]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/clock.c
sched/clock: Initialize all per-CPU state before switching (back) to unstable
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / clock.c
CommitLineData
3e51f33f
PZ
1/*
2 * sched_clock for unstable cpu clocks
3 *
90eec103 4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
3e51f33f 5 *
c300ba25
SR
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
8 *
3e51f33f
PZ
9 * Based on code by:
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
12 *
c676329a
PZ
13 *
14 * What:
15 *
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
19 *
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
22 * # go backwards !! #
23 * ####################################################################
24 *
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
27 *
28 * cpu_clock(i) -- can be used from any context, including NMI.
c676329a
PZ
29 * local_clock() -- is cpu_clock() on the current cpu.
30 *
ef08f0ff
PZ
31 * sched_clock_cpu(i)
32 *
c676329a
PZ
33 * How:
34 *
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
39 *
40 * Otherwise it tries to create a semi stable clock from a mixture of other
41 * clocks, including:
42 *
43 * - GTOD (clock monotomic)
3e51f33f
PZ
44 * - sched_clock()
45 * - explicit idle events
46 *
c676329a
PZ
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
49 * expected window.
3e51f33f
PZ
50 *
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
53 *
3e51f33f 54 */
3e51f33f 55#include <linux/spinlock.h>
6409c4da 56#include <linux/hardirq.h>
9984de1a 57#include <linux/export.h>
b342501c
IM
58#include <linux/percpu.h>
59#include <linux/ktime.h>
60#include <linux/sched.h>
38b8d208 61#include <linux/nmi.h>
e6017571 62#include <linux/sched/clock.h>
35af99e6 63#include <linux/static_key.h>
6577e42a 64#include <linux/workqueue.h>
52f5684c 65#include <linux/compiler.h>
4f49b90a 66#include <linux/tick.h>
3e51f33f 67
2c3d103b
HD
68/*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
52f5684c 73unsigned long long __weak sched_clock(void)
2c3d103b 74{
92d23f70
R
75 return (unsigned long long)(jiffies - INITIAL_JIFFIES)
76 * (NSEC_PER_SEC / HZ);
2c3d103b 77}
b6ac23af 78EXPORT_SYMBOL_GPL(sched_clock);
3e51f33f 79
5bb6b1ea 80__read_mostly int sched_clock_running;
c1955a3d 81
9881b024
PZ
82void sched_clock_init(void)
83{
84 sched_clock_running = 1;
85}
86
3e51f33f 87#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
acb04058
PZ
88/*
89 * We must start with !__sched_clock_stable because the unstable -> stable
90 * transition is accurate, while the stable -> unstable transition is not.
91 *
92 * Similarly we start with __sched_clock_stable_early, thereby assuming we
93 * will become stable, such that there's only a single 1 -> 0 transition.
94 */
555570d7 95static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
acb04058 96static int __sched_clock_stable_early = 1;
35af99e6 97
5680d809 98/*
698eff63 99 * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
5680d809 100 */
698eff63
PZ
101__read_mostly u64 __sched_clock_offset;
102static __read_mostly u64 __gtod_offset;
5680d809
PZ
103
104struct sched_clock_data {
105 u64 tick_raw;
106 u64 tick_gtod;
107 u64 clock;
108};
109
110static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
111
112static inline struct sched_clock_data *this_scd(void)
113{
114 return this_cpu_ptr(&sched_clock_data);
115}
116
117static inline struct sched_clock_data *cpu_sdc(int cpu)
118{
119 return &per_cpu(sched_clock_data, cpu);
120}
121
35af99e6
PZ
122int sched_clock_stable(void)
123{
555570d7 124 return static_branch_likely(&__sched_clock_stable);
35af99e6
PZ
125}
126
cf15ca8d
PZ
127static void __scd_stamp(struct sched_clock_data *scd)
128{
129 scd->tick_gtod = ktime_get_ns();
130 scd->tick_raw = sched_clock();
131}
132
d375b4e0 133static void __set_sched_clock_stable(void)
35af99e6 134{
5680d809
PZ
135 struct sched_clock_data *scd = this_scd();
136
137 /*
138 * Attempt to make the (initial) unstable->stable transition continuous.
139 */
698eff63 140 __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
5680d809
PZ
141
142 printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
698eff63
PZ
143 scd->tick_gtod, __gtod_offset,
144 scd->tick_raw, __sched_clock_offset);
5680d809 145
555570d7 146 static_branch_enable(&__sched_clock_stable);
4f49b90a 147 tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
d375b4e0
PZ
148}
149
cf15ca8d
PZ
150/*
151 * If we ever get here, we're screwed, because we found out -- typically after
152 * the fact -- that TSC wasn't good. This means all our clocksources (including
153 * ktime) could have reported wrong values.
154 *
155 * What we do here is an attempt to fix up and continue sort of where we left
156 * off in a coherent manner.
157 *
158 * The only way to fully avoid random clock jumps is to boot with:
159 * "tsc=unstable".
160 */
71fdb70e
PZ
161static void __sched_clock_work(struct work_struct *work)
162{
cf15ca8d
PZ
163 struct sched_clock_data *scd;
164 int cpu;
165
166 /* take a current timestamp and set 'now' */
167 preempt_disable();
168 scd = this_scd();
169 __scd_stamp(scd);
170 scd->clock = scd->tick_gtod + __gtod_offset;
171 preempt_enable();
172
173 /* clone to all CPUs */
174 for_each_possible_cpu(cpu)
175 per_cpu(sched_clock_data, cpu) = *scd;
176
177 printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
178 scd->tick_gtod, __gtod_offset,
179 scd->tick_raw, __sched_clock_offset);
180
71fdb70e
PZ
181 static_branch_disable(&__sched_clock_stable);
182}
183
184static DECLARE_WORK(sched_clock_work, __sched_clock_work);
185
186static void __clear_sched_clock_stable(void)
35af99e6 187{
cf15ca8d
PZ
188 if (!sched_clock_stable())
189 return;
5680d809 190
4f49b90a 191 tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
cf15ca8d 192 schedule_work(&sched_clock_work);
71fdb70e 193}
6577e42a
PZ
194
195void clear_sched_clock_stable(void)
196{
d375b4e0
PZ
197 __sched_clock_stable_early = 0;
198
9881b024 199 smp_mb(); /* matches sched_clock_init_late() */
d375b4e0 200
9881b024 201 if (sched_clock_running == 2)
71fdb70e 202 __clear_sched_clock_stable();
6577e42a
PZ
203}
204
9881b024 205void sched_clock_init_late(void)
3e51f33f 206{
9881b024 207 sched_clock_running = 2;
d375b4e0
PZ
208 /*
209 * Ensure that it is impossible to not do a static_key update.
210 *
211 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
212 * and do the update, or we must see their __sched_clock_stable_early
213 * and do the update, or both.
214 */
215 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
216
217 if (__sched_clock_stable_early)
218 __set_sched_clock_stable();
3e51f33f
PZ
219}
220
354879bb 221/*
b342501c 222 * min, max except they take wrapping into account
354879bb
PZ
223 */
224
225static inline u64 wrap_min(u64 x, u64 y)
226{
227 return (s64)(x - y) < 0 ? x : y;
228}
229
230static inline u64 wrap_max(u64 x, u64 y)
231{
232 return (s64)(x - y) > 0 ? x : y;
233}
234
3e51f33f
PZ
235/*
236 * update the percpu scd from the raw @now value
237 *
238 * - filter out backward motion
354879bb 239 * - use the GTOD tick value to create a window to filter crazy TSC values
3e51f33f 240 */
def0a9b2 241static u64 sched_clock_local(struct sched_clock_data *scd)
3e51f33f 242{
7b09cc5a 243 u64 now, clock, old_clock, min_clock, max_clock, gtod;
def0a9b2 244 s64 delta;
3e51f33f 245
def0a9b2
PZ
246again:
247 now = sched_clock();
248 delta = now - scd->tick_raw;
354879bb
PZ
249 if (unlikely(delta < 0))
250 delta = 0;
3e51f33f 251
def0a9b2
PZ
252 old_clock = scd->clock;
253
354879bb
PZ
254 /*
255 * scd->clock = clamp(scd->tick_gtod + delta,
b342501c
IM
256 * max(scd->tick_gtod, scd->clock),
257 * scd->tick_gtod + TICK_NSEC);
354879bb 258 */
3e51f33f 259
7b09cc5a
PT
260 gtod = scd->tick_gtod + __gtod_offset;
261 clock = gtod + delta;
262 min_clock = wrap_max(gtod, old_clock);
263 max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
3e51f33f 264
354879bb
PZ
265 clock = wrap_max(clock, min_clock);
266 clock = wrap_min(clock, max_clock);
3e51f33f 267
152f9d07 268 if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
def0a9b2 269 goto again;
56b90612 270
def0a9b2 271 return clock;
3e51f33f
PZ
272}
273
def0a9b2 274static u64 sched_clock_remote(struct sched_clock_data *scd)
3e51f33f 275{
def0a9b2
PZ
276 struct sched_clock_data *my_scd = this_scd();
277 u64 this_clock, remote_clock;
278 u64 *ptr, old_val, val;
279
a1cbcaa9
TG
280#if BITS_PER_LONG != 64
281again:
282 /*
283 * Careful here: The local and the remote clock values need to
284 * be read out atomic as we need to compare the values and
285 * then update either the local or the remote side. So the
286 * cmpxchg64 below only protects one readout.
287 *
288 * We must reread via sched_clock_local() in the retry case on
289 * 32bit as an NMI could use sched_clock_local() via the
290 * tracer and hit between the readout of
291 * the low32bit and the high 32bit portion.
292 */
293 this_clock = sched_clock_local(my_scd);
294 /*
295 * We must enforce atomic readout on 32bit, otherwise the
296 * update on the remote cpu can hit inbetween the readout of
297 * the low32bit and the high 32bit portion.
298 */
299 remote_clock = cmpxchg64(&scd->clock, 0, 0);
300#else
301 /*
302 * On 64bit the read of [my]scd->clock is atomic versus the
303 * update, so we can avoid the above 32bit dance.
304 */
def0a9b2
PZ
305 sched_clock_local(my_scd);
306again:
307 this_clock = my_scd->clock;
308 remote_clock = scd->clock;
a1cbcaa9 309#endif
def0a9b2
PZ
310
311 /*
312 * Use the opportunity that we have both locks
313 * taken to couple the two clocks: we take the
314 * larger time as the latest time for both
315 * runqueues. (this creates monotonic movement)
316 */
317 if (likely((s64)(remote_clock - this_clock) < 0)) {
318 ptr = &scd->clock;
319 old_val = remote_clock;
320 val = this_clock;
3e51f33f 321 } else {
def0a9b2
PZ
322 /*
323 * Should be rare, but possible:
324 */
325 ptr = &my_scd->clock;
326 old_val = this_clock;
327 val = remote_clock;
3e51f33f 328 }
def0a9b2 329
152f9d07 330 if (cmpxchg64(ptr, old_val, val) != old_val)
def0a9b2
PZ
331 goto again;
332
333 return val;
3e51f33f
PZ
334}
335
c676329a
PZ
336/*
337 * Similar to cpu_clock(), but requires local IRQs to be disabled.
338 *
339 * See cpu_clock().
340 */
3e51f33f
PZ
341u64 sched_clock_cpu(int cpu)
342{
b342501c 343 struct sched_clock_data *scd;
def0a9b2
PZ
344 u64 clock;
345
35af99e6 346 if (sched_clock_stable())
698eff63 347 return sched_clock() + __sched_clock_offset;
a381759d 348
a381759d
PZ
349 if (unlikely(!sched_clock_running))
350 return 0ull;
351
96b3d28b 352 preempt_disable_notrace();
def0a9b2 353 scd = cpu_sdc(cpu);
3e51f33f 354
def0a9b2
PZ
355 if (cpu != smp_processor_id())
356 clock = sched_clock_remote(scd);
357 else
358 clock = sched_clock_local(scd);
96b3d28b 359 preempt_enable_notrace();
e4e4e534 360
3e51f33f
PZ
361 return clock;
362}
2c923e94 363EXPORT_SYMBOL_GPL(sched_clock_cpu);
3e51f33f
PZ
364
365void sched_clock_tick(void)
366{
8325d9c0 367 struct sched_clock_data *scd;
a381759d 368
3e51f33f
PZ
369 WARN_ON_ONCE(!irqs_disabled());
370
5680d809
PZ
371 /*
372 * Update these values even if sched_clock_stable(), because it can
373 * become unstable at any point in time at which point we need some
374 * values to fall back on.
375 *
376 * XXX arguably we can skip this if we expose tsc_clocksource_reliable
377 */
8325d9c0 378 scd = this_scd();
cf15ca8d 379 __scd_stamp(scd);
3e51f33f 380
5680d809
PZ
381 if (!sched_clock_stable() && likely(sched_clock_running))
382 sched_clock_local(scd);
3e51f33f
PZ
383}
384
385/*
386 * We are going deep-idle (irqs are disabled):
387 */
388void sched_clock_idle_sleep_event(void)
389{
390 sched_clock_cpu(smp_processor_id());
391}
392EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
393
394/*
395 * We just idled delta nanoseconds (called with irqs disabled):
396 */
397void sched_clock_idle_wakeup_event(u64 delta_ns)
398{
1c5745aa
TG
399 if (timekeeping_suspended)
400 return;
401
354879bb 402 sched_clock_tick();
03e0d461 403 touch_softlockup_watchdog_sched();
3e51f33f
PZ
404}
405EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
406
8325d9c0
PZ
407#else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
408
8325d9c0
PZ
409u64 sched_clock_cpu(int cpu)
410{
411 if (unlikely(!sched_clock_running))
412 return 0;
413
414 return sched_clock();
415}
9881b024 416
b9f8fcd5 417#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
76a2a6ee 418
545a2bf7
CB
419/*
420 * Running clock - returns the time that has elapsed while a guest has been
421 * running.
422 * On a guest this value should be local_clock minus the time the guest was
423 * suspended by the hypervisor (for any reason).
424 * On bare metal this function should return the same as local_clock.
425 * Architectures and sub-architectures can override this.
426 */
427u64 __weak running_clock(void)
428{
429 return local_clock();
430}