80a3b 704EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 705
62fde6ed 706#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
707
708/*
709 * Is the current CPU online? Disable preemption to avoid false positives
710 * that could otherwise happen due to the current CPU number being sampled,
711 * this task being preempted, its old CPU being taken offline, resuming
712 * on some other CPU, then determining that its old CPU is now offline.
713 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
714 * the check for rcu_scheduler_fully_active. Note also that it is OK
715 * for a CPU coming online to use RCU for one jiffy prior to marking itself
716 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
717 * offline to continue to use RCU for one jiffy after marking itself
718 * offline in the cpu_online_mask. This leniency is necessary given the
719 * non-atomic nature of the online and offline processing, for example,
720 * the fact that a CPU enters the scheduler after completing the CPU_DYING
721 * notifiers.
722 *
723 * This is also why RCU internally marks CPUs online during the
724 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
725 *
726 * Disable checking if in an NMI handler because we cannot safely report
727 * errors from NMI handlers anyway.
728 */
729bool rcu_lockdep_current_cpu_online(void)
730{
2036d94a
PM
731 struct rcu_data *rdp;
732 struct rcu_node *rnp;
c0d6d01b
PM
733 bool ret;
734
735 if (in_nmi())
736 return 1;
737 preempt_disable();
2036d94a
PM
738 rdp = &__get_cpu_var(rcu_sched_data);
739 rnp = rdp->mynode;
740 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
741 !rcu_scheduler_fully_active;
742 preempt_enable();
743 return ret;
744}
745EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
746
62fde6ed 747#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 748
64db4cff 749/**
9b2e4f18 750 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 751 *
9b2e4f18
PM
752 * If the current CPU is idle or running at a first-level (not nested)
753 * interrupt from idle, return true. The caller must have at least
754 * disabled preemption.
64db4cff 755 */
62e3cb14 756static int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 757{
9b2e4f18 758 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
759}
760
64db4cff
PM
761/*
762 * Snapshot the specified CPU's dynticks counter so that we can later
763 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 764 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
765 */
766static int dyntick_save_progress_counter(struct rcu_data *rdp)
767{
23b5c8fa 768 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 769 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
770}
771
772/*
773 * Return true if the specified CPU has passed through a quiescent
774 * state by virtue of being in or having passed through an dynticks
775 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 776 * for this same CPU, or by virtue of having been offline.
64db4cff
PM
777 */
778static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
779{
7eb4f455
PM
780 unsigned int curr;
781 unsigned int snap;
64db4cff 782
7eb4f455
PM
783 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
784 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
785
786 /*
787 * If the CPU passed through or entered a dynticks idle phase with
788 * no active irq/NMI handlers, then we can safely pretend that the CPU
789 * already acknowledged the request to pass through a quiescent
790 * state. Either way, that CPU cannot possibly be in an RCU
791 * read-side critical section that started before the beginning
792 * of the current RCU grace period.
793 */
7eb4f455 794 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
f7f7bac9 795 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
64db4cff
PM
796 rdp->dynticks_fqs++;
797 return 1;
798 }
799
a82dcc76
PM
800 /*
801 * Check for the CPU being offline, but only if the grace period
802 * is old enough. We don't need to worry about the CPU changing
803 * state: If we see it offline even once, it has been through a
804 * quiescent state.
805 *
806 * The reason for insisting that the grace period be at least
807 * one jiffy old is that CPUs that are not quite online and that
808 * have just gone offline can still execute RCU read-side critical
809 * sections.
810 */
811 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
812 return 0; /* Grace period is not old enough. */
813 barrier();
814 if (cpu_is_offline(rdp->cpu)) {
f7f7bac9 815 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
a82dcc76
PM
816 rdp->offline_fqs++;
817 return 1;
818 }
65d798f0
PM
819
820 /*
821 * There is a possibility that a CPU in adaptive-ticks state
822 * might run in the kernel with the scheduling-clock tick disabled
823 * for an extended time period. Invoke rcu_kick_nohz_cpu() to
824 * force the CPU to restart the scheduling-clock tick in this
825 * CPU is in this state.
826 */
827 rcu_kick_nohz_cpu(rdp->cpu);
828
a82dcc76 829 return 0;
64db4cff
PM
830}
831
64db4cff
PM
832static void record_gp_stall_check_time(struct rcu_state *rsp)
833{
834 rsp->gp_start = jiffies;
6bfc09e2 835 rsp->jiffies_stall = jiffies + rcu_jiffies_till_stall_check();
64db4cff
PM
836}
837
b637a328
PM
838/*
839 * Dump stacks of all tasks running on stalled CPUs. This is a fallback
840 * for architectures that do not implement trigger_all_cpu_backtrace().
841 * The NMI-triggered stack traces are more accurate because they are
842 * printed by the target CPU.
843 */
844static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
845{
846 int cpu;
847 unsigned long flags;
848 struct rcu_node *rnp;
849
850 rcu_for_each_leaf_node(rsp, rnp) {
851 raw_spin_lock_irqsave(&rnp->lock, flags);
852 if (rnp->qsmask != 0) {
853 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
854 if (rnp->qsmask & (1UL << cpu))
855 dump_cpu_task(rnp->grplo + cpu);
856 }
857 raw_spin_unlock_irqrestore(&rnp->lock, flags);
858 }
859}
860
64db4cff
PM
861static void print_other_cpu_stall(struct rcu_state *rsp)
862{
863 int cpu;
864 long delta;
865 unsigned long flags;
285fe294 866 int ndetected = 0;
64db4cff 867 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 868 long totqlen = 0;
64db4cff
PM
869
870 /* Only let one CPU complain about others per time interval. */
871
1304afb2 872 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 873 delta = jiffies - rsp->jiffies_stall;
fc2219d4 874 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 875 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
876 return;
877 }
6bfc09e2 878 rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 879 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 880
8cdd32a9
PM
881 /*
882 * OK, time to rat on our buddy...
883 * See Documentation/RCU/stallwarn.txt for info on how to debug
884 * RCU CPU stall warnings.
885 */
d7f3e207 886 pr_err("INFO: %s detected stalls on CPUs/tasks:",
4300aa64 887 rsp->name);
a858af28 888 print_cpu_stall_info_begin();
a0b6c9a7 889 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 890 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 891 ndetected += rcu_print_task_stall(rnp);
c8020a67
PM
892 if (rnp->qsmask != 0) {
893 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
894 if (rnp->qsmask & (1UL << cpu)) {
895 print_cpu_stall_info(rsp,
896 rnp->grplo + cpu);
897 ndetected++;
898 }
899 }
3acd9eb3 900 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 901 }
a858af28
PM
902
903 /*
904 * Now rat on any tasks that got kicked up to the root rcu_node
905 * due to CPU offlining.
906 */
907 rnp = rcu_get_root(rsp);
908 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 909 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
910 raw_spin_unlock_irqrestore(&rnp->lock, flags);
911
912 print_cpu_stall_info_end();
53bb857c
PM
913 for_each_possible_cpu(cpu)
914 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
915 pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
eee05882 916 smp_processor_id(), (long)(jiffies - rsp->gp_start),
53bb857c 917 rsp->gpnum, rsp->completed, totqlen);
9bc8b558 918 if (ndetected == 0)
d7f3e207 919 pr_err("INFO: Stall ended before state dump start\n");
9bc8b558 920 else if (!trigger_all_cpu_backtrace())
b637a328 921 rcu_dump_cpu_stacks(rsp);
c1dc0b9c 922
4cdfc175 923 /* Complain about tasks blocking the grace period. */
1ed509a2
PM
924
925 rcu_print_detail_task_stall(rsp);
926
4cdfc175 927 force_quiescent_state(rsp); /* Kick them all. */
64db4cff
PM
928}
929
930static void print_cpu_stall(struct rcu_state *rsp)
931{
53bb857c 932 int cpu;
64db4cff
PM
933 unsigned long flags;
934 struct rcu_node *rnp = rcu_get_root(rsp);
53bb857c 935 long totqlen = 0;
64db4cff 936
8cdd32a9
PM
937 /*
938 * OK, time to rat on ourselves...
939 * See Documentation/RCU/stallwarn.txt for info on how to debug
940 * RCU CPU stall warnings.
941 */
d7f3e207 942 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
a858af28
PM
943 print_cpu_stall_info_begin();
944 print_cpu_stall_info(rsp, smp_processor_id());
945 print_cpu_stall_info_end();
53bb857c
PM
946 for_each_possible_cpu(cpu)
947 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
948 pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
949 jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
4627e240
PM
950 if (!trigger_all_cpu_backtrace())
951 dump_stack();
c1dc0b9c 952
1304afb2 953 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 954 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0 955 rsp->jiffies_stall = jiffies +
6bfc09e2 956 3 * rcu_jiffies_till_stall_check() + 3;
1304afb2 957 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 958
64db4cff
PM
959 set_need_resched(); /* kick ourselves to get things going. */
960}
961
962static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
963{
bad6e139
PM
964 unsigned long j;
965 unsigned long js;
64db4cff
PM
966 struct rcu_node *rnp;
967
742734ee 968 if (rcu_cpu_stall_suppress)
c68de209 969 return;
bad6e139
PM
970 j = ACCESS_ONCE(jiffies);
971 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 972 rnp = rdp->mynode;
c96ea7cf
PM
973 if (rcu_gp_in_progress(rsp) &&
974 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
975
976 /* We haven't checked in, so go dump stack. */
977 print_cpu_stall(rsp);
978
bad6e139
PM
979 } else if (rcu_gp_in_progress(rsp) &&
980 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 981
bad6e139 982 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
983 print_other_cpu_stall(rsp);
984 }
985}
986
53d84e00
PM
987/**
988 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
989 *
990 * Set the stall-warning timeout way off into the future, thus preventing
991 * any RCU CPU stall-warning messages from appearing in the current set of
992 * RCU grace periods.
993 *
994 * The caller must disable hard irqs.
995 */
996void rcu_cpu_stall_reset(void)
997{
6ce75a23
PM
998 struct rcu_state *rsp;
999
1000 for_each_rcu_flavor(rsp)
1001 rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
53d84e00
PM
1002}
1003
3f5d3ea6
PM
1004/*
1005 * Initialize the specified rcu_data structure's callback list to empty.
1006 */
1007static void init_callback_list(struct rcu_data *rdp)
1008{
1009 int i;
1010
34ed6246
PM
1011 if (init_nocb_callback_list(rdp))
1012 return;
3f5d3ea6
PM
1013 rdp->nxtlist = NULL;
1014 for (i = 0; i < RCU_NEXT_SIZE; i++)
1015 rdp->nxttail[i] = &rdp->nxtlist;
1016}
1017
dc35c893
PM
1018/*
1019 * Determine the value that ->completed will have at the end of the
1020 * next subsequent grace period. This is used to tag callbacks so that
1021 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1022 * been dyntick-idle for an extended period with callbacks under the
1023 * influence of RCU_FAST_NO_HZ.
1024 *
1025 * The caller must hold rnp->lock with interrupts disabled.
1026 */
1027static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1028 struct rcu_node *rnp)
1029{
1030 /*
1031 * If RCU is idle, we just wait for the next grace period.
1032 * But we can only be sure that RCU is idle if we are looking
1033 * at the root rcu_node structure -- otherwise, a new grace
1034 * period might have started, but just not yet gotten around
1035 * to initializing the current non-root rcu_node structure.
1036 */
1037 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1038 return rnp->completed + 1;
1039
1040 /*
1041 * Otherwise, wait for a possible partial grace period and
1042 * then the subsequent full grace period.
1043 */
1044 return rnp->completed + 2;
1045}
1046
0446be48
PM
1047/*
1048 * Trace-event helper function for rcu_start_future_gp() and
1049 * rcu_nocb_wait_gp().
1050 */
1051static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
e66c33d5 1052 unsigned long c, const char *s)
0446be48
PM
1053{
1054 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1055 rnp->completed, c, rnp->level,
1056 rnp->grplo, rnp->grphi, s);
1057}
1058
1059/*
1060 * Start some future grace period, as needed to handle newly arrived
1061 * callbacks. The required future grace periods are recorded in each
1062 * rcu_node structure's ->need_future_gp field.
1063 *
1064 * The caller must hold the specified rcu_node structure's ->lock.
1065 */
1066static unsigned long __maybe_unused
1067rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1068{
1069 unsigned long c;
1070 int i;
1071 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1072
1073 /*
1074 * Pick up grace-period number for new callbacks. If this
1075 * grace period is already marked as needed, return to the caller.
1076 */
1077 c = rcu_cbs_completed(rdp->rsp, rnp);
f7f7bac9 1078 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
0446be48 1079 if (rnp->need_future_gp[c & 0x1]) {
f7f7bac9 1080 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
0446be48
PM
1081 return c;
1082 }
1083
1084 /*
1085 * If either this rcu_node structure or the root rcu_node structure
1086 * believe that a grace period is in progress, then we must wait
1087 * for the one following, which is in "c". Because our request
1088 * will be noticed at the end of the current grace period, we don't
1089 * need to explicitly start one.
1090 */
1091 if (rnp->gpnum != rnp->completed ||
1092 ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1093 rnp->need_future_gp[c & 0x1]++;
f7f7bac9 1094 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
0446be48
PM
1095 return c;
1096 }
1097
1098 /*
1099 * There might be no grace period in progress. If we don't already
1100 * hold it, acquire the root rcu_node structure's lock in order to
1101 * start one (if needed).
1102 */
1103 if (rnp != rnp_root)
1104 raw_spin_lock(&rnp_root->lock);
1105
1106 /*
1107 * Get a new grace-period number. If there really is no grace
1108 * period in progress, it will be smaller than the one we obtained
1109 * earlier. Adjust callbacks as needed. Note that even no-CBs
1110 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1111 */
1112 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1113 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1114 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1115 rdp->nxtcompleted[i] = c;
1116
1117 /*
1118 * If the needed for the required grace period is already
1119 * recorded, trace and leave.
1120 */
1121 if (rnp_root->need_future_gp[c & 0x1]) {
f7f7bac9 1122 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
0446be48
PM
1123 goto unlock_out;
1124 }
1125
1126 /* Record the need for the future grace period. */
1127 rnp_root->need_future_gp[c & 0x1]++;
1128
1129 /* If a grace period is not already in progress, start one. */
1130 if (rnp_root->gpnum != rnp_root->completed) {
f7f7bac9 1131 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
0446be48 1132 } else {
f7f7bac9 1133 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
910ee45d 1134 rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
0446be48
PM
1135 }
1136unlock_out:
1137 if (rnp != rnp_root)
1138 raw_spin_unlock(&rnp_root->lock);
1139 return c;
1140}
1141
1142/*
1143 * Clean up any old requests for the just-ended grace period. Also return
1144 * whether any additional grace periods have been requested. Also invoke
1145 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1146 * waiting for this grace period to complete.
1147 */
1148static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1149{
1150 int c = rnp->completed;
1151 int needmore;
1152 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1153
1154 rcu_nocb_gp_cleanup(rsp, rnp);
1155 rnp->need_future_gp[c & 0x1] = 0;
1156 needmore = rnp->need_future_gp[(c + 1) & 0x1];
f7f7bac9
SRRH
1157 trace_rcu_future_gp(rnp, rdp, c,
1158 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1159 return needmore;
1160}
1161
dc35c893
PM
1162/*
1163 * If there is room, assign a ->completed number to any callbacks on
1164 * this CPU that have not already been assigned. Also accelerate any
1165 * callbacks that were previously assigned a ->completed number that has
1166 * since proven to be too conservative, which can happen if callbacks get
1167 * assigned a ->completed number while RCU is idle, but with reference to
1168 * a non-root rcu_node structure. This function is idempotent, so it does
1169 * not hurt to call it repeatedly.
1170 *
1171 * The caller must hold rnp->lock with interrupts disabled.
1172 */
1173static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1174 struct rcu_data *rdp)
1175{
1176 unsigned long c;
1177 int i;
1178
1179 /* If the CPU has no callbacks, nothing to do. */
1180 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1181 return;
1182
1183 /*
1184 * Starting from the sublist containing the callbacks most
1185 * recently assigned a ->completed number and working down, find the
1186 * first sublist that is not assignable to an upcoming grace period.
1187 * Such a sublist has something in it (first two tests) and has
1188 * a ->completed number assigned that will complete sooner than
1189 * the ->completed number for newly arrived callbacks (last test).
1190 *
1191 * The key point is that any later sublist can be assigned the
1192 * same ->completed number as the newly arrived callbacks, which
1193 * means that the callbacks in any of these later sublist can be
1194 * grouped into a single sublist, whether or not they have already
1195 * been assigned a ->completed number.
1196 */
1197 c = rcu_cbs_completed(rsp, rnp);
1198 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1199 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1200 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1201 break;
1202
1203 /*
1204 * If there are no sublist for unassigned callbacks, leave.
1205 * At the same time, advance "i" one sublist, so that "i" will
1206 * index into the sublist where all the remaining callbacks should
1207 * be grouped into.
1208 */
1209 if (++i >= RCU_NEXT_TAIL)
1210 return;
1211
1212 /*
1213 * Assign all subsequent callbacks' ->completed number to the next
1214 * full grace period and group them all in the sublist initially
1215 * indexed by "i".
1216 */
1217 for (; i <= RCU_NEXT_TAIL; i++) {
1218 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1219 rdp->nxtcompleted[i] = c;
1220 }
910ee45d
PM
1221 /* Record any needed additional grace periods. */
1222 rcu_start_future_gp(rnp, rdp);
6d4b418c
PM
1223
1224 /* Trace depending on how much we were able to accelerate. */
1225 if (!*rdp->nxttail[RCU_WAIT_TAIL])
f7f7bac9 1226 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
6d4b418c 1227 else
f7f7bac9 1228 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
dc35c893
PM
1229}
1230
1231/*
1232 * Move any callbacks whose grace period has completed to the
1233 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1234 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1235 * sublist. This function is idempotent, so it does not hurt to
1236 * invoke it repeatedly. As long as it is not invoked -too- often...
1237 *
1238 * The caller must hold rnp->lock with interrupts disabled.
1239 */
1240static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1241 struct rcu_data *rdp)
1242{
1243 int i, j;
1244
1245 /* If the CPU has no callbacks, nothing to do. */
1246 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247 return;
1248
1249 /*
1250 * Find all callbacks whose ->completed numbers indicate that they
1251 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1252 */
1253 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1254 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1255 break;
1256 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1257 }
1258 /* Clean up any sublist tail pointers that were misordered above. */
1259 for (j = RCU_WAIT_TAIL; j < i; j++)
1260 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1261
1262 /* Copy down callbacks to fill in empty sublists. */
1263 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1264 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1265 break;
1266 rdp->nxttail[j] = rdp->nxttail[i];
1267 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1268 }
1269
1270 /* Classify any remaining callbacks. */
1271 rcu_accelerate_cbs(rsp, rnp, rdp);
1272}
1273
d09b62df 1274/*
ba9fbe95
PM
1275 * Update CPU-local rcu_data state to record the beginnings and ends of
1276 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1277 * structure corresponding to the current CPU, and must have irqs disabled.
d09b62df 1278 */
ba9fbe95 1279static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1280{
ba9fbe95 1281 /* Handle the ends of any preceding grace periods first. */
dc35c893 1282 if (rdp->completed == rnp->completed) {
d09b62df 1283
ba9fbe95 1284 /* No grace period end, so just accelerate recent callbacks. */
dc35c893 1285 rcu_accelerate_cbs(rsp, rnp, rdp);
d09b62df 1286
dc35c893
PM
1287 } else {
1288
1289 /* Advance callbacks. */
1290 rcu_advance_cbs(rsp, rnp, rdp);
d09b62df
PM
1291
1292 /* Remember that we saw this grace-period completion. */
1293 rdp->completed = rnp->completed;
f7f7bac9 1294 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
d09b62df 1295 }
398ebe60 1296
6eaef633
PM
1297 if (rdp->gpnum != rnp->gpnum) {
1298 /*
1299 * If the current grace period is waiting for this CPU,
1300 * set up to detect a quiescent state, otherwise don't
1301 * go looking for one.
1302 */
1303 rdp->gpnum = rnp->gpnum;
f7f7bac9 1304 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
6eaef633
PM
1305 rdp->passed_quiesce = 0;
1306 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1307 zero_cpu_stall_ticks(rdp);
1308 }
1309}
1310
d34ea322 1311static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
6eaef633
PM
1312{
1313 unsigned long flags;
1314 struct rcu_node *rnp;
1315
1316 local_irq_save(flags);
1317 rnp = rdp->mynode;
d34ea322
PM
1318 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1319 rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
6eaef633
PM
1320 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1321 local_irq_restore(flags);
1322 return;
1323 }
d34ea322 1324 __note_gp_changes(rsp, rnp, rdp);
6eaef633
PM
1325 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1326}
1327
b3dbec76 1328/*
7fdefc10 1329 * Initialize a new grace period.
b3dbec76 1330 */
7fdefc10 1331static int rcu_gp_init(struct rcu_state *rsp)
b3dbec76
PM
1332{
1333 struct rcu_data *rdp;
7fdefc10 1334 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1335
7fdefc10 1336 raw_spin_lock_irq(&rnp->lock);
4cdfc175 1337 rsp->gp_flags = 0; /* Clear all flags: New grace period. */
b3dbec76 1338
7fdefc10
PM
1339 if (rcu_gp_in_progress(rsp)) {
1340 /* Grace period already in progress, don't start another. */
1341 raw_spin_unlock_irq(&rnp->lock);
1342 return 0;
1343 }
1344
7fdefc10
PM
1345 /* Advance to a new grace period and initialize state. */
1346 rsp->gpnum++;
f7f7bac9 1347 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
7fdefc10
PM
1348 record_gp_stall_check_time(rsp);
1349 raw_spin_unlock_irq(&rnp->lock);
1350
1351 /* Exclude any concurrent CPU-hotplug operations. */
a4fbe35a 1352 mutex_lock(&rsp->onoff_mutex);
7fdefc10
PM
1353
1354 /*
1355 * Set the quiescent-state-needed bits in all the rcu_node
1356 * structures for all currently online CPUs in breadth-first order,
1357 * starting from the root rcu_node structure, relying on the layout
1358 * of the tree within the rsp->node[] array. Note that other CPUs
1359 * will access only the leaves of the hierarchy, thus seeing that no
1360 * grace period is in progress, at least until the corresponding
1361 * leaf node has been initialized. In addition, we have excluded
1362 * CPU-hotplug operations.
1363 *
1364 * The grace period cannot complete until the initialization
1365 * process finishes, because this kthread handles both.
1366 */
1367 rcu_for_each_node_breadth_first(rsp, rnp) {
b3dbec76 1368 raw_spin_lock_irq(&rnp->lock);
b3dbec76 1369 rdp = this_cpu_ptr(rsp->rda);
7fdefc10
PM
1370 rcu_preempt_check_blocked_tasks(rnp);
1371 rnp->qsmask = rnp->qsmaskinit;
0446be48 1372 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
25d30cf4 1373 WARN_ON_ONCE(rnp->completed != rsp->completed);
0446be48 1374 ACCESS_ONCE(rnp->completed) = rsp->completed;
7fdefc10 1375 if (rnp == rdp->mynode)
ce3d9c03 1376 __note_gp_changes(rsp, rnp, rdp);
7fdefc10
PM
1377 rcu_preempt_boost_start_gp(rnp);
1378 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1379 rnp->level, rnp->grplo,
1380 rnp->grphi, rnp->qsmask);
1381 raw_spin_unlock_irq(&rnp->lock);
661a85dc 1382#ifdef CONFIG_PROVE_RCU_DELAY
971394f3 1383 if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
81e59494 1384 system_state == SYSTEM_RUNNING)
971394f3 1385 udelay(200);
661a85dc 1386#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
7fdefc10
PM
1387 cond_resched();
1388 }
b3dbec76 1389
a4fbe35a 1390 mutex_unlock(&rsp->onoff_mutex);
7fdefc10
PM
1391 return 1;
1392}
b3dbec76 1393
4cdfc175
PM
1394/*
1395 * Do one round of quiescent-state forcing.
1396 */
1397int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1398{
1399 int fqs_state = fqs_state_in;
1400 struct rcu_node *rnp = rcu_get_root(rsp);
1401
1402 rsp->n_force_qs++;
1403 if (fqs_state == RCU_SAVE_DYNTICK) {
1404 /* Collect dyntick-idle snapshots. */
1405 force_qs_rnp(rsp, dyntick_save_progress_counter);
1406 fqs_state = RCU_FORCE_QS;
1407 } else {
1408 /* Handle dyntick-idle and offline CPUs. */
1409 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1410 }
1411 /* Clear flag to prevent immediate re-entry. */
1412 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1413 raw_spin_lock_irq(&rnp->lock);
1414 rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1415 raw_spin_unlock_irq(&rnp->lock);
1416 }
1417 return fqs_state;
1418}
1419
7fdefc10
PM
1420/*
1421 * Clean up after the old grace period.
1422 */
4cdfc175 1423static void rcu_gp_cleanup(struct rcu_state *rsp)
7fdefc10
PM
1424{
1425 unsigned long gp_duration;
dae6e64d 1426 int nocb = 0;
7fdefc10
PM
1427 struct rcu_data *rdp;
1428 struct rcu_node *rnp = rcu_get_root(rsp);
b3dbec76 1429
7fdefc10
PM
1430 raw_spin_lock_irq(&rnp->lock);
1431 gp_duration = jiffies - rsp->gp_start;
1432 if (gp_duration > rsp->gp_max)
1433 rsp->gp_max = gp_duration;
b3dbec76 1434
7fdefc10
PM
1435 /*
1436 * We know the grace period is complete, but to everyone else
1437 * it appears to still be ongoing. But it is also the case
1438 * that to everyone else it looks like there is nothing that
1439 * they can do to advance the grace period. It is therefore
1440 * safe for us to drop the lock in order to mark the grace
1441 * period as completed in all of the rcu_node structures.
7fdefc10 1442 */
5d4b8659 1443 raw_spin_unlock_irq(&rnp->lock);
b3dbec76 1444
5d4b8659
PM
1445 /*
1446 * Propagate new ->completed value to rcu_node structures so
1447 * that other CPUs don't have to wait until the start of the next
1448 * grace period to process their callbacks. This also avoids
1449 * some nasty RCU grace-period initialization races by forcing
1450 * the end of the current grace period to be completely recorded in
1451 * all of the rcu_node structures before the beginning of the next
1452 * grace period is recorded in any of the rcu_node structures.
1453 */
1454 rcu_for_each_node_breadth_first(rsp, rnp) {
755609a9 1455 raw_spin_lock_irq(&rnp->lock);
0446be48 1456 ACCESS_ONCE(rnp->completed) = rsp->gpnum;
b11cc576
PM
1457 rdp = this_cpu_ptr(rsp->rda);
1458 if (rnp == rdp->mynode)
470716fc 1459 __note_gp_changes(rsp, rnp, rdp);
0446be48 1460 nocb += rcu_future_gp_cleanup(rsp, rnp);
5d4b8659
PM
1461 raw_spin_unlock_irq(&rnp->lock);
1462 cond_resched();
7fdefc10 1463 }
5d4b8659
PM
1464 rnp = rcu_get_root(rsp);
1465 raw_spin_lock_irq(&rnp->lock);
dae6e64d 1466 rcu_nocb_gp_set(rnp, nocb);
7fdefc10
PM
1467
1468 rsp->completed = rsp->gpnum; /* Declare grace period done. */
f7f7bac9 1469 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
7fdefc10 1470 rsp->fqs_state = RCU_GP_IDLE;
5d4b8659 1471 rdp = this_cpu_ptr(rsp->rda);
b11cc576 1472 rcu_advance_cbs(rsp, rnp, rdp); /* Reduce false positives below. */
7fdefc10
PM
1473 if (cpu_needs_another_gp(rsp, rdp))
1474 rsp->gp_flags = 1;
1475 raw_spin_unlock_irq(&rnp->lock);
7fdefc10
PM
1476}
1477
1478/*
1479 * Body of kthread that handles grace periods.
1480 */
1481static int __noreturn rcu_gp_kthread(void *arg)
1482{
4cdfc175 1483 int fqs_state;
d40011f6 1484 unsigned long j;
4cdfc175 1485 int ret;
7fdefc10
PM
1486 struct rcu_state *rsp = arg;
1487 struct rcu_node *rnp = rcu_get_root(rsp);
1488
1489 for (;;) {
1490
1491 /* Handle grace-period start. */
1492 for (;;) {
4cdfc175
PM
1493 wait_event_interruptible(rsp->gp_wq,
1494 rsp->gp_flags &
1495 RCU_GP_FLAG_INIT);
1496 if ((rsp->gp_flags & RCU_GP_FLAG_INIT) &&
1497 rcu_gp_init(rsp))
7fdefc10
PM
1498 break;
1499 cond_resched();
1500 flush_signals(current);
1501 }
cabc49c1 1502
4cdfc175
PM
1503 /* Handle quiescent-state forcing. */
1504 fqs_state = RCU_SAVE_DYNTICK;
d40011f6
PM
1505 j = jiffies_till_first_fqs;
1506 if (j > HZ) {
1507 j = HZ;
1508 jiffies_till_first_fqs = HZ;
1509 }
cabc49c1 1510 for (;;) {
d40011f6 1511 rsp->jiffies_force_qs = jiffies + j;
4cdfc175
PM
1512 ret = wait_event_interruptible_timeout(rsp->gp_wq,
1513 (rsp->gp_flags & RCU_GP_FLAG_FQS) ||
1514 (!ACCESS_ONCE(rnp->qsmask) &&
1515 !rcu_preempt_blocked_readers_cgp(rnp)),
d40011f6 1516 j);
4cdfc175 1517 /* If grace period done, leave loop. */
cabc49c1 1518 if (!ACCESS_ONCE(rnp->qsmask) &&
4cdfc175 1519 !rcu_preempt_blocked_readers_cgp(rnp))
cabc49c1 1520 break;
4cdfc175
PM
1521 /* If time for quiescent-state forcing, do it. */
1522 if (ret == 0 || (rsp->gp_flags & RCU_GP_FLAG_FQS)) {
1523 fqs_state = rcu_gp_fqs(rsp, fqs_state);
1524 cond_resched();
1525 } else {
1526 /* Deal with stray signal. */
1527 cond_resched();
1528 flush_signals(current);
1529 }
d40011f6
PM
1530 j = jiffies_till_next_fqs;
1531 if (j > HZ) {
1532 j = HZ;
1533 jiffies_till_next_fqs = HZ;
1534 } else if (j < 1) {
1535 j = 1;
1536 jiffies_till_next_fqs = 1;
1537 }
cabc49c1 1538 }
4cdfc175
PM
1539
1540 /* Handle grace-period end. */
1541 rcu_gp_cleanup(rsp);
b3dbec76 1542 }
b3dbec76
PM
1543}
1544
016a8d5b
SR
1545static void rsp_wakeup(struct irq_work *work)
1546{
1547 struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1548
1549 /* Wake up rcu_gp_kthread() to start the grace period. */
1550 wake_up(&rsp->gp_wq);
1551}
1552
64db4cff
PM
1553/*
1554 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1555 * in preparation for detecting the next grace period. The caller must hold
b8462084 1556 * the root node's ->lock and hard irqs must be disabled.
e5601400
PM
1557 *
1558 * Note that it is legal for a dying CPU (which is marked as offline) to
1559 * invoke this function. This can happen when the dying CPU reports its
1560 * quiescent state.
64db4cff
PM
1561 */
1562static void
910ee45d
PM
1563rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1564 struct rcu_data *rdp)
64db4cff 1565{
b8462084 1566 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
afe24b12 1567 /*
b3dbec76 1568 * Either we have not yet spawned the grace-period
62da1921
PM
1569 * task, this CPU does not need another grace period,
1570 * or a grace period is already in progress.
b3dbec76 1571 * Either way, don't start a new grace period.
afe24b12 1572 */
afe24b12
PM
1573 return;
1574 }
4cdfc175 1575 rsp->gp_flags = RCU_GP_FLAG_INIT;
62da1921 1576
016a8d5b
SR
1577 /*
1578 * We can't do wakeups while holding the rnp->lock, as that
1579 * could cause possible deadlocks with the rq->lock. Deter
1580 * the wakeup to interrupt context.
1581 */
1582 irq_work_queue(&rsp->wakeup_work);
64db4cff
PM
1583}
1584
910ee45d
PM
1585/*
1586 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1587 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
1588 * is invoked indirectly from rcu_advance_cbs(), which would result in
1589 * endless recursion -- or would do so if it wasn't for the self-deadlock
1590 * that is encountered beforehand.
1591 */
1592static void
1593rcu_start_gp(struct rcu_state *rsp)
1594{
1595 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1596 struct rcu_node *rnp = rcu_get_root(rsp);
1597
1598 /*
1599 * If there is no grace period in progress right now, any
1600 * callbacks we have up to this point will be satisfied by the
1601 * next grace period. Also, advancing the callbacks reduces the
1602 * probability of false positives from cpu_needs_another_gp()
1603 * resulting in pointless grace periods. So, advance callbacks
1604 * then start the grace period!
1605 */
1606 rcu_advance_cbs(rsp, rnp, rdp);
1607 rcu_start_gp_advanced(rsp, rnp, rdp);
1608}
1609
f41d911f 1610/*
d3f6bad3
PM
1611 * Report a full set of quiescent states to the specified rcu_state
1612 * data structure. This involves cleaning up after the prior grace
1613 * period and letting rcu_start_gp() start up the next grace period
b8462084
PM
1614 * if one is needed. Note that the caller must hold rnp->lock, which
1615 * is released before return.
f41d911f 1616 */
d3f6bad3 1617static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1618 __releases(rcu_get_root(rsp)->lock)
f41d911f 1619{
fc2219d4 1620 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
cabc49c1
PM
1621 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1622 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
f41d911f
PM
1623}
1624
64db4cff 1625/*
d3f6bad3
PM
1626 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1627 * Allows quiescent states for a group of CPUs to be reported at one go
1628 * to the specified rcu_node structure, though all the CPUs in the group
1629 * must be represented by the same rcu_node structure (which need not be
1630 * a leaf rcu_node structure, though it often will be). That structure's
1631 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1632 */
1633static void
d3f6bad3
PM
1634rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1635 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1636 __releases(rnp->lock)
1637{
28ecd580
PM
1638 struct rcu_node *rnp_c;
1639
64db4cff
PM
1640 /* Walk up the rcu_node hierarchy. */
1641 for (;;) {
1642 if (!(rnp->qsmask & mask)) {
1643
1644 /* Our bit has already been cleared, so done. */
1304afb2 1645 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1646 return;
1647 }
1648 rnp->qsmask &= ~mask;
d4c08f2a
PM
1649 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1650 mask, rnp->qsmask, rnp->level,
1651 rnp->grplo, rnp->grphi,
1652 !!rnp->gp_tasks);
27f4d280 1653 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1654
1655 /* Other bits still set at this level, so done. */
1304afb2 1656 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1657 return;
1658 }
1659 mask = rnp->grpmask;
1660 if (rnp->parent == NULL) {
1661
1662 /* No more levels. Exit loop holding root lock. */
1663
1664 break;
1665 }
1304afb2 1666 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1667 rnp_c = rnp;
64db4cff 1668 rnp = rnp->parent;
1304afb2 1669 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1670 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1671 }
1672
1673 /*
1674 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1675 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1676 * to clean up and start the next grace period if one is needed.
64db4cff 1677 */
d3f6bad3 1678 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1679}
1680
1681/*
d3f6bad3
PM
1682 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1683 * structure. This must be either called from the specified CPU, or
1684 * called when the specified CPU is known to be offline (and when it is
1685 * also known that no other CPU is concurrently trying to help the offline
1686 * CPU). The lastcomp argument is used to make sure we are still in the
1687 * grace period of interest. We don't want to end the current grace period
1688 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1689 */
1690static void
d7d6a11e 1691rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1692{
1693 unsigned long flags;
1694 unsigned long mask;
1695 struct rcu_node *rnp;
1696
1697 rnp = rdp->mynode;
1304afb2 1698 raw_spin_lock_irqsave(&rnp->lock, flags);
d7d6a11e
PM
1699 if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1700 rnp->completed == rnp->gpnum) {
64db4cff
PM
1701
1702 /*
e4cc1f22
PM
1703 * The grace period in which this quiescent state was
1704 * recorded has ended, so don't report it upwards.
1705 * We will instead need a new quiescent state that lies
1706 * within the current grace period.
64db4cff 1707 */
e4cc1f22 1708 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1709 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1710 return;
1711 }
1712 mask = rdp->grpmask;
1713 if ((rnp->qsmask & mask) == 0) {
1304afb2 1714 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1715 } else {
1716 rdp->qs_pending = 0;
1717
1718 /*
1719 * This GP can't end until cpu checks in, so all of our
1720 * callbacks can be processed during the next GP.
1721 */
dc35c893 1722 rcu_accelerate_cbs(rsp, rnp, rdp);
64db4cff 1723
d3f6bad3 1724 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1725 }
1726}
1727
1728/*
1729 * Check to see if there is a new grace period of which this CPU
1730 * is not yet aware, and if so, set up local rcu_data state for it.
1731 * Otherwise, see if this CPU has just passed through its first
1732 * quiescent state for this grace period, and record that fact if so.
1733 */
1734static void
1735rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1736{
05eb552b
PM
1737 /* Check for grace-period ends and beginnings. */
1738 note_gp_changes(rsp, rdp);
64db4cff
PM
1739
1740 /*
1741 * Does this CPU still need to do its part for current grace period?
1742 * If no, return and let the other CPUs do their part as well.
1743 */
1744 if (!rdp->qs_pending)
1745 return;
1746
1747 /*
1748 * Was there a quiescent state since the beginning of the grace
1749 * period? If no, then exit and wait for the next call.
1750 */
e4cc1f22 1751 if (!rdp->passed_quiesce)
64db4cff
PM
1752 return;
1753
d3f6bad3
PM
1754 /*
1755 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1756 * judge of that).
1757 */
d7d6a11e 1758 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
64db4cff
PM
1759}
1760
1761#ifdef CONFIG_HOTPLUG_CPU
1762
e74f4c45 1763/*
b1420f1c
PM
1764 * Send the specified CPU's RCU callbacks to the orphanage. The
1765 * specified CPU must be offline, and the caller must hold the
7b2e6011 1766 * ->orphan_lock.
e74f4c45 1767 */
b1420f1c
PM
1768static void
1769rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1770 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1771{
3fbfbf7a 1772 /* No-CBs CPUs do not have orphanable callbacks. */
d1e43fa5 1773 if (rcu_is_nocb_cpu(rdp->cpu))
3fbfbf7a
PM
1774 return;
1775
b1420f1c
PM
1776 /*
1777 * Orphan the callbacks. First adjust the counts. This is safe
abfd6e58
PM
1778 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1779 * cannot be running now. Thus no memory barrier is required.
b1420f1c 1780 */
a50c3af9 1781 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1782 rsp->qlen_lazy += rdp->qlen_lazy;
1783 rsp->qlen += rdp->qlen;
1784 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1785 rdp->qlen_lazy = 0;
1d1fb395 1786 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1787 }
1788
1789 /*
b1420f1c
PM
1790 * Next, move those callbacks still needing a grace period to
1791 * the orphanage, where some other CPU will pick them up.
1792 * Some of the callbacks might have gone partway through a grace
1793 * period, but that is too bad. They get to start over because we
1794 * cannot assume that grace periods are synchronized across CPUs.
1795 * We don't bother updating the ->nxttail[] array yet, instead
1796 * we just reset the whole thing later on.
a50c3af9 1797 */
b1420f1c
PM
1798 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1799 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1800 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1801 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1802 }
1803
1804 /*
b1420f1c
PM
1805 * Then move the ready-to-invoke callbacks to the orphanage,
1806 * where some other CPU will pick them up. These will not be
1807 * required to pass though another grace period: They are done.
a50c3af9 1808 */
e5601400 1809 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1810 *rsp->orphan_donetail = rdp->nxtlist;
1811 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1812 }
e74f4c45 1813
b1420f1c 1814 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1815 init_callback_list(rdp);
b1420f1c
PM
1816}
1817
1818/*
1819 * Adopt the RCU callbacks from the specified rcu_state structure's
7b2e6011 1820 * orphanage. The caller must hold the ->orphan_lock.
b1420f1c
PM
1821 */
1822static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1823{
1824 int i;
1825 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1826
3fbfbf7a
PM
1827 /* No-CBs CPUs are handled specially. */
1828 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp))
1829 return;
1830
b1420f1c
PM
1831 /* Do the accounting first. */
1832 rdp->qlen_lazy += rsp->qlen_lazy;
1833 rdp->qlen += rsp->qlen;
1834 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1835 if (rsp->qlen_lazy != rsp->qlen)
1836 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1837 rsp->qlen_lazy = 0;
1838 rsp->qlen = 0;
1839
1840 /*
1841 * We do not need a memory barrier here because the only way we
1842 * can get here if there is an rcu_barrier() in flight is if
1843 * we are the task doing the rcu_barrier().
1844 */
1845
1846 /* First adopt the ready-to-invoke callbacks. */
1847 if (rsp->orphan_donelist != NULL) {
1848 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1849 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1850 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1851 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1852 rdp->nxttail[i] = rsp->orphan_donetail;
1853 rsp->orphan_donelist = NULL;
1854 rsp->orphan_donetail = &rsp->orphan_donelist;
1855 }
1856
1857 /* And then adopt the callbacks that still need a grace period. */
1858 if (rsp->orphan_nxtlist != NULL) {
1859 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1860 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1861 rsp->orphan_nxtlist = NULL;
1862 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1863 }
1864}
1865
1866/*
1867 * Trace the fact that this CPU is going offline.
1868 */
1869static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1870{
1871 RCU_TRACE(unsigned long mask);
1872 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1873 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1874
1875 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1876 trace_rcu_grace_period(rsp->name,
1877 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
f7f7bac9 1878 TPS("cpuofl"));
64db4cff
PM
1879}
1880
1881/*
e5601400 1882 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1883 * this fact from process context. Do the remainder of the cleanup,
1884 * including orphaning the outgoing CPU's RCU callbacks, and also
1331e7a1
PM
1885 * adopting them. There can only be one CPU hotplug operation at a time,
1886 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1887 */
e5601400 1888static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1889{
2036d94a
PM
1890 unsigned long flags;
1891 unsigned long mask;
1892 int need_report = 0;
e5601400 1893 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1894 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1895
2036d94a 1896 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 1897 rcu_boost_kthread_setaffinity(rnp, -1);
2036d94a 1898
b1420f1c 1899 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1900
1901 /* Exclude any attempts to start a new grace period. */
a4fbe35a 1902 mutex_lock(&rsp->onoff_mutex);
7b2e6011 1903 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2036d94a 1904
b1420f1c
PM
1905 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1906 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1907 rcu_adopt_orphan_cbs(rsp);
1908
2036d94a
PM
1909 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1910 mask = rdp->grpmask; /* rnp->grplo is constant. */
1911 do {
1912 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1913 rnp->qsmaskinit &= ~mask;
1914 if (rnp->qsmaskinit != 0) {
1915 if (rnp != rdp->mynode)
1916 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1917 break;
1918 }
1919 if (rnp == rdp->mynode)
1920 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1921 else
1922 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1923 mask = rnp->grpmask;
1924 rnp = rnp->parent;
1925 } while (rnp != NULL);
1926
1927 /*
1928 * We still hold the leaf rcu_node structure lock here, and
1929 * irqs are still disabled. The reason for this subterfuge is
7b2e6011 1930 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2036d94a
PM
1931 * held leads to deadlock.
1932 */
7b2e6011 1933 raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2036d94a
PM
1934 rnp = rdp->mynode;
1935 if (need_report & RCU_OFL_TASKS_NORM_GP)
1936 rcu_report_unblock_qs_rnp(rnp, flags);
1937 else
1938 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1939 if (need_report & RCU_OFL_TASKS_EXP_GP)
1940 rcu_report_exp_rnp(rsp, rnp, true);
cf01537e
PM
1941 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
1942 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
1943 cpu, rdp->qlen, rdp->nxtlist);
0d8ee37e
PM
1944 init_callback_list(rdp);
1945 /* Disallow further callbacks on this CPU. */
1946 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
a4fbe35a 1947 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
1948}
1949
1950#else /* #ifdef CONFIG_HOTPLUG_CPU */
1951
e5601400 1952static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1953{
1954}
1955
e5601400 1956static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1957{
1958}
1959
1960#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1961
1962/*
1963 * Invoke any RCU callbacks that have made it to the end of their grace
1964 * period. Thottle as specified by rdp->blimit.
1965 */
37c72e56 1966static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1967{
1968 unsigned long flags;
1969 struct rcu_head *next, *list, **tail;
878d7439
ED
1970 long bl, count, count_lazy;
1971 int i;
64db4cff 1972
dc35c893 1973 /* If no callbacks are ready, just return. */
29c00b4a 1974 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1975 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1976 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1977 need_resched(), is_idle_task(current),
1978 rcu_is_callbacks_kthread());
64db4cff 1979 return;
29c00b4a 1980 }
64db4cff
PM
1981
1982 /*
1983 * Extract the list of ready callbacks, disabling to prevent
1984 * races with call_rcu() from interrupt handlers.
1985 */
1986 local_irq_save(flags);
8146c4e2 1987 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1988 bl = rdp->blimit;
486e2593 1989 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1990 list = rdp->nxtlist;
1991 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1992 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1993 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1994 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1995 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1996 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1997 local_irq_restore(flags);
1998
1999 /* Invoke callbacks. */
486e2593 2000 count = count_lazy = 0;
64db4cff
PM
2001 while (list) {
2002 next = list->next;
2003 prefetch(next);
551d55a9 2004 debug_rcu_head_unqueue(list);
486e2593
PM
2005 if (__rcu_reclaim(rsp->name, list))
2006 count_lazy++;
64db4cff 2007 list = next;
dff1672d
PM
2008 /* Stop only if limit reached and CPU has something to do. */
2009 if (++count >= bl &&
2010 (need_resched() ||
2011 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
2012 break;
2013 }
2014
2015 local_irq_save(flags);
4968c300
PM
2016 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2017 is_idle_task(current),
2018 rcu_is_callbacks_kthread());
64db4cff
PM
2019
2020 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
2021 if (list != NULL) {
2022 *tail = rdp->nxtlist;
2023 rdp->nxtlist = list;
b41772ab
PM
2024 for (i = 0; i < RCU_NEXT_SIZE; i++)
2025 if (&rdp->nxtlist == rdp->nxttail[i])
2026 rdp->nxttail[i] = tail;
64db4cff
PM
2027 else
2028 break;
2029 }
b1420f1c
PM
2030 smp_mb(); /* List handling before counting for rcu_barrier(). */
2031 rdp->qlen_lazy -= count_lazy;
1d1fb395 2032 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 2033 rdp->n_cbs_invoked += count;
64db4cff
PM
2034
2035 /* Reinstate batch limit if we have worked down the excess. */
2036 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2037 rdp->blimit = blimit;
2038
37c72e56
PM
2039 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2040 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2041 rdp->qlen_last_fqs_check = 0;
2042 rdp->n_force_qs_snap = rsp->n_force_qs;
2043 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2044 rdp->qlen_last_fqs_check = rdp->qlen;
cfca9279 2045 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
37c72e56 2046
64db4cff
PM
2047 local_irq_restore(flags);
2048
e0f23060 2049 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 2050 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2051 invoke_rcu_core();
64db4cff
PM
2052}
2053
2054/*
2055 * Check to see if this CPU is in a non-context-switch quiescent state
2056 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 2057 * Also schedule RCU core processing.
64db4cff 2058 *
9b2e4f18 2059 * This function must be called from hardirq context. It is normally
64db4cff
PM
2060 * invoked from the scheduling-clock interrupt. If rcu_pending returns
2061 * false, there is no point in invoking rcu_check_callbacks().
2062 */
2063void rcu_check_callbacks(int cpu, int user)
2064{
f7f7bac9 2065 trace_rcu_utilization(TPS("Start scheduler-tick"));
a858af28 2066 increment_cpu_stall_ticks();
9b2e4f18 2067 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
2068
2069 /*
2070 * Get here if this CPU took its interrupt from user
2071 * mode or from the idle loop, and if this is not a
2072 * nested interrupt. In this case, the CPU is in
d6714c22 2073 * a quiescent state, so note it.
64db4cff
PM
2074 *
2075 * No memory barrier is required here because both
d6714c22
PM
2076 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2077 * variables that other CPUs neither access nor modify,
2078 * at least not while the corresponding CPU is online.
64db4cff
PM
2079 */
2080
d6714c22
PM
2081 rcu_sched_qs(cpu);
2082 rcu_bh_qs(cpu);
64db4cff
PM
2083
2084 } else if (!in_softirq()) {
2085
2086 /*
2087 * Get here if this CPU did not take its interrupt from
2088 * softirq, in other words, if it is not interrupting
2089 * a rcu_bh read-side critical section. This is an _bh
d6714c22 2090 * critical section, so note it.
64db4cff
PM
2091 */
2092
d6714c22 2093 rcu_bh_qs(cpu);
64db4cff 2094 }
f41d911f 2095 rcu_preempt_check_callbacks(cpu);
d21670ac 2096 if (rcu_pending(cpu))
a46e0899 2097 invoke_rcu_core();
f7f7bac9 2098 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2099}
2100
64db4cff
PM
2101/*
2102 * Scan the leaf rcu_node structures, processing dyntick state for any that
2103 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
2104 * Also initiate boosting for any threads blocked on the root rcu_node.
2105 *
ee47eb9f 2106 * The caller must have suppressed start of new grace periods.
64db4cff 2107 */
45f014c5 2108static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
2109{
2110 unsigned long bit;
2111 int cpu;
2112 unsigned long flags;
2113 unsigned long mask;
a0b6c9a7 2114 struct rcu_node *rnp;
64db4cff 2115
a0b6c9a7 2116 rcu_for_each_leaf_node(rsp, rnp) {
b4be093f 2117 cond_resched();
64db4cff 2118 mask = 0;
1304afb2 2119 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 2120 if (!rcu_gp_in_progress(rsp)) {
1304afb2 2121 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 2122 return;
64db4cff 2123 }
a0b6c9a7 2124 if (rnp->qsmask == 0) {
1217ed1b 2125 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
2126 continue;
2127 }
a0b6c9a7 2128 cpu = rnp->grplo;
64db4cff 2129 bit = 1;
a0b6c9a7 2130 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
2131 if ((rnp->qsmask & bit) != 0 &&
2132 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
2133 mask |= bit;
2134 }
45f014c5 2135 if (mask != 0) {
64db4cff 2136
d3f6bad3
PM
2137 /* rcu_report_qs_rnp() releases rnp->lock. */
2138 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
2139 continue;
2140 }
1304afb2 2141 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 2142 }
27f4d280 2143 rnp = rcu_get_root(rsp);
1217ed1b
PM
2144 if (rnp->qsmask == 0) {
2145 raw_spin_lock_irqsave(&rnp->lock, flags);
2146 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2147 }
64db4cff
PM
2148}
2149
2150/*
2151 * Force quiescent states on reluctant CPUs, and also detect which
2152 * CPUs are in dyntick-idle mode.
2153 */
4cdfc175 2154static void force_quiescent_state(struct rcu_state *rsp)
64db4cff
PM
2155{
2156 unsigned long flags;
394f2769
PM
2157 bool ret;
2158 struct rcu_node *rnp;
2159 struct rcu_node *rnp_old = NULL;
2160
2161 /* Funnel through hierarchy to reduce memory contention. */
2162 rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2163 for (; rnp != NULL; rnp = rnp->parent) {
2164 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2165 !raw_spin_trylock(&rnp->fqslock);
2166 if (rnp_old != NULL)
2167 raw_spin_unlock(&rnp_old->fqslock);
2168 if (ret) {
2169 rsp->n_force_qs_lh++;
2170 return;
2171 }
2172 rnp_old = rnp;
2173 }
2174 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
64db4cff 2175
394f2769
PM
2176 /* Reached the root of the rcu_node tree, acquire lock. */
2177 raw_spin_lock_irqsave(&rnp_old->lock, flags);
2178 raw_spin_unlock(&rnp_old->fqslock);
2179 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2180 rsp->n_force_qs_lh++;
2181 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2182 return; /* Someone beat us to it. */
46a1e34e 2183 }
4cdfc175 2184 rsp->gp_flags |= RCU_GP_FLAG_FQS;
394f2769 2185 raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
4cdfc175 2186 wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
64db4cff
PM
2187}
2188
64db4cff 2189/*
e0f23060
PM
2190 * This does the RCU core processing work for the specified rcu_state
2191 * and rcu_data structures. This may be called only from the CPU to
2192 * whom the rdp belongs.
64db4cff
PM
2193 */
2194static void
1bca8cf1 2195__rcu_process_callbacks(struct rcu_state *rsp)
64db4cff
PM
2196{
2197 unsigned long flags;
1bca8cf1 2198 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
64db4cff 2199
2e597558
PM
2200 WARN_ON_ONCE(rdp->beenonline == 0);
2201
64db4cff
PM
2202 /* Update RCU state based on any recent quiescent states. */
2203 rcu_check_quiescent_state(rsp, rdp);
2204
2205 /* Does this CPU require a not-yet-started grace period? */
dc35c893 2206 local_irq_save(flags);
64db4cff 2207 if (cpu_needs_another_gp(rsp, rdp)) {
dc35c893 2208 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
b8462084
PM
2209 rcu_start_gp(rsp);
2210 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
dc35c893
PM
2211 } else {
2212 local_irq_restore(flags);
64db4cff
PM
2213 }
2214
2215 /* If there are callbacks ready, invoke them. */
09223371 2216 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 2217 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
2218}
2219
64db4cff 2220/*
e0f23060 2221 * Do RCU core processing for the current CPU.
64db4cff 2222 */
09223371 2223static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 2224{
6ce75a23
PM
2225 struct rcu_state *rsp;
2226
bfa00b4c
PM
2227 if (cpu_is_offline(smp_processor_id()))
2228 return;
f7f7bac9 2229 trace_rcu_utilization(TPS("Start RCU core"));
6ce75a23
PM
2230 for_each_rcu_flavor(rsp)
2231 __rcu_process_callbacks(rsp);
f7f7bac9 2232 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2233}
2234
a26ac245 2235/*
e0f23060
PM
2236 * Schedule RCU callback invocation. If the specified type of RCU
2237 * does not support RCU priority boosting, just do a direct call,
2238 * otherwise wake up the per-CPU kernel kthread. Note that because we
2239 * are running on the current CPU with interrupts disabled, the
2240 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 2241 */
a46e0899 2242static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 2243{
b0d30417
PM
2244 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2245 return;
a46e0899
PM
2246 if (likely(!rsp->boost)) {
2247 rcu_do_batch(rsp, rdp);
a26ac245
PM
2248 return;
2249 }
a46e0899 2250 invoke_rcu_callbacks_kthread();
a26ac245
PM
2251}
2252
a46e0899 2253static void invoke_rcu_core(void)
09223371 2254{
b0f74036
PM
2255 if (cpu_online(smp_processor_id()))
2256 raise_softirq(RCU_SOFTIRQ);
09223371
SL
2257}
2258
29154c57
PM
2259/*
2260 * Handle any core-RCU processing required by a call_rcu() invocation.
2261 */
2262static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2263 struct rcu_head *head, unsigned long flags)
64db4cff 2264{
62fde6ed
PM
2265 /*
2266 * If called from an extended quiescent state, invoke the RCU
2267 * core in order to force a re-evaluation of RCU's idleness.
2268 */
a16b7a69 2269 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
2270 invoke_rcu_core();
2271
a16b7a69 2272 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2273 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2274 return;
64db4cff 2275
37c72e56
PM
2276 /*
2277 * Force the grace period if too many callbacks or too long waiting.
2278 * Enforce hysteresis, and don't invoke force_quiescent_state()
2279 * if some other CPU has recently done so. Also, don't bother
2280 * invoking force_quiescent_state() if the newly enqueued callback
2281 * is the only one waiting for a grace period to complete.
2282 */
2655d57e 2283 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2284
2285 /* Are we ignoring a completed grace period? */
470716fc 2286 note_gp_changes(rsp, rdp);
b52573d2
PM
2287
2288 /* Start a new grace period if one not already started. */
2289 if (!rcu_gp_in_progress(rsp)) {
b52573d2
PM
2290 struct rcu_node *rnp_root = rcu_get_root(rsp);
2291
b8462084
PM
2292 raw_spin_lock(&rnp_root->lock);
2293 rcu_start_gp(rsp);
2294 raw_spin_unlock(&rnp_root->lock);
b52573d2
PM
2295 } else {
2296 /* Give the grace period a kick. */
2297 rdp->blimit = LONG_MAX;
2298 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2299 *rdp->nxttail[RCU_DONE_TAIL] != head)
4cdfc175 2300 force_quiescent_state(rsp);
b52573d2
PM
2301 rdp->n_force_qs_snap = rsp->n_force_qs;
2302 rdp->qlen_last_fqs_check = rdp->qlen;
2303 }
4cdfc175 2304 }
29154c57
PM
2305}
2306
ae150184
PM
2307/*
2308 * RCU callback function to leak a callback.
2309 */
2310static void rcu_leak_callback(struct rcu_head *rhp)
2311{
2312}
2313
3fbfbf7a
PM
2314/*
2315 * Helper function for call_rcu() and friends. The cpu argument will
2316 * normally be -1, indicating "currently running CPU". It may specify
2317 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2318 * is expected to specify a CPU.
2319 */
64db4cff
PM
2320static void
2321__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
3fbfbf7a 2322 struct rcu_state *rsp, int cpu, bool lazy)
64db4cff
PM
2323{
2324 unsigned long flags;
2325 struct rcu_data *rdp;
2326
0bb7b59d 2327 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
ae150184
PM
2328 if (debug_rcu_head_queue(head)) {
2329 /* Probable double call_rcu(), so leak the callback. */
2330 ACCESS_ONCE(head->func) = rcu_leak_callback;
2331 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
2332 return;
2333 }
64db4cff
PM
2334 head->func = func;
2335 head->next = NULL;
2336
64db4cff
PM
2337 /*
2338 * Opportunistically note grace-period endings and beginnings.
2339 * Note that we might see a beginning right after we see an
2340 * end, but never vice versa, since this CPU has to pass through
2341 * a quiescent state betweentimes.
2342 */
2343 local_irq_save(flags);
394f99a9 2344 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
2345
2346 /* Add the callback to our list. */
3fbfbf7a
PM
2347 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2348 int offline;
2349
2350 if (cpu != -1)
2351 rdp = per_cpu_ptr(rsp->rda, cpu);
2352 offline = !__call_rcu_nocb(rdp, head, lazy);
2353 WARN_ON_ONCE(offline);
0d8ee37e 2354 /* _call_rcu() is illegal on offline CPU; leak the callback. */
0d8ee37e
PM
2355 local_irq_restore(flags);
2356 return;
2357 }
29154c57 2358 ACCESS_ONCE(rdp->qlen)++;
486e2593
PM
2359 if (lazy)
2360 rdp->qlen_lazy++;
c57afe80
PM
2361 else
2362 rcu_idle_count_callbacks_posted();
b1420f1c
PM
2363 smp_mb(); /* Count before adding callback for rcu_barrier(). */
2364 *rdp->nxttail[RCU_NEXT_TAIL] = head;
2365 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 2366
d4c08f2a
PM
2367 if (__is_kfree_rcu_offset((unsigned long)func))
2368 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 2369 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2370 else
486e2593 2371 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 2372
29154c57
PM
2373 /* Go handle any RCU core processing required. */
2374 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
2375 local_irq_restore(flags);
2376}
2377
2378/*
d6714c22 2379 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 2380 */
d6714c22 2381void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 2382{
3fbfbf7a 2383 __call_rcu(head, func, &rcu_sched_state, -1, 0);
64db4cff 2384}
d6714c22 2385EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
2386
2387/*
486e2593 2388 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
2389 */
2390void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2391{
3fbfbf7a 2392 __call_rcu(head, func, &rcu_bh_state, -1, 0);
64db4cff
PM
2393}
2394EXPORT_SYMBOL_GPL(call_rcu_bh);
2395
6d813391
PM
2396/*
2397 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2398 * any blocking grace-period wait automatically implies a grace period
2399 * if there is only one CPU online at any point time during execution
2400 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
2401 * occasionally incorrectly indicate that there are multiple CPUs online
2402 * when there was in fact only one the whole time, as this just adds
2403 * some overhead: RCU still operates correctly.
6d813391
PM
2404 */
2405static inline int rcu_blocking_is_gp(void)
2406{
95f0c1de
PM
2407 int ret;
2408
6d813391 2409 might_sleep(); /* Check for RCU read-side critical section. */
95f0c1de
PM
2410 preempt_disable();
2411 ret = num_online_cpus() <= 1;
2412 preempt_enable();
2413 return ret;
6d813391
PM
2414}
2415
6ebb237b
PM
2416/**
2417 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2418 *
2419 * Control will return to the caller some time after a full rcu-sched
2420 * grace period has elapsed, in other words after all currently executing
2421 * rcu-sched read-side critical sections have completed. These read-side
2422 * critical sections are delimited by rcu_read_lock_sched() and
2423 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2424 * local_irq_disable(), and so on may be used in place of
2425 * rcu_read_lock_sched().
2426 *
2427 * This means that all preempt_disable code sequences, including NMI and
f0a0e6f2
PM
2428 * non-threaded hardware-interrupt handlers, in progress on entry will
2429 * have completed before this primitive returns. However, this does not
2430 * guarantee that softirq handlers will have completed, since in some
2431 * kernels, these handlers can run in process context, and can block.
2432 *
2433 * Note that this guarantee implies further memory-ordering guarantees.
2434 * On systems with more than one CPU, when synchronize_sched() returns,
2435 * each CPU is guaranteed to have executed a full memory barrier since the
2436 * end of its last RCU-sched read-side critical section whose beginning
2437 * preceded the call to synchronize_sched(). In addition, each CPU having
2438 * an RCU read-side critical section that extends beyond the return from
2439 * synchronize_sched() is guaranteed to have executed a full memory barrier
2440 * after the beginning of synchronize_sched() and before the beginning of
2441 * that RCU read-side critical section. Note that these guarantees include
2442 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2443 * that are executing in the kernel.
2444 *
2445 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2446 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2447 * to have executed a full memory barrier during the execution of
2448 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2449 * again only if the system has more than one CPU).
6ebb237b
PM
2450 *
2451 * This primitive provides the guarantees made by the (now removed)
2452 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2453 * guarantees that rcu_read_lock() sections will have completed.
2454 * In "classic RCU", these two guarantees happen to be one and
2455 * the same, but can differ in realtime RCU implementations.
2456 */
2457void synchronize_sched(void)
2458{
fe15d706
PM
2459 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2460 !lock_is_held(&rcu_lock_map) &&
2461 !lock_is_held(&rcu_sched_lock_map),
2462 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2463 if (rcu_blocking_is_gp())
2464 return;
3705b88d
AM
2465 if (rcu_expedited)
2466 synchronize_sched_expedited();
2467 else
2468 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2469}
2470EXPORT_SYMBOL_GPL(synchronize_sched);
2471
2472/**
2473 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2474 *
2475 * Control will return to the caller some time after a full rcu_bh grace
2476 * period has elapsed, in other words after all currently executing rcu_bh
2477 * read-side critical sections have completed. RCU read-side critical
2478 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2479 * and may be nested.
f0a0e6f2
PM
2480 *
2481 * See the description of synchronize_sched() for more detailed information
2482 * on memory ordering guarantees.
6ebb237b
PM
2483 */
2484void synchronize_rcu_bh(void)
2485{
fe15d706
PM
2486 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2487 !lock_is_held(&rcu_lock_map) &&
2488 !lock_is_held(&rcu_sched_lock_map),
2489 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2490 if (rcu_blocking_is_gp())
2491 return;
3705b88d
AM
2492 if (rcu_expedited)
2493 synchronize_rcu_bh_expedited();
2494 else
2495 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2496}
2497EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2498
3d3b7db0
PM
2499static int synchronize_sched_expedited_cpu_stop(void *data)
2500{
2501 /*
2502 * There must be a full memory barrier on each affected CPU
2503 * between the time that try_stop_cpus() is called and the
2504 * time that it returns.
2505 *
2506 * In the current initial implementation of cpu_stop, the
2507 * above condition is already met when the control reaches
2508 * this point and the following smp_mb() is not strictly
2509 * necessary. Do smp_mb() anyway for documentation and
2510 * robustness against future implementation changes.
2511 */
2512 smp_mb(); /* See above comment block. */
2513 return 0;
2514}
2515
236fefaf
PM
2516/**
2517 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2518 *
2519 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2520 * approach to force the grace period to end quickly. This consumes
2521 * significant time on all CPUs and is unfriendly to real-time workloads,
2522 * so is thus not recommended for any sort of common-case code. In fact,
2523 * if you are using synchronize_sched_expedited() in a loop, please
2524 * restructure your code to batch your updates, and then use a single
2525 * synchronize_sched() instead.
3d3b7db0 2526 *
236fefaf
PM
2527 * Note that it is illegal to call this function while holding any lock
2528 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2529 * to call this function from a CPU-hotplug notifier. Failing to observe
2530 * these restriction will result in deadlock.
3d3b7db0
PM
2531 *
2532 * This implementation can be thought of as an application of ticket
2533 * locking to RCU, with sync_sched_expedited_started and
2534 * sync_sched_expedited_done taking on the roles of the halves
2535 * of the ticket-lock word. Each task atomically increments
2536 * sync_sched_expedited_started upon entry, snapshotting the old value,
2537 * then attempts to stop all the CPUs. If this succeeds, then each
2538 * CPU will have executed a context switch, resulting in an RCU-sched
2539 * grace period. We are then done, so we use atomic_cmpxchg() to
2540 * update sync_sched_expedited_done to match our snapshot -- but
2541 * only if someone else has not already advanced past our snapshot.
2542 *
2543 * On the other hand, if try_stop_cpus() fails, we check the value
2544 * of sync_sched_expedited_done. If it has advanced past our
2545 * initial snapshot, then someone else must have forced a grace period
2546 * some time after we took our snapshot. In this case, our work is
2547 * done for us, and we can simply return. Otherwise, we try again,
2548 * but keep our initial snapshot for purposes of checking for someone
2549 * doing our work for us.
2550 *
2551 * If we fail too many times in a row, we fall back to synchronize_sched().
2552 */
2553void synchronize_sched_expedited(void)
2554{
1924bcb0
PM
2555 long firstsnap, s, snap;
2556 int trycount = 0;
40694d66 2557 struct rcu_state *rsp = &rcu_sched_state;
3d3b7db0 2558
1924bcb0
PM
2559 /*
2560 * If we are in danger of counter wrap, just do synchronize_sched().
2561 * By allowing sync_sched_expedited_started to advance no more than
2562 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2563 * that more than 3.5 billion CPUs would be required to force a
2564 * counter wrap on a 32-bit system. Quite a few more CPUs would of
2565 * course be required on a 64-bit system.
2566 */
40694d66
PM
2567 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2568 (ulong)atomic_long_read(&rsp->expedited_done) +
1924bcb0
PM
2569 ULONG_MAX / 8)) {
2570 synchronize_sched();
a30489c5 2571 atomic_long_inc(&rsp->expedited_wrap);
1924bcb0
PM
2572 return;
2573 }
3d3b7db0 2574
1924bcb0
PM
2575 /*
2576 * Take a ticket. Note that atomic_inc_return() implies a
2577 * full memory barrier.
2578 */
40694d66 2579 snap = atomic_long_inc_return(&rsp->expedited_start);
1924bcb0 2580 firstsnap = snap;
3d3b7db0 2581 get_online_cpus();
1cc85961 2582 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2583
2584 /*
2585 * Each pass through the following loop attempts to force a
2586 * context switch on each CPU.
2587 */
2588 while (try_stop_cpus(cpu_online_mask,
2589 synchronize_sched_expedited_cpu_stop,
2590 NULL) == -EAGAIN) {
2591 put_online_cpus();
a30489c5 2592 atomic_long_inc(&rsp->expedited_tryfail);
3d3b7db0 2593
1924bcb0 2594 /* Check to see if someone else did our work for us. */
40694d66 2595 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2596 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2597 /* ensure test happens before caller kfree */
2598 smp_mb__before_atomic_inc(); /* ^^^ */
2599 atomic_long_inc(&rsp->expedited_workdone1);
1924bcb0
PM
2600 return;
2601 }
3d3b7db0
PM
2602
2603 /* No joy, try again later. Or just synchronize_sched(). */
c701d5d9 2604 if (trycount++ < 10) {
3d3b7db0 2605 udelay(trycount * num_online_cpus());
c701d5d9 2606 } else {
3705b88d 2607 wait_rcu_gp(call_rcu_sched);
a30489c5 2608 atomic_long_inc(&rsp->expedited_normal);
3d3b7db0
PM
2609 return;
2610 }
2611
1924bcb0 2612 /* Recheck to see if someone else did our work for us. */
40694d66 2613 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2614 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
a30489c5
PM
2615 /* ensure test happens before caller kfree */
2616 smp_mb__before_atomic_inc(); /* ^^^ */
2617 atomic_long_inc(&rsp->expedited_workdone2);
3d3b7db0
PM
2618 return;
2619 }
2620
2621 /*
2622 * Refetching sync_sched_expedited_started allows later
1924bcb0
PM
2623 * callers to piggyback on our grace period. We retry
2624 * after they started, so our grace period works for them,
2625 * and they started after our first try, so their grace
2626 * period works for us.
3d3b7db0
PM
2627 */
2628 get_online_cpus();
40694d66 2629 snap = atomic_long_read(&rsp->expedited_start);
3d3b7db0
PM
2630 smp_mb(); /* ensure read is before try_stop_cpus(). */
2631 }
a30489c5 2632 atomic_long_inc(&rsp->expedited_stoppedcpus);
3d3b7db0
PM
2633
2634 /*
2635 * Everyone up to our most recent fetch is covered by our grace
2636 * period. Update the counter, but only if our work is still
2637 * relevant -- which it won't be if someone who started later
1924bcb0 2638 * than we did already did their update.
3d3b7db0
PM
2639 */
2640 do {
a30489c5 2641 atomic_long_inc(&rsp->expedited_done_tries);
40694d66 2642 s = atomic_long_read(&rsp->expedited_done);
1924bcb0 2643 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
a30489c5
PM
2644 /* ensure test happens before caller kfree */
2645 smp_mb__before_atomic_inc(); /* ^^^ */
2646 atomic_long_inc(&rsp->expedited_done_lost);
3d3b7db0
PM
2647 break;
2648 }
40694d66 2649 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
a30489c5 2650 atomic_long_inc(&rsp->expedited_done_exit);
3d3b7db0
PM
2651
2652 put_online_cpus();
2653}
2654EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2655
64db4cff
PM
2656/*
2657 * Check to see if there is any immediate RCU-related work to be done
2658 * by the current CPU, for the specified type of RCU, returning 1 if so.
2659 * The checks are in order of increasing expense: checks that can be
2660 * carried out against CPU-local state are performed first. However,
2661 * we must check for CPU stalls first, else we might not get a chance.
2662 */
2663static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2664{
2f51f988
PM
2665 struct rcu_node *rnp = rdp->mynode;
2666
64db4cff
PM
2667 rdp->n_rcu_pending++;
2668
2669 /* Check for CPU stalls, if enabled. */
2670 check_cpu_stall(rsp, rdp);
2671
2672 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2673 if (rcu_scheduler_fully_active &&
2674 rdp->qs_pending && !rdp->passed_quiesce) {
d21670ac 2675 rdp->n_rp_qs_pending++;
e4cc1f22 2676 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2677 rdp->n_rp_report_qs++;
64db4cff 2678 return 1;
7ba5c840 2679 }
64db4cff
PM
2680
2681 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2682 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2683 rdp->n_rp_cb_ready++;
64db4cff 2684 return 1;
7ba5c840 2685 }
64db4cff
PM
2686
2687 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2688 if (cpu_needs_another_gp(rsp, rdp)) {
2689 rdp->n_rp_cpu_needs_gp++;
64db4cff 2690 return 1;
7ba5c840 2691 }
64db4cff
PM
2692
2693 /* Has another RCU grace period completed? */
2f51f988 2694 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2695 rdp->n_rp_gp_completed++;
64db4cff 2696 return 1;
7ba5c840 2697 }
64db4cff
PM
2698
2699 /* Has a new RCU grace period started? */
2f51f988 2700 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2701 rdp->n_rp_gp_started++;
64db4cff 2702 return 1;
7ba5c840 2703 }
64db4cff 2704
64db4cff 2705 /* nothing to do */
7ba5c840 2706 rdp->n_rp_need_nothing++;
64db4cff
PM
2707 return 0;
2708}
2709
2710/*
2711 * Check to see if there is any immediate RCU-related work to be done
2712 * by the current CPU, returning 1 if so. This function is part of the
2713 * RCU implementation; it is -not- an exported member of the RCU API.
2714 */
a157229c 2715static int rcu_pending(int cpu)
64db4cff 2716{
6ce75a23
PM
2717 struct rcu_state *rsp;
2718
2719 for_each_rcu_flavor(rsp)
2720 if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2721 return 1;
2722 return 0;
64db4cff
PM
2723}
2724
2725/*
c0f4dfd4
PM
2726 * Return true if the specified CPU has any callback. If all_lazy is
2727 * non-NULL, store an indication of whether all callbacks are lazy.
2728 * (If there are no callbacks, all of them are deemed to be lazy.)
64db4cff 2729 */
c0f4dfd4 2730static int rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
64db4cff 2731{
c0f4dfd4
PM
2732 bool al = true;
2733 bool hc = false;
2734 struct rcu_data *rdp;
6ce75a23
PM
2735 struct rcu_state *rsp;
2736
c0f4dfd4
PM
2737 for_each_rcu_flavor(rsp) {
2738 rdp = per_cpu_ptr(rsp->rda, cpu);
2739 if (rdp->qlen != rdp->qlen_lazy)
2740 al = false;
2741 if (rdp->nxtlist)
2742 hc = true;
2743 }
2744 if (all_lazy)
2745 *all_lazy = al;
2746 return hc;
64db4cff
PM
2747}
2748
a83eff0a
PM
2749/*
2750 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
2751 * the compiler is expected to optimize this away.
2752 */
e66c33d5 2753static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
a83eff0a
PM
2754 int cpu, unsigned long done)
2755{
2756 trace_rcu_barrier(rsp->name, s, cpu,
2757 atomic_read(&rsp->barrier_cpu_count), done);
2758}
2759
b1420f1c
PM
2760/*
2761 * RCU callback function for _rcu_barrier(). If we are last, wake
2762 * up the task executing _rcu_barrier().
2763 */
24ebbca8 2764static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2765{
24ebbca8
PM
2766 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2767 struct rcu_state *rsp = rdp->rsp;
2768
a83eff0a
PM
2769 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2770 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
7db74df8 2771 complete(&rsp->barrier_completion);
a83eff0a
PM
2772 } else {
2773 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
2774 }
d0ec774c
PM
2775}
2776
2777/*
2778 * Called with preemption disabled, and from cross-cpu IRQ context.
2779 */
2780static void rcu_barrier_func(void *type)
2781{
037b64ed 2782 struct rcu_state *rsp = type;
06668efa 2783 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2784
a83eff0a 2785 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
24ebbca8 2786 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2787 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2788}
2789
d0ec774c
PM
2790/*
2791 * Orchestrate the specified type of RCU barrier, waiting for all
2792 * RCU callbacks of the specified type to complete.
2793 */
037b64ed 2794static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2795{
b1420f1c 2796 int cpu;
b1420f1c 2797 struct rcu_data *rdp;
cf3a9c48
PM
2798 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
2799 unsigned long snap_done;
b1420f1c 2800
a83eff0a 2801 _rcu_barrier_trace(rsp, "Begin", -1, snap);
b1420f1c 2802
e74f4c45 2803 /* Take mutex to serialize concurrent rcu_barrier() requests. */
7be7f0be 2804 mutex_lock(&rsp->barrier_mutex);
b1420f1c 2805
cf3a9c48
PM
2806 /*
2807 * Ensure that all prior references, including to ->n_barrier_done,
2808 * are ordered before the _rcu_barrier() machinery.
2809 */
2810 smp_mb(); /* See above block comment. */
2811
2812 /*
2813 * Recheck ->n_barrier_done to see if others did our work for us.
2814 * This means checking ->n_barrier_done for an even-to-odd-to-even
2815 * transition. The "if" expression below therefore rounds the old
2816 * value up to the next even number and adds two before comparing.
2817 */
2818 snap_done = ACCESS_ONCE(rsp->n_barrier_done);
a83eff0a 2819 _rcu_barrier_trace(rsp, "Check", -1, snap_done);
cf3a9c48 2820 if (ULONG_CMP_GE(snap_done, ((snap + 1) & ~0x1) + 2)) {
a83eff0a 2821 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
cf3a9c48
PM
2822 smp_mb(); /* caller's subsequent code after above check. */
2823 mutex_unlock(&rsp->barrier_mutex);
2824 return;
2825 }
2826
2827 /*
2828 * Increment ->n_barrier_done to avoid duplicate work. Use
2829 * ACCESS_ONCE() to prevent the compiler from speculating
2830 * the increment to precede the early-exit check.
2831 */
2832 ACCESS_ONCE(rsp->n_barrier_done)++;
2833 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
a83eff0a 2834 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
cf3a9c48 2835 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
b1420f1c 2836
d0ec774c 2837 /*
b1420f1c
PM
2838 * Initialize the count to one rather than to zero in order to
2839 * avoid a too-soon return to zero in case of a short grace period
1331e7a1
PM
2840 * (or preemption of this task). Exclude CPU-hotplug operations
2841 * to ensure that no offline CPU has callbacks queued.
d0ec774c 2842 */
7db74df8 2843 init_completion(&rsp->barrier_completion);
24ebbca8 2844 atomic_set(&rsp->barrier_cpu_count, 1);
1331e7a1 2845 get_online_cpus();
b1420f1c
PM
2846
2847 /*
1331e7a1
PM
2848 * Force each CPU with callbacks to register a new callback.
2849 * When that callback is invoked, we will know that all of the
2850 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 2851 */
3fbfbf7a 2852 for_each_possible_cpu(cpu) {
d1e43fa5 2853 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3fbfbf7a 2854 continue;
b1420f1c 2855 rdp = per_cpu_ptr(rsp->rda, cpu);
d1e43fa5 2856 if (rcu_is_nocb_cpu(cpu)) {
3fbfbf7a
PM
2857 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
2858 rsp->n_barrier_done);
2859 atomic_inc(&rsp->barrier_cpu_count);
2860 __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
2861 rsp, cpu, 0);
2862 } else if (ACCESS_ONCE(rdp->qlen)) {
a83eff0a
PM
2863 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
2864 rsp->n_barrier_done);
037b64ed 2865 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c 2866 } else {
a83eff0a
PM
2867 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
2868 rsp->n_barrier_done);
b1420f1c
PM
2869 }
2870 }
1331e7a1 2871 put_online_cpus();
b1420f1c
PM
2872
2873 /*
2874 * Now that we have an rcu_barrier_callback() callback on each
2875 * CPU, and thus each counted, remove the initial count.
2876 */
24ebbca8 2877 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2878 complete(&rsp->barrier_completion);
b1420f1c 2879
cf3a9c48
PM
2880 /* Increment ->n_barrier_done to prevent duplicate work. */
2881 smp_mb(); /* Keep increment after above mechanism. */
2882 ACCESS_ONCE(rsp->n_barrier_done)++;
2883 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
a83eff0a 2884 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
cf3a9c48
PM
2885 smp_mb(); /* Keep increment before caller's subsequent code. */
2886
b1420f1c 2887 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2888 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2889
2890 /* Other rcu_barrier() invocations can now safely proceed. */
7be7f0be 2891 mutex_unlock(&rsp->barrier_mutex);
d0ec774c 2892}
d0ec774c
PM
2893
2894/**
2895 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2896 */
2897void rcu_barrier_bh(void)
2898{
037b64ed 2899 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2900}
2901EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2902
2903/**
2904 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2905 */
2906void rcu_barrier_sched(void)
2907{
037b64ed 2908 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2909}
2910EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2911
64db4cff 2912/*
27569620 2913 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2914 */
27569620
PM
2915static void __init
2916rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2917{
2918 unsigned long flags;
394f99a9 2919 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2920 struct rcu_node *rnp = rcu_get_root(rsp);
2921
2922 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2923 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2924 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2925 init_callback_list(rdp);
486e2593 2926 rdp->qlen_lazy = 0;
1d1fb395 2927 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2928 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2929 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2930 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2931 rdp->cpu = cpu;
d4c08f2a 2932 rdp->rsp = rsp;
3fbfbf7a 2933 rcu_boot_init_nocb_percpu_data(rdp);
1304afb2 2934 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2935}
2936
2937/*
2938 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2939 * offline event can be happening at a given time. Note also that we
2940 * can accept some slop in the rsp->completed access due to the fact
2941 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2942 */
49fb4c62 2943static void
6cc68793 2944rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2945{
2946 unsigned long flags;
64db4cff 2947 unsigned long mask;
394f99a9 2948 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2949 struct rcu_node *rnp = rcu_get_root(rsp);
2950
a4fbe35a
PM
2951 /* Exclude new grace periods. */
2952 mutex_lock(&rsp->onoff_mutex);
2953
64db4cff 2954 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2955 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2956 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2957 rdp->preemptible = preemptible;
37c72e56
PM
2958 rdp->qlen_last_fqs_check = 0;
2959 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2960 rdp->blimit = blimit;
0d8ee37e 2961 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
29e37d81 2962 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2963 atomic_set(&rdp->dynticks->dynticks,
2964 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
1304afb2 2965 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff 2966
64db4cff
PM
2967 /* Add CPU to rcu_node bitmasks. */
2968 rnp = rdp->mynode;
2969 mask = rdp->grpmask;
2970 do {
2971 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2972 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2973 rnp->qsmaskinit |= mask;
2974 mask = rnp->grpmask;
d09b62df 2975 if (rnp == rdp->mynode) {
06ae115a
PM
2976 /*
2977 * If there is a grace period in progress, we will
2978 * set up to wait for it next time we run the
2979 * RCU core code.
2980 */
2981 rdp->gpnum = rnp->completed;
d09b62df 2982 rdp->completed = rnp->completed;
06ae115a
PM
2983 rdp->passed_quiesce = 0;
2984 rdp->qs_pending = 0;
f7f7bac9 2985 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
d09b62df 2986 }
1304afb2 2987 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2988 rnp = rnp->parent;
2989 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
a4fbe35a 2990 local_irq_restore(flags);
64db4cff 2991
a4fbe35a 2992 mutex_unlock(&rsp->onoff_mutex);
64db4cff
PM
2993}
2994
49fb4c62 2995static void rcu_prepare_cpu(int cpu)
64db4cff 2996{
6ce75a23
PM
2997 struct rcu_state *rsp;
2998
2999 for_each_rcu_flavor(rsp)
3000 rcu_init_percpu_data(cpu, rsp,
3001 strcmp(rsp->name, "rcu_preempt") == 0);
64db4cff
PM
3002}
3003
3004/*
f41d911f 3005 * Handle CPU online/offline notification events.
64db4cff 3006 */
49fb4c62 3007static int rcu_cpu_notify(struct notifier_block *self,
9f680ab4 3008 unsigned long action, void *hcpu)
64db4cff
PM
3009{
3010 long cpu = (long)hcpu;
27f4d280 3011 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 3012 struct rcu_node *rnp = rdp->mynode;
6ce75a23 3013 struct rcu_state *rsp;
64db4cff 3014
f7f7bac9 3015 trace_rcu_utilization(TPS("Start CPU hotplug"));
64db4cff
PM
3016 switch (action) {
3017 case CPU_UP_PREPARE:
3018 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
3019 rcu_prepare_cpu(cpu);
3020 rcu_prepare_kthreads(cpu);
a26ac245
PM
3021 break;
3022 case CPU_ONLINE:
0f962a5e 3023 case CPU_DOWN_FAILED:
5d01bbd1 3024 rcu_boost_kthread_setaffinity(rnp, -1);
0f962a5e
PM
3025 break;
3026 case CPU_DOWN_PREPARE:
34ed6246 3027 rcu_boost_kthread_setaffinity(rnp, cpu);
64db4cff 3028 break;
d0ec774c
PM
3029 case CPU_DYING:
3030 case CPU_DYING_FROZEN:
6ce75a23
PM
3031 for_each_rcu_flavor(rsp)
3032 rcu_cleanup_dying_cpu(rsp);
d0ec774c 3033 break;
64db4cff
PM
3034 case CPU_DEAD:
3035 case CPU_DEAD_FROZEN:
3036 case CPU_UP_CANCELED:
3037 case CPU_UP_CANCELED_FROZEN:
6ce75a23
PM
3038 for_each_rcu_flavor(rsp)
3039 rcu_cleanup_dead_cpu(cpu, rsp);
64db4cff
PM
3040 break;
3041 default:
3042 break;
3043 }
f7f7bac9 3044 trace_rcu_utilization(TPS("End CPU hotplug"));
34ed6246 3045 return NOTIFY_OK;
64db4cff
PM
3046}
3047
d1d74d14
BP
3048static int rcu_pm_notify(struct notifier_block *self,
3049 unsigned long action, void *hcpu)
3050{
3051 switch (action) {
3052 case PM_HIBERNATION_PREPARE:
3053 case PM_SUSPEND_PREPARE:
3054 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3055 rcu_expedited = 1;
3056 break;
3057 case PM_POST_HIBERNATION:
3058 case PM_POST_SUSPEND:
3059 rcu_expedited = 0;
3060 break;
3061 default:
3062 break;
3063 }
3064 return NOTIFY_OK;
3065}
3066
b3dbec76
PM
3067/*
3068 * Spawn the kthread that handles this RCU flavor's grace periods.
3069 */
3070static int __init rcu_spawn_gp_kthread(void)
3071{
3072 unsigned long flags;
3073 struct rcu_node *rnp;
3074 struct rcu_state *rsp;
3075 struct task_struct *t;
3076
3077 for_each_rcu_flavor(rsp) {
f170168b 3078 t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
b3dbec76
PM
3079 BUG_ON(IS_ERR(t));
3080 rnp = rcu_get_root(rsp);
3081 raw_spin_lock_irqsave(&rnp->lock, flags);
3082 rsp->gp_kthread = t;
3083 raw_spin_unlock_irqrestore(&rnp->lock, flags);
3fbfbf7a 3084 rcu_spawn_nocb_kthreads(rsp);
b3dbec76
PM
3085 }
3086 return 0;
3087}
3088early_initcall(rcu_spawn_gp_kthread);
3089
bbad9379
PM
3090/*
3091 * This function is invoked towards the end of the scheduler's initialization
3092 * process. Before this is called, the idle task might contain
3093 * RCU read-side critical sections (during which time, this idle
3094 * task is booting the system). After this function is called, the
3095 * idle tasks are prohibited from containing RCU read-side critical
3096 * sections. This function also enables RCU lockdep checking.
3097 */
3098void rcu_scheduler_starting(void)
3099{
3100 WARN_ON(num_online_cpus() != 1);
3101 WARN_ON(nr_context_switches() > 0);
3102 rcu_scheduler_active = 1;
3103}
3104
64db4cff
PM
3105/*
3106 * Compute the per-level fanout, either using the exact fanout specified
3107 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3108 */
3109#ifdef CONFIG_RCU_FANOUT_EXACT
3110static void __init rcu_init_levelspread(struct rcu_state *rsp)
3111{
3112 int i;
3113
f885b7f2 3114 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 3115 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 3116 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
3117}
3118#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3119static void __init rcu_init_levelspread(struct rcu_state *rsp)
3120{
3121 int ccur;
3122 int cprv;
3123 int i;
3124
4dbd6bb3 3125 cprv = nr_cpu_ids;
f885b7f2 3126 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3127 ccur = rsp->levelcnt[i];
3128 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3129 cprv = ccur;
3130 }
3131}
3132#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3133
3134/*
3135 * Helper function for rcu_init() that initializes one rcu_state structure.
3136 */
394f99a9
LJ
3137static void __init rcu_init_one(struct rcu_state *rsp,
3138 struct rcu_data __percpu *rda)
64db4cff 3139{
394f2769
PM
3140 static char *buf[] = { "rcu_node_0",
3141 "rcu_node_1",
3142 "rcu_node_2",
3143 "rcu_node_3" }; /* Match MAX_RCU_LVLS */
3144 static char *fqs[] = { "rcu_node_fqs_0",
3145 "rcu_node_fqs_1",
3146 "rcu_node_fqs_2",
3147 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
3148 int cpustride = 1;
3149 int i;
3150 int j;
3151 struct rcu_node *rnp;
3152
b6407e86
PM
3153 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3154
4930521a
PM
3155 /* Silence gcc 4.8 warning about array index out of range. */
3156 if (rcu_num_lvls > RCU_NUM_LVLS)
3157 panic("rcu_init_one: rcu_num_lvls overflow");
3158
64db4cff
PM
3159 /* Initialize the level-tracking arrays. */
3160
f885b7f2
PM
3161 for (i = 0; i < rcu_num_lvls; i++)
3162 rsp->levelcnt[i] = num_rcu_lvl[i];
3163 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
3164 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3165 rcu_init_levelspread(rsp);
3166
3167 /* Initialize the elements themselves, starting from the leaves. */
3168
f885b7f2 3169 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
3170 cpustride *= rsp->levelspread[i];
3171 rnp = rsp->level[i];
3172 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 3173 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
3174 lockdep_set_class_and_name(&rnp->lock,
3175 &rcu_node_class[i], buf[i]);
394f2769
PM
3176 raw_spin_lock_init(&rnp->fqslock);
3177 lockdep_set_class_and_name(&rnp->fqslock,
3178 &rcu_fqs_class[i], fqs[i]);
25d30cf4
PM
3179 rnp->gpnum = rsp->gpnum;
3180 rnp->completed = rsp->completed;
64db4cff
PM
3181 rnp->qsmask = 0;
3182 rnp->qsmaskinit = 0;
3183 rnp->grplo = j * cpustride;
3184 rnp->grphi = (j + 1) * cpustride - 1;
3185 if (rnp->grphi >= NR_CPUS)
3186 rnp->grphi = NR_CPUS - 1;
3187 if (i == 0) {
3188 rnp->grpnum = 0;
3189 rnp->grpmask = 0;
3190 rnp->parent = NULL;
3191 } else {
3192 rnp->grpnum = j % rsp->levelspread[i - 1];
3193 rnp->grpmask = 1UL << rnp->grpnum;
3194 rnp->parent = rsp->level[i - 1] +
3195 j / rsp->levelspread[i - 1];
3196 }
3197 rnp->level = i;
12f5f524 3198 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 3199 rcu_init_one_nocb(rnp);
64db4cff
PM
3200 }
3201 }
0c34029a 3202
394f99a9 3203 rsp->rda = rda;
b3dbec76 3204 init_waitqueue_head(&rsp->gp_wq);
016a8d5b 3205 init_irq_work(&rsp->wakeup_work, rsp_wakeup);
f885b7f2 3206 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 3207 for_each_possible_cpu(i) {
4a90a068 3208 while (i > rnp->grphi)
0c34029a 3209 rnp++;
394f99a9 3210 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
3211 rcu_boot_init_percpu_data(i, rsp);
3212 }
6ce75a23 3213 list_add(&rsp->flavors, &rcu_struct_flavors);
64db4cff
PM
3214}
3215
f885b7f2
PM
3216/*
3217 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3218 * replace the definitions in rcutree.h because those are needed to size
3219 * the ->node array in the rcu_state structure.
3220 */
3221static void __init rcu_init_geometry(void)
3222{
026ad283 3223 ulong d;
f885b7f2
PM
3224 int i;
3225 int j;
cca6f393 3226 int n = nr_cpu_ids;
f885b7f2
PM
3227 int rcu_capacity[MAX_RCU_LVLS + 1];
3228
026ad283
PM
3229 /*
3230 * Initialize any unspecified boot parameters.
3231 * The default values of jiffies_till_first_fqs and
3232 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3233 * value, which is a function of HZ, then adding one for each
3234 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3235 */
3236 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3237 if (jiffies_till_first_fqs == ULONG_MAX)
3238 jiffies_till_first_fqs = d;
3239 if (jiffies_till_next_fqs == ULONG_MAX)
3240 jiffies_till_next_fqs = d;
3241
f885b7f2 3242 /* If the compile-time values are accurate, just leave. */
b17c7035
PM
3243 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3244 nr_cpu_ids == NR_CPUS)
f885b7f2
PM
3245 return;
3246
3247 /*
3248 * Compute number of nodes that can be handled an rcu_node tree
3249 * with the given number of levels. Setting rcu_capacity[0] makes
3250 * some of the arithmetic easier.
3251 */
3252 rcu_capacity[0] = 1;
3253 rcu_capacity[1] = rcu_fanout_leaf;
3254 for (i = 2; i <= MAX_RCU_LVLS; i++)
3255 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3256
3257 /*
3258 * The boot-time rcu_fanout_leaf parameter is only permitted
3259 * to increase the leaf-level fanout, not decrease it. Of course,
3260 * the leaf-level fanout cannot exceed the number of bits in
3261 * the rcu_node masks. Finally, the tree must be able to accommodate
3262 * the configured number of CPUs. Complain and fall back to the
3263 * compile-time values if these limits are exceeded.
3264 */
3265 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3266 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3267 n > rcu_capacity[MAX_RCU_LVLS]) {
3268 WARN_ON(1);
3269 return;
3270 }
3271
3272 /* Calculate the number of rcu_nodes at each level of the tree. */
3273 for (i = 1; i <= MAX_RCU_LVLS; i++)
3274 if (n <= rcu_capacity[i]) {
3275 for (j = 0; j <= i; j++)
3276 num_rcu_lvl[j] =
3277 DIV_ROUND_UP(n, rcu_capacity[i - j]);
3278 rcu_num_lvls = i;
3279 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3280 num_rcu_lvl[j] = 0;
3281 break;
3282 }
3283
3284 /* Calculate the total number of rcu_node structures. */
3285 rcu_num_nodes = 0;
3286 for (i = 0; i <= MAX_RCU_LVLS; i++)
3287 rcu_num_nodes += num_rcu_lvl[i];
3288 rcu_num_nodes -= n;
3289}
3290
9f680ab4 3291void __init rcu_init(void)
64db4cff 3292{
017c4261 3293 int cpu;
9f680ab4 3294
f41d911f 3295 rcu_bootup_announce();
f885b7f2 3296 rcu_init_geometry();
394f99a9
LJ
3297 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3298 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 3299 __rcu_init_preempt();
b5b39360 3300 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
3301
3302 /*
3303 * We don't need protection against CPU-hotplug here because
3304 * this is called early in boot, before either interrupts
3305 * or the scheduler are operational.
3306 */
3307 cpu_notifier(rcu_cpu_notify, 0);
d1d74d14 3308 pm_notifier(rcu_pm_notify, 0);
017c4261
PM
3309 for_each_online_cpu(cpu)
3310 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
64db4cff
PM
3311}
3312
1eba8f84 3313#include "rcutree_plugin.h"