]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/clock.c
Merge tag 'hwmon-for-linus-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / clock.c
CommitLineData
3e51f33f
PZ
1/*
2 * sched_clock for unstable cpu clocks
3 *
90eec103 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
3e51f33f 5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a
PZ
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
c676329a
PZ
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
ef08f0ff
PZ
31 * sched_clock_cpu(i)
32 *
c676329a
PZ
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
3e51f33f
PZ
44 * - sched_clock()
45 * - explicit idle events
46 *
c676329a
PZ
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
3e51f33f
PZ
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
3e51f33f 54 */
3e51f33f 55#include <linux/spinlock.h>
6409c4da 56#include <linux/hardirq.h>
9984de1a 57#include <linux/export.h>
b342501c
IM
58#include <linux/percpu.h>
59#include <linux/ktime.h>
60#include <linux/sched.h>
38b8d208 61#include <linux/nmi.h>
e6017571 62#include <linux/sched/clock.h>
35af99e6 63#include <linux/static_key.h>
6577e42a 64#include <linux/workqueue.h>
52f5684c 65#include <linux/compiler.h>
4f49b90a 66#include <linux/tick.h>
3e51f33f 67
2c3d103b
HD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
52f5684c 73unsigned long long __weak sched_clock(void)
2c3d103b 74{
92d23f70
R
75 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
76 * (NSEC_PER_SEC / HZ);
2c3d103b 77}
b6ac23af 78EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 79
5bb6b1ea 80__read_mostly int sched_clock_running;
c1955a3d 81
9881b024
PZ
82void sched_clock_init(void)
83{
84 sched_clock_running = 1;
85}
86
3e51f33f 87#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
acb04058
PZ
88/*
89 * We must start with !__sched_clock_stable because the unstable -> stable
90 * transition is accurate, while the stable -> unstable transition is not.
91 *
92 * Similarly we start with __sched_clock_stable_early, thereby assuming we
93 * will become stable, such that there's only a single 1 -> 0 transition.
94 */
555570d7 95static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
acb04058 96static int __sched_clock_stable_early = 1;
35af99e6 97
5680d809 98/*
698eff63 99 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
5680d809 100 */
698eff63
PZ
101__read_mostly u64 __sched_clock_offset;
102static __read_mostly u64 __gtod_offset;
5680d809
PZ
103
104struct sched_clock_data {
105 u64 tick_raw;
106 u64 tick_gtod;
107 u64 clock;
108};
109
110static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
111
112static inline struct sched_clock_data *this_scd(void)
113{
114 return this_cpu_ptr(&sched_clock_data);
115}
116
117static inline struct sched_clock_data *cpu_sdc(int cpu)
118{
119 return &per_cpu(sched_clock_data, cpu);
120}
121
35af99e6
PZ
122int sched_clock_stable(void)
123{
555570d7 124 return static_branch_likely(&__sched_clock_stable);
35af99e6
PZ
125}
126
d375b4e0 127static void __set_sched_clock_stable(void)
35af99e6 128{
5680d809
PZ
129 struct sched_clock_data *scd = this_scd();
130
131 /*
132 * Attempt to make the (initial) unstable->stable transition continuous.
133 */
698eff63 134 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
5680d809
PZ
135
136 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
698eff63
PZ
137 scd->tick_gtod, __gtod_offset,
138 scd->tick_raw, __sched_clock_offset);
5680d809 139
555570d7 140 static_branch_enable(&__sched_clock_stable);
4f49b90a 141 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
d375b4e0
PZ
142}
143
71fdb70e
PZ
144static void __sched_clock_work(struct work_struct *work)
145{
146 static_branch_disable(&__sched_clock_stable);
147}
148
149static DECLARE_WORK(sched_clock_work, __sched_clock_work);
150
151static void __clear_sched_clock_stable(void)
35af99e6 152{
5680d809
PZ
153 struct sched_clock_data *scd = this_scd();
154
155 /*
156 * Attempt to make the stable->unstable transition continuous.
157 *
158 * Trouble is, this is typically called from the TSC watchdog
159 * timer, which is late per definition. This means the tick
160 * values can already be screwy.
161 *
162 * Still do what we can.
163 */
698eff63 164 __gtod_offset = (scd->tick_raw + __sched_clock_offset) - (scd->tick_gtod);
5680d809
PZ
165
166 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
698eff63
PZ
167 scd->tick_gtod, __gtod_offset,
168 scd->tick_raw, __sched_clock_offset);
5680d809 169
4f49b90a 170 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
3e51f33f 171
71fdb70e
PZ
172 if (sched_clock_stable())
173 schedule_work(&sched_clock_work);
174}
6577e42a
PZ
175
176void clear_sched_clock_stable(void)
177{
d375b4e0
PZ
178 __sched_clock_stable_early = 0;
179
9881b024 180 smp_mb(); /* matches sched_clock_init_late() */
d375b4e0 181
9881b024 182 if (sched_clock_running == 2)
71fdb70e 183 __clear_sched_clock_stable();
6577e42a
PZ
184}
185
9881b024 186void sched_clock_init_late(void)
3e51f33f 187{
9881b024 188 sched_clock_running = 2;
d375b4e0
PZ
189 /*
190 * Ensure that it is impossible to not do a static_key update.
191 *
192 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
193 * and do the update, or we must see their __sched_clock_stable_early
194 * and do the update, or both.
195 */
196 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
197
198 if (__sched_clock_stable_early)
199 __set_sched_clock_stable();
3e51f33f
PZ
200}
201
354879bb 202/*
b342501c 203 * min, max except they take wrapping into account
354879bb
PZ
204 */
205
206static inline u64 wrap_min(u64 x, u64 y)
207{
208 return (s64)(x - y) < 0 ? x : y;
209}
210
211static inline u64 wrap_max(u64 x, u64 y)
212{
213 return (s64)(x - y) > 0 ? x : y;
214}
215
3e51f33f
PZ
216/*
217 * update the percpu scd from the raw @now value
218 *
219 * - filter out backward motion
354879bb 220 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 221 */
def0a9b2 222static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 223{
7b09cc5a 224 u64 now, clock, old_clock, min_clock, max_clock, gtod;
def0a9b2 225 s64 delta;
3e51f33f 226
def0a9b2
PZ
227again:
228 now = sched_clock();
229 delta = now - scd->tick_raw;
354879bb
PZ
230 if (unlikely(delta < 0))
231 delta = 0;
3e51f33f 232
def0a9b2
PZ
233 old_clock = scd->clock;
234
354879bb
PZ
235 /*
236 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
237 * max(scd->tick_gtod, scd->clock),
238 * scd->tick_gtod + TICK_NSEC);
354879bb 239 */
3e51f33f 240
7b09cc5a
PT
241 gtod = scd->tick_gtod + __gtod_offset;
242 clock = gtod + delta;
243 min_clock = wrap_max(gtod, old_clock);
244 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
3e51f33f 245
354879bb
PZ
246 clock = wrap_max(clock, min_clock);
247 clock = wrap_min(clock, max_clock);
3e51f33f 248
152f9d07 249 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 250 goto again;
56b90612 251
def0a9b2 252 return clock;
3e51f33f
PZ
253}
254
def0a9b2 255static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 256{
def0a9b2
PZ
257 struct sched_clock_data *my_scd = this_scd();
258 u64 this_clock, remote_clock;
259 u64 *ptr, old_val, val;
260
a1cbcaa9
TG
261#if BITS_PER_LONG != 64
262again:
263 /*
264 * Careful here: The local and the remote clock values need to
265 * be read out atomic as we need to compare the values and
266 * then update either the local or the remote side. So the
267 * cmpxchg64 below only protects one readout.
268 *
269 * We must reread via sched_clock_local() in the retry case on
270 * 32bit as an NMI could use sched_clock_local() via the
271 * tracer and hit between the readout of
272 * the low32bit and the high 32bit portion.
273 */
274 this_clock = sched_clock_local(my_scd);
275 /*
276 * We must enforce atomic readout on 32bit, otherwise the
277 * update on the remote cpu can hit inbetween the readout of
278 * the low32bit and the high 32bit portion.
279 */
280 remote_clock = cmpxchg64(&scd->clock, 0, 0);
281#else
282 /*
283 * On 64bit the read of [my]scd->clock is atomic versus the
284 * update, so we can avoid the above 32bit dance.
285 */
def0a9b2
PZ
286 sched_clock_local(my_scd);
287again:
288 this_clock = my_scd->clock;
289 remote_clock = scd->clock;
a1cbcaa9 290#endif
def0a9b2
PZ
291
292 /*
293 * Use the opportunity that we have both locks
294 * taken to couple the two clocks: we take the
295 * larger time as the latest time for both
296 * runqueues. (this creates monotonic movement)
297 */
298 if (likely((s64)(remote_clock - this_clock) < 0)) {
299 ptr = &scd->clock;
300 old_val = remote_clock;
301 val = this_clock;
3e51f33f 302 } else {
def0a9b2
PZ
303 /*
304 * Should be rare, but possible:
305 */
306 ptr = &my_scd->clock;
307 old_val = this_clock;
308 val = remote_clock;
3e51f33f 309 }
def0a9b2 310
152f9d07 311 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
312 goto again;
313
314 return val;
3e51f33f
PZ
315}
316
c676329a
PZ
317/*
318 * Similar to cpu_clock(), but requires local IRQs to be disabled.
319 *
320 * See cpu_clock().
321 */
3e51f33f
PZ
322u64 sched_clock_cpu(int cpu)
323{
b342501c 324 struct sched_clock_data *scd;
def0a9b2
PZ
325 u64 clock;
326
35af99e6 327 if (sched_clock_stable())
698eff63 328 return sched_clock() + __sched_clock_offset;
a381759d 329
a381759d
PZ
330 if (unlikely(!sched_clock_running))
331 return 0ull;
332
96b3d28b 333 preempt_disable_notrace();
def0a9b2 334 scd = cpu_sdc(cpu);
3e51f33f 335
def0a9b2
PZ
336 if (cpu != smp_processor_id())
337 clock = sched_clock_remote(scd);
338 else
339 clock = sched_clock_local(scd);
96b3d28b 340 preempt_enable_notrace();
e4e4e534 341
3e51f33f
PZ
342 return clock;
343}
2c923e94 344EXPORT_SYMBOL_GPL(sched_clock_cpu);
3e51f33f
PZ
345
346void sched_clock_tick(void)
347{
8325d9c0 348 struct sched_clock_data *scd;
a381759d 349
3e51f33f
PZ
350 WARN_ON_ONCE(!irqs_disabled());
351
5680d809
PZ
352 /*
353 * Update these values even if sched_clock_stable(), because it can
354 * become unstable at any point in time at which point we need some
355 * values to fall back on.
356 *
357 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
358 */
8325d9c0 359 scd = this_scd();
5680d809
PZ
360 scd->tick_raw = sched_clock();
361 scd->tick_gtod = ktime_get_ns();
3e51f33f 362
5680d809
PZ
363 if (!sched_clock_stable() && likely(sched_clock_running))
364 sched_clock_local(scd);
3e51f33f
PZ
365}
366
367/*
368 * We are going deep-idle (irqs are disabled):
369 */
370void sched_clock_idle_sleep_event(void)
371{
372 sched_clock_cpu(smp_processor_id());
373}
374EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
375
376/*
377 * We just idled delta nanoseconds (called with irqs disabled):
378 */
379void sched_clock_idle_wakeup_event(u64 delta_ns)
380{
1c5745aa
TG
381 if (timekeeping_suspended)
382 return;
383
354879bb 384 sched_clock_tick();
03e0d461 385 touch_softlockup_watchdog_sched();
3e51f33f
PZ
386}
387EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
388
8325d9c0
PZ
389#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
390
8325d9c0
PZ
391u64 sched_clock_cpu(int cpu)
392{
393 if (unlikely(!sched_clock_running))
394 return 0;
395
396 return sched_clock();
397}
9881b024 398
b9f8fcd5 399#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 400
545a2bf7
CB
401/*
402 * Running clock - returns the time that has elapsed while a guest has been
403 * running.
404 * On a guest this value should be local_clock minus the time the guest was
405 * suspended by the hypervisor (for any reason).
406 * On bare metal this function should return the same as local_clock.
407 * Architectures and sub-architectures can override this.
408 */
409u64 __weak running_clock(void)
410{
411 return local_clock();
412}