]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/clock.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / clock.c
CommitLineData
3e51f33f
PZ
1/*
2 * sched_clock for unstable cpu clocks
3 *
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a
PZ
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
c676329a
PZ
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
ef08f0ff
PZ
31 * sched_clock_cpu(i)
32 *
c676329a
PZ
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
3e51f33f
PZ
44 * - sched_clock()
45 * - explicit idle events
46 *
c676329a
PZ
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
3e51f33f
PZ
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
3e51f33f 54 */
3e51f33f 55#include <linux/spinlock.h>
6409c4da 56#include <linux/hardirq.h>
9984de1a 57#include <linux/export.h>
b342501c
IM
58#include <linux/percpu.h>
59#include <linux/ktime.h>
60#include <linux/sched.h>
35af99e6 61#include <linux/static_key.h>
6577e42a 62#include <linux/workqueue.h>
3e51f33f 63
2c3d103b
HD
64/*
65 * Scheduler clock - returns current time in nanosec units.
66 * This is default implementation.
67 * Architectures and sub-architectures can override this.
68 */
69unsigned long long __attribute__((weak)) sched_clock(void)
70{
92d23f70
R
71 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
72 * (NSEC_PER_SEC / HZ);
2c3d103b 73}
b6ac23af 74EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 75
5bb6b1ea 76__read_mostly int sched_clock_running;
c1955a3d 77
3e51f33f 78#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
35af99e6 79static struct static_key __sched_clock_stable = STATIC_KEY_INIT;
d375b4e0 80static int __sched_clock_stable_early;
35af99e6
PZ
81
82int sched_clock_stable(void)
83{
d375b4e0 84 return static_key_false(&__sched_clock_stable);
35af99e6
PZ
85}
86
d375b4e0 87static void __set_sched_clock_stable(void)
35af99e6
PZ
88{
89 if (!sched_clock_stable())
d375b4e0
PZ
90 static_key_slow_inc(&__sched_clock_stable);
91}
92
93void set_sched_clock_stable(void)
94{
95 __sched_clock_stable_early = 1;
96
97 smp_mb(); /* matches sched_clock_init() */
98
99 if (!sched_clock_running)
100 return;
101
102 __set_sched_clock_stable();
35af99e6
PZ
103}
104
6577e42a 105static void __clear_sched_clock_stable(struct work_struct *work)
35af99e6
PZ
106{
107 /* XXX worry about clock continuity */
108 if (sched_clock_stable())
d375b4e0 109 static_key_slow_dec(&__sched_clock_stable);
35af99e6 110}
3e51f33f 111
6577e42a
PZ
112static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable);
113
114void clear_sched_clock_stable(void)
115{
d375b4e0
PZ
116 __sched_clock_stable_early = 0;
117
118 smp_mb(); /* matches sched_clock_init() */
119
120 if (!sched_clock_running)
121 return;
122
123 schedule_work(&sched_clock_work);
6577e42a
PZ
124}
125
3e51f33f 126struct sched_clock_data {
3e51f33f
PZ
127 u64 tick_raw;
128 u64 tick_gtod;
129 u64 clock;
130};
131
132static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
133
134static inline struct sched_clock_data *this_scd(void)
135{
136 return &__get_cpu_var(sched_clock_data);
137}
138
139static inline struct sched_clock_data *cpu_sdc(int cpu)
140{
141 return &per_cpu(sched_clock_data, cpu);
142}
143
144void sched_clock_init(void)
145{
146 u64 ktime_now = ktime_to_ns(ktime_get());
3e51f33f
PZ
147 int cpu;
148
149 for_each_possible_cpu(cpu) {
150 struct sched_clock_data *scd = cpu_sdc(cpu);
151
a381759d 152 scd->tick_raw = 0;
3e51f33f
PZ
153 scd->tick_gtod = ktime_now;
154 scd->clock = ktime_now;
155 }
a381759d
PZ
156
157 sched_clock_running = 1;
d375b4e0
PZ
158
159 /*
160 * Ensure that it is impossible to not do a static_key update.
161 *
162 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
163 * and do the update, or we must see their __sched_clock_stable_early
164 * and do the update, or both.
165 */
166 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
167
168 if (__sched_clock_stable_early)
169 __set_sched_clock_stable();
170 else
171 __clear_sched_clock_stable(NULL);
3e51f33f
PZ
172}
173
354879bb 174/*
b342501c 175 * min, max except they take wrapping into account
354879bb
PZ
176 */
177
178static inline u64 wrap_min(u64 x, u64 y)
179{
180 return (s64)(x - y) < 0 ? x : y;
181}
182
183static inline u64 wrap_max(u64 x, u64 y)
184{
185 return (s64)(x - y) > 0 ? x : y;
186}
187
3e51f33f
PZ
188/*
189 * update the percpu scd from the raw @now value
190 *
191 * - filter out backward motion
354879bb 192 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 193 */
def0a9b2 194static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 195{
def0a9b2
PZ
196 u64 now, clock, old_clock, min_clock, max_clock;
197 s64 delta;
3e51f33f 198
def0a9b2
PZ
199again:
200 now = sched_clock();
201 delta = now - scd->tick_raw;
354879bb
PZ
202 if (unlikely(delta < 0))
203 delta = 0;
3e51f33f 204
def0a9b2
PZ
205 old_clock = scd->clock;
206
354879bb
PZ
207 /*
208 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
209 * max(scd->tick_gtod, scd->clock),
210 * scd->tick_gtod + TICK_NSEC);
354879bb 211 */
3e51f33f 212
354879bb 213 clock = scd->tick_gtod + delta;
def0a9b2
PZ
214 min_clock = wrap_max(scd->tick_gtod, old_clock);
215 max_clock = wrap_max(old_clock, scd->tick_gtod + TICK_NSEC);
3e51f33f 216
354879bb
PZ
217 clock = wrap_max(clock, min_clock);
218 clock = wrap_min(clock, max_clock);
3e51f33f 219
152f9d07 220 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 221 goto again;
56b90612 222
def0a9b2 223 return clock;
3e51f33f
PZ
224}
225
def0a9b2 226static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 227{
def0a9b2
PZ
228 struct sched_clock_data *my_scd = this_scd();
229 u64 this_clock, remote_clock;
230 u64 *ptr, old_val, val;
231
a1cbcaa9
TG
232#if BITS_PER_LONG != 64
233again:
234 /*
235 * Careful here: The local and the remote clock values need to
236 * be read out atomic as we need to compare the values and
237 * then update either the local or the remote side. So the
238 * cmpxchg64 below only protects one readout.
239 *
240 * We must reread via sched_clock_local() in the retry case on
241 * 32bit as an NMI could use sched_clock_local() via the
242 * tracer and hit between the readout of
243 * the low32bit and the high 32bit portion.
244 */
245 this_clock = sched_clock_local(my_scd);
246 /*
247 * We must enforce atomic readout on 32bit, otherwise the
248 * update on the remote cpu can hit inbetween the readout of
249 * the low32bit and the high 32bit portion.
250 */
251 remote_clock = cmpxchg64(&scd->clock, 0, 0);
252#else
253 /*
254 * On 64bit the read of [my]scd->clock is atomic versus the
255 * update, so we can avoid the above 32bit dance.
256 */
def0a9b2
PZ
257 sched_clock_local(my_scd);
258again:
259 this_clock = my_scd->clock;
260 remote_clock = scd->clock;
a1cbcaa9 261#endif
def0a9b2
PZ
262
263 /*
264 * Use the opportunity that we have both locks
265 * taken to couple the two clocks: we take the
266 * larger time as the latest time for both
267 * runqueues. (this creates monotonic movement)
268 */
269 if (likely((s64)(remote_clock - this_clock) < 0)) {
270 ptr = &scd->clock;
271 old_val = remote_clock;
272 val = this_clock;
3e51f33f 273 } else {
def0a9b2
PZ
274 /*
275 * Should be rare, but possible:
276 */
277 ptr = &my_scd->clock;
278 old_val = this_clock;
279 val = remote_clock;
3e51f33f 280 }
def0a9b2 281
152f9d07 282 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
283 goto again;
284
285 return val;
3e51f33f
PZ
286}
287
c676329a
PZ
288/*
289 * Similar to cpu_clock(), but requires local IRQs to be disabled.
290 *
291 * See cpu_clock().
292 */
3e51f33f
PZ
293u64 sched_clock_cpu(int cpu)
294{
b342501c 295 struct sched_clock_data *scd;
def0a9b2
PZ
296 u64 clock;
297
35af99e6 298 if (sched_clock_stable())
b342501c 299 return sched_clock();
a381759d 300
a381759d
PZ
301 if (unlikely(!sched_clock_running))
302 return 0ull;
303
96b3d28b 304 preempt_disable_notrace();
def0a9b2 305 scd = cpu_sdc(cpu);
3e51f33f 306
def0a9b2
PZ
307 if (cpu != smp_processor_id())
308 clock = sched_clock_remote(scd);
309 else
310 clock = sched_clock_local(scd);
96b3d28b 311 preempt_enable_notrace();
e4e4e534 312
3e51f33f
PZ
313 return clock;
314}
315
316void sched_clock_tick(void)
317{
8325d9c0 318 struct sched_clock_data *scd;
3e51f33f
PZ
319 u64 now, now_gtod;
320
35af99e6 321 if (sched_clock_stable())
8325d9c0
PZ
322 return;
323
a381759d
PZ
324 if (unlikely(!sched_clock_running))
325 return;
326
3e51f33f
PZ
327 WARN_ON_ONCE(!irqs_disabled());
328
8325d9c0 329 scd = this_scd();
3e51f33f 330 now_gtod = ktime_to_ns(ktime_get());
a83bc47c 331 now = sched_clock();
3e51f33f 332
3e51f33f
PZ
333 scd->tick_raw = now;
334 scd->tick_gtod = now_gtod;
def0a9b2 335 sched_clock_local(scd);
3e51f33f
PZ
336}
337
338/*
339 * We are going deep-idle (irqs are disabled):
340 */
341void sched_clock_idle_sleep_event(void)
342{
343 sched_clock_cpu(smp_processor_id());
344}
345EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
346
347/*
348 * We just idled delta nanoseconds (called with irqs disabled):
349 */
350void sched_clock_idle_wakeup_event(u64 delta_ns)
351{
1c5745aa
TG
352 if (timekeeping_suspended)
353 return;
354
354879bb 355 sched_clock_tick();
3e51f33f
PZ
356 touch_softlockup_watchdog();
357}
358EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
359
c676329a
PZ
360/*
361 * As outlined at the top, provides a fast, high resolution, nanosecond
362 * time source that is monotonic per cpu argument and has bounded drift
363 * between cpus.
364 *
365 * ######################### BIG FAT WARNING ##########################
366 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
367 * # go backwards !! #
368 * ####################################################################
369 */
370u64 cpu_clock(int cpu)
b9f8fcd5 371{
d375b4e0 372 if (!sched_clock_stable())
35af99e6
PZ
373 return sched_clock_cpu(cpu);
374
375 return sched_clock();
b9f8fcd5
DM
376}
377
c676329a
PZ
378/*
379 * Similar to cpu_clock() for the current cpu. Time will only be observed
380 * to be monotonic if care is taken to only compare timestampt taken on the
381 * same CPU.
382 *
383 * See cpu_clock().
384 */
385u64 local_clock(void)
386{
d375b4e0 387 if (!sched_clock_stable())
35af99e6
PZ
388 return sched_clock_cpu(raw_smp_processor_id());
389
390 return sched_clock();
c676329a
PZ
391}
392
8325d9c0
PZ
393#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
394
395void sched_clock_init(void)
396{
397 sched_clock_running = 1;
398}
399
400u64 sched_clock_cpu(int cpu)
401{
402 if (unlikely(!sched_clock_running))
403 return 0;
404
405 return sched_clock();
406}
407
c676329a 408u64 cpu_clock(int cpu)
76a2a6ee 409{
35af99e6 410 return sched_clock();
b9f8fcd5 411}
76a2a6ee 412
c676329a
PZ
413u64 local_clock(void)
414{
35af99e6 415 return sched_clock();
c676329a
PZ
416}
417
b9f8fcd5 418#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 419
4c9fe8ad 420EXPORT_SYMBOL_GPL(cpu_clock);
c676329a 421EXPORT_SYMBOL_GPL(local_clock);