]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched: Account rr tasks
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
1292531f 131static const char * const sched_feat_names[] = {
391e43da 132#include "features.h"
f00b45c1
PZ
133};
134
135#undef SCHED_FEAT
136
34f3a814 137static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 138{
f00b45c1
PZ
139 int i;
140
f8b6d1cc 141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 145 }
34f3a814 146 seq_puts(m, "\n");
f00b45c1 147
34f3a814 148 return 0;
f00b45c1
PZ
149}
150
f8b6d1cc
PZ
151#ifdef HAVE_JUMP_LABEL
152
c5905afb
IM
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
c5905afb 159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
e33886b3 167 static_key_disable(&sched_feat_keys[i]);
f8b6d1cc
PZ
168}
169
170static void sched_feat_enable(int i)
171{
e33886b3 172 static_key_enable(&sched_feat_keys[i]);
f8b6d1cc
PZ
173}
174#else
175static void sched_feat_disable(int i) { };
176static void sched_feat_enable(int i) { };
177#endif /* HAVE_JUMP_LABEL */
178
1a687c2e 179static int sched_feat_set(char *cmp)
f00b45c1 180{
f00b45c1 181 int i;
1a687c2e 182 int neg = 0;
f00b45c1 183
524429c3 184 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
185 neg = 1;
186 cmp += 3;
187 }
188
f8b6d1cc 189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 191 if (neg) {
f00b45c1 192 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
193 sched_feat_disable(i);
194 } else {
f00b45c1 195 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
196 sched_feat_enable(i);
197 }
f00b45c1
PZ
198 break;
199 }
200 }
201
1a687c2e
MG
202 return i;
203}
204
205static ssize_t
206sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208{
209 char buf[64];
210 char *cmp;
211 int i;
5cd08fbf 212 struct inode *inode;
1a687c2e
MG
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
5cd08fbf
JB
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
5955102c 225 inode_lock(inode);
1a687c2e 226 i = sched_feat_set(cmp);
5955102c 227 inode_unlock(inode);
f8b6d1cc 228 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
229 return -EINVAL;
230
42994724 231 *ppos += cnt;
f00b45c1
PZ
232
233 return cnt;
234}
235
34f3a814
LZ
236static int sched_feat_open(struct inode *inode, struct file *filp)
237{
238 return single_open(filp, sched_feat_show, NULL);
239}
240
828c0950 241static const struct file_operations sched_feat_fops = {
34f3a814
LZ
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
f00b45c1
PZ
247};
248
249static __init int sched_init_debug(void)
250{
f00b45c1
PZ
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255}
256late_initcall(sched_init_debug);
f8b6d1cc 257#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 258
b82d9fdd
PZ
259/*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
e9e9250b
PZ
265/*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
fa85ae24 273/*
9f0c1e56 274 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
275 * default: 1s
276 */
9f0c1e56 277unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 278
029632fb 279__read_mostly int scheduler_running;
6892b75e 280
9f0c1e56
PZ
281/*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285int sysctl_sched_rt_runtime = 950000;
fa85ae24 286
3fa0818b
RR
287/* cpus with isolated domains */
288cpumask_var_t cpu_isolated_map;
289
1da177e4 290/*
cc2a73b5 291 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 292 */
a9957449 293static struct rq *this_rq_lock(void)
1da177e4
LT
294 __acquires(rq->lock)
295{
70b97a7f 296 struct rq *rq;
1da177e4
LT
297
298 local_irq_disable();
299 rq = this_rq();
05fa785c 300 raw_spin_lock(&rq->lock);
1da177e4
LT
301
302 return rq;
303}
304
8f4d37ec
PZ
305#ifdef CONFIG_SCHED_HRTICK
306/*
307 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 308 */
8f4d37ec 309
8f4d37ec
PZ
310static void hrtick_clear(struct rq *rq)
311{
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314}
315
8f4d37ec
PZ
316/*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320static enum hrtimer_restart hrtick(struct hrtimer *timer)
321{
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
05fa785c 326 raw_spin_lock(&rq->lock);
3e51f33f 327 update_rq_clock(rq);
8f4d37ec 328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 329 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
330
331 return HRTIMER_NORESTART;
332}
333
95e904c7 334#ifdef CONFIG_SMP
971ee28c 335
4961b6e1 336static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
337{
338 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 339
4961b6e1 340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
341}
342
31656519
PZ
343/*
344 * called from hardirq (IPI) context
345 */
346static void __hrtick_start(void *arg)
b328ca18 347{
31656519 348 struct rq *rq = arg;
b328ca18 349
05fa785c 350 raw_spin_lock(&rq->lock);
971ee28c 351 __hrtick_restart(rq);
31656519 352 rq->hrtick_csd_pending = 0;
05fa785c 353 raw_spin_unlock(&rq->lock);
b328ca18
PZ
354}
355
31656519
PZ
356/*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
029632fb 361void hrtick_start(struct rq *rq, u64 delay)
b328ca18 362{
31656519 363 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 373
cc584b21 374 hrtimer_set_expires(timer, time);
31656519
PZ
375
376 if (rq == this_rq()) {
971ee28c 377 __hrtick_restart(rq);
31656519 378 } else if (!rq->hrtick_csd_pending) {
c46fff2a 379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
380 rq->hrtick_csd_pending = 1;
381 }
b328ca18
PZ
382}
383
384static int
385hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386{
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
31656519 396 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401}
402
fa748203 403static __init void init_hrtick(void)
b328ca18
PZ
404{
405 hotcpu_notifier(hotplug_hrtick, 0);
406}
31656519
PZ
407#else
408/*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
029632fb 413void hrtick_start(struct rq *rq, u64 delay)
31656519 414{
86893335
WL
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
31656519 422}
b328ca18 423
006c75f1 424static inline void init_hrtick(void)
8f4d37ec 425{
8f4d37ec 426}
31656519 427#endif /* CONFIG_SMP */
8f4d37ec 428
31656519 429static void init_rq_hrtick(struct rq *rq)
8f4d37ec 430{
31656519
PZ
431#ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
8f4d37ec 433
31656519
PZ
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437#endif
8f4d37ec 438
31656519
PZ
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
8f4d37ec 441}
006c75f1 442#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
443static inline void hrtick_clear(struct rq *rq)
444{
445}
446
8f4d37ec
PZ
447static inline void init_rq_hrtick(struct rq *rq)
448{
449}
450
b328ca18
PZ
451static inline void init_hrtick(void)
452{
453}
006c75f1 454#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 455
e3baac47 456#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
457/*
458 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
459 * this avoids any races wrt polling state changes and thereby avoids
460 * spurious IPIs.
461 */
462static bool set_nr_and_not_polling(struct task_struct *p)
463{
464 struct thread_info *ti = task_thread_info(p);
465 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
466}
e3baac47
PZ
467
468/*
469 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
470 *
471 * If this returns true, then the idle task promises to call
472 * sched_ttwu_pending() and reschedule soon.
473 */
474static bool set_nr_if_polling(struct task_struct *p)
475{
476 struct thread_info *ti = task_thread_info(p);
316c1608 477 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
478
479 for (;;) {
480 if (!(val & _TIF_POLLING_NRFLAG))
481 return false;
482 if (val & _TIF_NEED_RESCHED)
483 return true;
484 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
485 if (old == val)
486 break;
487 val = old;
488 }
489 return true;
490}
491
fd99f91a
PZ
492#else
493static bool set_nr_and_not_polling(struct task_struct *p)
494{
495 set_tsk_need_resched(p);
496 return true;
497}
e3baac47
PZ
498
499#ifdef CONFIG_SMP
500static bool set_nr_if_polling(struct task_struct *p)
501{
502 return false;
503}
504#endif
fd99f91a
PZ
505#endif
506
76751049
PZ
507void wake_q_add(struct wake_q_head *head, struct task_struct *task)
508{
509 struct wake_q_node *node = &task->wake_q;
510
511 /*
512 * Atomically grab the task, if ->wake_q is !nil already it means
513 * its already queued (either by us or someone else) and will get the
514 * wakeup due to that.
515 *
516 * This cmpxchg() implies a full barrier, which pairs with the write
517 * barrier implied by the wakeup in wake_up_list().
518 */
519 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
520 return;
521
522 get_task_struct(task);
523
524 /*
525 * The head is context local, there can be no concurrency.
526 */
527 *head->lastp = node;
528 head->lastp = &node->next;
529}
530
531void wake_up_q(struct wake_q_head *head)
532{
533 struct wake_q_node *node = head->first;
534
535 while (node != WAKE_Q_TAIL) {
536 struct task_struct *task;
537
538 task = container_of(node, struct task_struct, wake_q);
539 BUG_ON(!task);
540 /* task can safely be re-inserted now */
541 node = node->next;
542 task->wake_q.next = NULL;
543
544 /*
545 * wake_up_process() implies a wmb() to pair with the queueing
546 * in wake_q_add() so as not to miss wakeups.
547 */
548 wake_up_process(task);
549 put_task_struct(task);
550 }
551}
552
c24d20db 553/*
8875125e 554 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
555 *
556 * On UP this means the setting of the need_resched flag, on SMP it
557 * might also involve a cross-CPU call to trigger the scheduler on
558 * the target CPU.
559 */
8875125e 560void resched_curr(struct rq *rq)
c24d20db 561{
8875125e 562 struct task_struct *curr = rq->curr;
c24d20db
IM
563 int cpu;
564
8875125e 565 lockdep_assert_held(&rq->lock);
c24d20db 566
8875125e 567 if (test_tsk_need_resched(curr))
c24d20db
IM
568 return;
569
8875125e 570 cpu = cpu_of(rq);
fd99f91a 571
f27dde8d 572 if (cpu == smp_processor_id()) {
8875125e 573 set_tsk_need_resched(curr);
f27dde8d 574 set_preempt_need_resched();
c24d20db 575 return;
f27dde8d 576 }
c24d20db 577
8875125e 578 if (set_nr_and_not_polling(curr))
c24d20db 579 smp_send_reschedule(cpu);
dfc68f29
AL
580 else
581 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
582}
583
029632fb 584void resched_cpu(int cpu)
c24d20db
IM
585{
586 struct rq *rq = cpu_rq(cpu);
587 unsigned long flags;
588
05fa785c 589 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 590 return;
8875125e 591 resched_curr(rq);
05fa785c 592 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 593}
06d8308c 594
b021fe3e 595#ifdef CONFIG_SMP
3451d024 596#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
597/*
598 * In the semi idle case, use the nearest busy cpu for migrating timers
599 * from an idle cpu. This is good for power-savings.
600 *
601 * We don't do similar optimization for completely idle system, as
602 * selecting an idle cpu will add more delays to the timers than intended
603 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
604 */
bc7a34b8 605int get_nohz_timer_target(void)
83cd4fe2 606{
bc7a34b8 607 int i, cpu = smp_processor_id();
83cd4fe2
VP
608 struct sched_domain *sd;
609
9642d18e 610 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
611 return cpu;
612
057f3fad 613 rcu_read_lock();
83cd4fe2 614 for_each_domain(cpu, sd) {
057f3fad 615 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 616 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
617 cpu = i;
618 goto unlock;
619 }
620 }
83cd4fe2 621 }
9642d18e
VH
622
623 if (!is_housekeeping_cpu(cpu))
624 cpu = housekeeping_any_cpu();
057f3fad
PZ
625unlock:
626 rcu_read_unlock();
83cd4fe2
VP
627 return cpu;
628}
06d8308c
TG
629/*
630 * When add_timer_on() enqueues a timer into the timer wheel of an
631 * idle CPU then this timer might expire before the next timer event
632 * which is scheduled to wake up that CPU. In case of a completely
633 * idle system the next event might even be infinite time into the
634 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
635 * leaves the inner idle loop so the newly added timer is taken into
636 * account when the CPU goes back to idle and evaluates the timer
637 * wheel for the next timer event.
638 */
1c20091e 639static void wake_up_idle_cpu(int cpu)
06d8308c
TG
640{
641 struct rq *rq = cpu_rq(cpu);
642
643 if (cpu == smp_processor_id())
644 return;
645
67b9ca70 646 if (set_nr_and_not_polling(rq->idle))
06d8308c 647 smp_send_reschedule(cpu);
dfc68f29
AL
648 else
649 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
650}
651
c5bfece2 652static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 653{
53c5fa16
FW
654 /*
655 * We just need the target to call irq_exit() and re-evaluate
656 * the next tick. The nohz full kick at least implies that.
657 * If needed we can still optimize that later with an
658 * empty IRQ.
659 */
c5bfece2 660 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
661 if (cpu != smp_processor_id() ||
662 tick_nohz_tick_stopped())
53c5fa16 663 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
664 return true;
665 }
666
667 return false;
668}
669
670void wake_up_nohz_cpu(int cpu)
671{
c5bfece2 672 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
673 wake_up_idle_cpu(cpu);
674}
675
ca38062e 676static inline bool got_nohz_idle_kick(void)
45bf76df 677{
1c792db7 678 int cpu = smp_processor_id();
873b4c65
VG
679
680 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
681 return false;
682
683 if (idle_cpu(cpu) && !need_resched())
684 return true;
685
686 /*
687 * We can't run Idle Load Balance on this CPU for this time so we
688 * cancel it and clear NOHZ_BALANCE_KICK
689 */
690 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
691 return false;
45bf76df
IM
692}
693
3451d024 694#else /* CONFIG_NO_HZ_COMMON */
45bf76df 695
ca38062e 696static inline bool got_nohz_idle_kick(void)
2069dd75 697{
ca38062e 698 return false;
2069dd75
PZ
699}
700
3451d024 701#endif /* CONFIG_NO_HZ_COMMON */
d842de87 702
ce831b38
FW
703#ifdef CONFIG_NO_HZ_FULL
704bool sched_can_stop_tick(void)
705{
1e78cdbd
RR
706 /*
707 * FIFO realtime policy runs the highest priority task. Other runnable
708 * tasks are of a lower priority. The scheduler tick does nothing.
709 */
710 if (current->policy == SCHED_FIFO)
711 return true;
712
713 /*
714 * Round-robin realtime tasks time slice with other tasks at the same
715 * realtime priority. Is this task the only one at this priority?
716 */
717 if (current->policy == SCHED_RR) {
718 struct sched_rt_entity *rt_se = &current->rt;
719
01783e0d 720 return list_is_singular(&rt_se->run_list);
1e78cdbd
RR
721 }
722
3882ec64
FW
723 /*
724 * More than one running task need preemption.
725 * nr_running update is assumed to be visible
726 * after IPI is sent from wakers.
727 */
541b8264
VK
728 if (this_rq()->nr_running > 1)
729 return false;
ce831b38 730
541b8264 731 return true;
ce831b38
FW
732}
733#endif /* CONFIG_NO_HZ_FULL */
d842de87 734
029632fb 735void sched_avg_update(struct rq *rq)
18d95a28 736{
e9e9250b
PZ
737 s64 period = sched_avg_period();
738
78becc27 739 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
740 /*
741 * Inline assembly required to prevent the compiler
742 * optimising this loop into a divmod call.
743 * See __iter_div_u64_rem() for another example of this.
744 */
745 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
746 rq->age_stamp += period;
747 rq->rt_avg /= 2;
748 }
18d95a28
PZ
749}
750
6d6bc0ad 751#endif /* CONFIG_SMP */
18d95a28 752
a790de99
PT
753#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
754 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 755/*
8277434e
PT
756 * Iterate task_group tree rooted at *from, calling @down when first entering a
757 * node and @up when leaving it for the final time.
758 *
759 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 760 */
029632fb 761int walk_tg_tree_from(struct task_group *from,
8277434e 762 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
763{
764 struct task_group *parent, *child;
eb755805 765 int ret;
c09595f6 766
8277434e
PT
767 parent = from;
768
c09595f6 769down:
eb755805
PZ
770 ret = (*down)(parent, data);
771 if (ret)
8277434e 772 goto out;
c09595f6
PZ
773 list_for_each_entry_rcu(child, &parent->children, siblings) {
774 parent = child;
775 goto down;
776
777up:
778 continue;
779 }
eb755805 780 ret = (*up)(parent, data);
8277434e
PT
781 if (ret || parent == from)
782 goto out;
c09595f6
PZ
783
784 child = parent;
785 parent = parent->parent;
786 if (parent)
787 goto up;
8277434e 788out:
eb755805 789 return ret;
c09595f6
PZ
790}
791
029632fb 792int tg_nop(struct task_group *tg, void *data)
eb755805 793{
e2b245f8 794 return 0;
eb755805 795}
18d95a28
PZ
796#endif
797
45bf76df
IM
798static void set_load_weight(struct task_struct *p)
799{
f05998d4
NR
800 int prio = p->static_prio - MAX_RT_PRIO;
801 struct load_weight *load = &p->se.load;
802
dd41f596
IM
803 /*
804 * SCHED_IDLE tasks get minimal weight:
805 */
20f9cd2a 806 if (idle_policy(p->policy)) {
c8b28116 807 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 808 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
809 return;
810 }
71f8bd46 811
ed82b8a1
AK
812 load->weight = scale_load(sched_prio_to_weight[prio]);
813 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
814}
815
1de64443 816static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 817{
a64692a3 818 update_rq_clock(rq);
1de64443
PZ
819 if (!(flags & ENQUEUE_RESTORE))
820 sched_info_queued(rq, p);
371fd7e7 821 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
822}
823
1de64443 824static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 825{
a64692a3 826 update_rq_clock(rq);
1de64443
PZ
827 if (!(flags & DEQUEUE_SAVE))
828 sched_info_dequeued(rq, p);
371fd7e7 829 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
830}
831
029632fb 832void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
833{
834 if (task_contributes_to_load(p))
835 rq->nr_uninterruptible--;
836
371fd7e7 837 enqueue_task(rq, p, flags);
1e3c88bd
PZ
838}
839
029632fb 840void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
841{
842 if (task_contributes_to_load(p))
843 rq->nr_uninterruptible++;
844
371fd7e7 845 dequeue_task(rq, p, flags);
1e3c88bd
PZ
846}
847
fe44d621 848static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 849{
095c0aa8
GC
850/*
851 * In theory, the compile should just see 0 here, and optimize out the call
852 * to sched_rt_avg_update. But I don't trust it...
853 */
854#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
855 s64 steal = 0, irq_delta = 0;
856#endif
857#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 858 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
859
860 /*
861 * Since irq_time is only updated on {soft,}irq_exit, we might run into
862 * this case when a previous update_rq_clock() happened inside a
863 * {soft,}irq region.
864 *
865 * When this happens, we stop ->clock_task and only update the
866 * prev_irq_time stamp to account for the part that fit, so that a next
867 * update will consume the rest. This ensures ->clock_task is
868 * monotonic.
869 *
870 * It does however cause some slight miss-attribution of {soft,}irq
871 * time, a more accurate solution would be to update the irq_time using
872 * the current rq->clock timestamp, except that would require using
873 * atomic ops.
874 */
875 if (irq_delta > delta)
876 irq_delta = delta;
877
878 rq->prev_irq_time += irq_delta;
879 delta -= irq_delta;
095c0aa8
GC
880#endif
881#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 882 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
883 steal = paravirt_steal_clock(cpu_of(rq));
884 steal -= rq->prev_steal_time_rq;
885
886 if (unlikely(steal > delta))
887 steal = delta;
888
095c0aa8 889 rq->prev_steal_time_rq += steal;
095c0aa8
GC
890 delta -= steal;
891 }
892#endif
893
fe44d621
PZ
894 rq->clock_task += delta;
895
095c0aa8 896#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 897 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
898 sched_rt_avg_update(rq, irq_delta + steal);
899#endif
aa483808
VP
900}
901
34f971f6
PZ
902void sched_set_stop_task(int cpu, struct task_struct *stop)
903{
904 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
905 struct task_struct *old_stop = cpu_rq(cpu)->stop;
906
907 if (stop) {
908 /*
909 * Make it appear like a SCHED_FIFO task, its something
910 * userspace knows about and won't get confused about.
911 *
912 * Also, it will make PI more or less work without too
913 * much confusion -- but then, stop work should not
914 * rely on PI working anyway.
915 */
916 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
917
918 stop->sched_class = &stop_sched_class;
919 }
920
921 cpu_rq(cpu)->stop = stop;
922
923 if (old_stop) {
924 /*
925 * Reset it back to a normal scheduling class so that
926 * it can die in pieces.
927 */
928 old_stop->sched_class = &rt_sched_class;
929 }
930}
931
14531189 932/*
dd41f596 933 * __normal_prio - return the priority that is based on the static prio
14531189 934 */
14531189
IM
935static inline int __normal_prio(struct task_struct *p)
936{
dd41f596 937 return p->static_prio;
14531189
IM
938}
939
b29739f9
IM
940/*
941 * Calculate the expected normal priority: i.e. priority
942 * without taking RT-inheritance into account. Might be
943 * boosted by interactivity modifiers. Changes upon fork,
944 * setprio syscalls, and whenever the interactivity
945 * estimator recalculates.
946 */
36c8b586 947static inline int normal_prio(struct task_struct *p)
b29739f9
IM
948{
949 int prio;
950
aab03e05
DF
951 if (task_has_dl_policy(p))
952 prio = MAX_DL_PRIO-1;
953 else if (task_has_rt_policy(p))
b29739f9
IM
954 prio = MAX_RT_PRIO-1 - p->rt_priority;
955 else
956 prio = __normal_prio(p);
957 return prio;
958}
959
960/*
961 * Calculate the current priority, i.e. the priority
962 * taken into account by the scheduler. This value might
963 * be boosted by RT tasks, or might be boosted by
964 * interactivity modifiers. Will be RT if the task got
965 * RT-boosted. If not then it returns p->normal_prio.
966 */
36c8b586 967static int effective_prio(struct task_struct *p)
b29739f9
IM
968{
969 p->normal_prio = normal_prio(p);
970 /*
971 * If we are RT tasks or we were boosted to RT priority,
972 * keep the priority unchanged. Otherwise, update priority
973 * to the normal priority:
974 */
975 if (!rt_prio(p->prio))
976 return p->normal_prio;
977 return p->prio;
978}
979
1da177e4
LT
980/**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
e69f6186
YB
983 *
984 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 985 */
36c8b586 986inline int task_curr(const struct task_struct *p)
1da177e4
LT
987{
988 return cpu_curr(task_cpu(p)) == p;
989}
990
67dfa1b7 991/*
4c9a4bc8
PZ
992 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
993 * use the balance_callback list if you want balancing.
994 *
995 * this means any call to check_class_changed() must be followed by a call to
996 * balance_callback().
67dfa1b7 997 */
cb469845
SR
998static inline void check_class_changed(struct rq *rq, struct task_struct *p,
999 const struct sched_class *prev_class,
da7a735e 1000 int oldprio)
cb469845
SR
1001{
1002 if (prev_class != p->sched_class) {
1003 if (prev_class->switched_from)
da7a735e 1004 prev_class->switched_from(rq, p);
4c9a4bc8 1005
da7a735e 1006 p->sched_class->switched_to(rq, p);
2d3d891d 1007 } else if (oldprio != p->prio || dl_task(p))
da7a735e 1008 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1009}
1010
029632fb 1011void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1012{
1013 const struct sched_class *class;
1014
1015 if (p->sched_class == rq->curr->sched_class) {
1016 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1017 } else {
1018 for_each_class(class) {
1019 if (class == rq->curr->sched_class)
1020 break;
1021 if (class == p->sched_class) {
8875125e 1022 resched_curr(rq);
1e5a7405
PZ
1023 break;
1024 }
1025 }
1026 }
1027
1028 /*
1029 * A queue event has occurred, and we're going to schedule. In
1030 * this case, we can save a useless back to back clock update.
1031 */
da0c1e65 1032 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1033 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1034}
1035
1da177e4 1036#ifdef CONFIG_SMP
5cc389bc
PZ
1037/*
1038 * This is how migration works:
1039 *
1040 * 1) we invoke migration_cpu_stop() on the target CPU using
1041 * stop_one_cpu().
1042 * 2) stopper starts to run (implicitly forcing the migrated thread
1043 * off the CPU)
1044 * 3) it checks whether the migrated task is still in the wrong runqueue.
1045 * 4) if it's in the wrong runqueue then the migration thread removes
1046 * it and puts it into the right queue.
1047 * 5) stopper completes and stop_one_cpu() returns and the migration
1048 * is done.
1049 */
1050
1051/*
1052 * move_queued_task - move a queued task to new rq.
1053 *
1054 * Returns (locked) new rq. Old rq's lock is released.
1055 */
5e16bbc2 1056static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 1057{
5cc389bc
PZ
1058 lockdep_assert_held(&rq->lock);
1059
5cc389bc 1060 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 1061 dequeue_task(rq, p, 0);
5cc389bc
PZ
1062 set_task_cpu(p, new_cpu);
1063 raw_spin_unlock(&rq->lock);
1064
1065 rq = cpu_rq(new_cpu);
1066
1067 raw_spin_lock(&rq->lock);
1068 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1069 enqueue_task(rq, p, 0);
3ea94de1 1070 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1071 check_preempt_curr(rq, p, 0);
1072
1073 return rq;
1074}
1075
1076struct migration_arg {
1077 struct task_struct *task;
1078 int dest_cpu;
1079};
1080
1081/*
1082 * Move (not current) task off this cpu, onto dest cpu. We're doing
1083 * this because either it can't run here any more (set_cpus_allowed()
1084 * away from this CPU, or CPU going down), or because we're
1085 * attempting to rebalance this task on exec (sched_exec).
1086 *
1087 * So we race with normal scheduler movements, but that's OK, as long
1088 * as the task is no longer on this CPU.
5cc389bc 1089 */
5e16bbc2 1090static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1091{
5cc389bc 1092 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1093 return rq;
5cc389bc
PZ
1094
1095 /* Affinity changed (again). */
1096 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1097 return rq;
5cc389bc 1098
5e16bbc2
PZ
1099 rq = move_queued_task(rq, p, dest_cpu);
1100
1101 return rq;
5cc389bc
PZ
1102}
1103
1104/*
1105 * migration_cpu_stop - this will be executed by a highprio stopper thread
1106 * and performs thread migration by bumping thread off CPU then
1107 * 'pushing' onto another runqueue.
1108 */
1109static int migration_cpu_stop(void *data)
1110{
1111 struct migration_arg *arg = data;
5e16bbc2
PZ
1112 struct task_struct *p = arg->task;
1113 struct rq *rq = this_rq();
5cc389bc
PZ
1114
1115 /*
1116 * The original target cpu might have gone down and we might
1117 * be on another cpu but it doesn't matter.
1118 */
1119 local_irq_disable();
1120 /*
1121 * We need to explicitly wake pending tasks before running
1122 * __migrate_task() such that we will not miss enforcing cpus_allowed
1123 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1124 */
1125 sched_ttwu_pending();
5e16bbc2
PZ
1126
1127 raw_spin_lock(&p->pi_lock);
1128 raw_spin_lock(&rq->lock);
1129 /*
1130 * If task_rq(p) != rq, it cannot be migrated here, because we're
1131 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1132 * we're holding p->pi_lock.
1133 */
1134 if (task_rq(p) == rq && task_on_rq_queued(p))
1135 rq = __migrate_task(rq, p, arg->dest_cpu);
1136 raw_spin_unlock(&rq->lock);
1137 raw_spin_unlock(&p->pi_lock);
1138
5cc389bc
PZ
1139 local_irq_enable();
1140 return 0;
1141}
1142
c5b28038
PZ
1143/*
1144 * sched_class::set_cpus_allowed must do the below, but is not required to
1145 * actually call this function.
1146 */
1147void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1148{
5cc389bc
PZ
1149 cpumask_copy(&p->cpus_allowed, new_mask);
1150 p->nr_cpus_allowed = cpumask_weight(new_mask);
1151}
1152
c5b28038
PZ
1153void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1154{
6c37067e
PZ
1155 struct rq *rq = task_rq(p);
1156 bool queued, running;
1157
c5b28038 1158 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1159
1160 queued = task_on_rq_queued(p);
1161 running = task_current(rq, p);
1162
1163 if (queued) {
1164 /*
1165 * Because __kthread_bind() calls this on blocked tasks without
1166 * holding rq->lock.
1167 */
1168 lockdep_assert_held(&rq->lock);
1de64443 1169 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1170 }
1171 if (running)
1172 put_prev_task(rq, p);
1173
c5b28038 1174 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1175
1176 if (running)
1177 p->sched_class->set_curr_task(rq);
1178 if (queued)
1de64443 1179 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1180}
1181
5cc389bc
PZ
1182/*
1183 * Change a given task's CPU affinity. Migrate the thread to a
1184 * proper CPU and schedule it away if the CPU it's executing on
1185 * is removed from the allowed bitmask.
1186 *
1187 * NOTE: the caller must have a valid reference to the task, the
1188 * task must not exit() & deallocate itself prematurely. The
1189 * call is not atomic; no spinlocks may be held.
1190 */
25834c73
PZ
1191static int __set_cpus_allowed_ptr(struct task_struct *p,
1192 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1193{
1194 unsigned long flags;
1195 struct rq *rq;
1196 unsigned int dest_cpu;
1197 int ret = 0;
1198
1199 rq = task_rq_lock(p, &flags);
1200
25834c73
PZ
1201 /*
1202 * Must re-check here, to close a race against __kthread_bind(),
1203 * sched_setaffinity() is not guaranteed to observe the flag.
1204 */
1205 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1206 ret = -EINVAL;
1207 goto out;
1208 }
1209
5cc389bc
PZ
1210 if (cpumask_equal(&p->cpus_allowed, new_mask))
1211 goto out;
1212
1213 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1214 ret = -EINVAL;
1215 goto out;
1216 }
1217
1218 do_set_cpus_allowed(p, new_mask);
1219
1220 /* Can the task run on the task's current CPU? If so, we're done */
1221 if (cpumask_test_cpu(task_cpu(p), new_mask))
1222 goto out;
1223
1224 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1225 if (task_running(rq, p) || p->state == TASK_WAKING) {
1226 struct migration_arg arg = { p, dest_cpu };
1227 /* Need help from migration thread: drop lock and wait. */
1228 task_rq_unlock(rq, p, &flags);
1229 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1230 tlb_migrate_finish(p->mm);
1231 return 0;
cbce1a68
PZ
1232 } else if (task_on_rq_queued(p)) {
1233 /*
1234 * OK, since we're going to drop the lock immediately
1235 * afterwards anyway.
1236 */
1237 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1238 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1239 lockdep_pin_lock(&rq->lock);
1240 }
5cc389bc
PZ
1241out:
1242 task_rq_unlock(rq, p, &flags);
1243
1244 return ret;
1245}
25834c73
PZ
1246
1247int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1248{
1249 return __set_cpus_allowed_ptr(p, new_mask, false);
1250}
5cc389bc
PZ
1251EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1252
dd41f596 1253void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1254{
e2912009
PZ
1255#ifdef CONFIG_SCHED_DEBUG
1256 /*
1257 * We should never call set_task_cpu() on a blocked task,
1258 * ttwu() will sort out the placement.
1259 */
077614ee 1260 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1261 !p->on_rq);
0122ec5b 1262
3ea94de1
JP
1263 /*
1264 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1265 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1266 * time relying on p->on_rq.
1267 */
1268 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1269 p->sched_class == &fair_sched_class &&
1270 (p->on_rq && !task_on_rq_migrating(p)));
1271
0122ec5b 1272#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1273 /*
1274 * The caller should hold either p->pi_lock or rq->lock, when changing
1275 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1276 *
1277 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1278 * see task_group().
6c6c54e1
PZ
1279 *
1280 * Furthermore, all task_rq users should acquire both locks, see
1281 * task_rq_lock().
1282 */
0122ec5b
PZ
1283 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1284 lockdep_is_held(&task_rq(p)->lock)));
1285#endif
e2912009
PZ
1286#endif
1287
de1d7286 1288 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1289
0c69774e 1290 if (task_cpu(p) != new_cpu) {
0a74bef8 1291 if (p->sched_class->migrate_task_rq)
5a4fd036 1292 p->sched_class->migrate_task_rq(p);
0c69774e 1293 p->se.nr_migrations++;
ff303e66 1294 perf_event_task_migrate(p);
0c69774e 1295 }
dd41f596
IM
1296
1297 __set_task_cpu(p, new_cpu);
c65cc870
IM
1298}
1299
ac66f547
PZ
1300static void __migrate_swap_task(struct task_struct *p, int cpu)
1301{
da0c1e65 1302 if (task_on_rq_queued(p)) {
ac66f547
PZ
1303 struct rq *src_rq, *dst_rq;
1304
1305 src_rq = task_rq(p);
1306 dst_rq = cpu_rq(cpu);
1307
3ea94de1 1308 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1309 deactivate_task(src_rq, p, 0);
1310 set_task_cpu(p, cpu);
1311 activate_task(dst_rq, p, 0);
3ea94de1 1312 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1313 check_preempt_curr(dst_rq, p, 0);
1314 } else {
1315 /*
1316 * Task isn't running anymore; make it appear like we migrated
1317 * it before it went to sleep. This means on wakeup we make the
1318 * previous cpu our targer instead of where it really is.
1319 */
1320 p->wake_cpu = cpu;
1321 }
1322}
1323
1324struct migration_swap_arg {
1325 struct task_struct *src_task, *dst_task;
1326 int src_cpu, dst_cpu;
1327};
1328
1329static int migrate_swap_stop(void *data)
1330{
1331 struct migration_swap_arg *arg = data;
1332 struct rq *src_rq, *dst_rq;
1333 int ret = -EAGAIN;
1334
62694cd5
PZ
1335 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1336 return -EAGAIN;
1337
ac66f547
PZ
1338 src_rq = cpu_rq(arg->src_cpu);
1339 dst_rq = cpu_rq(arg->dst_cpu);
1340
74602315
PZ
1341 double_raw_lock(&arg->src_task->pi_lock,
1342 &arg->dst_task->pi_lock);
ac66f547 1343 double_rq_lock(src_rq, dst_rq);
62694cd5 1344
ac66f547
PZ
1345 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1346 goto unlock;
1347
1348 if (task_cpu(arg->src_task) != arg->src_cpu)
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1352 goto unlock;
1353
1354 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1355 goto unlock;
1356
1357 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1358 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1359
1360 ret = 0;
1361
1362unlock:
1363 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1364 raw_spin_unlock(&arg->dst_task->pi_lock);
1365 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1366
1367 return ret;
1368}
1369
1370/*
1371 * Cross migrate two tasks
1372 */
1373int migrate_swap(struct task_struct *cur, struct task_struct *p)
1374{
1375 struct migration_swap_arg arg;
1376 int ret = -EINVAL;
1377
ac66f547
PZ
1378 arg = (struct migration_swap_arg){
1379 .src_task = cur,
1380 .src_cpu = task_cpu(cur),
1381 .dst_task = p,
1382 .dst_cpu = task_cpu(p),
1383 };
1384
1385 if (arg.src_cpu == arg.dst_cpu)
1386 goto out;
1387
6acce3ef
PZ
1388 /*
1389 * These three tests are all lockless; this is OK since all of them
1390 * will be re-checked with proper locks held further down the line.
1391 */
ac66f547
PZ
1392 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1396 goto out;
1397
1398 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1399 goto out;
1400
286549dc 1401 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1402 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1403
1404out:
ac66f547
PZ
1405 return ret;
1406}
1407
1da177e4
LT
1408/*
1409 * wait_task_inactive - wait for a thread to unschedule.
1410 *
85ba2d86
RM
1411 * If @match_state is nonzero, it's the @p->state value just checked and
1412 * not expected to change. If it changes, i.e. @p might have woken up,
1413 * then return zero. When we succeed in waiting for @p to be off its CPU,
1414 * we return a positive number (its total switch count). If a second call
1415 * a short while later returns the same number, the caller can be sure that
1416 * @p has remained unscheduled the whole time.
1417 *
1da177e4
LT
1418 * The caller must ensure that the task *will* unschedule sometime soon,
1419 * else this function might spin for a *long* time. This function can't
1420 * be called with interrupts off, or it may introduce deadlock with
1421 * smp_call_function() if an IPI is sent by the same process we are
1422 * waiting to become inactive.
1423 */
85ba2d86 1424unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1425{
1426 unsigned long flags;
da0c1e65 1427 int running, queued;
85ba2d86 1428 unsigned long ncsw;
70b97a7f 1429 struct rq *rq;
1da177e4 1430
3a5c359a
AK
1431 for (;;) {
1432 /*
1433 * We do the initial early heuristics without holding
1434 * any task-queue locks at all. We'll only try to get
1435 * the runqueue lock when things look like they will
1436 * work out!
1437 */
1438 rq = task_rq(p);
fa490cfd 1439
3a5c359a
AK
1440 /*
1441 * If the task is actively running on another CPU
1442 * still, just relax and busy-wait without holding
1443 * any locks.
1444 *
1445 * NOTE! Since we don't hold any locks, it's not
1446 * even sure that "rq" stays as the right runqueue!
1447 * But we don't care, since "task_running()" will
1448 * return false if the runqueue has changed and p
1449 * is actually now running somewhere else!
1450 */
85ba2d86
RM
1451 while (task_running(rq, p)) {
1452 if (match_state && unlikely(p->state != match_state))
1453 return 0;
3a5c359a 1454 cpu_relax();
85ba2d86 1455 }
fa490cfd 1456
3a5c359a
AK
1457 /*
1458 * Ok, time to look more closely! We need the rq
1459 * lock now, to be *sure*. If we're wrong, we'll
1460 * just go back and repeat.
1461 */
1462 rq = task_rq_lock(p, &flags);
27a9da65 1463 trace_sched_wait_task(p);
3a5c359a 1464 running = task_running(rq, p);
da0c1e65 1465 queued = task_on_rq_queued(p);
85ba2d86 1466 ncsw = 0;
f31e11d8 1467 if (!match_state || p->state == match_state)
93dcf55f 1468 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1469 task_rq_unlock(rq, p, &flags);
fa490cfd 1470
85ba2d86
RM
1471 /*
1472 * If it changed from the expected state, bail out now.
1473 */
1474 if (unlikely(!ncsw))
1475 break;
1476
3a5c359a
AK
1477 /*
1478 * Was it really running after all now that we
1479 * checked with the proper locks actually held?
1480 *
1481 * Oops. Go back and try again..
1482 */
1483 if (unlikely(running)) {
1484 cpu_relax();
1485 continue;
1486 }
fa490cfd 1487
3a5c359a
AK
1488 /*
1489 * It's not enough that it's not actively running,
1490 * it must be off the runqueue _entirely_, and not
1491 * preempted!
1492 *
80dd99b3 1493 * So if it was still runnable (but just not actively
3a5c359a
AK
1494 * running right now), it's preempted, and we should
1495 * yield - it could be a while.
1496 */
da0c1e65 1497 if (unlikely(queued)) {
8eb90c30
TG
1498 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1499
1500 set_current_state(TASK_UNINTERRUPTIBLE);
1501 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1502 continue;
1503 }
fa490cfd 1504
3a5c359a
AK
1505 /*
1506 * Ahh, all good. It wasn't running, and it wasn't
1507 * runnable, which means that it will never become
1508 * running in the future either. We're all done!
1509 */
1510 break;
1511 }
85ba2d86
RM
1512
1513 return ncsw;
1da177e4
LT
1514}
1515
1516/***
1517 * kick_process - kick a running thread to enter/exit the kernel
1518 * @p: the to-be-kicked thread
1519 *
1520 * Cause a process which is running on another CPU to enter
1521 * kernel-mode, without any delay. (to get signals handled.)
1522 *
25985edc 1523 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1524 * because all it wants to ensure is that the remote task enters
1525 * the kernel. If the IPI races and the task has been migrated
1526 * to another CPU then no harm is done and the purpose has been
1527 * achieved as well.
1528 */
36c8b586 1529void kick_process(struct task_struct *p)
1da177e4
LT
1530{
1531 int cpu;
1532
1533 preempt_disable();
1534 cpu = task_cpu(p);
1535 if ((cpu != smp_processor_id()) && task_curr(p))
1536 smp_send_reschedule(cpu);
1537 preempt_enable();
1538}
b43e3521 1539EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1540
30da688e 1541/*
013fdb80 1542 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1543 */
5da9a0fb
PZ
1544static int select_fallback_rq(int cpu, struct task_struct *p)
1545{
aa00d89c
TC
1546 int nid = cpu_to_node(cpu);
1547 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1548 enum { cpuset, possible, fail } state = cpuset;
1549 int dest_cpu;
5da9a0fb 1550
aa00d89c
TC
1551 /*
1552 * If the node that the cpu is on has been offlined, cpu_to_node()
1553 * will return -1. There is no cpu on the node, and we should
1554 * select the cpu on the other node.
1555 */
1556 if (nid != -1) {
1557 nodemask = cpumask_of_node(nid);
1558
1559 /* Look for allowed, online CPU in same node. */
1560 for_each_cpu(dest_cpu, nodemask) {
1561 if (!cpu_online(dest_cpu))
1562 continue;
1563 if (!cpu_active(dest_cpu))
1564 continue;
1565 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1566 return dest_cpu;
1567 }
2baab4e9 1568 }
5da9a0fb 1569
2baab4e9
PZ
1570 for (;;) {
1571 /* Any allowed, online CPU? */
e3831edd 1572 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1573 if (!cpu_online(dest_cpu))
1574 continue;
1575 if (!cpu_active(dest_cpu))
1576 continue;
1577 goto out;
1578 }
5da9a0fb 1579
e73e85f0 1580 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1581 switch (state) {
1582 case cpuset:
e73e85f0
ON
1583 if (IS_ENABLED(CONFIG_CPUSETS)) {
1584 cpuset_cpus_allowed_fallback(p);
1585 state = possible;
1586 break;
1587 }
1588 /* fall-through */
2baab4e9
PZ
1589 case possible:
1590 do_set_cpus_allowed(p, cpu_possible_mask);
1591 state = fail;
1592 break;
1593
1594 case fail:
1595 BUG();
1596 break;
1597 }
1598 }
1599
1600out:
1601 if (state != cpuset) {
1602 /*
1603 * Don't tell them about moving exiting tasks or
1604 * kernel threads (both mm NULL), since they never
1605 * leave kernel.
1606 */
1607 if (p->mm && printk_ratelimit()) {
aac74dc4 1608 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1609 task_pid_nr(p), p->comm, cpu);
1610 }
5da9a0fb
PZ
1611 }
1612
1613 return dest_cpu;
1614}
1615
e2912009 1616/*
013fdb80 1617 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1618 */
970b13ba 1619static inline
ac66f547 1620int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1621{
cbce1a68
PZ
1622 lockdep_assert_held(&p->pi_lock);
1623
6c1d9410
WL
1624 if (p->nr_cpus_allowed > 1)
1625 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1626
1627 /*
1628 * In order not to call set_task_cpu() on a blocking task we need
1629 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1630 * cpu.
1631 *
1632 * Since this is common to all placement strategies, this lives here.
1633 *
1634 * [ this allows ->select_task() to simply return task_cpu(p) and
1635 * not worry about this generic constraint ]
1636 */
fa17b507 1637 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1638 !cpu_online(cpu)))
5da9a0fb 1639 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1640
1641 return cpu;
970b13ba 1642}
09a40af5
MG
1643
1644static void update_avg(u64 *avg, u64 sample)
1645{
1646 s64 diff = sample - *avg;
1647 *avg += diff >> 3;
1648}
25834c73
PZ
1649
1650#else
1651
1652static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1653 const struct cpumask *new_mask, bool check)
1654{
1655 return set_cpus_allowed_ptr(p, new_mask);
1656}
1657
5cc389bc 1658#endif /* CONFIG_SMP */
970b13ba 1659
d7c01d27 1660static void
b84cb5df 1661ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1662{
d7c01d27 1663#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1664 struct rq *rq = this_rq();
1665
d7c01d27
PZ
1666#ifdef CONFIG_SMP
1667 int this_cpu = smp_processor_id();
1668
1669 if (cpu == this_cpu) {
1670 schedstat_inc(rq, ttwu_local);
1671 schedstat_inc(p, se.statistics.nr_wakeups_local);
1672 } else {
1673 struct sched_domain *sd;
1674
1675 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1676 rcu_read_lock();
d7c01d27
PZ
1677 for_each_domain(this_cpu, sd) {
1678 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1679 schedstat_inc(sd, ttwu_wake_remote);
1680 break;
1681 }
1682 }
057f3fad 1683 rcu_read_unlock();
d7c01d27 1684 }
f339b9dc
PZ
1685
1686 if (wake_flags & WF_MIGRATED)
1687 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1688
d7c01d27
PZ
1689#endif /* CONFIG_SMP */
1690
1691 schedstat_inc(rq, ttwu_count);
9ed3811a 1692 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1693
1694 if (wake_flags & WF_SYNC)
9ed3811a 1695 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1696
d7c01d27
PZ
1697#endif /* CONFIG_SCHEDSTATS */
1698}
1699
1de64443 1700static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1701{
9ed3811a 1702 activate_task(rq, p, en_flags);
da0c1e65 1703 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1704
1705 /* if a worker is waking up, notify workqueue */
1706 if (p->flags & PF_WQ_WORKER)
1707 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1708}
1709
23f41eeb
PZ
1710/*
1711 * Mark the task runnable and perform wakeup-preemption.
1712 */
89363381 1713static void
23f41eeb 1714ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1715{
9ed3811a 1716 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1717 p->state = TASK_RUNNING;
fbd705a0
PZ
1718 trace_sched_wakeup(p);
1719
9ed3811a 1720#ifdef CONFIG_SMP
4c9a4bc8
PZ
1721 if (p->sched_class->task_woken) {
1722 /*
cbce1a68
PZ
1723 * Our task @p is fully woken up and running; so its safe to
1724 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1725 */
cbce1a68 1726 lockdep_unpin_lock(&rq->lock);
9ed3811a 1727 p->sched_class->task_woken(rq, p);
cbce1a68 1728 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1729 }
9ed3811a 1730
e69c6341 1731 if (rq->idle_stamp) {
78becc27 1732 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1733 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1734
abfafa54
JL
1735 update_avg(&rq->avg_idle, delta);
1736
1737 if (rq->avg_idle > max)
9ed3811a 1738 rq->avg_idle = max;
abfafa54 1739
9ed3811a
TH
1740 rq->idle_stamp = 0;
1741 }
1742#endif
1743}
1744
c05fbafb
PZ
1745static void
1746ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1747{
cbce1a68
PZ
1748 lockdep_assert_held(&rq->lock);
1749
c05fbafb
PZ
1750#ifdef CONFIG_SMP
1751 if (p->sched_contributes_to_load)
1752 rq->nr_uninterruptible--;
1753#endif
1754
1755 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1756 ttwu_do_wakeup(rq, p, wake_flags);
1757}
1758
1759/*
1760 * Called in case the task @p isn't fully descheduled from its runqueue,
1761 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1762 * since all we need to do is flip p->state to TASK_RUNNING, since
1763 * the task is still ->on_rq.
1764 */
1765static int ttwu_remote(struct task_struct *p, int wake_flags)
1766{
1767 struct rq *rq;
1768 int ret = 0;
1769
1770 rq = __task_rq_lock(p);
da0c1e65 1771 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1772 /* check_preempt_curr() may use rq clock */
1773 update_rq_clock(rq);
c05fbafb
PZ
1774 ttwu_do_wakeup(rq, p, wake_flags);
1775 ret = 1;
1776 }
1777 __task_rq_unlock(rq);
1778
1779 return ret;
1780}
1781
317f3941 1782#ifdef CONFIG_SMP
e3baac47 1783void sched_ttwu_pending(void)
317f3941
PZ
1784{
1785 struct rq *rq = this_rq();
fa14ff4a
PZ
1786 struct llist_node *llist = llist_del_all(&rq->wake_list);
1787 struct task_struct *p;
e3baac47 1788 unsigned long flags;
317f3941 1789
e3baac47
PZ
1790 if (!llist)
1791 return;
1792
1793 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1794 lockdep_pin_lock(&rq->lock);
317f3941 1795
fa14ff4a
PZ
1796 while (llist) {
1797 p = llist_entry(llist, struct task_struct, wake_entry);
1798 llist = llist_next(llist);
317f3941
PZ
1799 ttwu_do_activate(rq, p, 0);
1800 }
1801
cbce1a68 1802 lockdep_unpin_lock(&rq->lock);
e3baac47 1803 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1804}
1805
1806void scheduler_ipi(void)
1807{
f27dde8d
PZ
1808 /*
1809 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1810 * TIF_NEED_RESCHED remotely (for the first time) will also send
1811 * this IPI.
1812 */
8cb75e0c 1813 preempt_fold_need_resched();
f27dde8d 1814
fd2ac4f4 1815 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1816 return;
1817
1818 /*
1819 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1820 * traditionally all their work was done from the interrupt return
1821 * path. Now that we actually do some work, we need to make sure
1822 * we do call them.
1823 *
1824 * Some archs already do call them, luckily irq_enter/exit nest
1825 * properly.
1826 *
1827 * Arguably we should visit all archs and update all handlers,
1828 * however a fair share of IPIs are still resched only so this would
1829 * somewhat pessimize the simple resched case.
1830 */
1831 irq_enter();
fa14ff4a 1832 sched_ttwu_pending();
ca38062e
SS
1833
1834 /*
1835 * Check if someone kicked us for doing the nohz idle load balance.
1836 */
873b4c65 1837 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1838 this_rq()->idle_balance = 1;
ca38062e 1839 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1840 }
c5d753a5 1841 irq_exit();
317f3941
PZ
1842}
1843
1844static void ttwu_queue_remote(struct task_struct *p, int cpu)
1845{
e3baac47
PZ
1846 struct rq *rq = cpu_rq(cpu);
1847
1848 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1849 if (!set_nr_if_polling(rq->idle))
1850 smp_send_reschedule(cpu);
1851 else
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 }
317f3941 1854}
d6aa8f85 1855
f6be8af1
CL
1856void wake_up_if_idle(int cpu)
1857{
1858 struct rq *rq = cpu_rq(cpu);
1859 unsigned long flags;
1860
fd7de1e8
AL
1861 rcu_read_lock();
1862
1863 if (!is_idle_task(rcu_dereference(rq->curr)))
1864 goto out;
f6be8af1
CL
1865
1866 if (set_nr_if_polling(rq->idle)) {
1867 trace_sched_wake_idle_without_ipi(cpu);
1868 } else {
1869 raw_spin_lock_irqsave(&rq->lock, flags);
1870 if (is_idle_task(rq->curr))
1871 smp_send_reschedule(cpu);
1872 /* Else cpu is not in idle, do nothing here */
1873 raw_spin_unlock_irqrestore(&rq->lock, flags);
1874 }
fd7de1e8
AL
1875
1876out:
1877 rcu_read_unlock();
f6be8af1
CL
1878}
1879
39be3501 1880bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1881{
1882 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1883}
d6aa8f85 1884#endif /* CONFIG_SMP */
317f3941 1885
c05fbafb
PZ
1886static void ttwu_queue(struct task_struct *p, int cpu)
1887{
1888 struct rq *rq = cpu_rq(cpu);
1889
17d9f311 1890#if defined(CONFIG_SMP)
39be3501 1891 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1892 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1893 ttwu_queue_remote(p, cpu);
1894 return;
1895 }
1896#endif
1897
c05fbafb 1898 raw_spin_lock(&rq->lock);
cbce1a68 1899 lockdep_pin_lock(&rq->lock);
c05fbafb 1900 ttwu_do_activate(rq, p, 0);
cbce1a68 1901 lockdep_unpin_lock(&rq->lock);
c05fbafb 1902 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1903}
1904
8643cda5
PZ
1905/*
1906 * Notes on Program-Order guarantees on SMP systems.
1907 *
1908 * MIGRATION
1909 *
1910 * The basic program-order guarantee on SMP systems is that when a task [t]
1911 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1912 * execution on its new cpu [c1].
1913 *
1914 * For migration (of runnable tasks) this is provided by the following means:
1915 *
1916 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1917 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1918 * rq(c1)->lock (if not at the same time, then in that order).
1919 * C) LOCK of the rq(c1)->lock scheduling in task
1920 *
1921 * Transitivity guarantees that B happens after A and C after B.
1922 * Note: we only require RCpc transitivity.
1923 * Note: the cpu doing B need not be c0 or c1
1924 *
1925 * Example:
1926 *
1927 * CPU0 CPU1 CPU2
1928 *
1929 * LOCK rq(0)->lock
1930 * sched-out X
1931 * sched-in Y
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(0)->lock // orders against CPU0
1935 * dequeue X
1936 * UNLOCK rq(0)->lock
1937 *
1938 * LOCK rq(1)->lock
1939 * enqueue X
1940 * UNLOCK rq(1)->lock
1941 *
1942 * LOCK rq(1)->lock // orders against CPU2
1943 * sched-out Z
1944 * sched-in X
1945 * UNLOCK rq(1)->lock
1946 *
1947 *
1948 * BLOCKING -- aka. SLEEP + WAKEUP
1949 *
1950 * For blocking we (obviously) need to provide the same guarantee as for
1951 * migration. However the means are completely different as there is no lock
1952 * chain to provide order. Instead we do:
1953 *
1954 * 1) smp_store_release(X->on_cpu, 0)
1955 * 2) smp_cond_acquire(!X->on_cpu)
1956 *
1957 * Example:
1958 *
1959 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1960 *
1961 * LOCK rq(0)->lock LOCK X->pi_lock
1962 * dequeue X
1963 * sched-out X
1964 * smp_store_release(X->on_cpu, 0);
1965 *
1966 * smp_cond_acquire(!X->on_cpu);
1967 * X->state = WAKING
1968 * set_task_cpu(X,2)
1969 *
1970 * LOCK rq(2)->lock
1971 * enqueue X
1972 * X->state = RUNNING
1973 * UNLOCK rq(2)->lock
1974 *
1975 * LOCK rq(2)->lock // orders against CPU1
1976 * sched-out Z
1977 * sched-in X
1978 * UNLOCK rq(2)->lock
1979 *
1980 * UNLOCK X->pi_lock
1981 * UNLOCK rq(0)->lock
1982 *
1983 *
1984 * However; for wakeups there is a second guarantee we must provide, namely we
1985 * must observe the state that lead to our wakeup. That is, not only must our
1986 * task observe its own prior state, it must also observe the stores prior to
1987 * its wakeup.
1988 *
1989 * This means that any means of doing remote wakeups must order the CPU doing
1990 * the wakeup against the CPU the task is going to end up running on. This,
1991 * however, is already required for the regular Program-Order guarantee above,
1992 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1993 *
1994 */
1995
9ed3811a 1996/**
1da177e4 1997 * try_to_wake_up - wake up a thread
9ed3811a 1998 * @p: the thread to be awakened
1da177e4 1999 * @state: the mask of task states that can be woken
9ed3811a 2000 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
2001 *
2002 * Put it on the run-queue if it's not already there. The "current"
2003 * thread is always on the run-queue (except when the actual
2004 * re-schedule is in progress), and as such you're allowed to do
2005 * the simpler "current->state = TASK_RUNNING" to mark yourself
2006 * runnable without the overhead of this.
2007 *
e69f6186 2008 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 2009 * or @state didn't match @p's state.
1da177e4 2010 */
e4a52bcb
PZ
2011static int
2012try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2013{
1da177e4 2014 unsigned long flags;
c05fbafb 2015 int cpu, success = 0;
2398f2c6 2016
e0acd0a6
ON
2017 /*
2018 * If we are going to wake up a thread waiting for CONDITION we
2019 * need to ensure that CONDITION=1 done by the caller can not be
2020 * reordered with p->state check below. This pairs with mb() in
2021 * set_current_state() the waiting thread does.
2022 */
2023 smp_mb__before_spinlock();
013fdb80 2024 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2025 if (!(p->state & state))
1da177e4
LT
2026 goto out;
2027
fbd705a0
PZ
2028 trace_sched_waking(p);
2029
c05fbafb 2030 success = 1; /* we're going to change ->state */
1da177e4 2031 cpu = task_cpu(p);
1da177e4 2032
c05fbafb
PZ
2033 if (p->on_rq && ttwu_remote(p, wake_flags))
2034 goto stat;
1da177e4 2035
1da177e4 2036#ifdef CONFIG_SMP
ecf7d01c
PZ
2037 /*
2038 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2039 * possible to, falsely, observe p->on_cpu == 0.
2040 *
2041 * One must be running (->on_cpu == 1) in order to remove oneself
2042 * from the runqueue.
2043 *
2044 * [S] ->on_cpu = 1; [L] ->on_rq
2045 * UNLOCK rq->lock
2046 * RMB
2047 * LOCK rq->lock
2048 * [S] ->on_rq = 0; [L] ->on_cpu
2049 *
2050 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2051 * from the consecutive calls to schedule(); the first switching to our
2052 * task, the second putting it to sleep.
2053 */
2054 smp_rmb();
2055
e9c84311 2056 /*
c05fbafb
PZ
2057 * If the owning (remote) cpu is still in the middle of schedule() with
2058 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2059 *
2060 * Pairs with the smp_store_release() in finish_lock_switch().
2061 *
2062 * This ensures that tasks getting woken will be fully ordered against
2063 * their previous state and preserve Program Order.
0970d299 2064 */
b3e0b1b6 2065 smp_cond_acquire(!p->on_cpu);
1da177e4 2066
a8e4f2ea 2067 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2068 p->state = TASK_WAKING;
e7693a36 2069
e4a52bcb 2070 if (p->sched_class->task_waking)
74f8e4b2 2071 p->sched_class->task_waking(p);
efbbd05a 2072
ac66f547 2073 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2074 if (task_cpu(p) != cpu) {
2075 wake_flags |= WF_MIGRATED;
e4a52bcb 2076 set_task_cpu(p, cpu);
f339b9dc 2077 }
1da177e4 2078#endif /* CONFIG_SMP */
1da177e4 2079
c05fbafb
PZ
2080 ttwu_queue(p, cpu);
2081stat:
b84cb5df 2082 ttwu_stat(p, cpu, wake_flags);
1da177e4 2083out:
013fdb80 2084 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2085
2086 return success;
2087}
2088
21aa9af0
TH
2089/**
2090 * try_to_wake_up_local - try to wake up a local task with rq lock held
2091 * @p: the thread to be awakened
2092 *
2acca55e 2093 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2094 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2095 * the current task.
21aa9af0
TH
2096 */
2097static void try_to_wake_up_local(struct task_struct *p)
2098{
2099 struct rq *rq = task_rq(p);
21aa9af0 2100
383efcd0
TH
2101 if (WARN_ON_ONCE(rq != this_rq()) ||
2102 WARN_ON_ONCE(p == current))
2103 return;
2104
21aa9af0
TH
2105 lockdep_assert_held(&rq->lock);
2106
2acca55e 2107 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2108 /*
2109 * This is OK, because current is on_cpu, which avoids it being
2110 * picked for load-balance and preemption/IRQs are still
2111 * disabled avoiding further scheduler activity on it and we've
2112 * not yet picked a replacement task.
2113 */
2114 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2115 raw_spin_unlock(&rq->lock);
2116 raw_spin_lock(&p->pi_lock);
2117 raw_spin_lock(&rq->lock);
cbce1a68 2118 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2119 }
2120
21aa9af0 2121 if (!(p->state & TASK_NORMAL))
2acca55e 2122 goto out;
21aa9af0 2123
fbd705a0
PZ
2124 trace_sched_waking(p);
2125
da0c1e65 2126 if (!task_on_rq_queued(p))
d7c01d27
PZ
2127 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2128
23f41eeb 2129 ttwu_do_wakeup(rq, p, 0);
b84cb5df 2130 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2131out:
2132 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2133}
2134
50fa610a
DH
2135/**
2136 * wake_up_process - Wake up a specific process
2137 * @p: The process to be woken up.
2138 *
2139 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2140 * processes.
2141 *
2142 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2143 *
2144 * It may be assumed that this function implies a write memory barrier before
2145 * changing the task state if and only if any tasks are woken up.
2146 */
7ad5b3a5 2147int wake_up_process(struct task_struct *p)
1da177e4 2148{
9067ac85 2149 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2150}
1da177e4
LT
2151EXPORT_SYMBOL(wake_up_process);
2152
7ad5b3a5 2153int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2154{
2155 return try_to_wake_up(p, state, 0);
2156}
2157
a5e7be3b
JL
2158/*
2159 * This function clears the sched_dl_entity static params.
2160 */
2161void __dl_clear_params(struct task_struct *p)
2162{
2163 struct sched_dl_entity *dl_se = &p->dl;
2164
2165 dl_se->dl_runtime = 0;
2166 dl_se->dl_deadline = 0;
2167 dl_se->dl_period = 0;
2168 dl_se->flags = 0;
2169 dl_se->dl_bw = 0;
40767b0d
PZ
2170
2171 dl_se->dl_throttled = 0;
2172 dl_se->dl_new = 1;
2173 dl_se->dl_yielded = 0;
a5e7be3b
JL
2174}
2175
1da177e4
LT
2176/*
2177 * Perform scheduler related setup for a newly forked process p.
2178 * p is forked by current.
dd41f596
IM
2179 *
2180 * __sched_fork() is basic setup used by init_idle() too:
2181 */
5e1576ed 2182static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2183{
fd2f4419
PZ
2184 p->on_rq = 0;
2185
2186 p->se.on_rq = 0;
dd41f596
IM
2187 p->se.exec_start = 0;
2188 p->se.sum_exec_runtime = 0;
f6cf891c 2189 p->se.prev_sum_exec_runtime = 0;
6c594c21 2190 p->se.nr_migrations = 0;
da7a735e 2191 p->se.vruntime = 0;
fd2f4419 2192 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2193
ad936d86
BP
2194#ifdef CONFIG_FAIR_GROUP_SCHED
2195 p->se.cfs_rq = NULL;
2196#endif
2197
6cfb0d5d 2198#ifdef CONFIG_SCHEDSTATS
41acab88 2199 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2200#endif
476d139c 2201
aab03e05 2202 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2203 init_dl_task_timer(&p->dl);
a5e7be3b 2204 __dl_clear_params(p);
aab03e05 2205
fa717060 2206 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 2207
e107be36
AK
2208#ifdef CONFIG_PREEMPT_NOTIFIERS
2209 INIT_HLIST_HEAD(&p->preempt_notifiers);
2210#endif
cbee9f88
PZ
2211
2212#ifdef CONFIG_NUMA_BALANCING
2213 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2214 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2215 p->mm->numa_scan_seq = 0;
2216 }
2217
5e1576ed
RR
2218 if (clone_flags & CLONE_VM)
2219 p->numa_preferred_nid = current->numa_preferred_nid;
2220 else
2221 p->numa_preferred_nid = -1;
2222
cbee9f88
PZ
2223 p->node_stamp = 0ULL;
2224 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2225 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2226 p->numa_work.next = &p->numa_work;
44dba3d5 2227 p->numa_faults = NULL;
7e2703e6
RR
2228 p->last_task_numa_placement = 0;
2229 p->last_sum_exec_runtime = 0;
8c8a743c 2230
8c8a743c 2231 p->numa_group = NULL;
cbee9f88 2232#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2233}
2234
2a595721
SD
2235DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2236
1a687c2e 2237#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2238
1a687c2e
MG
2239void set_numabalancing_state(bool enabled)
2240{
2241 if (enabled)
2a595721 2242 static_branch_enable(&sched_numa_balancing);
1a687c2e 2243 else
2a595721 2244 static_branch_disable(&sched_numa_balancing);
1a687c2e 2245}
54a43d54
AK
2246
2247#ifdef CONFIG_PROC_SYSCTL
2248int sysctl_numa_balancing(struct ctl_table *table, int write,
2249 void __user *buffer, size_t *lenp, loff_t *ppos)
2250{
2251 struct ctl_table t;
2252 int err;
2a595721 2253 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2254
2255 if (write && !capable(CAP_SYS_ADMIN))
2256 return -EPERM;
2257
2258 t = *table;
2259 t.data = &state;
2260 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2261 if (err < 0)
2262 return err;
2263 if (write)
2264 set_numabalancing_state(state);
2265 return err;
2266}
2267#endif
2268#endif
dd41f596
IM
2269
2270/*
2271 * fork()/clone()-time setup:
2272 */
aab03e05 2273int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2274{
0122ec5b 2275 unsigned long flags;
dd41f596
IM
2276 int cpu = get_cpu();
2277
5e1576ed 2278 __sched_fork(clone_flags, p);
06b83b5f 2279 /*
0017d735 2280 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2281 * nobody will actually run it, and a signal or other external
2282 * event cannot wake it up and insert it on the runqueue either.
2283 */
0017d735 2284 p->state = TASK_RUNNING;
dd41f596 2285
c350a04e
MG
2286 /*
2287 * Make sure we do not leak PI boosting priority to the child.
2288 */
2289 p->prio = current->normal_prio;
2290
b9dc29e7
MG
2291 /*
2292 * Revert to default priority/policy on fork if requested.
2293 */
2294 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2295 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2296 p->policy = SCHED_NORMAL;
6c697bdf 2297 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2298 p->rt_priority = 0;
2299 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2300 p->static_prio = NICE_TO_PRIO(0);
2301
2302 p->prio = p->normal_prio = __normal_prio(p);
2303 set_load_weight(p);
6c697bdf 2304
b9dc29e7
MG
2305 /*
2306 * We don't need the reset flag anymore after the fork. It has
2307 * fulfilled its duty:
2308 */
2309 p->sched_reset_on_fork = 0;
2310 }
ca94c442 2311
aab03e05
DF
2312 if (dl_prio(p->prio)) {
2313 put_cpu();
2314 return -EAGAIN;
2315 } else if (rt_prio(p->prio)) {
2316 p->sched_class = &rt_sched_class;
2317 } else {
2ddbf952 2318 p->sched_class = &fair_sched_class;
aab03e05 2319 }
b29739f9 2320
cd29fe6f
PZ
2321 if (p->sched_class->task_fork)
2322 p->sched_class->task_fork(p);
2323
86951599
PZ
2324 /*
2325 * The child is not yet in the pid-hash so no cgroup attach races,
2326 * and the cgroup is pinned to this child due to cgroup_fork()
2327 * is ran before sched_fork().
2328 *
2329 * Silence PROVE_RCU.
2330 */
0122ec5b 2331 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2332 set_task_cpu(p, cpu);
0122ec5b 2333 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2334
f6db8347 2335#ifdef CONFIG_SCHED_INFO
dd41f596 2336 if (likely(sched_info_on()))
52f17b6c 2337 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2338#endif
3ca7a440
PZ
2339#if defined(CONFIG_SMP)
2340 p->on_cpu = 0;
4866cde0 2341#endif
01028747 2342 init_task_preempt_count(p);
806c09a7 2343#ifdef CONFIG_SMP
917b627d 2344 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2345 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2346#endif
917b627d 2347
476d139c 2348 put_cpu();
aab03e05 2349 return 0;
1da177e4
LT
2350}
2351
332ac17e
DF
2352unsigned long to_ratio(u64 period, u64 runtime)
2353{
2354 if (runtime == RUNTIME_INF)
2355 return 1ULL << 20;
2356
2357 /*
2358 * Doing this here saves a lot of checks in all
2359 * the calling paths, and returning zero seems
2360 * safe for them anyway.
2361 */
2362 if (period == 0)
2363 return 0;
2364
2365 return div64_u64(runtime << 20, period);
2366}
2367
2368#ifdef CONFIG_SMP
2369inline struct dl_bw *dl_bw_of(int i)
2370{
f78f5b90
PM
2371 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2372 "sched RCU must be held");
332ac17e
DF
2373 return &cpu_rq(i)->rd->dl_bw;
2374}
2375
de212f18 2376static inline int dl_bw_cpus(int i)
332ac17e 2377{
de212f18
PZ
2378 struct root_domain *rd = cpu_rq(i)->rd;
2379 int cpus = 0;
2380
f78f5b90
PM
2381 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2382 "sched RCU must be held");
de212f18
PZ
2383 for_each_cpu_and(i, rd->span, cpu_active_mask)
2384 cpus++;
2385
2386 return cpus;
332ac17e
DF
2387}
2388#else
2389inline struct dl_bw *dl_bw_of(int i)
2390{
2391 return &cpu_rq(i)->dl.dl_bw;
2392}
2393
de212f18 2394static inline int dl_bw_cpus(int i)
332ac17e
DF
2395{
2396 return 1;
2397}
2398#endif
2399
332ac17e
DF
2400/*
2401 * We must be sure that accepting a new task (or allowing changing the
2402 * parameters of an existing one) is consistent with the bandwidth
2403 * constraints. If yes, this function also accordingly updates the currently
2404 * allocated bandwidth to reflect the new situation.
2405 *
2406 * This function is called while holding p's rq->lock.
40767b0d
PZ
2407 *
2408 * XXX we should delay bw change until the task's 0-lag point, see
2409 * __setparam_dl().
332ac17e
DF
2410 */
2411static int dl_overflow(struct task_struct *p, int policy,
2412 const struct sched_attr *attr)
2413{
2414
2415 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2416 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2417 u64 runtime = attr->sched_runtime;
2418 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2419 int cpus, err = -1;
332ac17e
DF
2420
2421 if (new_bw == p->dl.dl_bw)
2422 return 0;
2423
2424 /*
2425 * Either if a task, enters, leave, or stays -deadline but changes
2426 * its parameters, we may need to update accordingly the total
2427 * allocated bandwidth of the container.
2428 */
2429 raw_spin_lock(&dl_b->lock);
de212f18 2430 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2431 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2432 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2433 __dl_add(dl_b, new_bw);
2434 err = 0;
2435 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2436 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2437 __dl_clear(dl_b, p->dl.dl_bw);
2438 __dl_add(dl_b, new_bw);
2439 err = 0;
2440 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2441 __dl_clear(dl_b, p->dl.dl_bw);
2442 err = 0;
2443 }
2444 raw_spin_unlock(&dl_b->lock);
2445
2446 return err;
2447}
2448
2449extern void init_dl_bw(struct dl_bw *dl_b);
2450
1da177e4
LT
2451/*
2452 * wake_up_new_task - wake up a newly created task for the first time.
2453 *
2454 * This function will do some initial scheduler statistics housekeeping
2455 * that must be done for every newly created context, then puts the task
2456 * on the runqueue and wakes it.
2457 */
3e51e3ed 2458void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2459{
2460 unsigned long flags;
dd41f596 2461 struct rq *rq;
fabf318e 2462
ab2515c4 2463 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2464 /* Initialize new task's runnable average */
2465 init_entity_runnable_average(&p->se);
fabf318e
PZ
2466#ifdef CONFIG_SMP
2467 /*
2468 * Fork balancing, do it here and not earlier because:
2469 * - cpus_allowed can change in the fork path
2470 * - any previously selected cpu might disappear through hotplug
fabf318e 2471 */
ac66f547 2472 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2473#endif
2474
ab2515c4 2475 rq = __task_rq_lock(p);
cd29fe6f 2476 activate_task(rq, p, 0);
da0c1e65 2477 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2478 trace_sched_wakeup_new(p);
a7558e01 2479 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2480#ifdef CONFIG_SMP
0aaafaab
PZ
2481 if (p->sched_class->task_woken) {
2482 /*
2483 * Nothing relies on rq->lock after this, so its fine to
2484 * drop it.
2485 */
2486 lockdep_unpin_lock(&rq->lock);
efbbd05a 2487 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2488 lockdep_pin_lock(&rq->lock);
2489 }
9a897c5a 2490#endif
0122ec5b 2491 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2492}
2493
e107be36
AK
2494#ifdef CONFIG_PREEMPT_NOTIFIERS
2495
1cde2930
PZ
2496static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2497
2ecd9d29
PZ
2498void preempt_notifier_inc(void)
2499{
2500 static_key_slow_inc(&preempt_notifier_key);
2501}
2502EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2503
2504void preempt_notifier_dec(void)
2505{
2506 static_key_slow_dec(&preempt_notifier_key);
2507}
2508EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2509
e107be36 2510/**
80dd99b3 2511 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2512 * @notifier: notifier struct to register
e107be36
AK
2513 */
2514void preempt_notifier_register(struct preempt_notifier *notifier)
2515{
2ecd9d29
PZ
2516 if (!static_key_false(&preempt_notifier_key))
2517 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2518
e107be36
AK
2519 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2520}
2521EXPORT_SYMBOL_GPL(preempt_notifier_register);
2522
2523/**
2524 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2525 * @notifier: notifier struct to unregister
e107be36 2526 *
d84525a8 2527 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2528 */
2529void preempt_notifier_unregister(struct preempt_notifier *notifier)
2530{
2531 hlist_del(&notifier->link);
2532}
2533EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2534
1cde2930 2535static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2536{
2537 struct preempt_notifier *notifier;
e107be36 2538
b67bfe0d 2539 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2540 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2541}
2542
1cde2930
PZ
2543static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2544{
2545 if (static_key_false(&preempt_notifier_key))
2546 __fire_sched_in_preempt_notifiers(curr);
2547}
2548
e107be36 2549static void
1cde2930
PZ
2550__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2551 struct task_struct *next)
e107be36
AK
2552{
2553 struct preempt_notifier *notifier;
e107be36 2554
b67bfe0d 2555 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2556 notifier->ops->sched_out(notifier, next);
2557}
2558
1cde2930
PZ
2559static __always_inline void
2560fire_sched_out_preempt_notifiers(struct task_struct *curr,
2561 struct task_struct *next)
2562{
2563 if (static_key_false(&preempt_notifier_key))
2564 __fire_sched_out_preempt_notifiers(curr, next);
2565}
2566
6d6bc0ad 2567#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2568
1cde2930 2569static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2570{
2571}
2572
1cde2930 2573static inline void
e107be36
AK
2574fire_sched_out_preempt_notifiers(struct task_struct *curr,
2575 struct task_struct *next)
2576{
2577}
2578
6d6bc0ad 2579#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2580
4866cde0
NP
2581/**
2582 * prepare_task_switch - prepare to switch tasks
2583 * @rq: the runqueue preparing to switch
421cee29 2584 * @prev: the current task that is being switched out
4866cde0
NP
2585 * @next: the task we are going to switch to.
2586 *
2587 * This is called with the rq lock held and interrupts off. It must
2588 * be paired with a subsequent finish_task_switch after the context
2589 * switch.
2590 *
2591 * prepare_task_switch sets up locking and calls architecture specific
2592 * hooks.
2593 */
e107be36
AK
2594static inline void
2595prepare_task_switch(struct rq *rq, struct task_struct *prev,
2596 struct task_struct *next)
4866cde0 2597{
43148951 2598 sched_info_switch(rq, prev, next);
fe4b04fa 2599 perf_event_task_sched_out(prev, next);
e107be36 2600 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2601 prepare_lock_switch(rq, next);
2602 prepare_arch_switch(next);
2603}
2604
1da177e4
LT
2605/**
2606 * finish_task_switch - clean up after a task-switch
2607 * @prev: the thread we just switched away from.
2608 *
4866cde0
NP
2609 * finish_task_switch must be called after the context switch, paired
2610 * with a prepare_task_switch call before the context switch.
2611 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2612 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2613 *
2614 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2615 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2616 * with the lock held can cause deadlocks; see schedule() for
2617 * details.)
dfa50b60
ON
2618 *
2619 * The context switch have flipped the stack from under us and restored the
2620 * local variables which were saved when this task called schedule() in the
2621 * past. prev == current is still correct but we need to recalculate this_rq
2622 * because prev may have moved to another CPU.
1da177e4 2623 */
dfa50b60 2624static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2625 __releases(rq->lock)
2626{
dfa50b60 2627 struct rq *rq = this_rq();
1da177e4 2628 struct mm_struct *mm = rq->prev_mm;
55a101f8 2629 long prev_state;
1da177e4 2630
609ca066
PZ
2631 /*
2632 * The previous task will have left us with a preempt_count of 2
2633 * because it left us after:
2634 *
2635 * schedule()
2636 * preempt_disable(); // 1
2637 * __schedule()
2638 * raw_spin_lock_irq(&rq->lock) // 2
2639 *
2640 * Also, see FORK_PREEMPT_COUNT.
2641 */
e2bf1c4b
PZ
2642 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2643 "corrupted preempt_count: %s/%d/0x%x\n",
2644 current->comm, current->pid, preempt_count()))
2645 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2646
1da177e4
LT
2647 rq->prev_mm = NULL;
2648
2649 /*
2650 * A task struct has one reference for the use as "current".
c394cc9f 2651 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2652 * schedule one last time. The schedule call will never return, and
2653 * the scheduled task must drop that reference.
95913d97
PZ
2654 *
2655 * We must observe prev->state before clearing prev->on_cpu (in
2656 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2657 * running on another CPU and we could rave with its RUNNING -> DEAD
2658 * transition, resulting in a double drop.
1da177e4 2659 */
55a101f8 2660 prev_state = prev->state;
bf9fae9f 2661 vtime_task_switch(prev);
a8d757ef 2662 perf_event_task_sched_in(prev, current);
4866cde0 2663 finish_lock_switch(rq, prev);
01f23e16 2664 finish_arch_post_lock_switch();
e8fa1362 2665
e107be36 2666 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2667 if (mm)
2668 mmdrop(mm);
c394cc9f 2669 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2670 if (prev->sched_class->task_dead)
2671 prev->sched_class->task_dead(prev);
2672
c6fd91f0 2673 /*
2674 * Remove function-return probe instances associated with this
2675 * task and put them back on the free list.
9761eea8 2676 */
c6fd91f0 2677 kprobe_flush_task(prev);
1da177e4 2678 put_task_struct(prev);
c6fd91f0 2679 }
99e5ada9 2680
de734f89 2681 tick_nohz_task_switch();
dfa50b60 2682 return rq;
1da177e4
LT
2683}
2684
3f029d3c
GH
2685#ifdef CONFIG_SMP
2686
3f029d3c 2687/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2688static void __balance_callback(struct rq *rq)
3f029d3c 2689{
e3fca9e7
PZ
2690 struct callback_head *head, *next;
2691 void (*func)(struct rq *rq);
2692 unsigned long flags;
3f029d3c 2693
e3fca9e7
PZ
2694 raw_spin_lock_irqsave(&rq->lock, flags);
2695 head = rq->balance_callback;
2696 rq->balance_callback = NULL;
2697 while (head) {
2698 func = (void (*)(struct rq *))head->func;
2699 next = head->next;
2700 head->next = NULL;
2701 head = next;
3f029d3c 2702
e3fca9e7 2703 func(rq);
3f029d3c 2704 }
e3fca9e7
PZ
2705 raw_spin_unlock_irqrestore(&rq->lock, flags);
2706}
2707
2708static inline void balance_callback(struct rq *rq)
2709{
2710 if (unlikely(rq->balance_callback))
2711 __balance_callback(rq);
3f029d3c
GH
2712}
2713
2714#else
da19ab51 2715
e3fca9e7 2716static inline void balance_callback(struct rq *rq)
3f029d3c 2717{
1da177e4
LT
2718}
2719
3f029d3c
GH
2720#endif
2721
1da177e4
LT
2722/**
2723 * schedule_tail - first thing a freshly forked thread must call.
2724 * @prev: the thread we just switched away from.
2725 */
722a9f92 2726asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2727 __releases(rq->lock)
2728{
1a43a14a 2729 struct rq *rq;
da19ab51 2730
609ca066
PZ
2731 /*
2732 * New tasks start with FORK_PREEMPT_COUNT, see there and
2733 * finish_task_switch() for details.
2734 *
2735 * finish_task_switch() will drop rq->lock() and lower preempt_count
2736 * and the preempt_enable() will end up enabling preemption (on
2737 * PREEMPT_COUNT kernels).
2738 */
2739
dfa50b60 2740 rq = finish_task_switch(prev);
e3fca9e7 2741 balance_callback(rq);
1a43a14a 2742 preempt_enable();
70b97a7f 2743
1da177e4 2744 if (current->set_child_tid)
b488893a 2745 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2746}
2747
2748/*
dfa50b60 2749 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2750 */
dfa50b60 2751static inline struct rq *
70b97a7f 2752context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2753 struct task_struct *next)
1da177e4 2754{
dd41f596 2755 struct mm_struct *mm, *oldmm;
1da177e4 2756
e107be36 2757 prepare_task_switch(rq, prev, next);
fe4b04fa 2758
dd41f596
IM
2759 mm = next->mm;
2760 oldmm = prev->active_mm;
9226d125
ZA
2761 /*
2762 * For paravirt, this is coupled with an exit in switch_to to
2763 * combine the page table reload and the switch backend into
2764 * one hypercall.
2765 */
224101ed 2766 arch_start_context_switch(prev);
9226d125 2767
31915ab4 2768 if (!mm) {
1da177e4
LT
2769 next->active_mm = oldmm;
2770 atomic_inc(&oldmm->mm_count);
2771 enter_lazy_tlb(oldmm, next);
2772 } else
2773 switch_mm(oldmm, mm, next);
2774
31915ab4 2775 if (!prev->mm) {
1da177e4 2776 prev->active_mm = NULL;
1da177e4
LT
2777 rq->prev_mm = oldmm;
2778 }
3a5f5e48
IM
2779 /*
2780 * Since the runqueue lock will be released by the next
2781 * task (which is an invalid locking op but in the case
2782 * of the scheduler it's an obvious special-case), so we
2783 * do an early lockdep release here:
2784 */
cbce1a68 2785 lockdep_unpin_lock(&rq->lock);
8a25d5de 2786 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2787
2788 /* Here we just switch the register state and the stack. */
2789 switch_to(prev, next, prev);
dd41f596 2790 barrier();
dfa50b60
ON
2791
2792 return finish_task_switch(prev);
1da177e4
LT
2793}
2794
2795/*
1c3e8264 2796 * nr_running and nr_context_switches:
1da177e4
LT
2797 *
2798 * externally visible scheduler statistics: current number of runnable
1c3e8264 2799 * threads, total number of context switches performed since bootup.
1da177e4
LT
2800 */
2801unsigned long nr_running(void)
2802{
2803 unsigned long i, sum = 0;
2804
2805 for_each_online_cpu(i)
2806 sum += cpu_rq(i)->nr_running;
2807
2808 return sum;
f711f609 2809}
1da177e4 2810
2ee507c4
TC
2811/*
2812 * Check if only the current task is running on the cpu.
00cc1633
DD
2813 *
2814 * Caution: this function does not check that the caller has disabled
2815 * preemption, thus the result might have a time-of-check-to-time-of-use
2816 * race. The caller is responsible to use it correctly, for example:
2817 *
2818 * - from a non-preemptable section (of course)
2819 *
2820 * - from a thread that is bound to a single CPU
2821 *
2822 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2823 */
2824bool single_task_running(void)
2825{
00cc1633 2826 return raw_rq()->nr_running == 1;
2ee507c4
TC
2827}
2828EXPORT_SYMBOL(single_task_running);
2829
1da177e4 2830unsigned long long nr_context_switches(void)
46cb4b7c 2831{
cc94abfc
SR
2832 int i;
2833 unsigned long long sum = 0;
46cb4b7c 2834
0a945022 2835 for_each_possible_cpu(i)
1da177e4 2836 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2837
1da177e4
LT
2838 return sum;
2839}
483b4ee6 2840
1da177e4
LT
2841unsigned long nr_iowait(void)
2842{
2843 unsigned long i, sum = 0;
483b4ee6 2844
0a945022 2845 for_each_possible_cpu(i)
1da177e4 2846 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2847
1da177e4
LT
2848 return sum;
2849}
483b4ee6 2850
8c215bd3 2851unsigned long nr_iowait_cpu(int cpu)
69d25870 2852{
8c215bd3 2853 struct rq *this = cpu_rq(cpu);
69d25870
AV
2854 return atomic_read(&this->nr_iowait);
2855}
46cb4b7c 2856
372ba8cb
MG
2857void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2858{
3289bdb4
PZ
2859 struct rq *rq = this_rq();
2860 *nr_waiters = atomic_read(&rq->nr_iowait);
2861 *load = rq->load.weight;
372ba8cb
MG
2862}
2863
dd41f596 2864#ifdef CONFIG_SMP
8a0be9ef 2865
46cb4b7c 2866/*
38022906
PZ
2867 * sched_exec - execve() is a valuable balancing opportunity, because at
2868 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2869 */
38022906 2870void sched_exec(void)
46cb4b7c 2871{
38022906 2872 struct task_struct *p = current;
1da177e4 2873 unsigned long flags;
0017d735 2874 int dest_cpu;
46cb4b7c 2875
8f42ced9 2876 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2877 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2878 if (dest_cpu == smp_processor_id())
2879 goto unlock;
38022906 2880
8f42ced9 2881 if (likely(cpu_active(dest_cpu))) {
969c7921 2882 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2883
8f42ced9
PZ
2884 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2885 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2886 return;
2887 }
0017d735 2888unlock:
8f42ced9 2889 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2890}
dd41f596 2891
1da177e4
LT
2892#endif
2893
1da177e4 2894DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2895DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2896
2897EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2898EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2899
c5f8d995
HS
2900/*
2901 * Return accounted runtime for the task.
2902 * In case the task is currently running, return the runtime plus current's
2903 * pending runtime that have not been accounted yet.
2904 */
2905unsigned long long task_sched_runtime(struct task_struct *p)
2906{
2907 unsigned long flags;
2908 struct rq *rq;
6e998916 2909 u64 ns;
c5f8d995 2910
911b2898
PZ
2911#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2912 /*
2913 * 64-bit doesn't need locks to atomically read a 64bit value.
2914 * So we have a optimization chance when the task's delta_exec is 0.
2915 * Reading ->on_cpu is racy, but this is ok.
2916 *
2917 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2918 * If we race with it entering cpu, unaccounted time is 0. This is
2919 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2920 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2921 * been accounted, so we're correct here as well.
911b2898 2922 */
da0c1e65 2923 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2924 return p->se.sum_exec_runtime;
2925#endif
2926
c5f8d995 2927 rq = task_rq_lock(p, &flags);
6e998916
SG
2928 /*
2929 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2930 * project cycles that may never be accounted to this
2931 * thread, breaking clock_gettime().
2932 */
2933 if (task_current(rq, p) && task_on_rq_queued(p)) {
2934 update_rq_clock(rq);
2935 p->sched_class->update_curr(rq);
2936 }
2937 ns = p->se.sum_exec_runtime;
0122ec5b 2938 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2939
2940 return ns;
2941}
48f24c4d 2942
7835b98b
CL
2943/*
2944 * This function gets called by the timer code, with HZ frequency.
2945 * We call it with interrupts disabled.
7835b98b
CL
2946 */
2947void scheduler_tick(void)
2948{
7835b98b
CL
2949 int cpu = smp_processor_id();
2950 struct rq *rq = cpu_rq(cpu);
dd41f596 2951 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2952
2953 sched_clock_tick();
dd41f596 2954
05fa785c 2955 raw_spin_lock(&rq->lock);
3e51f33f 2956 update_rq_clock(rq);
fa85ae24 2957 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2958 update_cpu_load_active(rq);
3289bdb4 2959 calc_global_load_tick(rq);
05fa785c 2960 raw_spin_unlock(&rq->lock);
7835b98b 2961
e9d2b064 2962 perf_event_task_tick();
e220d2dc 2963
e418e1c2 2964#ifdef CONFIG_SMP
6eb57e0d 2965 rq->idle_balance = idle_cpu(cpu);
7caff66f 2966 trigger_load_balance(rq);
e418e1c2 2967#endif
265f22a9 2968 rq_last_tick_reset(rq);
1da177e4
LT
2969}
2970
265f22a9
FW
2971#ifdef CONFIG_NO_HZ_FULL
2972/**
2973 * scheduler_tick_max_deferment
2974 *
2975 * Keep at least one tick per second when a single
2976 * active task is running because the scheduler doesn't
2977 * yet completely support full dynticks environment.
2978 *
2979 * This makes sure that uptime, CFS vruntime, load
2980 * balancing, etc... continue to move forward, even
2981 * with a very low granularity.
e69f6186
YB
2982 *
2983 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2984 */
2985u64 scheduler_tick_max_deferment(void)
2986{
2987 struct rq *rq = this_rq();
316c1608 2988 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2989
2990 next = rq->last_sched_tick + HZ;
2991
2992 if (time_before_eq(next, now))
2993 return 0;
2994
8fe8ff09 2995 return jiffies_to_nsecs(next - now);
1da177e4 2996}
265f22a9 2997#endif
1da177e4 2998
132380a0 2999notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3000{
3001 if (in_lock_functions(addr)) {
3002 addr = CALLER_ADDR2;
3003 if (in_lock_functions(addr))
3004 addr = CALLER_ADDR3;
3005 }
3006 return addr;
3007}
1da177e4 3008
7e49fcce
SR
3009#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3010 defined(CONFIG_PREEMPT_TRACER))
3011
edafe3a5 3012void preempt_count_add(int val)
1da177e4 3013{
6cd8a4bb 3014#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3015 /*
3016 * Underflow?
3017 */
9a11b49a
IM
3018 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3019 return;
6cd8a4bb 3020#endif
bdb43806 3021 __preempt_count_add(val);
6cd8a4bb 3022#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3023 /*
3024 * Spinlock count overflowing soon?
3025 */
33859f7f
MOS
3026 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3027 PREEMPT_MASK - 10);
6cd8a4bb 3028#endif
8f47b187
TG
3029 if (preempt_count() == val) {
3030 unsigned long ip = get_parent_ip(CALLER_ADDR1);
3031#ifdef CONFIG_DEBUG_PREEMPT
3032 current->preempt_disable_ip = ip;
3033#endif
3034 trace_preempt_off(CALLER_ADDR0, ip);
3035 }
1da177e4 3036}
bdb43806 3037EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3038NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3039
edafe3a5 3040void preempt_count_sub(int val)
1da177e4 3041{
6cd8a4bb 3042#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3043 /*
3044 * Underflow?
3045 */
01e3eb82 3046 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3047 return;
1da177e4
LT
3048 /*
3049 * Is the spinlock portion underflowing?
3050 */
9a11b49a
IM
3051 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3052 !(preempt_count() & PREEMPT_MASK)))
3053 return;
6cd8a4bb 3054#endif
9a11b49a 3055
6cd8a4bb
SR
3056 if (preempt_count() == val)
3057 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 3058 __preempt_count_sub(val);
1da177e4 3059}
bdb43806 3060EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3061NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
3062
3063#endif
3064
3065/*
dd41f596 3066 * Print scheduling while atomic bug:
1da177e4 3067 */
dd41f596 3068static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3069{
664dfa65
DJ
3070 if (oops_in_progress)
3071 return;
3072
3df0fc5b
PZ
3073 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3074 prev->comm, prev->pid, preempt_count());
838225b4 3075
dd41f596 3076 debug_show_held_locks(prev);
e21f5b15 3077 print_modules();
dd41f596
IM
3078 if (irqs_disabled())
3079 print_irqtrace_events(prev);
8f47b187
TG
3080#ifdef CONFIG_DEBUG_PREEMPT
3081 if (in_atomic_preempt_off()) {
3082 pr_err("Preemption disabled at:");
3083 print_ip_sym(current->preempt_disable_ip);
3084 pr_cont("\n");
3085 }
3086#endif
6135fc1e 3087 dump_stack();
373d4d09 3088 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3089}
1da177e4 3090
dd41f596
IM
3091/*
3092 * Various schedule()-time debugging checks and statistics:
3093 */
3094static inline void schedule_debug(struct task_struct *prev)
3095{
0d9e2632 3096#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3097 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3098#endif
b99def8b 3099
1dc0fffc 3100 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3101 __schedule_bug(prev);
1dc0fffc
PZ
3102 preempt_count_set(PREEMPT_DISABLED);
3103 }
b3fbab05 3104 rcu_sleep_check();
dd41f596 3105
1da177e4
LT
3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
2d72376b 3108 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3109}
3110
3111/*
3112 * Pick up the highest-prio task:
3113 */
3114static inline struct task_struct *
606dba2e 3115pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3116{
37e117c0 3117 const struct sched_class *class = &fair_sched_class;
dd41f596 3118 struct task_struct *p;
1da177e4
LT
3119
3120 /*
dd41f596
IM
3121 * Optimization: we know that if all tasks are in
3122 * the fair class we can call that function directly:
1da177e4 3123 */
37e117c0 3124 if (likely(prev->sched_class == class &&
38033c37 3125 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3126 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3127 if (unlikely(p == RETRY_TASK))
3128 goto again;
3129
3130 /* assumes fair_sched_class->next == idle_sched_class */
3131 if (unlikely(!p))
3132 p = idle_sched_class.pick_next_task(rq, prev);
3133
3134 return p;
1da177e4
LT
3135 }
3136
37e117c0 3137again:
34f971f6 3138 for_each_class(class) {
606dba2e 3139 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3140 if (p) {
3141 if (unlikely(p == RETRY_TASK))
3142 goto again;
dd41f596 3143 return p;
37e117c0 3144 }
dd41f596 3145 }
34f971f6
PZ
3146
3147 BUG(); /* the idle class will always have a runnable task */
dd41f596 3148}
1da177e4 3149
dd41f596 3150/*
c259e01a 3151 * __schedule() is the main scheduler function.
edde96ea
PE
3152 *
3153 * The main means of driving the scheduler and thus entering this function are:
3154 *
3155 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3156 *
3157 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3158 * paths. For example, see arch/x86/entry_64.S.
3159 *
3160 * To drive preemption between tasks, the scheduler sets the flag in timer
3161 * interrupt handler scheduler_tick().
3162 *
3163 * 3. Wakeups don't really cause entry into schedule(). They add a
3164 * task to the run-queue and that's it.
3165 *
3166 * Now, if the new task added to the run-queue preempts the current
3167 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3168 * called on the nearest possible occasion:
3169 *
3170 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3171 *
3172 * - in syscall or exception context, at the next outmost
3173 * preempt_enable(). (this might be as soon as the wake_up()'s
3174 * spin_unlock()!)
3175 *
3176 * - in IRQ context, return from interrupt-handler to
3177 * preemptible context
3178 *
3179 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3180 * then at the next:
3181 *
3182 * - cond_resched() call
3183 * - explicit schedule() call
3184 * - return from syscall or exception to user-space
3185 * - return from interrupt-handler to user-space
bfd9b2b5 3186 *
b30f0e3f 3187 * WARNING: must be called with preemption disabled!
dd41f596 3188 */
499d7955 3189static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3190{
3191 struct task_struct *prev, *next;
67ca7bde 3192 unsigned long *switch_count;
dd41f596 3193 struct rq *rq;
31656519 3194 int cpu;
dd41f596 3195
dd41f596
IM
3196 cpu = smp_processor_id();
3197 rq = cpu_rq(cpu);
dd41f596 3198 prev = rq->curr;
dd41f596 3199
b99def8b
PZ
3200 /*
3201 * do_exit() calls schedule() with preemption disabled as an exception;
3202 * however we must fix that up, otherwise the next task will see an
3203 * inconsistent (higher) preempt count.
3204 *
3205 * It also avoids the below schedule_debug() test from complaining
3206 * about this.
3207 */
3208 if (unlikely(prev->state == TASK_DEAD))
3209 preempt_enable_no_resched_notrace();
3210
dd41f596 3211 schedule_debug(prev);
1da177e4 3212
31656519 3213 if (sched_feat(HRTICK))
f333fdc9 3214 hrtick_clear(rq);
8f4d37ec 3215
46a5d164
PM
3216 local_irq_disable();
3217 rcu_note_context_switch();
3218
e0acd0a6
ON
3219 /*
3220 * Make sure that signal_pending_state()->signal_pending() below
3221 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3222 * done by the caller to avoid the race with signal_wake_up().
3223 */
3224 smp_mb__before_spinlock();
46a5d164 3225 raw_spin_lock(&rq->lock);
cbce1a68 3226 lockdep_pin_lock(&rq->lock);
1da177e4 3227
9edfbfed
PZ
3228 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3229
246d86b5 3230 switch_count = &prev->nivcsw;
fc13aeba 3231 if (!preempt && prev->state) {
21aa9af0 3232 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3233 prev->state = TASK_RUNNING;
21aa9af0 3234 } else {
2acca55e
PZ
3235 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3236 prev->on_rq = 0;
3237
21aa9af0 3238 /*
2acca55e
PZ
3239 * If a worker went to sleep, notify and ask workqueue
3240 * whether it wants to wake up a task to maintain
3241 * concurrency.
21aa9af0
TH
3242 */
3243 if (prev->flags & PF_WQ_WORKER) {
3244 struct task_struct *to_wakeup;
3245
3246 to_wakeup = wq_worker_sleeping(prev, cpu);
3247 if (to_wakeup)
3248 try_to_wake_up_local(to_wakeup);
3249 }
21aa9af0 3250 }
dd41f596 3251 switch_count = &prev->nvcsw;
1da177e4
LT
3252 }
3253
9edfbfed 3254 if (task_on_rq_queued(prev))
606dba2e
PZ
3255 update_rq_clock(rq);
3256
3257 next = pick_next_task(rq, prev);
f26f9aff 3258 clear_tsk_need_resched(prev);
f27dde8d 3259 clear_preempt_need_resched();
9edfbfed 3260 rq->clock_skip_update = 0;
1da177e4 3261
1da177e4 3262 if (likely(prev != next)) {
1da177e4
LT
3263 rq->nr_switches++;
3264 rq->curr = next;
3265 ++*switch_count;
3266
c73464b1 3267 trace_sched_switch(preempt, prev, next);
dfa50b60
ON
3268 rq = context_switch(rq, prev, next); /* unlocks the rq */
3269 cpu = cpu_of(rq);
cbce1a68
PZ
3270 } else {
3271 lockdep_unpin_lock(&rq->lock);
05fa785c 3272 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3273 }
1da177e4 3274
e3fca9e7 3275 balance_callback(rq);
1da177e4 3276}
c259e01a 3277
9c40cef2
TG
3278static inline void sched_submit_work(struct task_struct *tsk)
3279{
3c7d5184 3280 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3281 return;
3282 /*
3283 * If we are going to sleep and we have plugged IO queued,
3284 * make sure to submit it to avoid deadlocks.
3285 */
3286 if (blk_needs_flush_plug(tsk))
3287 blk_schedule_flush_plug(tsk);
3288}
3289
722a9f92 3290asmlinkage __visible void __sched schedule(void)
c259e01a 3291{
9c40cef2
TG
3292 struct task_struct *tsk = current;
3293
3294 sched_submit_work(tsk);
bfd9b2b5 3295 do {
b30f0e3f 3296 preempt_disable();
fc13aeba 3297 __schedule(false);
b30f0e3f 3298 sched_preempt_enable_no_resched();
bfd9b2b5 3299 } while (need_resched());
c259e01a 3300}
1da177e4
LT
3301EXPORT_SYMBOL(schedule);
3302
91d1aa43 3303#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3304asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3305{
3306 /*
3307 * If we come here after a random call to set_need_resched(),
3308 * or we have been woken up remotely but the IPI has not yet arrived,
3309 * we haven't yet exited the RCU idle mode. Do it here manually until
3310 * we find a better solution.
7cc78f8f
AL
3311 *
3312 * NB: There are buggy callers of this function. Ideally we
c467ea76 3313 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3314 * too frequently to make sense yet.
20ab65e3 3315 */
7cc78f8f 3316 enum ctx_state prev_state = exception_enter();
20ab65e3 3317 schedule();
7cc78f8f 3318 exception_exit(prev_state);
20ab65e3
FW
3319}
3320#endif
3321
c5491ea7
TG
3322/**
3323 * schedule_preempt_disabled - called with preemption disabled
3324 *
3325 * Returns with preemption disabled. Note: preempt_count must be 1
3326 */
3327void __sched schedule_preempt_disabled(void)
3328{
ba74c144 3329 sched_preempt_enable_no_resched();
c5491ea7
TG
3330 schedule();
3331 preempt_disable();
3332}
3333
06b1f808 3334static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3335{
3336 do {
499d7955 3337 preempt_disable_notrace();
fc13aeba 3338 __schedule(true);
499d7955 3339 preempt_enable_no_resched_notrace();
a18b5d01
FW
3340
3341 /*
3342 * Check again in case we missed a preemption opportunity
3343 * between schedule and now.
3344 */
a18b5d01
FW
3345 } while (need_resched());
3346}
3347
1da177e4
LT
3348#ifdef CONFIG_PREEMPT
3349/*
2ed6e34f 3350 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3351 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3352 * occur there and call schedule directly.
3353 */
722a9f92 3354asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3355{
1da177e4
LT
3356 /*
3357 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3358 * we do not want to preempt the current task. Just return..
1da177e4 3359 */
fbb00b56 3360 if (likely(!preemptible()))
1da177e4
LT
3361 return;
3362
a18b5d01 3363 preempt_schedule_common();
1da177e4 3364}
376e2424 3365NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3366EXPORT_SYMBOL(preempt_schedule);
009f60e2 3367
009f60e2 3368/**
4eaca0a8 3369 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3370 *
3371 * The tracing infrastructure uses preempt_enable_notrace to prevent
3372 * recursion and tracing preempt enabling caused by the tracing
3373 * infrastructure itself. But as tracing can happen in areas coming
3374 * from userspace or just about to enter userspace, a preempt enable
3375 * can occur before user_exit() is called. This will cause the scheduler
3376 * to be called when the system is still in usermode.
3377 *
3378 * To prevent this, the preempt_enable_notrace will use this function
3379 * instead of preempt_schedule() to exit user context if needed before
3380 * calling the scheduler.
3381 */
4eaca0a8 3382asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3383{
3384 enum ctx_state prev_ctx;
3385
3386 if (likely(!preemptible()))
3387 return;
3388
3389 do {
3d8f74dd 3390 preempt_disable_notrace();
009f60e2
ON
3391 /*
3392 * Needs preempt disabled in case user_exit() is traced
3393 * and the tracer calls preempt_enable_notrace() causing
3394 * an infinite recursion.
3395 */
3396 prev_ctx = exception_enter();
fc13aeba 3397 __schedule(true);
009f60e2
ON
3398 exception_exit(prev_ctx);
3399
3d8f74dd 3400 preempt_enable_no_resched_notrace();
009f60e2
ON
3401 } while (need_resched());
3402}
4eaca0a8 3403EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3404
32e475d7 3405#endif /* CONFIG_PREEMPT */
1da177e4
LT
3406
3407/*
2ed6e34f 3408 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3409 * off of irq context.
3410 * Note, that this is called and return with irqs disabled. This will
3411 * protect us against recursive calling from irq.
3412 */
722a9f92 3413asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3414{
b22366cd 3415 enum ctx_state prev_state;
6478d880 3416
2ed6e34f 3417 /* Catch callers which need to be fixed */
f27dde8d 3418 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3419
b22366cd
FW
3420 prev_state = exception_enter();
3421
3a5c359a 3422 do {
3d8f74dd 3423 preempt_disable();
3a5c359a 3424 local_irq_enable();
fc13aeba 3425 __schedule(true);
3a5c359a 3426 local_irq_disable();
3d8f74dd 3427 sched_preempt_enable_no_resched();
5ed0cec0 3428 } while (need_resched());
b22366cd
FW
3429
3430 exception_exit(prev_state);
1da177e4
LT
3431}
3432
63859d4f 3433int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3434 void *key)
1da177e4 3435{
63859d4f 3436 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3437}
1da177e4
LT
3438EXPORT_SYMBOL(default_wake_function);
3439
b29739f9
IM
3440#ifdef CONFIG_RT_MUTEXES
3441
3442/*
3443 * rt_mutex_setprio - set the current priority of a task
3444 * @p: task
3445 * @prio: prio value (kernel-internal form)
3446 *
3447 * This function changes the 'effective' priority of a task. It does
3448 * not touch ->normal_prio like __setscheduler().
3449 *
c365c292
TG
3450 * Used by the rt_mutex code to implement priority inheritance
3451 * logic. Call site only calls if the priority of the task changed.
b29739f9 3452 */
36c8b586 3453void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3454{
1de64443 3455 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
70b97a7f 3456 struct rq *rq;
83ab0aa0 3457 const struct sched_class *prev_class;
b29739f9 3458
aab03e05 3459 BUG_ON(prio > MAX_PRIO);
b29739f9 3460
0122ec5b 3461 rq = __task_rq_lock(p);
b29739f9 3462
1c4dd99b
TG
3463 /*
3464 * Idle task boosting is a nono in general. There is one
3465 * exception, when PREEMPT_RT and NOHZ is active:
3466 *
3467 * The idle task calls get_next_timer_interrupt() and holds
3468 * the timer wheel base->lock on the CPU and another CPU wants
3469 * to access the timer (probably to cancel it). We can safely
3470 * ignore the boosting request, as the idle CPU runs this code
3471 * with interrupts disabled and will complete the lock
3472 * protected section without being interrupted. So there is no
3473 * real need to boost.
3474 */
3475 if (unlikely(p == rq->idle)) {
3476 WARN_ON(p != rq->curr);
3477 WARN_ON(p->pi_blocked_on);
3478 goto out_unlock;
3479 }
3480
a8027073 3481 trace_sched_pi_setprio(p, prio);
d5f9f942 3482 oldprio = p->prio;
83ab0aa0 3483 prev_class = p->sched_class;
da0c1e65 3484 queued = task_on_rq_queued(p);
051a1d1a 3485 running = task_current(rq, p);
da0c1e65 3486 if (queued)
1de64443 3487 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 3488 if (running)
f3cd1c4e 3489 put_prev_task(rq, p);
dd41f596 3490
2d3d891d
DF
3491 /*
3492 * Boosting condition are:
3493 * 1. -rt task is running and holds mutex A
3494 * --> -dl task blocks on mutex A
3495 *
3496 * 2. -dl task is running and holds mutex A
3497 * --> -dl task blocks on mutex A and could preempt the
3498 * running task
3499 */
3500 if (dl_prio(prio)) {
466af29b
ON
3501 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3502 if (!dl_prio(p->normal_prio) ||
3503 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3504 p->dl.dl_boosted = 1;
1de64443 3505 enqueue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3506 } else
3507 p->dl.dl_boosted = 0;
aab03e05 3508 p->sched_class = &dl_sched_class;
2d3d891d
DF
3509 } else if (rt_prio(prio)) {
3510 if (dl_prio(oldprio))
3511 p->dl.dl_boosted = 0;
3512 if (oldprio < prio)
1de64443 3513 enqueue_flag |= ENQUEUE_HEAD;
dd41f596 3514 p->sched_class = &rt_sched_class;
2d3d891d
DF
3515 } else {
3516 if (dl_prio(oldprio))
3517 p->dl.dl_boosted = 0;
746db944
BS
3518 if (rt_prio(oldprio))
3519 p->rt.timeout = 0;
dd41f596 3520 p->sched_class = &fair_sched_class;
2d3d891d 3521 }
dd41f596 3522
b29739f9
IM
3523 p->prio = prio;
3524
0e1f3483
HS
3525 if (running)
3526 p->sched_class->set_curr_task(rq);
da0c1e65 3527 if (queued)
2d3d891d 3528 enqueue_task(rq, p, enqueue_flag);
cb469845 3529
da7a735e 3530 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3531out_unlock:
4c9a4bc8 3532 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3533 __task_rq_unlock(rq);
4c9a4bc8
PZ
3534
3535 balance_callback(rq);
3536 preempt_enable();
b29739f9 3537}
b29739f9 3538#endif
d50dde5a 3539
36c8b586 3540void set_user_nice(struct task_struct *p, long nice)
1da177e4 3541{
da0c1e65 3542 int old_prio, delta, queued;
1da177e4 3543 unsigned long flags;
70b97a7f 3544 struct rq *rq;
1da177e4 3545
75e45d51 3546 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3547 return;
3548 /*
3549 * We have to be careful, if called from sys_setpriority(),
3550 * the task might be in the middle of scheduling on another CPU.
3551 */
3552 rq = task_rq_lock(p, &flags);
3553 /*
3554 * The RT priorities are set via sched_setscheduler(), but we still
3555 * allow the 'normal' nice value to be set - but as expected
3556 * it wont have any effect on scheduling until the task is
aab03e05 3557 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3558 */
aab03e05 3559 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3560 p->static_prio = NICE_TO_PRIO(nice);
3561 goto out_unlock;
3562 }
da0c1e65
KT
3563 queued = task_on_rq_queued(p);
3564 if (queued)
1de64443 3565 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3566
1da177e4 3567 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3568 set_load_weight(p);
b29739f9
IM
3569 old_prio = p->prio;
3570 p->prio = effective_prio(p);
3571 delta = p->prio - old_prio;
1da177e4 3572
da0c1e65 3573 if (queued) {
1de64443 3574 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3575 /*
d5f9f942
AM
3576 * If the task increased its priority or is running and
3577 * lowered its priority, then reschedule its CPU:
1da177e4 3578 */
d5f9f942 3579 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3580 resched_curr(rq);
1da177e4
LT
3581 }
3582out_unlock:
0122ec5b 3583 task_rq_unlock(rq, p, &flags);
1da177e4 3584}
1da177e4
LT
3585EXPORT_SYMBOL(set_user_nice);
3586
e43379f1
MM
3587/*
3588 * can_nice - check if a task can reduce its nice value
3589 * @p: task
3590 * @nice: nice value
3591 */
36c8b586 3592int can_nice(const struct task_struct *p, const int nice)
e43379f1 3593{
024f4747 3594 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3595 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3596
78d7d407 3597 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3598 capable(CAP_SYS_NICE));
3599}
3600
1da177e4
LT
3601#ifdef __ARCH_WANT_SYS_NICE
3602
3603/*
3604 * sys_nice - change the priority of the current process.
3605 * @increment: priority increment
3606 *
3607 * sys_setpriority is a more generic, but much slower function that
3608 * does similar things.
3609 */
5add95d4 3610SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3611{
48f24c4d 3612 long nice, retval;
1da177e4
LT
3613
3614 /*
3615 * Setpriority might change our priority at the same moment.
3616 * We don't have to worry. Conceptually one call occurs first
3617 * and we have a single winner.
3618 */
a9467fa3 3619 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3620 nice = task_nice(current) + increment;
1da177e4 3621
a9467fa3 3622 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3623 if (increment < 0 && !can_nice(current, nice))
3624 return -EPERM;
3625
1da177e4
LT
3626 retval = security_task_setnice(current, nice);
3627 if (retval)
3628 return retval;
3629
3630 set_user_nice(current, nice);
3631 return 0;
3632}
3633
3634#endif
3635
3636/**
3637 * task_prio - return the priority value of a given task.
3638 * @p: the task in question.
3639 *
e69f6186 3640 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3641 * RT tasks are offset by -200. Normal tasks are centered
3642 * around 0, value goes from -16 to +15.
3643 */
36c8b586 3644int task_prio(const struct task_struct *p)
1da177e4
LT
3645{
3646 return p->prio - MAX_RT_PRIO;
3647}
3648
1da177e4
LT
3649/**
3650 * idle_cpu - is a given cpu idle currently?
3651 * @cpu: the processor in question.
e69f6186
YB
3652 *
3653 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3654 */
3655int idle_cpu(int cpu)
3656{
908a3283
TG
3657 struct rq *rq = cpu_rq(cpu);
3658
3659 if (rq->curr != rq->idle)
3660 return 0;
3661
3662 if (rq->nr_running)
3663 return 0;
3664
3665#ifdef CONFIG_SMP
3666 if (!llist_empty(&rq->wake_list))
3667 return 0;
3668#endif
3669
3670 return 1;
1da177e4
LT
3671}
3672
1da177e4
LT
3673/**
3674 * idle_task - return the idle task for a given cpu.
3675 * @cpu: the processor in question.
e69f6186
YB
3676 *
3677 * Return: The idle task for the cpu @cpu.
1da177e4 3678 */
36c8b586 3679struct task_struct *idle_task(int cpu)
1da177e4
LT
3680{
3681 return cpu_rq(cpu)->idle;
3682}
3683
3684/**
3685 * find_process_by_pid - find a process with a matching PID value.
3686 * @pid: the pid in question.
e69f6186
YB
3687 *
3688 * The task of @pid, if found. %NULL otherwise.
1da177e4 3689 */
a9957449 3690static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3691{
228ebcbe 3692 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3693}
3694
aab03e05
DF
3695/*
3696 * This function initializes the sched_dl_entity of a newly becoming
3697 * SCHED_DEADLINE task.
3698 *
3699 * Only the static values are considered here, the actual runtime and the
3700 * absolute deadline will be properly calculated when the task is enqueued
3701 * for the first time with its new policy.
3702 */
3703static void
3704__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3705{
3706 struct sched_dl_entity *dl_se = &p->dl;
3707
aab03e05
DF
3708 dl_se->dl_runtime = attr->sched_runtime;
3709 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3710 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3711 dl_se->flags = attr->sched_flags;
332ac17e 3712 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3713
3714 /*
3715 * Changing the parameters of a task is 'tricky' and we're not doing
3716 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3717 *
3718 * What we SHOULD do is delay the bandwidth release until the 0-lag
3719 * point. This would include retaining the task_struct until that time
3720 * and change dl_overflow() to not immediately decrement the current
3721 * amount.
3722 *
3723 * Instead we retain the current runtime/deadline and let the new
3724 * parameters take effect after the current reservation period lapses.
3725 * This is safe (albeit pessimistic) because the 0-lag point is always
3726 * before the current scheduling deadline.
3727 *
3728 * We can still have temporary overloads because we do not delay the
3729 * change in bandwidth until that time; so admission control is
3730 * not on the safe side. It does however guarantee tasks will never
3731 * consume more than promised.
3732 */
aab03e05
DF
3733}
3734
c13db6b1
SR
3735/*
3736 * sched_setparam() passes in -1 for its policy, to let the functions
3737 * it calls know not to change it.
3738 */
3739#define SETPARAM_POLICY -1
3740
c365c292
TG
3741static void __setscheduler_params(struct task_struct *p,
3742 const struct sched_attr *attr)
1da177e4 3743{
d50dde5a
DF
3744 int policy = attr->sched_policy;
3745
c13db6b1 3746 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3747 policy = p->policy;
3748
1da177e4 3749 p->policy = policy;
d50dde5a 3750
aab03e05
DF
3751 if (dl_policy(policy))
3752 __setparam_dl(p, attr);
39fd8fd2 3753 else if (fair_policy(policy))
d50dde5a
DF
3754 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3755
39fd8fd2
PZ
3756 /*
3757 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3758 * !rt_policy. Always setting this ensures that things like
3759 * getparam()/getattr() don't report silly values for !rt tasks.
3760 */
3761 p->rt_priority = attr->sched_priority;
383afd09 3762 p->normal_prio = normal_prio(p);
c365c292
TG
3763 set_load_weight(p);
3764}
39fd8fd2 3765
c365c292
TG
3766/* Actually do priority change: must hold pi & rq lock. */
3767static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3768 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3769{
3770 __setscheduler_params(p, attr);
d50dde5a 3771
383afd09 3772 /*
0782e63b
TG
3773 * Keep a potential priority boosting if called from
3774 * sched_setscheduler().
383afd09 3775 */
0782e63b
TG
3776 if (keep_boost)
3777 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3778 else
3779 p->prio = normal_prio(p);
383afd09 3780
aab03e05
DF
3781 if (dl_prio(p->prio))
3782 p->sched_class = &dl_sched_class;
3783 else if (rt_prio(p->prio))
ffd44db5
PZ
3784 p->sched_class = &rt_sched_class;
3785 else
3786 p->sched_class = &fair_sched_class;
1da177e4 3787}
aab03e05
DF
3788
3789static void
3790__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3791{
3792 struct sched_dl_entity *dl_se = &p->dl;
3793
3794 attr->sched_priority = p->rt_priority;
3795 attr->sched_runtime = dl_se->dl_runtime;
3796 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3797 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3798 attr->sched_flags = dl_se->flags;
3799}
3800
3801/*
3802 * This function validates the new parameters of a -deadline task.
3803 * We ask for the deadline not being zero, and greater or equal
755378a4 3804 * than the runtime, as well as the period of being zero or
332ac17e 3805 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3806 * user parameters are above the internal resolution of 1us (we
3807 * check sched_runtime only since it is always the smaller one) and
3808 * below 2^63 ns (we have to check both sched_deadline and
3809 * sched_period, as the latter can be zero).
aab03e05
DF
3810 */
3811static bool
3812__checkparam_dl(const struct sched_attr *attr)
3813{
b0827819
JL
3814 /* deadline != 0 */
3815 if (attr->sched_deadline == 0)
3816 return false;
3817
3818 /*
3819 * Since we truncate DL_SCALE bits, make sure we're at least
3820 * that big.
3821 */
3822 if (attr->sched_runtime < (1ULL << DL_SCALE))
3823 return false;
3824
3825 /*
3826 * Since we use the MSB for wrap-around and sign issues, make
3827 * sure it's not set (mind that period can be equal to zero).
3828 */
3829 if (attr->sched_deadline & (1ULL << 63) ||
3830 attr->sched_period & (1ULL << 63))
3831 return false;
3832
3833 /* runtime <= deadline <= period (if period != 0) */
3834 if ((attr->sched_period != 0 &&
3835 attr->sched_period < attr->sched_deadline) ||
3836 attr->sched_deadline < attr->sched_runtime)
3837 return false;
3838
3839 return true;
aab03e05
DF
3840}
3841
c69e8d9c
DH
3842/*
3843 * check the target process has a UID that matches the current process's
3844 */
3845static bool check_same_owner(struct task_struct *p)
3846{
3847 const struct cred *cred = current_cred(), *pcred;
3848 bool match;
3849
3850 rcu_read_lock();
3851 pcred = __task_cred(p);
9c806aa0
EB
3852 match = (uid_eq(cred->euid, pcred->euid) ||
3853 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3854 rcu_read_unlock();
3855 return match;
3856}
3857
75381608
WL
3858static bool dl_param_changed(struct task_struct *p,
3859 const struct sched_attr *attr)
3860{
3861 struct sched_dl_entity *dl_se = &p->dl;
3862
3863 if (dl_se->dl_runtime != attr->sched_runtime ||
3864 dl_se->dl_deadline != attr->sched_deadline ||
3865 dl_se->dl_period != attr->sched_period ||
3866 dl_se->flags != attr->sched_flags)
3867 return true;
3868
3869 return false;
3870}
3871
d50dde5a
DF
3872static int __sched_setscheduler(struct task_struct *p,
3873 const struct sched_attr *attr,
dbc7f069 3874 bool user, bool pi)
1da177e4 3875{
383afd09
SR
3876 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3877 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3878 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3879 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3880 unsigned long flags;
83ab0aa0 3881 const struct sched_class *prev_class;
70b97a7f 3882 struct rq *rq;
ca94c442 3883 int reset_on_fork;
1da177e4 3884
66e5393a
SR
3885 /* may grab non-irq protected spin_locks */
3886 BUG_ON(in_interrupt());
1da177e4
LT
3887recheck:
3888 /* double check policy once rq lock held */
ca94c442
LP
3889 if (policy < 0) {
3890 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3891 policy = oldpolicy = p->policy;
ca94c442 3892 } else {
7479f3c9 3893 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3894
20f9cd2a 3895 if (!valid_policy(policy))
ca94c442
LP
3896 return -EINVAL;
3897 }
3898
7479f3c9
PZ
3899 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3900 return -EINVAL;
3901
1da177e4
LT
3902 /*
3903 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3904 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3905 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3906 */
0bb040a4 3907 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3908 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3909 return -EINVAL;
aab03e05
DF
3910 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3911 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3912 return -EINVAL;
3913
37e4ab3f
OC
3914 /*
3915 * Allow unprivileged RT tasks to decrease priority:
3916 */
961ccddd 3917 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3918 if (fair_policy(policy)) {
d0ea0268 3919 if (attr->sched_nice < task_nice(p) &&
eaad4513 3920 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3921 return -EPERM;
3922 }
3923
e05606d3 3924 if (rt_policy(policy)) {
a44702e8
ON
3925 unsigned long rlim_rtprio =
3926 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3927
3928 /* can't set/change the rt policy */
3929 if (policy != p->policy && !rlim_rtprio)
3930 return -EPERM;
3931
3932 /* can't increase priority */
d50dde5a
DF
3933 if (attr->sched_priority > p->rt_priority &&
3934 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3935 return -EPERM;
3936 }
c02aa73b 3937
d44753b8
JL
3938 /*
3939 * Can't set/change SCHED_DEADLINE policy at all for now
3940 * (safest behavior); in the future we would like to allow
3941 * unprivileged DL tasks to increase their relative deadline
3942 * or reduce their runtime (both ways reducing utilization)
3943 */
3944 if (dl_policy(policy))
3945 return -EPERM;
3946
dd41f596 3947 /*
c02aa73b
DH
3948 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3949 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3950 */
20f9cd2a 3951 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3952 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3953 return -EPERM;
3954 }
5fe1d75f 3955
37e4ab3f 3956 /* can't change other user's priorities */
c69e8d9c 3957 if (!check_same_owner(p))
37e4ab3f 3958 return -EPERM;
ca94c442
LP
3959
3960 /* Normal users shall not reset the sched_reset_on_fork flag */
3961 if (p->sched_reset_on_fork && !reset_on_fork)
3962 return -EPERM;
37e4ab3f 3963 }
1da177e4 3964
725aad24 3965 if (user) {
b0ae1981 3966 retval = security_task_setscheduler(p);
725aad24
JF
3967 if (retval)
3968 return retval;
3969 }
3970
b29739f9
IM
3971 /*
3972 * make sure no PI-waiters arrive (or leave) while we are
3973 * changing the priority of the task:
0122ec5b 3974 *
25985edc 3975 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3976 * runqueue lock must be held.
3977 */
0122ec5b 3978 rq = task_rq_lock(p, &flags);
dc61b1d6 3979
34f971f6
PZ
3980 /*
3981 * Changing the policy of the stop threads its a very bad idea
3982 */
3983 if (p == rq->stop) {
0122ec5b 3984 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3985 return -EINVAL;
3986 }
3987
a51e9198 3988 /*
d6b1e911
TG
3989 * If not changing anything there's no need to proceed further,
3990 * but store a possible modification of reset_on_fork.
a51e9198 3991 */
d50dde5a 3992 if (unlikely(policy == p->policy)) {
d0ea0268 3993 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3994 goto change;
3995 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3996 goto change;
75381608 3997 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3998 goto change;
d50dde5a 3999
d6b1e911 4000 p->sched_reset_on_fork = reset_on_fork;
45afb173 4001 task_rq_unlock(rq, p, &flags);
a51e9198
DF
4002 return 0;
4003 }
d50dde5a 4004change:
a51e9198 4005
dc61b1d6 4006 if (user) {
332ac17e 4007#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4008 /*
4009 * Do not allow realtime tasks into groups that have no runtime
4010 * assigned.
4011 */
4012 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4013 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4014 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4015 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4016 return -EPERM;
4017 }
dc61b1d6 4018#endif
332ac17e
DF
4019#ifdef CONFIG_SMP
4020 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4021 cpumask_t *span = rq->rd->span;
332ac17e
DF
4022
4023 /*
4024 * Don't allow tasks with an affinity mask smaller than
4025 * the entire root_domain to become SCHED_DEADLINE. We
4026 * will also fail if there's no bandwidth available.
4027 */
e4099a5e
PZ
4028 if (!cpumask_subset(span, &p->cpus_allowed) ||
4029 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
4030 task_rq_unlock(rq, p, &flags);
4031 return -EPERM;
4032 }
4033 }
4034#endif
4035 }
dc61b1d6 4036
1da177e4
LT
4037 /* recheck policy now with rq lock held */
4038 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4039 policy = oldpolicy = -1;
0122ec5b 4040 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4041 goto recheck;
4042 }
332ac17e
DF
4043
4044 /*
4045 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4046 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4047 * is available.
4048 */
e4099a5e 4049 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4050 task_rq_unlock(rq, p, &flags);
4051 return -EBUSY;
4052 }
4053
c365c292
TG
4054 p->sched_reset_on_fork = reset_on_fork;
4055 oldprio = p->prio;
4056
dbc7f069
PZ
4057 if (pi) {
4058 /*
4059 * Take priority boosted tasks into account. If the new
4060 * effective priority is unchanged, we just store the new
4061 * normal parameters and do not touch the scheduler class and
4062 * the runqueue. This will be done when the task deboost
4063 * itself.
4064 */
4065 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4066 if (new_effective_prio == oldprio) {
4067 __setscheduler_params(p, attr);
4068 task_rq_unlock(rq, p, &flags);
4069 return 0;
4070 }
c365c292
TG
4071 }
4072
da0c1e65 4073 queued = task_on_rq_queued(p);
051a1d1a 4074 running = task_current(rq, p);
da0c1e65 4075 if (queued)
1de64443 4076 dequeue_task(rq, p, DEQUEUE_SAVE);
0e1f3483 4077 if (running)
f3cd1c4e 4078 put_prev_task(rq, p);
f6b53205 4079
83ab0aa0 4080 prev_class = p->sched_class;
dbc7f069 4081 __setscheduler(rq, p, attr, pi);
f6b53205 4082
0e1f3483
HS
4083 if (running)
4084 p->sched_class->set_curr_task(rq);
da0c1e65 4085 if (queued) {
1de64443 4086 int enqueue_flags = ENQUEUE_RESTORE;
81a44c54
TG
4087 /*
4088 * We enqueue to tail when the priority of a task is
4089 * increased (user space view).
4090 */
1de64443
PZ
4091 if (oldprio <= p->prio)
4092 enqueue_flags |= ENQUEUE_HEAD;
4093
4094 enqueue_task(rq, p, enqueue_flags);
81a44c54 4095 }
cb469845 4096
da7a735e 4097 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4098 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4099 task_rq_unlock(rq, p, &flags);
b29739f9 4100
dbc7f069
PZ
4101 if (pi)
4102 rt_mutex_adjust_pi(p);
95e02ca9 4103
4c9a4bc8
PZ
4104 /*
4105 * Run balance callbacks after we've adjusted the PI chain.
4106 */
4107 balance_callback(rq);
4108 preempt_enable();
95e02ca9 4109
1da177e4
LT
4110 return 0;
4111}
961ccddd 4112
7479f3c9
PZ
4113static int _sched_setscheduler(struct task_struct *p, int policy,
4114 const struct sched_param *param, bool check)
4115{
4116 struct sched_attr attr = {
4117 .sched_policy = policy,
4118 .sched_priority = param->sched_priority,
4119 .sched_nice = PRIO_TO_NICE(p->static_prio),
4120 };
4121
c13db6b1
SR
4122 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4123 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4124 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4125 policy &= ~SCHED_RESET_ON_FORK;
4126 attr.sched_policy = policy;
4127 }
4128
dbc7f069 4129 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4130}
961ccddd
RR
4131/**
4132 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4133 * @p: the task in question.
4134 * @policy: new policy.
4135 * @param: structure containing the new RT priority.
4136 *
e69f6186
YB
4137 * Return: 0 on success. An error code otherwise.
4138 *
961ccddd
RR
4139 * NOTE that the task may be already dead.
4140 */
4141int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4142 const struct sched_param *param)
961ccddd 4143{
7479f3c9 4144 return _sched_setscheduler(p, policy, param, true);
961ccddd 4145}
1da177e4
LT
4146EXPORT_SYMBOL_GPL(sched_setscheduler);
4147
d50dde5a
DF
4148int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4149{
dbc7f069 4150 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4151}
4152EXPORT_SYMBOL_GPL(sched_setattr);
4153
961ccddd
RR
4154/**
4155 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4156 * @p: the task in question.
4157 * @policy: new policy.
4158 * @param: structure containing the new RT priority.
4159 *
4160 * Just like sched_setscheduler, only don't bother checking if the
4161 * current context has permission. For example, this is needed in
4162 * stop_machine(): we create temporary high priority worker threads,
4163 * but our caller might not have that capability.
e69f6186
YB
4164 *
4165 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4166 */
4167int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4168 const struct sched_param *param)
961ccddd 4169{
7479f3c9 4170 return _sched_setscheduler(p, policy, param, false);
961ccddd 4171}
84778472 4172EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4173
95cdf3b7
IM
4174static int
4175do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4176{
1da177e4
LT
4177 struct sched_param lparam;
4178 struct task_struct *p;
36c8b586 4179 int retval;
1da177e4
LT
4180
4181 if (!param || pid < 0)
4182 return -EINVAL;
4183 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4184 return -EFAULT;
5fe1d75f
ON
4185
4186 rcu_read_lock();
4187 retval = -ESRCH;
1da177e4 4188 p = find_process_by_pid(pid);
5fe1d75f
ON
4189 if (p != NULL)
4190 retval = sched_setscheduler(p, policy, &lparam);
4191 rcu_read_unlock();
36c8b586 4192
1da177e4
LT
4193 return retval;
4194}
4195
d50dde5a
DF
4196/*
4197 * Mimics kernel/events/core.c perf_copy_attr().
4198 */
4199static int sched_copy_attr(struct sched_attr __user *uattr,
4200 struct sched_attr *attr)
4201{
4202 u32 size;
4203 int ret;
4204
4205 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4206 return -EFAULT;
4207
4208 /*
4209 * zero the full structure, so that a short copy will be nice.
4210 */
4211 memset(attr, 0, sizeof(*attr));
4212
4213 ret = get_user(size, &uattr->size);
4214 if (ret)
4215 return ret;
4216
4217 if (size > PAGE_SIZE) /* silly large */
4218 goto err_size;
4219
4220 if (!size) /* abi compat */
4221 size = SCHED_ATTR_SIZE_VER0;
4222
4223 if (size < SCHED_ATTR_SIZE_VER0)
4224 goto err_size;
4225
4226 /*
4227 * If we're handed a bigger struct than we know of,
4228 * ensure all the unknown bits are 0 - i.e. new
4229 * user-space does not rely on any kernel feature
4230 * extensions we dont know about yet.
4231 */
4232 if (size > sizeof(*attr)) {
4233 unsigned char __user *addr;
4234 unsigned char __user *end;
4235 unsigned char val;
4236
4237 addr = (void __user *)uattr + sizeof(*attr);
4238 end = (void __user *)uattr + size;
4239
4240 for (; addr < end; addr++) {
4241 ret = get_user(val, addr);
4242 if (ret)
4243 return ret;
4244 if (val)
4245 goto err_size;
4246 }
4247 size = sizeof(*attr);
4248 }
4249
4250 ret = copy_from_user(attr, uattr, size);
4251 if (ret)
4252 return -EFAULT;
4253
4254 /*
4255 * XXX: do we want to be lenient like existing syscalls; or do we want
4256 * to be strict and return an error on out-of-bounds values?
4257 */
75e45d51 4258 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4259
e78c7bca 4260 return 0;
d50dde5a
DF
4261
4262err_size:
4263 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4264 return -E2BIG;
d50dde5a
DF
4265}
4266
1da177e4
LT
4267/**
4268 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4269 * @pid: the pid in question.
4270 * @policy: new policy.
4271 * @param: structure containing the new RT priority.
e69f6186
YB
4272 *
4273 * Return: 0 on success. An error code otherwise.
1da177e4 4274 */
5add95d4
HC
4275SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4276 struct sched_param __user *, param)
1da177e4 4277{
c21761f1
JB
4278 /* negative values for policy are not valid */
4279 if (policy < 0)
4280 return -EINVAL;
4281
1da177e4
LT
4282 return do_sched_setscheduler(pid, policy, param);
4283}
4284
4285/**
4286 * sys_sched_setparam - set/change the RT priority of a thread
4287 * @pid: the pid in question.
4288 * @param: structure containing the new RT priority.
e69f6186
YB
4289 *
4290 * Return: 0 on success. An error code otherwise.
1da177e4 4291 */
5add95d4 4292SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4293{
c13db6b1 4294 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4295}
4296
d50dde5a
DF
4297/**
4298 * sys_sched_setattr - same as above, but with extended sched_attr
4299 * @pid: the pid in question.
5778fccf 4300 * @uattr: structure containing the extended parameters.
db66d756 4301 * @flags: for future extension.
d50dde5a 4302 */
6d35ab48
PZ
4303SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4304 unsigned int, flags)
d50dde5a
DF
4305{
4306 struct sched_attr attr;
4307 struct task_struct *p;
4308 int retval;
4309
6d35ab48 4310 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4311 return -EINVAL;
4312
143cf23d
MK
4313 retval = sched_copy_attr(uattr, &attr);
4314 if (retval)
4315 return retval;
d50dde5a 4316
b14ed2c2 4317 if ((int)attr.sched_policy < 0)
dbdb2275 4318 return -EINVAL;
d50dde5a
DF
4319
4320 rcu_read_lock();
4321 retval = -ESRCH;
4322 p = find_process_by_pid(pid);
4323 if (p != NULL)
4324 retval = sched_setattr(p, &attr);
4325 rcu_read_unlock();
4326
4327 return retval;
4328}
4329
1da177e4
LT
4330/**
4331 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4332 * @pid: the pid in question.
e69f6186
YB
4333 *
4334 * Return: On success, the policy of the thread. Otherwise, a negative error
4335 * code.
1da177e4 4336 */
5add95d4 4337SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4338{
36c8b586 4339 struct task_struct *p;
3a5c359a 4340 int retval;
1da177e4
LT
4341
4342 if (pid < 0)
3a5c359a 4343 return -EINVAL;
1da177e4
LT
4344
4345 retval = -ESRCH;
5fe85be0 4346 rcu_read_lock();
1da177e4
LT
4347 p = find_process_by_pid(pid);
4348 if (p) {
4349 retval = security_task_getscheduler(p);
4350 if (!retval)
ca94c442
LP
4351 retval = p->policy
4352 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4353 }
5fe85be0 4354 rcu_read_unlock();
1da177e4
LT
4355 return retval;
4356}
4357
4358/**
ca94c442 4359 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4360 * @pid: the pid in question.
4361 * @param: structure containing the RT priority.
e69f6186
YB
4362 *
4363 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4364 * code.
1da177e4 4365 */
5add95d4 4366SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4367{
ce5f7f82 4368 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4369 struct task_struct *p;
3a5c359a 4370 int retval;
1da177e4
LT
4371
4372 if (!param || pid < 0)
3a5c359a 4373 return -EINVAL;
1da177e4 4374
5fe85be0 4375 rcu_read_lock();
1da177e4
LT
4376 p = find_process_by_pid(pid);
4377 retval = -ESRCH;
4378 if (!p)
4379 goto out_unlock;
4380
4381 retval = security_task_getscheduler(p);
4382 if (retval)
4383 goto out_unlock;
4384
ce5f7f82
PZ
4385 if (task_has_rt_policy(p))
4386 lp.sched_priority = p->rt_priority;
5fe85be0 4387 rcu_read_unlock();
1da177e4
LT
4388
4389 /*
4390 * This one might sleep, we cannot do it with a spinlock held ...
4391 */
4392 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4393
1da177e4
LT
4394 return retval;
4395
4396out_unlock:
5fe85be0 4397 rcu_read_unlock();
1da177e4
LT
4398 return retval;
4399}
4400
d50dde5a
DF
4401static int sched_read_attr(struct sched_attr __user *uattr,
4402 struct sched_attr *attr,
4403 unsigned int usize)
4404{
4405 int ret;
4406
4407 if (!access_ok(VERIFY_WRITE, uattr, usize))
4408 return -EFAULT;
4409
4410 /*
4411 * If we're handed a smaller struct than we know of,
4412 * ensure all the unknown bits are 0 - i.e. old
4413 * user-space does not get uncomplete information.
4414 */
4415 if (usize < sizeof(*attr)) {
4416 unsigned char *addr;
4417 unsigned char *end;
4418
4419 addr = (void *)attr + usize;
4420 end = (void *)attr + sizeof(*attr);
4421
4422 for (; addr < end; addr++) {
4423 if (*addr)
22400674 4424 return -EFBIG;
d50dde5a
DF
4425 }
4426
4427 attr->size = usize;
4428 }
4429
4efbc454 4430 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4431 if (ret)
4432 return -EFAULT;
4433
22400674 4434 return 0;
d50dde5a
DF
4435}
4436
4437/**
aab03e05 4438 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4439 * @pid: the pid in question.
5778fccf 4440 * @uattr: structure containing the extended parameters.
d50dde5a 4441 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4442 * @flags: for future extension.
d50dde5a 4443 */
6d35ab48
PZ
4444SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4445 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4446{
4447 struct sched_attr attr = {
4448 .size = sizeof(struct sched_attr),
4449 };
4450 struct task_struct *p;
4451 int retval;
4452
4453 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4454 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4455 return -EINVAL;
4456
4457 rcu_read_lock();
4458 p = find_process_by_pid(pid);
4459 retval = -ESRCH;
4460 if (!p)
4461 goto out_unlock;
4462
4463 retval = security_task_getscheduler(p);
4464 if (retval)
4465 goto out_unlock;
4466
4467 attr.sched_policy = p->policy;
7479f3c9
PZ
4468 if (p->sched_reset_on_fork)
4469 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4470 if (task_has_dl_policy(p))
4471 __getparam_dl(p, &attr);
4472 else if (task_has_rt_policy(p))
d50dde5a
DF
4473 attr.sched_priority = p->rt_priority;
4474 else
d0ea0268 4475 attr.sched_nice = task_nice(p);
d50dde5a
DF
4476
4477 rcu_read_unlock();
4478
4479 retval = sched_read_attr(uattr, &attr, size);
4480 return retval;
4481
4482out_unlock:
4483 rcu_read_unlock();
4484 return retval;
4485}
4486
96f874e2 4487long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4488{
5a16f3d3 4489 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4490 struct task_struct *p;
4491 int retval;
1da177e4 4492
23f5d142 4493 rcu_read_lock();
1da177e4
LT
4494
4495 p = find_process_by_pid(pid);
4496 if (!p) {
23f5d142 4497 rcu_read_unlock();
1da177e4
LT
4498 return -ESRCH;
4499 }
4500
23f5d142 4501 /* Prevent p going away */
1da177e4 4502 get_task_struct(p);
23f5d142 4503 rcu_read_unlock();
1da177e4 4504
14a40ffc
TH
4505 if (p->flags & PF_NO_SETAFFINITY) {
4506 retval = -EINVAL;
4507 goto out_put_task;
4508 }
5a16f3d3
RR
4509 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4510 retval = -ENOMEM;
4511 goto out_put_task;
4512 }
4513 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4514 retval = -ENOMEM;
4515 goto out_free_cpus_allowed;
4516 }
1da177e4 4517 retval = -EPERM;
4c44aaaf
EB
4518 if (!check_same_owner(p)) {
4519 rcu_read_lock();
4520 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4521 rcu_read_unlock();
16303ab2 4522 goto out_free_new_mask;
4c44aaaf
EB
4523 }
4524 rcu_read_unlock();
4525 }
1da177e4 4526
b0ae1981 4527 retval = security_task_setscheduler(p);
e7834f8f 4528 if (retval)
16303ab2 4529 goto out_free_new_mask;
e7834f8f 4530
e4099a5e
PZ
4531
4532 cpuset_cpus_allowed(p, cpus_allowed);
4533 cpumask_and(new_mask, in_mask, cpus_allowed);
4534
332ac17e
DF
4535 /*
4536 * Since bandwidth control happens on root_domain basis,
4537 * if admission test is enabled, we only admit -deadline
4538 * tasks allowed to run on all the CPUs in the task's
4539 * root_domain.
4540 */
4541#ifdef CONFIG_SMP
f1e3a093
KT
4542 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4543 rcu_read_lock();
4544 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4545 retval = -EBUSY;
f1e3a093 4546 rcu_read_unlock();
16303ab2 4547 goto out_free_new_mask;
332ac17e 4548 }
f1e3a093 4549 rcu_read_unlock();
332ac17e
DF
4550 }
4551#endif
49246274 4552again:
25834c73 4553 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4554
8707d8b8 4555 if (!retval) {
5a16f3d3
RR
4556 cpuset_cpus_allowed(p, cpus_allowed);
4557 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4558 /*
4559 * We must have raced with a concurrent cpuset
4560 * update. Just reset the cpus_allowed to the
4561 * cpuset's cpus_allowed
4562 */
5a16f3d3 4563 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4564 goto again;
4565 }
4566 }
16303ab2 4567out_free_new_mask:
5a16f3d3
RR
4568 free_cpumask_var(new_mask);
4569out_free_cpus_allowed:
4570 free_cpumask_var(cpus_allowed);
4571out_put_task:
1da177e4 4572 put_task_struct(p);
1da177e4
LT
4573 return retval;
4574}
4575
4576static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4577 struct cpumask *new_mask)
1da177e4 4578{
96f874e2
RR
4579 if (len < cpumask_size())
4580 cpumask_clear(new_mask);
4581 else if (len > cpumask_size())
4582 len = cpumask_size();
4583
1da177e4
LT
4584 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4585}
4586
4587/**
4588 * sys_sched_setaffinity - set the cpu affinity of a process
4589 * @pid: pid of the process
4590 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4591 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4592 *
4593 * Return: 0 on success. An error code otherwise.
1da177e4 4594 */
5add95d4
HC
4595SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4596 unsigned long __user *, user_mask_ptr)
1da177e4 4597{
5a16f3d3 4598 cpumask_var_t new_mask;
1da177e4
LT
4599 int retval;
4600
5a16f3d3
RR
4601 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4602 return -ENOMEM;
1da177e4 4603
5a16f3d3
RR
4604 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4605 if (retval == 0)
4606 retval = sched_setaffinity(pid, new_mask);
4607 free_cpumask_var(new_mask);
4608 return retval;
1da177e4
LT
4609}
4610
96f874e2 4611long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4612{
36c8b586 4613 struct task_struct *p;
31605683 4614 unsigned long flags;
1da177e4 4615 int retval;
1da177e4 4616
23f5d142 4617 rcu_read_lock();
1da177e4
LT
4618
4619 retval = -ESRCH;
4620 p = find_process_by_pid(pid);
4621 if (!p)
4622 goto out_unlock;
4623
e7834f8f
DQ
4624 retval = security_task_getscheduler(p);
4625 if (retval)
4626 goto out_unlock;
4627
013fdb80 4628 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4629 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4630 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4631
4632out_unlock:
23f5d142 4633 rcu_read_unlock();
1da177e4 4634
9531b62f 4635 return retval;
1da177e4
LT
4636}
4637
4638/**
4639 * sys_sched_getaffinity - get the cpu affinity of a process
4640 * @pid: pid of the process
4641 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4642 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4643 *
4644 * Return: 0 on success. An error code otherwise.
1da177e4 4645 */
5add95d4
HC
4646SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4647 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4648{
4649 int ret;
f17c8607 4650 cpumask_var_t mask;
1da177e4 4651
84fba5ec 4652 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4653 return -EINVAL;
4654 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4655 return -EINVAL;
4656
f17c8607
RR
4657 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4658 return -ENOMEM;
1da177e4 4659
f17c8607
RR
4660 ret = sched_getaffinity(pid, mask);
4661 if (ret == 0) {
8bc037fb 4662 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4663
4664 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4665 ret = -EFAULT;
4666 else
cd3d8031 4667 ret = retlen;
f17c8607
RR
4668 }
4669 free_cpumask_var(mask);
1da177e4 4670
f17c8607 4671 return ret;
1da177e4
LT
4672}
4673
4674/**
4675 * sys_sched_yield - yield the current processor to other threads.
4676 *
dd41f596
IM
4677 * This function yields the current CPU to other tasks. If there are no
4678 * other threads running on this CPU then this function will return.
e69f6186
YB
4679 *
4680 * Return: 0.
1da177e4 4681 */
5add95d4 4682SYSCALL_DEFINE0(sched_yield)
1da177e4 4683{
70b97a7f 4684 struct rq *rq = this_rq_lock();
1da177e4 4685
2d72376b 4686 schedstat_inc(rq, yld_count);
4530d7ab 4687 current->sched_class->yield_task(rq);
1da177e4
LT
4688
4689 /*
4690 * Since we are going to call schedule() anyway, there's
4691 * no need to preempt or enable interrupts:
4692 */
4693 __release(rq->lock);
8a25d5de 4694 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4695 do_raw_spin_unlock(&rq->lock);
ba74c144 4696 sched_preempt_enable_no_resched();
1da177e4
LT
4697
4698 schedule();
4699
4700 return 0;
4701}
4702
02b67cc3 4703int __sched _cond_resched(void)
1da177e4 4704{
fe32d3cd 4705 if (should_resched(0)) {
a18b5d01 4706 preempt_schedule_common();
1da177e4
LT
4707 return 1;
4708 }
4709 return 0;
4710}
02b67cc3 4711EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4712
4713/*
613afbf8 4714 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4715 * call schedule, and on return reacquire the lock.
4716 *
41a2d6cf 4717 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4718 * operations here to prevent schedule() from being called twice (once via
4719 * spin_unlock(), once by hand).
4720 */
613afbf8 4721int __cond_resched_lock(spinlock_t *lock)
1da177e4 4722{
fe32d3cd 4723 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4724 int ret = 0;
4725
f607c668
PZ
4726 lockdep_assert_held(lock);
4727
4a81e832 4728 if (spin_needbreak(lock) || resched) {
1da177e4 4729 spin_unlock(lock);
d86ee480 4730 if (resched)
a18b5d01 4731 preempt_schedule_common();
95c354fe
NP
4732 else
4733 cpu_relax();
6df3cecb 4734 ret = 1;
1da177e4 4735 spin_lock(lock);
1da177e4 4736 }
6df3cecb 4737 return ret;
1da177e4 4738}
613afbf8 4739EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4740
613afbf8 4741int __sched __cond_resched_softirq(void)
1da177e4
LT
4742{
4743 BUG_ON(!in_softirq());
4744
fe32d3cd 4745 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4746 local_bh_enable();
a18b5d01 4747 preempt_schedule_common();
1da177e4
LT
4748 local_bh_disable();
4749 return 1;
4750 }
4751 return 0;
4752}
613afbf8 4753EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4754
1da177e4
LT
4755/**
4756 * yield - yield the current processor to other threads.
4757 *
8e3fabfd
PZ
4758 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4759 *
4760 * The scheduler is at all times free to pick the calling task as the most
4761 * eligible task to run, if removing the yield() call from your code breaks
4762 * it, its already broken.
4763 *
4764 * Typical broken usage is:
4765 *
4766 * while (!event)
4767 * yield();
4768 *
4769 * where one assumes that yield() will let 'the other' process run that will
4770 * make event true. If the current task is a SCHED_FIFO task that will never
4771 * happen. Never use yield() as a progress guarantee!!
4772 *
4773 * If you want to use yield() to wait for something, use wait_event().
4774 * If you want to use yield() to be 'nice' for others, use cond_resched().
4775 * If you still want to use yield(), do not!
1da177e4
LT
4776 */
4777void __sched yield(void)
4778{
4779 set_current_state(TASK_RUNNING);
4780 sys_sched_yield();
4781}
1da177e4
LT
4782EXPORT_SYMBOL(yield);
4783
d95f4122
MG
4784/**
4785 * yield_to - yield the current processor to another thread in
4786 * your thread group, or accelerate that thread toward the
4787 * processor it's on.
16addf95
RD
4788 * @p: target task
4789 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4790 *
4791 * It's the caller's job to ensure that the target task struct
4792 * can't go away on us before we can do any checks.
4793 *
e69f6186 4794 * Return:
7b270f60
PZ
4795 * true (>0) if we indeed boosted the target task.
4796 * false (0) if we failed to boost the target.
4797 * -ESRCH if there's no task to yield to.
d95f4122 4798 */
fa93384f 4799int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4800{
4801 struct task_struct *curr = current;
4802 struct rq *rq, *p_rq;
4803 unsigned long flags;
c3c18640 4804 int yielded = 0;
d95f4122
MG
4805
4806 local_irq_save(flags);
4807 rq = this_rq();
4808
4809again:
4810 p_rq = task_rq(p);
7b270f60
PZ
4811 /*
4812 * If we're the only runnable task on the rq and target rq also
4813 * has only one task, there's absolutely no point in yielding.
4814 */
4815 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4816 yielded = -ESRCH;
4817 goto out_irq;
4818 }
4819
d95f4122 4820 double_rq_lock(rq, p_rq);
39e24d8f 4821 if (task_rq(p) != p_rq) {
d95f4122
MG
4822 double_rq_unlock(rq, p_rq);
4823 goto again;
4824 }
4825
4826 if (!curr->sched_class->yield_to_task)
7b270f60 4827 goto out_unlock;
d95f4122
MG
4828
4829 if (curr->sched_class != p->sched_class)
7b270f60 4830 goto out_unlock;
d95f4122
MG
4831
4832 if (task_running(p_rq, p) || p->state)
7b270f60 4833 goto out_unlock;
d95f4122
MG
4834
4835 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4836 if (yielded) {
d95f4122 4837 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4838 /*
4839 * Make p's CPU reschedule; pick_next_entity takes care of
4840 * fairness.
4841 */
4842 if (preempt && rq != p_rq)
8875125e 4843 resched_curr(p_rq);
6d1cafd8 4844 }
d95f4122 4845
7b270f60 4846out_unlock:
d95f4122 4847 double_rq_unlock(rq, p_rq);
7b270f60 4848out_irq:
d95f4122
MG
4849 local_irq_restore(flags);
4850
7b270f60 4851 if (yielded > 0)
d95f4122
MG
4852 schedule();
4853
4854 return yielded;
4855}
4856EXPORT_SYMBOL_GPL(yield_to);
4857
1da177e4 4858/*
41a2d6cf 4859 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4860 * that process accounting knows that this is a task in IO wait state.
1da177e4 4861 */
1da177e4
LT
4862long __sched io_schedule_timeout(long timeout)
4863{
9cff8ade
N
4864 int old_iowait = current->in_iowait;
4865 struct rq *rq;
1da177e4
LT
4866 long ret;
4867
9cff8ade 4868 current->in_iowait = 1;
10d784ea 4869 blk_schedule_flush_plug(current);
9cff8ade 4870
0ff92245 4871 delayacct_blkio_start();
9cff8ade 4872 rq = raw_rq();
1da177e4
LT
4873 atomic_inc(&rq->nr_iowait);
4874 ret = schedule_timeout(timeout);
9cff8ade 4875 current->in_iowait = old_iowait;
1da177e4 4876 atomic_dec(&rq->nr_iowait);
0ff92245 4877 delayacct_blkio_end();
9cff8ade 4878
1da177e4
LT
4879 return ret;
4880}
9cff8ade 4881EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4882
4883/**
4884 * sys_sched_get_priority_max - return maximum RT priority.
4885 * @policy: scheduling class.
4886 *
e69f6186
YB
4887 * Return: On success, this syscall returns the maximum
4888 * rt_priority that can be used by a given scheduling class.
4889 * On failure, a negative error code is returned.
1da177e4 4890 */
5add95d4 4891SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4892{
4893 int ret = -EINVAL;
4894
4895 switch (policy) {
4896 case SCHED_FIFO:
4897 case SCHED_RR:
4898 ret = MAX_USER_RT_PRIO-1;
4899 break;
aab03e05 4900 case SCHED_DEADLINE:
1da177e4 4901 case SCHED_NORMAL:
b0a9499c 4902 case SCHED_BATCH:
dd41f596 4903 case SCHED_IDLE:
1da177e4
LT
4904 ret = 0;
4905 break;
4906 }
4907 return ret;
4908}
4909
4910/**
4911 * sys_sched_get_priority_min - return minimum RT priority.
4912 * @policy: scheduling class.
4913 *
e69f6186
YB
4914 * Return: On success, this syscall returns the minimum
4915 * rt_priority that can be used by a given scheduling class.
4916 * On failure, a negative error code is returned.
1da177e4 4917 */
5add95d4 4918SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4919{
4920 int ret = -EINVAL;
4921
4922 switch (policy) {
4923 case SCHED_FIFO:
4924 case SCHED_RR:
4925 ret = 1;
4926 break;
aab03e05 4927 case SCHED_DEADLINE:
1da177e4 4928 case SCHED_NORMAL:
b0a9499c 4929 case SCHED_BATCH:
dd41f596 4930 case SCHED_IDLE:
1da177e4
LT
4931 ret = 0;
4932 }
4933 return ret;
4934}
4935
4936/**
4937 * sys_sched_rr_get_interval - return the default timeslice of a process.
4938 * @pid: pid of the process.
4939 * @interval: userspace pointer to the timeslice value.
4940 *
4941 * this syscall writes the default timeslice value of a given process
4942 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4943 *
4944 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4945 * an error code.
1da177e4 4946 */
17da2bd9 4947SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4948 struct timespec __user *, interval)
1da177e4 4949{
36c8b586 4950 struct task_struct *p;
a4ec24b4 4951 unsigned int time_slice;
dba091b9
TG
4952 unsigned long flags;
4953 struct rq *rq;
3a5c359a 4954 int retval;
1da177e4 4955 struct timespec t;
1da177e4
LT
4956
4957 if (pid < 0)
3a5c359a 4958 return -EINVAL;
1da177e4
LT
4959
4960 retval = -ESRCH;
1a551ae7 4961 rcu_read_lock();
1da177e4
LT
4962 p = find_process_by_pid(pid);
4963 if (!p)
4964 goto out_unlock;
4965
4966 retval = security_task_getscheduler(p);
4967 if (retval)
4968 goto out_unlock;
4969
dba091b9 4970 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4971 time_slice = 0;
4972 if (p->sched_class->get_rr_interval)
4973 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4974 task_rq_unlock(rq, p, &flags);
a4ec24b4 4975
1a551ae7 4976 rcu_read_unlock();
a4ec24b4 4977 jiffies_to_timespec(time_slice, &t);
1da177e4 4978 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4979 return retval;
3a5c359a 4980
1da177e4 4981out_unlock:
1a551ae7 4982 rcu_read_unlock();
1da177e4
LT
4983 return retval;
4984}
4985
7c731e0a 4986static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4987
82a1fcb9 4988void sched_show_task(struct task_struct *p)
1da177e4 4989{
1da177e4 4990 unsigned long free = 0;
4e79752c 4991 int ppid;
1f8a7633 4992 unsigned long state = p->state;
1da177e4 4993
1f8a7633
TH
4994 if (state)
4995 state = __ffs(state) + 1;
28d0686c 4996 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4997 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4998#if BITS_PER_LONG == 32
1da177e4 4999 if (state == TASK_RUNNING)
3df0fc5b 5000 printk(KERN_CONT " running ");
1da177e4 5001 else
3df0fc5b 5002 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5003#else
5004 if (state == TASK_RUNNING)
3df0fc5b 5005 printk(KERN_CONT " running task ");
1da177e4 5006 else
3df0fc5b 5007 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5008#endif
5009#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5010 free = stack_not_used(p);
1da177e4 5011#endif
a90e984c 5012 ppid = 0;
4e79752c 5013 rcu_read_lock();
a90e984c
ON
5014 if (pid_alive(p))
5015 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5016 rcu_read_unlock();
3df0fc5b 5017 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5018 task_pid_nr(p), ppid,
aa47b7e0 5019 (unsigned long)task_thread_info(p)->flags);
1da177e4 5020
3d1cb205 5021 print_worker_info(KERN_INFO, p);
5fb5e6de 5022 show_stack(p, NULL);
1da177e4
LT
5023}
5024
e59e2ae2 5025void show_state_filter(unsigned long state_filter)
1da177e4 5026{
36c8b586 5027 struct task_struct *g, *p;
1da177e4 5028
4bd77321 5029#if BITS_PER_LONG == 32
3df0fc5b
PZ
5030 printk(KERN_INFO
5031 " task PC stack pid father\n");
1da177e4 5032#else
3df0fc5b
PZ
5033 printk(KERN_INFO
5034 " task PC stack pid father\n");
1da177e4 5035#endif
510f5acc 5036 rcu_read_lock();
5d07f420 5037 for_each_process_thread(g, p) {
1da177e4
LT
5038 /*
5039 * reset the NMI-timeout, listing all files on a slow
25985edc 5040 * console might take a lot of time:
1da177e4
LT
5041 */
5042 touch_nmi_watchdog();
39bc89fd 5043 if (!state_filter || (p->state & state_filter))
82a1fcb9 5044 sched_show_task(p);
5d07f420 5045 }
1da177e4 5046
04c9167f
JF
5047 touch_all_softlockup_watchdogs();
5048
dd41f596
IM
5049#ifdef CONFIG_SCHED_DEBUG
5050 sysrq_sched_debug_show();
5051#endif
510f5acc 5052 rcu_read_unlock();
e59e2ae2
IM
5053 /*
5054 * Only show locks if all tasks are dumped:
5055 */
93335a21 5056 if (!state_filter)
e59e2ae2 5057 debug_show_all_locks();
1da177e4
LT
5058}
5059
0db0628d 5060void init_idle_bootup_task(struct task_struct *idle)
1df21055 5061{
dd41f596 5062 idle->sched_class = &idle_sched_class;
1df21055
IM
5063}
5064
f340c0d1
IM
5065/**
5066 * init_idle - set up an idle thread for a given CPU
5067 * @idle: task in question
5068 * @cpu: cpu the idle task belongs to
5069 *
5070 * NOTE: this function does not set the idle thread's NEED_RESCHED
5071 * flag, to make booting more robust.
5072 */
0db0628d 5073void init_idle(struct task_struct *idle, int cpu)
1da177e4 5074{
70b97a7f 5075 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5076 unsigned long flags;
5077
25834c73
PZ
5078 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5079 raw_spin_lock(&rq->lock);
5cbd54ef 5080
5e1576ed 5081 __sched_fork(0, idle);
06b83b5f 5082 idle->state = TASK_RUNNING;
dd41f596
IM
5083 idle->se.exec_start = sched_clock();
5084
de9b8f5d
PZ
5085#ifdef CONFIG_SMP
5086 /*
5087 * Its possible that init_idle() gets called multiple times on a task,
5088 * in that case do_set_cpus_allowed() will not do the right thing.
5089 *
5090 * And since this is boot we can forgo the serialization.
5091 */
5092 set_cpus_allowed_common(idle, cpumask_of(cpu));
5093#endif
6506cf6c
PZ
5094 /*
5095 * We're having a chicken and egg problem, even though we are
5096 * holding rq->lock, the cpu isn't yet set to this cpu so the
5097 * lockdep check in task_group() will fail.
5098 *
5099 * Similar case to sched_fork(). / Alternatively we could
5100 * use task_rq_lock() here and obtain the other rq->lock.
5101 *
5102 * Silence PROVE_RCU
5103 */
5104 rcu_read_lock();
dd41f596 5105 __set_task_cpu(idle, cpu);
6506cf6c 5106 rcu_read_unlock();
1da177e4 5107
1da177e4 5108 rq->curr = rq->idle = idle;
da0c1e65 5109 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5110#ifdef CONFIG_SMP
3ca7a440 5111 idle->on_cpu = 1;
4866cde0 5112#endif
25834c73
PZ
5113 raw_spin_unlock(&rq->lock);
5114 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5115
5116 /* Set the preempt count _outside_ the spinlocks! */
01028747 5117 init_idle_preempt_count(idle, cpu);
55cd5340 5118
dd41f596
IM
5119 /*
5120 * The idle tasks have their own, simple scheduling class:
5121 */
5122 idle->sched_class = &idle_sched_class;
868baf07 5123 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5124 vtime_init_idle(idle, cpu);
de9b8f5d 5125#ifdef CONFIG_SMP
f1c6f1a7
CE
5126 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5127#endif
19978ca6
IM
5128}
5129
f82f8042
JL
5130int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5131 const struct cpumask *trial)
5132{
5133 int ret = 1, trial_cpus;
5134 struct dl_bw *cur_dl_b;
5135 unsigned long flags;
5136
bb2bc55a
MG
5137 if (!cpumask_weight(cur))
5138 return ret;
5139
75e23e49 5140 rcu_read_lock_sched();
f82f8042
JL
5141 cur_dl_b = dl_bw_of(cpumask_any(cur));
5142 trial_cpus = cpumask_weight(trial);
5143
5144 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5145 if (cur_dl_b->bw != -1 &&
5146 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5147 ret = 0;
5148 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5149 rcu_read_unlock_sched();
f82f8042
JL
5150
5151 return ret;
5152}
5153
7f51412a
JL
5154int task_can_attach(struct task_struct *p,
5155 const struct cpumask *cs_cpus_allowed)
5156{
5157 int ret = 0;
5158
5159 /*
5160 * Kthreads which disallow setaffinity shouldn't be moved
5161 * to a new cpuset; we don't want to change their cpu
5162 * affinity and isolating such threads by their set of
5163 * allowed nodes is unnecessary. Thus, cpusets are not
5164 * applicable for such threads. This prevents checking for
5165 * success of set_cpus_allowed_ptr() on all attached tasks
5166 * before cpus_allowed may be changed.
5167 */
5168 if (p->flags & PF_NO_SETAFFINITY) {
5169 ret = -EINVAL;
5170 goto out;
5171 }
5172
5173#ifdef CONFIG_SMP
5174 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5175 cs_cpus_allowed)) {
5176 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5177 cs_cpus_allowed);
75e23e49 5178 struct dl_bw *dl_b;
7f51412a
JL
5179 bool overflow;
5180 int cpus;
5181 unsigned long flags;
5182
75e23e49
JL
5183 rcu_read_lock_sched();
5184 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5185 raw_spin_lock_irqsave(&dl_b->lock, flags);
5186 cpus = dl_bw_cpus(dest_cpu);
5187 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5188 if (overflow)
5189 ret = -EBUSY;
5190 else {
5191 /*
5192 * We reserve space for this task in the destination
5193 * root_domain, as we can't fail after this point.
5194 * We will free resources in the source root_domain
5195 * later on (see set_cpus_allowed_dl()).
5196 */
5197 __dl_add(dl_b, p->dl.dl_bw);
5198 }
5199 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5200 rcu_read_unlock_sched();
7f51412a
JL
5201
5202 }
5203#endif
5204out:
5205 return ret;
5206}
5207
1da177e4 5208#ifdef CONFIG_SMP
1da177e4 5209
e6628d5b
MG
5210#ifdef CONFIG_NUMA_BALANCING
5211/* Migrate current task p to target_cpu */
5212int migrate_task_to(struct task_struct *p, int target_cpu)
5213{
5214 struct migration_arg arg = { p, target_cpu };
5215 int curr_cpu = task_cpu(p);
5216
5217 if (curr_cpu == target_cpu)
5218 return 0;
5219
5220 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5221 return -EINVAL;
5222
5223 /* TODO: This is not properly updating schedstats */
5224
286549dc 5225 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5226 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5227}
0ec8aa00
PZ
5228
5229/*
5230 * Requeue a task on a given node and accurately track the number of NUMA
5231 * tasks on the runqueues
5232 */
5233void sched_setnuma(struct task_struct *p, int nid)
5234{
5235 struct rq *rq;
5236 unsigned long flags;
da0c1e65 5237 bool queued, running;
0ec8aa00
PZ
5238
5239 rq = task_rq_lock(p, &flags);
da0c1e65 5240 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5241 running = task_current(rq, p);
5242
da0c1e65 5243 if (queued)
1de64443 5244 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5245 if (running)
f3cd1c4e 5246 put_prev_task(rq, p);
0ec8aa00
PZ
5247
5248 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5249
5250 if (running)
5251 p->sched_class->set_curr_task(rq);
da0c1e65 5252 if (queued)
1de64443 5253 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5254 task_rq_unlock(rq, p, &flags);
5255}
5cc389bc 5256#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5257
1da177e4 5258#ifdef CONFIG_HOTPLUG_CPU
054b9108 5259/*
48c5ccae
PZ
5260 * Ensures that the idle task is using init_mm right before its cpu goes
5261 * offline.
054b9108 5262 */
48c5ccae 5263void idle_task_exit(void)
1da177e4 5264{
48c5ccae 5265 struct mm_struct *mm = current->active_mm;
e76bd8d9 5266
48c5ccae 5267 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5268
a53efe5f 5269 if (mm != &init_mm) {
48c5ccae 5270 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5271 finish_arch_post_lock_switch();
5272 }
48c5ccae 5273 mmdrop(mm);
1da177e4
LT
5274}
5275
5276/*
5d180232
PZ
5277 * Since this CPU is going 'away' for a while, fold any nr_active delta
5278 * we might have. Assumes we're called after migrate_tasks() so that the
5279 * nr_active count is stable.
5280 *
5281 * Also see the comment "Global load-average calculations".
1da177e4 5282 */
5d180232 5283static void calc_load_migrate(struct rq *rq)
1da177e4 5284{
5d180232
PZ
5285 long delta = calc_load_fold_active(rq);
5286 if (delta)
5287 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5288}
5289
3f1d2a31
PZ
5290static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5291{
5292}
5293
5294static const struct sched_class fake_sched_class = {
5295 .put_prev_task = put_prev_task_fake,
5296};
5297
5298static struct task_struct fake_task = {
5299 /*
5300 * Avoid pull_{rt,dl}_task()
5301 */
5302 .prio = MAX_PRIO + 1,
5303 .sched_class = &fake_sched_class,
5304};
5305
48f24c4d 5306/*
48c5ccae
PZ
5307 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5308 * try_to_wake_up()->select_task_rq().
5309 *
5310 * Called with rq->lock held even though we'er in stop_machine() and
5311 * there's no concurrency possible, we hold the required locks anyway
5312 * because of lock validation efforts.
1da177e4 5313 */
5e16bbc2 5314static void migrate_tasks(struct rq *dead_rq)
1da177e4 5315{
5e16bbc2 5316 struct rq *rq = dead_rq;
48c5ccae
PZ
5317 struct task_struct *next, *stop = rq->stop;
5318 int dest_cpu;
1da177e4
LT
5319
5320 /*
48c5ccae
PZ
5321 * Fudge the rq selection such that the below task selection loop
5322 * doesn't get stuck on the currently eligible stop task.
5323 *
5324 * We're currently inside stop_machine() and the rq is either stuck
5325 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5326 * either way we should never end up calling schedule() until we're
5327 * done here.
1da177e4 5328 */
48c5ccae 5329 rq->stop = NULL;
48f24c4d 5330
77bd3970
FW
5331 /*
5332 * put_prev_task() and pick_next_task() sched
5333 * class method both need to have an up-to-date
5334 * value of rq->clock[_task]
5335 */
5336 update_rq_clock(rq);
5337
5e16bbc2 5338 for (;;) {
48c5ccae
PZ
5339 /*
5340 * There's this thread running, bail when that's the only
5341 * remaining thread.
5342 */
5343 if (rq->nr_running == 1)
dd41f596 5344 break;
48c5ccae 5345
cbce1a68 5346 /*
5473e0cc 5347 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5348 */
5349 lockdep_pin_lock(&rq->lock);
3f1d2a31 5350 next = pick_next_task(rq, &fake_task);
48c5ccae 5351 BUG_ON(!next);
79c53799 5352 next->sched_class->put_prev_task(rq, next);
e692ab53 5353
5473e0cc
WL
5354 /*
5355 * Rules for changing task_struct::cpus_allowed are holding
5356 * both pi_lock and rq->lock, such that holding either
5357 * stabilizes the mask.
5358 *
5359 * Drop rq->lock is not quite as disastrous as it usually is
5360 * because !cpu_active at this point, which means load-balance
5361 * will not interfere. Also, stop-machine.
5362 */
5363 lockdep_unpin_lock(&rq->lock);
5364 raw_spin_unlock(&rq->lock);
5365 raw_spin_lock(&next->pi_lock);
5366 raw_spin_lock(&rq->lock);
5367
5368 /*
5369 * Since we're inside stop-machine, _nothing_ should have
5370 * changed the task, WARN if weird stuff happened, because in
5371 * that case the above rq->lock drop is a fail too.
5372 */
5373 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5374 raw_spin_unlock(&next->pi_lock);
5375 continue;
5376 }
5377
48c5ccae 5378 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5379 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5380
5e16bbc2
PZ
5381 rq = __migrate_task(rq, next, dest_cpu);
5382 if (rq != dead_rq) {
5383 raw_spin_unlock(&rq->lock);
5384 rq = dead_rq;
5385 raw_spin_lock(&rq->lock);
5386 }
5473e0cc 5387 raw_spin_unlock(&next->pi_lock);
1da177e4 5388 }
dce48a84 5389
48c5ccae 5390 rq->stop = stop;
dce48a84 5391}
1da177e4
LT
5392#endif /* CONFIG_HOTPLUG_CPU */
5393
e692ab53
NP
5394#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5395
5396static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5397 {
5398 .procname = "sched_domain",
c57baf1e 5399 .mode = 0555,
e0361851 5400 },
56992309 5401 {}
e692ab53
NP
5402};
5403
5404static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5405 {
5406 .procname = "kernel",
c57baf1e 5407 .mode = 0555,
e0361851
AD
5408 .child = sd_ctl_dir,
5409 },
56992309 5410 {}
e692ab53
NP
5411};
5412
5413static struct ctl_table *sd_alloc_ctl_entry(int n)
5414{
5415 struct ctl_table *entry =
5cf9f062 5416 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5417
e692ab53
NP
5418 return entry;
5419}
5420
6382bc90
MM
5421static void sd_free_ctl_entry(struct ctl_table **tablep)
5422{
cd790076 5423 struct ctl_table *entry;
6382bc90 5424
cd790076
MM
5425 /*
5426 * In the intermediate directories, both the child directory and
5427 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5428 * will always be set. In the lowest directory the names are
cd790076
MM
5429 * static strings and all have proc handlers.
5430 */
5431 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5432 if (entry->child)
5433 sd_free_ctl_entry(&entry->child);
cd790076
MM
5434 if (entry->proc_handler == NULL)
5435 kfree(entry->procname);
5436 }
6382bc90
MM
5437
5438 kfree(*tablep);
5439 *tablep = NULL;
5440}
5441
201c373e 5442static int min_load_idx = 0;
fd9b86d3 5443static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5444
e692ab53 5445static void
e0361851 5446set_table_entry(struct ctl_table *entry,
e692ab53 5447 const char *procname, void *data, int maxlen,
201c373e
NK
5448 umode_t mode, proc_handler *proc_handler,
5449 bool load_idx)
e692ab53 5450{
e692ab53
NP
5451 entry->procname = procname;
5452 entry->data = data;
5453 entry->maxlen = maxlen;
5454 entry->mode = mode;
5455 entry->proc_handler = proc_handler;
201c373e
NK
5456
5457 if (load_idx) {
5458 entry->extra1 = &min_load_idx;
5459 entry->extra2 = &max_load_idx;
5460 }
e692ab53
NP
5461}
5462
5463static struct ctl_table *
5464sd_alloc_ctl_domain_table(struct sched_domain *sd)
5465{
37e6bae8 5466 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5467
ad1cdc1d
MM
5468 if (table == NULL)
5469 return NULL;
5470
e0361851 5471 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5472 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5473 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5474 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5475 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5476 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5477 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5478 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5479 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5480 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5481 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5482 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5483 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5484 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5485 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5486 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5487 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5488 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5489 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5490 &sd->cache_nice_tries,
201c373e 5491 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5492 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5493 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5494 set_table_entry(&table[11], "max_newidle_lb_cost",
5495 &sd->max_newidle_lb_cost,
5496 sizeof(long), 0644, proc_doulongvec_minmax, false);
5497 set_table_entry(&table[12], "name", sd->name,
201c373e 5498 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5499 /* &table[13] is terminator */
e692ab53
NP
5500
5501 return table;
5502}
5503
be7002e6 5504static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5505{
5506 struct ctl_table *entry, *table;
5507 struct sched_domain *sd;
5508 int domain_num = 0, i;
5509 char buf[32];
5510
5511 for_each_domain(cpu, sd)
5512 domain_num++;
5513 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5514 if (table == NULL)
5515 return NULL;
e692ab53
NP
5516
5517 i = 0;
5518 for_each_domain(cpu, sd) {
5519 snprintf(buf, 32, "domain%d", i);
e692ab53 5520 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5521 entry->mode = 0555;
e692ab53
NP
5522 entry->child = sd_alloc_ctl_domain_table(sd);
5523 entry++;
5524 i++;
5525 }
5526 return table;
5527}
5528
5529static struct ctl_table_header *sd_sysctl_header;
6382bc90 5530static void register_sched_domain_sysctl(void)
e692ab53 5531{
6ad4c188 5532 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5533 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5534 char buf[32];
5535
7378547f
MM
5536 WARN_ON(sd_ctl_dir[0].child);
5537 sd_ctl_dir[0].child = entry;
5538
ad1cdc1d
MM
5539 if (entry == NULL)
5540 return;
5541
6ad4c188 5542 for_each_possible_cpu(i) {
e692ab53 5543 snprintf(buf, 32, "cpu%d", i);
e692ab53 5544 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5545 entry->mode = 0555;
e692ab53 5546 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5547 entry++;
e692ab53 5548 }
7378547f
MM
5549
5550 WARN_ON(sd_sysctl_header);
e692ab53
NP
5551 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5552}
6382bc90 5553
7378547f 5554/* may be called multiple times per register */
6382bc90
MM
5555static void unregister_sched_domain_sysctl(void)
5556{
781b0203 5557 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5558 sd_sysctl_header = NULL;
7378547f
MM
5559 if (sd_ctl_dir[0].child)
5560 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5561}
e692ab53 5562#else
6382bc90
MM
5563static void register_sched_domain_sysctl(void)
5564{
5565}
5566static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5567{
5568}
5cc389bc 5569#endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
e692ab53 5570
1f11eb6a
GH
5571static void set_rq_online(struct rq *rq)
5572{
5573 if (!rq->online) {
5574 const struct sched_class *class;
5575
c6c4927b 5576 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5577 rq->online = 1;
5578
5579 for_each_class(class) {
5580 if (class->rq_online)
5581 class->rq_online(rq);
5582 }
5583 }
5584}
5585
5586static void set_rq_offline(struct rq *rq)
5587{
5588 if (rq->online) {
5589 const struct sched_class *class;
5590
5591 for_each_class(class) {
5592 if (class->rq_offline)
5593 class->rq_offline(rq);
5594 }
5595
c6c4927b 5596 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5597 rq->online = 0;
5598 }
5599}
5600
1da177e4
LT
5601/*
5602 * migration_call - callback that gets triggered when a CPU is added.
5603 * Here we can start up the necessary migration thread for the new CPU.
5604 */
0db0628d 5605static int
48f24c4d 5606migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5607{
48f24c4d 5608 int cpu = (long)hcpu;
1da177e4 5609 unsigned long flags;
969c7921 5610 struct rq *rq = cpu_rq(cpu);
1da177e4 5611
48c5ccae 5612 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5613
1da177e4 5614 case CPU_UP_PREPARE:
a468d389 5615 rq->calc_load_update = calc_load_update;
1da177e4 5616 break;
48f24c4d 5617
1da177e4 5618 case CPU_ONLINE:
1f94ef59 5619 /* Update our root-domain */
05fa785c 5620 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5621 if (rq->rd) {
c6c4927b 5622 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5623
5624 set_rq_online(rq);
1f94ef59 5625 }
05fa785c 5626 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5627 break;
48f24c4d 5628
1da177e4 5629#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5630 case CPU_DYING:
317f3941 5631 sched_ttwu_pending();
57d885fe 5632 /* Update our root-domain */
05fa785c 5633 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5634 if (rq->rd) {
c6c4927b 5635 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5636 set_rq_offline(rq);
57d885fe 5637 }
5e16bbc2 5638 migrate_tasks(rq);
48c5ccae 5639 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5640 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5641 break;
48c5ccae 5642
5d180232 5643 case CPU_DEAD:
f319da0c 5644 calc_load_migrate(rq);
57d885fe 5645 break;
1da177e4
LT
5646#endif
5647 }
49c022e6
PZ
5648
5649 update_max_interval();
5650
1da177e4
LT
5651 return NOTIFY_OK;
5652}
5653
f38b0820
PM
5654/*
5655 * Register at high priority so that task migration (migrate_all_tasks)
5656 * happens before everything else. This has to be lower priority than
cdd6c482 5657 * the notifier in the perf_event subsystem, though.
1da177e4 5658 */
0db0628d 5659static struct notifier_block migration_notifier = {
1da177e4 5660 .notifier_call = migration_call,
50a323b7 5661 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5662};
5663
6a82b60d 5664static void set_cpu_rq_start_time(void)
a803f026
CM
5665{
5666 int cpu = smp_processor_id();
5667 struct rq *rq = cpu_rq(cpu);
5668 rq->age_stamp = sched_clock_cpu(cpu);
5669}
5670
0db0628d 5671static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5672 unsigned long action, void *hcpu)
5673{
07f06cb3
PZ
5674 int cpu = (long)hcpu;
5675
3a101d05 5676 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5677 case CPU_STARTING:
5678 set_cpu_rq_start_time();
5679 return NOTIFY_OK;
07f06cb3 5680
dd9d3843
JS
5681 case CPU_ONLINE:
5682 /*
5683 * At this point a starting CPU has marked itself as online via
5684 * set_cpu_online(). But it might not yet have marked itself
5685 * as active, which is essential from here on.
dd9d3843 5686 */
07f06cb3
PZ
5687 set_cpu_active(cpu, true);
5688 stop_machine_unpark(cpu);
5689 return NOTIFY_OK;
5690
3a101d05 5691 case CPU_DOWN_FAILED:
07f06cb3 5692 set_cpu_active(cpu, true);
3a101d05 5693 return NOTIFY_OK;
07f06cb3 5694
3a101d05
TH
5695 default:
5696 return NOTIFY_DONE;
5697 }
5698}
5699
0db0628d 5700static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5701 unsigned long action, void *hcpu)
5702{
5703 switch (action & ~CPU_TASKS_FROZEN) {
5704 case CPU_DOWN_PREPARE:
3c18d447 5705 set_cpu_active((long)hcpu, false);
3a101d05 5706 return NOTIFY_OK;
3c18d447
JL
5707 default:
5708 return NOTIFY_DONE;
3a101d05
TH
5709 }
5710}
5711
7babe8db 5712static int __init migration_init(void)
1da177e4
LT
5713{
5714 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5715 int err;
48f24c4d 5716
3a101d05 5717 /* Initialize migration for the boot CPU */
07dccf33
AM
5718 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5719 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5720 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5721 register_cpu_notifier(&migration_notifier);
7babe8db 5722
3a101d05
TH
5723 /* Register cpu active notifiers */
5724 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5725 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5726
a004cd42 5727 return 0;
1da177e4 5728}
7babe8db 5729early_initcall(migration_init);
476f3534 5730
4cb98839
PZ
5731static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5732
3e9830dc 5733#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5734
d039ac60 5735static __read_mostly int sched_debug_enabled;
f6630114 5736
d039ac60 5737static int __init sched_debug_setup(char *str)
f6630114 5738{
d039ac60 5739 sched_debug_enabled = 1;
f6630114
MT
5740
5741 return 0;
5742}
d039ac60
PZ
5743early_param("sched_debug", sched_debug_setup);
5744
5745static inline bool sched_debug(void)
5746{
5747 return sched_debug_enabled;
5748}
f6630114 5749
7c16ec58 5750static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5751 struct cpumask *groupmask)
1da177e4 5752{
4dcf6aff 5753 struct sched_group *group = sd->groups;
1da177e4 5754
96f874e2 5755 cpumask_clear(groupmask);
4dcf6aff
IM
5756
5757 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5758
5759 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5760 printk("does not load-balance\n");
4dcf6aff 5761 if (sd->parent)
3df0fc5b
PZ
5762 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5763 " has parent");
4dcf6aff 5764 return -1;
41c7ce9a
NP
5765 }
5766
333470ee
TH
5767 printk(KERN_CONT "span %*pbl level %s\n",
5768 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5769
758b2cdc 5770 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5771 printk(KERN_ERR "ERROR: domain->span does not contain "
5772 "CPU%d\n", cpu);
4dcf6aff 5773 }
758b2cdc 5774 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5775 printk(KERN_ERR "ERROR: domain->groups does not contain"
5776 " CPU%d\n", cpu);
4dcf6aff 5777 }
1da177e4 5778
4dcf6aff 5779 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5780 do {
4dcf6aff 5781 if (!group) {
3df0fc5b
PZ
5782 printk("\n");
5783 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5784 break;
5785 }
5786
758b2cdc 5787 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5788 printk(KERN_CONT "\n");
5789 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5790 break;
5791 }
1da177e4 5792
cb83b629
PZ
5793 if (!(sd->flags & SD_OVERLAP) &&
5794 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5795 printk(KERN_CONT "\n");
5796 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5797 break;
5798 }
1da177e4 5799
758b2cdc 5800 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5801
333470ee
TH
5802 printk(KERN_CONT " %*pbl",
5803 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5804 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5805 printk(KERN_CONT " (cpu_capacity = %d)",
5806 group->sgc->capacity);
381512cf 5807 }
1da177e4 5808
4dcf6aff
IM
5809 group = group->next;
5810 } while (group != sd->groups);
3df0fc5b 5811 printk(KERN_CONT "\n");
1da177e4 5812
758b2cdc 5813 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5814 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5815
758b2cdc
RR
5816 if (sd->parent &&
5817 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5818 printk(KERN_ERR "ERROR: parent span is not a superset "
5819 "of domain->span\n");
4dcf6aff
IM
5820 return 0;
5821}
1da177e4 5822
4dcf6aff
IM
5823static void sched_domain_debug(struct sched_domain *sd, int cpu)
5824{
5825 int level = 0;
1da177e4 5826
d039ac60 5827 if (!sched_debug_enabled)
f6630114
MT
5828 return;
5829
4dcf6aff
IM
5830 if (!sd) {
5831 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5832 return;
5833 }
1da177e4 5834
4dcf6aff
IM
5835 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5836
5837 for (;;) {
4cb98839 5838 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5839 break;
1da177e4
LT
5840 level++;
5841 sd = sd->parent;
33859f7f 5842 if (!sd)
4dcf6aff
IM
5843 break;
5844 }
1da177e4 5845}
6d6bc0ad 5846#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5847# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5848static inline bool sched_debug(void)
5849{
5850 return false;
5851}
6d6bc0ad 5852#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5853
1a20ff27 5854static int sd_degenerate(struct sched_domain *sd)
245af2c7 5855{
758b2cdc 5856 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5857 return 1;
5858
5859 /* Following flags need at least 2 groups */
5860 if (sd->flags & (SD_LOAD_BALANCE |
5861 SD_BALANCE_NEWIDLE |
5862 SD_BALANCE_FORK |
89c4710e 5863 SD_BALANCE_EXEC |
5d4dfddd 5864 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5865 SD_SHARE_PKG_RESOURCES |
5866 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5867 if (sd->groups != sd->groups->next)
5868 return 0;
5869 }
5870
5871 /* Following flags don't use groups */
c88d5910 5872 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5873 return 0;
5874
5875 return 1;
5876}
5877
48f24c4d
IM
5878static int
5879sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5880{
5881 unsigned long cflags = sd->flags, pflags = parent->flags;
5882
5883 if (sd_degenerate(parent))
5884 return 1;
5885
758b2cdc 5886 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5887 return 0;
5888
245af2c7
SS
5889 /* Flags needing groups don't count if only 1 group in parent */
5890 if (parent->groups == parent->groups->next) {
5891 pflags &= ~(SD_LOAD_BALANCE |
5892 SD_BALANCE_NEWIDLE |
5893 SD_BALANCE_FORK |
89c4710e 5894 SD_BALANCE_EXEC |
5d4dfddd 5895 SD_SHARE_CPUCAPACITY |
10866e62 5896 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5897 SD_PREFER_SIBLING |
5898 SD_SHARE_POWERDOMAIN);
5436499e
KC
5899 if (nr_node_ids == 1)
5900 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5901 }
5902 if (~cflags & pflags)
5903 return 0;
5904
5905 return 1;
5906}
5907
dce840a0 5908static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5909{
dce840a0 5910 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5911
68e74568 5912 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5913 cpudl_cleanup(&rd->cpudl);
1baca4ce 5914 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5915 free_cpumask_var(rd->rto_mask);
5916 free_cpumask_var(rd->online);
5917 free_cpumask_var(rd->span);
5918 kfree(rd);
5919}
5920
57d885fe
GH
5921static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5922{
a0490fa3 5923 struct root_domain *old_rd = NULL;
57d885fe 5924 unsigned long flags;
57d885fe 5925
05fa785c 5926 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5927
5928 if (rq->rd) {
a0490fa3 5929 old_rd = rq->rd;
57d885fe 5930
c6c4927b 5931 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5932 set_rq_offline(rq);
57d885fe 5933
c6c4927b 5934 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5935
a0490fa3 5936 /*
0515973f 5937 * If we dont want to free the old_rd yet then
a0490fa3
IM
5938 * set old_rd to NULL to skip the freeing later
5939 * in this function:
5940 */
5941 if (!atomic_dec_and_test(&old_rd->refcount))
5942 old_rd = NULL;
57d885fe
GH
5943 }
5944
5945 atomic_inc(&rd->refcount);
5946 rq->rd = rd;
5947
c6c4927b 5948 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5949 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5950 set_rq_online(rq);
57d885fe 5951
05fa785c 5952 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5953
5954 if (old_rd)
dce840a0 5955 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5956}
5957
68c38fc3 5958static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5959{
5960 memset(rd, 0, sizeof(*rd));
5961
8295c699 5962 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5963 goto out;
8295c699 5964 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5965 goto free_span;
8295c699 5966 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5967 goto free_online;
8295c699 5968 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5969 goto free_dlo_mask;
6e0534f2 5970
332ac17e 5971 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5972 if (cpudl_init(&rd->cpudl) != 0)
5973 goto free_dlo_mask;
332ac17e 5974
68c38fc3 5975 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5976 goto free_rto_mask;
c6c4927b 5977 return 0;
6e0534f2 5978
68e74568
RR
5979free_rto_mask:
5980 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5981free_dlo_mask:
5982 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5983free_online:
5984 free_cpumask_var(rd->online);
5985free_span:
5986 free_cpumask_var(rd->span);
0c910d28 5987out:
c6c4927b 5988 return -ENOMEM;
57d885fe
GH
5989}
5990
029632fb
PZ
5991/*
5992 * By default the system creates a single root-domain with all cpus as
5993 * members (mimicking the global state we have today).
5994 */
5995struct root_domain def_root_domain;
5996
57d885fe
GH
5997static void init_defrootdomain(void)
5998{
68c38fc3 5999 init_rootdomain(&def_root_domain);
c6c4927b 6000
57d885fe
GH
6001 atomic_set(&def_root_domain.refcount, 1);
6002}
6003
dc938520 6004static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6005{
6006 struct root_domain *rd;
6007
6008 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6009 if (!rd)
6010 return NULL;
6011
68c38fc3 6012 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
6013 kfree(rd);
6014 return NULL;
6015 }
57d885fe
GH
6016
6017 return rd;
6018}
6019
63b2ca30 6020static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
6021{
6022 struct sched_group *tmp, *first;
6023
6024 if (!sg)
6025 return;
6026
6027 first = sg;
6028 do {
6029 tmp = sg->next;
6030
63b2ca30
NP
6031 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6032 kfree(sg->sgc);
e3589f6c
PZ
6033
6034 kfree(sg);
6035 sg = tmp;
6036 } while (sg != first);
6037}
6038
dce840a0
PZ
6039static void free_sched_domain(struct rcu_head *rcu)
6040{
6041 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
6042
6043 /*
6044 * If its an overlapping domain it has private groups, iterate and
6045 * nuke them all.
6046 */
6047 if (sd->flags & SD_OVERLAP) {
6048 free_sched_groups(sd->groups, 1);
6049 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 6050 kfree(sd->groups->sgc);
dce840a0 6051 kfree(sd->groups);
9c3f75cb 6052 }
dce840a0
PZ
6053 kfree(sd);
6054}
6055
6056static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6057{
6058 call_rcu(&sd->rcu, free_sched_domain);
6059}
6060
6061static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6062{
6063 for (; sd; sd = sd->parent)
6064 destroy_sched_domain(sd, cpu);
6065}
6066
518cd623
PZ
6067/*
6068 * Keep a special pointer to the highest sched_domain that has
6069 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6070 * allows us to avoid some pointer chasing select_idle_sibling().
6071 *
6072 * Also keep a unique ID per domain (we use the first cpu number in
6073 * the cpumask of the domain), this allows us to quickly tell if
39be3501 6074 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
6075 */
6076DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 6077DEFINE_PER_CPU(int, sd_llc_size);
518cd623 6078DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 6079DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
6080DEFINE_PER_CPU(struct sched_domain *, sd_busy);
6081DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
6082
6083static void update_top_cache_domain(int cpu)
6084{
6085 struct sched_domain *sd;
5d4cf996 6086 struct sched_domain *busy_sd = NULL;
518cd623 6087 int id = cpu;
7d9ffa89 6088 int size = 1;
518cd623
PZ
6089
6090 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 6091 if (sd) {
518cd623 6092 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 6093 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 6094 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 6095 }
5d4cf996 6096 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
6097
6098 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6099 per_cpu(sd_llc_size, cpu) = size;
518cd623 6100 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
6101
6102 sd = lowest_flag_domain(cpu, SD_NUMA);
6103 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6104
6105 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6106 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6107}
6108
1da177e4 6109/*
0eab9146 6110 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6111 * hold the hotplug lock.
6112 */
0eab9146
IM
6113static void
6114cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6115{
70b97a7f 6116 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6117 struct sched_domain *tmp;
6118
6119 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6120 for (tmp = sd; tmp; ) {
245af2c7
SS
6121 struct sched_domain *parent = tmp->parent;
6122 if (!parent)
6123 break;
f29c9b1c 6124
1a848870 6125 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6126 tmp->parent = parent->parent;
1a848870
SS
6127 if (parent->parent)
6128 parent->parent->child = tmp;
10866e62
PZ
6129 /*
6130 * Transfer SD_PREFER_SIBLING down in case of a
6131 * degenerate parent; the spans match for this
6132 * so the property transfers.
6133 */
6134 if (parent->flags & SD_PREFER_SIBLING)
6135 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6136 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6137 } else
6138 tmp = tmp->parent;
245af2c7
SS
6139 }
6140
1a848870 6141 if (sd && sd_degenerate(sd)) {
dce840a0 6142 tmp = sd;
245af2c7 6143 sd = sd->parent;
dce840a0 6144 destroy_sched_domain(tmp, cpu);
1a848870
SS
6145 if (sd)
6146 sd->child = NULL;
6147 }
1da177e4 6148
4cb98839 6149 sched_domain_debug(sd, cpu);
1da177e4 6150
57d885fe 6151 rq_attach_root(rq, rd);
dce840a0 6152 tmp = rq->sd;
674311d5 6153 rcu_assign_pointer(rq->sd, sd);
dce840a0 6154 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6155
6156 update_top_cache_domain(cpu);
1da177e4
LT
6157}
6158
1da177e4
LT
6159/* Setup the mask of cpus configured for isolated domains */
6160static int __init isolated_cpu_setup(char *str)
6161{
bdddd296 6162 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 6163 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
6164 return 1;
6165}
6166
8927f494 6167__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6168
49a02c51 6169struct s_data {
21d42ccf 6170 struct sched_domain ** __percpu sd;
49a02c51
AH
6171 struct root_domain *rd;
6172};
6173
2109b99e 6174enum s_alloc {
2109b99e 6175 sa_rootdomain,
21d42ccf 6176 sa_sd,
dce840a0 6177 sa_sd_storage,
2109b99e
AH
6178 sa_none,
6179};
6180
c1174876
PZ
6181/*
6182 * Build an iteration mask that can exclude certain CPUs from the upwards
6183 * domain traversal.
6184 *
6185 * Asymmetric node setups can result in situations where the domain tree is of
6186 * unequal depth, make sure to skip domains that already cover the entire
6187 * range.
6188 *
6189 * In that case build_sched_domains() will have terminated the iteration early
6190 * and our sibling sd spans will be empty. Domains should always include the
6191 * cpu they're built on, so check that.
6192 *
6193 */
6194static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6195{
6196 const struct cpumask *span = sched_domain_span(sd);
6197 struct sd_data *sdd = sd->private;
6198 struct sched_domain *sibling;
6199 int i;
6200
6201 for_each_cpu(i, span) {
6202 sibling = *per_cpu_ptr(sdd->sd, i);
6203 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6204 continue;
6205
6206 cpumask_set_cpu(i, sched_group_mask(sg));
6207 }
6208}
6209
6210/*
6211 * Return the canonical balance cpu for this group, this is the first cpu
6212 * of this group that's also in the iteration mask.
6213 */
6214int group_balance_cpu(struct sched_group *sg)
6215{
6216 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6217}
6218
e3589f6c
PZ
6219static int
6220build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6221{
6222 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6223 const struct cpumask *span = sched_domain_span(sd);
6224 struct cpumask *covered = sched_domains_tmpmask;
6225 struct sd_data *sdd = sd->private;
aaecac4a 6226 struct sched_domain *sibling;
e3589f6c
PZ
6227 int i;
6228
6229 cpumask_clear(covered);
6230
6231 for_each_cpu(i, span) {
6232 struct cpumask *sg_span;
6233
6234 if (cpumask_test_cpu(i, covered))
6235 continue;
6236
aaecac4a 6237 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6238
6239 /* See the comment near build_group_mask(). */
aaecac4a 6240 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6241 continue;
6242
e3589f6c 6243 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6244 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6245
6246 if (!sg)
6247 goto fail;
6248
6249 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6250 if (sibling->child)
6251 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6252 else
e3589f6c
PZ
6253 cpumask_set_cpu(i, sg_span);
6254
6255 cpumask_or(covered, covered, sg_span);
6256
63b2ca30
NP
6257 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6258 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6259 build_group_mask(sd, sg);
6260
c3decf0d 6261 /*
63b2ca30 6262 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6263 * domains and no possible iteration will get us here, we won't
6264 * die on a /0 trap.
6265 */
ca8ce3d0 6266 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6267
c1174876
PZ
6268 /*
6269 * Make sure the first group of this domain contains the
6270 * canonical balance cpu. Otherwise the sched_domain iteration
6271 * breaks. See update_sg_lb_stats().
6272 */
74a5ce20 6273 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6274 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6275 groups = sg;
6276
6277 if (!first)
6278 first = sg;
6279 if (last)
6280 last->next = sg;
6281 last = sg;
6282 last->next = first;
6283 }
6284 sd->groups = groups;
6285
6286 return 0;
6287
6288fail:
6289 free_sched_groups(first, 0);
6290
6291 return -ENOMEM;
6292}
6293
dce840a0 6294static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6295{
dce840a0
PZ
6296 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6297 struct sched_domain *child = sd->child;
1da177e4 6298
dce840a0
PZ
6299 if (child)
6300 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6301
9c3f75cb 6302 if (sg) {
dce840a0 6303 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6304 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6305 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6306 }
dce840a0
PZ
6307
6308 return cpu;
1e9f28fa 6309}
1e9f28fa 6310
01a08546 6311/*
dce840a0
PZ
6312 * build_sched_groups will build a circular linked list of the groups
6313 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6314 * and ->cpu_capacity to 0.
e3589f6c
PZ
6315 *
6316 * Assumes the sched_domain tree is fully constructed
01a08546 6317 */
e3589f6c
PZ
6318static int
6319build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6320{
dce840a0
PZ
6321 struct sched_group *first = NULL, *last = NULL;
6322 struct sd_data *sdd = sd->private;
6323 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6324 struct cpumask *covered;
dce840a0 6325 int i;
9c1cfda2 6326
e3589f6c
PZ
6327 get_group(cpu, sdd, &sd->groups);
6328 atomic_inc(&sd->groups->ref);
6329
0936629f 6330 if (cpu != cpumask_first(span))
e3589f6c
PZ
6331 return 0;
6332
f96225fd
PZ
6333 lockdep_assert_held(&sched_domains_mutex);
6334 covered = sched_domains_tmpmask;
6335
dce840a0 6336 cpumask_clear(covered);
6711cab4 6337
dce840a0
PZ
6338 for_each_cpu(i, span) {
6339 struct sched_group *sg;
cd08e923 6340 int group, j;
6711cab4 6341
dce840a0
PZ
6342 if (cpumask_test_cpu(i, covered))
6343 continue;
6711cab4 6344
cd08e923 6345 group = get_group(i, sdd, &sg);
c1174876 6346 cpumask_setall(sched_group_mask(sg));
0601a88d 6347
dce840a0
PZ
6348 for_each_cpu(j, span) {
6349 if (get_group(j, sdd, NULL) != group)
6350 continue;
0601a88d 6351
dce840a0
PZ
6352 cpumask_set_cpu(j, covered);
6353 cpumask_set_cpu(j, sched_group_cpus(sg));
6354 }
0601a88d 6355
dce840a0
PZ
6356 if (!first)
6357 first = sg;
6358 if (last)
6359 last->next = sg;
6360 last = sg;
6361 }
6362 last->next = first;
e3589f6c
PZ
6363
6364 return 0;
0601a88d 6365}
51888ca2 6366
89c4710e 6367/*
63b2ca30 6368 * Initialize sched groups cpu_capacity.
89c4710e 6369 *
63b2ca30 6370 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6371 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6372 * Typically cpu_capacity for all the groups in a sched domain will be same
6373 * unless there are asymmetries in the topology. If there are asymmetries,
6374 * group having more cpu_capacity will pickup more load compared to the
6375 * group having less cpu_capacity.
89c4710e 6376 */
63b2ca30 6377static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6378{
e3589f6c 6379 struct sched_group *sg = sd->groups;
89c4710e 6380
94c95ba6 6381 WARN_ON(!sg);
e3589f6c
PZ
6382
6383 do {
6384 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6385 sg = sg->next;
6386 } while (sg != sd->groups);
89c4710e 6387
c1174876 6388 if (cpu != group_balance_cpu(sg))
e3589f6c 6389 return;
aae6d3dd 6390
63b2ca30
NP
6391 update_group_capacity(sd, cpu);
6392 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6393}
6394
7c16ec58
MT
6395/*
6396 * Initializers for schedule domains
6397 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6398 */
6399
1d3504fc 6400static int default_relax_domain_level = -1;
60495e77 6401int sched_domain_level_max;
1d3504fc
HS
6402
6403static int __init setup_relax_domain_level(char *str)
6404{
a841f8ce
DS
6405 if (kstrtoint(str, 0, &default_relax_domain_level))
6406 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6407
1d3504fc
HS
6408 return 1;
6409}
6410__setup("relax_domain_level=", setup_relax_domain_level);
6411
6412static void set_domain_attribute(struct sched_domain *sd,
6413 struct sched_domain_attr *attr)
6414{
6415 int request;
6416
6417 if (!attr || attr->relax_domain_level < 0) {
6418 if (default_relax_domain_level < 0)
6419 return;
6420 else
6421 request = default_relax_domain_level;
6422 } else
6423 request = attr->relax_domain_level;
6424 if (request < sd->level) {
6425 /* turn off idle balance on this domain */
c88d5910 6426 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6427 } else {
6428 /* turn on idle balance on this domain */
c88d5910 6429 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6430 }
6431}
6432
54ab4ff4
PZ
6433static void __sdt_free(const struct cpumask *cpu_map);
6434static int __sdt_alloc(const struct cpumask *cpu_map);
6435
2109b99e
AH
6436static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6437 const struct cpumask *cpu_map)
6438{
6439 switch (what) {
2109b99e 6440 case sa_rootdomain:
822ff793
PZ
6441 if (!atomic_read(&d->rd->refcount))
6442 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6443 case sa_sd:
6444 free_percpu(d->sd); /* fall through */
dce840a0 6445 case sa_sd_storage:
54ab4ff4 6446 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6447 case sa_none:
6448 break;
6449 }
6450}
3404c8d9 6451
2109b99e
AH
6452static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6453 const struct cpumask *cpu_map)
6454{
dce840a0
PZ
6455 memset(d, 0, sizeof(*d));
6456
54ab4ff4
PZ
6457 if (__sdt_alloc(cpu_map))
6458 return sa_sd_storage;
dce840a0
PZ
6459 d->sd = alloc_percpu(struct sched_domain *);
6460 if (!d->sd)
6461 return sa_sd_storage;
2109b99e 6462 d->rd = alloc_rootdomain();
dce840a0 6463 if (!d->rd)
21d42ccf 6464 return sa_sd;
2109b99e
AH
6465 return sa_rootdomain;
6466}
57d885fe 6467
dce840a0
PZ
6468/*
6469 * NULL the sd_data elements we've used to build the sched_domain and
6470 * sched_group structure so that the subsequent __free_domain_allocs()
6471 * will not free the data we're using.
6472 */
6473static void claim_allocations(int cpu, struct sched_domain *sd)
6474{
6475 struct sd_data *sdd = sd->private;
dce840a0
PZ
6476
6477 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6478 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6479
e3589f6c 6480 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6481 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6482
63b2ca30
NP
6483 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6484 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6485}
6486
cb83b629 6487#ifdef CONFIG_NUMA
cb83b629 6488static int sched_domains_numa_levels;
e3fe70b1 6489enum numa_topology_type sched_numa_topology_type;
cb83b629 6490static int *sched_domains_numa_distance;
9942f79b 6491int sched_max_numa_distance;
cb83b629
PZ
6492static struct cpumask ***sched_domains_numa_masks;
6493static int sched_domains_curr_level;
143e1e28 6494#endif
cb83b629 6495
143e1e28
VG
6496/*
6497 * SD_flags allowed in topology descriptions.
6498 *
5d4dfddd 6499 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6500 * SD_SHARE_PKG_RESOURCES - describes shared caches
6501 * SD_NUMA - describes NUMA topologies
d77b3ed5 6502 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6503 *
6504 * Odd one out:
6505 * SD_ASYM_PACKING - describes SMT quirks
6506 */
6507#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6508 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6509 SD_SHARE_PKG_RESOURCES | \
6510 SD_NUMA | \
d77b3ed5
VG
6511 SD_ASYM_PACKING | \
6512 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6513
6514static struct sched_domain *
143e1e28 6515sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6516{
6517 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6518 int sd_weight, sd_flags = 0;
6519
6520#ifdef CONFIG_NUMA
6521 /*
6522 * Ugly hack to pass state to sd_numa_mask()...
6523 */
6524 sched_domains_curr_level = tl->numa_level;
6525#endif
6526
6527 sd_weight = cpumask_weight(tl->mask(cpu));
6528
6529 if (tl->sd_flags)
6530 sd_flags = (*tl->sd_flags)();
6531 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6532 "wrong sd_flags in topology description\n"))
6533 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6534
6535 *sd = (struct sched_domain){
6536 .min_interval = sd_weight,
6537 .max_interval = 2*sd_weight,
6538 .busy_factor = 32,
870a0bb5 6539 .imbalance_pct = 125,
143e1e28
VG
6540
6541 .cache_nice_tries = 0,
6542 .busy_idx = 0,
6543 .idle_idx = 0,
cb83b629
PZ
6544 .newidle_idx = 0,
6545 .wake_idx = 0,
6546 .forkexec_idx = 0,
6547
6548 .flags = 1*SD_LOAD_BALANCE
6549 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6550 | 1*SD_BALANCE_EXEC
6551 | 1*SD_BALANCE_FORK
cb83b629 6552 | 0*SD_BALANCE_WAKE
143e1e28 6553 | 1*SD_WAKE_AFFINE
5d4dfddd 6554 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6555 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6556 | 0*SD_SERIALIZE
cb83b629 6557 | 0*SD_PREFER_SIBLING
143e1e28
VG
6558 | 0*SD_NUMA
6559 | sd_flags
cb83b629 6560 ,
143e1e28 6561
cb83b629
PZ
6562 .last_balance = jiffies,
6563 .balance_interval = sd_weight,
143e1e28 6564 .smt_gain = 0,
2b4cfe64
JL
6565 .max_newidle_lb_cost = 0,
6566 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6567#ifdef CONFIG_SCHED_DEBUG
6568 .name = tl->name,
6569#endif
cb83b629 6570 };
cb83b629
PZ
6571
6572 /*
143e1e28 6573 * Convert topological properties into behaviour.
cb83b629 6574 */
143e1e28 6575
5d4dfddd 6576 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6577 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6578 sd->imbalance_pct = 110;
6579 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6580
6581 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6582 sd->imbalance_pct = 117;
6583 sd->cache_nice_tries = 1;
6584 sd->busy_idx = 2;
6585
6586#ifdef CONFIG_NUMA
6587 } else if (sd->flags & SD_NUMA) {
6588 sd->cache_nice_tries = 2;
6589 sd->busy_idx = 3;
6590 sd->idle_idx = 2;
6591
6592 sd->flags |= SD_SERIALIZE;
6593 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6594 sd->flags &= ~(SD_BALANCE_EXEC |
6595 SD_BALANCE_FORK |
6596 SD_WAKE_AFFINE);
6597 }
6598
6599#endif
6600 } else {
6601 sd->flags |= SD_PREFER_SIBLING;
6602 sd->cache_nice_tries = 1;
6603 sd->busy_idx = 2;
6604 sd->idle_idx = 1;
6605 }
6606
6607 sd->private = &tl->data;
cb83b629
PZ
6608
6609 return sd;
6610}
6611
143e1e28
VG
6612/*
6613 * Topology list, bottom-up.
6614 */
6615static struct sched_domain_topology_level default_topology[] = {
6616#ifdef CONFIG_SCHED_SMT
6617 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6618#endif
6619#ifdef CONFIG_SCHED_MC
6620 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6621#endif
6622 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6623 { NULL, },
6624};
6625
c6e1e7b5
JG
6626static struct sched_domain_topology_level *sched_domain_topology =
6627 default_topology;
143e1e28
VG
6628
6629#define for_each_sd_topology(tl) \
6630 for (tl = sched_domain_topology; tl->mask; tl++)
6631
6632void set_sched_topology(struct sched_domain_topology_level *tl)
6633{
6634 sched_domain_topology = tl;
6635}
6636
6637#ifdef CONFIG_NUMA
6638
cb83b629
PZ
6639static const struct cpumask *sd_numa_mask(int cpu)
6640{
6641 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6642}
6643
d039ac60
PZ
6644static void sched_numa_warn(const char *str)
6645{
6646 static int done = false;
6647 int i,j;
6648
6649 if (done)
6650 return;
6651
6652 done = true;
6653
6654 printk(KERN_WARNING "ERROR: %s\n\n", str);
6655
6656 for (i = 0; i < nr_node_ids; i++) {
6657 printk(KERN_WARNING " ");
6658 for (j = 0; j < nr_node_ids; j++)
6659 printk(KERN_CONT "%02d ", node_distance(i,j));
6660 printk(KERN_CONT "\n");
6661 }
6662 printk(KERN_WARNING "\n");
6663}
6664
9942f79b 6665bool find_numa_distance(int distance)
d039ac60
PZ
6666{
6667 int i;
6668
6669 if (distance == node_distance(0, 0))
6670 return true;
6671
6672 for (i = 0; i < sched_domains_numa_levels; i++) {
6673 if (sched_domains_numa_distance[i] == distance)
6674 return true;
6675 }
6676
6677 return false;
6678}
6679
e3fe70b1
RR
6680/*
6681 * A system can have three types of NUMA topology:
6682 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6683 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6684 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6685 *
6686 * The difference between a glueless mesh topology and a backplane
6687 * topology lies in whether communication between not directly
6688 * connected nodes goes through intermediary nodes (where programs
6689 * could run), or through backplane controllers. This affects
6690 * placement of programs.
6691 *
6692 * The type of topology can be discerned with the following tests:
6693 * - If the maximum distance between any nodes is 1 hop, the system
6694 * is directly connected.
6695 * - If for two nodes A and B, located N > 1 hops away from each other,
6696 * there is an intermediary node C, which is < N hops away from both
6697 * nodes A and B, the system is a glueless mesh.
6698 */
6699static void init_numa_topology_type(void)
6700{
6701 int a, b, c, n;
6702
6703 n = sched_max_numa_distance;
6704
e237882b 6705 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6706 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6707 return;
6708 }
e3fe70b1
RR
6709
6710 for_each_online_node(a) {
6711 for_each_online_node(b) {
6712 /* Find two nodes furthest removed from each other. */
6713 if (node_distance(a, b) < n)
6714 continue;
6715
6716 /* Is there an intermediary node between a and b? */
6717 for_each_online_node(c) {
6718 if (node_distance(a, c) < n &&
6719 node_distance(b, c) < n) {
6720 sched_numa_topology_type =
6721 NUMA_GLUELESS_MESH;
6722 return;
6723 }
6724 }
6725
6726 sched_numa_topology_type = NUMA_BACKPLANE;
6727 return;
6728 }
6729 }
6730}
6731
cb83b629
PZ
6732static void sched_init_numa(void)
6733{
6734 int next_distance, curr_distance = node_distance(0, 0);
6735 struct sched_domain_topology_level *tl;
6736 int level = 0;
6737 int i, j, k;
6738
cb83b629
PZ
6739 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6740 if (!sched_domains_numa_distance)
6741 return;
6742
6743 /*
6744 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6745 * unique distances in the node_distance() table.
6746 *
6747 * Assumes node_distance(0,j) includes all distances in
6748 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6749 */
6750 next_distance = curr_distance;
6751 for (i = 0; i < nr_node_ids; i++) {
6752 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6753 for (k = 0; k < nr_node_ids; k++) {
6754 int distance = node_distance(i, k);
6755
6756 if (distance > curr_distance &&
6757 (distance < next_distance ||
6758 next_distance == curr_distance))
6759 next_distance = distance;
6760
6761 /*
6762 * While not a strong assumption it would be nice to know
6763 * about cases where if node A is connected to B, B is not
6764 * equally connected to A.
6765 */
6766 if (sched_debug() && node_distance(k, i) != distance)
6767 sched_numa_warn("Node-distance not symmetric");
6768
6769 if (sched_debug() && i && !find_numa_distance(distance))
6770 sched_numa_warn("Node-0 not representative");
6771 }
6772 if (next_distance != curr_distance) {
6773 sched_domains_numa_distance[level++] = next_distance;
6774 sched_domains_numa_levels = level;
6775 curr_distance = next_distance;
6776 } else break;
cb83b629 6777 }
d039ac60
PZ
6778
6779 /*
6780 * In case of sched_debug() we verify the above assumption.
6781 */
6782 if (!sched_debug())
6783 break;
cb83b629 6784 }
c123588b
AR
6785
6786 if (!level)
6787 return;
6788
cb83b629
PZ
6789 /*
6790 * 'level' contains the number of unique distances, excluding the
6791 * identity distance node_distance(i,i).
6792 *
28b4a521 6793 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6794 * numbers.
6795 */
6796
5f7865f3
TC
6797 /*
6798 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6799 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6800 * the array will contain less then 'level' members. This could be
6801 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6802 * in other functions.
6803 *
6804 * We reset it to 'level' at the end of this function.
6805 */
6806 sched_domains_numa_levels = 0;
6807
cb83b629
PZ
6808 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6809 if (!sched_domains_numa_masks)
6810 return;
6811
6812 /*
6813 * Now for each level, construct a mask per node which contains all
6814 * cpus of nodes that are that many hops away from us.
6815 */
6816 for (i = 0; i < level; i++) {
6817 sched_domains_numa_masks[i] =
6818 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6819 if (!sched_domains_numa_masks[i])
6820 return;
6821
6822 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6823 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6824 if (!mask)
6825 return;
6826
6827 sched_domains_numa_masks[i][j] = mask;
6828
9c03ee14 6829 for_each_node(k) {
dd7d8634 6830 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6831 continue;
6832
6833 cpumask_or(mask, mask, cpumask_of_node(k));
6834 }
6835 }
6836 }
6837
143e1e28
VG
6838 /* Compute default topology size */
6839 for (i = 0; sched_domain_topology[i].mask; i++);
6840
c515db8c 6841 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6842 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6843 if (!tl)
6844 return;
6845
6846 /*
6847 * Copy the default topology bits..
6848 */
143e1e28
VG
6849 for (i = 0; sched_domain_topology[i].mask; i++)
6850 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6851
6852 /*
6853 * .. and append 'j' levels of NUMA goodness.
6854 */
6855 for (j = 0; j < level; i++, j++) {
6856 tl[i] = (struct sched_domain_topology_level){
cb83b629 6857 .mask = sd_numa_mask,
143e1e28 6858 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6859 .flags = SDTL_OVERLAP,
6860 .numa_level = j,
143e1e28 6861 SD_INIT_NAME(NUMA)
cb83b629
PZ
6862 };
6863 }
6864
6865 sched_domain_topology = tl;
5f7865f3
TC
6866
6867 sched_domains_numa_levels = level;
9942f79b 6868 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6869
6870 init_numa_topology_type();
cb83b629 6871}
301a5cba
TC
6872
6873static void sched_domains_numa_masks_set(int cpu)
6874{
6875 int i, j;
6876 int node = cpu_to_node(cpu);
6877
6878 for (i = 0; i < sched_domains_numa_levels; i++) {
6879 for (j = 0; j < nr_node_ids; j++) {
6880 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6881 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6882 }
6883 }
6884}
6885
6886static void sched_domains_numa_masks_clear(int cpu)
6887{
6888 int i, j;
6889 for (i = 0; i < sched_domains_numa_levels; i++) {
6890 for (j = 0; j < nr_node_ids; j++)
6891 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6892 }
6893}
6894
6895/*
6896 * Update sched_domains_numa_masks[level][node] array when new cpus
6897 * are onlined.
6898 */
6899static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6900 unsigned long action,
6901 void *hcpu)
6902{
6903 int cpu = (long)hcpu;
6904
6905 switch (action & ~CPU_TASKS_FROZEN) {
6906 case CPU_ONLINE:
6907 sched_domains_numa_masks_set(cpu);
6908 break;
6909
6910 case CPU_DEAD:
6911 sched_domains_numa_masks_clear(cpu);
6912 break;
6913
6914 default:
6915 return NOTIFY_DONE;
6916 }
6917
6918 return NOTIFY_OK;
cb83b629
PZ
6919}
6920#else
6921static inline void sched_init_numa(void)
6922{
6923}
301a5cba
TC
6924
6925static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6926 unsigned long action,
6927 void *hcpu)
6928{
6929 return 0;
6930}
cb83b629
PZ
6931#endif /* CONFIG_NUMA */
6932
54ab4ff4
PZ
6933static int __sdt_alloc(const struct cpumask *cpu_map)
6934{
6935 struct sched_domain_topology_level *tl;
6936 int j;
6937
27723a68 6938 for_each_sd_topology(tl) {
54ab4ff4
PZ
6939 struct sd_data *sdd = &tl->data;
6940
6941 sdd->sd = alloc_percpu(struct sched_domain *);
6942 if (!sdd->sd)
6943 return -ENOMEM;
6944
6945 sdd->sg = alloc_percpu(struct sched_group *);
6946 if (!sdd->sg)
6947 return -ENOMEM;
6948
63b2ca30
NP
6949 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6950 if (!sdd->sgc)
9c3f75cb
PZ
6951 return -ENOMEM;
6952
54ab4ff4
PZ
6953 for_each_cpu(j, cpu_map) {
6954 struct sched_domain *sd;
6955 struct sched_group *sg;
63b2ca30 6956 struct sched_group_capacity *sgc;
54ab4ff4 6957
5cc389bc 6958 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6959 GFP_KERNEL, cpu_to_node(j));
6960 if (!sd)
6961 return -ENOMEM;
6962
6963 *per_cpu_ptr(sdd->sd, j) = sd;
6964
6965 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6966 GFP_KERNEL, cpu_to_node(j));
6967 if (!sg)
6968 return -ENOMEM;
6969
30b4e9eb
IM
6970 sg->next = sg;
6971
54ab4ff4 6972 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6973
63b2ca30 6974 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6975 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6976 if (!sgc)
9c3f75cb
PZ
6977 return -ENOMEM;
6978
63b2ca30 6979 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6980 }
6981 }
6982
6983 return 0;
6984}
6985
6986static void __sdt_free(const struct cpumask *cpu_map)
6987{
6988 struct sched_domain_topology_level *tl;
6989 int j;
6990
27723a68 6991 for_each_sd_topology(tl) {
54ab4ff4
PZ
6992 struct sd_data *sdd = &tl->data;
6993
6994 for_each_cpu(j, cpu_map) {
fb2cf2c6 6995 struct sched_domain *sd;
6996
6997 if (sdd->sd) {
6998 sd = *per_cpu_ptr(sdd->sd, j);
6999 if (sd && (sd->flags & SD_OVERLAP))
7000 free_sched_groups(sd->groups, 0);
7001 kfree(*per_cpu_ptr(sdd->sd, j));
7002 }
7003
7004 if (sdd->sg)
7005 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
7006 if (sdd->sgc)
7007 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
7008 }
7009 free_percpu(sdd->sd);
fb2cf2c6 7010 sdd->sd = NULL;
54ab4ff4 7011 free_percpu(sdd->sg);
fb2cf2c6 7012 sdd->sg = NULL;
63b2ca30
NP
7013 free_percpu(sdd->sgc);
7014 sdd->sgc = NULL;
54ab4ff4
PZ
7015 }
7016}
7017
2c402dc3 7018struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
7019 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7020 struct sched_domain *child, int cpu)
2c402dc3 7021{
143e1e28 7022 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 7023 if (!sd)
d069b916 7024 return child;
2c402dc3 7025
2c402dc3 7026 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
7027 if (child) {
7028 sd->level = child->level + 1;
7029 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 7030 child->parent = sd;
c75e0128 7031 sd->child = child;
6ae72dff
PZ
7032
7033 if (!cpumask_subset(sched_domain_span(child),
7034 sched_domain_span(sd))) {
7035 pr_err("BUG: arch topology borken\n");
7036#ifdef CONFIG_SCHED_DEBUG
7037 pr_err(" the %s domain not a subset of the %s domain\n",
7038 child->name, sd->name);
7039#endif
7040 /* Fixup, ensure @sd has at least @child cpus. */
7041 cpumask_or(sched_domain_span(sd),
7042 sched_domain_span(sd),
7043 sched_domain_span(child));
7044 }
7045
60495e77 7046 }
a841f8ce 7047 set_domain_attribute(sd, attr);
2c402dc3
PZ
7048
7049 return sd;
7050}
7051
2109b99e
AH
7052/*
7053 * Build sched domains for a given set of cpus and attach the sched domains
7054 * to the individual cpus
7055 */
dce840a0
PZ
7056static int build_sched_domains(const struct cpumask *cpu_map,
7057 struct sched_domain_attr *attr)
2109b99e 7058{
1c632169 7059 enum s_alloc alloc_state;
dce840a0 7060 struct sched_domain *sd;
2109b99e 7061 struct s_data d;
822ff793 7062 int i, ret = -ENOMEM;
9c1cfda2 7063
2109b99e
AH
7064 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7065 if (alloc_state != sa_rootdomain)
7066 goto error;
9c1cfda2 7067
dce840a0 7068 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 7069 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
7070 struct sched_domain_topology_level *tl;
7071
3bd65a80 7072 sd = NULL;
27723a68 7073 for_each_sd_topology(tl) {
4a850cbe 7074 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
7075 if (tl == sched_domain_topology)
7076 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
7077 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7078 sd->flags |= SD_OVERLAP;
d110235d
PZ
7079 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7080 break;
e3589f6c 7081 }
dce840a0
PZ
7082 }
7083
7084 /* Build the groups for the domains */
7085 for_each_cpu(i, cpu_map) {
7086 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7087 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
7088 if (sd->flags & SD_OVERLAP) {
7089 if (build_overlap_sched_groups(sd, i))
7090 goto error;
7091 } else {
7092 if (build_sched_groups(sd, i))
7093 goto error;
7094 }
1cf51902 7095 }
a06dadbe 7096 }
9c1cfda2 7097
ced549fa 7098 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
7099 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7100 if (!cpumask_test_cpu(i, cpu_map))
7101 continue;
9c1cfda2 7102
dce840a0
PZ
7103 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7104 claim_allocations(i, sd);
63b2ca30 7105 init_sched_groups_capacity(i, sd);
dce840a0 7106 }
f712c0c7 7107 }
9c1cfda2 7108
1da177e4 7109 /* Attach the domains */
dce840a0 7110 rcu_read_lock();
abcd083a 7111 for_each_cpu(i, cpu_map) {
21d42ccf 7112 sd = *per_cpu_ptr(d.sd, i);
49a02c51 7113 cpu_attach_domain(sd, d.rd, i);
1da177e4 7114 }
dce840a0 7115 rcu_read_unlock();
51888ca2 7116
822ff793 7117 ret = 0;
51888ca2 7118error:
2109b99e 7119 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7120 return ret;
1da177e4 7121}
029190c5 7122
acc3f5d7 7123static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7124static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7125static struct sched_domain_attr *dattr_cur;
7126 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7127
7128/*
7129 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7130 * cpumask) fails, then fallback to a single sched domain,
7131 * as determined by the single cpumask fallback_doms.
029190c5 7132 */
4212823f 7133static cpumask_var_t fallback_doms;
029190c5 7134
ee79d1bd
HC
7135/*
7136 * arch_update_cpu_topology lets virtualized architectures update the
7137 * cpu core maps. It is supposed to return 1 if the topology changed
7138 * or 0 if it stayed the same.
7139 */
52f5684c 7140int __weak arch_update_cpu_topology(void)
22e52b07 7141{
ee79d1bd 7142 return 0;
22e52b07
HC
7143}
7144
acc3f5d7
RR
7145cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7146{
7147 int i;
7148 cpumask_var_t *doms;
7149
7150 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7151 if (!doms)
7152 return NULL;
7153 for (i = 0; i < ndoms; i++) {
7154 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7155 free_sched_domains(doms, i);
7156 return NULL;
7157 }
7158 }
7159 return doms;
7160}
7161
7162void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7163{
7164 unsigned int i;
7165 for (i = 0; i < ndoms; i++)
7166 free_cpumask_var(doms[i]);
7167 kfree(doms);
7168}
7169
1a20ff27 7170/*
41a2d6cf 7171 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7172 * For now this just excludes isolated cpus, but could be used to
7173 * exclude other special cases in the future.
1a20ff27 7174 */
c4a8849a 7175static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7176{
7378547f
MM
7177 int err;
7178
22e52b07 7179 arch_update_cpu_topology();
029190c5 7180 ndoms_cur = 1;
acc3f5d7 7181 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7182 if (!doms_cur)
acc3f5d7
RR
7183 doms_cur = &fallback_doms;
7184 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7185 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7186 register_sched_domain_sysctl();
7378547f
MM
7187
7188 return err;
1a20ff27
DG
7189}
7190
1a20ff27
DG
7191/*
7192 * Detach sched domains from a group of cpus specified in cpu_map
7193 * These cpus will now be attached to the NULL domain
7194 */
96f874e2 7195static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7196{
7197 int i;
7198
dce840a0 7199 rcu_read_lock();
abcd083a 7200 for_each_cpu(i, cpu_map)
57d885fe 7201 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7202 rcu_read_unlock();
1a20ff27
DG
7203}
7204
1d3504fc
HS
7205/* handle null as "default" */
7206static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7207 struct sched_domain_attr *new, int idx_new)
7208{
7209 struct sched_domain_attr tmp;
7210
7211 /* fast path */
7212 if (!new && !cur)
7213 return 1;
7214
7215 tmp = SD_ATTR_INIT;
7216 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7217 new ? (new + idx_new) : &tmp,
7218 sizeof(struct sched_domain_attr));
7219}
7220
029190c5
PJ
7221/*
7222 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7223 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7224 * doms_new[] to the current sched domain partitioning, doms_cur[].
7225 * It destroys each deleted domain and builds each new domain.
7226 *
acc3f5d7 7227 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7228 * The masks don't intersect (don't overlap.) We should setup one
7229 * sched domain for each mask. CPUs not in any of the cpumasks will
7230 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7231 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7232 * it as it is.
7233 *
acc3f5d7
RR
7234 * The passed in 'doms_new' should be allocated using
7235 * alloc_sched_domains. This routine takes ownership of it and will
7236 * free_sched_domains it when done with it. If the caller failed the
7237 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7238 * and partition_sched_domains() will fallback to the single partition
7239 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7240 *
96f874e2 7241 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7242 * ndoms_new == 0 is a special case for destroying existing domains,
7243 * and it will not create the default domain.
dfb512ec 7244 *
029190c5
PJ
7245 * Call with hotplug lock held
7246 */
acc3f5d7 7247void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7248 struct sched_domain_attr *dattr_new)
029190c5 7249{
dfb512ec 7250 int i, j, n;
d65bd5ec 7251 int new_topology;
029190c5 7252
712555ee 7253 mutex_lock(&sched_domains_mutex);
a1835615 7254
7378547f
MM
7255 /* always unregister in case we don't destroy any domains */
7256 unregister_sched_domain_sysctl();
7257
d65bd5ec
HC
7258 /* Let architecture update cpu core mappings. */
7259 new_topology = arch_update_cpu_topology();
7260
dfb512ec 7261 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7262
7263 /* Destroy deleted domains */
7264 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7265 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7266 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7267 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7268 goto match1;
7269 }
7270 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7271 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7272match1:
7273 ;
7274 }
7275
c8d2d47a 7276 n = ndoms_cur;
e761b772 7277 if (doms_new == NULL) {
c8d2d47a 7278 n = 0;
acc3f5d7 7279 doms_new = &fallback_doms;
6ad4c188 7280 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7281 WARN_ON_ONCE(dattr_new);
e761b772
MK
7282 }
7283
029190c5
PJ
7284 /* Build new domains */
7285 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7286 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7287 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7288 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7289 goto match2;
7290 }
7291 /* no match - add a new doms_new */
dce840a0 7292 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7293match2:
7294 ;
7295 }
7296
7297 /* Remember the new sched domains */
acc3f5d7
RR
7298 if (doms_cur != &fallback_doms)
7299 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7300 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7301 doms_cur = doms_new;
1d3504fc 7302 dattr_cur = dattr_new;
029190c5 7303 ndoms_cur = ndoms_new;
7378547f
MM
7304
7305 register_sched_domain_sysctl();
a1835615 7306
712555ee 7307 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7308}
7309
d35be8ba
SB
7310static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7311
1da177e4 7312/*
3a101d05
TH
7313 * Update cpusets according to cpu_active mask. If cpusets are
7314 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7315 * around partition_sched_domains().
d35be8ba
SB
7316 *
7317 * If we come here as part of a suspend/resume, don't touch cpusets because we
7318 * want to restore it back to its original state upon resume anyway.
1da177e4 7319 */
0b2e918a
TH
7320static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7321 void *hcpu)
e761b772 7322{
d35be8ba
SB
7323 switch (action) {
7324 case CPU_ONLINE_FROZEN:
7325 case CPU_DOWN_FAILED_FROZEN:
7326
7327 /*
7328 * num_cpus_frozen tracks how many CPUs are involved in suspend
7329 * resume sequence. As long as this is not the last online
7330 * operation in the resume sequence, just build a single sched
7331 * domain, ignoring cpusets.
7332 */
7333 num_cpus_frozen--;
7334 if (likely(num_cpus_frozen)) {
7335 partition_sched_domains(1, NULL, NULL);
7336 break;
7337 }
7338
7339 /*
7340 * This is the last CPU online operation. So fall through and
7341 * restore the original sched domains by considering the
7342 * cpuset configurations.
7343 */
7344
e761b772 7345 case CPU_ONLINE:
7ddf96b0 7346 cpuset_update_active_cpus(true);
d35be8ba 7347 break;
3a101d05
TH
7348 default:
7349 return NOTIFY_DONE;
7350 }
d35be8ba 7351 return NOTIFY_OK;
3a101d05 7352}
e761b772 7353
0b2e918a
TH
7354static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7355 void *hcpu)
3a101d05 7356{
3c18d447
JL
7357 unsigned long flags;
7358 long cpu = (long)hcpu;
7359 struct dl_bw *dl_b;
533445c6
OS
7360 bool overflow;
7361 int cpus;
3c18d447 7362
533445c6 7363 switch (action) {
3a101d05 7364 case CPU_DOWN_PREPARE:
533445c6
OS
7365 rcu_read_lock_sched();
7366 dl_b = dl_bw_of(cpu);
3c18d447 7367
533445c6
OS
7368 raw_spin_lock_irqsave(&dl_b->lock, flags);
7369 cpus = dl_bw_cpus(cpu);
7370 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7371 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7372
533445c6 7373 rcu_read_unlock_sched();
3c18d447 7374
533445c6
OS
7375 if (overflow)
7376 return notifier_from_errno(-EBUSY);
7ddf96b0 7377 cpuset_update_active_cpus(false);
d35be8ba
SB
7378 break;
7379 case CPU_DOWN_PREPARE_FROZEN:
7380 num_cpus_frozen++;
7381 partition_sched_domains(1, NULL, NULL);
7382 break;
e761b772
MK
7383 default:
7384 return NOTIFY_DONE;
7385 }
d35be8ba 7386 return NOTIFY_OK;
e761b772 7387}
e761b772 7388
1da177e4
LT
7389void __init sched_init_smp(void)
7390{
dcc30a35
RR
7391 cpumask_var_t non_isolated_cpus;
7392
7393 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7394 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7395
cb83b629
PZ
7396 sched_init_numa();
7397
6acce3ef
PZ
7398 /*
7399 * There's no userspace yet to cause hotplug operations; hence all the
7400 * cpu masks are stable and all blatant races in the below code cannot
7401 * happen.
7402 */
712555ee 7403 mutex_lock(&sched_domains_mutex);
c4a8849a 7404 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7405 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7406 if (cpumask_empty(non_isolated_cpus))
7407 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7408 mutex_unlock(&sched_domains_mutex);
e761b772 7409
301a5cba 7410 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7411 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7412 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7413
b328ca18 7414 init_hrtick();
5c1e1767
NP
7415
7416 /* Move init over to a non-isolated CPU */
dcc30a35 7417 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7418 BUG();
19978ca6 7419 sched_init_granularity();
dcc30a35 7420 free_cpumask_var(non_isolated_cpus);
4212823f 7421
0e3900e6 7422 init_sched_rt_class();
1baca4ce 7423 init_sched_dl_class();
1da177e4
LT
7424}
7425#else
7426void __init sched_init_smp(void)
7427{
19978ca6 7428 sched_init_granularity();
1da177e4
LT
7429}
7430#endif /* CONFIG_SMP */
7431
7432int in_sched_functions(unsigned long addr)
7433{
1da177e4
LT
7434 return in_lock_functions(addr) ||
7435 (addr >= (unsigned long)__sched_text_start
7436 && addr < (unsigned long)__sched_text_end);
7437}
7438
029632fb 7439#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7440/*
7441 * Default task group.
7442 * Every task in system belongs to this group at bootup.
7443 */
029632fb 7444struct task_group root_task_group;
35cf4e50 7445LIST_HEAD(task_groups);
b0367629
WL
7446
7447/* Cacheline aligned slab cache for task_group */
7448static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7449#endif
6f505b16 7450
e6252c3e 7451DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7452
1da177e4
LT
7453void __init sched_init(void)
7454{
dd41f596 7455 int i, j;
434d53b0
MT
7456 unsigned long alloc_size = 0, ptr;
7457
7458#ifdef CONFIG_FAIR_GROUP_SCHED
7459 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7460#endif
7461#ifdef CONFIG_RT_GROUP_SCHED
7462 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7463#endif
434d53b0 7464 if (alloc_size) {
36b7b6d4 7465 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7466
7467#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7468 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7469 ptr += nr_cpu_ids * sizeof(void **);
7470
07e06b01 7471 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7472 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7473
6d6bc0ad 7474#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7475#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7476 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7477 ptr += nr_cpu_ids * sizeof(void **);
7478
07e06b01 7479 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7480 ptr += nr_cpu_ids * sizeof(void **);
7481
6d6bc0ad 7482#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7483 }
df7c8e84 7484#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7485 for_each_possible_cpu(i) {
7486 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7487 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7488 }
b74e6278 7489#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7490
332ac17e
DF
7491 init_rt_bandwidth(&def_rt_bandwidth,
7492 global_rt_period(), global_rt_runtime());
7493 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7494 global_rt_period(), global_rt_runtime());
332ac17e 7495
57d885fe
GH
7496#ifdef CONFIG_SMP
7497 init_defrootdomain();
7498#endif
7499
d0b27fa7 7500#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7501 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7502 global_rt_period(), global_rt_runtime());
6d6bc0ad 7503#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7504
7c941438 7505#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7506 task_group_cache = KMEM_CACHE(task_group, 0);
7507
07e06b01
YZ
7508 list_add(&root_task_group.list, &task_groups);
7509 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7510 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7511 autogroup_init(&init_task);
7c941438 7512#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7513
0a945022 7514 for_each_possible_cpu(i) {
70b97a7f 7515 struct rq *rq;
1da177e4
LT
7516
7517 rq = cpu_rq(i);
05fa785c 7518 raw_spin_lock_init(&rq->lock);
7897986b 7519 rq->nr_running = 0;
dce48a84
TG
7520 rq->calc_load_active = 0;
7521 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7522 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7523 init_rt_rq(&rq->rt);
7524 init_dl_rq(&rq->dl);
dd41f596 7525#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7526 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7527 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7528 /*
07e06b01 7529 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7530 *
7531 * In case of task-groups formed thr' the cgroup filesystem, it
7532 * gets 100% of the cpu resources in the system. This overall
7533 * system cpu resource is divided among the tasks of
07e06b01 7534 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7535 * based on each entity's (task or task-group's) weight
7536 * (se->load.weight).
7537 *
07e06b01 7538 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7539 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7540 * then A0's share of the cpu resource is:
7541 *
0d905bca 7542 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7543 *
07e06b01
YZ
7544 * We achieve this by letting root_task_group's tasks sit
7545 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7546 */
ab84d31e 7547 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7548 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7549#endif /* CONFIG_FAIR_GROUP_SCHED */
7550
7551 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7552#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7553 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7554#endif
1da177e4 7555
dd41f596
IM
7556 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7557 rq->cpu_load[j] = 0;
fdf3e95d
VP
7558
7559 rq->last_load_update_tick = jiffies;
7560
1da177e4 7561#ifdef CONFIG_SMP
41c7ce9a 7562 rq->sd = NULL;
57d885fe 7563 rq->rd = NULL;
ca6d75e6 7564 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7565 rq->balance_callback = NULL;
1da177e4 7566 rq->active_balance = 0;
dd41f596 7567 rq->next_balance = jiffies;
1da177e4 7568 rq->push_cpu = 0;
0a2966b4 7569 rq->cpu = i;
1f11eb6a 7570 rq->online = 0;
eae0c9df
MG
7571 rq->idle_stamp = 0;
7572 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7573 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7574
7575 INIT_LIST_HEAD(&rq->cfs_tasks);
7576
dc938520 7577 rq_attach_root(rq, &def_root_domain);
3451d024 7578#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7579 rq->nohz_flags = 0;
83cd4fe2 7580#endif
265f22a9
FW
7581#ifdef CONFIG_NO_HZ_FULL
7582 rq->last_sched_tick = 0;
7583#endif
1da177e4 7584#endif
8f4d37ec 7585 init_rq_hrtick(rq);
1da177e4 7586 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7587 }
7588
2dd73a4f 7589 set_load_weight(&init_task);
b50f60ce 7590
e107be36
AK
7591#ifdef CONFIG_PREEMPT_NOTIFIERS
7592 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7593#endif
7594
1da177e4
LT
7595 /*
7596 * The boot idle thread does lazy MMU switching as well:
7597 */
7598 atomic_inc(&init_mm.mm_count);
7599 enter_lazy_tlb(&init_mm, current);
7600
1b537c7d
YD
7601 /*
7602 * During early bootup we pretend to be a normal task:
7603 */
7604 current->sched_class = &fair_sched_class;
7605
1da177e4
LT
7606 /*
7607 * Make us the idle thread. Technically, schedule() should not be
7608 * called from this thread, however somewhere below it might be,
7609 * but because we are the idle thread, we just pick up running again
7610 * when this runqueue becomes "idle".
7611 */
7612 init_idle(current, smp_processor_id());
dce48a84
TG
7613
7614 calc_load_update = jiffies + LOAD_FREQ;
7615
bf4d83f6 7616#ifdef CONFIG_SMP
4cb98839 7617 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7618 /* May be allocated at isolcpus cmdline parse time */
7619 if (cpu_isolated_map == NULL)
7620 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7621 idle_thread_set_boot_cpu();
a803f026 7622 set_cpu_rq_start_time();
029632fb
PZ
7623#endif
7624 init_sched_fair_class();
6a7b3dc3 7625
6892b75e 7626 scheduler_running = 1;
1da177e4
LT
7627}
7628
d902db1e 7629#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7630static inline int preempt_count_equals(int preempt_offset)
7631{
da7142e2 7632 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7633
4ba8216c 7634 return (nested == preempt_offset);
e4aafea2
FW
7635}
7636
d894837f 7637void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7638{
8eb23b9f
PZ
7639 /*
7640 * Blocking primitives will set (and therefore destroy) current->state,
7641 * since we will exit with TASK_RUNNING make sure we enter with it,
7642 * otherwise we will destroy state.
7643 */
00845eb9 7644 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7645 "do not call blocking ops when !TASK_RUNNING; "
7646 "state=%lx set at [<%p>] %pS\n",
7647 current->state,
7648 (void *)current->task_state_change,
00845eb9 7649 (void *)current->task_state_change);
8eb23b9f 7650
3427445a
PZ
7651 ___might_sleep(file, line, preempt_offset);
7652}
7653EXPORT_SYMBOL(__might_sleep);
7654
7655void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7656{
1da177e4
LT
7657 static unsigned long prev_jiffy; /* ratelimiting */
7658
b3fbab05 7659 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7660 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7661 !is_idle_task(current)) ||
e4aafea2 7662 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7663 return;
7664 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7665 return;
7666 prev_jiffy = jiffies;
7667
3df0fc5b
PZ
7668 printk(KERN_ERR
7669 "BUG: sleeping function called from invalid context at %s:%d\n",
7670 file, line);
7671 printk(KERN_ERR
7672 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7673 in_atomic(), irqs_disabled(),
7674 current->pid, current->comm);
aef745fc 7675
a8b686b3
ES
7676 if (task_stack_end_corrupted(current))
7677 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7678
aef745fc
IM
7679 debug_show_held_locks(current);
7680 if (irqs_disabled())
7681 print_irqtrace_events(current);
8f47b187
TG
7682#ifdef CONFIG_DEBUG_PREEMPT
7683 if (!preempt_count_equals(preempt_offset)) {
7684 pr_err("Preemption disabled at:");
7685 print_ip_sym(current->preempt_disable_ip);
7686 pr_cont("\n");
7687 }
7688#endif
aef745fc 7689 dump_stack();
1da177e4 7690}
3427445a 7691EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7692#endif
7693
7694#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7695void normalize_rt_tasks(void)
3a5e4dc1 7696{
dbc7f069 7697 struct task_struct *g, *p;
d50dde5a
DF
7698 struct sched_attr attr = {
7699 .sched_policy = SCHED_NORMAL,
7700 };
1da177e4 7701
3472eaa1 7702 read_lock(&tasklist_lock);
5d07f420 7703 for_each_process_thread(g, p) {
178be793
IM
7704 /*
7705 * Only normalize user tasks:
7706 */
3472eaa1 7707 if (p->flags & PF_KTHREAD)
178be793
IM
7708 continue;
7709
6cfb0d5d 7710 p->se.exec_start = 0;
6cfb0d5d 7711#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7712 p->se.statistics.wait_start = 0;
7713 p->se.statistics.sleep_start = 0;
7714 p->se.statistics.block_start = 0;
6cfb0d5d 7715#endif
dd41f596 7716
aab03e05 7717 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7718 /*
7719 * Renice negative nice level userspace
7720 * tasks back to 0:
7721 */
3472eaa1 7722 if (task_nice(p) < 0)
dd41f596 7723 set_user_nice(p, 0);
1da177e4 7724 continue;
dd41f596 7725 }
1da177e4 7726
dbc7f069 7727 __sched_setscheduler(p, &attr, false, false);
5d07f420 7728 }
3472eaa1 7729 read_unlock(&tasklist_lock);
1da177e4
LT
7730}
7731
7732#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7733
67fc4e0c 7734#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7735/*
67fc4e0c 7736 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7737 *
7738 * They can only be called when the whole system has been
7739 * stopped - every CPU needs to be quiescent, and no scheduling
7740 * activity can take place. Using them for anything else would
7741 * be a serious bug, and as a result, they aren't even visible
7742 * under any other configuration.
7743 */
7744
7745/**
7746 * curr_task - return the current task for a given cpu.
7747 * @cpu: the processor in question.
7748 *
7749 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7750 *
7751 * Return: The current task for @cpu.
1df5c10a 7752 */
36c8b586 7753struct task_struct *curr_task(int cpu)
1df5c10a
LT
7754{
7755 return cpu_curr(cpu);
7756}
7757
67fc4e0c
JW
7758#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7759
7760#ifdef CONFIG_IA64
1df5c10a
LT
7761/**
7762 * set_curr_task - set the current task for a given cpu.
7763 * @cpu: the processor in question.
7764 * @p: the task pointer to set.
7765 *
7766 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7767 * are serviced on a separate stack. It allows the architecture to switch the
7768 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7769 * must be called with all CPU's synchronized, and interrupts disabled, the
7770 * and caller must save the original value of the current task (see
7771 * curr_task() above) and restore that value before reenabling interrupts and
7772 * re-starting the system.
7773 *
7774 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7775 */
36c8b586 7776void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7777{
7778 cpu_curr(cpu) = p;
7779}
7780
7781#endif
29f59db3 7782
7c941438 7783#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7784/* task_group_lock serializes the addition/removal of task groups */
7785static DEFINE_SPINLOCK(task_group_lock);
7786
bccbe08a
PZ
7787static void free_sched_group(struct task_group *tg)
7788{
7789 free_fair_sched_group(tg);
7790 free_rt_sched_group(tg);
e9aa1dd1 7791 autogroup_free(tg);
b0367629 7792 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7793}
7794
7795/* allocate runqueue etc for a new task group */
ec7dc8ac 7796struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7797{
7798 struct task_group *tg;
bccbe08a 7799
b0367629 7800 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7801 if (!tg)
7802 return ERR_PTR(-ENOMEM);
7803
ec7dc8ac 7804 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7805 goto err;
7806
ec7dc8ac 7807 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7808 goto err;
7809
ace783b9
LZ
7810 return tg;
7811
7812err:
7813 free_sched_group(tg);
7814 return ERR_PTR(-ENOMEM);
7815}
7816
7817void sched_online_group(struct task_group *tg, struct task_group *parent)
7818{
7819 unsigned long flags;
7820
8ed36996 7821 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7822 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7823
7824 WARN_ON(!parent); /* root should already exist */
7825
7826 tg->parent = parent;
f473aa5e 7827 INIT_LIST_HEAD(&tg->children);
09f2724a 7828 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7829 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7830}
7831
9b5b7751 7832/* rcu callback to free various structures associated with a task group */
6f505b16 7833static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7834{
29f59db3 7835 /* now it should be safe to free those cfs_rqs */
6f505b16 7836 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7837}
7838
9b5b7751 7839/* Destroy runqueue etc associated with a task group */
4cf86d77 7840void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7841{
7842 /* wait for possible concurrent references to cfs_rqs complete */
7843 call_rcu(&tg->rcu, free_sched_group_rcu);
7844}
7845
7846void sched_offline_group(struct task_group *tg)
29f59db3 7847{
8ed36996 7848 unsigned long flags;
9b5b7751 7849 int i;
29f59db3 7850
3d4b47b4
PZ
7851 /* end participation in shares distribution */
7852 for_each_possible_cpu(i)
bccbe08a 7853 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7854
7855 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7856 list_del_rcu(&tg->list);
f473aa5e 7857 list_del_rcu(&tg->siblings);
8ed36996 7858 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7859}
7860
9b5b7751 7861/* change task's runqueue when it moves between groups.
3a252015
IM
7862 * The caller of this function should have put the task in its new group
7863 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7864 * reflect its new group.
9b5b7751
SV
7865 */
7866void sched_move_task(struct task_struct *tsk)
29f59db3 7867{
8323f26c 7868 struct task_group *tg;
da0c1e65 7869 int queued, running;
29f59db3
SV
7870 unsigned long flags;
7871 struct rq *rq;
7872
7873 rq = task_rq_lock(tsk, &flags);
7874
051a1d1a 7875 running = task_current(rq, tsk);
da0c1e65 7876 queued = task_on_rq_queued(tsk);
29f59db3 7877
da0c1e65 7878 if (queued)
1de64443 7879 dequeue_task(rq, tsk, DEQUEUE_SAVE);
0e1f3483 7880 if (unlikely(running))
f3cd1c4e 7881 put_prev_task(rq, tsk);
29f59db3 7882
f7b8a47d
KT
7883 /*
7884 * All callers are synchronized by task_rq_lock(); we do not use RCU
7885 * which is pointless here. Thus, we pass "true" to task_css_check()
7886 * to prevent lockdep warnings.
7887 */
7888 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7889 struct task_group, css);
7890 tg = autogroup_task_group(tsk, tg);
7891 tsk->sched_task_group = tg;
7892
810b3817 7893#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7894 if (tsk->sched_class->task_move_group)
bc54da21 7895 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7896 else
810b3817 7897#endif
b2b5ce02 7898 set_task_rq(tsk, task_cpu(tsk));
810b3817 7899
0e1f3483
HS
7900 if (unlikely(running))
7901 tsk->sched_class->set_curr_task(rq);
da0c1e65 7902 if (queued)
1de64443 7903 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
29f59db3 7904
0122ec5b 7905 task_rq_unlock(rq, tsk, &flags);
29f59db3 7906}
7c941438 7907#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7908
a790de99
PT
7909#ifdef CONFIG_RT_GROUP_SCHED
7910/*
7911 * Ensure that the real time constraints are schedulable.
7912 */
7913static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7914
9a7e0b18
PZ
7915/* Must be called with tasklist_lock held */
7916static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7917{
9a7e0b18 7918 struct task_struct *g, *p;
b40b2e8e 7919
1fe89e1b
PZ
7920 /*
7921 * Autogroups do not have RT tasks; see autogroup_create().
7922 */
7923 if (task_group_is_autogroup(tg))
7924 return 0;
7925
5d07f420 7926 for_each_process_thread(g, p) {
8651c658 7927 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7928 return 1;
5d07f420 7929 }
b40b2e8e 7930
9a7e0b18
PZ
7931 return 0;
7932}
b40b2e8e 7933
9a7e0b18
PZ
7934struct rt_schedulable_data {
7935 struct task_group *tg;
7936 u64 rt_period;
7937 u64 rt_runtime;
7938};
b40b2e8e 7939
a790de99 7940static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7941{
7942 struct rt_schedulable_data *d = data;
7943 struct task_group *child;
7944 unsigned long total, sum = 0;
7945 u64 period, runtime;
b40b2e8e 7946
9a7e0b18
PZ
7947 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7948 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7949
9a7e0b18
PZ
7950 if (tg == d->tg) {
7951 period = d->rt_period;
7952 runtime = d->rt_runtime;
b40b2e8e 7953 }
b40b2e8e 7954
4653f803
PZ
7955 /*
7956 * Cannot have more runtime than the period.
7957 */
7958 if (runtime > period && runtime != RUNTIME_INF)
7959 return -EINVAL;
6f505b16 7960
4653f803
PZ
7961 /*
7962 * Ensure we don't starve existing RT tasks.
7963 */
9a7e0b18
PZ
7964 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7965 return -EBUSY;
6f505b16 7966
9a7e0b18 7967 total = to_ratio(period, runtime);
6f505b16 7968
4653f803
PZ
7969 /*
7970 * Nobody can have more than the global setting allows.
7971 */
7972 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7973 return -EINVAL;
6f505b16 7974
4653f803
PZ
7975 /*
7976 * The sum of our children's runtime should not exceed our own.
7977 */
9a7e0b18
PZ
7978 list_for_each_entry_rcu(child, &tg->children, siblings) {
7979 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7980 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7981
9a7e0b18
PZ
7982 if (child == d->tg) {
7983 period = d->rt_period;
7984 runtime = d->rt_runtime;
7985 }
6f505b16 7986
9a7e0b18 7987 sum += to_ratio(period, runtime);
9f0c1e56 7988 }
6f505b16 7989
9a7e0b18
PZ
7990 if (sum > total)
7991 return -EINVAL;
7992
7993 return 0;
6f505b16
PZ
7994}
7995
9a7e0b18 7996static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7997{
8277434e
PT
7998 int ret;
7999
9a7e0b18
PZ
8000 struct rt_schedulable_data data = {
8001 .tg = tg,
8002 .rt_period = period,
8003 .rt_runtime = runtime,
8004 };
8005
8277434e
PT
8006 rcu_read_lock();
8007 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8008 rcu_read_unlock();
8009
8010 return ret;
521f1a24
DG
8011}
8012
ab84d31e 8013static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8014 u64 rt_period, u64 rt_runtime)
6f505b16 8015{
ac086bc2 8016 int i, err = 0;
9f0c1e56 8017
2636ed5f
PZ
8018 /*
8019 * Disallowing the root group RT runtime is BAD, it would disallow the
8020 * kernel creating (and or operating) RT threads.
8021 */
8022 if (tg == &root_task_group && rt_runtime == 0)
8023 return -EINVAL;
8024
8025 /* No period doesn't make any sense. */
8026 if (rt_period == 0)
8027 return -EINVAL;
8028
9f0c1e56 8029 mutex_lock(&rt_constraints_mutex);
521f1a24 8030 read_lock(&tasklist_lock);
9a7e0b18
PZ
8031 err = __rt_schedulable(tg, rt_period, rt_runtime);
8032 if (err)
9f0c1e56 8033 goto unlock;
ac086bc2 8034
0986b11b 8035 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8036 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8037 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8038
8039 for_each_possible_cpu(i) {
8040 struct rt_rq *rt_rq = tg->rt_rq[i];
8041
0986b11b 8042 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8043 rt_rq->rt_runtime = rt_runtime;
0986b11b 8044 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8045 }
0986b11b 8046 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8047unlock:
521f1a24 8048 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8049 mutex_unlock(&rt_constraints_mutex);
8050
8051 return err;
6f505b16
PZ
8052}
8053
25cc7da7 8054static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8055{
8056 u64 rt_runtime, rt_period;
8057
8058 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8059 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8060 if (rt_runtime_us < 0)
8061 rt_runtime = RUNTIME_INF;
8062
ab84d31e 8063 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8064}
8065
25cc7da7 8066static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8067{
8068 u64 rt_runtime_us;
8069
d0b27fa7 8070 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8071 return -1;
8072
d0b27fa7 8073 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8074 do_div(rt_runtime_us, NSEC_PER_USEC);
8075 return rt_runtime_us;
8076}
d0b27fa7 8077
ce2f5fe4 8078static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8079{
8080 u64 rt_runtime, rt_period;
8081
ce2f5fe4 8082 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8083 rt_runtime = tg->rt_bandwidth.rt_runtime;
8084
ab84d31e 8085 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8086}
8087
25cc7da7 8088static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8089{
8090 u64 rt_period_us;
8091
8092 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8093 do_div(rt_period_us, NSEC_PER_USEC);
8094 return rt_period_us;
8095}
332ac17e 8096#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8097
332ac17e 8098#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8099static int sched_rt_global_constraints(void)
8100{
8101 int ret = 0;
8102
8103 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8104 read_lock(&tasklist_lock);
4653f803 8105 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8106 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8107 mutex_unlock(&rt_constraints_mutex);
8108
8109 return ret;
8110}
54e99124 8111
25cc7da7 8112static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8113{
8114 /* Don't accept realtime tasks when there is no way for them to run */
8115 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8116 return 0;
8117
8118 return 1;
8119}
8120
6d6bc0ad 8121#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8122static int sched_rt_global_constraints(void)
8123{
ac086bc2 8124 unsigned long flags;
332ac17e 8125 int i, ret = 0;
ec5d4989 8126
0986b11b 8127 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8128 for_each_possible_cpu(i) {
8129 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8130
0986b11b 8131 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8132 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8133 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8134 }
0986b11b 8135 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8136
332ac17e 8137 return ret;
d0b27fa7 8138}
6d6bc0ad 8139#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8140
a1963b81 8141static int sched_dl_global_validate(void)
332ac17e 8142{
1724813d
PZ
8143 u64 runtime = global_rt_runtime();
8144 u64 period = global_rt_period();
332ac17e 8145 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8146 struct dl_bw *dl_b;
1724813d 8147 int cpu, ret = 0;
49516342 8148 unsigned long flags;
332ac17e
DF
8149
8150 /*
8151 * Here we want to check the bandwidth not being set to some
8152 * value smaller than the currently allocated bandwidth in
8153 * any of the root_domains.
8154 *
8155 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8156 * cycling on root_domains... Discussion on different/better
8157 * solutions is welcome!
8158 */
1724813d 8159 for_each_possible_cpu(cpu) {
f10e00f4
KT
8160 rcu_read_lock_sched();
8161 dl_b = dl_bw_of(cpu);
332ac17e 8162
49516342 8163 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8164 if (new_bw < dl_b->total_bw)
8165 ret = -EBUSY;
49516342 8166 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8167
f10e00f4
KT
8168 rcu_read_unlock_sched();
8169
1724813d
PZ
8170 if (ret)
8171 break;
332ac17e
DF
8172 }
8173
1724813d 8174 return ret;
332ac17e
DF
8175}
8176
1724813d 8177static void sched_dl_do_global(void)
ce0dbbbb 8178{
1724813d 8179 u64 new_bw = -1;
f10e00f4 8180 struct dl_bw *dl_b;
1724813d 8181 int cpu;
49516342 8182 unsigned long flags;
ce0dbbbb 8183
1724813d
PZ
8184 def_dl_bandwidth.dl_period = global_rt_period();
8185 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8186
8187 if (global_rt_runtime() != RUNTIME_INF)
8188 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8189
8190 /*
8191 * FIXME: As above...
8192 */
8193 for_each_possible_cpu(cpu) {
f10e00f4
KT
8194 rcu_read_lock_sched();
8195 dl_b = dl_bw_of(cpu);
1724813d 8196
49516342 8197 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8198 dl_b->bw = new_bw;
49516342 8199 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8200
8201 rcu_read_unlock_sched();
ce0dbbbb 8202 }
1724813d
PZ
8203}
8204
8205static int sched_rt_global_validate(void)
8206{
8207 if (sysctl_sched_rt_period <= 0)
8208 return -EINVAL;
8209
e9e7cb38
JL
8210 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8211 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8212 return -EINVAL;
8213
8214 return 0;
8215}
8216
8217static void sched_rt_do_global(void)
8218{
8219 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8220 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8221}
8222
d0b27fa7 8223int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8224 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8225 loff_t *ppos)
8226{
d0b27fa7
PZ
8227 int old_period, old_runtime;
8228 static DEFINE_MUTEX(mutex);
1724813d 8229 int ret;
d0b27fa7
PZ
8230
8231 mutex_lock(&mutex);
8232 old_period = sysctl_sched_rt_period;
8233 old_runtime = sysctl_sched_rt_runtime;
8234
8d65af78 8235 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8236
8237 if (!ret && write) {
1724813d
PZ
8238 ret = sched_rt_global_validate();
8239 if (ret)
8240 goto undo;
8241
a1963b81 8242 ret = sched_dl_global_validate();
1724813d
PZ
8243 if (ret)
8244 goto undo;
8245
a1963b81 8246 ret = sched_rt_global_constraints();
1724813d
PZ
8247 if (ret)
8248 goto undo;
8249
8250 sched_rt_do_global();
8251 sched_dl_do_global();
8252 }
8253 if (0) {
8254undo:
8255 sysctl_sched_rt_period = old_period;
8256 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8257 }
8258 mutex_unlock(&mutex);
8259
8260 return ret;
8261}
68318b8e 8262
1724813d 8263int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8264 void __user *buffer, size_t *lenp,
8265 loff_t *ppos)
8266{
8267 int ret;
332ac17e 8268 static DEFINE_MUTEX(mutex);
332ac17e
DF
8269
8270 mutex_lock(&mutex);
332ac17e 8271 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8272 /* make sure that internally we keep jiffies */
8273 /* also, writing zero resets timeslice to default */
332ac17e 8274 if (!ret && write) {
1724813d
PZ
8275 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8276 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8277 }
8278 mutex_unlock(&mutex);
332ac17e
DF
8279 return ret;
8280}
8281
052f1dc7 8282#ifdef CONFIG_CGROUP_SCHED
68318b8e 8283
a7c6d554 8284static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8285{
a7c6d554 8286 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8287}
8288
eb95419b
TH
8289static struct cgroup_subsys_state *
8290cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8291{
eb95419b
TH
8292 struct task_group *parent = css_tg(parent_css);
8293 struct task_group *tg;
68318b8e 8294
eb95419b 8295 if (!parent) {
68318b8e 8296 /* This is early initialization for the top cgroup */
07e06b01 8297 return &root_task_group.css;
68318b8e
SV
8298 }
8299
ec7dc8ac 8300 tg = sched_create_group(parent);
68318b8e
SV
8301 if (IS_ERR(tg))
8302 return ERR_PTR(-ENOMEM);
8303
68318b8e
SV
8304 return &tg->css;
8305}
8306
eb95419b 8307static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 8308{
eb95419b 8309 struct task_group *tg = css_tg(css);
5c9d535b 8310 struct task_group *parent = css_tg(css->parent);
ace783b9 8311
63876986
TH
8312 if (parent)
8313 sched_online_group(tg, parent);
ace783b9
LZ
8314 return 0;
8315}
8316
eb95419b 8317static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8318{
eb95419b 8319 struct task_group *tg = css_tg(css);
68318b8e
SV
8320
8321 sched_destroy_group(tg);
8322}
8323
eb95419b 8324static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 8325{
eb95419b 8326 struct task_group *tg = css_tg(css);
ace783b9
LZ
8327
8328 sched_offline_group(tg);
8329}
8330
b53202e6 8331static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8332{
8333 sched_move_task(task);
8334}
8335
1f7dd3e5 8336static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8337{
bb9d97b6 8338 struct task_struct *task;
1f7dd3e5 8339 struct cgroup_subsys_state *css;
bb9d97b6 8340
1f7dd3e5 8341 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8342#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8343 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8344 return -EINVAL;
b68aa230 8345#else
bb9d97b6
TH
8346 /* We don't support RT-tasks being in separate groups */
8347 if (task->sched_class != &fair_sched_class)
8348 return -EINVAL;
b68aa230 8349#endif
bb9d97b6 8350 }
be367d09
BB
8351 return 0;
8352}
68318b8e 8353
1f7dd3e5 8354static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8355{
bb9d97b6 8356 struct task_struct *task;
1f7dd3e5 8357 struct cgroup_subsys_state *css;
bb9d97b6 8358
1f7dd3e5 8359 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8360 sched_move_task(task);
68318b8e
SV
8361}
8362
052f1dc7 8363#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8364static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8365 struct cftype *cftype, u64 shareval)
68318b8e 8366{
182446d0 8367 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8368}
8369
182446d0
TH
8370static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8371 struct cftype *cft)
68318b8e 8372{
182446d0 8373 struct task_group *tg = css_tg(css);
68318b8e 8374
c8b28116 8375 return (u64) scale_load_down(tg->shares);
68318b8e 8376}
ab84d31e
PT
8377
8378#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8379static DEFINE_MUTEX(cfs_constraints_mutex);
8380
ab84d31e
PT
8381const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8382const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8383
a790de99
PT
8384static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8385
ab84d31e
PT
8386static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8387{
56f570e5 8388 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8389 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8390
8391 if (tg == &root_task_group)
8392 return -EINVAL;
8393
8394 /*
8395 * Ensure we have at some amount of bandwidth every period. This is
8396 * to prevent reaching a state of large arrears when throttled via
8397 * entity_tick() resulting in prolonged exit starvation.
8398 */
8399 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8400 return -EINVAL;
8401
8402 /*
8403 * Likewise, bound things on the otherside by preventing insane quota
8404 * periods. This also allows us to normalize in computing quota
8405 * feasibility.
8406 */
8407 if (period > max_cfs_quota_period)
8408 return -EINVAL;
8409
0e59bdae
KT
8410 /*
8411 * Prevent race between setting of cfs_rq->runtime_enabled and
8412 * unthrottle_offline_cfs_rqs().
8413 */
8414 get_online_cpus();
a790de99
PT
8415 mutex_lock(&cfs_constraints_mutex);
8416 ret = __cfs_schedulable(tg, period, quota);
8417 if (ret)
8418 goto out_unlock;
8419
58088ad0 8420 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8421 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8422 /*
8423 * If we need to toggle cfs_bandwidth_used, off->on must occur
8424 * before making related changes, and on->off must occur afterwards
8425 */
8426 if (runtime_enabled && !runtime_was_enabled)
8427 cfs_bandwidth_usage_inc();
ab84d31e
PT
8428 raw_spin_lock_irq(&cfs_b->lock);
8429 cfs_b->period = ns_to_ktime(period);
8430 cfs_b->quota = quota;
58088ad0 8431
a9cf55b2 8432 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8433 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8434 if (runtime_enabled)
8435 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8436 raw_spin_unlock_irq(&cfs_b->lock);
8437
0e59bdae 8438 for_each_online_cpu(i) {
ab84d31e 8439 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8440 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8441
8442 raw_spin_lock_irq(&rq->lock);
58088ad0 8443 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8444 cfs_rq->runtime_remaining = 0;
671fd9da 8445
029632fb 8446 if (cfs_rq->throttled)
671fd9da 8447 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8448 raw_spin_unlock_irq(&rq->lock);
8449 }
1ee14e6c
BS
8450 if (runtime_was_enabled && !runtime_enabled)
8451 cfs_bandwidth_usage_dec();
a790de99
PT
8452out_unlock:
8453 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8454 put_online_cpus();
ab84d31e 8455
a790de99 8456 return ret;
ab84d31e
PT
8457}
8458
8459int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8460{
8461 u64 quota, period;
8462
029632fb 8463 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8464 if (cfs_quota_us < 0)
8465 quota = RUNTIME_INF;
8466 else
8467 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8468
8469 return tg_set_cfs_bandwidth(tg, period, quota);
8470}
8471
8472long tg_get_cfs_quota(struct task_group *tg)
8473{
8474 u64 quota_us;
8475
029632fb 8476 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8477 return -1;
8478
029632fb 8479 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8480 do_div(quota_us, NSEC_PER_USEC);
8481
8482 return quota_us;
8483}
8484
8485int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8486{
8487 u64 quota, period;
8488
8489 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8490 quota = tg->cfs_bandwidth.quota;
ab84d31e 8491
ab84d31e
PT
8492 return tg_set_cfs_bandwidth(tg, period, quota);
8493}
8494
8495long tg_get_cfs_period(struct task_group *tg)
8496{
8497 u64 cfs_period_us;
8498
029632fb 8499 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8500 do_div(cfs_period_us, NSEC_PER_USEC);
8501
8502 return cfs_period_us;
8503}
8504
182446d0
TH
8505static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8506 struct cftype *cft)
ab84d31e 8507{
182446d0 8508 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8509}
8510
182446d0
TH
8511static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8512 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8513{
182446d0 8514 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8515}
8516
182446d0
TH
8517static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8518 struct cftype *cft)
ab84d31e 8519{
182446d0 8520 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8521}
8522
182446d0
TH
8523static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8524 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8525{
182446d0 8526 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8527}
8528
a790de99
PT
8529struct cfs_schedulable_data {
8530 struct task_group *tg;
8531 u64 period, quota;
8532};
8533
8534/*
8535 * normalize group quota/period to be quota/max_period
8536 * note: units are usecs
8537 */
8538static u64 normalize_cfs_quota(struct task_group *tg,
8539 struct cfs_schedulable_data *d)
8540{
8541 u64 quota, period;
8542
8543 if (tg == d->tg) {
8544 period = d->period;
8545 quota = d->quota;
8546 } else {
8547 period = tg_get_cfs_period(tg);
8548 quota = tg_get_cfs_quota(tg);
8549 }
8550
8551 /* note: these should typically be equivalent */
8552 if (quota == RUNTIME_INF || quota == -1)
8553 return RUNTIME_INF;
8554
8555 return to_ratio(period, quota);
8556}
8557
8558static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8559{
8560 struct cfs_schedulable_data *d = data;
029632fb 8561 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8562 s64 quota = 0, parent_quota = -1;
8563
8564 if (!tg->parent) {
8565 quota = RUNTIME_INF;
8566 } else {
029632fb 8567 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8568
8569 quota = normalize_cfs_quota(tg, d);
9c58c79a 8570 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8571
8572 /*
8573 * ensure max(child_quota) <= parent_quota, inherit when no
8574 * limit is set
8575 */
8576 if (quota == RUNTIME_INF)
8577 quota = parent_quota;
8578 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8579 return -EINVAL;
8580 }
9c58c79a 8581 cfs_b->hierarchical_quota = quota;
a790de99
PT
8582
8583 return 0;
8584}
8585
8586static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8587{
8277434e 8588 int ret;
a790de99
PT
8589 struct cfs_schedulable_data data = {
8590 .tg = tg,
8591 .period = period,
8592 .quota = quota,
8593 };
8594
8595 if (quota != RUNTIME_INF) {
8596 do_div(data.period, NSEC_PER_USEC);
8597 do_div(data.quota, NSEC_PER_USEC);
8598 }
8599
8277434e
PT
8600 rcu_read_lock();
8601 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8602 rcu_read_unlock();
8603
8604 return ret;
a790de99 8605}
e8da1b18 8606
2da8ca82 8607static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8608{
2da8ca82 8609 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8610 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8611
44ffc75b
TH
8612 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8613 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8614 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8615
8616 return 0;
8617}
ab84d31e 8618#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8619#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8620
052f1dc7 8621#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8622static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8623 struct cftype *cft, s64 val)
6f505b16 8624{
182446d0 8625 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8626}
8627
182446d0
TH
8628static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8629 struct cftype *cft)
6f505b16 8630{
182446d0 8631 return sched_group_rt_runtime(css_tg(css));
6f505b16 8632}
d0b27fa7 8633
182446d0
TH
8634static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8635 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8636{
182446d0 8637 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8638}
8639
182446d0
TH
8640static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8641 struct cftype *cft)
d0b27fa7 8642{
182446d0 8643 return sched_group_rt_period(css_tg(css));
d0b27fa7 8644}
6d6bc0ad 8645#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8646
fe5c7cc2 8647static struct cftype cpu_files[] = {
052f1dc7 8648#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8649 {
8650 .name = "shares",
f4c753b7
PM
8651 .read_u64 = cpu_shares_read_u64,
8652 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8653 },
052f1dc7 8654#endif
ab84d31e
PT
8655#ifdef CONFIG_CFS_BANDWIDTH
8656 {
8657 .name = "cfs_quota_us",
8658 .read_s64 = cpu_cfs_quota_read_s64,
8659 .write_s64 = cpu_cfs_quota_write_s64,
8660 },
8661 {
8662 .name = "cfs_period_us",
8663 .read_u64 = cpu_cfs_period_read_u64,
8664 .write_u64 = cpu_cfs_period_write_u64,
8665 },
e8da1b18
NR
8666 {
8667 .name = "stat",
2da8ca82 8668 .seq_show = cpu_stats_show,
e8da1b18 8669 },
ab84d31e 8670#endif
052f1dc7 8671#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8672 {
9f0c1e56 8673 .name = "rt_runtime_us",
06ecb27c
PM
8674 .read_s64 = cpu_rt_runtime_read,
8675 .write_s64 = cpu_rt_runtime_write,
6f505b16 8676 },
d0b27fa7
PZ
8677 {
8678 .name = "rt_period_us",
f4c753b7
PM
8679 .read_u64 = cpu_rt_period_read_uint,
8680 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8681 },
052f1dc7 8682#endif
4baf6e33 8683 { } /* terminate */
68318b8e
SV
8684};
8685
073219e9 8686struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8687 .css_alloc = cpu_cgroup_css_alloc,
8688 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8689 .css_online = cpu_cgroup_css_online,
8690 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8691 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8692 .can_attach = cpu_cgroup_can_attach,
8693 .attach = cpu_cgroup_attach,
5577964e 8694 .legacy_cftypes = cpu_files,
68318b8e
SV
8695 .early_init = 1,
8696};
8697
052f1dc7 8698#endif /* CONFIG_CGROUP_SCHED */
d842de87 8699
b637a328
PM
8700void dump_cpu_task(int cpu)
8701{
8702 pr_info("Task dump for CPU %d:\n", cpu);
8703 sched_show_task(cpu_curr(cpu));
8704}
ed82b8a1
AK
8705
8706/*
8707 * Nice levels are multiplicative, with a gentle 10% change for every
8708 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8709 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8710 * that remained on nice 0.
8711 *
8712 * The "10% effect" is relative and cumulative: from _any_ nice level,
8713 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8714 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8715 * If a task goes up by ~10% and another task goes down by ~10% then
8716 * the relative distance between them is ~25%.)
8717 */
8718const int sched_prio_to_weight[40] = {
8719 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8720 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8721 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8722 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8723 /* 0 */ 1024, 820, 655, 526, 423,
8724 /* 5 */ 335, 272, 215, 172, 137,
8725 /* 10 */ 110, 87, 70, 56, 45,
8726 /* 15 */ 36, 29, 23, 18, 15,
8727};
8728
8729/*
8730 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8731 *
8732 * In cases where the weight does not change often, we can use the
8733 * precalculated inverse to speed up arithmetics by turning divisions
8734 * into multiplications:
8735 */
8736const u32 sched_prio_to_wmult[40] = {
8737 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8738 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8739 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8740 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8741 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8742 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8743 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8744 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8745};