]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/idle: Remove stale old file
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
0970d299 299/*
0122ec5b 300 * __task_rq_lock - lock the rq @p resides on.
b29739f9 301 */
70b97a7f 302static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
303 __acquires(rq->lock)
304{
0970d299
PZ
305 struct rq *rq;
306
0122ec5b
PZ
307 lockdep_assert_held(&p->pi_lock);
308
3a5c359a 309 for (;;) {
0970d299 310 rq = task_rq(p);
05fa785c 311 raw_spin_lock(&rq->lock);
65cc8e48 312 if (likely(rq == task_rq(p)))
3a5c359a 313 return rq;
05fa785c 314 raw_spin_unlock(&rq->lock);
b29739f9 315 }
b29739f9
IM
316}
317
1da177e4 318/*
0122ec5b 319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 320 */
70b97a7f 321static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 322 __acquires(p->pi_lock)
1da177e4
LT
323 __acquires(rq->lock)
324{
70b97a7f 325 struct rq *rq;
1da177e4 326
3a5c359a 327 for (;;) {
0122ec5b 328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 329 rq = task_rq(p);
05fa785c 330 raw_spin_lock(&rq->lock);
65cc8e48 331 if (likely(rq == task_rq(p)))
3a5c359a 332 return rq;
0122ec5b
PZ
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 335 }
1da177e4
LT
336}
337
a9957449 338static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
339 __releases(rq->lock)
340{
05fa785c 341 raw_spin_unlock(&rq->lock);
b29739f9
IM
342}
343
0122ec5b
PZ
344static inline void
345task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 346 __releases(rq->lock)
0122ec5b 347 __releases(p->pi_lock)
1da177e4 348{
0122ec5b
PZ
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
351}
352
1da177e4 353/*
cc2a73b5 354 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 355 */
a9957449 356static struct rq *this_rq_lock(void)
1da177e4
LT
357 __acquires(rq->lock)
358{
70b97a7f 359 struct rq *rq;
1da177e4
LT
360
361 local_irq_disable();
362 rq = this_rq();
05fa785c 363 raw_spin_lock(&rq->lock);
1da177e4
LT
364
365 return rq;
366}
367
8f4d37ec
PZ
368#ifdef CONFIG_SCHED_HRTICK
369/*
370 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
971ee28c
PZ
398
399static int __hrtick_restart(struct rq *rq)
400{
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405}
406
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
971ee28c 415 __hrtick_restart(rq);
31656519 416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
971ee28c 433 __hrtick_restart(rq);
31656519 434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
029632fb 514void resched_task(struct task_struct *p)
c24d20db
IM
515{
516 int cpu;
517
b021fe3e 518 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 519
5ed0cec0 520 if (test_tsk_need_resched(p))
c24d20db
IM
521 return;
522
5ed0cec0 523 set_tsk_need_resched(p);
c24d20db
IM
524
525 cpu = task_cpu(p);
f27dde8d
PZ
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
c24d20db 528 return;
f27dde8d 529 }
c24d20db
IM
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535}
536
029632fb 537void resched_cpu(int cpu)
c24d20db
IM
538{
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
05fa785c 542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
543 return;
544 resched_task(cpu_curr(cpu));
05fa785c 545 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 546}
06d8308c 547
b021fe3e 548#ifdef CONFIG_SMP
3451d024 549#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
550/*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558int get_nohz_timer_target(void)
559{
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
057f3fad 564 rcu_read_lock();
83cd4fe2 565 for_each_domain(cpu, sd) {
057f3fad
PZ
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
83cd4fe2 572 }
057f3fad
PZ
573unlock:
574 rcu_read_unlock();
83cd4fe2
VP
575 return cpu;
576}
06d8308c
TG
577/*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
1c20091e 587static void wake_up_idle_cpu(int cpu)
06d8308c
TG
588{
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
45bf76df 603
45bf76df 604 /*
06d8308c
TG
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
45bf76df 608 */
5ed0cec0 609 set_tsk_need_resched(rq->idle);
45bf76df 610
06d8308c
TG
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
45bf76df
IM
615}
616
c5bfece2 617static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 618{
c5bfece2 619 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627}
628
629void wake_up_nohz_cpu(int cpu)
630{
c5bfece2 631 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
632 wake_up_idle_cpu(cpu);
633}
634
ca38062e 635static inline bool got_nohz_idle_kick(void)
45bf76df 636{
1c792db7 637 int cpu = smp_processor_id();
873b4c65
VG
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
45bf76df
IM
651}
652
3451d024 653#else /* CONFIG_NO_HZ_COMMON */
45bf76df 654
ca38062e 655static inline bool got_nohz_idle_kick(void)
2069dd75 656{
ca38062e 657 return false;
2069dd75
PZ
658}
659
3451d024 660#endif /* CONFIG_NO_HZ_COMMON */
d842de87 661
ce831b38
FW
662#ifdef CONFIG_NO_HZ_FULL
663bool sched_can_stop_tick(void)
664{
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677}
678#endif /* CONFIG_NO_HZ_FULL */
d842de87 679
029632fb 680void sched_avg_update(struct rq *rq)
18d95a28 681{
e9e9250b
PZ
682 s64 period = sched_avg_period();
683
78becc27 684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
18d95a28
PZ
694}
695
6d6bc0ad 696#endif /* CONFIG_SMP */
18d95a28 697
a790de99
PT
698#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 700/*
8277434e
PT
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 705 */
029632fb 706int walk_tg_tree_from(struct task_group *from,
8277434e 707 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
708{
709 struct task_group *parent, *child;
eb755805 710 int ret;
c09595f6 711
8277434e
PT
712 parent = from;
713
c09595f6 714down:
eb755805
PZ
715 ret = (*down)(parent, data);
716 if (ret)
8277434e 717 goto out;
c09595f6
PZ
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722up:
723 continue;
724 }
eb755805 725 ret = (*up)(parent, data);
8277434e
PT
726 if (ret || parent == from)
727 goto out;
c09595f6
PZ
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
8277434e 733out:
eb755805 734 return ret;
c09595f6
PZ
735}
736
029632fb 737int tg_nop(struct task_group *tg, void *data)
eb755805 738{
e2b245f8 739 return 0;
eb755805 740}
18d95a28
PZ
741#endif
742
45bf76df
IM
743static void set_load_weight(struct task_struct *p)
744{
f05998d4
NR
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
dd41f596
IM
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
c8b28116 752 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 753 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
754 return;
755 }
71f8bd46 756
c8b28116 757 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 758 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
759}
760
371fd7e7 761static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 762{
a64692a3 763 update_rq_clock(rq);
43148951 764 sched_info_queued(rq, p);
371fd7e7 765 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
766}
767
371fd7e7 768static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 769{
a64692a3 770 update_rq_clock(rq);
43148951 771 sched_info_dequeued(rq, p);
371fd7e7 772 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
773}
774
029632fb 775void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
776{
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
371fd7e7 780 enqueue_task(rq, p, flags);
1e3c88bd
PZ
781}
782
029632fb 783void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
784{
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
371fd7e7 788 dequeue_task(rq, p, flags);
1e3c88bd
PZ
789}
790
fe44d621 791static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 792{
095c0aa8
GC
793/*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799#endif
800#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
095c0aa8
GC
823#endif
824#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 825 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841#endif
842
fe44d621
PZ
843 rq->clock_task += delta;
844
095c0aa8
GC
845#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848#endif
aa483808
VP
849}
850
34f971f6
PZ
851void sched_set_stop_task(int cpu, struct task_struct *stop)
852{
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879}
880
14531189 881/*
dd41f596 882 * __normal_prio - return the priority that is based on the static prio
14531189 883 */
14531189
IM
884static inline int __normal_prio(struct task_struct *p)
885{
dd41f596 886 return p->static_prio;
14531189
IM
887}
888
b29739f9
IM
889/*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
36c8b586 896static inline int normal_prio(struct task_struct *p)
b29739f9
IM
897{
898 int prio;
899
aab03e05
DF
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
2d3d891d 948 } else if (oldprio != p->prio || dl_task(p))
da7a735e 949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
74602315
PZ
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
ac66f547
PZ
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072unlock:
1073 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1076
1077 return ret;
1078}
1079
1080/*
1081 * Cross migrate two tasks
1082 */
1083int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084{
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
ac66f547
PZ
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
6acce3ef
PZ
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
ac66f547
PZ
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
286549dc 1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114out:
ac66f547
PZ
1115 return ret;
1116}
1117
969c7921 1118struct migration_arg {
36c8b586 1119 struct task_struct *task;
1da177e4 1120 int dest_cpu;
70b97a7f 1121};
1da177e4 1122
969c7921
TH
1123static int migration_cpu_stop(void *data);
1124
1da177e4
LT
1125/*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
85ba2d86
RM
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1da177e4
LT
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
85ba2d86 1141unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1142{
1143 unsigned long flags;
dd41f596 1144 int running, on_rq;
85ba2d86 1145 unsigned long ncsw;
70b97a7f 1146 struct rq *rq;
1da177e4 1147
3a5c359a
AK
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
fa490cfd 1156
3a5c359a
AK
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
85ba2d86
RM
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
3a5c359a 1171 cpu_relax();
85ba2d86 1172 }
fa490cfd 1173
3a5c359a
AK
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
27a9da65 1180 trace_sched_wait_task(p);
3a5c359a 1181 running = task_running(rq, p);
fd2f4419 1182 on_rq = p->on_rq;
85ba2d86 1183 ncsw = 0;
f31e11d8 1184 if (!match_state || p->state == match_state)
93dcf55f 1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1186 task_rq_unlock(rq, p, &flags);
fa490cfd 1187
85ba2d86
RM
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
3a5c359a
AK
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
fa490cfd 1204
3a5c359a
AK
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
80dd99b3 1210 * So if it was still runnable (but just not actively
3a5c359a
AK
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
8eb90c30
TG
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1219 continue;
1220 }
fa490cfd 1221
3a5c359a
AK
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
85ba2d86
RM
1229
1230 return ncsw;
1da177e4
LT
1231}
1232
1233/***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
25985edc 1240 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
36c8b586 1246void kick_process(struct task_struct *p)
1da177e4
LT
1247{
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255}
b43e3521 1256EXPORT_SYMBOL_GPL(kick_process);
476d139c 1257#endif /* CONFIG_SMP */
1da177e4 1258
970b13ba 1259#ifdef CONFIG_SMP
30da688e 1260/*
013fdb80 1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1262 */
5da9a0fb
PZ
1263static int select_fallback_rq(int cpu, struct task_struct *p)
1264{
aa00d89c
TC
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb 1269
aa00d89c
TC
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
2baab4e9 1287 }
5da9a0fb 1288
2baab4e9
PZ
1289 for (;;) {
1290 /* Any allowed, online CPU? */
e3831edd 1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
5da9a0fb 1298
2baab4e9
PZ
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
5da9a0fb
PZ
1328 }
1329
1330 return dest_cpu;
1331}
1332
e2912009 1333/*
013fdb80 1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1335 */
970b13ba 1336static inline
ac66f547 1337int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1338{
ac66f547 1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
fa17b507 1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1352 !cpu_online(cpu)))
5da9a0fb 1353 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1354
1355 return cpu;
970b13ba 1356}
09a40af5
MG
1357
1358static void update_avg(u64 *avg, u64 sample)
1359{
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362}
970b13ba
PZ
1363#endif
1364
d7c01d27 1365static void
b84cb5df 1366ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1367{
d7c01d27 1368#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1369 struct rq *rq = this_rq();
1370
d7c01d27
PZ
1371#ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1381 rcu_read_lock();
d7c01d27
PZ
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
057f3fad 1388 rcu_read_unlock();
d7c01d27 1389 }
f339b9dc
PZ
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
d7c01d27
PZ
1394#endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
9ed3811a 1397 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1398
1399 if (wake_flags & WF_SYNC)
9ed3811a 1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1401
d7c01d27
PZ
1402#endif /* CONFIG_SCHEDSTATS */
1403}
1404
1405static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406{
9ed3811a 1407 activate_task(rq, p, en_flags);
fd2f4419 1408 p->on_rq = 1;
c2f7115e
PZ
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1413}
1414
23f41eeb
PZ
1415/*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
89363381 1418static void
23f41eeb 1419ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1420{
9ed3811a 1421 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1422 trace_sched_wakeup(p, true);
9ed3811a
TH
1423
1424 p->state = TASK_RUNNING;
1425#ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
e69c6341 1429 if (rq->idle_stamp) {
78becc27 1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1431 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1432
abfafa54
JL
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
9ed3811a 1436 rq->avg_idle = max;
abfafa54 1437
9ed3811a
TH
1438 rq->idle_stamp = 0;
1439 }
1440#endif
1441}
1442
c05fbafb
PZ
1443static void
1444ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445{
1446#ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449#endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453}
1454
1455/*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461static int ttwu_remote(struct task_struct *p, int wake_flags)
1462{
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1ad4ec0d
FW
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
c05fbafb
PZ
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476}
1477
317f3941 1478#ifdef CONFIG_SMP
fa14ff4a 1479static void sched_ttwu_pending(void)
317f3941
PZ
1480{
1481 struct rq *rq = this_rq();
fa14ff4a
PZ
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
317f3941
PZ
1484
1485 raw_spin_lock(&rq->lock);
1486
fa14ff4a
PZ
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
317f3941
PZ
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494}
1495
1496void scheduler_ipi(void)
1497{
f27dde8d
PZ
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
8cb75e0c 1503 preempt_fold_need_resched();
f27dde8d 1504
873b4c65
VG
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
c5d753a5
PZ
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
ff442c51 1524 tick_nohz_full_check();
fa14ff4a 1525 sched_ttwu_pending();
ca38062e
SS
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
873b4c65 1530 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1531 this_rq()->idle_balance = 1;
ca38062e 1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1533 }
c5d753a5 1534 irq_exit();
317f3941
PZ
1535}
1536
1537static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538{
fa14ff4a 1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1540 smp_send_reschedule(cpu);
1541}
d6aa8f85 1542
39be3501 1543bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1544{
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546}
d6aa8f85 1547#endif /* CONFIG_SMP */
317f3941 1548
c05fbafb
PZ
1549static void ttwu_queue(struct task_struct *p, int cpu)
1550{
1551 struct rq *rq = cpu_rq(cpu);
1552
17d9f311 1553#if defined(CONFIG_SMP)
39be3501 1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559#endif
1560
c05fbafb
PZ
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1564}
1565
1566/**
1da177e4 1567 * try_to_wake_up - wake up a thread
9ed3811a 1568 * @p: the thread to be awakened
1da177e4 1569 * @state: the mask of task states that can be woken
9ed3811a 1570 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
e69f6186 1578 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1579 * or @state didn't match @p's state.
1da177e4 1580 */
e4a52bcb
PZ
1581static int
1582try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1583{
1da177e4 1584 unsigned long flags;
c05fbafb 1585 int cpu, success = 0;
2398f2c6 1586
e0acd0a6
ON
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
013fdb80 1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1595 if (!(p->state & state))
1da177e4
LT
1596 goto out;
1597
c05fbafb 1598 success = 1; /* we're going to change ->state */
1da177e4 1599 cpu = task_cpu(p);
1da177e4 1600
c05fbafb
PZ
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1da177e4 1603
1da177e4 1604#ifdef CONFIG_SMP
e9c84311 1605 /*
c05fbafb
PZ
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
e9c84311 1608 */
f3e94786 1609 while (p->on_cpu)
e4a52bcb 1610 cpu_relax();
0970d299 1611 /*
e4a52bcb 1612 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1613 */
e4a52bcb 1614 smp_rmb();
1da177e4 1615
a8e4f2ea 1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1617 p->state = TASK_WAKING;
e7693a36 1618
e4a52bcb 1619 if (p->sched_class->task_waking)
74f8e4b2 1620 p->sched_class->task_waking(p);
efbbd05a 1621
ac66f547 1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
e4a52bcb 1625 set_task_cpu(p, cpu);
f339b9dc 1626 }
1da177e4 1627#endif /* CONFIG_SMP */
1da177e4 1628
c05fbafb
PZ
1629 ttwu_queue(p, cpu);
1630stat:
b84cb5df 1631 ttwu_stat(p, cpu, wake_flags);
1da177e4 1632out:
013fdb80 1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1634
1635 return success;
1636}
1637
21aa9af0
TH
1638/**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
2acca55e 1642 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1644 * the current task.
21aa9af0
TH
1645 */
1646static void try_to_wake_up_local(struct task_struct *p)
1647{
1648 struct rq *rq = task_rq(p);
21aa9af0 1649
383efcd0
TH
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
21aa9af0
TH
1654 lockdep_assert_held(&rq->lock);
1655
2acca55e
PZ
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
21aa9af0 1662 if (!(p->state & TASK_NORMAL))
2acca55e 1663 goto out;
21aa9af0 1664
fd2f4419 1665 if (!p->on_rq)
d7c01d27
PZ
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
23f41eeb 1668 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1669 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1670out:
1671 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1672}
1673
50fa610a
DH
1674/**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
7ad5b3a5 1686int wake_up_process(struct task_struct *p)
1da177e4 1687{
9067ac85
ON
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
5e1576ed 1704static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
aab03e05
DF
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
755378a4 1724 p->dl.dl_period = 0;
aab03e05
DF
1725 p->dl.flags = 0;
1726
fa717060 1727 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1728
e107be36
AK
1729#ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731#endif
cbee9f88
PZ
1732
1733#ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
5e1576ed
RR
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
cbee9f88
PZ
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1747 p->numa_work.next = &p->numa_work;
ff1df896
RR
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
7e2703e6
RR
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
8c8a743c
PZ
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
cbee9f88 1755#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1756}
1757
1a687c2e 1758#ifdef CONFIG_NUMA_BALANCING
3105b86a 1759#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1760void set_numabalancing_state(bool enabled)
1761{
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766}
3105b86a
MG
1767#else
1768__read_mostly bool numabalancing_enabled;
1769
1770void set_numabalancing_state(bool enabled)
1771{
1772 numabalancing_enabled = enabled;
dd41f596 1773}
3105b86a 1774#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1775
1776#ifdef CONFIG_PROC_SYSCTL
1777int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779{
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795}
1796#endif
1797#endif
dd41f596
IM
1798
1799/*
1800 * fork()/clone()-time setup:
1801 */
aab03e05 1802int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1803{
0122ec5b 1804 unsigned long flags;
dd41f596
IM
1805 int cpu = get_cpu();
1806
5e1576ed 1807 __sched_fork(clone_flags, p);
06b83b5f 1808 /*
0017d735 1809 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
0017d735 1813 p->state = TASK_RUNNING;
dd41f596 1814
c350a04e
MG
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
b9dc29e7
MG
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1825 p->policy = SCHED_NORMAL;
6c697bdf 1826 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
6c697bdf 1833
b9dc29e7
MG
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
ca94c442 1840
aab03e05
DF
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
2ddbf952 1847 p->sched_class = &fair_sched_class;
aab03e05 1848 }
b29739f9 1849
cd29fe6f
PZ
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
86951599
PZ
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
0122ec5b 1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1861 set_task_cpu(p, cpu);
0122ec5b 1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1863
52f17b6c 1864#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1865 if (likely(sched_info_on()))
52f17b6c 1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1867#endif
3ca7a440
PZ
1868#if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
4866cde0 1870#endif
01028747 1871 init_task_preempt_count(p);
806c09a7 1872#ifdef CONFIG_SMP
917b627d 1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1875#endif
917b627d 1876
476d139c 1877 put_cpu();
aab03e05 1878 return 0;
1da177e4
LT
1879}
1880
332ac17e
DF
1881unsigned long to_ratio(u64 period, u64 runtime)
1882{
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895}
1896
1897#ifdef CONFIG_SMP
1898inline struct dl_bw *dl_bw_of(int i)
1899{
1900 return &cpu_rq(i)->rd->dl_bw;
1901}
1902
de212f18 1903static inline int dl_bw_cpus(int i)
332ac17e 1904{
de212f18
PZ
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
332ac17e
DF
1912}
1913#else
1914inline struct dl_bw *dl_bw_of(int i)
1915{
1916 return &cpu_rq(i)->dl.dl_bw;
1917}
1918
de212f18 1919static inline int dl_bw_cpus(int i)
332ac17e
DF
1920{
1921 return 1;
1922}
1923#endif
1924
1925static inline
1926void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927{
1928 dl_b->total_bw -= tsk_bw;
1929}
1930
1931static inline
1932void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933{
1934 dl_b->total_bw += tsk_bw;
1935}
1936
1937static inline
1938bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939{
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942}
1943
1944/*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954{
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 1960 int cpus, err = -1;
332ac17e
DF
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
de212f18 1971 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988}
1989
1990extern void init_dl_bw(struct dl_bw *dl_b);
1991
1da177e4
LT
1992/*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
3e51e3ed 1999void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2000{
2001 unsigned long flags;
dd41f596 2002 struct rq *rq;
fabf318e 2003
ab2515c4 2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2005#ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
fabf318e 2010 */
ac66f547 2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2012#endif
2013
a75cdaa9
AS
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
ab2515c4 2016 rq = __task_rq_lock(p);
cd29fe6f 2017 activate_task(rq, p, 0);
fd2f4419 2018 p->on_rq = 1;
89363381 2019 trace_sched_wakeup_new(p, true);
a7558e01 2020 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2021#ifdef CONFIG_SMP
efbbd05a
PZ
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
9a897c5a 2024#endif
0122ec5b 2025 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2026}
2027
e107be36
AK
2028#ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030/**
80dd99b3 2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2032 * @notifier: notifier struct to register
e107be36
AK
2033 */
2034void preempt_notifier_register(struct preempt_notifier *notifier)
2035{
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037}
2038EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040/**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2042 * @notifier: notifier struct to unregister
e107be36
AK
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047{
2048 hlist_del(&notifier->link);
2049}
2050EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053{
2054 struct preempt_notifier *notifier;
e107be36 2055
b67bfe0d 2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058}
2059
2060static void
2061fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063{
2064 struct preempt_notifier *notifier;
e107be36 2065
b67bfe0d 2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2067 notifier->ops->sched_out(notifier, next);
2068}
2069
6d6bc0ad 2070#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2071
2072static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073{
2074}
2075
2076static void
2077fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079{
2080}
2081
6d6bc0ad 2082#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2083
4866cde0
NP
2084/**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
421cee29 2087 * @prev: the current task that is being switched out
4866cde0
NP
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
e107be36
AK
2097static inline void
2098prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
4866cde0 2100{
895dd92c 2101 trace_sched_switch(prev, next);
43148951 2102 sched_info_switch(rq, prev, next);
fe4b04fa 2103 perf_event_task_sched_out(prev, next);
e107be36 2104 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107}
2108
1da177e4
LT
2109/**
2110 * finish_task_switch - clean up after a task-switch
344babaa 2111 * @rq: runqueue associated with task-switch
1da177e4
LT
2112 * @prev: the thread we just switched away from.
2113 *
4866cde0
NP
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2120 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
a9957449 2124static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2125 __releases(rq->lock)
2126{
1da177e4 2127 struct mm_struct *mm = rq->prev_mm;
55a101f8 2128 long prev_state;
1da177e4
LT
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
c394cc9f 2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
c394cc9f 2137 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
55a101f8 2143 prev_state = prev->state;
bf9fae9f 2144 vtime_task_switch(prev);
4866cde0 2145 finish_arch_switch(prev);
a8d757ef 2146 perf_event_task_sched_in(prev, current);
4866cde0 2147 finish_lock_switch(rq, prev);
01f23e16 2148 finish_arch_post_lock_switch();
e8fa1362 2149
e107be36 2150 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2151 if (mm)
2152 mmdrop(mm);
c394cc9f 2153 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
2154 task_numa_free(prev);
2155
e6c390f2
DF
2156 if (prev->sched_class->task_dead)
2157 prev->sched_class->task_dead(prev);
2158
c6fd91f0 2159 /*
2160 * Remove function-return probe instances associated with this
2161 * task and put them back on the free list.
9761eea8 2162 */
c6fd91f0 2163 kprobe_flush_task(prev);
1da177e4 2164 put_task_struct(prev);
c6fd91f0 2165 }
99e5ada9
FW
2166
2167 tick_nohz_task_switch(current);
1da177e4
LT
2168}
2169
3f029d3c
GH
2170#ifdef CONFIG_SMP
2171
3f029d3c
GH
2172/* rq->lock is NOT held, but preemption is disabled */
2173static inline void post_schedule(struct rq *rq)
2174{
2175 if (rq->post_schedule) {
2176 unsigned long flags;
2177
05fa785c 2178 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2179 if (rq->curr->sched_class->post_schedule)
2180 rq->curr->sched_class->post_schedule(rq);
05fa785c 2181 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2182
2183 rq->post_schedule = 0;
2184 }
2185}
2186
2187#else
da19ab51 2188
3f029d3c
GH
2189static inline void post_schedule(struct rq *rq)
2190{
1da177e4
LT
2191}
2192
3f029d3c
GH
2193#endif
2194
1da177e4
LT
2195/**
2196 * schedule_tail - first thing a freshly forked thread must call.
2197 * @prev: the thread we just switched away from.
2198 */
36c8b586 2199asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2200 __releases(rq->lock)
2201{
70b97a7f
IM
2202 struct rq *rq = this_rq();
2203
4866cde0 2204 finish_task_switch(rq, prev);
da19ab51 2205
3f029d3c
GH
2206 /*
2207 * FIXME: do we need to worry about rq being invalidated by the
2208 * task_switch?
2209 */
2210 post_schedule(rq);
70b97a7f 2211
4866cde0
NP
2212#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2213 /* In this case, finish_task_switch does not reenable preemption */
2214 preempt_enable();
2215#endif
1da177e4 2216 if (current->set_child_tid)
b488893a 2217 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2218}
2219
2220/*
2221 * context_switch - switch to the new MM and the new
2222 * thread's register state.
2223 */
dd41f596 2224static inline void
70b97a7f 2225context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2226 struct task_struct *next)
1da177e4 2227{
dd41f596 2228 struct mm_struct *mm, *oldmm;
1da177e4 2229
e107be36 2230 prepare_task_switch(rq, prev, next);
fe4b04fa 2231
dd41f596
IM
2232 mm = next->mm;
2233 oldmm = prev->active_mm;
9226d125
ZA
2234 /*
2235 * For paravirt, this is coupled with an exit in switch_to to
2236 * combine the page table reload and the switch backend into
2237 * one hypercall.
2238 */
224101ed 2239 arch_start_context_switch(prev);
9226d125 2240
31915ab4 2241 if (!mm) {
1da177e4
LT
2242 next->active_mm = oldmm;
2243 atomic_inc(&oldmm->mm_count);
2244 enter_lazy_tlb(oldmm, next);
2245 } else
2246 switch_mm(oldmm, mm, next);
2247
31915ab4 2248 if (!prev->mm) {
1da177e4 2249 prev->active_mm = NULL;
1da177e4
LT
2250 rq->prev_mm = oldmm;
2251 }
3a5f5e48
IM
2252 /*
2253 * Since the runqueue lock will be released by the next
2254 * task (which is an invalid locking op but in the case
2255 * of the scheduler it's an obvious special-case), so we
2256 * do an early lockdep release here:
2257 */
2258#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2259 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2260#endif
1da177e4 2261
91d1aa43 2262 context_tracking_task_switch(prev, next);
1da177e4
LT
2263 /* Here we just switch the register state and the stack. */
2264 switch_to(prev, next, prev);
2265
dd41f596
IM
2266 barrier();
2267 /*
2268 * this_rq must be evaluated again because prev may have moved
2269 * CPUs since it called schedule(), thus the 'rq' on its stack
2270 * frame will be invalid.
2271 */
2272 finish_task_switch(this_rq(), prev);
1da177e4
LT
2273}
2274
2275/*
1c3e8264 2276 * nr_running and nr_context_switches:
1da177e4
LT
2277 *
2278 * externally visible scheduler statistics: current number of runnable
1c3e8264 2279 * threads, total number of context switches performed since bootup.
1da177e4
LT
2280 */
2281unsigned long nr_running(void)
2282{
2283 unsigned long i, sum = 0;
2284
2285 for_each_online_cpu(i)
2286 sum += cpu_rq(i)->nr_running;
2287
2288 return sum;
f711f609 2289}
1da177e4 2290
1da177e4 2291unsigned long long nr_context_switches(void)
46cb4b7c 2292{
cc94abfc
SR
2293 int i;
2294 unsigned long long sum = 0;
46cb4b7c 2295
0a945022 2296 for_each_possible_cpu(i)
1da177e4 2297 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2298
1da177e4
LT
2299 return sum;
2300}
483b4ee6 2301
1da177e4
LT
2302unsigned long nr_iowait(void)
2303{
2304 unsigned long i, sum = 0;
483b4ee6 2305
0a945022 2306 for_each_possible_cpu(i)
1da177e4 2307 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2308
1da177e4
LT
2309 return sum;
2310}
483b4ee6 2311
8c215bd3 2312unsigned long nr_iowait_cpu(int cpu)
69d25870 2313{
8c215bd3 2314 struct rq *this = cpu_rq(cpu);
69d25870
AV
2315 return atomic_read(&this->nr_iowait);
2316}
46cb4b7c 2317
dd41f596 2318#ifdef CONFIG_SMP
8a0be9ef 2319
46cb4b7c 2320/*
38022906
PZ
2321 * sched_exec - execve() is a valuable balancing opportunity, because at
2322 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2323 */
38022906 2324void sched_exec(void)
46cb4b7c 2325{
38022906 2326 struct task_struct *p = current;
1da177e4 2327 unsigned long flags;
0017d735 2328 int dest_cpu;
46cb4b7c 2329
8f42ced9 2330 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2331 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2332 if (dest_cpu == smp_processor_id())
2333 goto unlock;
38022906 2334
8f42ced9 2335 if (likely(cpu_active(dest_cpu))) {
969c7921 2336 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2337
8f42ced9
PZ
2338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2339 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2340 return;
2341 }
0017d735 2342unlock:
8f42ced9 2343 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2344}
dd41f596 2345
1da177e4
LT
2346#endif
2347
1da177e4 2348DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2349DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2350
2351EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2352EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2353
2354/*
c5f8d995 2355 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2356 * @p in case that task is currently running.
c5f8d995
HS
2357 *
2358 * Called with task_rq_lock() held on @rq.
1da177e4 2359 */
c5f8d995
HS
2360static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2361{
2362 u64 ns = 0;
2363
2364 if (task_current(rq, p)) {
2365 update_rq_clock(rq);
78becc27 2366 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2367 if ((s64)ns < 0)
2368 ns = 0;
2369 }
2370
2371 return ns;
2372}
2373
bb34d92f 2374unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2375{
1da177e4 2376 unsigned long flags;
41b86e9c 2377 struct rq *rq;
bb34d92f 2378 u64 ns = 0;
48f24c4d 2379
41b86e9c 2380 rq = task_rq_lock(p, &flags);
c5f8d995 2381 ns = do_task_delta_exec(p, rq);
0122ec5b 2382 task_rq_unlock(rq, p, &flags);
1508487e 2383
c5f8d995
HS
2384 return ns;
2385}
f06febc9 2386
c5f8d995
HS
2387/*
2388 * Return accounted runtime for the task.
2389 * In case the task is currently running, return the runtime plus current's
2390 * pending runtime that have not been accounted yet.
2391 */
2392unsigned long long task_sched_runtime(struct task_struct *p)
2393{
2394 unsigned long flags;
2395 struct rq *rq;
2396 u64 ns = 0;
2397
911b2898
PZ
2398#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2399 /*
2400 * 64-bit doesn't need locks to atomically read a 64bit value.
2401 * So we have a optimization chance when the task's delta_exec is 0.
2402 * Reading ->on_cpu is racy, but this is ok.
2403 *
2404 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2405 * If we race with it entering cpu, unaccounted time is 0. This is
2406 * indistinguishable from the read occurring a few cycles earlier.
2407 */
2408 if (!p->on_cpu)
2409 return p->se.sum_exec_runtime;
2410#endif
2411
c5f8d995
HS
2412 rq = task_rq_lock(p, &flags);
2413 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2414 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2415
2416 return ns;
2417}
48f24c4d 2418
7835b98b
CL
2419/*
2420 * This function gets called by the timer code, with HZ frequency.
2421 * We call it with interrupts disabled.
7835b98b
CL
2422 */
2423void scheduler_tick(void)
2424{
7835b98b
CL
2425 int cpu = smp_processor_id();
2426 struct rq *rq = cpu_rq(cpu);
dd41f596 2427 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2428
2429 sched_clock_tick();
dd41f596 2430
05fa785c 2431 raw_spin_lock(&rq->lock);
3e51f33f 2432 update_rq_clock(rq);
fa85ae24 2433 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2434 update_cpu_load_active(rq);
05fa785c 2435 raw_spin_unlock(&rq->lock);
7835b98b 2436
e9d2b064 2437 perf_event_task_tick();
e220d2dc 2438
e418e1c2 2439#ifdef CONFIG_SMP
6eb57e0d 2440 rq->idle_balance = idle_cpu(cpu);
7caff66f 2441 trigger_load_balance(rq);
e418e1c2 2442#endif
265f22a9 2443 rq_last_tick_reset(rq);
1da177e4
LT
2444}
2445
265f22a9
FW
2446#ifdef CONFIG_NO_HZ_FULL
2447/**
2448 * scheduler_tick_max_deferment
2449 *
2450 * Keep at least one tick per second when a single
2451 * active task is running because the scheduler doesn't
2452 * yet completely support full dynticks environment.
2453 *
2454 * This makes sure that uptime, CFS vruntime, load
2455 * balancing, etc... continue to move forward, even
2456 * with a very low granularity.
e69f6186
YB
2457 *
2458 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2459 */
2460u64 scheduler_tick_max_deferment(void)
2461{
2462 struct rq *rq = this_rq();
2463 unsigned long next, now = ACCESS_ONCE(jiffies);
2464
2465 next = rq->last_sched_tick + HZ;
2466
2467 if (time_before_eq(next, now))
2468 return 0;
2469
8fe8ff09 2470 return jiffies_to_nsecs(next - now);
1da177e4 2471}
265f22a9 2472#endif
1da177e4 2473
132380a0 2474notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2475{
2476 if (in_lock_functions(addr)) {
2477 addr = CALLER_ADDR2;
2478 if (in_lock_functions(addr))
2479 addr = CALLER_ADDR3;
2480 }
2481 return addr;
2482}
1da177e4 2483
7e49fcce
SR
2484#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2485 defined(CONFIG_PREEMPT_TRACER))
2486
bdb43806 2487void __kprobes preempt_count_add(int val)
1da177e4 2488{
6cd8a4bb 2489#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2490 /*
2491 * Underflow?
2492 */
9a11b49a
IM
2493 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2494 return;
6cd8a4bb 2495#endif
bdb43806 2496 __preempt_count_add(val);
6cd8a4bb 2497#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2498 /*
2499 * Spinlock count overflowing soon?
2500 */
33859f7f
MOS
2501 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2502 PREEMPT_MASK - 10);
6cd8a4bb 2503#endif
8f47b187
TG
2504 if (preempt_count() == val) {
2505 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2506#ifdef CONFIG_DEBUG_PREEMPT
2507 current->preempt_disable_ip = ip;
2508#endif
2509 trace_preempt_off(CALLER_ADDR0, ip);
2510 }
1da177e4 2511}
bdb43806 2512EXPORT_SYMBOL(preempt_count_add);
1da177e4 2513
bdb43806 2514void __kprobes preempt_count_sub(int val)
1da177e4 2515{
6cd8a4bb 2516#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2517 /*
2518 * Underflow?
2519 */
01e3eb82 2520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2521 return;
1da177e4
LT
2522 /*
2523 * Is the spinlock portion underflowing?
2524 */
9a11b49a
IM
2525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2526 !(preempt_count() & PREEMPT_MASK)))
2527 return;
6cd8a4bb 2528#endif
9a11b49a 2529
6cd8a4bb
SR
2530 if (preempt_count() == val)
2531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2532 __preempt_count_sub(val);
1da177e4 2533}
bdb43806 2534EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2535
2536#endif
2537
2538/*
dd41f596 2539 * Print scheduling while atomic bug:
1da177e4 2540 */
dd41f596 2541static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2542{
664dfa65
DJ
2543 if (oops_in_progress)
2544 return;
2545
3df0fc5b
PZ
2546 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2547 prev->comm, prev->pid, preempt_count());
838225b4 2548
dd41f596 2549 debug_show_held_locks(prev);
e21f5b15 2550 print_modules();
dd41f596
IM
2551 if (irqs_disabled())
2552 print_irqtrace_events(prev);
8f47b187
TG
2553#ifdef CONFIG_DEBUG_PREEMPT
2554 if (in_atomic_preempt_off()) {
2555 pr_err("Preemption disabled at:");
2556 print_ip_sym(current->preempt_disable_ip);
2557 pr_cont("\n");
2558 }
2559#endif
6135fc1e 2560 dump_stack();
373d4d09 2561 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2562}
1da177e4 2563
dd41f596
IM
2564/*
2565 * Various schedule()-time debugging checks and statistics:
2566 */
2567static inline void schedule_debug(struct task_struct *prev)
2568{
1da177e4 2569 /*
41a2d6cf 2570 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2571 * schedule() atomically, we ignore that path. Otherwise whine
2572 * if we are scheduling when we should not.
1da177e4 2573 */
192301e7 2574 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2575 __schedule_bug(prev);
b3fbab05 2576 rcu_sleep_check();
dd41f596 2577
1da177e4
LT
2578 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2579
2d72376b 2580 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2581}
2582
2583/*
2584 * Pick up the highest-prio task:
2585 */
2586static inline struct task_struct *
606dba2e 2587pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2588{
5522d5d5 2589 const struct sched_class *class;
dd41f596 2590 struct task_struct *p;
1da177e4
LT
2591
2592 /*
dd41f596
IM
2593 * Optimization: we know that if all tasks are in
2594 * the fair class we can call that function directly:
1da177e4 2595 */
38033c37
PZ
2596 if (likely(prev->sched_class == &fair_sched_class &&
2597 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2598 p = fair_sched_class.pick_next_task(rq, prev);
dd41f596
IM
2599 if (likely(p))
2600 return p;
1da177e4
LT
2601 }
2602
34f971f6 2603 for_each_class(class) {
606dba2e 2604 p = class->pick_next_task(rq, prev);
dd41f596
IM
2605 if (p)
2606 return p;
dd41f596 2607 }
34f971f6
PZ
2608
2609 BUG(); /* the idle class will always have a runnable task */
dd41f596 2610}
1da177e4 2611
dd41f596 2612/*
c259e01a 2613 * __schedule() is the main scheduler function.
edde96ea
PE
2614 *
2615 * The main means of driving the scheduler and thus entering this function are:
2616 *
2617 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 *
2619 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620 * paths. For example, see arch/x86/entry_64.S.
2621 *
2622 * To drive preemption between tasks, the scheduler sets the flag in timer
2623 * interrupt handler scheduler_tick().
2624 *
2625 * 3. Wakeups don't really cause entry into schedule(). They add a
2626 * task to the run-queue and that's it.
2627 *
2628 * Now, if the new task added to the run-queue preempts the current
2629 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630 * called on the nearest possible occasion:
2631 *
2632 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 *
2634 * - in syscall or exception context, at the next outmost
2635 * preempt_enable(). (this might be as soon as the wake_up()'s
2636 * spin_unlock()!)
2637 *
2638 * - in IRQ context, return from interrupt-handler to
2639 * preemptible context
2640 *
2641 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642 * then at the next:
2643 *
2644 * - cond_resched() call
2645 * - explicit schedule() call
2646 * - return from syscall or exception to user-space
2647 * - return from interrupt-handler to user-space
dd41f596 2648 */
c259e01a 2649static void __sched __schedule(void)
dd41f596
IM
2650{
2651 struct task_struct *prev, *next;
67ca7bde 2652 unsigned long *switch_count;
dd41f596 2653 struct rq *rq;
31656519 2654 int cpu;
dd41f596 2655
ff743345
PZ
2656need_resched:
2657 preempt_disable();
dd41f596
IM
2658 cpu = smp_processor_id();
2659 rq = cpu_rq(cpu);
25502a6c 2660 rcu_note_context_switch(cpu);
dd41f596 2661 prev = rq->curr;
dd41f596 2662
dd41f596 2663 schedule_debug(prev);
1da177e4 2664
31656519 2665 if (sched_feat(HRTICK))
f333fdc9 2666 hrtick_clear(rq);
8f4d37ec 2667
e0acd0a6
ON
2668 /*
2669 * Make sure that signal_pending_state()->signal_pending() below
2670 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671 * done by the caller to avoid the race with signal_wake_up().
2672 */
2673 smp_mb__before_spinlock();
05fa785c 2674 raw_spin_lock_irq(&rq->lock);
1da177e4 2675
246d86b5 2676 switch_count = &prev->nivcsw;
1da177e4 2677 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2678 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2679 prev->state = TASK_RUNNING;
21aa9af0 2680 } else {
2acca55e
PZ
2681 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682 prev->on_rq = 0;
2683
21aa9af0 2684 /*
2acca55e
PZ
2685 * If a worker went to sleep, notify and ask workqueue
2686 * whether it wants to wake up a task to maintain
2687 * concurrency.
21aa9af0
TH
2688 */
2689 if (prev->flags & PF_WQ_WORKER) {
2690 struct task_struct *to_wakeup;
2691
2692 to_wakeup = wq_worker_sleeping(prev, cpu);
2693 if (to_wakeup)
2694 try_to_wake_up_local(to_wakeup);
2695 }
21aa9af0 2696 }
dd41f596 2697 switch_count = &prev->nvcsw;
1da177e4
LT
2698 }
2699
606dba2e
PZ
2700 if (prev->on_rq || rq->skip_clock_update < 0)
2701 update_rq_clock(rq);
2702
2703 next = pick_next_task(rq, prev);
f26f9aff 2704 clear_tsk_need_resched(prev);
f27dde8d 2705 clear_preempt_need_resched();
f26f9aff 2706 rq->skip_clock_update = 0;
1da177e4 2707
1da177e4 2708 if (likely(prev != next)) {
1da177e4
LT
2709 rq->nr_switches++;
2710 rq->curr = next;
2711 ++*switch_count;
2712
dd41f596 2713 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2714 /*
246d86b5
ON
2715 * The context switch have flipped the stack from under us
2716 * and restored the local variables which were saved when
2717 * this task called schedule() in the past. prev == current
2718 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2719 */
2720 cpu = smp_processor_id();
2721 rq = cpu_rq(cpu);
1da177e4 2722 } else
05fa785c 2723 raw_spin_unlock_irq(&rq->lock);
1da177e4 2724
3f029d3c 2725 post_schedule(rq);
1da177e4 2726
ba74c144 2727 sched_preempt_enable_no_resched();
ff743345 2728 if (need_resched())
1da177e4
LT
2729 goto need_resched;
2730}
c259e01a 2731
9c40cef2
TG
2732static inline void sched_submit_work(struct task_struct *tsk)
2733{
3c7d5184 2734 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2735 return;
2736 /*
2737 * If we are going to sleep and we have plugged IO queued,
2738 * make sure to submit it to avoid deadlocks.
2739 */
2740 if (blk_needs_flush_plug(tsk))
2741 blk_schedule_flush_plug(tsk);
2742}
2743
6ebbe7a0 2744asmlinkage void __sched schedule(void)
c259e01a 2745{
9c40cef2
TG
2746 struct task_struct *tsk = current;
2747
2748 sched_submit_work(tsk);
c259e01a
TG
2749 __schedule();
2750}
1da177e4
LT
2751EXPORT_SYMBOL(schedule);
2752
91d1aa43 2753#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2754asmlinkage void __sched schedule_user(void)
2755{
2756 /*
2757 * If we come here after a random call to set_need_resched(),
2758 * or we have been woken up remotely but the IPI has not yet arrived,
2759 * we haven't yet exited the RCU idle mode. Do it here manually until
2760 * we find a better solution.
2761 */
91d1aa43 2762 user_exit();
20ab65e3 2763 schedule();
91d1aa43 2764 user_enter();
20ab65e3
FW
2765}
2766#endif
2767
c5491ea7
TG
2768/**
2769 * schedule_preempt_disabled - called with preemption disabled
2770 *
2771 * Returns with preemption disabled. Note: preempt_count must be 1
2772 */
2773void __sched schedule_preempt_disabled(void)
2774{
ba74c144 2775 sched_preempt_enable_no_resched();
c5491ea7
TG
2776 schedule();
2777 preempt_disable();
2778}
2779
1da177e4
LT
2780#ifdef CONFIG_PREEMPT
2781/*
2ed6e34f 2782 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2783 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2784 * occur there and call schedule directly.
2785 */
d1f74e20 2786asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2787{
1da177e4
LT
2788 /*
2789 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2790 * we do not want to preempt the current task. Just return..
1da177e4 2791 */
fbb00b56 2792 if (likely(!preemptible()))
1da177e4
LT
2793 return;
2794
3a5c359a 2795 do {
bdb43806 2796 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2797 __schedule();
bdb43806 2798 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2799
3a5c359a
AK
2800 /*
2801 * Check again in case we missed a preemption opportunity
2802 * between schedule and now.
2803 */
2804 barrier();
5ed0cec0 2805 } while (need_resched());
1da177e4 2806}
1da177e4 2807EXPORT_SYMBOL(preempt_schedule);
32e475d7 2808#endif /* CONFIG_PREEMPT */
1da177e4
LT
2809
2810/*
2ed6e34f 2811 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2812 * off of irq context.
2813 * Note, that this is called and return with irqs disabled. This will
2814 * protect us against recursive calling from irq.
2815 */
2816asmlinkage void __sched preempt_schedule_irq(void)
2817{
b22366cd 2818 enum ctx_state prev_state;
6478d880 2819
2ed6e34f 2820 /* Catch callers which need to be fixed */
f27dde8d 2821 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2822
b22366cd
FW
2823 prev_state = exception_enter();
2824
3a5c359a 2825 do {
bdb43806 2826 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2827 local_irq_enable();
c259e01a 2828 __schedule();
3a5c359a 2829 local_irq_disable();
bdb43806 2830 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2831
3a5c359a
AK
2832 /*
2833 * Check again in case we missed a preemption opportunity
2834 * between schedule and now.
2835 */
2836 barrier();
5ed0cec0 2837 } while (need_resched());
b22366cd
FW
2838
2839 exception_exit(prev_state);
1da177e4
LT
2840}
2841
63859d4f 2842int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2843 void *key)
1da177e4 2844{
63859d4f 2845 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2846}
1da177e4
LT
2847EXPORT_SYMBOL(default_wake_function);
2848
8cbbe86d
AK
2849static long __sched
2850sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2851{
0fec171c
IM
2852 unsigned long flags;
2853 wait_queue_t wait;
2854
2855 init_waitqueue_entry(&wait, current);
1da177e4 2856
8cbbe86d 2857 __set_current_state(state);
1da177e4 2858
8cbbe86d
AK
2859 spin_lock_irqsave(&q->lock, flags);
2860 __add_wait_queue(q, &wait);
2861 spin_unlock(&q->lock);
2862 timeout = schedule_timeout(timeout);
2863 spin_lock_irq(&q->lock);
2864 __remove_wait_queue(q, &wait);
2865 spin_unlock_irqrestore(&q->lock, flags);
2866
2867 return timeout;
2868}
2869
2870void __sched interruptible_sleep_on(wait_queue_head_t *q)
2871{
2872 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2873}
1da177e4
LT
2874EXPORT_SYMBOL(interruptible_sleep_on);
2875
0fec171c 2876long __sched
95cdf3b7 2877interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2878{
8cbbe86d 2879 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 2880}
1da177e4
LT
2881EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2882
0fec171c 2883void __sched sleep_on(wait_queue_head_t *q)
1da177e4 2884{
8cbbe86d 2885 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2886}
1da177e4
LT
2887EXPORT_SYMBOL(sleep_on);
2888
0fec171c 2889long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2890{
8cbbe86d 2891 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 2892}
1da177e4
LT
2893EXPORT_SYMBOL(sleep_on_timeout);
2894
b29739f9
IM
2895#ifdef CONFIG_RT_MUTEXES
2896
2897/*
2898 * rt_mutex_setprio - set the current priority of a task
2899 * @p: task
2900 * @prio: prio value (kernel-internal form)
2901 *
2902 * This function changes the 'effective' priority of a task. It does
2903 * not touch ->normal_prio like __setscheduler().
2904 *
c365c292
TG
2905 * Used by the rt_mutex code to implement priority inheritance
2906 * logic. Call site only calls if the priority of the task changed.
b29739f9 2907 */
36c8b586 2908void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2909{
2d3d891d 2910 int oldprio, on_rq, running, enqueue_flag = 0;
70b97a7f 2911 struct rq *rq;
83ab0aa0 2912 const struct sched_class *prev_class;
b29739f9 2913
aab03e05 2914 BUG_ON(prio > MAX_PRIO);
b29739f9 2915
0122ec5b 2916 rq = __task_rq_lock(p);
b29739f9 2917
1c4dd99b
TG
2918 /*
2919 * Idle task boosting is a nono in general. There is one
2920 * exception, when PREEMPT_RT and NOHZ is active:
2921 *
2922 * The idle task calls get_next_timer_interrupt() and holds
2923 * the timer wheel base->lock on the CPU and another CPU wants
2924 * to access the timer (probably to cancel it). We can safely
2925 * ignore the boosting request, as the idle CPU runs this code
2926 * with interrupts disabled and will complete the lock
2927 * protected section without being interrupted. So there is no
2928 * real need to boost.
2929 */
2930 if (unlikely(p == rq->idle)) {
2931 WARN_ON(p != rq->curr);
2932 WARN_ON(p->pi_blocked_on);
2933 goto out_unlock;
2934 }
2935
a8027073 2936 trace_sched_pi_setprio(p, prio);
2d3d891d 2937 p->pi_top_task = rt_mutex_get_top_task(p);
d5f9f942 2938 oldprio = p->prio;
83ab0aa0 2939 prev_class = p->sched_class;
fd2f4419 2940 on_rq = p->on_rq;
051a1d1a 2941 running = task_current(rq, p);
0e1f3483 2942 if (on_rq)
69be72c1 2943 dequeue_task(rq, p, 0);
0e1f3483
HS
2944 if (running)
2945 p->sched_class->put_prev_task(rq, p);
dd41f596 2946
2d3d891d
DF
2947 /*
2948 * Boosting condition are:
2949 * 1. -rt task is running and holds mutex A
2950 * --> -dl task blocks on mutex A
2951 *
2952 * 2. -dl task is running and holds mutex A
2953 * --> -dl task blocks on mutex A and could preempt the
2954 * running task
2955 */
2956 if (dl_prio(prio)) {
2957 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2958 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2959 p->dl.dl_boosted = 1;
2960 p->dl.dl_throttled = 0;
2961 enqueue_flag = ENQUEUE_REPLENISH;
2962 } else
2963 p->dl.dl_boosted = 0;
aab03e05 2964 p->sched_class = &dl_sched_class;
2d3d891d
DF
2965 } else if (rt_prio(prio)) {
2966 if (dl_prio(oldprio))
2967 p->dl.dl_boosted = 0;
2968 if (oldprio < prio)
2969 enqueue_flag = ENQUEUE_HEAD;
dd41f596 2970 p->sched_class = &rt_sched_class;
2d3d891d
DF
2971 } else {
2972 if (dl_prio(oldprio))
2973 p->dl.dl_boosted = 0;
dd41f596 2974 p->sched_class = &fair_sched_class;
2d3d891d 2975 }
dd41f596 2976
b29739f9
IM
2977 p->prio = prio;
2978
0e1f3483
HS
2979 if (running)
2980 p->sched_class->set_curr_task(rq);
da7a735e 2981 if (on_rq)
2d3d891d 2982 enqueue_task(rq, p, enqueue_flag);
cb469845 2983
da7a735e 2984 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 2985out_unlock:
0122ec5b 2986 __task_rq_unlock(rq);
b29739f9 2987}
b29739f9 2988#endif
d50dde5a 2989
36c8b586 2990void set_user_nice(struct task_struct *p, long nice)
1da177e4 2991{
dd41f596 2992 int old_prio, delta, on_rq;
1da177e4 2993 unsigned long flags;
70b97a7f 2994 struct rq *rq;
1da177e4 2995
75e45d51 2996 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
2997 return;
2998 /*
2999 * We have to be careful, if called from sys_setpriority(),
3000 * the task might be in the middle of scheduling on another CPU.
3001 */
3002 rq = task_rq_lock(p, &flags);
3003 /*
3004 * The RT priorities are set via sched_setscheduler(), but we still
3005 * allow the 'normal' nice value to be set - but as expected
3006 * it wont have any effect on scheduling until the task is
aab03e05 3007 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3008 */
aab03e05 3009 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3010 p->static_prio = NICE_TO_PRIO(nice);
3011 goto out_unlock;
3012 }
fd2f4419 3013 on_rq = p->on_rq;
c09595f6 3014 if (on_rq)
69be72c1 3015 dequeue_task(rq, p, 0);
1da177e4 3016
1da177e4 3017 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3018 set_load_weight(p);
b29739f9
IM
3019 old_prio = p->prio;
3020 p->prio = effective_prio(p);
3021 delta = p->prio - old_prio;
1da177e4 3022
dd41f596 3023 if (on_rq) {
371fd7e7 3024 enqueue_task(rq, p, 0);
1da177e4 3025 /*
d5f9f942
AM
3026 * If the task increased its priority or is running and
3027 * lowered its priority, then reschedule its CPU:
1da177e4 3028 */
d5f9f942 3029 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3030 resched_task(rq->curr);
3031 }
3032out_unlock:
0122ec5b 3033 task_rq_unlock(rq, p, &flags);
1da177e4 3034}
1da177e4
LT
3035EXPORT_SYMBOL(set_user_nice);
3036
e43379f1
MM
3037/*
3038 * can_nice - check if a task can reduce its nice value
3039 * @p: task
3040 * @nice: nice value
3041 */
36c8b586 3042int can_nice(const struct task_struct *p, const int nice)
e43379f1 3043{
024f4747
MM
3044 /* convert nice value [19,-20] to rlimit style value [1,40] */
3045 int nice_rlim = 20 - nice;
48f24c4d 3046
78d7d407 3047 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3048 capable(CAP_SYS_NICE));
3049}
3050
1da177e4
LT
3051#ifdef __ARCH_WANT_SYS_NICE
3052
3053/*
3054 * sys_nice - change the priority of the current process.
3055 * @increment: priority increment
3056 *
3057 * sys_setpriority is a more generic, but much slower function that
3058 * does similar things.
3059 */
5add95d4 3060SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3061{
48f24c4d 3062 long nice, retval;
1da177e4
LT
3063
3064 /*
3065 * Setpriority might change our priority at the same moment.
3066 * We don't have to worry. Conceptually one call occurs first
3067 * and we have a single winner.
3068 */
e43379f1
MM
3069 if (increment < -40)
3070 increment = -40;
1da177e4
LT
3071 if (increment > 40)
3072 increment = 40;
3073
d0ea0268 3074 nice = task_nice(current) + increment;
75e45d51
DY
3075 if (nice < MIN_NICE)
3076 nice = MIN_NICE;
3077 if (nice > MAX_NICE)
3078 nice = MAX_NICE;
1da177e4 3079
e43379f1
MM
3080 if (increment < 0 && !can_nice(current, nice))
3081 return -EPERM;
3082
1da177e4
LT
3083 retval = security_task_setnice(current, nice);
3084 if (retval)
3085 return retval;
3086
3087 set_user_nice(current, nice);
3088 return 0;
3089}
3090
3091#endif
3092
3093/**
3094 * task_prio - return the priority value of a given task.
3095 * @p: the task in question.
3096 *
e69f6186 3097 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3098 * RT tasks are offset by -200. Normal tasks are centered
3099 * around 0, value goes from -16 to +15.
3100 */
36c8b586 3101int task_prio(const struct task_struct *p)
1da177e4
LT
3102{
3103 return p->prio - MAX_RT_PRIO;
3104}
3105
1da177e4
LT
3106/**
3107 * idle_cpu - is a given cpu idle currently?
3108 * @cpu: the processor in question.
e69f6186
YB
3109 *
3110 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3111 */
3112int idle_cpu(int cpu)
3113{
908a3283
TG
3114 struct rq *rq = cpu_rq(cpu);
3115
3116 if (rq->curr != rq->idle)
3117 return 0;
3118
3119 if (rq->nr_running)
3120 return 0;
3121
3122#ifdef CONFIG_SMP
3123 if (!llist_empty(&rq->wake_list))
3124 return 0;
3125#endif
3126
3127 return 1;
1da177e4
LT
3128}
3129
1da177e4
LT
3130/**
3131 * idle_task - return the idle task for a given cpu.
3132 * @cpu: the processor in question.
e69f6186
YB
3133 *
3134 * Return: The idle task for the cpu @cpu.
1da177e4 3135 */
36c8b586 3136struct task_struct *idle_task(int cpu)
1da177e4
LT
3137{
3138 return cpu_rq(cpu)->idle;
3139}
3140
3141/**
3142 * find_process_by_pid - find a process with a matching PID value.
3143 * @pid: the pid in question.
e69f6186
YB
3144 *
3145 * The task of @pid, if found. %NULL otherwise.
1da177e4 3146 */
a9957449 3147static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3148{
228ebcbe 3149 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3150}
3151
aab03e05
DF
3152/*
3153 * This function initializes the sched_dl_entity of a newly becoming
3154 * SCHED_DEADLINE task.
3155 *
3156 * Only the static values are considered here, the actual runtime and the
3157 * absolute deadline will be properly calculated when the task is enqueued
3158 * for the first time with its new policy.
3159 */
3160static void
3161__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3162{
3163 struct sched_dl_entity *dl_se = &p->dl;
3164
3165 init_dl_task_timer(dl_se);
3166 dl_se->dl_runtime = attr->sched_runtime;
3167 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3168 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3169 dl_se->flags = attr->sched_flags;
332ac17e 3170 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
aab03e05
DF
3171 dl_se->dl_throttled = 0;
3172 dl_se->dl_new = 1;
3173}
3174
c365c292
TG
3175static void __setscheduler_params(struct task_struct *p,
3176 const struct sched_attr *attr)
1da177e4 3177{
d50dde5a
DF
3178 int policy = attr->sched_policy;
3179
39fd8fd2
PZ
3180 if (policy == -1) /* setparam */
3181 policy = p->policy;
3182
1da177e4 3183 p->policy = policy;
d50dde5a 3184
aab03e05
DF
3185 if (dl_policy(policy))
3186 __setparam_dl(p, attr);
39fd8fd2 3187 else if (fair_policy(policy))
d50dde5a
DF
3188 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3189
39fd8fd2
PZ
3190 /*
3191 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3192 * !rt_policy. Always setting this ensures that things like
3193 * getparam()/getattr() don't report silly values for !rt tasks.
3194 */
3195 p->rt_priority = attr->sched_priority;
c365c292
TG
3196 set_load_weight(p);
3197}
39fd8fd2 3198
c365c292
TG
3199/* Actually do priority change: must hold pi & rq lock. */
3200static void __setscheduler(struct rq *rq, struct task_struct *p,
3201 const struct sched_attr *attr)
3202{
3203 __setscheduler_params(p, attr);
d50dde5a 3204
aab03e05
DF
3205 if (dl_prio(p->prio))
3206 p->sched_class = &dl_sched_class;
3207 else if (rt_prio(p->prio))
ffd44db5
PZ
3208 p->sched_class = &rt_sched_class;
3209 else
3210 p->sched_class = &fair_sched_class;
1da177e4 3211}
aab03e05
DF
3212
3213static void
3214__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3215{
3216 struct sched_dl_entity *dl_se = &p->dl;
3217
3218 attr->sched_priority = p->rt_priority;
3219 attr->sched_runtime = dl_se->dl_runtime;
3220 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3221 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3222 attr->sched_flags = dl_se->flags;
3223}
3224
3225/*
3226 * This function validates the new parameters of a -deadline task.
3227 * We ask for the deadline not being zero, and greater or equal
755378a4 3228 * than the runtime, as well as the period of being zero or
332ac17e
DF
3229 * greater than deadline. Furthermore, we have to be sure that
3230 * user parameters are above the internal resolution (1us); we
3231 * check sched_runtime only since it is always the smaller one.
aab03e05
DF
3232 */
3233static bool
3234__checkparam_dl(const struct sched_attr *attr)
3235{
3236 return attr && attr->sched_deadline != 0 &&
755378a4
HG
3237 (attr->sched_period == 0 ||
3238 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
332ac17e
DF
3239 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3240 attr->sched_runtime >= (2 << (DL_SCALE - 1));
aab03e05
DF
3241}
3242
c69e8d9c
DH
3243/*
3244 * check the target process has a UID that matches the current process's
3245 */
3246static bool check_same_owner(struct task_struct *p)
3247{
3248 const struct cred *cred = current_cred(), *pcred;
3249 bool match;
3250
3251 rcu_read_lock();
3252 pcred = __task_cred(p);
9c806aa0
EB
3253 match = (uid_eq(cred->euid, pcred->euid) ||
3254 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3255 rcu_read_unlock();
3256 return match;
3257}
3258
d50dde5a
DF
3259static int __sched_setscheduler(struct task_struct *p,
3260 const struct sched_attr *attr,
3261 bool user)
1da177e4 3262{
c365c292 3263 int newprio = MAX_RT_PRIO - 1 - attr->sched_priority;
83b699ed 3264 int retval, oldprio, oldpolicy = -1, on_rq, running;
d50dde5a 3265 int policy = attr->sched_policy;
1da177e4 3266 unsigned long flags;
83ab0aa0 3267 const struct sched_class *prev_class;
70b97a7f 3268 struct rq *rq;
ca94c442 3269 int reset_on_fork;
1da177e4 3270
66e5393a
SR
3271 /* may grab non-irq protected spin_locks */
3272 BUG_ON(in_interrupt());
1da177e4
LT
3273recheck:
3274 /* double check policy once rq lock held */
ca94c442
LP
3275 if (policy < 0) {
3276 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3277 policy = oldpolicy = p->policy;
ca94c442 3278 } else {
7479f3c9 3279 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3280
aab03e05
DF
3281 if (policy != SCHED_DEADLINE &&
3282 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3283 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3284 policy != SCHED_IDLE)
3285 return -EINVAL;
3286 }
3287
7479f3c9
PZ
3288 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3289 return -EINVAL;
3290
1da177e4
LT
3291 /*
3292 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3293 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3294 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3295 */
0bb040a4 3296 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3297 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3298 return -EINVAL;
aab03e05
DF
3299 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3300 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3301 return -EINVAL;
3302
37e4ab3f
OC
3303 /*
3304 * Allow unprivileged RT tasks to decrease priority:
3305 */
961ccddd 3306 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3307 if (fair_policy(policy)) {
d0ea0268 3308 if (attr->sched_nice < task_nice(p) &&
eaad4513 3309 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3310 return -EPERM;
3311 }
3312
e05606d3 3313 if (rt_policy(policy)) {
a44702e8
ON
3314 unsigned long rlim_rtprio =
3315 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3316
3317 /* can't set/change the rt policy */
3318 if (policy != p->policy && !rlim_rtprio)
3319 return -EPERM;
3320
3321 /* can't increase priority */
d50dde5a
DF
3322 if (attr->sched_priority > p->rt_priority &&
3323 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3324 return -EPERM;
3325 }
c02aa73b 3326
dd41f596 3327 /*
c02aa73b
DH
3328 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3329 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3330 */
c02aa73b 3331 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3332 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3333 return -EPERM;
3334 }
5fe1d75f 3335
37e4ab3f 3336 /* can't change other user's priorities */
c69e8d9c 3337 if (!check_same_owner(p))
37e4ab3f 3338 return -EPERM;
ca94c442
LP
3339
3340 /* Normal users shall not reset the sched_reset_on_fork flag */
3341 if (p->sched_reset_on_fork && !reset_on_fork)
3342 return -EPERM;
37e4ab3f 3343 }
1da177e4 3344
725aad24 3345 if (user) {
b0ae1981 3346 retval = security_task_setscheduler(p);
725aad24
JF
3347 if (retval)
3348 return retval;
3349 }
3350
b29739f9
IM
3351 /*
3352 * make sure no PI-waiters arrive (or leave) while we are
3353 * changing the priority of the task:
0122ec5b 3354 *
25985edc 3355 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3356 * runqueue lock must be held.
3357 */
0122ec5b 3358 rq = task_rq_lock(p, &flags);
dc61b1d6 3359
34f971f6
PZ
3360 /*
3361 * Changing the policy of the stop threads its a very bad idea
3362 */
3363 if (p == rq->stop) {
0122ec5b 3364 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3365 return -EINVAL;
3366 }
3367
a51e9198 3368 /*
d6b1e911
TG
3369 * If not changing anything there's no need to proceed further,
3370 * but store a possible modification of reset_on_fork.
a51e9198 3371 */
d50dde5a 3372 if (unlikely(policy == p->policy)) {
d0ea0268 3373 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3374 goto change;
3375 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3376 goto change;
aab03e05
DF
3377 if (dl_policy(policy))
3378 goto change;
d50dde5a 3379
d6b1e911 3380 p->sched_reset_on_fork = reset_on_fork;
45afb173 3381 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3382 return 0;
3383 }
d50dde5a 3384change:
a51e9198 3385
dc61b1d6 3386 if (user) {
332ac17e 3387#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3388 /*
3389 * Do not allow realtime tasks into groups that have no runtime
3390 * assigned.
3391 */
3392 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3393 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3394 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3395 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3396 return -EPERM;
3397 }
dc61b1d6 3398#endif
332ac17e
DF
3399#ifdef CONFIG_SMP
3400 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3401 cpumask_t *span = rq->rd->span;
332ac17e
DF
3402
3403 /*
3404 * Don't allow tasks with an affinity mask smaller than
3405 * the entire root_domain to become SCHED_DEADLINE. We
3406 * will also fail if there's no bandwidth available.
3407 */
e4099a5e
PZ
3408 if (!cpumask_subset(span, &p->cpus_allowed) ||
3409 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3410 task_rq_unlock(rq, p, &flags);
3411 return -EPERM;
3412 }
3413 }
3414#endif
3415 }
dc61b1d6 3416
1da177e4
LT
3417 /* recheck policy now with rq lock held */
3418 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3419 policy = oldpolicy = -1;
0122ec5b 3420 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3421 goto recheck;
3422 }
332ac17e
DF
3423
3424 /*
3425 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3426 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3427 * is available.
3428 */
e4099a5e 3429 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3430 task_rq_unlock(rq, p, &flags);
3431 return -EBUSY;
3432 }
3433
c365c292
TG
3434 p->sched_reset_on_fork = reset_on_fork;
3435 oldprio = p->prio;
3436
3437 /*
3438 * Special case for priority boosted tasks.
3439 *
3440 * If the new priority is lower or equal (user space view)
3441 * than the current (boosted) priority, we just store the new
3442 * normal parameters and do not touch the scheduler class and
3443 * the runqueue. This will be done when the task deboost
3444 * itself.
3445 */
3446 if (rt_mutex_check_prio(p, newprio)) {
3447 __setscheduler_params(p, attr);
3448 task_rq_unlock(rq, p, &flags);
3449 return 0;
3450 }
3451
fd2f4419 3452 on_rq = p->on_rq;
051a1d1a 3453 running = task_current(rq, p);
0e1f3483 3454 if (on_rq)
4ca9b72b 3455 dequeue_task(rq, p, 0);
0e1f3483
HS
3456 if (running)
3457 p->sched_class->put_prev_task(rq, p);
f6b53205 3458
83ab0aa0 3459 prev_class = p->sched_class;
d50dde5a 3460 __setscheduler(rq, p, attr);
f6b53205 3461
0e1f3483
HS
3462 if (running)
3463 p->sched_class->set_curr_task(rq);
81a44c54
TG
3464 if (on_rq) {
3465 /*
3466 * We enqueue to tail when the priority of a task is
3467 * increased (user space view).
3468 */
3469 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3470 }
cb469845 3471
da7a735e 3472 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3473 task_rq_unlock(rq, p, &flags);
b29739f9 3474
95e02ca9
TG
3475 rt_mutex_adjust_pi(p);
3476
1da177e4
LT
3477 return 0;
3478}
961ccddd 3479
7479f3c9
PZ
3480static int _sched_setscheduler(struct task_struct *p, int policy,
3481 const struct sched_param *param, bool check)
3482{
3483 struct sched_attr attr = {
3484 .sched_policy = policy,
3485 .sched_priority = param->sched_priority,
3486 .sched_nice = PRIO_TO_NICE(p->static_prio),
3487 };
3488
3489 /*
3490 * Fixup the legacy SCHED_RESET_ON_FORK hack
3491 */
3492 if (policy & SCHED_RESET_ON_FORK) {
3493 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3494 policy &= ~SCHED_RESET_ON_FORK;
3495 attr.sched_policy = policy;
3496 }
3497
3498 return __sched_setscheduler(p, &attr, check);
3499}
961ccddd
RR
3500/**
3501 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3502 * @p: the task in question.
3503 * @policy: new policy.
3504 * @param: structure containing the new RT priority.
3505 *
e69f6186
YB
3506 * Return: 0 on success. An error code otherwise.
3507 *
961ccddd
RR
3508 * NOTE that the task may be already dead.
3509 */
3510int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3511 const struct sched_param *param)
961ccddd 3512{
7479f3c9 3513 return _sched_setscheduler(p, policy, param, true);
961ccddd 3514}
1da177e4
LT
3515EXPORT_SYMBOL_GPL(sched_setscheduler);
3516
d50dde5a
DF
3517int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3518{
3519 return __sched_setscheduler(p, attr, true);
3520}
3521EXPORT_SYMBOL_GPL(sched_setattr);
3522
961ccddd
RR
3523/**
3524 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3525 * @p: the task in question.
3526 * @policy: new policy.
3527 * @param: structure containing the new RT priority.
3528 *
3529 * Just like sched_setscheduler, only don't bother checking if the
3530 * current context has permission. For example, this is needed in
3531 * stop_machine(): we create temporary high priority worker threads,
3532 * but our caller might not have that capability.
e69f6186
YB
3533 *
3534 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3535 */
3536int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3537 const struct sched_param *param)
961ccddd 3538{
7479f3c9 3539 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3540}
3541
95cdf3b7
IM
3542static int
3543do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3544{
1da177e4
LT
3545 struct sched_param lparam;
3546 struct task_struct *p;
36c8b586 3547 int retval;
1da177e4
LT
3548
3549 if (!param || pid < 0)
3550 return -EINVAL;
3551 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3552 return -EFAULT;
5fe1d75f
ON
3553
3554 rcu_read_lock();
3555 retval = -ESRCH;
1da177e4 3556 p = find_process_by_pid(pid);
5fe1d75f
ON
3557 if (p != NULL)
3558 retval = sched_setscheduler(p, policy, &lparam);
3559 rcu_read_unlock();
36c8b586 3560
1da177e4
LT
3561 return retval;
3562}
3563
d50dde5a
DF
3564/*
3565 * Mimics kernel/events/core.c perf_copy_attr().
3566 */
3567static int sched_copy_attr(struct sched_attr __user *uattr,
3568 struct sched_attr *attr)
3569{
3570 u32 size;
3571 int ret;
3572
3573 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3574 return -EFAULT;
3575
3576 /*
3577 * zero the full structure, so that a short copy will be nice.
3578 */
3579 memset(attr, 0, sizeof(*attr));
3580
3581 ret = get_user(size, &uattr->size);
3582 if (ret)
3583 return ret;
3584
3585 if (size > PAGE_SIZE) /* silly large */
3586 goto err_size;
3587
3588 if (!size) /* abi compat */
3589 size = SCHED_ATTR_SIZE_VER0;
3590
3591 if (size < SCHED_ATTR_SIZE_VER0)
3592 goto err_size;
3593
3594 /*
3595 * If we're handed a bigger struct than we know of,
3596 * ensure all the unknown bits are 0 - i.e. new
3597 * user-space does not rely on any kernel feature
3598 * extensions we dont know about yet.
3599 */
3600 if (size > sizeof(*attr)) {
3601 unsigned char __user *addr;
3602 unsigned char __user *end;
3603 unsigned char val;
3604
3605 addr = (void __user *)uattr + sizeof(*attr);
3606 end = (void __user *)uattr + size;
3607
3608 for (; addr < end; addr++) {
3609 ret = get_user(val, addr);
3610 if (ret)
3611 return ret;
3612 if (val)
3613 goto err_size;
3614 }
3615 size = sizeof(*attr);
3616 }
3617
3618 ret = copy_from_user(attr, uattr, size);
3619 if (ret)
3620 return -EFAULT;
3621
3622 /*
3623 * XXX: do we want to be lenient like existing syscalls; or do we want
3624 * to be strict and return an error on out-of-bounds values?
3625 */
75e45d51 3626 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a
DF
3627
3628out:
3629 return ret;
3630
3631err_size:
3632 put_user(sizeof(*attr), &uattr->size);
3633 ret = -E2BIG;
3634 goto out;
3635}
3636
1da177e4
LT
3637/**
3638 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3639 * @pid: the pid in question.
3640 * @policy: new policy.
3641 * @param: structure containing the new RT priority.
e69f6186
YB
3642 *
3643 * Return: 0 on success. An error code otherwise.
1da177e4 3644 */
5add95d4
HC
3645SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3646 struct sched_param __user *, param)
1da177e4 3647{
c21761f1
JB
3648 /* negative values for policy are not valid */
3649 if (policy < 0)
3650 return -EINVAL;
3651
1da177e4
LT
3652 return do_sched_setscheduler(pid, policy, param);
3653}
3654
3655/**
3656 * sys_sched_setparam - set/change the RT priority of a thread
3657 * @pid: the pid in question.
3658 * @param: structure containing the new RT priority.
e69f6186
YB
3659 *
3660 * Return: 0 on success. An error code otherwise.
1da177e4 3661 */
5add95d4 3662SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3663{
3664 return do_sched_setscheduler(pid, -1, param);
3665}
3666
d50dde5a
DF
3667/**
3668 * sys_sched_setattr - same as above, but with extended sched_attr
3669 * @pid: the pid in question.
5778fccf 3670 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3671 */
3672SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr)
3673{
3674 struct sched_attr attr;
3675 struct task_struct *p;
3676 int retval;
3677
3678 if (!uattr || pid < 0)
3679 return -EINVAL;
3680
3681 if (sched_copy_attr(uattr, &attr))
3682 return -EFAULT;
3683
3684 rcu_read_lock();
3685 retval = -ESRCH;
3686 p = find_process_by_pid(pid);
3687 if (p != NULL)
3688 retval = sched_setattr(p, &attr);
3689 rcu_read_unlock();
3690
3691 return retval;
3692}
3693
1da177e4
LT
3694/**
3695 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3696 * @pid: the pid in question.
e69f6186
YB
3697 *
3698 * Return: On success, the policy of the thread. Otherwise, a negative error
3699 * code.
1da177e4 3700 */
5add95d4 3701SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3702{
36c8b586 3703 struct task_struct *p;
3a5c359a 3704 int retval;
1da177e4
LT
3705
3706 if (pid < 0)
3a5c359a 3707 return -EINVAL;
1da177e4
LT
3708
3709 retval = -ESRCH;
5fe85be0 3710 rcu_read_lock();
1da177e4
LT
3711 p = find_process_by_pid(pid);
3712 if (p) {
3713 retval = security_task_getscheduler(p);
3714 if (!retval)
ca94c442
LP
3715 retval = p->policy
3716 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3717 }
5fe85be0 3718 rcu_read_unlock();
1da177e4
LT
3719 return retval;
3720}
3721
3722/**
ca94c442 3723 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3724 * @pid: the pid in question.
3725 * @param: structure containing the RT priority.
e69f6186
YB
3726 *
3727 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3728 * code.
1da177e4 3729 */
5add95d4 3730SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3731{
3732 struct sched_param lp;
36c8b586 3733 struct task_struct *p;
3a5c359a 3734 int retval;
1da177e4
LT
3735
3736 if (!param || pid < 0)
3a5c359a 3737 return -EINVAL;
1da177e4 3738
5fe85be0 3739 rcu_read_lock();
1da177e4
LT
3740 p = find_process_by_pid(pid);
3741 retval = -ESRCH;
3742 if (!p)
3743 goto out_unlock;
3744
3745 retval = security_task_getscheduler(p);
3746 if (retval)
3747 goto out_unlock;
3748
aab03e05
DF
3749 if (task_has_dl_policy(p)) {
3750 retval = -EINVAL;
3751 goto out_unlock;
3752 }
1da177e4 3753 lp.sched_priority = p->rt_priority;
5fe85be0 3754 rcu_read_unlock();
1da177e4
LT
3755
3756 /*
3757 * This one might sleep, we cannot do it with a spinlock held ...
3758 */
3759 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3760
1da177e4
LT
3761 return retval;
3762
3763out_unlock:
5fe85be0 3764 rcu_read_unlock();
1da177e4
LT
3765 return retval;
3766}
3767
d50dde5a
DF
3768static int sched_read_attr(struct sched_attr __user *uattr,
3769 struct sched_attr *attr,
3770 unsigned int usize)
3771{
3772 int ret;
3773
3774 if (!access_ok(VERIFY_WRITE, uattr, usize))
3775 return -EFAULT;
3776
3777 /*
3778 * If we're handed a smaller struct than we know of,
3779 * ensure all the unknown bits are 0 - i.e. old
3780 * user-space does not get uncomplete information.
3781 */
3782 if (usize < sizeof(*attr)) {
3783 unsigned char *addr;
3784 unsigned char *end;
3785
3786 addr = (void *)attr + usize;
3787 end = (void *)attr + sizeof(*attr);
3788
3789 for (; addr < end; addr++) {
3790 if (*addr)
3791 goto err_size;
3792 }
3793
3794 attr->size = usize;
3795 }
3796
3797 ret = copy_to_user(uattr, attr, usize);
3798 if (ret)
3799 return -EFAULT;
3800
3801out:
3802 return ret;
3803
3804err_size:
3805 ret = -E2BIG;
3806 goto out;
3807}
3808
3809/**
aab03e05 3810 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3811 * @pid: the pid in question.
5778fccf 3812 * @uattr: structure containing the extended parameters.
d50dde5a
DF
3813 * @size: sizeof(attr) for fwd/bwd comp.
3814 */
3815SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3816 unsigned int, size)
3817{
3818 struct sched_attr attr = {
3819 .size = sizeof(struct sched_attr),
3820 };
3821 struct task_struct *p;
3822 int retval;
3823
3824 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3825 size < SCHED_ATTR_SIZE_VER0)
3826 return -EINVAL;
3827
3828 rcu_read_lock();
3829 p = find_process_by_pid(pid);
3830 retval = -ESRCH;
3831 if (!p)
3832 goto out_unlock;
3833
3834 retval = security_task_getscheduler(p);
3835 if (retval)
3836 goto out_unlock;
3837
3838 attr.sched_policy = p->policy;
7479f3c9
PZ
3839 if (p->sched_reset_on_fork)
3840 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3841 if (task_has_dl_policy(p))
3842 __getparam_dl(p, &attr);
3843 else if (task_has_rt_policy(p))
d50dde5a
DF
3844 attr.sched_priority = p->rt_priority;
3845 else
d0ea0268 3846 attr.sched_nice = task_nice(p);
d50dde5a
DF
3847
3848 rcu_read_unlock();
3849
3850 retval = sched_read_attr(uattr, &attr, size);
3851 return retval;
3852
3853out_unlock:
3854 rcu_read_unlock();
3855 return retval;
3856}
3857
96f874e2 3858long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3859{
5a16f3d3 3860 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3861 struct task_struct *p;
3862 int retval;
1da177e4 3863
23f5d142 3864 rcu_read_lock();
1da177e4
LT
3865
3866 p = find_process_by_pid(pid);
3867 if (!p) {
23f5d142 3868 rcu_read_unlock();
1da177e4
LT
3869 return -ESRCH;
3870 }
3871
23f5d142 3872 /* Prevent p going away */
1da177e4 3873 get_task_struct(p);
23f5d142 3874 rcu_read_unlock();
1da177e4 3875
14a40ffc
TH
3876 if (p->flags & PF_NO_SETAFFINITY) {
3877 retval = -EINVAL;
3878 goto out_put_task;
3879 }
5a16f3d3
RR
3880 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3881 retval = -ENOMEM;
3882 goto out_put_task;
3883 }
3884 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3885 retval = -ENOMEM;
3886 goto out_free_cpus_allowed;
3887 }
1da177e4 3888 retval = -EPERM;
4c44aaaf
EB
3889 if (!check_same_owner(p)) {
3890 rcu_read_lock();
3891 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3892 rcu_read_unlock();
3893 goto out_unlock;
3894 }
3895 rcu_read_unlock();
3896 }
1da177e4 3897
b0ae1981 3898 retval = security_task_setscheduler(p);
e7834f8f
DQ
3899 if (retval)
3900 goto out_unlock;
3901
e4099a5e
PZ
3902
3903 cpuset_cpus_allowed(p, cpus_allowed);
3904 cpumask_and(new_mask, in_mask, cpus_allowed);
3905
332ac17e
DF
3906 /*
3907 * Since bandwidth control happens on root_domain basis,
3908 * if admission test is enabled, we only admit -deadline
3909 * tasks allowed to run on all the CPUs in the task's
3910 * root_domain.
3911 */
3912#ifdef CONFIG_SMP
3913 if (task_has_dl_policy(p)) {
3914 const struct cpumask *span = task_rq(p)->rd->span;
3915
e4099a5e 3916 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
332ac17e
DF
3917 retval = -EBUSY;
3918 goto out_unlock;
3919 }
3920 }
3921#endif
49246274 3922again:
5a16f3d3 3923 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3924
8707d8b8 3925 if (!retval) {
5a16f3d3
RR
3926 cpuset_cpus_allowed(p, cpus_allowed);
3927 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3928 /*
3929 * We must have raced with a concurrent cpuset
3930 * update. Just reset the cpus_allowed to the
3931 * cpuset's cpus_allowed
3932 */
5a16f3d3 3933 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3934 goto again;
3935 }
3936 }
1da177e4 3937out_unlock:
5a16f3d3
RR
3938 free_cpumask_var(new_mask);
3939out_free_cpus_allowed:
3940 free_cpumask_var(cpus_allowed);
3941out_put_task:
1da177e4 3942 put_task_struct(p);
1da177e4
LT
3943 return retval;
3944}
3945
3946static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3947 struct cpumask *new_mask)
1da177e4 3948{
96f874e2
RR
3949 if (len < cpumask_size())
3950 cpumask_clear(new_mask);
3951 else if (len > cpumask_size())
3952 len = cpumask_size();
3953
1da177e4
LT
3954 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3955}
3956
3957/**
3958 * sys_sched_setaffinity - set the cpu affinity of a process
3959 * @pid: pid of the process
3960 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3961 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3962 *
3963 * Return: 0 on success. An error code otherwise.
1da177e4 3964 */
5add95d4
HC
3965SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3966 unsigned long __user *, user_mask_ptr)
1da177e4 3967{
5a16f3d3 3968 cpumask_var_t new_mask;
1da177e4
LT
3969 int retval;
3970
5a16f3d3
RR
3971 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3972 return -ENOMEM;
1da177e4 3973
5a16f3d3
RR
3974 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3975 if (retval == 0)
3976 retval = sched_setaffinity(pid, new_mask);
3977 free_cpumask_var(new_mask);
3978 return retval;
1da177e4
LT
3979}
3980
96f874e2 3981long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3982{
36c8b586 3983 struct task_struct *p;
31605683 3984 unsigned long flags;
1da177e4 3985 int retval;
1da177e4 3986
23f5d142 3987 rcu_read_lock();
1da177e4
LT
3988
3989 retval = -ESRCH;
3990 p = find_process_by_pid(pid);
3991 if (!p)
3992 goto out_unlock;
3993
e7834f8f
DQ
3994 retval = security_task_getscheduler(p);
3995 if (retval)
3996 goto out_unlock;
3997
013fdb80 3998 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 3999 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4000 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4001
4002out_unlock:
23f5d142 4003 rcu_read_unlock();
1da177e4 4004
9531b62f 4005 return retval;
1da177e4
LT
4006}
4007
4008/**
4009 * sys_sched_getaffinity - get the cpu affinity of a process
4010 * @pid: pid of the process
4011 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4012 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4013 *
4014 * Return: 0 on success. An error code otherwise.
1da177e4 4015 */
5add95d4
HC
4016SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4017 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4018{
4019 int ret;
f17c8607 4020 cpumask_var_t mask;
1da177e4 4021
84fba5ec 4022 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4023 return -EINVAL;
4024 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4025 return -EINVAL;
4026
f17c8607
RR
4027 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4028 return -ENOMEM;
1da177e4 4029
f17c8607
RR
4030 ret = sched_getaffinity(pid, mask);
4031 if (ret == 0) {
8bc037fb 4032 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4033
4034 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4035 ret = -EFAULT;
4036 else
cd3d8031 4037 ret = retlen;
f17c8607
RR
4038 }
4039 free_cpumask_var(mask);
1da177e4 4040
f17c8607 4041 return ret;
1da177e4
LT
4042}
4043
4044/**
4045 * sys_sched_yield - yield the current processor to other threads.
4046 *
dd41f596
IM
4047 * This function yields the current CPU to other tasks. If there are no
4048 * other threads running on this CPU then this function will return.
e69f6186
YB
4049 *
4050 * Return: 0.
1da177e4 4051 */
5add95d4 4052SYSCALL_DEFINE0(sched_yield)
1da177e4 4053{
70b97a7f 4054 struct rq *rq = this_rq_lock();
1da177e4 4055
2d72376b 4056 schedstat_inc(rq, yld_count);
4530d7ab 4057 current->sched_class->yield_task(rq);
1da177e4
LT
4058
4059 /*
4060 * Since we are going to call schedule() anyway, there's
4061 * no need to preempt or enable interrupts:
4062 */
4063 __release(rq->lock);
8a25d5de 4064 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4065 do_raw_spin_unlock(&rq->lock);
ba74c144 4066 sched_preempt_enable_no_resched();
1da177e4
LT
4067
4068 schedule();
4069
4070 return 0;
4071}
4072
e7b38404 4073static void __cond_resched(void)
1da177e4 4074{
bdb43806 4075 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 4076 __schedule();
bdb43806 4077 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
4078}
4079
02b67cc3 4080int __sched _cond_resched(void)
1da177e4 4081{
d86ee480 4082 if (should_resched()) {
1da177e4
LT
4083 __cond_resched();
4084 return 1;
4085 }
4086 return 0;
4087}
02b67cc3 4088EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4089
4090/*
613afbf8 4091 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4092 * call schedule, and on return reacquire the lock.
4093 *
41a2d6cf 4094 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4095 * operations here to prevent schedule() from being called twice (once via
4096 * spin_unlock(), once by hand).
4097 */
613afbf8 4098int __cond_resched_lock(spinlock_t *lock)
1da177e4 4099{
d86ee480 4100 int resched = should_resched();
6df3cecb
JK
4101 int ret = 0;
4102
f607c668
PZ
4103 lockdep_assert_held(lock);
4104
95c354fe 4105 if (spin_needbreak(lock) || resched) {
1da177e4 4106 spin_unlock(lock);
d86ee480 4107 if (resched)
95c354fe
NP
4108 __cond_resched();
4109 else
4110 cpu_relax();
6df3cecb 4111 ret = 1;
1da177e4 4112 spin_lock(lock);
1da177e4 4113 }
6df3cecb 4114 return ret;
1da177e4 4115}
613afbf8 4116EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4117
613afbf8 4118int __sched __cond_resched_softirq(void)
1da177e4
LT
4119{
4120 BUG_ON(!in_softirq());
4121
d86ee480 4122 if (should_resched()) {
98d82567 4123 local_bh_enable();
1da177e4
LT
4124 __cond_resched();
4125 local_bh_disable();
4126 return 1;
4127 }
4128 return 0;
4129}
613afbf8 4130EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4131
1da177e4
LT
4132/**
4133 * yield - yield the current processor to other threads.
4134 *
8e3fabfd
PZ
4135 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4136 *
4137 * The scheduler is at all times free to pick the calling task as the most
4138 * eligible task to run, if removing the yield() call from your code breaks
4139 * it, its already broken.
4140 *
4141 * Typical broken usage is:
4142 *
4143 * while (!event)
4144 * yield();
4145 *
4146 * where one assumes that yield() will let 'the other' process run that will
4147 * make event true. If the current task is a SCHED_FIFO task that will never
4148 * happen. Never use yield() as a progress guarantee!!
4149 *
4150 * If you want to use yield() to wait for something, use wait_event().
4151 * If you want to use yield() to be 'nice' for others, use cond_resched().
4152 * If you still want to use yield(), do not!
1da177e4
LT
4153 */
4154void __sched yield(void)
4155{
4156 set_current_state(TASK_RUNNING);
4157 sys_sched_yield();
4158}
1da177e4
LT
4159EXPORT_SYMBOL(yield);
4160
d95f4122
MG
4161/**
4162 * yield_to - yield the current processor to another thread in
4163 * your thread group, or accelerate that thread toward the
4164 * processor it's on.
16addf95
RD
4165 * @p: target task
4166 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4167 *
4168 * It's the caller's job to ensure that the target task struct
4169 * can't go away on us before we can do any checks.
4170 *
e69f6186 4171 * Return:
7b270f60
PZ
4172 * true (>0) if we indeed boosted the target task.
4173 * false (0) if we failed to boost the target.
4174 * -ESRCH if there's no task to yield to.
d95f4122
MG
4175 */
4176bool __sched yield_to(struct task_struct *p, bool preempt)
4177{
4178 struct task_struct *curr = current;
4179 struct rq *rq, *p_rq;
4180 unsigned long flags;
c3c18640 4181 int yielded = 0;
d95f4122
MG
4182
4183 local_irq_save(flags);
4184 rq = this_rq();
4185
4186again:
4187 p_rq = task_rq(p);
7b270f60
PZ
4188 /*
4189 * If we're the only runnable task on the rq and target rq also
4190 * has only one task, there's absolutely no point in yielding.
4191 */
4192 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4193 yielded = -ESRCH;
4194 goto out_irq;
4195 }
4196
d95f4122 4197 double_rq_lock(rq, p_rq);
39e24d8f 4198 if (task_rq(p) != p_rq) {
d95f4122
MG
4199 double_rq_unlock(rq, p_rq);
4200 goto again;
4201 }
4202
4203 if (!curr->sched_class->yield_to_task)
7b270f60 4204 goto out_unlock;
d95f4122
MG
4205
4206 if (curr->sched_class != p->sched_class)
7b270f60 4207 goto out_unlock;
d95f4122
MG
4208
4209 if (task_running(p_rq, p) || p->state)
7b270f60 4210 goto out_unlock;
d95f4122
MG
4211
4212 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4213 if (yielded) {
d95f4122 4214 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4215 /*
4216 * Make p's CPU reschedule; pick_next_entity takes care of
4217 * fairness.
4218 */
4219 if (preempt && rq != p_rq)
4220 resched_task(p_rq->curr);
4221 }
d95f4122 4222
7b270f60 4223out_unlock:
d95f4122 4224 double_rq_unlock(rq, p_rq);
7b270f60 4225out_irq:
d95f4122
MG
4226 local_irq_restore(flags);
4227
7b270f60 4228 if (yielded > 0)
d95f4122
MG
4229 schedule();
4230
4231 return yielded;
4232}
4233EXPORT_SYMBOL_GPL(yield_to);
4234
1da177e4 4235/*
41a2d6cf 4236 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4237 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4238 */
4239void __sched io_schedule(void)
4240{
54d35f29 4241 struct rq *rq = raw_rq();
1da177e4 4242
0ff92245 4243 delayacct_blkio_start();
1da177e4 4244 atomic_inc(&rq->nr_iowait);
73c10101 4245 blk_flush_plug(current);
8f0dfc34 4246 current->in_iowait = 1;
1da177e4 4247 schedule();
8f0dfc34 4248 current->in_iowait = 0;
1da177e4 4249 atomic_dec(&rq->nr_iowait);
0ff92245 4250 delayacct_blkio_end();
1da177e4 4251}
1da177e4
LT
4252EXPORT_SYMBOL(io_schedule);
4253
4254long __sched io_schedule_timeout(long timeout)
4255{
54d35f29 4256 struct rq *rq = raw_rq();
1da177e4
LT
4257 long ret;
4258
0ff92245 4259 delayacct_blkio_start();
1da177e4 4260 atomic_inc(&rq->nr_iowait);
73c10101 4261 blk_flush_plug(current);
8f0dfc34 4262 current->in_iowait = 1;
1da177e4 4263 ret = schedule_timeout(timeout);
8f0dfc34 4264 current->in_iowait = 0;
1da177e4 4265 atomic_dec(&rq->nr_iowait);
0ff92245 4266 delayacct_blkio_end();
1da177e4
LT
4267 return ret;
4268}
4269
4270/**
4271 * sys_sched_get_priority_max - return maximum RT priority.
4272 * @policy: scheduling class.
4273 *
e69f6186
YB
4274 * Return: On success, this syscall returns the maximum
4275 * rt_priority that can be used by a given scheduling class.
4276 * On failure, a negative error code is returned.
1da177e4 4277 */
5add95d4 4278SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4279{
4280 int ret = -EINVAL;
4281
4282 switch (policy) {
4283 case SCHED_FIFO:
4284 case SCHED_RR:
4285 ret = MAX_USER_RT_PRIO-1;
4286 break;
aab03e05 4287 case SCHED_DEADLINE:
1da177e4 4288 case SCHED_NORMAL:
b0a9499c 4289 case SCHED_BATCH:
dd41f596 4290 case SCHED_IDLE:
1da177e4
LT
4291 ret = 0;
4292 break;
4293 }
4294 return ret;
4295}
4296
4297/**
4298 * sys_sched_get_priority_min - return minimum RT priority.
4299 * @policy: scheduling class.
4300 *
e69f6186
YB
4301 * Return: On success, this syscall returns the minimum
4302 * rt_priority that can be used by a given scheduling class.
4303 * On failure, a negative error code is returned.
1da177e4 4304 */
5add95d4 4305SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4306{
4307 int ret = -EINVAL;
4308
4309 switch (policy) {
4310 case SCHED_FIFO:
4311 case SCHED_RR:
4312 ret = 1;
4313 break;
aab03e05 4314 case SCHED_DEADLINE:
1da177e4 4315 case SCHED_NORMAL:
b0a9499c 4316 case SCHED_BATCH:
dd41f596 4317 case SCHED_IDLE:
1da177e4
LT
4318 ret = 0;
4319 }
4320 return ret;
4321}
4322
4323/**
4324 * sys_sched_rr_get_interval - return the default timeslice of a process.
4325 * @pid: pid of the process.
4326 * @interval: userspace pointer to the timeslice value.
4327 *
4328 * this syscall writes the default timeslice value of a given process
4329 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4330 *
4331 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4332 * an error code.
1da177e4 4333 */
17da2bd9 4334SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4335 struct timespec __user *, interval)
1da177e4 4336{
36c8b586 4337 struct task_struct *p;
a4ec24b4 4338 unsigned int time_slice;
dba091b9
TG
4339 unsigned long flags;
4340 struct rq *rq;
3a5c359a 4341 int retval;
1da177e4 4342 struct timespec t;
1da177e4
LT
4343
4344 if (pid < 0)
3a5c359a 4345 return -EINVAL;
1da177e4
LT
4346
4347 retval = -ESRCH;
1a551ae7 4348 rcu_read_lock();
1da177e4
LT
4349 p = find_process_by_pid(pid);
4350 if (!p)
4351 goto out_unlock;
4352
4353 retval = security_task_getscheduler(p);
4354 if (retval)
4355 goto out_unlock;
4356
dba091b9 4357 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4358 time_slice = 0;
4359 if (p->sched_class->get_rr_interval)
4360 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4361 task_rq_unlock(rq, p, &flags);
a4ec24b4 4362
1a551ae7 4363 rcu_read_unlock();
a4ec24b4 4364 jiffies_to_timespec(time_slice, &t);
1da177e4 4365 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4366 return retval;
3a5c359a 4367
1da177e4 4368out_unlock:
1a551ae7 4369 rcu_read_unlock();
1da177e4
LT
4370 return retval;
4371}
4372
7c731e0a 4373static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4374
82a1fcb9 4375void sched_show_task(struct task_struct *p)
1da177e4 4376{
1da177e4 4377 unsigned long free = 0;
4e79752c 4378 int ppid;
36c8b586 4379 unsigned state;
1da177e4 4380
1da177e4 4381 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4382 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4383 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4384#if BITS_PER_LONG == 32
1da177e4 4385 if (state == TASK_RUNNING)
3df0fc5b 4386 printk(KERN_CONT " running ");
1da177e4 4387 else
3df0fc5b 4388 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4389#else
4390 if (state == TASK_RUNNING)
3df0fc5b 4391 printk(KERN_CONT " running task ");
1da177e4 4392 else
3df0fc5b 4393 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4394#endif
4395#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4396 free = stack_not_used(p);
1da177e4 4397#endif
4e79752c
PM
4398 rcu_read_lock();
4399 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4400 rcu_read_unlock();
3df0fc5b 4401 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4402 task_pid_nr(p), ppid,
aa47b7e0 4403 (unsigned long)task_thread_info(p)->flags);
1da177e4 4404
3d1cb205 4405 print_worker_info(KERN_INFO, p);
5fb5e6de 4406 show_stack(p, NULL);
1da177e4
LT
4407}
4408
e59e2ae2 4409void show_state_filter(unsigned long state_filter)
1da177e4 4410{
36c8b586 4411 struct task_struct *g, *p;
1da177e4 4412
4bd77321 4413#if BITS_PER_LONG == 32
3df0fc5b
PZ
4414 printk(KERN_INFO
4415 " task PC stack pid father\n");
1da177e4 4416#else
3df0fc5b
PZ
4417 printk(KERN_INFO
4418 " task PC stack pid father\n");
1da177e4 4419#endif
510f5acc 4420 rcu_read_lock();
1da177e4
LT
4421 do_each_thread(g, p) {
4422 /*
4423 * reset the NMI-timeout, listing all files on a slow
25985edc 4424 * console might take a lot of time:
1da177e4
LT
4425 */
4426 touch_nmi_watchdog();
39bc89fd 4427 if (!state_filter || (p->state & state_filter))
82a1fcb9 4428 sched_show_task(p);
1da177e4
LT
4429 } while_each_thread(g, p);
4430
04c9167f
JF
4431 touch_all_softlockup_watchdogs();
4432
dd41f596
IM
4433#ifdef CONFIG_SCHED_DEBUG
4434 sysrq_sched_debug_show();
4435#endif
510f5acc 4436 rcu_read_unlock();
e59e2ae2
IM
4437 /*
4438 * Only show locks if all tasks are dumped:
4439 */
93335a21 4440 if (!state_filter)
e59e2ae2 4441 debug_show_all_locks();
1da177e4
LT
4442}
4443
0db0628d 4444void init_idle_bootup_task(struct task_struct *idle)
1df21055 4445{
dd41f596 4446 idle->sched_class = &idle_sched_class;
1df21055
IM
4447}
4448
f340c0d1
IM
4449/**
4450 * init_idle - set up an idle thread for a given CPU
4451 * @idle: task in question
4452 * @cpu: cpu the idle task belongs to
4453 *
4454 * NOTE: this function does not set the idle thread's NEED_RESCHED
4455 * flag, to make booting more robust.
4456 */
0db0628d 4457void init_idle(struct task_struct *idle, int cpu)
1da177e4 4458{
70b97a7f 4459 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4460 unsigned long flags;
4461
05fa785c 4462 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4463
5e1576ed 4464 __sched_fork(0, idle);
06b83b5f 4465 idle->state = TASK_RUNNING;
dd41f596
IM
4466 idle->se.exec_start = sched_clock();
4467
1e1b6c51 4468 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4469 /*
4470 * We're having a chicken and egg problem, even though we are
4471 * holding rq->lock, the cpu isn't yet set to this cpu so the
4472 * lockdep check in task_group() will fail.
4473 *
4474 * Similar case to sched_fork(). / Alternatively we could
4475 * use task_rq_lock() here and obtain the other rq->lock.
4476 *
4477 * Silence PROVE_RCU
4478 */
4479 rcu_read_lock();
dd41f596 4480 __set_task_cpu(idle, cpu);
6506cf6c 4481 rcu_read_unlock();
1da177e4 4482
1da177e4 4483 rq->curr = rq->idle = idle;
77177856 4484 idle->on_rq = 1;
3ca7a440
PZ
4485#if defined(CONFIG_SMP)
4486 idle->on_cpu = 1;
4866cde0 4487#endif
05fa785c 4488 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4489
4490 /* Set the preempt count _outside_ the spinlocks! */
01028747 4491 init_idle_preempt_count(idle, cpu);
55cd5340 4492
dd41f596
IM
4493 /*
4494 * The idle tasks have their own, simple scheduling class:
4495 */
4496 idle->sched_class = &idle_sched_class;
868baf07 4497 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4498 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4499#if defined(CONFIG_SMP)
4500 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4501#endif
19978ca6
IM
4502}
4503
1da177e4 4504#ifdef CONFIG_SMP
1e1b6c51
KM
4505void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4506{
4507 if (p->sched_class && p->sched_class->set_cpus_allowed)
4508 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4509
4510 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4511 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4512}
4513
1da177e4
LT
4514/*
4515 * This is how migration works:
4516 *
969c7921
TH
4517 * 1) we invoke migration_cpu_stop() on the target CPU using
4518 * stop_one_cpu().
4519 * 2) stopper starts to run (implicitly forcing the migrated thread
4520 * off the CPU)
4521 * 3) it checks whether the migrated task is still in the wrong runqueue.
4522 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4523 * it and puts it into the right queue.
969c7921
TH
4524 * 5) stopper completes and stop_one_cpu() returns and the migration
4525 * is done.
1da177e4
LT
4526 */
4527
4528/*
4529 * Change a given task's CPU affinity. Migrate the thread to a
4530 * proper CPU and schedule it away if the CPU it's executing on
4531 * is removed from the allowed bitmask.
4532 *
4533 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4534 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4535 * call is not atomic; no spinlocks may be held.
4536 */
96f874e2 4537int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4538{
4539 unsigned long flags;
70b97a7f 4540 struct rq *rq;
969c7921 4541 unsigned int dest_cpu;
48f24c4d 4542 int ret = 0;
1da177e4
LT
4543
4544 rq = task_rq_lock(p, &flags);
e2912009 4545
db44fc01
YZ
4546 if (cpumask_equal(&p->cpus_allowed, new_mask))
4547 goto out;
4548
6ad4c188 4549 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4550 ret = -EINVAL;
4551 goto out;
4552 }
4553
1e1b6c51 4554 do_set_cpus_allowed(p, new_mask);
73fe6aae 4555
1da177e4 4556 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4557 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4558 goto out;
4559
969c7921 4560 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4561 if (p->on_rq) {
969c7921 4562 struct migration_arg arg = { p, dest_cpu };
1da177e4 4563 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4564 task_rq_unlock(rq, p, &flags);
969c7921 4565 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4566 tlb_migrate_finish(p->mm);
4567 return 0;
4568 }
4569out:
0122ec5b 4570 task_rq_unlock(rq, p, &flags);
48f24c4d 4571
1da177e4
LT
4572 return ret;
4573}
cd8ba7cd 4574EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4575
4576/*
41a2d6cf 4577 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4578 * this because either it can't run here any more (set_cpus_allowed()
4579 * away from this CPU, or CPU going down), or because we're
4580 * attempting to rebalance this task on exec (sched_exec).
4581 *
4582 * So we race with normal scheduler movements, but that's OK, as long
4583 * as the task is no longer on this CPU.
efc30814
KK
4584 *
4585 * Returns non-zero if task was successfully migrated.
1da177e4 4586 */
efc30814 4587static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4588{
70b97a7f 4589 struct rq *rq_dest, *rq_src;
e2912009 4590 int ret = 0;
1da177e4 4591
e761b772 4592 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4593 return ret;
1da177e4
LT
4594
4595 rq_src = cpu_rq(src_cpu);
4596 rq_dest = cpu_rq(dest_cpu);
4597
0122ec5b 4598 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4599 double_rq_lock(rq_src, rq_dest);
4600 /* Already moved. */
4601 if (task_cpu(p) != src_cpu)
b1e38734 4602 goto done;
1da177e4 4603 /* Affinity changed (again). */
fa17b507 4604 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4605 goto fail;
1da177e4 4606
e2912009
PZ
4607 /*
4608 * If we're not on a rq, the next wake-up will ensure we're
4609 * placed properly.
4610 */
fd2f4419 4611 if (p->on_rq) {
4ca9b72b 4612 dequeue_task(rq_src, p, 0);
e2912009 4613 set_task_cpu(p, dest_cpu);
4ca9b72b 4614 enqueue_task(rq_dest, p, 0);
15afe09b 4615 check_preempt_curr(rq_dest, p, 0);
1da177e4 4616 }
b1e38734 4617done:
efc30814 4618 ret = 1;
b1e38734 4619fail:
1da177e4 4620 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4621 raw_spin_unlock(&p->pi_lock);
efc30814 4622 return ret;
1da177e4
LT
4623}
4624
e6628d5b
MG
4625#ifdef CONFIG_NUMA_BALANCING
4626/* Migrate current task p to target_cpu */
4627int migrate_task_to(struct task_struct *p, int target_cpu)
4628{
4629 struct migration_arg arg = { p, target_cpu };
4630 int curr_cpu = task_cpu(p);
4631
4632 if (curr_cpu == target_cpu)
4633 return 0;
4634
4635 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4636 return -EINVAL;
4637
4638 /* TODO: This is not properly updating schedstats */
4639
286549dc 4640 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4641 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4642}
0ec8aa00
PZ
4643
4644/*
4645 * Requeue a task on a given node and accurately track the number of NUMA
4646 * tasks on the runqueues
4647 */
4648void sched_setnuma(struct task_struct *p, int nid)
4649{
4650 struct rq *rq;
4651 unsigned long flags;
4652 bool on_rq, running;
4653
4654 rq = task_rq_lock(p, &flags);
4655 on_rq = p->on_rq;
4656 running = task_current(rq, p);
4657
4658 if (on_rq)
4659 dequeue_task(rq, p, 0);
4660 if (running)
4661 p->sched_class->put_prev_task(rq, p);
4662
4663 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4664
4665 if (running)
4666 p->sched_class->set_curr_task(rq);
4667 if (on_rq)
4668 enqueue_task(rq, p, 0);
4669 task_rq_unlock(rq, p, &flags);
4670}
e6628d5b
MG
4671#endif
4672
1da177e4 4673/*
969c7921
TH
4674 * migration_cpu_stop - this will be executed by a highprio stopper thread
4675 * and performs thread migration by bumping thread off CPU then
4676 * 'pushing' onto another runqueue.
1da177e4 4677 */
969c7921 4678static int migration_cpu_stop(void *data)
1da177e4 4679{
969c7921 4680 struct migration_arg *arg = data;
f7b4cddc 4681
969c7921
TH
4682 /*
4683 * The original target cpu might have gone down and we might
4684 * be on another cpu but it doesn't matter.
4685 */
f7b4cddc 4686 local_irq_disable();
969c7921 4687 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4688 local_irq_enable();
1da177e4 4689 return 0;
f7b4cddc
ON
4690}
4691
1da177e4 4692#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4693
054b9108 4694/*
48c5ccae
PZ
4695 * Ensures that the idle task is using init_mm right before its cpu goes
4696 * offline.
054b9108 4697 */
48c5ccae 4698void idle_task_exit(void)
1da177e4 4699{
48c5ccae 4700 struct mm_struct *mm = current->active_mm;
e76bd8d9 4701
48c5ccae 4702 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4703
48c5ccae
PZ
4704 if (mm != &init_mm)
4705 switch_mm(mm, &init_mm, current);
4706 mmdrop(mm);
1da177e4
LT
4707}
4708
4709/*
5d180232
PZ
4710 * Since this CPU is going 'away' for a while, fold any nr_active delta
4711 * we might have. Assumes we're called after migrate_tasks() so that the
4712 * nr_active count is stable.
4713 *
4714 * Also see the comment "Global load-average calculations".
1da177e4 4715 */
5d180232 4716static void calc_load_migrate(struct rq *rq)
1da177e4 4717{
5d180232
PZ
4718 long delta = calc_load_fold_active(rq);
4719 if (delta)
4720 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4721}
4722
3f1d2a31
PZ
4723static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4724{
4725}
4726
4727static const struct sched_class fake_sched_class = {
4728 .put_prev_task = put_prev_task_fake,
4729};
4730
4731static struct task_struct fake_task = {
4732 /*
4733 * Avoid pull_{rt,dl}_task()
4734 */
4735 .prio = MAX_PRIO + 1,
4736 .sched_class = &fake_sched_class,
4737};
4738
48f24c4d 4739/*
48c5ccae
PZ
4740 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4741 * try_to_wake_up()->select_task_rq().
4742 *
4743 * Called with rq->lock held even though we'er in stop_machine() and
4744 * there's no concurrency possible, we hold the required locks anyway
4745 * because of lock validation efforts.
1da177e4 4746 */
48c5ccae 4747static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4748{
70b97a7f 4749 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4750 struct task_struct *next, *stop = rq->stop;
4751 int dest_cpu;
1da177e4
LT
4752
4753 /*
48c5ccae
PZ
4754 * Fudge the rq selection such that the below task selection loop
4755 * doesn't get stuck on the currently eligible stop task.
4756 *
4757 * We're currently inside stop_machine() and the rq is either stuck
4758 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4759 * either way we should never end up calling schedule() until we're
4760 * done here.
1da177e4 4761 */
48c5ccae 4762 rq->stop = NULL;
48f24c4d 4763
77bd3970
FW
4764 /*
4765 * put_prev_task() and pick_next_task() sched
4766 * class method both need to have an up-to-date
4767 * value of rq->clock[_task]
4768 */
4769 update_rq_clock(rq);
4770
dd41f596 4771 for ( ; ; ) {
48c5ccae
PZ
4772 /*
4773 * There's this thread running, bail when that's the only
4774 * remaining thread.
4775 */
4776 if (rq->nr_running == 1)
dd41f596 4777 break;
48c5ccae 4778
3f1d2a31 4779 next = pick_next_task(rq, &fake_task);
48c5ccae 4780 BUG_ON(!next);
79c53799 4781 next->sched_class->put_prev_task(rq, next);
e692ab53 4782
48c5ccae
PZ
4783 /* Find suitable destination for @next, with force if needed. */
4784 dest_cpu = select_fallback_rq(dead_cpu, next);
4785 raw_spin_unlock(&rq->lock);
4786
4787 __migrate_task(next, dead_cpu, dest_cpu);
4788
4789 raw_spin_lock(&rq->lock);
1da177e4 4790 }
dce48a84 4791
48c5ccae 4792 rq->stop = stop;
dce48a84 4793}
48c5ccae 4794
1da177e4
LT
4795#endif /* CONFIG_HOTPLUG_CPU */
4796
e692ab53
NP
4797#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4798
4799static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4800 {
4801 .procname = "sched_domain",
c57baf1e 4802 .mode = 0555,
e0361851 4803 },
56992309 4804 {}
e692ab53
NP
4805};
4806
4807static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4808 {
4809 .procname = "kernel",
c57baf1e 4810 .mode = 0555,
e0361851
AD
4811 .child = sd_ctl_dir,
4812 },
56992309 4813 {}
e692ab53
NP
4814};
4815
4816static struct ctl_table *sd_alloc_ctl_entry(int n)
4817{
4818 struct ctl_table *entry =
5cf9f062 4819 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4820
e692ab53
NP
4821 return entry;
4822}
4823
6382bc90
MM
4824static void sd_free_ctl_entry(struct ctl_table **tablep)
4825{
cd790076 4826 struct ctl_table *entry;
6382bc90 4827
cd790076
MM
4828 /*
4829 * In the intermediate directories, both the child directory and
4830 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4831 * will always be set. In the lowest directory the names are
cd790076
MM
4832 * static strings and all have proc handlers.
4833 */
4834 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4835 if (entry->child)
4836 sd_free_ctl_entry(&entry->child);
cd790076
MM
4837 if (entry->proc_handler == NULL)
4838 kfree(entry->procname);
4839 }
6382bc90
MM
4840
4841 kfree(*tablep);
4842 *tablep = NULL;
4843}
4844
201c373e 4845static int min_load_idx = 0;
fd9b86d3 4846static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4847
e692ab53 4848static void
e0361851 4849set_table_entry(struct ctl_table *entry,
e692ab53 4850 const char *procname, void *data, int maxlen,
201c373e
NK
4851 umode_t mode, proc_handler *proc_handler,
4852 bool load_idx)
e692ab53 4853{
e692ab53
NP
4854 entry->procname = procname;
4855 entry->data = data;
4856 entry->maxlen = maxlen;
4857 entry->mode = mode;
4858 entry->proc_handler = proc_handler;
201c373e
NK
4859
4860 if (load_idx) {
4861 entry->extra1 = &min_load_idx;
4862 entry->extra2 = &max_load_idx;
4863 }
e692ab53
NP
4864}
4865
4866static struct ctl_table *
4867sd_alloc_ctl_domain_table(struct sched_domain *sd)
4868{
37e6bae8 4869 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 4870
ad1cdc1d
MM
4871 if (table == NULL)
4872 return NULL;
4873
e0361851 4874 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4875 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4876 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4877 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4878 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4879 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4880 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4881 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4882 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4883 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4884 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4885 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4886 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4887 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4888 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4889 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4890 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4891 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4892 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4893 &sd->cache_nice_tries,
201c373e 4894 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4895 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4896 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
4897 set_table_entry(&table[11], "max_newidle_lb_cost",
4898 &sd->max_newidle_lb_cost,
4899 sizeof(long), 0644, proc_doulongvec_minmax, false);
4900 set_table_entry(&table[12], "name", sd->name,
201c373e 4901 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 4902 /* &table[13] is terminator */
e692ab53
NP
4903
4904 return table;
4905}
4906
be7002e6 4907static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4908{
4909 struct ctl_table *entry, *table;
4910 struct sched_domain *sd;
4911 int domain_num = 0, i;
4912 char buf[32];
4913
4914 for_each_domain(cpu, sd)
4915 domain_num++;
4916 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4917 if (table == NULL)
4918 return NULL;
e692ab53
NP
4919
4920 i = 0;
4921 for_each_domain(cpu, sd) {
4922 snprintf(buf, 32, "domain%d", i);
e692ab53 4923 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4924 entry->mode = 0555;
e692ab53
NP
4925 entry->child = sd_alloc_ctl_domain_table(sd);
4926 entry++;
4927 i++;
4928 }
4929 return table;
4930}
4931
4932static struct ctl_table_header *sd_sysctl_header;
6382bc90 4933static void register_sched_domain_sysctl(void)
e692ab53 4934{
6ad4c188 4935 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4936 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4937 char buf[32];
4938
7378547f
MM
4939 WARN_ON(sd_ctl_dir[0].child);
4940 sd_ctl_dir[0].child = entry;
4941
ad1cdc1d
MM
4942 if (entry == NULL)
4943 return;
4944
6ad4c188 4945 for_each_possible_cpu(i) {
e692ab53 4946 snprintf(buf, 32, "cpu%d", i);
e692ab53 4947 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4948 entry->mode = 0555;
e692ab53 4949 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4950 entry++;
e692ab53 4951 }
7378547f
MM
4952
4953 WARN_ON(sd_sysctl_header);
e692ab53
NP
4954 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4955}
6382bc90 4956
7378547f 4957/* may be called multiple times per register */
6382bc90
MM
4958static void unregister_sched_domain_sysctl(void)
4959{
7378547f
MM
4960 if (sd_sysctl_header)
4961 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4962 sd_sysctl_header = NULL;
7378547f
MM
4963 if (sd_ctl_dir[0].child)
4964 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4965}
e692ab53 4966#else
6382bc90
MM
4967static void register_sched_domain_sysctl(void)
4968{
4969}
4970static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4971{
4972}
4973#endif
4974
1f11eb6a
GH
4975static void set_rq_online(struct rq *rq)
4976{
4977 if (!rq->online) {
4978 const struct sched_class *class;
4979
c6c4927b 4980 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4981 rq->online = 1;
4982
4983 for_each_class(class) {
4984 if (class->rq_online)
4985 class->rq_online(rq);
4986 }
4987 }
4988}
4989
4990static void set_rq_offline(struct rq *rq)
4991{
4992 if (rq->online) {
4993 const struct sched_class *class;
4994
4995 for_each_class(class) {
4996 if (class->rq_offline)
4997 class->rq_offline(rq);
4998 }
4999
c6c4927b 5000 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5001 rq->online = 0;
5002 }
5003}
5004
1da177e4
LT
5005/*
5006 * migration_call - callback that gets triggered when a CPU is added.
5007 * Here we can start up the necessary migration thread for the new CPU.
5008 */
0db0628d 5009static int
48f24c4d 5010migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5011{
48f24c4d 5012 int cpu = (long)hcpu;
1da177e4 5013 unsigned long flags;
969c7921 5014 struct rq *rq = cpu_rq(cpu);
1da177e4 5015
48c5ccae 5016 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5017
1da177e4 5018 case CPU_UP_PREPARE:
a468d389 5019 rq->calc_load_update = calc_load_update;
1da177e4 5020 break;
48f24c4d 5021
1da177e4 5022 case CPU_ONLINE:
1f94ef59 5023 /* Update our root-domain */
05fa785c 5024 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5025 if (rq->rd) {
c6c4927b 5026 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5027
5028 set_rq_online(rq);
1f94ef59 5029 }
05fa785c 5030 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5031 break;
48f24c4d 5032
1da177e4 5033#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5034 case CPU_DYING:
317f3941 5035 sched_ttwu_pending();
57d885fe 5036 /* Update our root-domain */
05fa785c 5037 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5038 if (rq->rd) {
c6c4927b 5039 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5040 set_rq_offline(rq);
57d885fe 5041 }
48c5ccae
PZ
5042 migrate_tasks(cpu);
5043 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5044 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5045 break;
48c5ccae 5046
5d180232 5047 case CPU_DEAD:
f319da0c 5048 calc_load_migrate(rq);
57d885fe 5049 break;
1da177e4
LT
5050#endif
5051 }
49c022e6
PZ
5052
5053 update_max_interval();
5054
1da177e4
LT
5055 return NOTIFY_OK;
5056}
5057
f38b0820
PM
5058/*
5059 * Register at high priority so that task migration (migrate_all_tasks)
5060 * happens before everything else. This has to be lower priority than
cdd6c482 5061 * the notifier in the perf_event subsystem, though.
1da177e4 5062 */
0db0628d 5063static struct notifier_block migration_notifier = {
1da177e4 5064 .notifier_call = migration_call,
50a323b7 5065 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5066};
5067
0db0628d 5068static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5069 unsigned long action, void *hcpu)
5070{
5071 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5072 case CPU_STARTING:
3a101d05
TH
5073 case CPU_DOWN_FAILED:
5074 set_cpu_active((long)hcpu, true);
5075 return NOTIFY_OK;
5076 default:
5077 return NOTIFY_DONE;
5078 }
5079}
5080
0db0628d 5081static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5082 unsigned long action, void *hcpu)
5083{
de212f18
PZ
5084 unsigned long flags;
5085 long cpu = (long)hcpu;
5086
3a101d05
TH
5087 switch (action & ~CPU_TASKS_FROZEN) {
5088 case CPU_DOWN_PREPARE:
de212f18
PZ
5089 set_cpu_active(cpu, false);
5090
5091 /* explicitly allow suspend */
5092 if (!(action & CPU_TASKS_FROZEN)) {
5093 struct dl_bw *dl_b = dl_bw_of(cpu);
5094 bool overflow;
5095 int cpus;
5096
5097 raw_spin_lock_irqsave(&dl_b->lock, flags);
5098 cpus = dl_bw_cpus(cpu);
5099 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5100 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5101
5102 if (overflow)
5103 return notifier_from_errno(-EBUSY);
5104 }
3a101d05 5105 return NOTIFY_OK;
3a101d05 5106 }
de212f18
PZ
5107
5108 return NOTIFY_DONE;
3a101d05
TH
5109}
5110
7babe8db 5111static int __init migration_init(void)
1da177e4
LT
5112{
5113 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5114 int err;
48f24c4d 5115
3a101d05 5116 /* Initialize migration for the boot CPU */
07dccf33
AM
5117 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5118 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5119 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5120 register_cpu_notifier(&migration_notifier);
7babe8db 5121
3a101d05
TH
5122 /* Register cpu active notifiers */
5123 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5124 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5125
a004cd42 5126 return 0;
1da177e4 5127}
7babe8db 5128early_initcall(migration_init);
1da177e4
LT
5129#endif
5130
5131#ifdef CONFIG_SMP
476f3534 5132
4cb98839
PZ
5133static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5134
3e9830dc 5135#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5136
d039ac60 5137static __read_mostly int sched_debug_enabled;
f6630114 5138
d039ac60 5139static int __init sched_debug_setup(char *str)
f6630114 5140{
d039ac60 5141 sched_debug_enabled = 1;
f6630114
MT
5142
5143 return 0;
5144}
d039ac60
PZ
5145early_param("sched_debug", sched_debug_setup);
5146
5147static inline bool sched_debug(void)
5148{
5149 return sched_debug_enabled;
5150}
f6630114 5151
7c16ec58 5152static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5153 struct cpumask *groupmask)
1da177e4 5154{
4dcf6aff 5155 struct sched_group *group = sd->groups;
434d53b0 5156 char str[256];
1da177e4 5157
968ea6d8 5158 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5159 cpumask_clear(groupmask);
4dcf6aff
IM
5160
5161 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5162
5163 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5164 printk("does not load-balance\n");
4dcf6aff 5165 if (sd->parent)
3df0fc5b
PZ
5166 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5167 " has parent");
4dcf6aff 5168 return -1;
41c7ce9a
NP
5169 }
5170
3df0fc5b 5171 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5172
758b2cdc 5173 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5174 printk(KERN_ERR "ERROR: domain->span does not contain "
5175 "CPU%d\n", cpu);
4dcf6aff 5176 }
758b2cdc 5177 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5178 printk(KERN_ERR "ERROR: domain->groups does not contain"
5179 " CPU%d\n", cpu);
4dcf6aff 5180 }
1da177e4 5181
4dcf6aff 5182 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5183 do {
4dcf6aff 5184 if (!group) {
3df0fc5b
PZ
5185 printk("\n");
5186 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5187 break;
5188 }
5189
c3decf0d
PZ
5190 /*
5191 * Even though we initialize ->power to something semi-sane,
5192 * we leave power_orig unset. This allows us to detect if
5193 * domain iteration is still funny without causing /0 traps.
5194 */
5195 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5196 printk(KERN_CONT "\n");
5197 printk(KERN_ERR "ERROR: domain->cpu_power not "
5198 "set\n");
4dcf6aff
IM
5199 break;
5200 }
1da177e4 5201
758b2cdc 5202 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5203 printk(KERN_CONT "\n");
5204 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5205 break;
5206 }
1da177e4 5207
cb83b629
PZ
5208 if (!(sd->flags & SD_OVERLAP) &&
5209 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5210 printk(KERN_CONT "\n");
5211 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5212 break;
5213 }
1da177e4 5214
758b2cdc 5215 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5216
968ea6d8 5217 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5218
3df0fc5b 5219 printk(KERN_CONT " %s", str);
9c3f75cb 5220 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5221 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5222 group->sgp->power);
381512cf 5223 }
1da177e4 5224
4dcf6aff
IM
5225 group = group->next;
5226 } while (group != sd->groups);
3df0fc5b 5227 printk(KERN_CONT "\n");
1da177e4 5228
758b2cdc 5229 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5230 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5231
758b2cdc
RR
5232 if (sd->parent &&
5233 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5234 printk(KERN_ERR "ERROR: parent span is not a superset "
5235 "of domain->span\n");
4dcf6aff
IM
5236 return 0;
5237}
1da177e4 5238
4dcf6aff
IM
5239static void sched_domain_debug(struct sched_domain *sd, int cpu)
5240{
5241 int level = 0;
1da177e4 5242
d039ac60 5243 if (!sched_debug_enabled)
f6630114
MT
5244 return;
5245
4dcf6aff
IM
5246 if (!sd) {
5247 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5248 return;
5249 }
1da177e4 5250
4dcf6aff
IM
5251 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5252
5253 for (;;) {
4cb98839 5254 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5255 break;
1da177e4
LT
5256 level++;
5257 sd = sd->parent;
33859f7f 5258 if (!sd)
4dcf6aff
IM
5259 break;
5260 }
1da177e4 5261}
6d6bc0ad 5262#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5263# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5264static inline bool sched_debug(void)
5265{
5266 return false;
5267}
6d6bc0ad 5268#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5269
1a20ff27 5270static int sd_degenerate(struct sched_domain *sd)
245af2c7 5271{
758b2cdc 5272 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5273 return 1;
5274
5275 /* Following flags need at least 2 groups */
5276 if (sd->flags & (SD_LOAD_BALANCE |
5277 SD_BALANCE_NEWIDLE |
5278 SD_BALANCE_FORK |
89c4710e
SS
5279 SD_BALANCE_EXEC |
5280 SD_SHARE_CPUPOWER |
5281 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5282 if (sd->groups != sd->groups->next)
5283 return 0;
5284 }
5285
5286 /* Following flags don't use groups */
c88d5910 5287 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5288 return 0;
5289
5290 return 1;
5291}
5292
48f24c4d
IM
5293static int
5294sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5295{
5296 unsigned long cflags = sd->flags, pflags = parent->flags;
5297
5298 if (sd_degenerate(parent))
5299 return 1;
5300
758b2cdc 5301 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5302 return 0;
5303
245af2c7
SS
5304 /* Flags needing groups don't count if only 1 group in parent */
5305 if (parent->groups == parent->groups->next) {
5306 pflags &= ~(SD_LOAD_BALANCE |
5307 SD_BALANCE_NEWIDLE |
5308 SD_BALANCE_FORK |
89c4710e
SS
5309 SD_BALANCE_EXEC |
5310 SD_SHARE_CPUPOWER |
10866e62
PZ
5311 SD_SHARE_PKG_RESOURCES |
5312 SD_PREFER_SIBLING);
5436499e
KC
5313 if (nr_node_ids == 1)
5314 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5315 }
5316 if (~cflags & pflags)
5317 return 0;
5318
5319 return 1;
5320}
5321
dce840a0 5322static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5323{
dce840a0 5324 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5325
68e74568 5326 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5327 cpudl_cleanup(&rd->cpudl);
1baca4ce 5328 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5329 free_cpumask_var(rd->rto_mask);
5330 free_cpumask_var(rd->online);
5331 free_cpumask_var(rd->span);
5332 kfree(rd);
5333}
5334
57d885fe
GH
5335static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5336{
a0490fa3 5337 struct root_domain *old_rd = NULL;
57d885fe 5338 unsigned long flags;
57d885fe 5339
05fa785c 5340 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5341
5342 if (rq->rd) {
a0490fa3 5343 old_rd = rq->rd;
57d885fe 5344
c6c4927b 5345 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5346 set_rq_offline(rq);
57d885fe 5347
c6c4927b 5348 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5349
a0490fa3 5350 /*
0515973f 5351 * If we dont want to free the old_rd yet then
a0490fa3
IM
5352 * set old_rd to NULL to skip the freeing later
5353 * in this function:
5354 */
5355 if (!atomic_dec_and_test(&old_rd->refcount))
5356 old_rd = NULL;
57d885fe
GH
5357 }
5358
5359 atomic_inc(&rd->refcount);
5360 rq->rd = rd;
5361
c6c4927b 5362 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5363 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5364 set_rq_online(rq);
57d885fe 5365
05fa785c 5366 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5367
5368 if (old_rd)
dce840a0 5369 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5370}
5371
68c38fc3 5372static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5373{
5374 memset(rd, 0, sizeof(*rd));
5375
68c38fc3 5376 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5377 goto out;
68c38fc3 5378 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5379 goto free_span;
1baca4ce 5380 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5381 goto free_online;
1baca4ce
JL
5382 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5383 goto free_dlo_mask;
6e0534f2 5384
332ac17e 5385 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5386 if (cpudl_init(&rd->cpudl) != 0)
5387 goto free_dlo_mask;
332ac17e 5388
68c38fc3 5389 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5390 goto free_rto_mask;
c6c4927b 5391 return 0;
6e0534f2 5392
68e74568
RR
5393free_rto_mask:
5394 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5395free_dlo_mask:
5396 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5397free_online:
5398 free_cpumask_var(rd->online);
5399free_span:
5400 free_cpumask_var(rd->span);
0c910d28 5401out:
c6c4927b 5402 return -ENOMEM;
57d885fe
GH
5403}
5404
029632fb
PZ
5405/*
5406 * By default the system creates a single root-domain with all cpus as
5407 * members (mimicking the global state we have today).
5408 */
5409struct root_domain def_root_domain;
5410
57d885fe
GH
5411static void init_defrootdomain(void)
5412{
68c38fc3 5413 init_rootdomain(&def_root_domain);
c6c4927b 5414
57d885fe
GH
5415 atomic_set(&def_root_domain.refcount, 1);
5416}
5417
dc938520 5418static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5419{
5420 struct root_domain *rd;
5421
5422 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5423 if (!rd)
5424 return NULL;
5425
68c38fc3 5426 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5427 kfree(rd);
5428 return NULL;
5429 }
57d885fe
GH
5430
5431 return rd;
5432}
5433
e3589f6c
PZ
5434static void free_sched_groups(struct sched_group *sg, int free_sgp)
5435{
5436 struct sched_group *tmp, *first;
5437
5438 if (!sg)
5439 return;
5440
5441 first = sg;
5442 do {
5443 tmp = sg->next;
5444
5445 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5446 kfree(sg->sgp);
5447
5448 kfree(sg);
5449 sg = tmp;
5450 } while (sg != first);
5451}
5452
dce840a0
PZ
5453static void free_sched_domain(struct rcu_head *rcu)
5454{
5455 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5456
5457 /*
5458 * If its an overlapping domain it has private groups, iterate and
5459 * nuke them all.
5460 */
5461 if (sd->flags & SD_OVERLAP) {
5462 free_sched_groups(sd->groups, 1);
5463 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5464 kfree(sd->groups->sgp);
dce840a0 5465 kfree(sd->groups);
9c3f75cb 5466 }
dce840a0
PZ
5467 kfree(sd);
5468}
5469
5470static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5471{
5472 call_rcu(&sd->rcu, free_sched_domain);
5473}
5474
5475static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5476{
5477 for (; sd; sd = sd->parent)
5478 destroy_sched_domain(sd, cpu);
5479}
5480
518cd623
PZ
5481/*
5482 * Keep a special pointer to the highest sched_domain that has
5483 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5484 * allows us to avoid some pointer chasing select_idle_sibling().
5485 *
5486 * Also keep a unique ID per domain (we use the first cpu number in
5487 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5488 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5489 */
5490DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5491DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5492DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5493DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5494DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5495DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5496
5497static void update_top_cache_domain(int cpu)
5498{
5499 struct sched_domain *sd;
5d4cf996 5500 struct sched_domain *busy_sd = NULL;
518cd623 5501 int id = cpu;
7d9ffa89 5502 int size = 1;
518cd623
PZ
5503
5504 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5505 if (sd) {
518cd623 5506 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5507 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5508 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5509 }
5d4cf996 5510 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5511
5512 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5513 per_cpu(sd_llc_size, cpu) = size;
518cd623 5514 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5515
5516 sd = lowest_flag_domain(cpu, SD_NUMA);
5517 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5518
5519 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5520 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5521}
5522
1da177e4 5523/*
0eab9146 5524 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5525 * hold the hotplug lock.
5526 */
0eab9146
IM
5527static void
5528cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5529{
70b97a7f 5530 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5531 struct sched_domain *tmp;
5532
5533 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5534 for (tmp = sd; tmp; ) {
245af2c7
SS
5535 struct sched_domain *parent = tmp->parent;
5536 if (!parent)
5537 break;
f29c9b1c 5538
1a848870 5539 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5540 tmp->parent = parent->parent;
1a848870
SS
5541 if (parent->parent)
5542 parent->parent->child = tmp;
10866e62
PZ
5543 /*
5544 * Transfer SD_PREFER_SIBLING down in case of a
5545 * degenerate parent; the spans match for this
5546 * so the property transfers.
5547 */
5548 if (parent->flags & SD_PREFER_SIBLING)
5549 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5550 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5551 } else
5552 tmp = tmp->parent;
245af2c7
SS
5553 }
5554
1a848870 5555 if (sd && sd_degenerate(sd)) {
dce840a0 5556 tmp = sd;
245af2c7 5557 sd = sd->parent;
dce840a0 5558 destroy_sched_domain(tmp, cpu);
1a848870
SS
5559 if (sd)
5560 sd->child = NULL;
5561 }
1da177e4 5562
4cb98839 5563 sched_domain_debug(sd, cpu);
1da177e4 5564
57d885fe 5565 rq_attach_root(rq, rd);
dce840a0 5566 tmp = rq->sd;
674311d5 5567 rcu_assign_pointer(rq->sd, sd);
dce840a0 5568 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5569
5570 update_top_cache_domain(cpu);
1da177e4
LT
5571}
5572
5573/* cpus with isolated domains */
dcc30a35 5574static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5575
5576/* Setup the mask of cpus configured for isolated domains */
5577static int __init isolated_cpu_setup(char *str)
5578{
bdddd296 5579 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5580 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5581 return 1;
5582}
5583
8927f494 5584__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5585
d3081f52
PZ
5586static const struct cpumask *cpu_cpu_mask(int cpu)
5587{
5588 return cpumask_of_node(cpu_to_node(cpu));
5589}
5590
dce840a0
PZ
5591struct sd_data {
5592 struct sched_domain **__percpu sd;
5593 struct sched_group **__percpu sg;
9c3f75cb 5594 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5595};
5596
49a02c51 5597struct s_data {
21d42ccf 5598 struct sched_domain ** __percpu sd;
49a02c51
AH
5599 struct root_domain *rd;
5600};
5601
2109b99e 5602enum s_alloc {
2109b99e 5603 sa_rootdomain,
21d42ccf 5604 sa_sd,
dce840a0 5605 sa_sd_storage,
2109b99e
AH
5606 sa_none,
5607};
5608
54ab4ff4
PZ
5609struct sched_domain_topology_level;
5610
5611typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5612typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5613
e3589f6c
PZ
5614#define SDTL_OVERLAP 0x01
5615
eb7a74e6 5616struct sched_domain_topology_level {
2c402dc3
PZ
5617 sched_domain_init_f init;
5618 sched_domain_mask_f mask;
e3589f6c 5619 int flags;
cb83b629 5620 int numa_level;
54ab4ff4 5621 struct sd_data data;
eb7a74e6
PZ
5622};
5623
c1174876
PZ
5624/*
5625 * Build an iteration mask that can exclude certain CPUs from the upwards
5626 * domain traversal.
5627 *
5628 * Asymmetric node setups can result in situations where the domain tree is of
5629 * unequal depth, make sure to skip domains that already cover the entire
5630 * range.
5631 *
5632 * In that case build_sched_domains() will have terminated the iteration early
5633 * and our sibling sd spans will be empty. Domains should always include the
5634 * cpu they're built on, so check that.
5635 *
5636 */
5637static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5638{
5639 const struct cpumask *span = sched_domain_span(sd);
5640 struct sd_data *sdd = sd->private;
5641 struct sched_domain *sibling;
5642 int i;
5643
5644 for_each_cpu(i, span) {
5645 sibling = *per_cpu_ptr(sdd->sd, i);
5646 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5647 continue;
5648
5649 cpumask_set_cpu(i, sched_group_mask(sg));
5650 }
5651}
5652
5653/*
5654 * Return the canonical balance cpu for this group, this is the first cpu
5655 * of this group that's also in the iteration mask.
5656 */
5657int group_balance_cpu(struct sched_group *sg)
5658{
5659 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5660}
5661
e3589f6c
PZ
5662static int
5663build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5664{
5665 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5666 const struct cpumask *span = sched_domain_span(sd);
5667 struct cpumask *covered = sched_domains_tmpmask;
5668 struct sd_data *sdd = sd->private;
5669 struct sched_domain *child;
5670 int i;
5671
5672 cpumask_clear(covered);
5673
5674 for_each_cpu(i, span) {
5675 struct cpumask *sg_span;
5676
5677 if (cpumask_test_cpu(i, covered))
5678 continue;
5679
c1174876
PZ
5680 child = *per_cpu_ptr(sdd->sd, i);
5681
5682 /* See the comment near build_group_mask(). */
5683 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5684 continue;
5685
e3589f6c 5686 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5687 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5688
5689 if (!sg)
5690 goto fail;
5691
5692 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5693 if (child->child) {
5694 child = child->child;
5695 cpumask_copy(sg_span, sched_domain_span(child));
5696 } else
5697 cpumask_set_cpu(i, sg_span);
5698
5699 cpumask_or(covered, covered, sg_span);
5700
74a5ce20 5701 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5702 if (atomic_inc_return(&sg->sgp->ref) == 1)
5703 build_group_mask(sd, sg);
5704
c3decf0d
PZ
5705 /*
5706 * Initialize sgp->power such that even if we mess up the
5707 * domains and no possible iteration will get us here, we won't
5708 * die on a /0 trap.
5709 */
5710 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
8e8339a3 5711 sg->sgp->power_orig = sg->sgp->power;
e3589f6c 5712
c1174876
PZ
5713 /*
5714 * Make sure the first group of this domain contains the
5715 * canonical balance cpu. Otherwise the sched_domain iteration
5716 * breaks. See update_sg_lb_stats().
5717 */
74a5ce20 5718 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5719 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5720 groups = sg;
5721
5722 if (!first)
5723 first = sg;
5724 if (last)
5725 last->next = sg;
5726 last = sg;
5727 last->next = first;
5728 }
5729 sd->groups = groups;
5730
5731 return 0;
5732
5733fail:
5734 free_sched_groups(first, 0);
5735
5736 return -ENOMEM;
5737}
5738
dce840a0 5739static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5740{
dce840a0
PZ
5741 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5742 struct sched_domain *child = sd->child;
1da177e4 5743
dce840a0
PZ
5744 if (child)
5745 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5746
9c3f75cb 5747 if (sg) {
dce840a0 5748 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5749 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5750 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5751 }
dce840a0
PZ
5752
5753 return cpu;
1e9f28fa 5754}
1e9f28fa 5755
01a08546 5756/*
dce840a0
PZ
5757 * build_sched_groups will build a circular linked list of the groups
5758 * covered by the given span, and will set each group's ->cpumask correctly,
5759 * and ->cpu_power to 0.
e3589f6c
PZ
5760 *
5761 * Assumes the sched_domain tree is fully constructed
01a08546 5762 */
e3589f6c
PZ
5763static int
5764build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5765{
dce840a0
PZ
5766 struct sched_group *first = NULL, *last = NULL;
5767 struct sd_data *sdd = sd->private;
5768 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5769 struct cpumask *covered;
dce840a0 5770 int i;
9c1cfda2 5771
e3589f6c
PZ
5772 get_group(cpu, sdd, &sd->groups);
5773 atomic_inc(&sd->groups->ref);
5774
0936629f 5775 if (cpu != cpumask_first(span))
e3589f6c
PZ
5776 return 0;
5777
f96225fd
PZ
5778 lockdep_assert_held(&sched_domains_mutex);
5779 covered = sched_domains_tmpmask;
5780
dce840a0 5781 cpumask_clear(covered);
6711cab4 5782
dce840a0
PZ
5783 for_each_cpu(i, span) {
5784 struct sched_group *sg;
cd08e923 5785 int group, j;
6711cab4 5786
dce840a0
PZ
5787 if (cpumask_test_cpu(i, covered))
5788 continue;
6711cab4 5789
cd08e923 5790 group = get_group(i, sdd, &sg);
dce840a0 5791 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5792 sg->sgp->power = 0;
c1174876 5793 cpumask_setall(sched_group_mask(sg));
0601a88d 5794
dce840a0
PZ
5795 for_each_cpu(j, span) {
5796 if (get_group(j, sdd, NULL) != group)
5797 continue;
0601a88d 5798
dce840a0
PZ
5799 cpumask_set_cpu(j, covered);
5800 cpumask_set_cpu(j, sched_group_cpus(sg));
5801 }
0601a88d 5802
dce840a0
PZ
5803 if (!first)
5804 first = sg;
5805 if (last)
5806 last->next = sg;
5807 last = sg;
5808 }
5809 last->next = first;
e3589f6c
PZ
5810
5811 return 0;
0601a88d 5812}
51888ca2 5813
89c4710e
SS
5814/*
5815 * Initialize sched groups cpu_power.
5816 *
5817 * cpu_power indicates the capacity of sched group, which is used while
5818 * distributing the load between different sched groups in a sched domain.
5819 * Typically cpu_power for all the groups in a sched domain will be same unless
5820 * there are asymmetries in the topology. If there are asymmetries, group
5821 * having more cpu_power will pickup more load compared to the group having
5822 * less cpu_power.
89c4710e
SS
5823 */
5824static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5825{
e3589f6c 5826 struct sched_group *sg = sd->groups;
89c4710e 5827
94c95ba6 5828 WARN_ON(!sg);
e3589f6c
PZ
5829
5830 do {
5831 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5832 sg = sg->next;
5833 } while (sg != sd->groups);
89c4710e 5834
c1174876 5835 if (cpu != group_balance_cpu(sg))
e3589f6c 5836 return;
aae6d3dd 5837
d274cb30 5838 update_group_power(sd, cpu);
69e1e811 5839 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5840}
5841
029632fb
PZ
5842int __weak arch_sd_sibling_asym_packing(void)
5843{
5844 return 0*SD_ASYM_PACKING;
89c4710e
SS
5845}
5846
7c16ec58
MT
5847/*
5848 * Initializers for schedule domains
5849 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5850 */
5851
a5d8c348
IM
5852#ifdef CONFIG_SCHED_DEBUG
5853# define SD_INIT_NAME(sd, type) sd->name = #type
5854#else
5855# define SD_INIT_NAME(sd, type) do { } while (0)
5856#endif
5857
54ab4ff4
PZ
5858#define SD_INIT_FUNC(type) \
5859static noinline struct sched_domain * \
5860sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5861{ \
5862 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5863 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5864 SD_INIT_NAME(sd, type); \
5865 sd->private = &tl->data; \
5866 return sd; \
7c16ec58
MT
5867}
5868
5869SD_INIT_FUNC(CPU)
7c16ec58
MT
5870#ifdef CONFIG_SCHED_SMT
5871 SD_INIT_FUNC(SIBLING)
5872#endif
5873#ifdef CONFIG_SCHED_MC
5874 SD_INIT_FUNC(MC)
5875#endif
01a08546
HC
5876#ifdef CONFIG_SCHED_BOOK
5877 SD_INIT_FUNC(BOOK)
5878#endif
7c16ec58 5879
1d3504fc 5880static int default_relax_domain_level = -1;
60495e77 5881int sched_domain_level_max;
1d3504fc
HS
5882
5883static int __init setup_relax_domain_level(char *str)
5884{
a841f8ce
DS
5885 if (kstrtoint(str, 0, &default_relax_domain_level))
5886 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5887
1d3504fc
HS
5888 return 1;
5889}
5890__setup("relax_domain_level=", setup_relax_domain_level);
5891
5892static void set_domain_attribute(struct sched_domain *sd,
5893 struct sched_domain_attr *attr)
5894{
5895 int request;
5896
5897 if (!attr || attr->relax_domain_level < 0) {
5898 if (default_relax_domain_level < 0)
5899 return;
5900 else
5901 request = default_relax_domain_level;
5902 } else
5903 request = attr->relax_domain_level;
5904 if (request < sd->level) {
5905 /* turn off idle balance on this domain */
c88d5910 5906 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5907 } else {
5908 /* turn on idle balance on this domain */
c88d5910 5909 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5910 }
5911}
5912
54ab4ff4
PZ
5913static void __sdt_free(const struct cpumask *cpu_map);
5914static int __sdt_alloc(const struct cpumask *cpu_map);
5915
2109b99e
AH
5916static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5917 const struct cpumask *cpu_map)
5918{
5919 switch (what) {
2109b99e 5920 case sa_rootdomain:
822ff793
PZ
5921 if (!atomic_read(&d->rd->refcount))
5922 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5923 case sa_sd:
5924 free_percpu(d->sd); /* fall through */
dce840a0 5925 case sa_sd_storage:
54ab4ff4 5926 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5927 case sa_none:
5928 break;
5929 }
5930}
3404c8d9 5931
2109b99e
AH
5932static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5933 const struct cpumask *cpu_map)
5934{
dce840a0
PZ
5935 memset(d, 0, sizeof(*d));
5936
54ab4ff4
PZ
5937 if (__sdt_alloc(cpu_map))
5938 return sa_sd_storage;
dce840a0
PZ
5939 d->sd = alloc_percpu(struct sched_domain *);
5940 if (!d->sd)
5941 return sa_sd_storage;
2109b99e 5942 d->rd = alloc_rootdomain();
dce840a0 5943 if (!d->rd)
21d42ccf 5944 return sa_sd;
2109b99e
AH
5945 return sa_rootdomain;
5946}
57d885fe 5947
dce840a0
PZ
5948/*
5949 * NULL the sd_data elements we've used to build the sched_domain and
5950 * sched_group structure so that the subsequent __free_domain_allocs()
5951 * will not free the data we're using.
5952 */
5953static void claim_allocations(int cpu, struct sched_domain *sd)
5954{
5955 struct sd_data *sdd = sd->private;
dce840a0
PZ
5956
5957 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5958 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5959
e3589f6c 5960 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5961 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5962
5963 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5964 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5965}
5966
2c402dc3
PZ
5967#ifdef CONFIG_SCHED_SMT
5968static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5969{
2c402dc3 5970 return topology_thread_cpumask(cpu);
3bd65a80 5971}
2c402dc3 5972#endif
7f4588f3 5973
d069b916
PZ
5974/*
5975 * Topology list, bottom-up.
5976 */
2c402dc3 5977static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5978#ifdef CONFIG_SCHED_SMT
5979 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5980#endif
1e9f28fa 5981#ifdef CONFIG_SCHED_MC
2c402dc3 5982 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5983#endif
d069b916
PZ
5984#ifdef CONFIG_SCHED_BOOK
5985 { sd_init_BOOK, cpu_book_mask, },
5986#endif
5987 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5988 { NULL, },
5989};
5990
5991static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5992
27723a68
VK
5993#define for_each_sd_topology(tl) \
5994 for (tl = sched_domain_topology; tl->init; tl++)
5995
cb83b629
PZ
5996#ifdef CONFIG_NUMA
5997
5998static int sched_domains_numa_levels;
cb83b629
PZ
5999static int *sched_domains_numa_distance;
6000static struct cpumask ***sched_domains_numa_masks;
6001static int sched_domains_curr_level;
6002
cb83b629
PZ
6003static inline int sd_local_flags(int level)
6004{
10717dcd 6005 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6006 return 0;
6007
6008 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6009}
6010
6011static struct sched_domain *
6012sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6013{
6014 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6015 int level = tl->numa_level;
6016 int sd_weight = cpumask_weight(
6017 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6018
6019 *sd = (struct sched_domain){
6020 .min_interval = sd_weight,
6021 .max_interval = 2*sd_weight,
6022 .busy_factor = 32,
870a0bb5 6023 .imbalance_pct = 125,
cb83b629
PZ
6024 .cache_nice_tries = 2,
6025 .busy_idx = 3,
6026 .idle_idx = 2,
6027 .newidle_idx = 0,
6028 .wake_idx = 0,
6029 .forkexec_idx = 0,
6030
6031 .flags = 1*SD_LOAD_BALANCE
6032 | 1*SD_BALANCE_NEWIDLE
6033 | 0*SD_BALANCE_EXEC
6034 | 0*SD_BALANCE_FORK
6035 | 0*SD_BALANCE_WAKE
6036 | 0*SD_WAKE_AFFINE
cb83b629 6037 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6038 | 0*SD_SHARE_PKG_RESOURCES
6039 | 1*SD_SERIALIZE
6040 | 0*SD_PREFER_SIBLING
3a7053b3 6041 | 1*SD_NUMA
cb83b629
PZ
6042 | sd_local_flags(level)
6043 ,
6044 .last_balance = jiffies,
6045 .balance_interval = sd_weight,
6046 };
6047 SD_INIT_NAME(sd, NUMA);
6048 sd->private = &tl->data;
6049
6050 /*
6051 * Ugly hack to pass state to sd_numa_mask()...
6052 */
6053 sched_domains_curr_level = tl->numa_level;
6054
6055 return sd;
6056}
6057
6058static const struct cpumask *sd_numa_mask(int cpu)
6059{
6060 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6061}
6062
d039ac60
PZ
6063static void sched_numa_warn(const char *str)
6064{
6065 static int done = false;
6066 int i,j;
6067
6068 if (done)
6069 return;
6070
6071 done = true;
6072
6073 printk(KERN_WARNING "ERROR: %s\n\n", str);
6074
6075 for (i = 0; i < nr_node_ids; i++) {
6076 printk(KERN_WARNING " ");
6077 for (j = 0; j < nr_node_ids; j++)
6078 printk(KERN_CONT "%02d ", node_distance(i,j));
6079 printk(KERN_CONT "\n");
6080 }
6081 printk(KERN_WARNING "\n");
6082}
6083
6084static bool find_numa_distance(int distance)
6085{
6086 int i;
6087
6088 if (distance == node_distance(0, 0))
6089 return true;
6090
6091 for (i = 0; i < sched_domains_numa_levels; i++) {
6092 if (sched_domains_numa_distance[i] == distance)
6093 return true;
6094 }
6095
6096 return false;
6097}
6098
cb83b629
PZ
6099static void sched_init_numa(void)
6100{
6101 int next_distance, curr_distance = node_distance(0, 0);
6102 struct sched_domain_topology_level *tl;
6103 int level = 0;
6104 int i, j, k;
6105
cb83b629
PZ
6106 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6107 if (!sched_domains_numa_distance)
6108 return;
6109
6110 /*
6111 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6112 * unique distances in the node_distance() table.
6113 *
6114 * Assumes node_distance(0,j) includes all distances in
6115 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6116 */
6117 next_distance = curr_distance;
6118 for (i = 0; i < nr_node_ids; i++) {
6119 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6120 for (k = 0; k < nr_node_ids; k++) {
6121 int distance = node_distance(i, k);
6122
6123 if (distance > curr_distance &&
6124 (distance < next_distance ||
6125 next_distance == curr_distance))
6126 next_distance = distance;
6127
6128 /*
6129 * While not a strong assumption it would be nice to know
6130 * about cases where if node A is connected to B, B is not
6131 * equally connected to A.
6132 */
6133 if (sched_debug() && node_distance(k, i) != distance)
6134 sched_numa_warn("Node-distance not symmetric");
6135
6136 if (sched_debug() && i && !find_numa_distance(distance))
6137 sched_numa_warn("Node-0 not representative");
6138 }
6139 if (next_distance != curr_distance) {
6140 sched_domains_numa_distance[level++] = next_distance;
6141 sched_domains_numa_levels = level;
6142 curr_distance = next_distance;
6143 } else break;
cb83b629 6144 }
d039ac60
PZ
6145
6146 /*
6147 * In case of sched_debug() we verify the above assumption.
6148 */
6149 if (!sched_debug())
6150 break;
cb83b629
PZ
6151 }
6152 /*
6153 * 'level' contains the number of unique distances, excluding the
6154 * identity distance node_distance(i,i).
6155 *
28b4a521 6156 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6157 * numbers.
6158 */
6159
5f7865f3
TC
6160 /*
6161 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6162 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6163 * the array will contain less then 'level' members. This could be
6164 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6165 * in other functions.
6166 *
6167 * We reset it to 'level' at the end of this function.
6168 */
6169 sched_domains_numa_levels = 0;
6170
cb83b629
PZ
6171 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6172 if (!sched_domains_numa_masks)
6173 return;
6174
6175 /*
6176 * Now for each level, construct a mask per node which contains all
6177 * cpus of nodes that are that many hops away from us.
6178 */
6179 for (i = 0; i < level; i++) {
6180 sched_domains_numa_masks[i] =
6181 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6182 if (!sched_domains_numa_masks[i])
6183 return;
6184
6185 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6186 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6187 if (!mask)
6188 return;
6189
6190 sched_domains_numa_masks[i][j] = mask;
6191
6192 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6193 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6194 continue;
6195
6196 cpumask_or(mask, mask, cpumask_of_node(k));
6197 }
6198 }
6199 }
6200
6201 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6202 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6203 if (!tl)
6204 return;
6205
6206 /*
6207 * Copy the default topology bits..
6208 */
6209 for (i = 0; default_topology[i].init; i++)
6210 tl[i] = default_topology[i];
6211
6212 /*
6213 * .. and append 'j' levels of NUMA goodness.
6214 */
6215 for (j = 0; j < level; i++, j++) {
6216 tl[i] = (struct sched_domain_topology_level){
6217 .init = sd_numa_init,
6218 .mask = sd_numa_mask,
6219 .flags = SDTL_OVERLAP,
6220 .numa_level = j,
6221 };
6222 }
6223
6224 sched_domain_topology = tl;
5f7865f3
TC
6225
6226 sched_domains_numa_levels = level;
cb83b629 6227}
301a5cba
TC
6228
6229static void sched_domains_numa_masks_set(int cpu)
6230{
6231 int i, j;
6232 int node = cpu_to_node(cpu);
6233
6234 for (i = 0; i < sched_domains_numa_levels; i++) {
6235 for (j = 0; j < nr_node_ids; j++) {
6236 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6237 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6238 }
6239 }
6240}
6241
6242static void sched_domains_numa_masks_clear(int cpu)
6243{
6244 int i, j;
6245 for (i = 0; i < sched_domains_numa_levels; i++) {
6246 for (j = 0; j < nr_node_ids; j++)
6247 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6248 }
6249}
6250
6251/*
6252 * Update sched_domains_numa_masks[level][node] array when new cpus
6253 * are onlined.
6254 */
6255static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6256 unsigned long action,
6257 void *hcpu)
6258{
6259 int cpu = (long)hcpu;
6260
6261 switch (action & ~CPU_TASKS_FROZEN) {
6262 case CPU_ONLINE:
6263 sched_domains_numa_masks_set(cpu);
6264 break;
6265
6266 case CPU_DEAD:
6267 sched_domains_numa_masks_clear(cpu);
6268 break;
6269
6270 default:
6271 return NOTIFY_DONE;
6272 }
6273
6274 return NOTIFY_OK;
cb83b629
PZ
6275}
6276#else
6277static inline void sched_init_numa(void)
6278{
6279}
301a5cba
TC
6280
6281static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6282 unsigned long action,
6283 void *hcpu)
6284{
6285 return 0;
6286}
cb83b629
PZ
6287#endif /* CONFIG_NUMA */
6288
54ab4ff4
PZ
6289static int __sdt_alloc(const struct cpumask *cpu_map)
6290{
6291 struct sched_domain_topology_level *tl;
6292 int j;
6293
27723a68 6294 for_each_sd_topology(tl) {
54ab4ff4
PZ
6295 struct sd_data *sdd = &tl->data;
6296
6297 sdd->sd = alloc_percpu(struct sched_domain *);
6298 if (!sdd->sd)
6299 return -ENOMEM;
6300
6301 sdd->sg = alloc_percpu(struct sched_group *);
6302 if (!sdd->sg)
6303 return -ENOMEM;
6304
9c3f75cb
PZ
6305 sdd->sgp = alloc_percpu(struct sched_group_power *);
6306 if (!sdd->sgp)
6307 return -ENOMEM;
6308
54ab4ff4
PZ
6309 for_each_cpu(j, cpu_map) {
6310 struct sched_domain *sd;
6311 struct sched_group *sg;
9c3f75cb 6312 struct sched_group_power *sgp;
54ab4ff4
PZ
6313
6314 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6315 GFP_KERNEL, cpu_to_node(j));
6316 if (!sd)
6317 return -ENOMEM;
6318
6319 *per_cpu_ptr(sdd->sd, j) = sd;
6320
6321 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6322 GFP_KERNEL, cpu_to_node(j));
6323 if (!sg)
6324 return -ENOMEM;
6325
30b4e9eb
IM
6326 sg->next = sg;
6327
54ab4ff4 6328 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6329
c1174876 6330 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6331 GFP_KERNEL, cpu_to_node(j));
6332 if (!sgp)
6333 return -ENOMEM;
6334
6335 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6336 }
6337 }
6338
6339 return 0;
6340}
6341
6342static void __sdt_free(const struct cpumask *cpu_map)
6343{
6344 struct sched_domain_topology_level *tl;
6345 int j;
6346
27723a68 6347 for_each_sd_topology(tl) {
54ab4ff4
PZ
6348 struct sd_data *sdd = &tl->data;
6349
6350 for_each_cpu(j, cpu_map) {
fb2cf2c6 6351 struct sched_domain *sd;
6352
6353 if (sdd->sd) {
6354 sd = *per_cpu_ptr(sdd->sd, j);
6355 if (sd && (sd->flags & SD_OVERLAP))
6356 free_sched_groups(sd->groups, 0);
6357 kfree(*per_cpu_ptr(sdd->sd, j));
6358 }
6359
6360 if (sdd->sg)
6361 kfree(*per_cpu_ptr(sdd->sg, j));
6362 if (sdd->sgp)
6363 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6364 }
6365 free_percpu(sdd->sd);
fb2cf2c6 6366 sdd->sd = NULL;
54ab4ff4 6367 free_percpu(sdd->sg);
fb2cf2c6 6368 sdd->sg = NULL;
9c3f75cb 6369 free_percpu(sdd->sgp);
fb2cf2c6 6370 sdd->sgp = NULL;
54ab4ff4
PZ
6371 }
6372}
6373
2c402dc3 6374struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6375 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6376 struct sched_domain *child, int cpu)
2c402dc3 6377{
54ab4ff4 6378 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6379 if (!sd)
d069b916 6380 return child;
2c402dc3 6381
2c402dc3 6382 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6383 if (child) {
6384 sd->level = child->level + 1;
6385 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6386 child->parent = sd;
c75e0128 6387 sd->child = child;
60495e77 6388 }
a841f8ce 6389 set_domain_attribute(sd, attr);
2c402dc3
PZ
6390
6391 return sd;
6392}
6393
2109b99e
AH
6394/*
6395 * Build sched domains for a given set of cpus and attach the sched domains
6396 * to the individual cpus
6397 */
dce840a0
PZ
6398static int build_sched_domains(const struct cpumask *cpu_map,
6399 struct sched_domain_attr *attr)
2109b99e 6400{
1c632169 6401 enum s_alloc alloc_state;
dce840a0 6402 struct sched_domain *sd;
2109b99e 6403 struct s_data d;
822ff793 6404 int i, ret = -ENOMEM;
9c1cfda2 6405
2109b99e
AH
6406 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6407 if (alloc_state != sa_rootdomain)
6408 goto error;
9c1cfda2 6409
dce840a0 6410 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6411 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6412 struct sched_domain_topology_level *tl;
6413
3bd65a80 6414 sd = NULL;
27723a68 6415 for_each_sd_topology(tl) {
4a850cbe 6416 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6417 if (tl == sched_domain_topology)
6418 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6419 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6420 sd->flags |= SD_OVERLAP;
d110235d
PZ
6421 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6422 break;
e3589f6c 6423 }
dce840a0
PZ
6424 }
6425
6426 /* Build the groups for the domains */
6427 for_each_cpu(i, cpu_map) {
6428 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6429 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6430 if (sd->flags & SD_OVERLAP) {
6431 if (build_overlap_sched_groups(sd, i))
6432 goto error;
6433 } else {
6434 if (build_sched_groups(sd, i))
6435 goto error;
6436 }
1cf51902 6437 }
a06dadbe 6438 }
9c1cfda2 6439
1da177e4 6440 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6441 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6442 if (!cpumask_test_cpu(i, cpu_map))
6443 continue;
9c1cfda2 6444
dce840a0
PZ
6445 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6446 claim_allocations(i, sd);
cd4ea6ae 6447 init_sched_groups_power(i, sd);
dce840a0 6448 }
f712c0c7 6449 }
9c1cfda2 6450
1da177e4 6451 /* Attach the domains */
dce840a0 6452 rcu_read_lock();
abcd083a 6453 for_each_cpu(i, cpu_map) {
21d42ccf 6454 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6455 cpu_attach_domain(sd, d.rd, i);
1da177e4 6456 }
dce840a0 6457 rcu_read_unlock();
51888ca2 6458
822ff793 6459 ret = 0;
51888ca2 6460error:
2109b99e 6461 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6462 return ret;
1da177e4 6463}
029190c5 6464
acc3f5d7 6465static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6466static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6467static struct sched_domain_attr *dattr_cur;
6468 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6469
6470/*
6471 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6472 * cpumask) fails, then fallback to a single sched domain,
6473 * as determined by the single cpumask fallback_doms.
029190c5 6474 */
4212823f 6475static cpumask_var_t fallback_doms;
029190c5 6476
ee79d1bd
HC
6477/*
6478 * arch_update_cpu_topology lets virtualized architectures update the
6479 * cpu core maps. It is supposed to return 1 if the topology changed
6480 * or 0 if it stayed the same.
6481 */
6482int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6483{
ee79d1bd 6484 return 0;
22e52b07
HC
6485}
6486
acc3f5d7
RR
6487cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6488{
6489 int i;
6490 cpumask_var_t *doms;
6491
6492 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6493 if (!doms)
6494 return NULL;
6495 for (i = 0; i < ndoms; i++) {
6496 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6497 free_sched_domains(doms, i);
6498 return NULL;
6499 }
6500 }
6501 return doms;
6502}
6503
6504void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6505{
6506 unsigned int i;
6507 for (i = 0; i < ndoms; i++)
6508 free_cpumask_var(doms[i]);
6509 kfree(doms);
6510}
6511
1a20ff27 6512/*
41a2d6cf 6513 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6514 * For now this just excludes isolated cpus, but could be used to
6515 * exclude other special cases in the future.
1a20ff27 6516 */
c4a8849a 6517static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6518{
7378547f
MM
6519 int err;
6520
22e52b07 6521 arch_update_cpu_topology();
029190c5 6522 ndoms_cur = 1;
acc3f5d7 6523 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6524 if (!doms_cur)
acc3f5d7
RR
6525 doms_cur = &fallback_doms;
6526 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6527 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6528 register_sched_domain_sysctl();
7378547f
MM
6529
6530 return err;
1a20ff27
DG
6531}
6532
1a20ff27
DG
6533/*
6534 * Detach sched domains from a group of cpus specified in cpu_map
6535 * These cpus will now be attached to the NULL domain
6536 */
96f874e2 6537static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6538{
6539 int i;
6540
dce840a0 6541 rcu_read_lock();
abcd083a 6542 for_each_cpu(i, cpu_map)
57d885fe 6543 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6544 rcu_read_unlock();
1a20ff27
DG
6545}
6546
1d3504fc
HS
6547/* handle null as "default" */
6548static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6549 struct sched_domain_attr *new, int idx_new)
6550{
6551 struct sched_domain_attr tmp;
6552
6553 /* fast path */
6554 if (!new && !cur)
6555 return 1;
6556
6557 tmp = SD_ATTR_INIT;
6558 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6559 new ? (new + idx_new) : &tmp,
6560 sizeof(struct sched_domain_attr));
6561}
6562
029190c5
PJ
6563/*
6564 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6565 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6566 * doms_new[] to the current sched domain partitioning, doms_cur[].
6567 * It destroys each deleted domain and builds each new domain.
6568 *
acc3f5d7 6569 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6570 * The masks don't intersect (don't overlap.) We should setup one
6571 * sched domain for each mask. CPUs not in any of the cpumasks will
6572 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6573 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6574 * it as it is.
6575 *
acc3f5d7
RR
6576 * The passed in 'doms_new' should be allocated using
6577 * alloc_sched_domains. This routine takes ownership of it and will
6578 * free_sched_domains it when done with it. If the caller failed the
6579 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6580 * and partition_sched_domains() will fallback to the single partition
6581 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6582 *
96f874e2 6583 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6584 * ndoms_new == 0 is a special case for destroying existing domains,
6585 * and it will not create the default domain.
dfb512ec 6586 *
029190c5
PJ
6587 * Call with hotplug lock held
6588 */
acc3f5d7 6589void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6590 struct sched_domain_attr *dattr_new)
029190c5 6591{
dfb512ec 6592 int i, j, n;
d65bd5ec 6593 int new_topology;
029190c5 6594
712555ee 6595 mutex_lock(&sched_domains_mutex);
a1835615 6596
7378547f
MM
6597 /* always unregister in case we don't destroy any domains */
6598 unregister_sched_domain_sysctl();
6599
d65bd5ec
HC
6600 /* Let architecture update cpu core mappings. */
6601 new_topology = arch_update_cpu_topology();
6602
dfb512ec 6603 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6604
6605 /* Destroy deleted domains */
6606 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6607 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6608 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6609 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6610 goto match1;
6611 }
6612 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6613 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6614match1:
6615 ;
6616 }
6617
c8d2d47a 6618 n = ndoms_cur;
e761b772 6619 if (doms_new == NULL) {
c8d2d47a 6620 n = 0;
acc3f5d7 6621 doms_new = &fallback_doms;
6ad4c188 6622 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6623 WARN_ON_ONCE(dattr_new);
e761b772
MK
6624 }
6625
029190c5
PJ
6626 /* Build new domains */
6627 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6628 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6629 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6630 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6631 goto match2;
6632 }
6633 /* no match - add a new doms_new */
dce840a0 6634 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6635match2:
6636 ;
6637 }
6638
6639 /* Remember the new sched domains */
acc3f5d7
RR
6640 if (doms_cur != &fallback_doms)
6641 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6642 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6643 doms_cur = doms_new;
1d3504fc 6644 dattr_cur = dattr_new;
029190c5 6645 ndoms_cur = ndoms_new;
7378547f
MM
6646
6647 register_sched_domain_sysctl();
a1835615 6648
712555ee 6649 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6650}
6651
d35be8ba
SB
6652static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6653
1da177e4 6654/*
3a101d05
TH
6655 * Update cpusets according to cpu_active mask. If cpusets are
6656 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6657 * around partition_sched_domains().
d35be8ba
SB
6658 *
6659 * If we come here as part of a suspend/resume, don't touch cpusets because we
6660 * want to restore it back to its original state upon resume anyway.
1da177e4 6661 */
0b2e918a
TH
6662static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6663 void *hcpu)
e761b772 6664{
d35be8ba
SB
6665 switch (action) {
6666 case CPU_ONLINE_FROZEN:
6667 case CPU_DOWN_FAILED_FROZEN:
6668
6669 /*
6670 * num_cpus_frozen tracks how many CPUs are involved in suspend
6671 * resume sequence. As long as this is not the last online
6672 * operation in the resume sequence, just build a single sched
6673 * domain, ignoring cpusets.
6674 */
6675 num_cpus_frozen--;
6676 if (likely(num_cpus_frozen)) {
6677 partition_sched_domains(1, NULL, NULL);
6678 break;
6679 }
6680
6681 /*
6682 * This is the last CPU online operation. So fall through and
6683 * restore the original sched domains by considering the
6684 * cpuset configurations.
6685 */
6686
e761b772 6687 case CPU_ONLINE:
6ad4c188 6688 case CPU_DOWN_FAILED:
7ddf96b0 6689 cpuset_update_active_cpus(true);
d35be8ba 6690 break;
3a101d05
TH
6691 default:
6692 return NOTIFY_DONE;
6693 }
d35be8ba 6694 return NOTIFY_OK;
3a101d05 6695}
e761b772 6696
0b2e918a
TH
6697static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6698 void *hcpu)
3a101d05 6699{
d35be8ba 6700 switch (action) {
3a101d05 6701 case CPU_DOWN_PREPARE:
7ddf96b0 6702 cpuset_update_active_cpus(false);
d35be8ba
SB
6703 break;
6704 case CPU_DOWN_PREPARE_FROZEN:
6705 num_cpus_frozen++;
6706 partition_sched_domains(1, NULL, NULL);
6707 break;
e761b772
MK
6708 default:
6709 return NOTIFY_DONE;
6710 }
d35be8ba 6711 return NOTIFY_OK;
e761b772 6712}
e761b772 6713
1da177e4
LT
6714void __init sched_init_smp(void)
6715{
dcc30a35
RR
6716 cpumask_var_t non_isolated_cpus;
6717
6718 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6719 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6720
cb83b629
PZ
6721 sched_init_numa();
6722
6acce3ef
PZ
6723 /*
6724 * There's no userspace yet to cause hotplug operations; hence all the
6725 * cpu masks are stable and all blatant races in the below code cannot
6726 * happen.
6727 */
712555ee 6728 mutex_lock(&sched_domains_mutex);
c4a8849a 6729 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6730 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6731 if (cpumask_empty(non_isolated_cpus))
6732 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6733 mutex_unlock(&sched_domains_mutex);
e761b772 6734
301a5cba 6735 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6736 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6737 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6738
b328ca18 6739 init_hrtick();
5c1e1767
NP
6740
6741 /* Move init over to a non-isolated CPU */
dcc30a35 6742 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6743 BUG();
19978ca6 6744 sched_init_granularity();
dcc30a35 6745 free_cpumask_var(non_isolated_cpus);
4212823f 6746
0e3900e6 6747 init_sched_rt_class();
1baca4ce 6748 init_sched_dl_class();
1da177e4
LT
6749}
6750#else
6751void __init sched_init_smp(void)
6752{
19978ca6 6753 sched_init_granularity();
1da177e4
LT
6754}
6755#endif /* CONFIG_SMP */
6756
cd1bb94b
AB
6757const_debug unsigned int sysctl_timer_migration = 1;
6758
1da177e4
LT
6759int in_sched_functions(unsigned long addr)
6760{
1da177e4
LT
6761 return in_lock_functions(addr) ||
6762 (addr >= (unsigned long)__sched_text_start
6763 && addr < (unsigned long)__sched_text_end);
6764}
6765
029632fb 6766#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6767/*
6768 * Default task group.
6769 * Every task in system belongs to this group at bootup.
6770 */
029632fb 6771struct task_group root_task_group;
35cf4e50 6772LIST_HEAD(task_groups);
052f1dc7 6773#endif
6f505b16 6774
e6252c3e 6775DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6776
1da177e4
LT
6777void __init sched_init(void)
6778{
dd41f596 6779 int i, j;
434d53b0
MT
6780 unsigned long alloc_size = 0, ptr;
6781
6782#ifdef CONFIG_FAIR_GROUP_SCHED
6783 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6784#endif
6785#ifdef CONFIG_RT_GROUP_SCHED
6786 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6787#endif
df7c8e84 6788#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6789 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6790#endif
434d53b0 6791 if (alloc_size) {
36b7b6d4 6792 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6793
6794#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6795 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6796 ptr += nr_cpu_ids * sizeof(void **);
6797
07e06b01 6798 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6799 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6800
6d6bc0ad 6801#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6802#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6803 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6804 ptr += nr_cpu_ids * sizeof(void **);
6805
07e06b01 6806 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6807 ptr += nr_cpu_ids * sizeof(void **);
6808
6d6bc0ad 6809#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6810#ifdef CONFIG_CPUMASK_OFFSTACK
6811 for_each_possible_cpu(i) {
e6252c3e 6812 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6813 ptr += cpumask_size();
6814 }
6815#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6816 }
dd41f596 6817
332ac17e
DF
6818 init_rt_bandwidth(&def_rt_bandwidth,
6819 global_rt_period(), global_rt_runtime());
6820 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 6821 global_rt_period(), global_rt_runtime());
332ac17e 6822
57d885fe
GH
6823#ifdef CONFIG_SMP
6824 init_defrootdomain();
6825#endif
6826
d0b27fa7 6827#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6828 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6829 global_rt_period(), global_rt_runtime());
6d6bc0ad 6830#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6831
7c941438 6832#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6833 list_add(&root_task_group.list, &task_groups);
6834 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6835 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6836 autogroup_init(&init_task);
54c707e9 6837
7c941438 6838#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6839
0a945022 6840 for_each_possible_cpu(i) {
70b97a7f 6841 struct rq *rq;
1da177e4
LT
6842
6843 rq = cpu_rq(i);
05fa785c 6844 raw_spin_lock_init(&rq->lock);
7897986b 6845 rq->nr_running = 0;
dce48a84
TG
6846 rq->calc_load_active = 0;
6847 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6848 init_cfs_rq(&rq->cfs);
6f505b16 6849 init_rt_rq(&rq->rt, rq);
aab03e05 6850 init_dl_rq(&rq->dl, rq);
dd41f596 6851#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6852 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6853 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6854 /*
07e06b01 6855 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6856 *
6857 * In case of task-groups formed thr' the cgroup filesystem, it
6858 * gets 100% of the cpu resources in the system. This overall
6859 * system cpu resource is divided among the tasks of
07e06b01 6860 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6861 * based on each entity's (task or task-group's) weight
6862 * (se->load.weight).
6863 *
07e06b01 6864 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6865 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6866 * then A0's share of the cpu resource is:
6867 *
0d905bca 6868 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6869 *
07e06b01
YZ
6870 * We achieve this by letting root_task_group's tasks sit
6871 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6872 */
ab84d31e 6873 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6874 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6875#endif /* CONFIG_FAIR_GROUP_SCHED */
6876
6877 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6878#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6879 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6880#endif
1da177e4 6881
dd41f596
IM
6882 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6883 rq->cpu_load[j] = 0;
fdf3e95d
VP
6884
6885 rq->last_load_update_tick = jiffies;
6886
1da177e4 6887#ifdef CONFIG_SMP
41c7ce9a 6888 rq->sd = NULL;
57d885fe 6889 rq->rd = NULL;
1399fa78 6890 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6891 rq->post_schedule = 0;
1da177e4 6892 rq->active_balance = 0;
dd41f596 6893 rq->next_balance = jiffies;
1da177e4 6894 rq->push_cpu = 0;
0a2966b4 6895 rq->cpu = i;
1f11eb6a 6896 rq->online = 0;
eae0c9df
MG
6897 rq->idle_stamp = 0;
6898 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6899 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6900
6901 INIT_LIST_HEAD(&rq->cfs_tasks);
6902
dc938520 6903 rq_attach_root(rq, &def_root_domain);
3451d024 6904#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6905 rq->nohz_flags = 0;
83cd4fe2 6906#endif
265f22a9
FW
6907#ifdef CONFIG_NO_HZ_FULL
6908 rq->last_sched_tick = 0;
6909#endif
1da177e4 6910#endif
8f4d37ec 6911 init_rq_hrtick(rq);
1da177e4 6912 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6913 }
6914
2dd73a4f 6915 set_load_weight(&init_task);
b50f60ce 6916
e107be36
AK
6917#ifdef CONFIG_PREEMPT_NOTIFIERS
6918 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6919#endif
6920
1da177e4
LT
6921 /*
6922 * The boot idle thread does lazy MMU switching as well:
6923 */
6924 atomic_inc(&init_mm.mm_count);
6925 enter_lazy_tlb(&init_mm, current);
6926
6927 /*
6928 * Make us the idle thread. Technically, schedule() should not be
6929 * called from this thread, however somewhere below it might be,
6930 * but because we are the idle thread, we just pick up running again
6931 * when this runqueue becomes "idle".
6932 */
6933 init_idle(current, smp_processor_id());
dce48a84
TG
6934
6935 calc_load_update = jiffies + LOAD_FREQ;
6936
dd41f596
IM
6937 /*
6938 * During early bootup we pretend to be a normal task:
6939 */
6940 current->sched_class = &fair_sched_class;
6892b75e 6941
bf4d83f6 6942#ifdef CONFIG_SMP
4cb98839 6943 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6944 /* May be allocated at isolcpus cmdline parse time */
6945 if (cpu_isolated_map == NULL)
6946 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6947 idle_thread_set_boot_cpu();
029632fb
PZ
6948#endif
6949 init_sched_fair_class();
6a7b3dc3 6950
6892b75e 6951 scheduler_running = 1;
1da177e4
LT
6952}
6953
d902db1e 6954#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6955static inline int preempt_count_equals(int preempt_offset)
6956{
234da7bc 6957 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6958
4ba8216c 6959 return (nested == preempt_offset);
e4aafea2
FW
6960}
6961
d894837f 6962void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6963{
1da177e4
LT
6964 static unsigned long prev_jiffy; /* ratelimiting */
6965
b3fbab05 6966 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
6967 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6968 !is_idle_task(current)) ||
e4aafea2 6969 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6970 return;
6971 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6972 return;
6973 prev_jiffy = jiffies;
6974
3df0fc5b
PZ
6975 printk(KERN_ERR
6976 "BUG: sleeping function called from invalid context at %s:%d\n",
6977 file, line);
6978 printk(KERN_ERR
6979 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6980 in_atomic(), irqs_disabled(),
6981 current->pid, current->comm);
aef745fc
IM
6982
6983 debug_show_held_locks(current);
6984 if (irqs_disabled())
6985 print_irqtrace_events(current);
8f47b187
TG
6986#ifdef CONFIG_DEBUG_PREEMPT
6987 if (!preempt_count_equals(preempt_offset)) {
6988 pr_err("Preemption disabled at:");
6989 print_ip_sym(current->preempt_disable_ip);
6990 pr_cont("\n");
6991 }
6992#endif
aef745fc 6993 dump_stack();
1da177e4
LT
6994}
6995EXPORT_SYMBOL(__might_sleep);
6996#endif
6997
6998#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6999static void normalize_task(struct rq *rq, struct task_struct *p)
7000{
da7a735e 7001 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7002 struct sched_attr attr = {
7003 .sched_policy = SCHED_NORMAL,
7004 };
da7a735e 7005 int old_prio = p->prio;
3a5e4dc1 7006 int on_rq;
3e51f33f 7007
fd2f4419 7008 on_rq = p->on_rq;
3a5e4dc1 7009 if (on_rq)
4ca9b72b 7010 dequeue_task(rq, p, 0);
d50dde5a 7011 __setscheduler(rq, p, &attr);
3a5e4dc1 7012 if (on_rq) {
4ca9b72b 7013 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7014 resched_task(rq->curr);
7015 }
da7a735e
PZ
7016
7017 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7018}
7019
1da177e4
LT
7020void normalize_rt_tasks(void)
7021{
a0f98a1c 7022 struct task_struct *g, *p;
1da177e4 7023 unsigned long flags;
70b97a7f 7024 struct rq *rq;
1da177e4 7025
4cf5d77a 7026 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7027 do_each_thread(g, p) {
178be793
IM
7028 /*
7029 * Only normalize user tasks:
7030 */
7031 if (!p->mm)
7032 continue;
7033
6cfb0d5d 7034 p->se.exec_start = 0;
6cfb0d5d 7035#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7036 p->se.statistics.wait_start = 0;
7037 p->se.statistics.sleep_start = 0;
7038 p->se.statistics.block_start = 0;
6cfb0d5d 7039#endif
dd41f596 7040
aab03e05 7041 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7042 /*
7043 * Renice negative nice level userspace
7044 * tasks back to 0:
7045 */
d0ea0268 7046 if (task_nice(p) < 0 && p->mm)
dd41f596 7047 set_user_nice(p, 0);
1da177e4 7048 continue;
dd41f596 7049 }
1da177e4 7050
1d615482 7051 raw_spin_lock(&p->pi_lock);
b29739f9 7052 rq = __task_rq_lock(p);
1da177e4 7053
178be793 7054 normalize_task(rq, p);
3a5e4dc1 7055
b29739f9 7056 __task_rq_unlock(rq);
1d615482 7057 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7058 } while_each_thread(g, p);
7059
4cf5d77a 7060 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7061}
7062
7063#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7064
67fc4e0c 7065#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7066/*
67fc4e0c 7067 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7068 *
7069 * They can only be called when the whole system has been
7070 * stopped - every CPU needs to be quiescent, and no scheduling
7071 * activity can take place. Using them for anything else would
7072 * be a serious bug, and as a result, they aren't even visible
7073 * under any other configuration.
7074 */
7075
7076/**
7077 * curr_task - return the current task for a given cpu.
7078 * @cpu: the processor in question.
7079 *
7080 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7081 *
7082 * Return: The current task for @cpu.
1df5c10a 7083 */
36c8b586 7084struct task_struct *curr_task(int cpu)
1df5c10a
LT
7085{
7086 return cpu_curr(cpu);
7087}
7088
67fc4e0c
JW
7089#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7090
7091#ifdef CONFIG_IA64
1df5c10a
LT
7092/**
7093 * set_curr_task - set the current task for a given cpu.
7094 * @cpu: the processor in question.
7095 * @p: the task pointer to set.
7096 *
7097 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7098 * are serviced on a separate stack. It allows the architecture to switch the
7099 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7100 * must be called with all CPU's synchronized, and interrupts disabled, the
7101 * and caller must save the original value of the current task (see
7102 * curr_task() above) and restore that value before reenabling interrupts and
7103 * re-starting the system.
7104 *
7105 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7106 */
36c8b586 7107void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7108{
7109 cpu_curr(cpu) = p;
7110}
7111
7112#endif
29f59db3 7113
7c941438 7114#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7115/* task_group_lock serializes the addition/removal of task groups */
7116static DEFINE_SPINLOCK(task_group_lock);
7117
bccbe08a
PZ
7118static void free_sched_group(struct task_group *tg)
7119{
7120 free_fair_sched_group(tg);
7121 free_rt_sched_group(tg);
e9aa1dd1 7122 autogroup_free(tg);
bccbe08a
PZ
7123 kfree(tg);
7124}
7125
7126/* allocate runqueue etc for a new task group */
ec7dc8ac 7127struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7128{
7129 struct task_group *tg;
bccbe08a
PZ
7130
7131 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7132 if (!tg)
7133 return ERR_PTR(-ENOMEM);
7134
ec7dc8ac 7135 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7136 goto err;
7137
ec7dc8ac 7138 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7139 goto err;
7140
ace783b9
LZ
7141 return tg;
7142
7143err:
7144 free_sched_group(tg);
7145 return ERR_PTR(-ENOMEM);
7146}
7147
7148void sched_online_group(struct task_group *tg, struct task_group *parent)
7149{
7150 unsigned long flags;
7151
8ed36996 7152 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7153 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7154
7155 WARN_ON(!parent); /* root should already exist */
7156
7157 tg->parent = parent;
f473aa5e 7158 INIT_LIST_HEAD(&tg->children);
09f2724a 7159 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7160 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7161}
7162
9b5b7751 7163/* rcu callback to free various structures associated with a task group */
6f505b16 7164static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7165{
29f59db3 7166 /* now it should be safe to free those cfs_rqs */
6f505b16 7167 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7168}
7169
9b5b7751 7170/* Destroy runqueue etc associated with a task group */
4cf86d77 7171void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7172{
7173 /* wait for possible concurrent references to cfs_rqs complete */
7174 call_rcu(&tg->rcu, free_sched_group_rcu);
7175}
7176
7177void sched_offline_group(struct task_group *tg)
29f59db3 7178{
8ed36996 7179 unsigned long flags;
9b5b7751 7180 int i;
29f59db3 7181
3d4b47b4
PZ
7182 /* end participation in shares distribution */
7183 for_each_possible_cpu(i)
bccbe08a 7184 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7185
7186 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7187 list_del_rcu(&tg->list);
f473aa5e 7188 list_del_rcu(&tg->siblings);
8ed36996 7189 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7190}
7191
9b5b7751 7192/* change task's runqueue when it moves between groups.
3a252015
IM
7193 * The caller of this function should have put the task in its new group
7194 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7195 * reflect its new group.
9b5b7751
SV
7196 */
7197void sched_move_task(struct task_struct *tsk)
29f59db3 7198{
8323f26c 7199 struct task_group *tg;
29f59db3
SV
7200 int on_rq, running;
7201 unsigned long flags;
7202 struct rq *rq;
7203
7204 rq = task_rq_lock(tsk, &flags);
7205
051a1d1a 7206 running = task_current(rq, tsk);
fd2f4419 7207 on_rq = tsk->on_rq;
29f59db3 7208
0e1f3483 7209 if (on_rq)
29f59db3 7210 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7211 if (unlikely(running))
7212 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7213
8af01f56 7214 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
7215 lockdep_is_held(&tsk->sighand->siglock)),
7216 struct task_group, css);
7217 tg = autogroup_task_group(tsk, tg);
7218 tsk->sched_task_group = tg;
7219
810b3817 7220#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7221 if (tsk->sched_class->task_move_group)
7222 tsk->sched_class->task_move_group(tsk, on_rq);
7223 else
810b3817 7224#endif
b2b5ce02 7225 set_task_rq(tsk, task_cpu(tsk));
810b3817 7226
0e1f3483
HS
7227 if (unlikely(running))
7228 tsk->sched_class->set_curr_task(rq);
7229 if (on_rq)
371fd7e7 7230 enqueue_task(rq, tsk, 0);
29f59db3 7231
0122ec5b 7232 task_rq_unlock(rq, tsk, &flags);
29f59db3 7233}
7c941438 7234#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7235
a790de99
PT
7236#ifdef CONFIG_RT_GROUP_SCHED
7237/*
7238 * Ensure that the real time constraints are schedulable.
7239 */
7240static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7241
9a7e0b18
PZ
7242/* Must be called with tasklist_lock held */
7243static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7244{
9a7e0b18 7245 struct task_struct *g, *p;
b40b2e8e 7246
9a7e0b18 7247 do_each_thread(g, p) {
029632fb 7248 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7249 return 1;
7250 } while_each_thread(g, p);
b40b2e8e 7251
9a7e0b18
PZ
7252 return 0;
7253}
b40b2e8e 7254
9a7e0b18
PZ
7255struct rt_schedulable_data {
7256 struct task_group *tg;
7257 u64 rt_period;
7258 u64 rt_runtime;
7259};
b40b2e8e 7260
a790de99 7261static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7262{
7263 struct rt_schedulable_data *d = data;
7264 struct task_group *child;
7265 unsigned long total, sum = 0;
7266 u64 period, runtime;
b40b2e8e 7267
9a7e0b18
PZ
7268 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7269 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7270
9a7e0b18
PZ
7271 if (tg == d->tg) {
7272 period = d->rt_period;
7273 runtime = d->rt_runtime;
b40b2e8e 7274 }
b40b2e8e 7275
4653f803
PZ
7276 /*
7277 * Cannot have more runtime than the period.
7278 */
7279 if (runtime > period && runtime != RUNTIME_INF)
7280 return -EINVAL;
6f505b16 7281
4653f803
PZ
7282 /*
7283 * Ensure we don't starve existing RT tasks.
7284 */
9a7e0b18
PZ
7285 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7286 return -EBUSY;
6f505b16 7287
9a7e0b18 7288 total = to_ratio(period, runtime);
6f505b16 7289
4653f803
PZ
7290 /*
7291 * Nobody can have more than the global setting allows.
7292 */
7293 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7294 return -EINVAL;
6f505b16 7295
4653f803
PZ
7296 /*
7297 * The sum of our children's runtime should not exceed our own.
7298 */
9a7e0b18
PZ
7299 list_for_each_entry_rcu(child, &tg->children, siblings) {
7300 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7301 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7302
9a7e0b18
PZ
7303 if (child == d->tg) {
7304 period = d->rt_period;
7305 runtime = d->rt_runtime;
7306 }
6f505b16 7307
9a7e0b18 7308 sum += to_ratio(period, runtime);
9f0c1e56 7309 }
6f505b16 7310
9a7e0b18
PZ
7311 if (sum > total)
7312 return -EINVAL;
7313
7314 return 0;
6f505b16
PZ
7315}
7316
9a7e0b18 7317static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7318{
8277434e
PT
7319 int ret;
7320
9a7e0b18
PZ
7321 struct rt_schedulable_data data = {
7322 .tg = tg,
7323 .rt_period = period,
7324 .rt_runtime = runtime,
7325 };
7326
8277434e
PT
7327 rcu_read_lock();
7328 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7329 rcu_read_unlock();
7330
7331 return ret;
521f1a24
DG
7332}
7333
ab84d31e 7334static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7335 u64 rt_period, u64 rt_runtime)
6f505b16 7336{
ac086bc2 7337 int i, err = 0;
9f0c1e56 7338
9f0c1e56 7339 mutex_lock(&rt_constraints_mutex);
521f1a24 7340 read_lock(&tasklist_lock);
9a7e0b18
PZ
7341 err = __rt_schedulable(tg, rt_period, rt_runtime);
7342 if (err)
9f0c1e56 7343 goto unlock;
ac086bc2 7344
0986b11b 7345 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7346 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7347 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7348
7349 for_each_possible_cpu(i) {
7350 struct rt_rq *rt_rq = tg->rt_rq[i];
7351
0986b11b 7352 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7353 rt_rq->rt_runtime = rt_runtime;
0986b11b 7354 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7355 }
0986b11b 7356 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7357unlock:
521f1a24 7358 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7359 mutex_unlock(&rt_constraints_mutex);
7360
7361 return err;
6f505b16
PZ
7362}
7363
25cc7da7 7364static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7365{
7366 u64 rt_runtime, rt_period;
7367
7368 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7369 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7370 if (rt_runtime_us < 0)
7371 rt_runtime = RUNTIME_INF;
7372
ab84d31e 7373 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7374}
7375
25cc7da7 7376static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7377{
7378 u64 rt_runtime_us;
7379
d0b27fa7 7380 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7381 return -1;
7382
d0b27fa7 7383 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7384 do_div(rt_runtime_us, NSEC_PER_USEC);
7385 return rt_runtime_us;
7386}
d0b27fa7 7387
25cc7da7 7388static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7389{
7390 u64 rt_runtime, rt_period;
7391
7392 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7393 rt_runtime = tg->rt_bandwidth.rt_runtime;
7394
619b0488
R
7395 if (rt_period == 0)
7396 return -EINVAL;
7397
ab84d31e 7398 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7399}
7400
25cc7da7 7401static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7402{
7403 u64 rt_period_us;
7404
7405 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7406 do_div(rt_period_us, NSEC_PER_USEC);
7407 return rt_period_us;
7408}
332ac17e 7409#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7410
332ac17e 7411#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7412static int sched_rt_global_constraints(void)
7413{
7414 int ret = 0;
7415
7416 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7417 read_lock(&tasklist_lock);
4653f803 7418 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7419 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7420 mutex_unlock(&rt_constraints_mutex);
7421
7422 return ret;
7423}
54e99124 7424
25cc7da7 7425static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7426{
7427 /* Don't accept realtime tasks when there is no way for them to run */
7428 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7429 return 0;
7430
7431 return 1;
7432}
7433
6d6bc0ad 7434#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7435static int sched_rt_global_constraints(void)
7436{
ac086bc2 7437 unsigned long flags;
332ac17e 7438 int i, ret = 0;
ec5d4989 7439
0986b11b 7440 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7441 for_each_possible_cpu(i) {
7442 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7443
0986b11b 7444 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7445 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7446 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7447 }
0986b11b 7448 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7449
332ac17e 7450 return ret;
d0b27fa7 7451}
6d6bc0ad 7452#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7453
332ac17e
DF
7454static int sched_dl_global_constraints(void)
7455{
1724813d
PZ
7456 u64 runtime = global_rt_runtime();
7457 u64 period = global_rt_period();
332ac17e 7458 u64 new_bw = to_ratio(period, runtime);
1724813d 7459 int cpu, ret = 0;
332ac17e
DF
7460
7461 /*
7462 * Here we want to check the bandwidth not being set to some
7463 * value smaller than the currently allocated bandwidth in
7464 * any of the root_domains.
7465 *
7466 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7467 * cycling on root_domains... Discussion on different/better
7468 * solutions is welcome!
7469 */
1724813d
PZ
7470 for_each_possible_cpu(cpu) {
7471 struct dl_bw *dl_b = dl_bw_of(cpu);
332ac17e
DF
7472
7473 raw_spin_lock(&dl_b->lock);
1724813d
PZ
7474 if (new_bw < dl_b->total_bw)
7475 ret = -EBUSY;
332ac17e 7476 raw_spin_unlock(&dl_b->lock);
1724813d
PZ
7477
7478 if (ret)
7479 break;
332ac17e
DF
7480 }
7481
1724813d 7482 return ret;
332ac17e
DF
7483}
7484
1724813d 7485static void sched_dl_do_global(void)
ce0dbbbb 7486{
1724813d
PZ
7487 u64 new_bw = -1;
7488 int cpu;
ce0dbbbb 7489
1724813d
PZ
7490 def_dl_bandwidth.dl_period = global_rt_period();
7491 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7492
7493 if (global_rt_runtime() != RUNTIME_INF)
7494 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7495
7496 /*
7497 * FIXME: As above...
7498 */
7499 for_each_possible_cpu(cpu) {
7500 struct dl_bw *dl_b = dl_bw_of(cpu);
7501
7502 raw_spin_lock(&dl_b->lock);
7503 dl_b->bw = new_bw;
7504 raw_spin_unlock(&dl_b->lock);
ce0dbbbb 7505 }
1724813d
PZ
7506}
7507
7508static int sched_rt_global_validate(void)
7509{
7510 if (sysctl_sched_rt_period <= 0)
7511 return -EINVAL;
7512
7513 if (sysctl_sched_rt_runtime > sysctl_sched_rt_period)
7514 return -EINVAL;
7515
7516 return 0;
7517}
7518
7519static void sched_rt_do_global(void)
7520{
7521 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7522 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7523}
7524
d0b27fa7 7525int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7526 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7527 loff_t *ppos)
7528{
d0b27fa7
PZ
7529 int old_period, old_runtime;
7530 static DEFINE_MUTEX(mutex);
1724813d 7531 int ret;
d0b27fa7
PZ
7532
7533 mutex_lock(&mutex);
7534 old_period = sysctl_sched_rt_period;
7535 old_runtime = sysctl_sched_rt_runtime;
7536
8d65af78 7537 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7538
7539 if (!ret && write) {
1724813d
PZ
7540 ret = sched_rt_global_validate();
7541 if (ret)
7542 goto undo;
7543
d0b27fa7 7544 ret = sched_rt_global_constraints();
1724813d
PZ
7545 if (ret)
7546 goto undo;
7547
7548 ret = sched_dl_global_constraints();
7549 if (ret)
7550 goto undo;
7551
7552 sched_rt_do_global();
7553 sched_dl_do_global();
7554 }
7555 if (0) {
7556undo:
7557 sysctl_sched_rt_period = old_period;
7558 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7559 }
7560 mutex_unlock(&mutex);
7561
7562 return ret;
7563}
68318b8e 7564
1724813d 7565int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7566 void __user *buffer, size_t *lenp,
7567 loff_t *ppos)
7568{
7569 int ret;
332ac17e 7570 static DEFINE_MUTEX(mutex);
332ac17e
DF
7571
7572 mutex_lock(&mutex);
332ac17e 7573 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7574 /* make sure that internally we keep jiffies */
7575 /* also, writing zero resets timeslice to default */
332ac17e 7576 if (!ret && write) {
1724813d
PZ
7577 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7578 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7579 }
7580 mutex_unlock(&mutex);
332ac17e
DF
7581 return ret;
7582}
7583
052f1dc7 7584#ifdef CONFIG_CGROUP_SCHED
68318b8e 7585
a7c6d554 7586static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7587{
a7c6d554 7588 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7589}
7590
eb95419b
TH
7591static struct cgroup_subsys_state *
7592cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7593{
eb95419b
TH
7594 struct task_group *parent = css_tg(parent_css);
7595 struct task_group *tg;
68318b8e 7596
eb95419b 7597 if (!parent) {
68318b8e 7598 /* This is early initialization for the top cgroup */
07e06b01 7599 return &root_task_group.css;
68318b8e
SV
7600 }
7601
ec7dc8ac 7602 tg = sched_create_group(parent);
68318b8e
SV
7603 if (IS_ERR(tg))
7604 return ERR_PTR(-ENOMEM);
7605
68318b8e
SV
7606 return &tg->css;
7607}
7608
eb95419b 7609static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7610{
eb95419b
TH
7611 struct task_group *tg = css_tg(css);
7612 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7613
63876986
TH
7614 if (parent)
7615 sched_online_group(tg, parent);
ace783b9
LZ
7616 return 0;
7617}
7618
eb95419b 7619static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7620{
eb95419b 7621 struct task_group *tg = css_tg(css);
68318b8e
SV
7622
7623 sched_destroy_group(tg);
7624}
7625
eb95419b 7626static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7627{
eb95419b 7628 struct task_group *tg = css_tg(css);
ace783b9
LZ
7629
7630 sched_offline_group(tg);
7631}
7632
eb95419b 7633static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7634 struct cgroup_taskset *tset)
68318b8e 7635{
bb9d97b6
TH
7636 struct task_struct *task;
7637
d99c8727 7638 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7639#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7640 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7641 return -EINVAL;
b68aa230 7642#else
bb9d97b6
TH
7643 /* We don't support RT-tasks being in separate groups */
7644 if (task->sched_class != &fair_sched_class)
7645 return -EINVAL;
b68aa230 7646#endif
bb9d97b6 7647 }
be367d09
BB
7648 return 0;
7649}
68318b8e 7650
eb95419b 7651static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7652 struct cgroup_taskset *tset)
68318b8e 7653{
bb9d97b6
TH
7654 struct task_struct *task;
7655
d99c8727 7656 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7657 sched_move_task(task);
68318b8e
SV
7658}
7659
eb95419b
TH
7660static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7661 struct cgroup_subsys_state *old_css,
7662 struct task_struct *task)
068c5cc5
PZ
7663{
7664 /*
7665 * cgroup_exit() is called in the copy_process() failure path.
7666 * Ignore this case since the task hasn't ran yet, this avoids
7667 * trying to poke a half freed task state from generic code.
7668 */
7669 if (!(task->flags & PF_EXITING))
7670 return;
7671
7672 sched_move_task(task);
7673}
7674
052f1dc7 7675#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7676static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7677 struct cftype *cftype, u64 shareval)
68318b8e 7678{
182446d0 7679 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7680}
7681
182446d0
TH
7682static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7683 struct cftype *cft)
68318b8e 7684{
182446d0 7685 struct task_group *tg = css_tg(css);
68318b8e 7686
c8b28116 7687 return (u64) scale_load_down(tg->shares);
68318b8e 7688}
ab84d31e
PT
7689
7690#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7691static DEFINE_MUTEX(cfs_constraints_mutex);
7692
ab84d31e
PT
7693const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7694const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7695
a790de99
PT
7696static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7697
ab84d31e
PT
7698static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7699{
56f570e5 7700 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7701 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7702
7703 if (tg == &root_task_group)
7704 return -EINVAL;
7705
7706 /*
7707 * Ensure we have at some amount of bandwidth every period. This is
7708 * to prevent reaching a state of large arrears when throttled via
7709 * entity_tick() resulting in prolonged exit starvation.
7710 */
7711 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7712 return -EINVAL;
7713
7714 /*
7715 * Likewise, bound things on the otherside by preventing insane quota
7716 * periods. This also allows us to normalize in computing quota
7717 * feasibility.
7718 */
7719 if (period > max_cfs_quota_period)
7720 return -EINVAL;
7721
a790de99
PT
7722 mutex_lock(&cfs_constraints_mutex);
7723 ret = __cfs_schedulable(tg, period, quota);
7724 if (ret)
7725 goto out_unlock;
7726
58088ad0 7727 runtime_enabled = quota != RUNTIME_INF;
56f570e5 7728 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
7729 /*
7730 * If we need to toggle cfs_bandwidth_used, off->on must occur
7731 * before making related changes, and on->off must occur afterwards
7732 */
7733 if (runtime_enabled && !runtime_was_enabled)
7734 cfs_bandwidth_usage_inc();
ab84d31e
PT
7735 raw_spin_lock_irq(&cfs_b->lock);
7736 cfs_b->period = ns_to_ktime(period);
7737 cfs_b->quota = quota;
58088ad0 7738
a9cf55b2 7739 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7740 /* restart the period timer (if active) to handle new period expiry */
7741 if (runtime_enabled && cfs_b->timer_active) {
7742 /* force a reprogram */
7743 cfs_b->timer_active = 0;
7744 __start_cfs_bandwidth(cfs_b);
7745 }
ab84d31e
PT
7746 raw_spin_unlock_irq(&cfs_b->lock);
7747
7748 for_each_possible_cpu(i) {
7749 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7750 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7751
7752 raw_spin_lock_irq(&rq->lock);
58088ad0 7753 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7754 cfs_rq->runtime_remaining = 0;
671fd9da 7755
029632fb 7756 if (cfs_rq->throttled)
671fd9da 7757 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7758 raw_spin_unlock_irq(&rq->lock);
7759 }
1ee14e6c
BS
7760 if (runtime_was_enabled && !runtime_enabled)
7761 cfs_bandwidth_usage_dec();
a790de99
PT
7762out_unlock:
7763 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7764
a790de99 7765 return ret;
ab84d31e
PT
7766}
7767
7768int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7769{
7770 u64 quota, period;
7771
029632fb 7772 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7773 if (cfs_quota_us < 0)
7774 quota = RUNTIME_INF;
7775 else
7776 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7777
7778 return tg_set_cfs_bandwidth(tg, period, quota);
7779}
7780
7781long tg_get_cfs_quota(struct task_group *tg)
7782{
7783 u64 quota_us;
7784
029632fb 7785 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7786 return -1;
7787
029632fb 7788 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7789 do_div(quota_us, NSEC_PER_USEC);
7790
7791 return quota_us;
7792}
7793
7794int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7795{
7796 u64 quota, period;
7797
7798 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7799 quota = tg->cfs_bandwidth.quota;
ab84d31e 7800
ab84d31e
PT
7801 return tg_set_cfs_bandwidth(tg, period, quota);
7802}
7803
7804long tg_get_cfs_period(struct task_group *tg)
7805{
7806 u64 cfs_period_us;
7807
029632fb 7808 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7809 do_div(cfs_period_us, NSEC_PER_USEC);
7810
7811 return cfs_period_us;
7812}
7813
182446d0
TH
7814static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7815 struct cftype *cft)
ab84d31e 7816{
182446d0 7817 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7818}
7819
182446d0
TH
7820static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7821 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7822{
182446d0 7823 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7824}
7825
182446d0
TH
7826static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7827 struct cftype *cft)
ab84d31e 7828{
182446d0 7829 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7830}
7831
182446d0
TH
7832static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7833 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7834{
182446d0 7835 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7836}
7837
a790de99
PT
7838struct cfs_schedulable_data {
7839 struct task_group *tg;
7840 u64 period, quota;
7841};
7842
7843/*
7844 * normalize group quota/period to be quota/max_period
7845 * note: units are usecs
7846 */
7847static u64 normalize_cfs_quota(struct task_group *tg,
7848 struct cfs_schedulable_data *d)
7849{
7850 u64 quota, period;
7851
7852 if (tg == d->tg) {
7853 period = d->period;
7854 quota = d->quota;
7855 } else {
7856 period = tg_get_cfs_period(tg);
7857 quota = tg_get_cfs_quota(tg);
7858 }
7859
7860 /* note: these should typically be equivalent */
7861 if (quota == RUNTIME_INF || quota == -1)
7862 return RUNTIME_INF;
7863
7864 return to_ratio(period, quota);
7865}
7866
7867static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7868{
7869 struct cfs_schedulable_data *d = data;
029632fb 7870 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7871 s64 quota = 0, parent_quota = -1;
7872
7873 if (!tg->parent) {
7874 quota = RUNTIME_INF;
7875 } else {
029632fb 7876 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7877
7878 quota = normalize_cfs_quota(tg, d);
7879 parent_quota = parent_b->hierarchal_quota;
7880
7881 /*
7882 * ensure max(child_quota) <= parent_quota, inherit when no
7883 * limit is set
7884 */
7885 if (quota == RUNTIME_INF)
7886 quota = parent_quota;
7887 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7888 return -EINVAL;
7889 }
7890 cfs_b->hierarchal_quota = quota;
7891
7892 return 0;
7893}
7894
7895static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7896{
8277434e 7897 int ret;
a790de99
PT
7898 struct cfs_schedulable_data data = {
7899 .tg = tg,
7900 .period = period,
7901 .quota = quota,
7902 };
7903
7904 if (quota != RUNTIME_INF) {
7905 do_div(data.period, NSEC_PER_USEC);
7906 do_div(data.quota, NSEC_PER_USEC);
7907 }
7908
8277434e
PT
7909 rcu_read_lock();
7910 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7911 rcu_read_unlock();
7912
7913 return ret;
a790de99 7914}
e8da1b18 7915
2da8ca82 7916static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 7917{
2da8ca82 7918 struct task_group *tg = css_tg(seq_css(sf));
029632fb 7919 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 7920
44ffc75b
TH
7921 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7922 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7923 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
7924
7925 return 0;
7926}
ab84d31e 7927#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7928#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7929
052f1dc7 7930#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7931static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7932 struct cftype *cft, s64 val)
6f505b16 7933{
182446d0 7934 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7935}
7936
182446d0
TH
7937static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7938 struct cftype *cft)
6f505b16 7939{
182446d0 7940 return sched_group_rt_runtime(css_tg(css));
6f505b16 7941}
d0b27fa7 7942
182446d0
TH
7943static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7944 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7945{
182446d0 7946 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7947}
7948
182446d0
TH
7949static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7950 struct cftype *cft)
d0b27fa7 7951{
182446d0 7952 return sched_group_rt_period(css_tg(css));
d0b27fa7 7953}
6d6bc0ad 7954#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7955
fe5c7cc2 7956static struct cftype cpu_files[] = {
052f1dc7 7957#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7958 {
7959 .name = "shares",
f4c753b7
PM
7960 .read_u64 = cpu_shares_read_u64,
7961 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7962 },
052f1dc7 7963#endif
ab84d31e
PT
7964#ifdef CONFIG_CFS_BANDWIDTH
7965 {
7966 .name = "cfs_quota_us",
7967 .read_s64 = cpu_cfs_quota_read_s64,
7968 .write_s64 = cpu_cfs_quota_write_s64,
7969 },
7970 {
7971 .name = "cfs_period_us",
7972 .read_u64 = cpu_cfs_period_read_u64,
7973 .write_u64 = cpu_cfs_period_write_u64,
7974 },
e8da1b18
NR
7975 {
7976 .name = "stat",
2da8ca82 7977 .seq_show = cpu_stats_show,
e8da1b18 7978 },
ab84d31e 7979#endif
052f1dc7 7980#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7981 {
9f0c1e56 7982 .name = "rt_runtime_us",
06ecb27c
PM
7983 .read_s64 = cpu_rt_runtime_read,
7984 .write_s64 = cpu_rt_runtime_write,
6f505b16 7985 },
d0b27fa7
PZ
7986 {
7987 .name = "rt_period_us",
f4c753b7
PM
7988 .read_u64 = cpu_rt_period_read_uint,
7989 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7990 },
052f1dc7 7991#endif
4baf6e33 7992 { } /* terminate */
68318b8e
SV
7993};
7994
68318b8e 7995struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7996 .name = "cpu",
92fb9748
TH
7997 .css_alloc = cpu_cgroup_css_alloc,
7998 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7999 .css_online = cpu_cgroup_css_online,
8000 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
8001 .can_attach = cpu_cgroup_can_attach,
8002 .attach = cpu_cgroup_attach,
068c5cc5 8003 .exit = cpu_cgroup_exit,
38605cae 8004 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8005 .base_cftypes = cpu_files,
68318b8e
SV
8006 .early_init = 1,
8007};
8008
052f1dc7 8009#endif /* CONFIG_CGROUP_SCHED */
d842de87 8010
b637a328
PM
8011void dump_cpu_task(int cpu)
8012{
8013 pr_info("Task dump for CPU %d:\n", cpu);
8014 sched_show_task(cpu_curr(cpu));
8015}