]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
Merge tag 'drm-fixes-2023-01-06' of git://anongit.freedesktop.org/drm/drm
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
391e43da 3 * kernel/sched/core.c
1da177e4 4 *
d1ccc66d 5 * Core kernel scheduler code and related syscalls
1da177e4
LT
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
1da177e4 8 */
e66f6481
IM
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
d664e399 29#include <linux/sched/cputime.h>
e66f6481 30#include <linux/sched/debug.h>
d664e399
TG
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
e66f6481
IM
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
1da177e4 39
6a5850d1 40#include <linux/blkdev.h>
e66f6481
IM
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
0ed557aa 48#include <linux/kcov.h>
e66f6481
IM
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/sched/wake_q.h>
d08b9f0c 61#include <linux/scs.h>
e66f6481
IM
62#include <linux/slab.h>
63#include <linux/syscalls.h>
64#include <linux/vtime.h>
65#include <linux/wait_api.h>
66#include <linux/workqueue_api.h>
67
68#ifdef CONFIG_PREEMPT_DYNAMIC
a7b2553b
IM
69# ifdef CONFIG_GENERIC_ENTRY
70# include <linux/entry-common.h>
71# endif
e66f6481
IM
72#endif
73
74#include <uapi/linux/sched/types.h>
0ed557aa 75
bc1cca97 76#include <asm/irq_regs.h>
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
1da177e4 79
9d246053 80#define CREATE_TRACE_POINTS
e66f6481 81#include <linux/sched/rseq_api.h>
9d246053
PA
82#include <trace/events/sched.h>
83#undef CREATE_TRACE_POINTS
84
325ea10c 85#include "sched.h"
b9e9c6ca
IM
86#include "stats.h"
87#include "autogroup.h"
6e0534f2 88
e66f6481 89#include "autogroup.h"
91c27493 90#include "pelt.h"
1f8db415 91#include "smp.h"
e66f6481 92#include "stats.h"
1da177e4 93
ea138446 94#include "../workqueue_internal.h"
ed29b0b4 95#include "../../io_uring/io-wq.h"
29d5e047 96#include "../smpboot.h"
91c27493 97
a056a5be
QY
98/*
99 * Export tracepoints that act as a bare tracehook (ie: have no trace event
100 * associated with them) to allow external modules to probe them.
101 */
102EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
77cf151b 107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
51cf18c9 108EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
a056a5be 109EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
4581bea8
VD
110EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
9d246053 112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
a056a5be 113
029632fb 114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
a73f863a 116#ifdef CONFIG_SCHED_DEBUG
bf5c91ba
IM
117/*
118 * Debugging: various feature bits
765cc3a4
PB
119 *
120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121 * sysctl_sched_features, defined in sched.h, to allow constants propagation
122 * at compile time and compiler optimization based on features default.
bf5c91ba 123 */
f00b45c1
PZ
124#define SCHED_FEAT(name, enabled) \
125 (1UL << __SCHED_FEAT_##name) * enabled |
bf5c91ba 126const_debug unsigned int sysctl_sched_features =
391e43da 127#include "features.h"
f00b45c1 128 0;
f00b45c1 129#undef SCHED_FEAT
c006fac5
PT
130
131/*
132 * Print a warning if need_resched is set for the given duration (if
133 * LATENCY_WARN is enabled).
134 *
135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136 * per boot.
137 */
138__read_mostly int sysctl_resched_latency_warn_ms = 100;
139__read_mostly int sysctl_resched_latency_warn_once = 1;
140#endif /* CONFIG_SCHED_DEBUG */
f00b45c1 141
b82d9fdd
PZ
142/*
143 * Number of tasks to iterate in a single balance run.
144 * Limited because this is done with IRQs disabled.
145 */
c59862f8 146const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
b82d9fdd 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9edeaea1
PZ
150#ifdef CONFIG_SCHED_CORE
151
152DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153
8a311c74
PZ
154/* kernel prio, less is more */
155static inline int __task_prio(struct task_struct *p)
156{
157 if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 return -2;
159
160 if (rt_prio(p->prio)) /* includes deadline */
161 return p->prio; /* [-1, 99] */
162
163 if (p->sched_class == &idle_sched_class)
164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165
166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167}
168
169/*
170 * l(a,b)
171 * le(a,b) := !l(b,a)
172 * g(a,b) := l(b,a)
173 * ge(a,b) := !l(a,b)
174 */
175
176/* real prio, less is less */
c6047c2e 177static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
8a311c74
PZ
178{
179
180 int pa = __task_prio(a), pb = __task_prio(b);
181
182 if (-pa < -pb)
183 return true;
184
185 if (-pb < -pa)
186 return false;
187
188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 return !dl_time_before(a->dl.deadline, b->dl.deadline);
190
c6047c2e
JFG
191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
192 return cfs_prio_less(a, b, in_fi);
8a311c74
PZ
193
194 return false;
195}
196
197static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198{
199 if (a->core_cookie < b->core_cookie)
200 return true;
201
202 if (a->core_cookie > b->core_cookie)
203 return false;
204
205 /* flip prio, so high prio is leftmost */
4feee7d1 206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
8a311c74
PZ
207 return true;
208
209 return false;
210}
211
212#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213
214static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215{
216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217}
218
219static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220{
221 const struct task_struct *p = __node_2_sc(node);
222 unsigned long cookie = (unsigned long)key;
223
224 if (cookie < p->core_cookie)
225 return -1;
226
227 if (cookie > p->core_cookie)
228 return 1;
229
230 return 0;
231}
232
6e33cad0 233void sched_core_enqueue(struct rq *rq, struct task_struct *p)
8a311c74
PZ
234{
235 rq->core->core_task_seq++;
236
237 if (!p->core_cookie)
238 return;
239
240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241}
242
4feee7d1 243void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
8a311c74
PZ
244{
245 rq->core->core_task_seq++;
246
4feee7d1
JD
247 if (sched_core_enqueued(p)) {
248 rb_erase(&p->core_node, &rq->core_tree);
249 RB_CLEAR_NODE(&p->core_node);
250 }
8a311c74 251
4feee7d1
JD
252 /*
253 * Migrating the last task off the cpu, with the cpu in forced idle
254 * state. Reschedule to create an accounting edge for forced idle,
255 * and re-examine whether the core is still in forced idle state.
256 */
257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 rq->core->core_forceidle_count && rq->curr == rq->idle)
259 resched_curr(rq);
8a311c74
PZ
260}
261
262/*
263 * Find left-most (aka, highest priority) task matching @cookie.
264 */
265static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266{
267 struct rb_node *node;
268
269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 /*
271 * The idle task always matches any cookie!
272 */
273 if (!node)
274 return idle_sched_class.pick_task(rq);
275
276 return __node_2_sc(node);
277}
278
d2dfa17b
PZ
279static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280{
281 struct rb_node *node = &p->core_node;
282
283 node = rb_next(node);
284 if (!node)
285 return NULL;
286
287 p = container_of(node, struct task_struct, core_node);
288 if (p->core_cookie != cookie)
289 return NULL;
290
291 return p;
292}
293
9edeaea1
PZ
294/*
295 * Magic required such that:
296 *
297 * raw_spin_rq_lock(rq);
298 * ...
299 * raw_spin_rq_unlock(rq);
300 *
301 * ends up locking and unlocking the _same_ lock, and all CPUs
302 * always agree on what rq has what lock.
303 *
304 * XXX entirely possible to selectively enable cores, don't bother for now.
305 */
306
307static DEFINE_MUTEX(sched_core_mutex);
875feb41 308static atomic_t sched_core_count;
9edeaea1
PZ
309static struct cpumask sched_core_mask;
310
3c474b32
PZ
311static void sched_core_lock(int cpu, unsigned long *flags)
312{
313 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 int t, i = 0;
315
316 local_irq_save(*flags);
317 for_each_cpu(t, smt_mask)
318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319}
320
321static void sched_core_unlock(int cpu, unsigned long *flags)
322{
323 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 int t;
325
326 for_each_cpu(t, smt_mask)
327 raw_spin_unlock(&cpu_rq(t)->__lock);
328 local_irq_restore(*flags);
329}
330
9edeaea1
PZ
331static void __sched_core_flip(bool enabled)
332{
3c474b32
PZ
333 unsigned long flags;
334 int cpu, t;
9edeaea1
PZ
335
336 cpus_read_lock();
337
338 /*
339 * Toggle the online cores, one by one.
340 */
341 cpumask_copy(&sched_core_mask, cpu_online_mask);
342 for_each_cpu(cpu, &sched_core_mask) {
343 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344
3c474b32 345 sched_core_lock(cpu, &flags);
9edeaea1
PZ
346
347 for_each_cpu(t, smt_mask)
348 cpu_rq(t)->core_enabled = enabled;
349
4feee7d1
JD
350 cpu_rq(cpu)->core->core_forceidle_start = 0;
351
3c474b32 352 sched_core_unlock(cpu, &flags);
9edeaea1
PZ
353
354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 }
356
357 /*
358 * Toggle the offline CPUs.
359 */
585463f0 360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
9edeaea1
PZ
361 cpu_rq(cpu)->core_enabled = enabled;
362
363 cpus_read_unlock();
364}
365
8a311c74 366static void sched_core_assert_empty(void)
9edeaea1 367{
8a311c74 368 int cpu;
9edeaea1 369
8a311c74
PZ
370 for_each_possible_cpu(cpu)
371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372}
373
374static void __sched_core_enable(void)
375{
9edeaea1
PZ
376 static_branch_enable(&__sched_core_enabled);
377 /*
378 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 * and future ones will observe !sched_core_disabled().
380 */
381 synchronize_rcu();
382 __sched_core_flip(true);
8a311c74 383 sched_core_assert_empty();
9edeaea1
PZ
384}
385
386static void __sched_core_disable(void)
387{
8a311c74 388 sched_core_assert_empty();
9edeaea1
PZ
389 __sched_core_flip(false);
390 static_branch_disable(&__sched_core_enabled);
391}
392
393void sched_core_get(void)
394{
875feb41
PZ
395 if (atomic_inc_not_zero(&sched_core_count))
396 return;
397
9edeaea1 398 mutex_lock(&sched_core_mutex);
875feb41 399 if (!atomic_read(&sched_core_count))
9edeaea1 400 __sched_core_enable();
875feb41
PZ
401
402 smp_mb__before_atomic();
403 atomic_inc(&sched_core_count);
9edeaea1
PZ
404 mutex_unlock(&sched_core_mutex);
405}
406
875feb41 407static void __sched_core_put(struct work_struct *work)
9edeaea1 408{
875feb41 409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
9edeaea1 410 __sched_core_disable();
875feb41
PZ
411 mutex_unlock(&sched_core_mutex);
412 }
413}
414
415void sched_core_put(void)
416{
417 static DECLARE_WORK(_work, __sched_core_put);
418
419 /*
420 * "There can be only one"
421 *
422 * Either this is the last one, or we don't actually need to do any
423 * 'work'. If it is the last *again*, we rely on
424 * WORK_STRUCT_PENDING_BIT.
425 */
426 if (!atomic_add_unless(&sched_core_count, -1, 1))
427 schedule_work(&_work);
9edeaea1
PZ
428}
429
8a311c74
PZ
430#else /* !CONFIG_SCHED_CORE */
431
432static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
4feee7d1
JD
433static inline void
434sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
8a311c74 435
9edeaea1
PZ
436#endif /* CONFIG_SCHED_CORE */
437
58877d34
PZ
438/*
439 * Serialization rules:
440 *
441 * Lock order:
442 *
443 * p->pi_lock
444 * rq->lock
445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446 *
447 * rq1->lock
448 * rq2->lock where: rq1 < rq2
449 *
450 * Regular state:
451 *
452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453 * local CPU's rq->lock, it optionally removes the task from the runqueue and
b19a888c 454 * always looks at the local rq data structures to find the most eligible task
58877d34
PZ
455 * to run next.
456 *
457 * Task enqueue is also under rq->lock, possibly taken from another CPU.
458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459 * the local CPU to avoid bouncing the runqueue state around [ see
460 * ttwu_queue_wakelist() ]
461 *
462 * Task wakeup, specifically wakeups that involve migration, are horribly
463 * complicated to avoid having to take two rq->locks.
464 *
465 * Special state:
466 *
467 * System-calls and anything external will use task_rq_lock() which acquires
468 * both p->pi_lock and rq->lock. As a consequence the state they change is
469 * stable while holding either lock:
470 *
471 * - sched_setaffinity()/
472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
473 * - set_user_nice(): p->se.load, p->*prio
474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
475 * p->se.load, p->rt_priority,
476 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
477 * - sched_setnuma(): p->numa_preferred_nid
39c42611 478 * - sched_move_task(): p->sched_task_group
58877d34
PZ
479 * - uclamp_update_active() p->uclamp*
480 *
481 * p->state <- TASK_*:
482 *
483 * is changed locklessly using set_current_state(), __set_current_state() or
484 * set_special_state(), see their respective comments, or by
485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
486 * concurrent self.
487 *
488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489 *
490 * is set by activate_task() and cleared by deactivate_task(), under
491 * rq->lock. Non-zero indicates the task is runnable, the special
492 * ON_RQ_MIGRATING state is used for migration without holding both
493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494 *
495 * p->on_cpu <- { 0, 1 }:
496 *
497 * is set by prepare_task() and cleared by finish_task() such that it will be
498 * set before p is scheduled-in and cleared after p is scheduled-out, both
499 * under rq->lock. Non-zero indicates the task is running on its CPU.
500 *
501 * [ The astute reader will observe that it is possible for two tasks on one
502 * CPU to have ->on_cpu = 1 at the same time. ]
503 *
504 * task_cpu(p): is changed by set_task_cpu(), the rules are:
505 *
506 * - Don't call set_task_cpu() on a blocked task:
507 *
508 * We don't care what CPU we're not running on, this simplifies hotplug,
509 * the CPU assignment of blocked tasks isn't required to be valid.
510 *
511 * - for try_to_wake_up(), called under p->pi_lock:
512 *
513 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
514 *
515 * - for migration called under rq->lock:
516 * [ see task_on_rq_migrating() in task_rq_lock() ]
517 *
518 * o move_queued_task()
519 * o detach_task()
520 *
521 * - for migration called under double_rq_lock():
522 *
523 * o __migrate_swap_task()
524 * o push_rt_task() / pull_rt_task()
525 * o push_dl_task() / pull_dl_task()
526 * o dl_task_offline_migration()
527 *
528 */
529
39d371b7
PZ
530void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531{
d66f1b06
PZ
532 raw_spinlock_t *lock;
533
9edeaea1
PZ
534 /* Matches synchronize_rcu() in __sched_core_enable() */
535 preempt_disable();
d66f1b06
PZ
536 if (sched_core_disabled()) {
537 raw_spin_lock_nested(&rq->__lock, subclass);
9edeaea1
PZ
538 /* preempt_count *MUST* be > 1 */
539 preempt_enable_no_resched();
d66f1b06
PZ
540 return;
541 }
542
543 for (;;) {
9ef7e7e3 544 lock = __rq_lockp(rq);
d66f1b06 545 raw_spin_lock_nested(lock, subclass);
9ef7e7e3 546 if (likely(lock == __rq_lockp(rq))) {
9edeaea1
PZ
547 /* preempt_count *MUST* be > 1 */
548 preempt_enable_no_resched();
d66f1b06 549 return;
9edeaea1 550 }
d66f1b06
PZ
551 raw_spin_unlock(lock);
552 }
39d371b7
PZ
553}
554
555bool raw_spin_rq_trylock(struct rq *rq)
556{
d66f1b06
PZ
557 raw_spinlock_t *lock;
558 bool ret;
559
9edeaea1
PZ
560 /* Matches synchronize_rcu() in __sched_core_enable() */
561 preempt_disable();
562 if (sched_core_disabled()) {
563 ret = raw_spin_trylock(&rq->__lock);
564 preempt_enable();
565 return ret;
566 }
d66f1b06
PZ
567
568 for (;;) {
9ef7e7e3 569 lock = __rq_lockp(rq);
d66f1b06 570 ret = raw_spin_trylock(lock);
9ef7e7e3 571 if (!ret || (likely(lock == __rq_lockp(rq)))) {
9edeaea1 572 preempt_enable();
d66f1b06 573 return ret;
9edeaea1 574 }
d66f1b06
PZ
575 raw_spin_unlock(lock);
576 }
39d371b7
PZ
577}
578
579void raw_spin_rq_unlock(struct rq *rq)
580{
581 raw_spin_unlock(rq_lockp(rq));
582}
583
d66f1b06
PZ
584#ifdef CONFIG_SMP
585/*
586 * double_rq_lock - safely lock two runqueues
587 */
588void double_rq_lock(struct rq *rq1, struct rq *rq2)
589{
590 lockdep_assert_irqs_disabled();
591
592 if (rq_order_less(rq2, rq1))
593 swap(rq1, rq2);
594
595 raw_spin_rq_lock(rq1);
2679a837
HJ
596 if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
d66f1b06 598
2679a837 599 double_rq_clock_clear_update(rq1, rq2);
d66f1b06
PZ
600}
601#endif
602
3e71a462
PZ
603/*
604 * __task_rq_lock - lock the rq @p resides on.
605 */
eb580751 606struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
607 __acquires(rq->lock)
608{
609 struct rq *rq;
610
611 lockdep_assert_held(&p->pi_lock);
612
613 for (;;) {
614 rq = task_rq(p);
5cb9eaa3 615 raw_spin_rq_lock(rq);
3e71a462 616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 617 rq_pin_lock(rq, rf);
3e71a462
PZ
618 return rq;
619 }
5cb9eaa3 620 raw_spin_rq_unlock(rq);
3e71a462
PZ
621
622 while (unlikely(task_on_rq_migrating(p)))
623 cpu_relax();
624 }
625}
626
627/*
628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629 */
eb580751 630struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
631 __acquires(p->pi_lock)
632 __acquires(rq->lock)
633{
634 struct rq *rq;
635
636 for (;;) {
eb580751 637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462 638 rq = task_rq(p);
5cb9eaa3 639 raw_spin_rq_lock(rq);
3e71a462
PZ
640 /*
641 * move_queued_task() task_rq_lock()
642 *
643 * ACQUIRE (rq->lock)
644 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
646 * [S] ->cpu = new_cpu [L] task_rq()
647 * [L] ->on_rq
648 * RELEASE (rq->lock)
649 *
c546951d 650 * If we observe the old CPU in task_rq_lock(), the acquire of
3e71a462
PZ
651 * the old rq->lock will fully serialize against the stores.
652 *
c546951d
AP
653 * If we observe the new CPU in task_rq_lock(), the address
654 * dependency headed by '[L] rq = task_rq()' and the acquire
655 * will pair with the WMB to ensure we then also see migrating.
3e71a462
PZ
656 */
657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
d8ac8971 658 rq_pin_lock(rq, rf);
3e71a462
PZ
659 return rq;
660 }
5cb9eaa3 661 raw_spin_rq_unlock(rq);
eb580751 662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
663
664 while (unlikely(task_on_rq_migrating(p)))
665 cpu_relax();
666 }
667}
668
535b9552
IM
669/*
670 * RQ-clock updating methods:
671 */
672
673static void update_rq_clock_task(struct rq *rq, s64 delta)
674{
675/*
676 * In theory, the compile should just see 0 here, and optimize out the call
677 * to sched_rt_avg_update. But I don't trust it...
678 */
11d4afd4
VG
679 s64 __maybe_unused steal = 0, irq_delta = 0;
680
535b9552
IM
681#ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683
684 /*
685 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 * this case when a previous update_rq_clock() happened inside a
687 * {soft,}irq region.
688 *
689 * When this happens, we stop ->clock_task and only update the
690 * prev_irq_time stamp to account for the part that fit, so that a next
691 * update will consume the rest. This ensures ->clock_task is
692 * monotonic.
693 *
694 * It does however cause some slight miss-attribution of {soft,}irq
695 * time, a more accurate solution would be to update the irq_time using
696 * the current rq->clock timestamp, except that would require using
697 * atomic ops.
698 */
699 if (irq_delta > delta)
700 irq_delta = delta;
701
702 rq->prev_irq_time += irq_delta;
703 delta -= irq_delta;
52b1364b 704 psi_account_irqtime(rq->curr, irq_delta);
535b9552
IM
705#endif
706#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 if (static_key_false((&paravirt_steal_rq_enabled))) {
708 steal = paravirt_steal_clock(cpu_of(rq));
709 steal -= rq->prev_steal_time_rq;
710
711 if (unlikely(steal > delta))
712 steal = delta;
713
714 rq->prev_steal_time_rq += steal;
715 delta -= steal;
716 }
717#endif
718
719 rq->clock_task += delta;
720
11d4afd4 721#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
535b9552 722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
91c27493 723 update_irq_load_avg(rq, irq_delta + steal);
535b9552 724#endif
23127296 725 update_rq_clock_pelt(rq, delta);
535b9552
IM
726}
727
728void update_rq_clock(struct rq *rq)
729{
730 s64 delta;
731
5cb9eaa3 732 lockdep_assert_rq_held(rq);
535b9552
IM
733
734 if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 return;
736
737#ifdef CONFIG_SCHED_DEBUG
26ae58d2
PZ
738 if (sched_feat(WARN_DOUBLE_CLOCK))
739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
535b9552
IM
740 rq->clock_update_flags |= RQCF_UPDATED;
741#endif
26ae58d2 742
535b9552
IM
743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 if (delta < 0)
745 return;
746 rq->clock += delta;
747 update_rq_clock_task(rq, delta);
748}
749
8f4d37ec
PZ
750#ifdef CONFIG_SCHED_HRTICK
751/*
752 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 753 */
8f4d37ec 754
8f4d37ec
PZ
755static void hrtick_clear(struct rq *rq)
756{
757 if (hrtimer_active(&rq->hrtick_timer))
758 hrtimer_cancel(&rq->hrtick_timer);
759}
760
8f4d37ec
PZ
761/*
762 * High-resolution timer tick.
763 * Runs from hardirq context with interrupts disabled.
764 */
765static enum hrtimer_restart hrtick(struct hrtimer *timer)
766{
767 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
8a8c69c3 768 struct rq_flags rf;
8f4d37ec
PZ
769
770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771
8a8c69c3 772 rq_lock(rq, &rf);
3e51f33f 773 update_rq_clock(rq);
8f4d37ec 774 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
8a8c69c3 775 rq_unlock(rq, &rf);
8f4d37ec
PZ
776
777 return HRTIMER_NORESTART;
778}
779
95e904c7 780#ifdef CONFIG_SMP
971ee28c 781
4961b6e1 782static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
783{
784 struct hrtimer *timer = &rq->hrtick_timer;
156ec6f4 785 ktime_t time = rq->hrtick_time;
971ee28c 786
156ec6f4 787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
971ee28c
PZ
788}
789
31656519
PZ
790/*
791 * called from hardirq (IPI) context
792 */
793static void __hrtick_start(void *arg)
b328ca18 794{
31656519 795 struct rq *rq = arg;
8a8c69c3 796 struct rq_flags rf;
b328ca18 797
8a8c69c3 798 rq_lock(rq, &rf);
971ee28c 799 __hrtick_restart(rq);
8a8c69c3 800 rq_unlock(rq, &rf);
b328ca18
PZ
801}
802
31656519
PZ
803/*
804 * Called to set the hrtick timer state.
805 *
806 * called with rq->lock held and irqs disabled
807 */
029632fb 808void hrtick_start(struct rq *rq, u64 delay)
b328ca18 809{
31656519 810 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 811 s64 delta;
812
813 /*
814 * Don't schedule slices shorter than 10000ns, that just
815 * doesn't make sense and can cause timer DoS.
816 */
817 delta = max_t(s64, delay, 10000LL);
156ec6f4 818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
31656519 819
fd3eafda 820 if (rq == this_rq())
971ee28c 821 __hrtick_restart(rq);
fd3eafda 822 else
c46fff2a 823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
b328ca18
PZ
824}
825
31656519
PZ
826#else
827/*
828 * Called to set the hrtick timer state.
829 *
830 * called with rq->lock held and irqs disabled
831 */
029632fb 832void hrtick_start(struct rq *rq, u64 delay)
31656519 833{
86893335
WL
834 /*
835 * Don't schedule slices shorter than 10000ns, that just
836 * doesn't make sense. Rely on vruntime for fairness.
837 */
838 delay = max_t(u64, delay, 10000LL);
4961b6e1 839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
d5096aa6 840 HRTIMER_MODE_REL_PINNED_HARD);
31656519 841}
90b5363a 842
31656519 843#endif /* CONFIG_SMP */
8f4d37ec 844
77a021be 845static void hrtick_rq_init(struct rq *rq)
8f4d37ec 846{
31656519 847#ifdef CONFIG_SMP
545b8c8d 848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
31656519 849#endif
d5096aa6 850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
31656519 851 rq->hrtick_timer.function = hrtick;
8f4d37ec 852}
006c75f1 853#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
854static inline void hrtick_clear(struct rq *rq)
855{
856}
857
77a021be 858static inline void hrtick_rq_init(struct rq *rq)
8f4d37ec
PZ
859{
860}
006c75f1 861#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 862
5529578a
FW
863/*
864 * cmpxchg based fetch_or, macro so it works for different integer types
865 */
866#define fetch_or(ptr, mask) \
867 ({ \
868 typeof(ptr) _ptr = (ptr); \
869 typeof(mask) _mask = (mask); \
c02d5546 870 typeof(*_ptr) _val = *_ptr; \
5529578a 871 \
c02d5546
UB
872 do { \
873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
874 _val; \
5529578a
FW
875})
876
e3baac47 877#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
878/*
879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880 * this avoids any races wrt polling state changes and thereby avoids
881 * spurious IPIs.
882 */
c02d5546 883static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
884{
885 struct thread_info *ti = task_thread_info(p);
886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887}
e3baac47
PZ
888
889/*
890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891 *
892 * If this returns true, then the idle task promises to call
893 * sched_ttwu_pending() and reschedule soon.
894 */
895static bool set_nr_if_polling(struct task_struct *p)
896{
897 struct thread_info *ti = task_thread_info(p);
c02d5546 898 typeof(ti->flags) val = READ_ONCE(ti->flags);
e3baac47
PZ
899
900 for (;;) {
901 if (!(val & _TIF_POLLING_NRFLAG))
902 return false;
903 if (val & _TIF_NEED_RESCHED)
904 return true;
c02d5546 905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
e3baac47 906 break;
e3baac47
PZ
907 }
908 return true;
909}
910
fd99f91a 911#else
c02d5546 912static inline bool set_nr_and_not_polling(struct task_struct *p)
fd99f91a
PZ
913{
914 set_tsk_need_resched(p);
915 return true;
916}
e3baac47
PZ
917
918#ifdef CONFIG_SMP
c02d5546 919static inline bool set_nr_if_polling(struct task_struct *p)
e3baac47
PZ
920{
921 return false;
922}
923#endif
fd99f91a
PZ
924#endif
925
07879c6a 926static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
76751049
PZ
927{
928 struct wake_q_node *node = &task->wake_q;
929
930 /*
931 * Atomically grab the task, if ->wake_q is !nil already it means
b19a888c 932 * it's already queued (either by us or someone else) and will get the
76751049
PZ
933 * wakeup due to that.
934 *
4c4e3731
PZ
935 * In order to ensure that a pending wakeup will observe our pending
936 * state, even in the failed case, an explicit smp_mb() must be used.
76751049 937 */
4c4e3731 938 smp_mb__before_atomic();
87ff19cb 939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
07879c6a 940 return false;
76751049
PZ
941
942 /*
943 * The head is context local, there can be no concurrency.
944 */
945 *head->lastp = node;
946 head->lastp = &node->next;
07879c6a
DB
947 return true;
948}
949
950/**
951 * wake_q_add() - queue a wakeup for 'later' waking.
952 * @head: the wake_q_head to add @task to
953 * @task: the task to queue for 'later' wakeup
954 *
955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957 * instantly.
958 *
959 * This function must be used as-if it were wake_up_process(); IOW the task
960 * must be ready to be woken at this location.
961 */
962void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963{
964 if (__wake_q_add(head, task))
965 get_task_struct(task);
966}
967
968/**
969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970 * @head: the wake_q_head to add @task to
971 * @task: the task to queue for 'later' wakeup
972 *
973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975 * instantly.
976 *
977 * This function must be used as-if it were wake_up_process(); IOW the task
978 * must be ready to be woken at this location.
979 *
980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981 * that already hold reference to @task can call the 'safe' version and trust
982 * wake_q to do the right thing depending whether or not the @task is already
983 * queued for wakeup.
984 */
985void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986{
987 if (!__wake_q_add(head, task))
988 put_task_struct(task);
76751049
PZ
989}
990
991void wake_up_q(struct wake_q_head *head)
992{
993 struct wake_q_node *node = head->first;
994
995 while (node != WAKE_Q_TAIL) {
996 struct task_struct *task;
997
998 task = container_of(node, struct task_struct, wake_q);
d1ccc66d 999 /* Task can safely be re-inserted now: */
76751049
PZ
1000 node = node->next;
1001 task->wake_q.next = NULL;
1002
1003 /*
7696f991
AP
1004 * wake_up_process() executes a full barrier, which pairs with
1005 * the queueing in wake_q_add() so as not to miss wakeups.
76751049
PZ
1006 */
1007 wake_up_process(task);
1008 put_task_struct(task);
1009 }
1010}
1011
c24d20db 1012/*
8875125e 1013 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
1014 *
1015 * On UP this means the setting of the need_resched flag, on SMP it
1016 * might also involve a cross-CPU call to trigger the scheduler on
1017 * the target CPU.
1018 */
8875125e 1019void resched_curr(struct rq *rq)
c24d20db 1020{
8875125e 1021 struct task_struct *curr = rq->curr;
c24d20db
IM
1022 int cpu;
1023
5cb9eaa3 1024 lockdep_assert_rq_held(rq);
c24d20db 1025
8875125e 1026 if (test_tsk_need_resched(curr))
c24d20db
IM
1027 return;
1028
8875125e 1029 cpu = cpu_of(rq);
fd99f91a 1030
f27dde8d 1031 if (cpu == smp_processor_id()) {
8875125e 1032 set_tsk_need_resched(curr);
f27dde8d 1033 set_preempt_need_resched();
c24d20db 1034 return;
f27dde8d 1035 }
c24d20db 1036
8875125e 1037 if (set_nr_and_not_polling(curr))
c24d20db 1038 smp_send_reschedule(cpu);
dfc68f29
AL
1039 else
1040 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
1041}
1042
029632fb 1043void resched_cpu(int cpu)
c24d20db
IM
1044{
1045 struct rq *rq = cpu_rq(cpu);
1046 unsigned long flags;
1047
5cb9eaa3 1048 raw_spin_rq_lock_irqsave(rq, flags);
a0982dfa
PM
1049 if (cpu_online(cpu) || cpu == smp_processor_id())
1050 resched_curr(rq);
5cb9eaa3 1051 raw_spin_rq_unlock_irqrestore(rq, flags);
c24d20db 1052}
06d8308c 1053
b021fe3e 1054#ifdef CONFIG_SMP
3451d024 1055#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2 1056/*
d1ccc66d
IM
1057 * In the semi idle case, use the nearest busy CPU for migrating timers
1058 * from an idle CPU. This is good for power-savings.
83cd4fe2
VP
1059 *
1060 * We don't do similar optimization for completely idle system, as
d1ccc66d
IM
1061 * selecting an idle CPU will add more delays to the timers than intended
1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
83cd4fe2 1063 */
bc7a34b8 1064int get_nohz_timer_target(void)
83cd4fe2 1065{
e938b9c9 1066 int i, cpu = smp_processor_id(), default_cpu = -1;
83cd4fe2 1067 struct sched_domain *sd;
031e3bd8 1068 const struct cpumask *hk_mask;
83cd4fe2 1069
04d4e665 1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
e938b9c9
WL
1071 if (!idle_cpu(cpu))
1072 return cpu;
1073 default_cpu = cpu;
1074 }
6201b4d6 1075
04d4e665 1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
031e3bd8 1077
057f3fad 1078 rcu_read_lock();
83cd4fe2 1079 for_each_domain(cpu, sd) {
031e3bd8 1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
44496922
WL
1081 if (cpu == i)
1082 continue;
1083
e938b9c9 1084 if (!idle_cpu(i)) {
057f3fad
PZ
1085 cpu = i;
1086 goto unlock;
1087 }
1088 }
83cd4fe2 1089 }
9642d18e 1090
e938b9c9 1091 if (default_cpu == -1)
04d4e665 1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
e938b9c9 1093 cpu = default_cpu;
057f3fad
PZ
1094unlock:
1095 rcu_read_unlock();
83cd4fe2
VP
1096 return cpu;
1097}
d1ccc66d 1098
06d8308c
TG
1099/*
1100 * When add_timer_on() enqueues a timer into the timer wheel of an
1101 * idle CPU then this timer might expire before the next timer event
1102 * which is scheduled to wake up that CPU. In case of a completely
1103 * idle system the next event might even be infinite time into the
1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105 * leaves the inner idle loop so the newly added timer is taken into
1106 * account when the CPU goes back to idle and evaluates the timer
1107 * wheel for the next timer event.
1108 */
1c20091e 1109static void wake_up_idle_cpu(int cpu)
06d8308c
TG
1110{
1111 struct rq *rq = cpu_rq(cpu);
1112
1113 if (cpu == smp_processor_id())
1114 return;
1115
67b9ca70 1116 if (set_nr_and_not_polling(rq->idle))
06d8308c 1117 smp_send_reschedule(cpu);
dfc68f29
AL
1118 else
1119 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
1120}
1121
c5bfece2 1122static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 1123{
53c5fa16
FW
1124 /*
1125 * We just need the target to call irq_exit() and re-evaluate
1126 * the next tick. The nohz full kick at least implies that.
1127 * If needed we can still optimize that later with an
1128 * empty IRQ.
1129 */
379d9ecb
PM
1130 if (cpu_is_offline(cpu))
1131 return true; /* Don't try to wake offline CPUs. */
c5bfece2 1132 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
1133 if (cpu != smp_processor_id() ||
1134 tick_nohz_tick_stopped())
53c5fa16 1135 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
1136 return true;
1137 }
1138
1139 return false;
1140}
1141
379d9ecb
PM
1142/*
1143 * Wake up the specified CPU. If the CPU is going offline, it is the
1144 * caller's responsibility to deal with the lost wakeup, for example,
1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146 */
1c20091e
FW
1147void wake_up_nohz_cpu(int cpu)
1148{
c5bfece2 1149 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
1150 wake_up_idle_cpu(cpu);
1151}
1152
19a1f5ec 1153static void nohz_csd_func(void *info)
45bf76df 1154{
19a1f5ec
PZ
1155 struct rq *rq = info;
1156 int cpu = cpu_of(rq);
1157 unsigned int flags;
873b4c65
VG
1158
1159 /*
19a1f5ec 1160 * Release the rq::nohz_csd.
873b4c65 1161 */
c6f88654 1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
19a1f5ec 1163 WARN_ON(!(flags & NOHZ_KICK_MASK));
45bf76df 1164
19a1f5ec
PZ
1165 rq->idle_balance = idle_cpu(cpu);
1166 if (rq->idle_balance && !need_resched()) {
1167 rq->nohz_idle_balance = flags;
90b5363a
PZI
1168 raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 }
2069dd75
PZ
1170}
1171
3451d024 1172#endif /* CONFIG_NO_HZ_COMMON */
d842de87 1173
ce831b38 1174#ifdef CONFIG_NO_HZ_FULL
76d92ac3 1175bool sched_can_stop_tick(struct rq *rq)
ce831b38 1176{
76d92ac3
FW
1177 int fifo_nr_running;
1178
1179 /* Deadline tasks, even if single, need the tick */
1180 if (rq->dl.dl_nr_running)
1181 return false;
1182
1e78cdbd 1183 /*
b19a888c 1184 * If there are more than one RR tasks, we need the tick to affect the
2548d546 1185 * actual RR behaviour.
1e78cdbd 1186 */
76d92ac3
FW
1187 if (rq->rt.rr_nr_running) {
1188 if (rq->rt.rr_nr_running == 1)
1189 return true;
1190 else
1191 return false;
1e78cdbd
RR
1192 }
1193
2548d546
PZ
1194 /*
1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 * forced preemption between FIFO tasks.
1197 */
1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 if (fifo_nr_running)
1200 return true;
1201
1202 /*
1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 * if there's more than one we need the tick for involuntary
1205 * preemption.
1206 */
1207 if (rq->nr_running > 1)
541b8264 1208 return false;
ce831b38 1209
541b8264 1210 return true;
ce831b38
FW
1211}
1212#endif /* CONFIG_NO_HZ_FULL */
6d6bc0ad 1213#endif /* CONFIG_SMP */
18d95a28 1214
a790de99
PT
1215#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 1217/*
8277434e
PT
1218 * Iterate task_group tree rooted at *from, calling @down when first entering a
1219 * node and @up when leaving it for the final time.
1220 *
1221 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 1222 */
029632fb 1223int walk_tg_tree_from(struct task_group *from,
8277434e 1224 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1225{
1226 struct task_group *parent, *child;
eb755805 1227 int ret;
c09595f6 1228
8277434e
PT
1229 parent = from;
1230
c09595f6 1231down:
eb755805
PZ
1232 ret = (*down)(parent, data);
1233 if (ret)
8277434e 1234 goto out;
c09595f6
PZ
1235 list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 parent = child;
1237 goto down;
1238
1239up:
1240 continue;
1241 }
eb755805 1242 ret = (*up)(parent, data);
8277434e
PT
1243 if (ret || parent == from)
1244 goto out;
c09595f6
PZ
1245
1246 child = parent;
1247 parent = parent->parent;
1248 if (parent)
1249 goto up;
8277434e 1250out:
eb755805 1251 return ret;
c09595f6
PZ
1252}
1253
029632fb 1254int tg_nop(struct task_group *tg, void *data)
eb755805 1255{
e2b245f8 1256 return 0;
eb755805 1257}
18d95a28
PZ
1258#endif
1259
b1e82065 1260static void set_load_weight(struct task_struct *p, bool update_load)
45bf76df 1261{
f05998d4
NR
1262 int prio = p->static_prio - MAX_RT_PRIO;
1263 struct load_weight *load = &p->se.load;
1264
dd41f596
IM
1265 /*
1266 * SCHED_IDLE tasks get minimal weight:
1267 */
1da1843f 1268 if (task_has_idle_policy(p)) {
c8b28116 1269 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 1270 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
1271 return;
1272 }
71f8bd46 1273
9059393e
VG
1274 /*
1275 * SCHED_OTHER tasks have to update their load when changing their
1276 * weight
1277 */
1278 if (update_load && p->sched_class == &fair_sched_class) {
1279 reweight_task(p, prio);
1280 } else {
1281 load->weight = scale_load(sched_prio_to_weight[prio]);
1282 load->inv_weight = sched_prio_to_wmult[prio];
1283 }
71f8bd46
IM
1284}
1285
69842cba 1286#ifdef CONFIG_UCLAMP_TASK
2480c093
PB
1287/*
1288 * Serializes updates of utilization clamp values
1289 *
1290 * The (slow-path) user-space triggers utilization clamp value updates which
1291 * can require updates on (fast-path) scheduler's data structures used to
1292 * support enqueue/dequeue operations.
1293 * While the per-CPU rq lock protects fast-path update operations, user-space
1294 * requests are serialized using a mutex to reduce the risk of conflicting
1295 * updates or API abuses.
1296 */
1297static DEFINE_MUTEX(uclamp_mutex);
1298
e8f14172 1299/* Max allowed minimum utilization */
494dcdf4 1300static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
e8f14172
PB
1301
1302/* Max allowed maximum utilization */
494dcdf4 1303static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
e8f14172 1304
13685c4a
QY
1305/*
1306 * By default RT tasks run at the maximum performance point/capacity of the
1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308 * SCHED_CAPACITY_SCALE.
1309 *
1310 * This knob allows admins to change the default behavior when uclamp is being
1311 * used. In battery powered devices, particularly, running at the maximum
1312 * capacity and frequency will increase energy consumption and shorten the
1313 * battery life.
1314 *
1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316 *
1317 * This knob will not override the system default sched_util_clamp_min defined
1318 * above.
1319 */
3267e015 1320static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
13685c4a 1321
e8f14172
PB
1322/* All clamps are required to be less or equal than these values */
1323static struct uclamp_se uclamp_default[UCLAMP_CNT];
69842cba 1324
46609ce2
QY
1325/*
1326 * This static key is used to reduce the uclamp overhead in the fast path. It
1327 * primarily disables the call to uclamp_rq_{inc, dec}() in
1328 * enqueue/dequeue_task().
1329 *
1330 * This allows users to continue to enable uclamp in their kernel config with
1331 * minimum uclamp overhead in the fast path.
1332 *
1333 * As soon as userspace modifies any of the uclamp knobs, the static key is
1334 * enabled, since we have an actual users that make use of uclamp
1335 * functionality.
1336 *
1337 * The knobs that would enable this static key are:
1338 *
1339 * * A task modifying its uclamp value with sched_setattr().
1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1342 */
1343DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344
69842cba
PB
1345/* Integer rounded range for each bucket */
1346#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347
1348#define for_each_clamp_id(clamp_id) \
1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350
1351static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352{
6d2f8909 1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
69842cba
PB
1354}
1355
7763baac 1356static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
69842cba
PB
1357{
1358 if (clamp_id == UCLAMP_MIN)
1359 return 0;
1360 return SCHED_CAPACITY_SCALE;
1361}
1362
a509a7cd
PB
1363static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 unsigned int value, bool user_defined)
69842cba
PB
1365{
1366 uc_se->value = value;
1367 uc_se->bucket_id = uclamp_bucket_id(value);
a509a7cd 1368 uc_se->user_defined = user_defined;
69842cba
PB
1369}
1370
e496187d 1371static inline unsigned int
0413d7f3 1372uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1373 unsigned int clamp_value)
1374{
1375 /*
1376 * Avoid blocked utilization pushing up the frequency when we go
1377 * idle (which drops the max-clamp) by retaining the last known
1378 * max-clamp.
1379 */
1380 if (clamp_id == UCLAMP_MAX) {
1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 return clamp_value;
1383 }
1384
1385 return uclamp_none(UCLAMP_MIN);
1386}
1387
0413d7f3 1388static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
e496187d
PB
1389 unsigned int clamp_value)
1390{
1391 /* Reset max-clamp retention only on idle exit */
1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 return;
1394
24422603 1395 uclamp_rq_set(rq, clamp_id, clamp_value);
e496187d
PB
1396}
1397
69842cba 1398static inline
7763baac 1399unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
0413d7f3 1400 unsigned int clamp_value)
69842cba
PB
1401{
1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 int bucket_id = UCLAMP_BUCKETS - 1;
1404
1405 /*
1406 * Since both min and max clamps are max aggregated, find the
1407 * top most bucket with tasks in.
1408 */
1409 for ( ; bucket_id >= 0; bucket_id--) {
1410 if (!bucket[bucket_id].tasks)
1411 continue;
1412 return bucket[bucket_id].value;
1413 }
1414
1415 /* No tasks -- default clamp values */
e496187d 1416 return uclamp_idle_value(rq, clamp_id, clamp_value);
69842cba
PB
1417}
1418
13685c4a
QY
1419static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420{
1421 unsigned int default_util_min;
1422 struct uclamp_se *uc_se;
1423
1424 lockdep_assert_held(&p->pi_lock);
1425
1426 uc_se = &p->uclamp_req[UCLAMP_MIN];
1427
1428 /* Only sync if user didn't override the default */
1429 if (uc_se->user_defined)
1430 return;
1431
1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 uclamp_se_set(uc_se, default_util_min, false);
1434}
1435
1436static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437{
1438 struct rq_flags rf;
1439 struct rq *rq;
1440
1441 if (!rt_task(p))
1442 return;
1443
1444 /* Protect updates to p->uclamp_* */
1445 rq = task_rq_lock(p, &rf);
1446 __uclamp_update_util_min_rt_default(p);
1447 task_rq_unlock(rq, p, &rf);
1448}
1449
3eac870a 1450static inline struct uclamp_se
0413d7f3 1451uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
3eac870a 1452{
0213b708 1453 /* Copy by value as we could modify it */
3eac870a
PB
1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455#ifdef CONFIG_UCLAMP_TASK_GROUP
0213b708 1456 unsigned int tg_min, tg_max, value;
3eac870a
PB
1457
1458 /*
1459 * Tasks in autogroups or root task group will be
1460 * restricted by system defaults.
1461 */
1462 if (task_group_is_autogroup(task_group(p)))
1463 return uc_req;
1464 if (task_group(p) == &root_task_group)
1465 return uc_req;
1466
0213b708
QY
1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 value = uc_req.value;
1470 value = clamp(value, tg_min, tg_max);
1471 uclamp_se_set(&uc_req, value, false);
3eac870a
PB
1472#endif
1473
1474 return uc_req;
1475}
1476
e8f14172
PB
1477/*
1478 * The effective clamp bucket index of a task depends on, by increasing
1479 * priority:
1480 * - the task specific clamp value, when explicitly requested from userspace
3eac870a
PB
1481 * - the task group effective clamp value, for tasks not either in the root
1482 * group or in an autogroup
e8f14172
PB
1483 * - the system default clamp value, defined by the sysadmin
1484 */
1485static inline struct uclamp_se
0413d7f3 1486uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
e8f14172 1487{
3eac870a 1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
e8f14172
PB
1489 struct uclamp_se uc_max = uclamp_default[clamp_id];
1490
1491 /* System default restrictions always apply */
1492 if (unlikely(uc_req.value > uc_max.value))
1493 return uc_max;
1494
1495 return uc_req;
1496}
1497
686516b5 1498unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
9d20ad7d
PB
1499{
1500 struct uclamp_se uc_eff;
1501
1502 /* Task currently refcounted: use back-annotated (effective) value */
1503 if (p->uclamp[clamp_id].active)
686516b5 1504 return (unsigned long)p->uclamp[clamp_id].value;
9d20ad7d
PB
1505
1506 uc_eff = uclamp_eff_get(p, clamp_id);
1507
686516b5 1508 return (unsigned long)uc_eff.value;
9d20ad7d
PB
1509}
1510
69842cba
PB
1511/*
1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514 * updates the rq's clamp value if required.
60daf9c1
PB
1515 *
1516 * Tasks can have a task-specific value requested from user-space, track
1517 * within each bucket the maximum value for tasks refcounted in it.
1518 * This "local max aggregation" allows to track the exact "requested" value
1519 * for each bucket when all its RUNNABLE tasks require the same clamp.
69842cba
PB
1520 */
1521static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
0413d7f3 1522 enum uclamp_id clamp_id)
69842cba
PB
1523{
1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 struct uclamp_bucket *bucket;
1527
5cb9eaa3 1528 lockdep_assert_rq_held(rq);
69842cba 1529
e8f14172
PB
1530 /* Update task effective clamp */
1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532
69842cba
PB
1533 bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 bucket->tasks++;
e8f14172 1535 uc_se->active = true;
69842cba 1536
e496187d
PB
1537 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538
60daf9c1
PB
1539 /*
1540 * Local max aggregation: rq buckets always track the max
1541 * "requested" clamp value of its RUNNABLE tasks.
1542 */
1543 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 bucket->value = uc_se->value;
1545
24422603
QY
1546 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1547 uclamp_rq_set(rq, clamp_id, uc_se->value);
69842cba
PB
1548}
1549
1550/*
1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552 * is released. If this is the last task reference counting the rq's max
1553 * active clamp value, then the rq's clamp value is updated.
1554 *
1555 * Both refcounted tasks and rq's cached clamp values are expected to be
1556 * always valid. If it's detected they are not, as defensive programming,
1557 * enforce the expected state and warn.
1558 */
1559static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
0413d7f3 1560 enum uclamp_id clamp_id)
69842cba
PB
1561{
1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 struct uclamp_bucket *bucket;
e496187d 1565 unsigned int bkt_clamp;
69842cba
PB
1566 unsigned int rq_clamp;
1567
5cb9eaa3 1568 lockdep_assert_rq_held(rq);
69842cba 1569
46609ce2
QY
1570 /*
1571 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 *
1574 * In this case the uc_se->active flag should be false since no uclamp
1575 * accounting was performed at enqueue time and we can just return
1576 * here.
1577 *
b19a888c 1578 * Need to be careful of the following enqueue/dequeue ordering
46609ce2
QY
1579 * problem too
1580 *
1581 * enqueue(taskA)
1582 * // sched_uclamp_used gets enabled
1583 * enqueue(taskB)
1584 * dequeue(taskA)
b19a888c 1585 * // Must not decrement bucket->tasks here
46609ce2
QY
1586 * dequeue(taskB)
1587 *
1588 * where we could end up with stale data in uc_se and
1589 * bucket[uc_se->bucket_id].
1590 *
1591 * The following check here eliminates the possibility of such race.
1592 */
1593 if (unlikely(!uc_se->active))
1594 return;
1595
69842cba 1596 bucket = &uc_rq->bucket[uc_se->bucket_id];
46609ce2 1597
69842cba
PB
1598 SCHED_WARN_ON(!bucket->tasks);
1599 if (likely(bucket->tasks))
1600 bucket->tasks--;
46609ce2 1601
e8f14172 1602 uc_se->active = false;
69842cba 1603
60daf9c1
PB
1604 /*
1605 * Keep "local max aggregation" simple and accept to (possibly)
1606 * overboost some RUNNABLE tasks in the same bucket.
1607 * The rq clamp bucket value is reset to its base value whenever
1608 * there are no more RUNNABLE tasks refcounting it.
1609 */
69842cba
PB
1610 if (likely(bucket->tasks))
1611 return;
1612
24422603 1613 rq_clamp = uclamp_rq_get(rq, clamp_id);
69842cba
PB
1614 /*
1615 * Defensive programming: this should never happen. If it happens,
1616 * e.g. due to future modification, warn and fixup the expected value.
1617 */
1618 SCHED_WARN_ON(bucket->value > rq_clamp);
e496187d
PB
1619 if (bucket->value >= rq_clamp) {
1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
24422603 1621 uclamp_rq_set(rq, clamp_id, bkt_clamp);
e496187d 1622 }
69842cba
PB
1623}
1624
1625static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626{
0413d7f3 1627 enum uclamp_id clamp_id;
69842cba 1628
46609ce2
QY
1629 /*
1630 * Avoid any overhead until uclamp is actually used by the userspace.
1631 *
1632 * The condition is constructed such that a NOP is generated when
1633 * sched_uclamp_used is disabled.
1634 */
1635 if (!static_branch_unlikely(&sched_uclamp_used))
1636 return;
1637
69842cba
PB
1638 if (unlikely(!p->sched_class->uclamp_enabled))
1639 return;
1640
1641 for_each_clamp_id(clamp_id)
1642 uclamp_rq_inc_id(rq, p, clamp_id);
e496187d
PB
1643
1644 /* Reset clamp idle holding when there is one RUNNABLE task */
1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
69842cba
PB
1647}
1648
1649static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650{
0413d7f3 1651 enum uclamp_id clamp_id;
69842cba 1652
46609ce2
QY
1653 /*
1654 * Avoid any overhead until uclamp is actually used by the userspace.
1655 *
1656 * The condition is constructed such that a NOP is generated when
1657 * sched_uclamp_used is disabled.
1658 */
1659 if (!static_branch_unlikely(&sched_uclamp_used))
1660 return;
1661
69842cba
PB
1662 if (unlikely(!p->sched_class->uclamp_enabled))
1663 return;
1664
1665 for_each_clamp_id(clamp_id)
1666 uclamp_rq_dec_id(rq, p, clamp_id);
1667}
1668
ca4984a7
QP
1669static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 enum uclamp_id clamp_id)
1671{
1672 if (!p->uclamp[clamp_id].active)
1673 return;
1674
1675 uclamp_rq_dec_id(rq, p, clamp_id);
1676 uclamp_rq_inc_id(rq, p, clamp_id);
1677
1678 /*
1679 * Make sure to clear the idle flag if we've transiently reached 0
1680 * active tasks on rq.
1681 */
1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684}
1685
babbe170 1686static inline void
0213b708 1687uclamp_update_active(struct task_struct *p)
babbe170 1688{
0213b708 1689 enum uclamp_id clamp_id;
babbe170
PB
1690 struct rq_flags rf;
1691 struct rq *rq;
1692
1693 /*
1694 * Lock the task and the rq where the task is (or was) queued.
1695 *
1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 * price to pay to safely serialize util_{min,max} updates with
1698 * enqueues, dequeues and migration operations.
1699 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 */
1701 rq = task_rq_lock(p, &rf);
1702
1703 /*
1704 * Setting the clamp bucket is serialized by task_rq_lock().
1705 * If the task is not yet RUNNABLE and its task_struct is not
1706 * affecting a valid clamp bucket, the next time it's enqueued,
1707 * it will already see the updated clamp bucket value.
1708 */
ca4984a7
QP
1709 for_each_clamp_id(clamp_id)
1710 uclamp_rq_reinc_id(rq, p, clamp_id);
babbe170
PB
1711
1712 task_rq_unlock(rq, p, &rf);
1713}
1714
e3b8b6a0 1715#ifdef CONFIG_UCLAMP_TASK_GROUP
babbe170 1716static inline void
0213b708 1717uclamp_update_active_tasks(struct cgroup_subsys_state *css)
babbe170
PB
1718{
1719 struct css_task_iter it;
1720 struct task_struct *p;
babbe170
PB
1721
1722 css_task_iter_start(css, 0, &it);
0213b708
QY
1723 while ((p = css_task_iter_next(&it)))
1724 uclamp_update_active(p);
babbe170
PB
1725 css_task_iter_end(&it);
1726}
1727
7274a5c1 1728static void cpu_util_update_eff(struct cgroup_subsys_state *css);
494dcdf4
Y
1729#endif
1730
1731#ifdef CONFIG_SYSCTL
1732#ifdef CONFIG_UCLAMP_TASK
1733#ifdef CONFIG_UCLAMP_TASK_GROUP
7274a5c1
PB
1734static void uclamp_update_root_tg(void)
1735{
1736 struct task_group *tg = &root_task_group;
1737
1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 sysctl_sched_uclamp_util_min, false);
1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 sysctl_sched_uclamp_util_max, false);
1742
1743 rcu_read_lock();
1744 cpu_util_update_eff(&root_task_group.css);
1745 rcu_read_unlock();
1746}
1747#else
1748static void uclamp_update_root_tg(void) { }
1749#endif
1750
494dcdf4
Y
1751static void uclamp_sync_util_min_rt_default(void)
1752{
1753 struct task_struct *g, *p;
1754
1755 /*
1756 * copy_process() sysctl_uclamp
1757 * uclamp_min_rt = X;
1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1759 * // link thread smp_mb__after_spinlock()
1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1761 * sched_post_fork() for_each_process_thread()
1762 * __uclamp_sync_rt() __uclamp_sync_rt()
1763 *
1764 * Ensures that either sched_post_fork() will observe the new
1765 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 * task.
1767 */
1768 read_lock(&tasklist_lock);
1769 smp_mb__after_spinlock();
1770 read_unlock(&tasklist_lock);
1771
1772 rcu_read_lock();
1773 for_each_process_thread(g, p)
1774 uclamp_update_util_min_rt_default(p);
1775 rcu_read_unlock();
1776}
1777
3267e015 1778static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
32927393 1779 void *buffer, size_t *lenp, loff_t *ppos)
e8f14172 1780{
7274a5c1 1781 bool update_root_tg = false;
13685c4a 1782 int old_min, old_max, old_min_rt;
e8f14172
PB
1783 int result;
1784
2480c093 1785 mutex_lock(&uclamp_mutex);
e8f14172
PB
1786 old_min = sysctl_sched_uclamp_util_min;
1787 old_max = sysctl_sched_uclamp_util_max;
13685c4a 1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
e8f14172
PB
1789
1790 result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 if (result)
1792 goto undo;
1793 if (!write)
1794 goto done;
1795
1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
13685c4a
QY
1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799
e8f14172
PB
1800 result = -EINVAL;
1801 goto undo;
1802 }
1803
1804 if (old_min != sysctl_sched_uclamp_util_min) {
1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
a509a7cd 1806 sysctl_sched_uclamp_util_min, false);
7274a5c1 1807 update_root_tg = true;
e8f14172
PB
1808 }
1809 if (old_max != sysctl_sched_uclamp_util_max) {
1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
a509a7cd 1811 sysctl_sched_uclamp_util_max, false);
7274a5c1 1812 update_root_tg = true;
e8f14172
PB
1813 }
1814
46609ce2
QY
1815 if (update_root_tg) {
1816 static_branch_enable(&sched_uclamp_used);
7274a5c1 1817 uclamp_update_root_tg();
46609ce2 1818 }
7274a5c1 1819
13685c4a
QY
1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 static_branch_enable(&sched_uclamp_used);
1822 uclamp_sync_util_min_rt_default();
1823 }
7274a5c1 1824
e8f14172 1825 /*
7274a5c1
PB
1826 * We update all RUNNABLE tasks only when task groups are in use.
1827 * Otherwise, keep it simple and do just a lazy update at each next
1828 * task enqueue time.
e8f14172 1829 */
7274a5c1 1830
e8f14172
PB
1831 goto done;
1832
1833undo:
1834 sysctl_sched_uclamp_util_min = old_min;
1835 sysctl_sched_uclamp_util_max = old_max;
13685c4a 1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
e8f14172 1837done:
2480c093 1838 mutex_unlock(&uclamp_mutex);
e8f14172
PB
1839
1840 return result;
1841}
494dcdf4
Y
1842#endif
1843#endif
e8f14172 1844
a509a7cd
PB
1845static int uclamp_validate(struct task_struct *p,
1846 const struct sched_attr *attr)
1847{
480a6ca2
DE
1848 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 int util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd 1850
480a6ca2
DE
1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 util_min = attr->sched_util_min;
a509a7cd 1853
480a6ca2
DE
1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 return -EINVAL;
1856 }
1857
1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 util_max = attr->sched_util_max;
1860
1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 return -EINVAL;
1863 }
1864
1865 if (util_min != -1 && util_max != -1 && util_min > util_max)
a509a7cd
PB
1866 return -EINVAL;
1867
e65855a5
QY
1868 /*
1869 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 *
1871 * We need to do that here, because enabling static branches is a
1872 * blocking operation which obviously cannot be done while holding
1873 * scheduler locks.
1874 */
1875 static_branch_enable(&sched_uclamp_used);
1876
a509a7cd
PB
1877 return 0;
1878}
1879
480a6ca2
DE
1880static bool uclamp_reset(const struct sched_attr *attr,
1881 enum uclamp_id clamp_id,
1882 struct uclamp_se *uc_se)
1883{
1884 /* Reset on sched class change for a non user-defined clamp value. */
1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 !uc_se->user_defined)
1887 return true;
1888
1889 /* Reset on sched_util_{min,max} == -1. */
1890 if (clamp_id == UCLAMP_MIN &&
1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 attr->sched_util_min == -1) {
1893 return true;
1894 }
1895
1896 if (clamp_id == UCLAMP_MAX &&
1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 attr->sched_util_max == -1) {
1899 return true;
1900 }
1901
1902 return false;
1903}
1904
a509a7cd
PB
1905static void __setscheduler_uclamp(struct task_struct *p,
1906 const struct sched_attr *attr)
1907{
0413d7f3 1908 enum uclamp_id clamp_id;
1a00d999 1909
1a00d999
PB
1910 for_each_clamp_id(clamp_id) {
1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
480a6ca2 1912 unsigned int value;
1a00d999 1913
480a6ca2 1914 if (!uclamp_reset(attr, clamp_id, uc_se))
1a00d999
PB
1915 continue;
1916
13685c4a
QY
1917 /*
1918 * RT by default have a 100% boost value that could be modified
1919 * at runtime.
1920 */
1a00d999 1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
480a6ca2 1922 value = sysctl_sched_uclamp_util_min_rt_default;
13685c4a 1923 else
480a6ca2
DE
1924 value = uclamp_none(clamp_id);
1925
1926 uclamp_se_set(uc_se, value, false);
1a00d999 1927
1a00d999
PB
1928 }
1929
a509a7cd
PB
1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 return;
1932
480a6ca2
DE
1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 attr->sched_util_min != -1) {
a509a7cd
PB
1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 attr->sched_util_min, true);
1937 }
1938
480a6ca2
DE
1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 attr->sched_util_max != -1) {
a509a7cd
PB
1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 attr->sched_util_max, true);
1943 }
1944}
1945
e8f14172
PB
1946static void uclamp_fork(struct task_struct *p)
1947{
0413d7f3 1948 enum uclamp_id clamp_id;
e8f14172 1949
13685c4a
QY
1950 /*
1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 * as the task is still at its early fork stages.
1953 */
e8f14172
PB
1954 for_each_clamp_id(clamp_id)
1955 p->uclamp[clamp_id].active = false;
a87498ac
PB
1956
1957 if (likely(!p->sched_reset_on_fork))
1958 return;
1959
1960 for_each_clamp_id(clamp_id) {
eaf5a92e
QP
1961 uclamp_se_set(&p->uclamp_req[clamp_id],
1962 uclamp_none(clamp_id), false);
a87498ac 1963 }
e8f14172
PB
1964}
1965
13685c4a
QY
1966static void uclamp_post_fork(struct task_struct *p)
1967{
1968 uclamp_update_util_min_rt_default(p);
1969}
1970
d81ae8aa
QY
1971static void __init init_uclamp_rq(struct rq *rq)
1972{
1973 enum uclamp_id clamp_id;
1974 struct uclamp_rq *uc_rq = rq->uclamp;
1975
1976 for_each_clamp_id(clamp_id) {
1977 uc_rq[clamp_id] = (struct uclamp_rq) {
1978 .value = uclamp_none(clamp_id)
1979 };
1980 }
1981
315c4f88 1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
d81ae8aa
QY
1983}
1984
69842cba
PB
1985static void __init init_uclamp(void)
1986{
e8f14172 1987 struct uclamp_se uc_max = {};
0413d7f3 1988 enum uclamp_id clamp_id;
69842cba
PB
1989 int cpu;
1990
d81ae8aa
QY
1991 for_each_possible_cpu(cpu)
1992 init_uclamp_rq(cpu_rq(cpu));
69842cba 1993
69842cba 1994 for_each_clamp_id(clamp_id) {
e8f14172 1995 uclamp_se_set(&init_task.uclamp_req[clamp_id],
a509a7cd 1996 uclamp_none(clamp_id), false);
69842cba 1997 }
e8f14172
PB
1998
1999 /* System defaults allow max clamp values for both indexes */
a509a7cd 2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2480c093 2001 for_each_clamp_id(clamp_id) {
e8f14172 2002 uclamp_default[clamp_id] = uc_max;
2480c093
PB
2003#ifdef CONFIG_UCLAMP_TASK_GROUP
2004 root_task_group.uclamp_req[clamp_id] = uc_max;
0b60ba2d 2005 root_task_group.uclamp[clamp_id] = uc_max;
2480c093
PB
2006#endif
2007 }
69842cba
PB
2008}
2009
2010#else /* CONFIG_UCLAMP_TASK */
2011static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2012static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
a509a7cd
PB
2013static inline int uclamp_validate(struct task_struct *p,
2014 const struct sched_attr *attr)
2015{
2016 return -EOPNOTSUPP;
2017}
2018static void __setscheduler_uclamp(struct task_struct *p,
2019 const struct sched_attr *attr) { }
e8f14172 2020static inline void uclamp_fork(struct task_struct *p) { }
13685c4a 2021static inline void uclamp_post_fork(struct task_struct *p) { }
69842cba
PB
2022static inline void init_uclamp(void) { }
2023#endif /* CONFIG_UCLAMP_TASK */
2024
a1dfb631
MT
2025bool sched_task_on_rq(struct task_struct *p)
2026{
2027 return task_on_rq_queued(p);
2028}
2029
42a20f86
KC
2030unsigned long get_wchan(struct task_struct *p)
2031{
2032 unsigned long ip = 0;
2033 unsigned int state;
2034
2035 if (!p || p == current)
2036 return 0;
2037
2038 /* Only get wchan if task is blocked and we can keep it that way. */
2039 raw_spin_lock_irq(&p->pi_lock);
2040 state = READ_ONCE(p->__state);
2041 smp_rmb(); /* see try_to_wake_up() */
2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 ip = __get_wchan(p);
2044 raw_spin_unlock_irq(&p->pi_lock);
2045
2046 return ip;
2047}
2048
1de64443 2049static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 2050{
0a67d1ee
PZ
2051 if (!(flags & ENQUEUE_NOCLOCK))
2052 update_rq_clock(rq);
2053
eb414681 2054 if (!(flags & ENQUEUE_RESTORE)) {
4e29fb70 2055 sched_info_enqueue(rq, p);
52b33d87 2056 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
eb414681 2057 }
0a67d1ee 2058
69842cba 2059 uclamp_rq_inc(rq, p);
371fd7e7 2060 p->sched_class->enqueue_task(rq, p, flags);
8a311c74
PZ
2061
2062 if (sched_core_enabled(rq))
2063 sched_core_enqueue(rq, p);
71f8bd46
IM
2064}
2065
1de64443 2066static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 2067{
8a311c74 2068 if (sched_core_enabled(rq))
4feee7d1 2069 sched_core_dequeue(rq, p, flags);
8a311c74 2070
0a67d1ee
PZ
2071 if (!(flags & DEQUEUE_NOCLOCK))
2072 update_rq_clock(rq);
2073
eb414681 2074 if (!(flags & DEQUEUE_SAVE)) {
4e29fb70 2075 sched_info_dequeue(rq, p);
eb414681
JW
2076 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 }
0a67d1ee 2078
69842cba 2079 uclamp_rq_dec(rq, p);
371fd7e7 2080 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
2081}
2082
029632fb 2083void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2084{
371fd7e7 2085 enqueue_task(rq, p, flags);
7dd77884
PZ
2086
2087 p->on_rq = TASK_ON_RQ_QUEUED;
1e3c88bd
PZ
2088}
2089
029632fb 2090void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd 2091{
7dd77884
PZ
2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093
371fd7e7 2094 dequeue_task(rq, p, flags);
1e3c88bd
PZ
2095}
2096
f558c2b8 2097static inline int __normal_prio(int policy, int rt_prio, int nice)
14531189 2098{
f558c2b8
PZ
2099 int prio;
2100
2101 if (dl_policy(policy))
2102 prio = MAX_DL_PRIO - 1;
2103 else if (rt_policy(policy))
2104 prio = MAX_RT_PRIO - 1 - rt_prio;
2105 else
2106 prio = NICE_TO_PRIO(nice);
2107
2108 return prio;
14531189
IM
2109}
2110
b29739f9
IM
2111/*
2112 * Calculate the expected normal priority: i.e. priority
2113 * without taking RT-inheritance into account. Might be
2114 * boosted by interactivity modifiers. Changes upon fork,
2115 * setprio syscalls, and whenever the interactivity
2116 * estimator recalculates.
2117 */
36c8b586 2118static inline int normal_prio(struct task_struct *p)
b29739f9 2119{
f558c2b8 2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
b29739f9
IM
2121}
2122
2123/*
2124 * Calculate the current priority, i.e. the priority
2125 * taken into account by the scheduler. This value might
2126 * be boosted by RT tasks, or might be boosted by
2127 * interactivity modifiers. Will be RT if the task got
2128 * RT-boosted. If not then it returns p->normal_prio.
2129 */
36c8b586 2130static int effective_prio(struct task_struct *p)
b29739f9
IM
2131{
2132 p->normal_prio = normal_prio(p);
2133 /*
2134 * If we are RT tasks or we were boosted to RT priority,
2135 * keep the priority unchanged. Otherwise, update priority
2136 * to the normal priority:
2137 */
2138 if (!rt_prio(p->prio))
2139 return p->normal_prio;
2140 return p->prio;
2141}
2142
1da177e4
LT
2143/**
2144 * task_curr - is this task currently executing on a CPU?
2145 * @p: the task in question.
e69f6186
YB
2146 *
2147 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 2148 */
36c8b586 2149inline int task_curr(const struct task_struct *p)
1da177e4
LT
2150{
2151 return cpu_curr(task_cpu(p)) == p;
2152}
2153
67dfa1b7 2154/*
4c9a4bc8
PZ
2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156 * use the balance_callback list if you want balancing.
2157 *
2158 * this means any call to check_class_changed() must be followed by a call to
2159 * balance_callback().
67dfa1b7 2160 */
cb469845
SR
2161static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 const struct sched_class *prev_class,
da7a735e 2163 int oldprio)
cb469845
SR
2164{
2165 if (prev_class != p->sched_class) {
2166 if (prev_class->switched_from)
da7a735e 2167 prev_class->switched_from(rq, p);
4c9a4bc8 2168
da7a735e 2169 p->sched_class->switched_to(rq, p);
2d3d891d 2170 } else if (oldprio != p->prio || dl_task(p))
da7a735e 2171 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
2172}
2173
029632fb 2174void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405 2175{
aa93cd53 2176 if (p->sched_class == rq->curr->sched_class)
1e5a7405 2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
546a3fee 2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
aa93cd53 2179 resched_curr(rq);
1e5a7405
PZ
2180
2181 /*
2182 * A queue event has occurred, and we're going to schedule. In
2183 * this case, we can save a useless back to back clock update.
2184 */
da0c1e65 2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
adcc8da8 2186 rq_clock_skip_update(rq);
1e5a7405
PZ
2187}
2188
1da177e4 2189#ifdef CONFIG_SMP
175f0e25 2190
af449901 2191static void
713a2e21 2192__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
af449901
PZ
2193
2194static int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 2195 struct affinity_context *ctx);
af449901
PZ
2196
2197static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2198{
713a2e21
WL
2199 struct affinity_context ac = {
2200 .new_mask = cpumask_of(rq->cpu),
2201 .flags = SCA_MIGRATE_DISABLE,
2202 };
2203
af449901
PZ
2204 if (likely(!p->migration_disabled))
2205 return;
2206
2207 if (p->cpus_ptr != &p->cpus_mask)
2208 return;
2209
2210 /*
2211 * Violates locking rules! see comment in __do_set_cpus_allowed().
2212 */
713a2e21 2213 __do_set_cpus_allowed(p, &ac);
af449901
PZ
2214}
2215
2216void migrate_disable(void)
2217{
3015ef4b
TG
2218 struct task_struct *p = current;
2219
2220 if (p->migration_disabled) {
2221 p->migration_disabled++;
af449901 2222 return;
3015ef4b 2223 }
af449901 2224
3015ef4b
TG
2225 preempt_disable();
2226 this_rq()->nr_pinned++;
2227 p->migration_disabled = 1;
2228 preempt_enable();
af449901
PZ
2229}
2230EXPORT_SYMBOL_GPL(migrate_disable);
2231
2232void migrate_enable(void)
2233{
2234 struct task_struct *p = current;
713a2e21
WL
2235 struct affinity_context ac = {
2236 .new_mask = &p->cpus_mask,
2237 .flags = SCA_MIGRATE_ENABLE,
2238 };
af449901 2239
6d337eab
PZ
2240 if (p->migration_disabled > 1) {
2241 p->migration_disabled--;
af449901 2242 return;
6d337eab 2243 }
af449901 2244
9d0df377
SAS
2245 if (WARN_ON_ONCE(!p->migration_disabled))
2246 return;
2247
6d337eab
PZ
2248 /*
2249 * Ensure stop_task runs either before or after this, and that
2250 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2251 */
2252 preempt_disable();
2253 if (p->cpus_ptr != &p->cpus_mask)
713a2e21 2254 __set_cpus_allowed_ptr(p, &ac);
6d337eab
PZ
2255 /*
2256 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2257 * regular cpus_mask, otherwise things that race (eg.
2258 * select_fallback_rq) get confused.
2259 */
af449901 2260 barrier();
6d337eab 2261 p->migration_disabled = 0;
3015ef4b 2262 this_rq()->nr_pinned--;
6d337eab 2263 preempt_enable();
af449901
PZ
2264}
2265EXPORT_SYMBOL_GPL(migrate_enable);
2266
3015ef4b
TG
2267static inline bool rq_has_pinned_tasks(struct rq *rq)
2268{
2269 return rq->nr_pinned;
2270}
2271
175f0e25 2272/*
bee98539 2273 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
175f0e25
PZ
2274 * __set_cpus_allowed_ptr() and select_fallback_rq().
2275 */
2276static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2277{
5ba2ffba 2278 /* When not in the task's cpumask, no point in looking further. */
3bd37062 2279 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
175f0e25
PZ
2280 return false;
2281
5ba2ffba
PZ
2282 /* migrate_disabled() must be allowed to finish. */
2283 if (is_migration_disabled(p))
175f0e25
PZ
2284 return cpu_online(cpu);
2285
5ba2ffba
PZ
2286 /* Non kernel threads are not allowed during either online or offline. */
2287 if (!(p->flags & PF_KTHREAD))
9ae606bc 2288 return cpu_active(cpu) && task_cpu_possible(cpu, p);
5ba2ffba
PZ
2289
2290 /* KTHREAD_IS_PER_CPU is always allowed. */
2291 if (kthread_is_per_cpu(p))
2292 return cpu_online(cpu);
2293
2294 /* Regular kernel threads don't get to stay during offline. */
b5c44773 2295 if (cpu_dying(cpu))
5ba2ffba
PZ
2296 return false;
2297
2298 /* But are allowed during online. */
2299 return cpu_online(cpu);
175f0e25
PZ
2300}
2301
5cc389bc
PZ
2302/*
2303 * This is how migration works:
2304 *
2305 * 1) we invoke migration_cpu_stop() on the target CPU using
2306 * stop_one_cpu().
2307 * 2) stopper starts to run (implicitly forcing the migrated thread
2308 * off the CPU)
2309 * 3) it checks whether the migrated task is still in the wrong runqueue.
2310 * 4) if it's in the wrong runqueue then the migration thread removes
2311 * it and puts it into the right queue.
2312 * 5) stopper completes and stop_one_cpu() returns and the migration
2313 * is done.
2314 */
2315
2316/*
2317 * move_queued_task - move a queued task to new rq.
2318 *
2319 * Returns (locked) new rq. Old rq's lock is released.
2320 */
8a8c69c3
PZ
2321static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2322 struct task_struct *p, int new_cpu)
5cc389bc 2323{
5cb9eaa3 2324 lockdep_assert_rq_held(rq);
5cc389bc 2325
58877d34 2326 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
5cc389bc 2327 set_task_cpu(p, new_cpu);
8a8c69c3 2328 rq_unlock(rq, rf);
5cc389bc
PZ
2329
2330 rq = cpu_rq(new_cpu);
2331
8a8c69c3 2332 rq_lock(rq, rf);
09348d75 2333 WARN_ON_ONCE(task_cpu(p) != new_cpu);
58877d34 2334 activate_task(rq, p, 0);
5cc389bc
PZ
2335 check_preempt_curr(rq, p, 0);
2336
2337 return rq;
2338}
2339
2340struct migration_arg {
6d337eab
PZ
2341 struct task_struct *task;
2342 int dest_cpu;
2343 struct set_affinity_pending *pending;
2344};
2345
50caf9c1
PZ
2346/*
2347 * @refs: number of wait_for_completion()
2348 * @stop_pending: is @stop_work in use
2349 */
6d337eab
PZ
2350struct set_affinity_pending {
2351 refcount_t refs;
9e81889c 2352 unsigned int stop_pending;
6d337eab
PZ
2353 struct completion done;
2354 struct cpu_stop_work stop_work;
2355 struct migration_arg arg;
5cc389bc
PZ
2356};
2357
2358/*
d1ccc66d 2359 * Move (not current) task off this CPU, onto the destination CPU. We're doing
5cc389bc
PZ
2360 * this because either it can't run here any more (set_cpus_allowed()
2361 * away from this CPU, or CPU going down), or because we're
2362 * attempting to rebalance this task on exec (sched_exec).
2363 *
2364 * So we race with normal scheduler movements, but that's OK, as long
2365 * as the task is no longer on this CPU.
5cc389bc 2366 */
8a8c69c3
PZ
2367static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2368 struct task_struct *p, int dest_cpu)
5cc389bc 2369{
5cc389bc 2370 /* Affinity changed (again). */
175f0e25 2371 if (!is_cpu_allowed(p, dest_cpu))
5e16bbc2 2372 return rq;
5cc389bc 2373
15ff991e 2374 update_rq_clock(rq);
8a8c69c3 2375 rq = move_queued_task(rq, rf, p, dest_cpu);
5e16bbc2
PZ
2376
2377 return rq;
5cc389bc
PZ
2378}
2379
2380/*
2381 * migration_cpu_stop - this will be executed by a highprio stopper thread
2382 * and performs thread migration by bumping thread off CPU then
2383 * 'pushing' onto another runqueue.
2384 */
2385static int migration_cpu_stop(void *data)
2386{
2387 struct migration_arg *arg = data;
c20cf065 2388 struct set_affinity_pending *pending = arg->pending;
5e16bbc2
PZ
2389 struct task_struct *p = arg->task;
2390 struct rq *rq = this_rq();
6d337eab 2391 bool complete = false;
8a8c69c3 2392 struct rq_flags rf;
5cc389bc
PZ
2393
2394 /*
d1ccc66d
IM
2395 * The original target CPU might have gone down and we might
2396 * be on another CPU but it doesn't matter.
5cc389bc 2397 */
6d337eab 2398 local_irq_save(rf.flags);
5cc389bc
PZ
2399 /*
2400 * We need to explicitly wake pending tasks before running
3bd37062 2401 * __migrate_task() such that we will not miss enforcing cpus_ptr
5cc389bc
PZ
2402 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2403 */
16bf5a5e 2404 flush_smp_call_function_queue();
5e16bbc2
PZ
2405
2406 raw_spin_lock(&p->pi_lock);
8a8c69c3 2407 rq_lock(rq, &rf);
6d337eab 2408
e140749c
VS
2409 /*
2410 * If we were passed a pending, then ->stop_pending was set, thus
2411 * p->migration_pending must have remained stable.
2412 */
2413 WARN_ON_ONCE(pending && pending != p->migration_pending);
2414
5e16bbc2
PZ
2415 /*
2416 * If task_rq(p) != rq, it cannot be migrated here, because we're
2417 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2418 * we're holding p->pi_lock.
2419 */
bf89a304 2420 if (task_rq(p) == rq) {
6d337eab
PZ
2421 if (is_migration_disabled(p))
2422 goto out;
2423
2424 if (pending) {
e140749c 2425 p->migration_pending = NULL;
6d337eab 2426 complete = true;
6d337eab 2427
3f1bc119
PZ
2428 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2429 goto out;
3f1bc119 2430 }
6d337eab 2431
bf89a304 2432 if (task_on_rq_queued(p))
475ea6c6 2433 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
bf89a304 2434 else
475ea6c6 2435 p->wake_cpu = arg->dest_cpu;
6d337eab 2436
3f1bc119
PZ
2437 /*
2438 * XXX __migrate_task() can fail, at which point we might end
2439 * up running on a dodgy CPU, AFAICT this can only happen
2440 * during CPU hotplug, at which point we'll get pushed out
2441 * anyway, so it's probably not a big deal.
2442 */
2443
c20cf065 2444 } else if (pending) {
6d337eab
PZ
2445 /*
2446 * This happens when we get migrated between migrate_enable()'s
2447 * preempt_enable() and scheduling the stopper task. At that
2448 * point we're a regular task again and not current anymore.
2449 *
2450 * A !PREEMPT kernel has a giant hole here, which makes it far
2451 * more likely.
2452 */
2453
d707faa6
VS
2454 /*
2455 * The task moved before the stopper got to run. We're holding
2456 * ->pi_lock, so the allowed mask is stable - if it got
2457 * somewhere allowed, we're done.
2458 */
c20cf065 2459 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
e140749c 2460 p->migration_pending = NULL;
d707faa6
VS
2461 complete = true;
2462 goto out;
2463 }
2464
6d337eab
PZ
2465 /*
2466 * When migrate_enable() hits a rq mis-match we can't reliably
2467 * determine is_migration_disabled() and so have to chase after
2468 * it.
2469 */
9e81889c 2470 WARN_ON_ONCE(!pending->stop_pending);
6d337eab
PZ
2471 task_rq_unlock(rq, p, &rf);
2472 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2473 &pending->arg, &pending->stop_work);
2474 return 0;
bf89a304 2475 }
6d337eab 2476out:
9e81889c
PZ
2477 if (pending)
2478 pending->stop_pending = false;
6d337eab
PZ
2479 task_rq_unlock(rq, p, &rf);
2480
2481 if (complete)
2482 complete_all(&pending->done);
2483
5cc389bc
PZ
2484 return 0;
2485}
2486
a7c81556
PZ
2487int push_cpu_stop(void *arg)
2488{
2489 struct rq *lowest_rq = NULL, *rq = this_rq();
2490 struct task_struct *p = arg;
2491
2492 raw_spin_lock_irq(&p->pi_lock);
5cb9eaa3 2493 raw_spin_rq_lock(rq);
a7c81556
PZ
2494
2495 if (task_rq(p) != rq)
2496 goto out_unlock;
2497
2498 if (is_migration_disabled(p)) {
2499 p->migration_flags |= MDF_PUSH;
2500 goto out_unlock;
2501 }
2502
2503 p->migration_flags &= ~MDF_PUSH;
2504
2505 if (p->sched_class->find_lock_rq)
2506 lowest_rq = p->sched_class->find_lock_rq(p, rq);
5e16bbc2 2507
a7c81556
PZ
2508 if (!lowest_rq)
2509 goto out_unlock;
2510
2511 // XXX validate p is still the highest prio task
2512 if (task_rq(p) == rq) {
2513 deactivate_task(rq, p, 0);
2514 set_task_cpu(p, lowest_rq->cpu);
2515 activate_task(lowest_rq, p, 0);
2516 resched_curr(lowest_rq);
2517 }
2518
2519 double_unlock_balance(rq, lowest_rq);
2520
2521out_unlock:
2522 rq->push_busy = false;
5cb9eaa3 2523 raw_spin_rq_unlock(rq);
a7c81556
PZ
2524 raw_spin_unlock_irq(&p->pi_lock);
2525
2526 put_task_struct(p);
5cc389bc
PZ
2527 return 0;
2528}
2529
c5b28038
PZ
2530/*
2531 * sched_class::set_cpus_allowed must do the below, but is not required to
2532 * actually call this function.
2533 */
713a2e21 2534void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
5cc389bc 2535{
713a2e21
WL
2536 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2537 p->cpus_ptr = ctx->new_mask;
af449901
PZ
2538 return;
2539 }
2540
713a2e21
WL
2541 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2542 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
8f9ea86f
WL
2543
2544 /*
2545 * Swap in a new user_cpus_ptr if SCA_USER flag set
2546 */
2547 if (ctx->flags & SCA_USER)
2548 swap(p->user_cpus_ptr, ctx->user_mask);
5cc389bc
PZ
2549}
2550
9cfc3e18 2551static void
713a2e21 2552__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
c5b28038 2553{
6c37067e
PZ
2554 struct rq *rq = task_rq(p);
2555 bool queued, running;
2556
af449901
PZ
2557 /*
2558 * This here violates the locking rules for affinity, since we're only
2559 * supposed to change these variables while holding both rq->lock and
2560 * p->pi_lock.
2561 *
2562 * HOWEVER, it magically works, because ttwu() is the only code that
2563 * accesses these variables under p->pi_lock and only does so after
2564 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2565 * before finish_task().
2566 *
2567 * XXX do further audits, this smells like something putrid.
2568 */
713a2e21 2569 if (ctx->flags & SCA_MIGRATE_DISABLE)
af449901
PZ
2570 SCHED_WARN_ON(!p->on_cpu);
2571 else
2572 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
2573
2574 queued = task_on_rq_queued(p);
2575 running = task_current(rq, p);
2576
2577 if (queued) {
2578 /*
2579 * Because __kthread_bind() calls this on blocked tasks without
2580 * holding rq->lock.
2581 */
5cb9eaa3 2582 lockdep_assert_rq_held(rq);
7a57f32a 2583 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6c37067e
PZ
2584 }
2585 if (running)
2586 put_prev_task(rq, p);
2587
713a2e21 2588 p->sched_class->set_cpus_allowed(p, ctx);
6c37067e 2589
6c37067e 2590 if (queued)
7134b3e9 2591 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 2592 if (running)
03b7fad1 2593 set_next_task(rq, p);
c5b28038
PZ
2594}
2595
851a723e
WL
2596/*
2597 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2598 * affinity (if any) should be destroyed too.
2599 */
9cfc3e18
PZ
2600void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2601{
713a2e21
WL
2602 struct affinity_context ac = {
2603 .new_mask = new_mask,
851a723e
WL
2604 .user_mask = NULL,
2605 .flags = SCA_USER, /* clear the user requested mask */
713a2e21
WL
2606 };
2607
2608 __do_set_cpus_allowed(p, &ac);
851a723e 2609 kfree(ac.user_mask);
9cfc3e18
PZ
2610}
2611
b90ca8ba
WD
2612int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2613 int node)
2614{
8f9ea86f
WL
2615 unsigned long flags;
2616
b90ca8ba
WD
2617 if (!src->user_cpus_ptr)
2618 return 0;
2619
2620 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2621 if (!dst->user_cpus_ptr)
2622 return -ENOMEM;
2623
8f9ea86f
WL
2624 /* Use pi_lock to protect content of user_cpus_ptr */
2625 raw_spin_lock_irqsave(&src->pi_lock, flags);
b90ca8ba 2626 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
8f9ea86f 2627 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
b90ca8ba
WD
2628 return 0;
2629}
2630
07ec77a1
WD
2631static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2632{
2633 struct cpumask *user_mask = NULL;
2634
2635 swap(p->user_cpus_ptr, user_mask);
2636
2637 return user_mask;
2638}
2639
b90ca8ba
WD
2640void release_user_cpus_ptr(struct task_struct *p)
2641{
07ec77a1 2642 kfree(clear_user_cpus_ptr(p));
b90ca8ba
WD
2643}
2644
6d337eab 2645/*
c777d847
VS
2646 * This function is wildly self concurrent; here be dragons.
2647 *
2648 *
2649 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2650 * designated task is enqueued on an allowed CPU. If that task is currently
2651 * running, we have to kick it out using the CPU stopper.
2652 *
2653 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2654 * Consider:
2655 *
2656 * Initial conditions: P0->cpus_mask = [0, 1]
2657 *
2658 * P0@CPU0 P1
2659 *
2660 * migrate_disable();
2661 * <preempted>
2662 * set_cpus_allowed_ptr(P0, [1]);
2663 *
2664 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2665 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2666 * This means we need the following scheme:
2667 *
2668 * P0@CPU0 P1
2669 *
2670 * migrate_disable();
2671 * <preempted>
2672 * set_cpus_allowed_ptr(P0, [1]);
2673 * <blocks>
2674 * <resumes>
2675 * migrate_enable();
2676 * __set_cpus_allowed_ptr();
2677 * <wakes local stopper>
2678 * `--> <woken on migration completion>
2679 *
2680 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2681 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2682 * task p are serialized by p->pi_lock, which we can leverage: the one that
2683 * should come into effect at the end of the Migrate-Disable region is the last
2684 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2685 * but we still need to properly signal those waiting tasks at the appropriate
2686 * moment.
2687 *
2688 * This is implemented using struct set_affinity_pending. The first
2689 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2690 * setup an instance of that struct and install it on the targeted task_struct.
2691 * Any and all further callers will reuse that instance. Those then wait for
2692 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2693 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2694 *
2695 *
2696 * (1) In the cases covered above. There is one more where the completion is
2697 * signaled within affine_move_task() itself: when a subsequent affinity request
e140749c
VS
2698 * occurs after the stopper bailed out due to the targeted task still being
2699 * Migrate-Disable. Consider:
c777d847
VS
2700 *
2701 * Initial conditions: P0->cpus_mask = [0, 1]
2702 *
e140749c
VS
2703 * CPU0 P1 P2
2704 * <P0>
2705 * migrate_disable();
2706 * <preempted>
c777d847
VS
2707 * set_cpus_allowed_ptr(P0, [1]);
2708 * <blocks>
e140749c
VS
2709 * <migration/0>
2710 * migration_cpu_stop()
2711 * is_migration_disabled()
2712 * <bails>
c777d847
VS
2713 * set_cpus_allowed_ptr(P0, [0, 1]);
2714 * <signal completion>
2715 * <awakes>
2716 *
2717 * Note that the above is safe vs a concurrent migrate_enable(), as any
2718 * pending affinity completion is preceded by an uninstallation of
2719 * p->migration_pending done with p->pi_lock held.
6d337eab
PZ
2720 */
2721static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2722 int dest_cpu, unsigned int flags)
5584e8ac
WL
2723 __releases(rq->lock)
2724 __releases(p->pi_lock)
6d337eab
PZ
2725{
2726 struct set_affinity_pending my_pending = { }, *pending = NULL;
9e81889c 2727 bool stop_pending, complete = false;
6d337eab
PZ
2728
2729 /* Can the task run on the task's current CPU? If so, we're done */
2730 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
a7c81556
PZ
2731 struct task_struct *push_task = NULL;
2732
2733 if ((flags & SCA_MIGRATE_ENABLE) &&
2734 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2735 rq->push_busy = true;
2736 push_task = get_task_struct(p);
2737 }
2738
50caf9c1
PZ
2739 /*
2740 * If there are pending waiters, but no pending stop_work,
2741 * then complete now.
2742 */
6d337eab 2743 pending = p->migration_pending;
50caf9c1 2744 if (pending && !pending->stop_pending) {
6d337eab
PZ
2745 p->migration_pending = NULL;
2746 complete = true;
2747 }
50caf9c1 2748
6d337eab
PZ
2749 task_rq_unlock(rq, p, rf);
2750
a7c81556
PZ
2751 if (push_task) {
2752 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2753 p, &rq->push_work);
2754 }
2755
6d337eab 2756 if (complete)
50caf9c1 2757 complete_all(&pending->done);
6d337eab
PZ
2758
2759 return 0;
2760 }
2761
2762 if (!(flags & SCA_MIGRATE_ENABLE)) {
2763 /* serialized by p->pi_lock */
2764 if (!p->migration_pending) {
c777d847 2765 /* Install the request */
6d337eab
PZ
2766 refcount_set(&my_pending.refs, 1);
2767 init_completion(&my_pending.done);
8a6edb52
PZ
2768 my_pending.arg = (struct migration_arg) {
2769 .task = p,
475ea6c6 2770 .dest_cpu = dest_cpu,
8a6edb52
PZ
2771 .pending = &my_pending,
2772 };
2773
6d337eab
PZ
2774 p->migration_pending = &my_pending;
2775 } else {
2776 pending = p->migration_pending;
2777 refcount_inc(&pending->refs);
475ea6c6
VS
2778 /*
2779 * Affinity has changed, but we've already installed a
2780 * pending. migration_cpu_stop() *must* see this, else
2781 * we risk a completion of the pending despite having a
2782 * task on a disallowed CPU.
2783 *
2784 * Serialized by p->pi_lock, so this is safe.
2785 */
2786 pending->arg.dest_cpu = dest_cpu;
6d337eab
PZ
2787 }
2788 }
2789 pending = p->migration_pending;
2790 /*
2791 * - !MIGRATE_ENABLE:
2792 * we'll have installed a pending if there wasn't one already.
2793 *
2794 * - MIGRATE_ENABLE:
2795 * we're here because the current CPU isn't matching anymore,
2796 * the only way that can happen is because of a concurrent
2797 * set_cpus_allowed_ptr() call, which should then still be
2798 * pending completion.
2799 *
2800 * Either way, we really should have a @pending here.
2801 */
2802 if (WARN_ON_ONCE(!pending)) {
2803 task_rq_unlock(rq, p, rf);
2804 return -EINVAL;
2805 }
2806
0b9d46fc 2807 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
c777d847 2808 /*
58b1a450
PZ
2809 * MIGRATE_ENABLE gets here because 'p == current', but for
2810 * anything else we cannot do is_migration_disabled(), punt
2811 * and have the stopper function handle it all race-free.
c777d847 2812 */
9e81889c
PZ
2813 stop_pending = pending->stop_pending;
2814 if (!stop_pending)
2815 pending->stop_pending = true;
58b1a450 2816
58b1a450
PZ
2817 if (flags & SCA_MIGRATE_ENABLE)
2818 p->migration_flags &= ~MDF_PUSH;
50caf9c1 2819
6d337eab 2820 task_rq_unlock(rq, p, rf);
8a6edb52 2821
9e81889c
PZ
2822 if (!stop_pending) {
2823 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2824 &pending->arg, &pending->stop_work);
2825 }
6d337eab 2826
58b1a450
PZ
2827 if (flags & SCA_MIGRATE_ENABLE)
2828 return 0;
6d337eab
PZ
2829 } else {
2830
2831 if (!is_migration_disabled(p)) {
2832 if (task_on_rq_queued(p))
2833 rq = move_queued_task(rq, rf, p, dest_cpu);
2834
50caf9c1
PZ
2835 if (!pending->stop_pending) {
2836 p->migration_pending = NULL;
2837 complete = true;
2838 }
6d337eab
PZ
2839 }
2840 task_rq_unlock(rq, p, rf);
2841
6d337eab
PZ
2842 if (complete)
2843 complete_all(&pending->done);
2844 }
2845
2846 wait_for_completion(&pending->done);
2847
2848 if (refcount_dec_and_test(&pending->refs))
50caf9c1 2849 wake_up_var(&pending->refs); /* No UaF, just an address */
6d337eab 2850
c777d847
VS
2851 /*
2852 * Block the original owner of &pending until all subsequent callers
2853 * have seen the completion and decremented the refcount
2854 */
6d337eab
PZ
2855 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2856
50caf9c1
PZ
2857 /* ARGH */
2858 WARN_ON_ONCE(my_pending.stop_pending);
2859
6d337eab
PZ
2860 return 0;
2861}
2862
5cc389bc 2863/*
07ec77a1 2864 * Called with both p->pi_lock and rq->lock held; drops both before returning.
5cc389bc 2865 */
07ec77a1 2866static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
713a2e21 2867 struct affinity_context *ctx,
07ec77a1
WD
2868 struct rq *rq,
2869 struct rq_flags *rf)
2870 __releases(rq->lock)
2871 __releases(p->pi_lock)
5cc389bc 2872{
234a503e 2873 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
e9d867a6 2874 const struct cpumask *cpu_valid_mask = cpu_active_mask;
234a503e 2875 bool kthread = p->flags & PF_KTHREAD;
5cc389bc
PZ
2876 unsigned int dest_cpu;
2877 int ret = 0;
2878
a499c3ea 2879 update_rq_clock(rq);
5cc389bc 2880
234a503e 2881 if (kthread || is_migration_disabled(p)) {
e9d867a6 2882 /*
741ba80f
PZ
2883 * Kernel threads are allowed on online && !active CPUs,
2884 * however, during cpu-hot-unplug, even these might get pushed
2885 * away if not KTHREAD_IS_PER_CPU.
af449901
PZ
2886 *
2887 * Specifically, migration_disabled() tasks must not fail the
2888 * cpumask_any_and_distribute() pick below, esp. so on
2889 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2890 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
e9d867a6
PZI
2891 */
2892 cpu_valid_mask = cpu_online_mask;
2893 }
2894
713a2e21 2895 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
234a503e
WD
2896 ret = -EINVAL;
2897 goto out;
2898 }
2899
25834c73
PZ
2900 /*
2901 * Must re-check here, to close a race against __kthread_bind(),
2902 * sched_setaffinity() is not guaranteed to observe the flag.
2903 */
713a2e21 2904 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
25834c73
PZ
2905 ret = -EINVAL;
2906 goto out;
2907 }
2908
713a2e21
WL
2909 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2910 if (cpumask_equal(&p->cpus_mask, ctx->new_mask))
885b3ba4
VS
2911 goto out;
2912
2913 if (WARN_ON_ONCE(p == current &&
2914 is_migration_disabled(p) &&
713a2e21 2915 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
885b3ba4
VS
2916 ret = -EBUSY;
2917 goto out;
2918 }
2919 }
5cc389bc 2920
46a87b38
PT
2921 /*
2922 * Picking a ~random cpu helps in cases where we are changing affinity
2923 * for groups of tasks (ie. cpuset), so that load balancing is not
2924 * immediately required to distribute the tasks within their new mask.
2925 */
713a2e21 2926 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
714e501e 2927 if (dest_cpu >= nr_cpu_ids) {
5cc389bc
PZ
2928 ret = -EINVAL;
2929 goto out;
2930 }
2931
713a2e21 2932 __do_set_cpus_allowed(p, ctx);
07ec77a1 2933
8f9ea86f 2934 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
5cc389bc 2935
5cc389bc 2936out:
07ec77a1 2937 task_rq_unlock(rq, p, rf);
5cc389bc
PZ
2938
2939 return ret;
2940}
25834c73 2941
07ec77a1
WD
2942/*
2943 * Change a given task's CPU affinity. Migrate the thread to a
2944 * proper CPU and schedule it away if the CPU it's executing on
2945 * is removed from the allowed bitmask.
2946 *
2947 * NOTE: the caller must have a valid reference to the task, the
2948 * task must not exit() & deallocate itself prematurely. The
2949 * call is not atomic; no spinlocks may be held.
2950 */
2951static int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 2952 struct affinity_context *ctx)
07ec77a1
WD
2953{
2954 struct rq_flags rf;
2955 struct rq *rq;
2956
2957 rq = task_rq_lock(p, &rf);
da019032
WL
2958 /*
2959 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
2960 * flags are set.
2961 */
2962 if (p->user_cpus_ptr &&
2963 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
2964 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
2965 ctx->new_mask = rq->scratch_mask;
2966
713a2e21 2967 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
07ec77a1
WD
2968}
2969
25834c73
PZ
2970int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2971{
713a2e21
WL
2972 struct affinity_context ac = {
2973 .new_mask = new_mask,
2974 .flags = 0,
2975 };
2976
2977 return __set_cpus_allowed_ptr(p, &ac);
25834c73 2978}
5cc389bc
PZ
2979EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2980
07ec77a1
WD
2981/*
2982 * Change a given task's CPU affinity to the intersection of its current
8f9ea86f
WL
2983 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
2984 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
2985 * affinity or use cpu_online_mask instead.
2986 *
07ec77a1
WD
2987 * If the resulting mask is empty, leave the affinity unchanged and return
2988 * -EINVAL.
2989 */
2990static int restrict_cpus_allowed_ptr(struct task_struct *p,
2991 struct cpumask *new_mask,
2992 const struct cpumask *subset_mask)
2993{
8f9ea86f
WL
2994 struct affinity_context ac = {
2995 .new_mask = new_mask,
2996 .flags = 0,
2997 };
07ec77a1
WD
2998 struct rq_flags rf;
2999 struct rq *rq;
3000 int err;
3001
07ec77a1
WD
3002 rq = task_rq_lock(p, &rf);
3003
3004 /*
3005 * Forcefully restricting the affinity of a deadline task is
3006 * likely to cause problems, so fail and noisily override the
3007 * mask entirely.
3008 */
3009 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3010 err = -EPERM;
3011 goto err_unlock;
3012 }
3013
8f9ea86f 3014 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
07ec77a1
WD
3015 err = -EINVAL;
3016 goto err_unlock;
3017 }
3018
713a2e21 3019 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
07ec77a1
WD
3020
3021err_unlock:
3022 task_rq_unlock(rq, p, &rf);
07ec77a1
WD
3023 return err;
3024}
3025
3026/*
3027 * Restrict the CPU affinity of task @p so that it is a subset of
5584e8ac 3028 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
07ec77a1
WD
3029 * old affinity mask. If the resulting mask is empty, we warn and walk
3030 * up the cpuset hierarchy until we find a suitable mask.
3031 */
3032void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3033{
3034 cpumask_var_t new_mask;
3035 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3036
3037 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3038
3039 /*
3040 * __migrate_task() can fail silently in the face of concurrent
3041 * offlining of the chosen destination CPU, so take the hotplug
3042 * lock to ensure that the migration succeeds.
3043 */
3044 cpus_read_lock();
3045 if (!cpumask_available(new_mask))
3046 goto out_set_mask;
3047
3048 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3049 goto out_free_mask;
3050
3051 /*
3052 * We failed to find a valid subset of the affinity mask for the
3053 * task, so override it based on its cpuset hierarchy.
3054 */
3055 cpuset_cpus_allowed(p, new_mask);
3056 override_mask = new_mask;
3057
3058out_set_mask:
3059 if (printk_ratelimit()) {
3060 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3061 task_pid_nr(p), p->comm,
3062 cpumask_pr_args(override_mask));
3063 }
3064
3065 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3066out_free_mask:
3067 cpus_read_unlock();
3068 free_cpumask_var(new_mask);
3069}
3070
3071static int
713a2e21 3072__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
07ec77a1
WD
3073
3074/*
3075 * Restore the affinity of a task @p which was previously restricted by a
8f9ea86f 3076 * call to force_compatible_cpus_allowed_ptr().
07ec77a1
WD
3077 *
3078 * It is the caller's responsibility to serialise this with any calls to
3079 * force_compatible_cpus_allowed_ptr(@p).
3080 */
3081void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3082{
713a2e21 3083 struct affinity_context ac = {
8f9ea86f
WL
3084 .new_mask = task_user_cpus(p),
3085 .flags = 0,
713a2e21 3086 };
8f9ea86f 3087 int ret;
07ec77a1
WD
3088
3089 /*
8f9ea86f
WL
3090 * Try to restore the old affinity mask with __sched_setaffinity().
3091 * Cpuset masking will be done there too.
07ec77a1 3092 */
8f9ea86f
WL
3093 ret = __sched_setaffinity(p, &ac);
3094 WARN_ON_ONCE(ret);
07ec77a1
WD
3095}
3096
dd41f596 3097void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 3098{
e2912009 3099#ifdef CONFIG_SCHED_DEBUG
2f064a59
PZ
3100 unsigned int state = READ_ONCE(p->__state);
3101
e2912009
PZ
3102 /*
3103 * We should never call set_task_cpu() on a blocked task,
3104 * ttwu() will sort out the placement.
3105 */
2f064a59 3106 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
0122ec5b 3107
3ea94de1
JP
3108 /*
3109 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3110 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3111 * time relying on p->on_rq.
3112 */
2f064a59 3113 WARN_ON_ONCE(state == TASK_RUNNING &&
3ea94de1
JP
3114 p->sched_class == &fair_sched_class &&
3115 (p->on_rq && !task_on_rq_migrating(p)));
3116
0122ec5b 3117#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
3118 /*
3119 * The caller should hold either p->pi_lock or rq->lock, when changing
3120 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3121 *
3122 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 3123 * see task_group().
6c6c54e1
PZ
3124 *
3125 * Furthermore, all task_rq users should acquire both locks, see
3126 * task_rq_lock().
3127 */
0122ec5b 3128 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
9ef7e7e3 3129 lockdep_is_held(__rq_lockp(task_rq(p)))));
0122ec5b 3130#endif
4ff9083b
PZ
3131 /*
3132 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3133 */
3134 WARN_ON_ONCE(!cpu_online(new_cpu));
af449901
PZ
3135
3136 WARN_ON_ONCE(is_migration_disabled(p));
e2912009
PZ
3137#endif
3138
de1d7286 3139 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 3140
0c69774e 3141 if (task_cpu(p) != new_cpu) {
0a74bef8 3142 if (p->sched_class->migrate_task_rq)
1327237a 3143 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 3144 p->se.nr_migrations++;
d7822b1e 3145 rseq_migrate(p);
ff303e66 3146 perf_event_task_migrate(p);
0c69774e 3147 }
dd41f596
IM
3148
3149 __set_task_cpu(p, new_cpu);
c65cc870
IM
3150}
3151
0ad4e3df 3152#ifdef CONFIG_NUMA_BALANCING
ac66f547
PZ
3153static void __migrate_swap_task(struct task_struct *p, int cpu)
3154{
da0c1e65 3155 if (task_on_rq_queued(p)) {
ac66f547 3156 struct rq *src_rq, *dst_rq;
8a8c69c3 3157 struct rq_flags srf, drf;
ac66f547
PZ
3158
3159 src_rq = task_rq(p);
3160 dst_rq = cpu_rq(cpu);
3161
8a8c69c3
PZ
3162 rq_pin_lock(src_rq, &srf);
3163 rq_pin_lock(dst_rq, &drf);
3164
ac66f547
PZ
3165 deactivate_task(src_rq, p, 0);
3166 set_task_cpu(p, cpu);
3167 activate_task(dst_rq, p, 0);
3168 check_preempt_curr(dst_rq, p, 0);
8a8c69c3
PZ
3169
3170 rq_unpin_lock(dst_rq, &drf);
3171 rq_unpin_lock(src_rq, &srf);
3172
ac66f547
PZ
3173 } else {
3174 /*
3175 * Task isn't running anymore; make it appear like we migrated
3176 * it before it went to sleep. This means on wakeup we make the
d1ccc66d 3177 * previous CPU our target instead of where it really is.
ac66f547
PZ
3178 */
3179 p->wake_cpu = cpu;
3180 }
3181}
3182
3183struct migration_swap_arg {
3184 struct task_struct *src_task, *dst_task;
3185 int src_cpu, dst_cpu;
3186};
3187
3188static int migrate_swap_stop(void *data)
3189{
3190 struct migration_swap_arg *arg = data;
3191 struct rq *src_rq, *dst_rq;
3192 int ret = -EAGAIN;
3193
62694cd5
PZ
3194 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3195 return -EAGAIN;
3196
ac66f547
PZ
3197 src_rq = cpu_rq(arg->src_cpu);
3198 dst_rq = cpu_rq(arg->dst_cpu);
3199
74602315
PZ
3200 double_raw_lock(&arg->src_task->pi_lock,
3201 &arg->dst_task->pi_lock);
ac66f547 3202 double_rq_lock(src_rq, dst_rq);
62694cd5 3203
ac66f547
PZ
3204 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3205 goto unlock;
3206
3207 if (task_cpu(arg->src_task) != arg->src_cpu)
3208 goto unlock;
3209
3bd37062 3210 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
ac66f547
PZ
3211 goto unlock;
3212
3bd37062 3213 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
ac66f547
PZ
3214 goto unlock;
3215
3216 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3217 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3218
3219 ret = 0;
3220
3221unlock:
3222 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
3223 raw_spin_unlock(&arg->dst_task->pi_lock);
3224 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
3225
3226 return ret;
3227}
3228
3229/*
3230 * Cross migrate two tasks
3231 */
0ad4e3df
SD
3232int migrate_swap(struct task_struct *cur, struct task_struct *p,
3233 int target_cpu, int curr_cpu)
ac66f547
PZ
3234{
3235 struct migration_swap_arg arg;
3236 int ret = -EINVAL;
3237
ac66f547
PZ
3238 arg = (struct migration_swap_arg){
3239 .src_task = cur,
0ad4e3df 3240 .src_cpu = curr_cpu,
ac66f547 3241 .dst_task = p,
0ad4e3df 3242 .dst_cpu = target_cpu,
ac66f547
PZ
3243 };
3244
3245 if (arg.src_cpu == arg.dst_cpu)
3246 goto out;
3247
6acce3ef
PZ
3248 /*
3249 * These three tests are all lockless; this is OK since all of them
3250 * will be re-checked with proper locks held further down the line.
3251 */
ac66f547
PZ
3252 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3253 goto out;
3254
3bd37062 3255 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
ac66f547
PZ
3256 goto out;
3257
3bd37062 3258 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
ac66f547
PZ
3259 goto out;
3260
286549dc 3261 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
3262 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3263
3264out:
ac66f547
PZ
3265 return ret;
3266}
0ad4e3df 3267#endif /* CONFIG_NUMA_BALANCING */
ac66f547 3268
1da177e4
LT
3269/*
3270 * wait_task_inactive - wait for a thread to unschedule.
3271 *
f9fc8cad
PZ
3272 * Wait for the thread to block in any of the states set in @match_state.
3273 * If it changes, i.e. @p might have woken up, then return zero. When we
3274 * succeed in waiting for @p to be off its CPU, we return a positive number
3275 * (its total switch count). If a second call a short while later returns the
3276 * same number, the caller can be sure that @p has remained unscheduled the
3277 * whole time.
85ba2d86 3278 *
1da177e4
LT
3279 * The caller must ensure that the task *will* unschedule sometime soon,
3280 * else this function might spin for a *long* time. This function can't
3281 * be called with interrupts off, or it may introduce deadlock with
3282 * smp_call_function() if an IPI is sent by the same process we are
3283 * waiting to become inactive.
3284 */
2f064a59 3285unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1da177e4 3286{
da0c1e65 3287 int running, queued;
eb580751 3288 struct rq_flags rf;
85ba2d86 3289 unsigned long ncsw;
70b97a7f 3290 struct rq *rq;
1da177e4 3291
3a5c359a
AK
3292 for (;;) {
3293 /*
3294 * We do the initial early heuristics without holding
3295 * any task-queue locks at all. We'll only try to get
3296 * the runqueue lock when things look like they will
3297 * work out!
3298 */
3299 rq = task_rq(p);
fa490cfd 3300
3a5c359a
AK
3301 /*
3302 * If the task is actively running on another CPU
3303 * still, just relax and busy-wait without holding
3304 * any locks.
3305 *
3306 * NOTE! Since we don't hold any locks, it's not
3307 * even sure that "rq" stays as the right runqueue!
0b9d46fc 3308 * But we don't care, since "task_on_cpu()" will
3a5c359a
AK
3309 * return false if the runqueue has changed and p
3310 * is actually now running somewhere else!
3311 */
0b9d46fc 3312 while (task_on_cpu(rq, p)) {
f9fc8cad 3313 if (!(READ_ONCE(p->__state) & match_state))
85ba2d86 3314 return 0;
3a5c359a 3315 cpu_relax();
85ba2d86 3316 }
fa490cfd 3317
3a5c359a
AK
3318 /*
3319 * Ok, time to look more closely! We need the rq
3320 * lock now, to be *sure*. If we're wrong, we'll
3321 * just go back and repeat.
3322 */
eb580751 3323 rq = task_rq_lock(p, &rf);
27a9da65 3324 trace_sched_wait_task(p);
0b9d46fc 3325 running = task_on_cpu(rq, p);
da0c1e65 3326 queued = task_on_rq_queued(p);
85ba2d86 3327 ncsw = 0;
f9fc8cad 3328 if (READ_ONCE(p->__state) & match_state)
93dcf55f 3329 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 3330 task_rq_unlock(rq, p, &rf);
fa490cfd 3331
85ba2d86
RM
3332 /*
3333 * If it changed from the expected state, bail out now.
3334 */
3335 if (unlikely(!ncsw))
3336 break;
3337
3a5c359a
AK
3338 /*
3339 * Was it really running after all now that we
3340 * checked with the proper locks actually held?
3341 *
3342 * Oops. Go back and try again..
3343 */
3344 if (unlikely(running)) {
3345 cpu_relax();
3346 continue;
3347 }
fa490cfd 3348
3a5c359a
AK
3349 /*
3350 * It's not enough that it's not actively running,
3351 * it must be off the runqueue _entirely_, and not
3352 * preempted!
3353 *
80dd99b3 3354 * So if it was still runnable (but just not actively
3a5c359a
AK
3355 * running right now), it's preempted, and we should
3356 * yield - it could be a while.
3357 */
da0c1e65 3358 if (unlikely(queued)) {
8b0e1953 3359 ktime_t to = NSEC_PER_SEC / HZ;
8eb90c30
TG
3360
3361 set_current_state(TASK_UNINTERRUPTIBLE);
c33627e9 3362 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3a5c359a
AK
3363 continue;
3364 }
fa490cfd 3365
3a5c359a
AK
3366 /*
3367 * Ahh, all good. It wasn't running, and it wasn't
3368 * runnable, which means that it will never become
3369 * running in the future either. We're all done!
3370 */
3371 break;
3372 }
85ba2d86
RM
3373
3374 return ncsw;
1da177e4
LT
3375}
3376
3377/***
3378 * kick_process - kick a running thread to enter/exit the kernel
3379 * @p: the to-be-kicked thread
3380 *
3381 * Cause a process which is running on another CPU to enter
3382 * kernel-mode, without any delay. (to get signals handled.)
3383 *
25985edc 3384 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
3385 * because all it wants to ensure is that the remote task enters
3386 * the kernel. If the IPI races and the task has been migrated
3387 * to another CPU then no harm is done and the purpose has been
3388 * achieved as well.
3389 */
36c8b586 3390void kick_process(struct task_struct *p)
1da177e4
LT
3391{
3392 int cpu;
3393
3394 preempt_disable();
3395 cpu = task_cpu(p);
3396 if ((cpu != smp_processor_id()) && task_curr(p))
3397 smp_send_reschedule(cpu);
3398 preempt_enable();
3399}
b43e3521 3400EXPORT_SYMBOL_GPL(kick_process);
1da177e4 3401
30da688e 3402/*
3bd37062 3403 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
3404 *
3405 * A few notes on cpu_active vs cpu_online:
3406 *
3407 * - cpu_active must be a subset of cpu_online
3408 *
97fb7a0a 3409 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
e9d867a6 3410 * see __set_cpus_allowed_ptr(). At this point the newly online
d1ccc66d 3411 * CPU isn't yet part of the sched domains, and balancing will not
e9d867a6
PZI
3412 * see it.
3413 *
d1ccc66d 3414 * - on CPU-down we clear cpu_active() to mask the sched domains and
e9d867a6 3415 * avoid the load balancer to place new tasks on the to be removed
d1ccc66d 3416 * CPU. Existing tasks will remain running there and will be taken
e9d867a6
PZI
3417 * off.
3418 *
3419 * This means that fallback selection must not select !active CPUs.
3420 * And can assume that any active CPU must be online. Conversely
3421 * select_task_rq() below may allow selection of !active CPUs in order
3422 * to satisfy the above rules.
30da688e 3423 */
5da9a0fb
PZ
3424static int select_fallback_rq(int cpu, struct task_struct *p)
3425{
aa00d89c
TC
3426 int nid = cpu_to_node(cpu);
3427 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
3428 enum { cpuset, possible, fail } state = cpuset;
3429 int dest_cpu;
5da9a0fb 3430
aa00d89c 3431 /*
d1ccc66d
IM
3432 * If the node that the CPU is on has been offlined, cpu_to_node()
3433 * will return -1. There is no CPU on the node, and we should
3434 * select the CPU on the other node.
aa00d89c
TC
3435 */
3436 if (nid != -1) {
3437 nodemask = cpumask_of_node(nid);
3438
3439 /* Look for allowed, online CPU in same node. */
3440 for_each_cpu(dest_cpu, nodemask) {
9ae606bc 3441 if (is_cpu_allowed(p, dest_cpu))
aa00d89c
TC
3442 return dest_cpu;
3443 }
2baab4e9 3444 }
5da9a0fb 3445
2baab4e9
PZ
3446 for (;;) {
3447 /* Any allowed, online CPU? */
3bd37062 3448 for_each_cpu(dest_cpu, p->cpus_ptr) {
175f0e25 3449 if (!is_cpu_allowed(p, dest_cpu))
2baab4e9 3450 continue;
175f0e25 3451
2baab4e9
PZ
3452 goto out;
3453 }
5da9a0fb 3454
e73e85f0 3455 /* No more Mr. Nice Guy. */
2baab4e9
PZ
3456 switch (state) {
3457 case cpuset:
97c0054d 3458 if (cpuset_cpus_allowed_fallback(p)) {
e73e85f0
ON
3459 state = possible;
3460 break;
3461 }
df561f66 3462 fallthrough;
2baab4e9 3463 case possible:
af449901
PZ
3464 /*
3465 * XXX When called from select_task_rq() we only
3466 * hold p->pi_lock and again violate locking order.
3467 *
3468 * More yuck to audit.
3469 */
9ae606bc 3470 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
2baab4e9
PZ
3471 state = fail;
3472 break;
2baab4e9
PZ
3473 case fail:
3474 BUG();
3475 break;
3476 }
3477 }
3478
3479out:
3480 if (state != cpuset) {
3481 /*
3482 * Don't tell them about moving exiting tasks or
3483 * kernel threads (both mm NULL), since they never
3484 * leave kernel.
3485 */
3486 if (p->mm && printk_ratelimit()) {
aac74dc4 3487 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
3488 task_pid_nr(p), p->comm, cpu);
3489 }
5da9a0fb
PZ
3490 }
3491
3492 return dest_cpu;
3493}
3494
e2912009 3495/*
3bd37062 3496 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
e2912009 3497 */
970b13ba 3498static inline
3aef1551 3499int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
970b13ba 3500{
cbce1a68
PZ
3501 lockdep_assert_held(&p->pi_lock);
3502
af449901 3503 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3aef1551 3504 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
e9d867a6 3505 else
3bd37062 3506 cpu = cpumask_any(p->cpus_ptr);
e2912009
PZ
3507
3508 /*
3509 * In order not to call set_task_cpu() on a blocking task we need
3bd37062 3510 * to rely on ttwu() to place the task on a valid ->cpus_ptr
d1ccc66d 3511 * CPU.
e2912009
PZ
3512 *
3513 * Since this is common to all placement strategies, this lives here.
3514 *
3515 * [ this allows ->select_task() to simply return task_cpu(p) and
3516 * not worry about this generic constraint ]
3517 */
7af443ee 3518 if (unlikely(!is_cpu_allowed(p, cpu)))
5da9a0fb 3519 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
3520
3521 return cpu;
970b13ba 3522}
09a40af5 3523
f5832c19
NP
3524void sched_set_stop_task(int cpu, struct task_struct *stop)
3525{
ded467dc 3526 static struct lock_class_key stop_pi_lock;
f5832c19
NP
3527 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3528 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3529
3530 if (stop) {
3531 /*
3532 * Make it appear like a SCHED_FIFO task, its something
3533 * userspace knows about and won't get confused about.
3534 *
3535 * Also, it will make PI more or less work without too
3536 * much confusion -- but then, stop work should not
3537 * rely on PI working anyway.
3538 */
3539 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3540
3541 stop->sched_class = &stop_sched_class;
ded467dc
PZ
3542
3543 /*
3544 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3545 * adjust the effective priority of a task. As a result,
3546 * rt_mutex_setprio() can trigger (RT) balancing operations,
3547 * which can then trigger wakeups of the stop thread to push
3548 * around the current task.
3549 *
3550 * The stop task itself will never be part of the PI-chain, it
3551 * never blocks, therefore that ->pi_lock recursion is safe.
3552 * Tell lockdep about this by placing the stop->pi_lock in its
3553 * own class.
3554 */
3555 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
f5832c19
NP
3556 }
3557
3558 cpu_rq(cpu)->stop = stop;
3559
3560 if (old_stop) {
3561 /*
3562 * Reset it back to a normal scheduling class so that
3563 * it can die in pieces.
3564 */
3565 old_stop->sched_class = &rt_sched_class;
3566 }
3567}
3568
74d862b6 3569#else /* CONFIG_SMP */
25834c73
PZ
3570
3571static inline int __set_cpus_allowed_ptr(struct task_struct *p,
713a2e21 3572 struct affinity_context *ctx)
25834c73 3573{
713a2e21 3574 return set_cpus_allowed_ptr(p, ctx->new_mask);
25834c73
PZ
3575}
3576
af449901
PZ
3577static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3578
3015ef4b
TG
3579static inline bool rq_has_pinned_tasks(struct rq *rq)
3580{
3581 return false;
3582}
3583
74d862b6 3584#endif /* !CONFIG_SMP */
970b13ba 3585
d7c01d27 3586static void
b84cb5df 3587ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 3588{
4fa8d299 3589 struct rq *rq;
b84cb5df 3590
4fa8d299
JP
3591 if (!schedstat_enabled())
3592 return;
3593
3594 rq = this_rq();
d7c01d27 3595
4fa8d299
JP
3596#ifdef CONFIG_SMP
3597 if (cpu == rq->cpu) {
b85c8b71 3598 __schedstat_inc(rq->ttwu_local);
ceeadb83 3599 __schedstat_inc(p->stats.nr_wakeups_local);
d7c01d27
PZ
3600 } else {
3601 struct sched_domain *sd;
3602
ceeadb83 3603 __schedstat_inc(p->stats.nr_wakeups_remote);
057f3fad 3604 rcu_read_lock();
4fa8d299 3605 for_each_domain(rq->cpu, sd) {
d7c01d27 3606 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
b85c8b71 3607 __schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
3608 break;
3609 }
3610 }
057f3fad 3611 rcu_read_unlock();
d7c01d27 3612 }
f339b9dc
PZ
3613
3614 if (wake_flags & WF_MIGRATED)
ceeadb83 3615 __schedstat_inc(p->stats.nr_wakeups_migrate);
d7c01d27
PZ
3616#endif /* CONFIG_SMP */
3617
b85c8b71 3618 __schedstat_inc(rq->ttwu_count);
ceeadb83 3619 __schedstat_inc(p->stats.nr_wakeups);
d7c01d27
PZ
3620
3621 if (wake_flags & WF_SYNC)
ceeadb83 3622 __schedstat_inc(p->stats.nr_wakeups_sync);
d7c01d27
PZ
3623}
3624
23f41eeb
PZ
3625/*
3626 * Mark the task runnable and perform wakeup-preemption.
3627 */
e7904a28 3628static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3629 struct rq_flags *rf)
9ed3811a 3630{
9ed3811a 3631 check_preempt_curr(rq, p, wake_flags);
2f064a59 3632 WRITE_ONCE(p->__state, TASK_RUNNING);
fbd705a0
PZ
3633 trace_sched_wakeup(p);
3634
9ed3811a 3635#ifdef CONFIG_SMP
4c9a4bc8
PZ
3636 if (p->sched_class->task_woken) {
3637 /*
b19a888c 3638 * Our task @p is fully woken up and running; so it's safe to
cbce1a68 3639 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 3640 */
d8ac8971 3641 rq_unpin_lock(rq, rf);
9ed3811a 3642 p->sched_class->task_woken(rq, p);
d8ac8971 3643 rq_repin_lock(rq, rf);
4c9a4bc8 3644 }
9ed3811a 3645
e69c6341 3646 if (rq->idle_stamp) {
78becc27 3647 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 3648 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 3649
abfafa54
JL
3650 update_avg(&rq->avg_idle, delta);
3651
3652 if (rq->avg_idle > max)
9ed3811a 3653 rq->avg_idle = max;
abfafa54 3654
94aafc3e
PZ
3655 rq->wake_stamp = jiffies;
3656 rq->wake_avg_idle = rq->avg_idle / 2;
3657
9ed3811a
TH
3658 rq->idle_stamp = 0;
3659 }
3660#endif
3661}
3662
c05fbafb 3663static void
e7904a28 3664ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
d8ac8971 3665 struct rq_flags *rf)
c05fbafb 3666{
77558e4d 3667 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
b5179ac7 3668
5cb9eaa3 3669 lockdep_assert_rq_held(rq);
cbce1a68 3670
c05fbafb
PZ
3671 if (p->sched_contributes_to_load)
3672 rq->nr_uninterruptible--;
b5179ac7 3673
dbfb089d 3674#ifdef CONFIG_SMP
b5179ac7 3675 if (wake_flags & WF_MIGRATED)
59efa0ba 3676 en_flags |= ENQUEUE_MIGRATED;
ec618b84 3677 else
c05fbafb 3678#endif
ec618b84
PZ
3679 if (p->in_iowait) {
3680 delayacct_blkio_end(p);
3681 atomic_dec(&task_rq(p)->nr_iowait);
3682 }
c05fbafb 3683
1b174a2c 3684 activate_task(rq, p, en_flags);
d8ac8971 3685 ttwu_do_wakeup(rq, p, wake_flags, rf);
c05fbafb
PZ
3686}
3687
3688/*
58877d34
PZ
3689 * Consider @p being inside a wait loop:
3690 *
3691 * for (;;) {
3692 * set_current_state(TASK_UNINTERRUPTIBLE);
3693 *
3694 * if (CONDITION)
3695 * break;
3696 *
3697 * schedule();
3698 * }
3699 * __set_current_state(TASK_RUNNING);
3700 *
3701 * between set_current_state() and schedule(). In this case @p is still
3702 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3703 * an atomic manner.
3704 *
3705 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3706 * then schedule() must still happen and p->state can be changed to
3707 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3708 * need to do a full wakeup with enqueue.
3709 *
3710 * Returns: %true when the wakeup is done,
3711 * %false otherwise.
c05fbafb 3712 */
58877d34 3713static int ttwu_runnable(struct task_struct *p, int wake_flags)
c05fbafb 3714{
eb580751 3715 struct rq_flags rf;
c05fbafb
PZ
3716 struct rq *rq;
3717 int ret = 0;
3718
eb580751 3719 rq = __task_rq_lock(p, &rf);
da0c1e65 3720 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
3721 /* check_preempt_curr() may use rq clock */
3722 update_rq_clock(rq);
d8ac8971 3723 ttwu_do_wakeup(rq, p, wake_flags, &rf);
c05fbafb
PZ
3724 ret = 1;
3725 }
eb580751 3726 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
3727
3728 return ret;
3729}
3730
317f3941 3731#ifdef CONFIG_SMP
a1488664 3732void sched_ttwu_pending(void *arg)
317f3941 3733{
a1488664 3734 struct llist_node *llist = arg;
317f3941 3735 struct rq *rq = this_rq();
73215849 3736 struct task_struct *p, *t;
d8ac8971 3737 struct rq_flags rf;
317f3941 3738
e3baac47
PZ
3739 if (!llist)
3740 return;
3741
8a8c69c3 3742 rq_lock_irqsave(rq, &rf);
77558e4d 3743 update_rq_clock(rq);
317f3941 3744
8c4890d1 3745 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
b6e13e85
PZ
3746 if (WARN_ON_ONCE(p->on_cpu))
3747 smp_cond_load_acquire(&p->on_cpu, !VAL);
3748
3749 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3750 set_task_cpu(p, cpu_of(rq));
3751
73215849 3752 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
b6e13e85 3753 }
317f3941 3754
d6962c4f
TD
3755 /*
3756 * Must be after enqueueing at least once task such that
3757 * idle_cpu() does not observe a false-negative -- if it does,
3758 * it is possible for select_idle_siblings() to stack a number
3759 * of tasks on this CPU during that window.
3760 *
3761 * It is ok to clear ttwu_pending when another task pending.
3762 * We will receive IPI after local irq enabled and then enqueue it.
3763 * Since now nr_running > 0, idle_cpu() will always get correct result.
3764 */
3765 WRITE_ONCE(rq->ttwu_pending, 0);
8a8c69c3 3766 rq_unlock_irqrestore(rq, &rf);
317f3941
PZ
3767}
3768
b2a02fc4 3769void send_call_function_single_ipi(int cpu)
317f3941 3770{
b2a02fc4 3771 struct rq *rq = cpu_rq(cpu);
ca38062e 3772
b2a02fc4
PZ
3773 if (!set_nr_if_polling(rq->idle))
3774 arch_send_call_function_single_ipi(cpu);
3775 else
3776 trace_sched_wake_idle_without_ipi(cpu);
317f3941
PZ
3777}
3778
2ebb1771
MG
3779/*
3780 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3781 * necessary. The wakee CPU on receipt of the IPI will queue the task
3782 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3783 * of the wakeup instead of the waker.
3784 */
3785static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
317f3941 3786{
e3baac47
PZ
3787 struct rq *rq = cpu_rq(cpu);
3788
b7e7ade3
PZ
3789 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3790
126c2092 3791 WRITE_ONCE(rq->ttwu_pending, 1);
8c4890d1 3792 __smp_call_single_queue(cpu, &p->wake_entry.llist);
317f3941 3793}
d6aa8f85 3794
f6be8af1
CL
3795void wake_up_if_idle(int cpu)
3796{
3797 struct rq *rq = cpu_rq(cpu);
8a8c69c3 3798 struct rq_flags rf;
f6be8af1 3799
fd7de1e8
AL
3800 rcu_read_lock();
3801
3802 if (!is_idle_task(rcu_dereference(rq->curr)))
3803 goto out;
f6be8af1 3804
8850cb66
PZ
3805 rq_lock_irqsave(rq, &rf);
3806 if (is_idle_task(rq->curr))
3807 resched_curr(rq);
3808 /* Else CPU is not idle, do nothing here: */
3809 rq_unlock_irqrestore(rq, &rf);
fd7de1e8
AL
3810
3811out:
3812 rcu_read_unlock();
f6be8af1
CL
3813}
3814
39be3501 3815bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623 3816{
42dc938a
VD
3817 if (this_cpu == that_cpu)
3818 return true;
3819
518cd623
PZ
3820 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3821}
c6e7bd7a 3822
751d4cbc 3823static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
2ebb1771 3824{
5ba2ffba
PZ
3825 /*
3826 * Do not complicate things with the async wake_list while the CPU is
3827 * in hotplug state.
3828 */
3829 if (!cpu_active(cpu))
3830 return false;
3831
751d4cbc
MG
3832 /* Ensure the task will still be allowed to run on the CPU. */
3833 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3834 return false;
3835
2ebb1771
MG
3836 /*
3837 * If the CPU does not share cache, then queue the task on the
3838 * remote rqs wakelist to avoid accessing remote data.
3839 */
3840 if (!cpus_share_cache(smp_processor_id(), cpu))
3841 return true;
3842
f3dd3f67
TD
3843 if (cpu == smp_processor_id())
3844 return false;
3845
2ebb1771 3846 /*
f3dd3f67
TD
3847 * If the wakee cpu is idle, or the task is descheduling and the
3848 * only running task on the CPU, then use the wakelist to offload
3849 * the task activation to the idle (or soon-to-be-idle) CPU as
3850 * the current CPU is likely busy. nr_running is checked to
3851 * avoid unnecessary task stacking.
28156108
TD
3852 *
3853 * Note that we can only get here with (wakee) p->on_rq=0,
3854 * p->on_cpu can be whatever, we've done the dequeue, so
3855 * the wakee has been accounted out of ->nr_running.
2ebb1771 3856 */
f3dd3f67 3857 if (!cpu_rq(cpu)->nr_running)
2ebb1771
MG
3858 return true;
3859
3860 return false;
3861}
3862
3863static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
c6e7bd7a 3864{
751d4cbc 3865 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
c6e7bd7a 3866 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2ebb1771 3867 __ttwu_queue_wakelist(p, cpu, wake_flags);
c6e7bd7a
PZ
3868 return true;
3869 }
3870
3871 return false;
3872}
58877d34
PZ
3873
3874#else /* !CONFIG_SMP */
3875
3876static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3877{
3878 return false;
3879}
3880
d6aa8f85 3881#endif /* CONFIG_SMP */
317f3941 3882
b5179ac7 3883static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
3884{
3885 struct rq *rq = cpu_rq(cpu);
d8ac8971 3886 struct rq_flags rf;
c05fbafb 3887
2ebb1771 3888 if (ttwu_queue_wakelist(p, cpu, wake_flags))
317f3941 3889 return;
317f3941 3890
8a8c69c3 3891 rq_lock(rq, &rf);
77558e4d 3892 update_rq_clock(rq);
d8ac8971 3893 ttwu_do_activate(rq, p, wake_flags, &rf);
8a8c69c3 3894 rq_unlock(rq, &rf);
9ed3811a
TH
3895}
3896
43295d73
TG
3897/*
3898 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3899 *
3900 * The caller holds p::pi_lock if p != current or has preemption
3901 * disabled when p == current.
5f220be2
TG
3902 *
3903 * The rules of PREEMPT_RT saved_state:
3904 *
3905 * The related locking code always holds p::pi_lock when updating
3906 * p::saved_state, which means the code is fully serialized in both cases.
3907 *
3908 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3909 * bits set. This allows to distinguish all wakeup scenarios.
43295d73
TG
3910 */
3911static __always_inline
3912bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3913{
5f220be2
TG
3914 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3915 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3916 state != TASK_RTLOCK_WAIT);
3917 }
3918
43295d73
TG
3919 if (READ_ONCE(p->__state) & state) {
3920 *success = 1;
3921 return true;
3922 }
5f220be2
TG
3923
3924#ifdef CONFIG_PREEMPT_RT
3925 /*
3926 * Saved state preserves the task state across blocking on
3927 * an RT lock. If the state matches, set p::saved_state to
3928 * TASK_RUNNING, but do not wake the task because it waits
3929 * for a lock wakeup. Also indicate success because from
3930 * the regular waker's point of view this has succeeded.
3931 *
3932 * After acquiring the lock the task will restore p::__state
3933 * from p::saved_state which ensures that the regular
3934 * wakeup is not lost. The restore will also set
3935 * p::saved_state to TASK_RUNNING so any further tests will
3936 * not result in false positives vs. @success
3937 */
3938 if (p->saved_state & state) {
3939 p->saved_state = TASK_RUNNING;
3940 *success = 1;
3941 }
3942#endif
43295d73
TG
3943 return false;
3944}
3945
8643cda5
PZ
3946/*
3947 * Notes on Program-Order guarantees on SMP systems.
3948 *
3949 * MIGRATION
3950 *
3951 * The basic program-order guarantee on SMP systems is that when a task [t]
d1ccc66d
IM
3952 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3953 * execution on its new CPU [c1].
8643cda5
PZ
3954 *
3955 * For migration (of runnable tasks) this is provided by the following means:
3956 *
3957 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3958 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3959 * rq(c1)->lock (if not at the same time, then in that order).
3960 * C) LOCK of the rq(c1)->lock scheduling in task
3961 *
7696f991 3962 * Release/acquire chaining guarantees that B happens after A and C after B.
d1ccc66d 3963 * Note: the CPU doing B need not be c0 or c1
8643cda5
PZ
3964 *
3965 * Example:
3966 *
3967 * CPU0 CPU1 CPU2
3968 *
3969 * LOCK rq(0)->lock
3970 * sched-out X
3971 * sched-in Y
3972 * UNLOCK rq(0)->lock
3973 *
3974 * LOCK rq(0)->lock // orders against CPU0
3975 * dequeue X
3976 * UNLOCK rq(0)->lock
3977 *
3978 * LOCK rq(1)->lock
3979 * enqueue X
3980 * UNLOCK rq(1)->lock
3981 *
3982 * LOCK rq(1)->lock // orders against CPU2
3983 * sched-out Z
3984 * sched-in X
3985 * UNLOCK rq(1)->lock
3986 *
3987 *
3988 * BLOCKING -- aka. SLEEP + WAKEUP
3989 *
3990 * For blocking we (obviously) need to provide the same guarantee as for
3991 * migration. However the means are completely different as there is no lock
3992 * chain to provide order. Instead we do:
3993 *
58877d34
PZ
3994 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3995 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
8643cda5
PZ
3996 *
3997 * Example:
3998 *
3999 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4000 *
4001 * LOCK rq(0)->lock LOCK X->pi_lock
4002 * dequeue X
4003 * sched-out X
4004 * smp_store_release(X->on_cpu, 0);
4005 *
1f03e8d2 4006 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
4007 * X->state = WAKING
4008 * set_task_cpu(X,2)
4009 *
4010 * LOCK rq(2)->lock
4011 * enqueue X
4012 * X->state = RUNNING
4013 * UNLOCK rq(2)->lock
4014 *
4015 * LOCK rq(2)->lock // orders against CPU1
4016 * sched-out Z
4017 * sched-in X
4018 * UNLOCK rq(2)->lock
4019 *
4020 * UNLOCK X->pi_lock
4021 * UNLOCK rq(0)->lock
4022 *
4023 *
7696f991
AP
4024 * However, for wakeups there is a second guarantee we must provide, namely we
4025 * must ensure that CONDITION=1 done by the caller can not be reordered with
4026 * accesses to the task state; see try_to_wake_up() and set_current_state().
8643cda5
PZ
4027 */
4028
9ed3811a 4029/**
1da177e4 4030 * try_to_wake_up - wake up a thread
9ed3811a 4031 * @p: the thread to be awakened
1da177e4 4032 * @state: the mask of task states that can be woken
9ed3811a 4033 * @wake_flags: wake modifier flags (WF_*)
1da177e4 4034 *
58877d34
PZ
4035 * Conceptually does:
4036 *
4037 * If (@state & @p->state) @p->state = TASK_RUNNING.
1da177e4 4038 *
a2250238
PZ
4039 * If the task was not queued/runnable, also place it back on a runqueue.
4040 *
58877d34
PZ
4041 * This function is atomic against schedule() which would dequeue the task.
4042 *
4043 * It issues a full memory barrier before accessing @p->state, see the comment
4044 * with set_current_state().
a2250238 4045 *
58877d34 4046 * Uses p->pi_lock to serialize against concurrent wake-ups.
a2250238 4047 *
58877d34
PZ
4048 * Relies on p->pi_lock stabilizing:
4049 * - p->sched_class
4050 * - p->cpus_ptr
4051 * - p->sched_task_group
4052 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4053 *
4054 * Tries really hard to only take one task_rq(p)->lock for performance.
4055 * Takes rq->lock in:
4056 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4057 * - ttwu_queue() -- new rq, for enqueue of the task;
4058 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4059 *
4060 * As a consequence we race really badly with just about everything. See the
4061 * many memory barriers and their comments for details.
7696f991 4062 *
a2250238
PZ
4063 * Return: %true if @p->state changes (an actual wakeup was done),
4064 * %false otherwise.
1da177e4 4065 */
e4a52bcb
PZ
4066static int
4067try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 4068{
1da177e4 4069 unsigned long flags;
c05fbafb 4070 int cpu, success = 0;
2398f2c6 4071
e3d85487 4072 preempt_disable();
aacedf26
PZ
4073 if (p == current) {
4074 /*
4075 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4076 * == smp_processor_id()'. Together this means we can special
58877d34 4077 * case the whole 'p->on_rq && ttwu_runnable()' case below
aacedf26
PZ
4078 * without taking any locks.
4079 *
4080 * In particular:
4081 * - we rely on Program-Order guarantees for all the ordering,
4082 * - we're serialized against set_special_state() by virtue of
4083 * it disabling IRQs (this allows not taking ->pi_lock).
4084 */
43295d73 4085 if (!ttwu_state_match(p, state, &success))
e3d85487 4086 goto out;
aacedf26 4087
aacedf26 4088 trace_sched_waking(p);
2f064a59 4089 WRITE_ONCE(p->__state, TASK_RUNNING);
aacedf26
PZ
4090 trace_sched_wakeup(p);
4091 goto out;
4092 }
4093
e0acd0a6
ON
4094 /*
4095 * If we are going to wake up a thread waiting for CONDITION we
4096 * need to ensure that CONDITION=1 done by the caller can not be
58877d34
PZ
4097 * reordered with p->state check below. This pairs with smp_store_mb()
4098 * in set_current_state() that the waiting thread does.
e0acd0a6 4099 */
013fdb80 4100 raw_spin_lock_irqsave(&p->pi_lock, flags);
d89e588c 4101 smp_mb__after_spinlock();
43295d73 4102 if (!ttwu_state_match(p, state, &success))
aacedf26 4103 goto unlock;
1da177e4 4104
fbd705a0
PZ
4105 trace_sched_waking(p);
4106
135e8c92
BS
4107 /*
4108 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4109 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4110 * in smp_cond_load_acquire() below.
4111 *
3d85b270
AP
4112 * sched_ttwu_pending() try_to_wake_up()
4113 * STORE p->on_rq = 1 LOAD p->state
4114 * UNLOCK rq->lock
4115 *
4116 * __schedule() (switch to task 'p')
4117 * LOCK rq->lock smp_rmb();
4118 * smp_mb__after_spinlock();
4119 * UNLOCK rq->lock
135e8c92
BS
4120 *
4121 * [task p]
3d85b270 4122 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
135e8c92 4123 *
3d85b270
AP
4124 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4125 * __schedule(). See the comment for smp_mb__after_spinlock().
2beaf328
PM
4126 *
4127 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
135e8c92
BS
4128 */
4129 smp_rmb();
58877d34 4130 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
aacedf26 4131 goto unlock;
1da177e4 4132
1da177e4 4133#ifdef CONFIG_SMP
ecf7d01c
PZ
4134 /*
4135 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4136 * possible to, falsely, observe p->on_cpu == 0.
4137 *
4138 * One must be running (->on_cpu == 1) in order to remove oneself
4139 * from the runqueue.
4140 *
3d85b270
AP
4141 * __schedule() (switch to task 'p') try_to_wake_up()
4142 * STORE p->on_cpu = 1 LOAD p->on_rq
4143 * UNLOCK rq->lock
4144 *
4145 * __schedule() (put 'p' to sleep)
4146 * LOCK rq->lock smp_rmb();
4147 * smp_mb__after_spinlock();
4148 * STORE p->on_rq = 0 LOAD p->on_cpu
ecf7d01c 4149 *
3d85b270
AP
4150 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4151 * __schedule(). See the comment for smp_mb__after_spinlock().
dbfb089d
PZ
4152 *
4153 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4154 * schedule()'s deactivate_task() has 'happened' and p will no longer
4155 * care about it's own p->state. See the comment in __schedule().
ecf7d01c 4156 */
dbfb089d
PZ
4157 smp_acquire__after_ctrl_dep();
4158
4159 /*
4160 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4161 * == 0), which means we need to do an enqueue, change p->state to
4162 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4163 * enqueue, such as ttwu_queue_wakelist().
4164 */
2f064a59 4165 WRITE_ONCE(p->__state, TASK_WAKING);
ecf7d01c 4166
c6e7bd7a
PZ
4167 /*
4168 * If the owning (remote) CPU is still in the middle of schedule() with
4169 * this task as prev, considering queueing p on the remote CPUs wake_list
4170 * which potentially sends an IPI instead of spinning on p->on_cpu to
4171 * let the waker make forward progress. This is safe because IRQs are
4172 * disabled and the IPI will deliver after on_cpu is cleared.
b6e13e85
PZ
4173 *
4174 * Ensure we load task_cpu(p) after p->on_cpu:
4175 *
4176 * set_task_cpu(p, cpu);
4177 * STORE p->cpu = @cpu
4178 * __schedule() (switch to task 'p')
4179 * LOCK rq->lock
4180 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4181 * STORE p->on_cpu = 1 LOAD p->cpu
4182 *
4183 * to ensure we observe the correct CPU on which the task is currently
4184 * scheduling.
c6e7bd7a 4185 */
b6e13e85 4186 if (smp_load_acquire(&p->on_cpu) &&
f3dd3f67 4187 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
c6e7bd7a
PZ
4188 goto unlock;
4189
e9c84311 4190 /*
d1ccc66d 4191 * If the owning (remote) CPU is still in the middle of schedule() with
b19a888c 4192 * this task as prev, wait until it's done referencing the task.
b75a2253 4193 *
31cb1bc0 4194 * Pairs with the smp_store_release() in finish_task().
b75a2253
PZ
4195 *
4196 * This ensures that tasks getting woken will be fully ordered against
4197 * their previous state and preserve Program Order.
0970d299 4198 */
1f03e8d2 4199 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 4200
3aef1551 4201 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
f339b9dc 4202 if (task_cpu(p) != cpu) {
ec618b84
PZ
4203 if (p->in_iowait) {
4204 delayacct_blkio_end(p);
4205 atomic_dec(&task_rq(p)->nr_iowait);
4206 }
4207
f339b9dc 4208 wake_flags |= WF_MIGRATED;
eb414681 4209 psi_ttwu_dequeue(p);
e4a52bcb 4210 set_task_cpu(p, cpu);
f339b9dc 4211 }
b6e13e85
PZ
4212#else
4213 cpu = task_cpu(p);
1da177e4 4214#endif /* CONFIG_SMP */
1da177e4 4215
b5179ac7 4216 ttwu_queue(p, cpu, wake_flags);
aacedf26 4217unlock:
013fdb80 4218 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
aacedf26
PZ
4219out:
4220 if (success)
b6e13e85 4221 ttwu_stat(p, task_cpu(p), wake_flags);
e3d85487 4222 preempt_enable();
1da177e4
LT
4223
4224 return success;
4225}
4226
91dabf33
PZ
4227static bool __task_needs_rq_lock(struct task_struct *p)
4228{
4229 unsigned int state = READ_ONCE(p->__state);
4230
4231 /*
4232 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4233 * the task is blocked. Make sure to check @state since ttwu() can drop
4234 * locks at the end, see ttwu_queue_wakelist().
4235 */
4236 if (state == TASK_RUNNING || state == TASK_WAKING)
4237 return true;
4238
4239 /*
4240 * Ensure we load p->on_rq after p->__state, otherwise it would be
4241 * possible to, falsely, observe p->on_rq == 0.
4242 *
4243 * See try_to_wake_up() for a longer comment.
4244 */
4245 smp_rmb();
4246 if (p->on_rq)
4247 return true;
4248
4249#ifdef CONFIG_SMP
4250 /*
4251 * Ensure the task has finished __schedule() and will not be referenced
4252 * anymore. Again, see try_to_wake_up() for a longer comment.
4253 */
4254 smp_rmb();
4255 smp_cond_load_acquire(&p->on_cpu, !VAL);
4256#endif
4257
4258 return false;
4259}
4260
2beaf328 4261/**
9b3c4ab3 4262 * task_call_func - Invoke a function on task in fixed state
1b7af295 4263 * @p: Process for which the function is to be invoked, can be @current.
2beaf328
PM
4264 * @func: Function to invoke.
4265 * @arg: Argument to function.
4266 *
f6ac18fa
PZ
4267 * Fix the task in it's current state by avoiding wakeups and or rq operations
4268 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4269 * to work out what the state is, if required. Given that @func can be invoked
4270 * with a runqueue lock held, it had better be quite lightweight.
2beaf328
PM
4271 *
4272 * Returns:
f6ac18fa 4273 * Whatever @func returns
2beaf328 4274 */
9b3c4ab3 4275int task_call_func(struct task_struct *p, task_call_f func, void *arg)
2beaf328 4276{
f6ac18fa 4277 struct rq *rq = NULL;
2beaf328 4278 struct rq_flags rf;
9b3c4ab3 4279 int ret;
2beaf328 4280
1b7af295 4281 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
f6ac18fa 4282
91dabf33 4283 if (__task_needs_rq_lock(p))
2beaf328 4284 rq = __task_rq_lock(p, &rf);
f6ac18fa
PZ
4285
4286 /*
4287 * At this point the task is pinned; either:
4288 * - blocked and we're holding off wakeups (pi->lock)
4289 * - woken, and we're holding off enqueue (rq->lock)
4290 * - queued, and we're holding off schedule (rq->lock)
4291 * - running, and we're holding off de-schedule (rq->lock)
4292 *
4293 * The called function (@func) can use: task_curr(), p->on_rq and
4294 * p->__state to differentiate between these states.
4295 */
4296 ret = func(p, arg);
4297
4298 if (rq)
2beaf328 4299 rq_unlock(rq, &rf);
f6ac18fa 4300
1b7af295 4301 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2beaf328
PM
4302 return ret;
4303}
4304
e386b672
PM
4305/**
4306 * cpu_curr_snapshot - Return a snapshot of the currently running task
4307 * @cpu: The CPU on which to snapshot the task.
4308 *
4309 * Returns the task_struct pointer of the task "currently" running on
4310 * the specified CPU. If the same task is running on that CPU throughout,
4311 * the return value will be a pointer to that task's task_struct structure.
4312 * If the CPU did any context switches even vaguely concurrently with the
4313 * execution of this function, the return value will be a pointer to the
4314 * task_struct structure of a randomly chosen task that was running on
4315 * that CPU somewhere around the time that this function was executing.
4316 *
4317 * If the specified CPU was offline, the return value is whatever it
4318 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4319 * task, but there is no guarantee. Callers wishing a useful return
4320 * value must take some action to ensure that the specified CPU remains
4321 * online throughout.
4322 *
4323 * This function executes full memory barriers before and after fetching
4324 * the pointer, which permits the caller to confine this function's fetch
4325 * with respect to the caller's accesses to other shared variables.
4326 */
4327struct task_struct *cpu_curr_snapshot(int cpu)
4328{
4329 struct task_struct *t;
4330
4331 smp_mb(); /* Pairing determined by caller's synchronization design. */
4332 t = rcu_dereference(cpu_curr(cpu));
4333 smp_mb(); /* Pairing determined by caller's synchronization design. */
4334 return t;
4335}
4336
50fa610a
DH
4337/**
4338 * wake_up_process - Wake up a specific process
4339 * @p: The process to be woken up.
4340 *
4341 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
4342 * processes.
4343 *
4344 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a 4345 *
7696f991 4346 * This function executes a full memory barrier before accessing the task state.
50fa610a 4347 */
7ad5b3a5 4348int wake_up_process(struct task_struct *p)
1da177e4 4349{
9067ac85 4350 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 4351}
1da177e4
LT
4352EXPORT_SYMBOL(wake_up_process);
4353
7ad5b3a5 4354int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
4355{
4356 return try_to_wake_up(p, state, 0);
4357}
4358
1da177e4
LT
4359/*
4360 * Perform scheduler related setup for a newly forked process p.
4361 * p is forked by current.
dd41f596
IM
4362 *
4363 * __sched_fork() is basic setup used by init_idle() too:
4364 */
5e1576ed 4365static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4366{
fd2f4419
PZ
4367 p->on_rq = 0;
4368
4369 p->se.on_rq = 0;
dd41f596
IM
4370 p->se.exec_start = 0;
4371 p->se.sum_exec_runtime = 0;
f6cf891c 4372 p->se.prev_sum_exec_runtime = 0;
6c594c21 4373 p->se.nr_migrations = 0;
da7a735e 4374 p->se.vruntime = 0;
fd2f4419 4375 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 4376
ad936d86
BP
4377#ifdef CONFIG_FAIR_GROUP_SCHED
4378 p->se.cfs_rq = NULL;
4379#endif
4380
6cfb0d5d 4381#ifdef CONFIG_SCHEDSTATS
cb251765 4382 /* Even if schedstat is disabled, there should not be garbage */
ceeadb83 4383 memset(&p->stats, 0, sizeof(p->stats));
6cfb0d5d 4384#endif
476d139c 4385
aab03e05 4386 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 4387 init_dl_task_timer(&p->dl);
209a0cbd 4388 init_dl_inactive_task_timer(&p->dl);
a5e7be3b 4389 __dl_clear_params(p);
aab03e05 4390
fa717060 4391 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
4392 p->rt.timeout = 0;
4393 p->rt.time_slice = sched_rr_timeslice;
4394 p->rt.on_rq = 0;
4395 p->rt.on_list = 0;
476d139c 4396
e107be36
AK
4397#ifdef CONFIG_PREEMPT_NOTIFIERS
4398 INIT_HLIST_HEAD(&p->preempt_notifiers);
4399#endif
cbee9f88 4400
5e1f0f09
MG
4401#ifdef CONFIG_COMPACTION
4402 p->capture_control = NULL;
4403#endif
13784475 4404 init_numa_balancing(clone_flags, p);
a1488664 4405#ifdef CONFIG_SMP
8c4890d1 4406 p->wake_entry.u_flags = CSD_TYPE_TTWU;
6d337eab 4407 p->migration_pending = NULL;
a1488664 4408#endif
dd41f596
IM
4409}
4410
2a595721
SD
4411DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4412
1a687c2e 4413#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 4414
c574bbe9
HY
4415int sysctl_numa_balancing_mode;
4416
4417static void __set_numabalancing_state(bool enabled)
1a687c2e
MG
4418{
4419 if (enabled)
2a595721 4420 static_branch_enable(&sched_numa_balancing);
1a687c2e 4421 else
2a595721 4422 static_branch_disable(&sched_numa_balancing);
1a687c2e 4423}
54a43d54 4424
c574bbe9
HY
4425void set_numabalancing_state(bool enabled)
4426{
4427 if (enabled)
4428 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4429 else
4430 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4431 __set_numabalancing_state(enabled);
4432}
4433
54a43d54 4434#ifdef CONFIG_PROC_SYSCTL
c959924b
HY
4435static void reset_memory_tiering(void)
4436{
4437 struct pglist_data *pgdat;
4438
4439 for_each_online_pgdat(pgdat) {
4440 pgdat->nbp_threshold = 0;
4441 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4442 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4443 }
4444}
4445
0dff89c4 4446static int sysctl_numa_balancing(struct ctl_table *table, int write,
32927393 4447 void *buffer, size_t *lenp, loff_t *ppos)
54a43d54
AK
4448{
4449 struct ctl_table t;
4450 int err;
c574bbe9 4451 int state = sysctl_numa_balancing_mode;
54a43d54
AK
4452
4453 if (write && !capable(CAP_SYS_ADMIN))
4454 return -EPERM;
4455
4456 t = *table;
4457 t.data = &state;
4458 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4459 if (err < 0)
4460 return err;
c574bbe9 4461 if (write) {
c959924b
HY
4462 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4463 (state & NUMA_BALANCING_MEMORY_TIERING))
4464 reset_memory_tiering();
c574bbe9
HY
4465 sysctl_numa_balancing_mode = state;
4466 __set_numabalancing_state(state);
4467 }
54a43d54
AK
4468 return err;
4469}
4470#endif
4471#endif
dd41f596 4472
4698f88c
JP
4473#ifdef CONFIG_SCHEDSTATS
4474
cb251765
MG
4475DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4476
cb251765
MG
4477static void set_schedstats(bool enabled)
4478{
4479 if (enabled)
4480 static_branch_enable(&sched_schedstats);
4481 else
4482 static_branch_disable(&sched_schedstats);
4483}
4484
4485void force_schedstat_enabled(void)
4486{
4487 if (!schedstat_enabled()) {
4488 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4489 static_branch_enable(&sched_schedstats);
4490 }
4491}
4492
4493static int __init setup_schedstats(char *str)
4494{
4495 int ret = 0;
4496 if (!str)
4497 goto out;
4498
4499 if (!strcmp(str, "enable")) {
1faa491a 4500 set_schedstats(true);
cb251765
MG
4501 ret = 1;
4502 } else if (!strcmp(str, "disable")) {
1faa491a 4503 set_schedstats(false);
cb251765
MG
4504 ret = 1;
4505 }
4506out:
4507 if (!ret)
4508 pr_warn("Unable to parse schedstats=\n");
4509
4510 return ret;
4511}
4512__setup("schedstats=", setup_schedstats);
4513
4514#ifdef CONFIG_PROC_SYSCTL
f5ef06d5 4515static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
32927393 4516 size_t *lenp, loff_t *ppos)
cb251765
MG
4517{
4518 struct ctl_table t;
4519 int err;
4520 int state = static_branch_likely(&sched_schedstats);
4521
4522 if (write && !capable(CAP_SYS_ADMIN))
4523 return -EPERM;
4524
4525 t = *table;
4526 t.data = &state;
4527 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4528 if (err < 0)
4529 return err;
4530 if (write)
4531 set_schedstats(state);
4532 return err;
4533}
4698f88c 4534#endif /* CONFIG_PROC_SYSCTL */
4698f88c 4535#endif /* CONFIG_SCHEDSTATS */
dd41f596 4536
3267e015
ZN
4537#ifdef CONFIG_SYSCTL
4538static struct ctl_table sched_core_sysctls[] = {
4539#ifdef CONFIG_SCHEDSTATS
f5ef06d5
ZN
4540 {
4541 .procname = "sched_schedstats",
4542 .data = NULL,
4543 .maxlen = sizeof(unsigned int),
4544 .mode = 0644,
4545 .proc_handler = sysctl_schedstats,
4546 .extra1 = SYSCTL_ZERO,
4547 .extra2 = SYSCTL_ONE,
4548 },
3267e015
ZN
4549#endif /* CONFIG_SCHEDSTATS */
4550#ifdef CONFIG_UCLAMP_TASK
4551 {
4552 .procname = "sched_util_clamp_min",
4553 .data = &sysctl_sched_uclamp_util_min,
4554 .maxlen = sizeof(unsigned int),
4555 .mode = 0644,
4556 .proc_handler = sysctl_sched_uclamp_handler,
4557 },
4558 {
4559 .procname = "sched_util_clamp_max",
4560 .data = &sysctl_sched_uclamp_util_max,
4561 .maxlen = sizeof(unsigned int),
4562 .mode = 0644,
4563 .proc_handler = sysctl_sched_uclamp_handler,
4564 },
4565 {
4566 .procname = "sched_util_clamp_min_rt_default",
4567 .data = &sysctl_sched_uclamp_util_min_rt_default,
4568 .maxlen = sizeof(unsigned int),
4569 .mode = 0644,
4570 .proc_handler = sysctl_sched_uclamp_handler,
4571 },
4572#endif /* CONFIG_UCLAMP_TASK */
0dff89c4
KW
4573#ifdef CONFIG_NUMA_BALANCING
4574 {
4575 .procname = "numa_balancing",
4576 .data = NULL, /* filled in by handler */
4577 .maxlen = sizeof(unsigned int),
4578 .mode = 0644,
4579 .proc_handler = sysctl_numa_balancing,
4580 .extra1 = SYSCTL_ZERO,
4581 .extra2 = SYSCTL_FOUR,
4582 },
4583#endif /* CONFIG_NUMA_BALANCING */
f5ef06d5
ZN
4584 {}
4585};
3267e015 4586static int __init sched_core_sysctl_init(void)
f5ef06d5 4587{
3267e015 4588 register_sysctl_init("kernel", sched_core_sysctls);
f5ef06d5
ZN
4589 return 0;
4590}
3267e015
ZN
4591late_initcall(sched_core_sysctl_init);
4592#endif /* CONFIG_SYSCTL */
dd41f596
IM
4593
4594/*
4595 * fork()/clone()-time setup:
4596 */
aab03e05 4597int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 4598{
5e1576ed 4599 __sched_fork(clone_flags, p);
06b83b5f 4600 /*
7dc603c9 4601 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
4602 * nobody will actually run it, and a signal or other external
4603 * event cannot wake it up and insert it on the runqueue either.
4604 */
2f064a59 4605 p->__state = TASK_NEW;
dd41f596 4606
c350a04e
MG
4607 /*
4608 * Make sure we do not leak PI boosting priority to the child.
4609 */
4610 p->prio = current->normal_prio;
4611
e8f14172
PB
4612 uclamp_fork(p);
4613
b9dc29e7
MG
4614 /*
4615 * Revert to default priority/policy on fork if requested.
4616 */
4617 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 4618 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 4619 p->policy = SCHED_NORMAL;
6c697bdf 4620 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
4621 p->rt_priority = 0;
4622 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4623 p->static_prio = NICE_TO_PRIO(0);
4624
f558c2b8 4625 p->prio = p->normal_prio = p->static_prio;
b1e82065 4626 set_load_weight(p, false);
6c697bdf 4627
b9dc29e7
MG
4628 /*
4629 * We don't need the reset flag anymore after the fork. It has
4630 * fulfilled its duty:
4631 */
4632 p->sched_reset_on_fork = 0;
4633 }
ca94c442 4634
af0fffd9 4635 if (dl_prio(p->prio))
aab03e05 4636 return -EAGAIN;
af0fffd9 4637 else if (rt_prio(p->prio))
aab03e05 4638 p->sched_class = &rt_sched_class;
af0fffd9 4639 else
2ddbf952 4640 p->sched_class = &fair_sched_class;
b29739f9 4641
7dc603c9 4642 init_entity_runnable_average(&p->se);
cd29fe6f 4643
b1e82065 4644
f6db8347 4645#ifdef CONFIG_SCHED_INFO
dd41f596 4646 if (likely(sched_info_on()))
52f17b6c 4647 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 4648#endif
3ca7a440
PZ
4649#if defined(CONFIG_SMP)
4650 p->on_cpu = 0;
4866cde0 4651#endif
01028747 4652 init_task_preempt_count(p);
806c09a7 4653#ifdef CONFIG_SMP
917b627d 4654 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 4655 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 4656#endif
aab03e05 4657 return 0;
1da177e4
LT
4658}
4659
b1e82065 4660void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
13685c4a 4661{
4ef0c5c6 4662 unsigned long flags;
4ef0c5c6 4663
b1e82065
PZ
4664 /*
4665 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4666 * required yet, but lockdep gets upset if rules are violated.
4667 */
4ef0c5c6
ZQ
4668 raw_spin_lock_irqsave(&p->pi_lock, flags);
4669#ifdef CONFIG_CGROUP_SCHED
b1e82065
PZ
4670 if (1) {
4671 struct task_group *tg;
4672 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4673 struct task_group, css);
4674 tg = autogroup_task_group(p, tg);
4675 p->sched_task_group = tg;
4676 }
4ef0c5c6
ZQ
4677#endif
4678 rseq_migrate(p);
4679 /*
4680 * We're setting the CPU for the first time, we don't migrate,
4681 * so use __set_task_cpu().
4682 */
4683 __set_task_cpu(p, smp_processor_id());
4684 if (p->sched_class->task_fork)
4685 p->sched_class->task_fork(p);
4686 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
b1e82065 4687}
4ef0c5c6 4688
b1e82065
PZ
4689void sched_post_fork(struct task_struct *p)
4690{
13685c4a
QY
4691 uclamp_post_fork(p);
4692}
4693
332ac17e
DF
4694unsigned long to_ratio(u64 period, u64 runtime)
4695{
4696 if (runtime == RUNTIME_INF)
c52f14d3 4697 return BW_UNIT;
332ac17e
DF
4698
4699 /*
4700 * Doing this here saves a lot of checks in all
4701 * the calling paths, and returning zero seems
4702 * safe for them anyway.
4703 */
4704 if (period == 0)
4705 return 0;
4706
c52f14d3 4707 return div64_u64(runtime << BW_SHIFT, period);
332ac17e
DF
4708}
4709
1da177e4
LT
4710/*
4711 * wake_up_new_task - wake up a newly created task for the first time.
4712 *
4713 * This function will do some initial scheduler statistics housekeeping
4714 * that must be done for every newly created context, then puts the task
4715 * on the runqueue and wakes it.
4716 */
3e51e3ed 4717void wake_up_new_task(struct task_struct *p)
1da177e4 4718{
eb580751 4719 struct rq_flags rf;
dd41f596 4720 struct rq *rq;
fabf318e 4721
eb580751 4722 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2f064a59 4723 WRITE_ONCE(p->__state, TASK_RUNNING);
fabf318e
PZ
4724#ifdef CONFIG_SMP
4725 /*
4726 * Fork balancing, do it here and not earlier because:
3bd37062 4727 * - cpus_ptr can change in the fork path
d1ccc66d 4728 * - any previously selected CPU might disappear through hotplug
e210bffd
PZ
4729 *
4730 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4731 * as we're not fully set-up yet.
fabf318e 4732 */
32e839dd 4733 p->recent_used_cpu = task_cpu(p);
ce3614da 4734 rseq_migrate(p);
3aef1551 4735 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
0017d735 4736#endif
b7fa30c9 4737 rq = __task_rq_lock(p, &rf);
4126bad6 4738 update_rq_clock(rq);
d0fe0b9c 4739 post_init_entity_util_avg(p);
0017d735 4740
7a57f32a 4741 activate_task(rq, p, ENQUEUE_NOCLOCK);
fbd705a0 4742 trace_sched_wakeup_new(p);
a7558e01 4743 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 4744#ifdef CONFIG_SMP
0aaafaab
PZ
4745 if (p->sched_class->task_woken) {
4746 /*
b19a888c 4747 * Nothing relies on rq->lock after this, so it's fine to
0aaafaab
PZ
4748 * drop it.
4749 */
d8ac8971 4750 rq_unpin_lock(rq, &rf);
efbbd05a 4751 p->sched_class->task_woken(rq, p);
d8ac8971 4752 rq_repin_lock(rq, &rf);
0aaafaab 4753 }
9a897c5a 4754#endif
eb580751 4755 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4756}
4757
e107be36
AK
4758#ifdef CONFIG_PREEMPT_NOTIFIERS
4759
b7203428 4760static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
1cde2930 4761
2ecd9d29
PZ
4762void preempt_notifier_inc(void)
4763{
b7203428 4764 static_branch_inc(&preempt_notifier_key);
2ecd9d29
PZ
4765}
4766EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4767
4768void preempt_notifier_dec(void)
4769{
b7203428 4770 static_branch_dec(&preempt_notifier_key);
2ecd9d29
PZ
4771}
4772EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4773
e107be36 4774/**
80dd99b3 4775 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 4776 * @notifier: notifier struct to register
e107be36
AK
4777 */
4778void preempt_notifier_register(struct preempt_notifier *notifier)
4779{
b7203428 4780 if (!static_branch_unlikely(&preempt_notifier_key))
2ecd9d29
PZ
4781 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4782
e107be36
AK
4783 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4784}
4785EXPORT_SYMBOL_GPL(preempt_notifier_register);
4786
4787/**
4788 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 4789 * @notifier: notifier struct to unregister
e107be36 4790 *
d84525a8 4791 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
4792 */
4793void preempt_notifier_unregister(struct preempt_notifier *notifier)
4794{
4795 hlist_del(&notifier->link);
4796}
4797EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4798
1cde2930 4799static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4800{
4801 struct preempt_notifier *notifier;
e107be36 4802
b67bfe0d 4803 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4804 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4805}
4806
1cde2930
PZ
4807static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4808{
b7203428 4809 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4810 __fire_sched_in_preempt_notifiers(curr);
4811}
4812
e107be36 4813static void
1cde2930
PZ
4814__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4815 struct task_struct *next)
e107be36
AK
4816{
4817 struct preempt_notifier *notifier;
e107be36 4818
b67bfe0d 4819 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
4820 notifier->ops->sched_out(notifier, next);
4821}
4822
1cde2930
PZ
4823static __always_inline void
4824fire_sched_out_preempt_notifiers(struct task_struct *curr,
4825 struct task_struct *next)
4826{
b7203428 4827 if (static_branch_unlikely(&preempt_notifier_key))
1cde2930
PZ
4828 __fire_sched_out_preempt_notifiers(curr, next);
4829}
4830
6d6bc0ad 4831#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 4832
1cde2930 4833static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
4834{
4835}
4836
1cde2930 4837static inline void
e107be36
AK
4838fire_sched_out_preempt_notifiers(struct task_struct *curr,
4839 struct task_struct *next)
4840{
4841}
4842
6d6bc0ad 4843#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 4844
31cb1bc0 4845static inline void prepare_task(struct task_struct *next)
4846{
4847#ifdef CONFIG_SMP
4848 /*
4849 * Claim the task as running, we do this before switching to it
4850 * such that any running task will have this set.
58877d34 4851 *
f3dd3f67
TD
4852 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4853 * its ordering comment.
31cb1bc0 4854 */
58877d34 4855 WRITE_ONCE(next->on_cpu, 1);
31cb1bc0 4856#endif
4857}
4858
4859static inline void finish_task(struct task_struct *prev)
4860{
4861#ifdef CONFIG_SMP
4862 /*
58877d34
PZ
4863 * This must be the very last reference to @prev from this CPU. After
4864 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4865 * must ensure this doesn't happen until the switch is completely
31cb1bc0 4866 * finished.
4867 *
4868 * In particular, the load of prev->state in finish_task_switch() must
4869 * happen before this.
4870 *
4871 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4872 */
4873 smp_store_release(&prev->on_cpu, 0);
4874#endif
4875}
4876
565790d2
PZ
4877#ifdef CONFIG_SMP
4878
8e5bad7d 4879static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4880{
4881 void (*func)(struct rq *rq);
8e5bad7d 4882 struct balance_callback *next;
565790d2 4883
5cb9eaa3 4884 lockdep_assert_rq_held(rq);
565790d2
PZ
4885
4886 while (head) {
4887 func = (void (*)(struct rq *))head->func;
4888 next = head->next;
4889 head->next = NULL;
4890 head = next;
4891
4892 func(rq);
4893 }
4894}
4895
ae792702
PZ
4896static void balance_push(struct rq *rq);
4897
04193d59
PZ
4898/*
4899 * balance_push_callback is a right abuse of the callback interface and plays
4900 * by significantly different rules.
4901 *
4902 * Where the normal balance_callback's purpose is to be ran in the same context
4903 * that queued it (only later, when it's safe to drop rq->lock again),
4904 * balance_push_callback is specifically targeted at __schedule().
4905 *
4906 * This abuse is tolerated because it places all the unlikely/odd cases behind
4907 * a single test, namely: rq->balance_callback == NULL.
4908 */
8e5bad7d 4909struct balance_callback balance_push_callback = {
ae792702 4910 .next = NULL,
8e5bad7d 4911 .func = balance_push,
ae792702
PZ
4912};
4913
8e5bad7d 4914static inline struct balance_callback *
04193d59 4915__splice_balance_callbacks(struct rq *rq, bool split)
565790d2 4916{
8e5bad7d 4917 struct balance_callback *head = rq->balance_callback;
565790d2 4918
04193d59
PZ
4919 if (likely(!head))
4920 return NULL;
4921
5cb9eaa3 4922 lockdep_assert_rq_held(rq);
04193d59
PZ
4923 /*
4924 * Must not take balance_push_callback off the list when
4925 * splice_balance_callbacks() and balance_callbacks() are not
4926 * in the same rq->lock section.
4927 *
4928 * In that case it would be possible for __schedule() to interleave
4929 * and observe the list empty.
4930 */
4931 if (split && head == &balance_push_callback)
4932 head = NULL;
4933 else
565790d2
PZ
4934 rq->balance_callback = NULL;
4935
4936 return head;
4937}
4938
8e5bad7d 4939static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
04193d59
PZ
4940{
4941 return __splice_balance_callbacks(rq, true);
4942}
4943
565790d2
PZ
4944static void __balance_callbacks(struct rq *rq)
4945{
04193d59 4946 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
565790d2
PZ
4947}
4948
8e5bad7d 4949static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4950{
4951 unsigned long flags;
4952
4953 if (unlikely(head)) {
5cb9eaa3 4954 raw_spin_rq_lock_irqsave(rq, flags);
565790d2 4955 do_balance_callbacks(rq, head);
5cb9eaa3 4956 raw_spin_rq_unlock_irqrestore(rq, flags);
565790d2
PZ
4957 }
4958}
4959
4960#else
4961
4962static inline void __balance_callbacks(struct rq *rq)
4963{
4964}
4965
8e5bad7d 4966static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
565790d2
PZ
4967{
4968 return NULL;
4969}
4970
8e5bad7d 4971static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
565790d2
PZ
4972{
4973}
4974
4975#endif
4976
269d5992
PZ
4977static inline void
4978prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
31cb1bc0 4979{
269d5992
PZ
4980 /*
4981 * Since the runqueue lock will be released by the next
4982 * task (which is an invalid locking op but in the case
4983 * of the scheduler it's an obvious special-case), so we
4984 * do an early lockdep release here:
4985 */
4986 rq_unpin_lock(rq, rf);
9ef7e7e3 4987 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
31cb1bc0 4988#ifdef CONFIG_DEBUG_SPINLOCK
4989 /* this is a valid case when another task releases the spinlock */
5cb9eaa3 4990 rq_lockp(rq)->owner = next;
31cb1bc0 4991#endif
269d5992
PZ
4992}
4993
4994static inline void finish_lock_switch(struct rq *rq)
4995{
31cb1bc0 4996 /*
4997 * If we are tracking spinlock dependencies then we have to
4998 * fix up the runqueue lock - which gets 'carried over' from
4999 * prev into current:
5000 */
9ef7e7e3 5001 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
ae792702 5002 __balance_callbacks(rq);
5cb9eaa3 5003 raw_spin_rq_unlock_irq(rq);
31cb1bc0 5004}
5005
325ea10c
IM
5006/*
5007 * NOP if the arch has not defined these:
5008 */
5009
5010#ifndef prepare_arch_switch
5011# define prepare_arch_switch(next) do { } while (0)
5012#endif
5013
5014#ifndef finish_arch_post_lock_switch
5015# define finish_arch_post_lock_switch() do { } while (0)
5016#endif
5017
5fbda3ec
TG
5018static inline void kmap_local_sched_out(void)
5019{
5020#ifdef CONFIG_KMAP_LOCAL
5021 if (unlikely(current->kmap_ctrl.idx))
5022 __kmap_local_sched_out();
5023#endif
5024}
5025
5026static inline void kmap_local_sched_in(void)
5027{
5028#ifdef CONFIG_KMAP_LOCAL
5029 if (unlikely(current->kmap_ctrl.idx))
5030 __kmap_local_sched_in();
5031#endif
5032}
5033
4866cde0
NP
5034/**
5035 * prepare_task_switch - prepare to switch tasks
5036 * @rq: the runqueue preparing to switch
421cee29 5037 * @prev: the current task that is being switched out
4866cde0
NP
5038 * @next: the task we are going to switch to.
5039 *
5040 * This is called with the rq lock held and interrupts off. It must
5041 * be paired with a subsequent finish_task_switch after the context
5042 * switch.
5043 *
5044 * prepare_task_switch sets up locking and calls architecture specific
5045 * hooks.
5046 */
e107be36
AK
5047static inline void
5048prepare_task_switch(struct rq *rq, struct task_struct *prev,
5049 struct task_struct *next)
4866cde0 5050{
0ed557aa 5051 kcov_prepare_switch(prev);
43148951 5052 sched_info_switch(rq, prev, next);
fe4b04fa 5053 perf_event_task_sched_out(prev, next);
d7822b1e 5054 rseq_preempt(prev);
e107be36 5055 fire_sched_out_preempt_notifiers(prev, next);
5fbda3ec 5056 kmap_local_sched_out();
31cb1bc0 5057 prepare_task(next);
4866cde0
NP
5058 prepare_arch_switch(next);
5059}
5060
1da177e4
LT
5061/**
5062 * finish_task_switch - clean up after a task-switch
5063 * @prev: the thread we just switched away from.
5064 *
4866cde0
NP
5065 * finish_task_switch must be called after the context switch, paired
5066 * with a prepare_task_switch call before the context switch.
5067 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5068 * and do any other architecture-specific cleanup actions.
1da177e4
LT
5069 *
5070 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 5071 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
5072 * with the lock held can cause deadlocks; see schedule() for
5073 * details.)
dfa50b60
ON
5074 *
5075 * The context switch have flipped the stack from under us and restored the
5076 * local variables which were saved when this task called schedule() in the
5077 * past. prev == current is still correct but we need to recalculate this_rq
5078 * because prev may have moved to another CPU.
1da177e4 5079 */
dfa50b60 5080static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
5081 __releases(rq->lock)
5082{
dfa50b60 5083 struct rq *rq = this_rq();
1da177e4 5084 struct mm_struct *mm = rq->prev_mm;
fa2c3254 5085 unsigned int prev_state;
1da177e4 5086
609ca066
PZ
5087 /*
5088 * The previous task will have left us with a preempt_count of 2
5089 * because it left us after:
5090 *
5091 * schedule()
5092 * preempt_disable(); // 1
5093 * __schedule()
5094 * raw_spin_lock_irq(&rq->lock) // 2
5095 *
5096 * Also, see FORK_PREEMPT_COUNT.
5097 */
e2bf1c4b
PZ
5098 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5099 "corrupted preempt_count: %s/%d/0x%x\n",
5100 current->comm, current->pid, preempt_count()))
5101 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 5102
1da177e4
LT
5103 rq->prev_mm = NULL;
5104
5105 /*
5106 * A task struct has one reference for the use as "current".
c394cc9f 5107 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
5108 * schedule one last time. The schedule call will never return, and
5109 * the scheduled task must drop that reference.
95913d97
PZ
5110 *
5111 * We must observe prev->state before clearing prev->on_cpu (in
31cb1bc0 5112 * finish_task), otherwise a concurrent wakeup can get prev
95913d97
PZ
5113 * running on another CPU and we could rave with its RUNNING -> DEAD
5114 * transition, resulting in a double drop.
1da177e4 5115 */
2f064a59 5116 prev_state = READ_ONCE(prev->__state);
bf9fae9f 5117 vtime_task_switch(prev);
a8d757ef 5118 perf_event_task_sched_in(prev, current);
31cb1bc0 5119 finish_task(prev);
0fdcccfa 5120 tick_nohz_task_switch();
31cb1bc0 5121 finish_lock_switch(rq);
01f23e16 5122 finish_arch_post_lock_switch();
0ed557aa 5123 kcov_finish_switch(current);
5fbda3ec
TG
5124 /*
5125 * kmap_local_sched_out() is invoked with rq::lock held and
5126 * interrupts disabled. There is no requirement for that, but the
5127 * sched out code does not have an interrupt enabled section.
5128 * Restoring the maps on sched in does not require interrupts being
5129 * disabled either.
5130 */
5131 kmap_local_sched_in();
e8fa1362 5132
e107be36 5133 fire_sched_in_preempt_notifiers(current);
306e0604 5134 /*
70216e18
MD
5135 * When switching through a kernel thread, the loop in
5136 * membarrier_{private,global}_expedited() may have observed that
5137 * kernel thread and not issued an IPI. It is therefore possible to
5138 * schedule between user->kernel->user threads without passing though
5139 * switch_mm(). Membarrier requires a barrier after storing to
5140 * rq->curr, before returning to userspace, so provide them here:
5141 *
5142 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5143 * provided by mmdrop(),
5144 * - a sync_core for SYNC_CORE.
306e0604 5145 */
70216e18
MD
5146 if (mm) {
5147 membarrier_mm_sync_core_before_usermode(mm);
8d491de6 5148 mmdrop_sched(mm);
70216e18 5149 }
1cef1150
PZ
5150 if (unlikely(prev_state == TASK_DEAD)) {
5151 if (prev->sched_class->task_dead)
5152 prev->sched_class->task_dead(prev);
68f24b08 5153
1cef1150
PZ
5154 /* Task is done with its stack. */
5155 put_task_stack(prev);
5156
0ff7b2cf 5157 put_task_struct_rcu_user(prev);
c6fd91f0 5158 }
99e5ada9 5159
dfa50b60 5160 return rq;
1da177e4
LT
5161}
5162
5163/**
5164 * schedule_tail - first thing a freshly forked thread must call.
5165 * @prev: the thread we just switched away from.
5166 */
722a9f92 5167asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
5168 __releases(rq->lock)
5169{
609ca066
PZ
5170 /*
5171 * New tasks start with FORK_PREEMPT_COUNT, see there and
5172 * finish_task_switch() for details.
5173 *
5174 * finish_task_switch() will drop rq->lock() and lower preempt_count
5175 * and the preempt_enable() will end up enabling preemption (on
5176 * PREEMPT_COUNT kernels).
5177 */
5178
13c2235b 5179 finish_task_switch(prev);
1a43a14a 5180 preempt_enable();
70b97a7f 5181
1da177e4 5182 if (current->set_child_tid)
b488893a 5183 put_user(task_pid_vnr(current), current->set_child_tid);
088fe47c
EB
5184
5185 calculate_sigpending();
1da177e4
LT
5186}
5187
5188/*
dfa50b60 5189 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 5190 */
04936948 5191static __always_inline struct rq *
70b97a7f 5192context_switch(struct rq *rq, struct task_struct *prev,
d8ac8971 5193 struct task_struct *next, struct rq_flags *rf)
1da177e4 5194{
e107be36 5195 prepare_task_switch(rq, prev, next);
fe4b04fa 5196
9226d125
ZA
5197 /*
5198 * For paravirt, this is coupled with an exit in switch_to to
5199 * combine the page table reload and the switch backend into
5200 * one hypercall.
5201 */
224101ed 5202 arch_start_context_switch(prev);
9226d125 5203
306e0604 5204 /*
139d025c
PZ
5205 * kernel -> kernel lazy + transfer active
5206 * user -> kernel lazy + mmgrab() active
5207 *
5208 * kernel -> user switch + mmdrop() active
5209 * user -> user switch
306e0604 5210 */
139d025c
PZ
5211 if (!next->mm) { // to kernel
5212 enter_lazy_tlb(prev->active_mm, next);
5213
5214 next->active_mm = prev->active_mm;
5215 if (prev->mm) // from user
5216 mmgrab(prev->active_mm);
5217 else
5218 prev->active_mm = NULL;
5219 } else { // to user
227a4aad 5220 membarrier_switch_mm(rq, prev->active_mm, next->mm);
139d025c
PZ
5221 /*
5222 * sys_membarrier() requires an smp_mb() between setting
227a4aad 5223 * rq->curr / membarrier_switch_mm() and returning to userspace.
139d025c
PZ
5224 *
5225 * The below provides this either through switch_mm(), or in
5226 * case 'prev->active_mm == next->mm' through
5227 * finish_task_switch()'s mmdrop().
5228 */
139d025c 5229 switch_mm_irqs_off(prev->active_mm, next->mm, next);
bd74fdae 5230 lru_gen_use_mm(next->mm);
1da177e4 5231
139d025c
PZ
5232 if (!prev->mm) { // from kernel
5233 /* will mmdrop() in finish_task_switch(). */
5234 rq->prev_mm = prev->active_mm;
5235 prev->active_mm = NULL;
5236 }
1da177e4 5237 }
92509b73 5238
cb42c9a3 5239 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
92509b73 5240
269d5992 5241 prepare_lock_switch(rq, next, rf);
1da177e4
LT
5242
5243 /* Here we just switch the register state and the stack. */
5244 switch_to(prev, next, prev);
dd41f596 5245 barrier();
dfa50b60
ON
5246
5247 return finish_task_switch(prev);
1da177e4
LT
5248}
5249
5250/*
1c3e8264 5251 * nr_running and nr_context_switches:
1da177e4
LT
5252 *
5253 * externally visible scheduler statistics: current number of runnable
1c3e8264 5254 * threads, total number of context switches performed since bootup.
1da177e4 5255 */
01aee8fd 5256unsigned int nr_running(void)
1da177e4 5257{
01aee8fd 5258 unsigned int i, sum = 0;
1da177e4
LT
5259
5260 for_each_online_cpu(i)
5261 sum += cpu_rq(i)->nr_running;
5262
5263 return sum;
f711f609 5264}
1da177e4 5265
2ee507c4 5266/*
d1ccc66d 5267 * Check if only the current task is running on the CPU.
00cc1633
DD
5268 *
5269 * Caution: this function does not check that the caller has disabled
5270 * preemption, thus the result might have a time-of-check-to-time-of-use
5271 * race. The caller is responsible to use it correctly, for example:
5272 *
dfcb245e 5273 * - from a non-preemptible section (of course)
00cc1633
DD
5274 *
5275 * - from a thread that is bound to a single CPU
5276 *
5277 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
5278 */
5279bool single_task_running(void)
5280{
00cc1633 5281 return raw_rq()->nr_running == 1;
2ee507c4
TC
5282}
5283EXPORT_SYMBOL(single_task_running);
5284
1da177e4 5285unsigned long long nr_context_switches(void)
46cb4b7c 5286{
cc94abfc
SR
5287 int i;
5288 unsigned long long sum = 0;
46cb4b7c 5289
0a945022 5290 for_each_possible_cpu(i)
1da177e4 5291 sum += cpu_rq(i)->nr_switches;
46cb4b7c 5292
1da177e4
LT
5293 return sum;
5294}
483b4ee6 5295
145d952a
DL
5296/*
5297 * Consumers of these two interfaces, like for example the cpuidle menu
5298 * governor, are using nonsensical data. Preferring shallow idle state selection
5299 * for a CPU that has IO-wait which might not even end up running the task when
5300 * it does become runnable.
5301 */
5302
8fc2858e 5303unsigned int nr_iowait_cpu(int cpu)
145d952a
DL
5304{
5305 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5306}
5307
e33a9bba 5308/*
b19a888c 5309 * IO-wait accounting, and how it's mostly bollocks (on SMP).
e33a9bba
TH
5310 *
5311 * The idea behind IO-wait account is to account the idle time that we could
5312 * have spend running if it were not for IO. That is, if we were to improve the
5313 * storage performance, we'd have a proportional reduction in IO-wait time.
5314 *
5315 * This all works nicely on UP, where, when a task blocks on IO, we account
5316 * idle time as IO-wait, because if the storage were faster, it could've been
5317 * running and we'd not be idle.
5318 *
5319 * This has been extended to SMP, by doing the same for each CPU. This however
5320 * is broken.
5321 *
5322 * Imagine for instance the case where two tasks block on one CPU, only the one
5323 * CPU will have IO-wait accounted, while the other has regular idle. Even
5324 * though, if the storage were faster, both could've ran at the same time,
5325 * utilising both CPUs.
5326 *
5327 * This means, that when looking globally, the current IO-wait accounting on
5328 * SMP is a lower bound, by reason of under accounting.
5329 *
5330 * Worse, since the numbers are provided per CPU, they are sometimes
5331 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5332 * associated with any one particular CPU, it can wake to another CPU than it
5333 * blocked on. This means the per CPU IO-wait number is meaningless.
5334 *
5335 * Task CPU affinities can make all that even more 'interesting'.
5336 */
5337
97455168 5338unsigned int nr_iowait(void)
1da177e4 5339{
97455168 5340 unsigned int i, sum = 0;
483b4ee6 5341
0a945022 5342 for_each_possible_cpu(i)
145d952a 5343 sum += nr_iowait_cpu(i);
46cb4b7c 5344
1da177e4
LT
5345 return sum;
5346}
483b4ee6 5347
dd41f596 5348#ifdef CONFIG_SMP
8a0be9ef 5349
46cb4b7c 5350/*
38022906
PZ
5351 * sched_exec - execve() is a valuable balancing opportunity, because at
5352 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 5353 */
38022906 5354void sched_exec(void)
46cb4b7c 5355{
38022906 5356 struct task_struct *p = current;
1da177e4 5357 unsigned long flags;
0017d735 5358 int dest_cpu;
46cb4b7c 5359
8f42ced9 5360 raw_spin_lock_irqsave(&p->pi_lock, flags);
3aef1551 5361 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
0017d735
PZ
5362 if (dest_cpu == smp_processor_id())
5363 goto unlock;
38022906 5364
8f42ced9 5365 if (likely(cpu_active(dest_cpu))) {
969c7921 5366 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 5367
8f42ced9
PZ
5368 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5369 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
5370 return;
5371 }
0017d735 5372unlock:
8f42ced9 5373 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 5374}
dd41f596 5375
1da177e4
LT
5376#endif
5377
1da177e4 5378DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 5379DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
5380
5381EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 5382EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 5383
6075620b
GG
5384/*
5385 * The function fair_sched_class.update_curr accesses the struct curr
5386 * and its field curr->exec_start; when called from task_sched_runtime(),
5387 * we observe a high rate of cache misses in practice.
5388 * Prefetching this data results in improved performance.
5389 */
5390static inline void prefetch_curr_exec_start(struct task_struct *p)
5391{
5392#ifdef CONFIG_FAIR_GROUP_SCHED
5393 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5394#else
5395 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5396#endif
5397 prefetch(curr);
5398 prefetch(&curr->exec_start);
5399}
5400
c5f8d995
HS
5401/*
5402 * Return accounted runtime for the task.
5403 * In case the task is currently running, return the runtime plus current's
5404 * pending runtime that have not been accounted yet.
5405 */
5406unsigned long long task_sched_runtime(struct task_struct *p)
5407{
eb580751 5408 struct rq_flags rf;
c5f8d995 5409 struct rq *rq;
6e998916 5410 u64 ns;
c5f8d995 5411
911b2898
PZ
5412#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5413 /*
97fb7a0a 5414 * 64-bit doesn't need locks to atomically read a 64-bit value.
911b2898
PZ
5415 * So we have a optimization chance when the task's delta_exec is 0.
5416 * Reading ->on_cpu is racy, but this is ok.
5417 *
d1ccc66d
IM
5418 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5419 * If we race with it entering CPU, unaccounted time is 0. This is
911b2898 5420 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
5421 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5422 * been accounted, so we're correct here as well.
911b2898 5423 */
da0c1e65 5424 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
5425 return p->se.sum_exec_runtime;
5426#endif
5427
eb580751 5428 rq = task_rq_lock(p, &rf);
6e998916
SG
5429 /*
5430 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5431 * project cycles that may never be accounted to this
5432 * thread, breaking clock_gettime().
5433 */
5434 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 5435 prefetch_curr_exec_start(p);
6e998916
SG
5436 update_rq_clock(rq);
5437 p->sched_class->update_curr(rq);
5438 }
5439 ns = p->se.sum_exec_runtime;
eb580751 5440 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
5441
5442 return ns;
5443}
48f24c4d 5444
c006fac5
PT
5445#ifdef CONFIG_SCHED_DEBUG
5446static u64 cpu_resched_latency(struct rq *rq)
5447{
5448 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5449 u64 resched_latency, now = rq_clock(rq);
5450 static bool warned_once;
5451
5452 if (sysctl_resched_latency_warn_once && warned_once)
5453 return 0;
5454
5455 if (!need_resched() || !latency_warn_ms)
5456 return 0;
5457
5458 if (system_state == SYSTEM_BOOTING)
5459 return 0;
5460
5461 if (!rq->last_seen_need_resched_ns) {
5462 rq->last_seen_need_resched_ns = now;
5463 rq->ticks_without_resched = 0;
5464 return 0;
5465 }
5466
5467 rq->ticks_without_resched++;
5468 resched_latency = now - rq->last_seen_need_resched_ns;
5469 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5470 return 0;
5471
5472 warned_once = true;
5473
5474 return resched_latency;
5475}
5476
5477static int __init setup_resched_latency_warn_ms(char *str)
5478{
5479 long val;
5480
5481 if ((kstrtol(str, 0, &val))) {
5482 pr_warn("Unable to set resched_latency_warn_ms\n");
5483 return 1;
5484 }
5485
5486 sysctl_resched_latency_warn_ms = val;
5487 return 1;
5488}
5489__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5490#else
5491static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5492#endif /* CONFIG_SCHED_DEBUG */
5493
7835b98b
CL
5494/*
5495 * This function gets called by the timer code, with HZ frequency.
5496 * We call it with interrupts disabled.
7835b98b
CL
5497 */
5498void scheduler_tick(void)
5499{
7835b98b
CL
5500 int cpu = smp_processor_id();
5501 struct rq *rq = cpu_rq(cpu);
dd41f596 5502 struct task_struct *curr = rq->curr;
8a8c69c3 5503 struct rq_flags rf;
b4eccf5f 5504 unsigned long thermal_pressure;
c006fac5 5505 u64 resched_latency;
3e51f33f 5506
1567c3e3 5507 arch_scale_freq_tick();
3e51f33f 5508 sched_clock_tick();
dd41f596 5509
8a8c69c3
PZ
5510 rq_lock(rq, &rf);
5511
3e51f33f 5512 update_rq_clock(rq);
b4eccf5f 5513 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
05289b90 5514 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
fa85ae24 5515 curr->sched_class->task_tick(rq, curr, 0);
c006fac5
PT
5516 if (sched_feat(LATENCY_WARN))
5517 resched_latency = cpu_resched_latency(rq);
3289bdb4 5518 calc_global_load_tick(rq);
4feee7d1 5519 sched_core_tick(rq);
8a8c69c3
PZ
5520
5521 rq_unlock(rq, &rf);
7835b98b 5522
c006fac5
PT
5523 if (sched_feat(LATENCY_WARN) && resched_latency)
5524 resched_latency_warn(cpu, resched_latency);
5525
e9d2b064 5526 perf_event_task_tick();
e220d2dc 5527
e418e1c2 5528#ifdef CONFIG_SMP
6eb57e0d 5529 rq->idle_balance = idle_cpu(cpu);
7caff66f 5530 trigger_load_balance(rq);
e418e1c2 5531#endif
1da177e4
LT
5532}
5533
265f22a9 5534#ifdef CONFIG_NO_HZ_FULL
d84b3131
FW
5535
5536struct tick_work {
5537 int cpu;
b55bd585 5538 atomic_t state;
d84b3131
FW
5539 struct delayed_work work;
5540};
b55bd585
PM
5541/* Values for ->state, see diagram below. */
5542#define TICK_SCHED_REMOTE_OFFLINE 0
5543#define TICK_SCHED_REMOTE_OFFLINING 1
5544#define TICK_SCHED_REMOTE_RUNNING 2
5545
5546/*
5547 * State diagram for ->state:
5548 *
5549 *
5550 * TICK_SCHED_REMOTE_OFFLINE
5551 * | ^
5552 * | |
5553 * | | sched_tick_remote()
5554 * | |
5555 * | |
5556 * +--TICK_SCHED_REMOTE_OFFLINING
5557 * | ^
5558 * | |
5559 * sched_tick_start() | | sched_tick_stop()
5560 * | |
5561 * V |
5562 * TICK_SCHED_REMOTE_RUNNING
5563 *
5564 *
5565 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5566 * and sched_tick_start() are happy to leave the state in RUNNING.
5567 */
d84b3131
FW
5568
5569static struct tick_work __percpu *tick_work_cpu;
5570
5571static void sched_tick_remote(struct work_struct *work)
5572{
5573 struct delayed_work *dwork = to_delayed_work(work);
5574 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5575 int cpu = twork->cpu;
5576 struct rq *rq = cpu_rq(cpu);
d9c0ffca 5577 struct task_struct *curr;
d84b3131 5578 struct rq_flags rf;
d9c0ffca 5579 u64 delta;
b55bd585 5580 int os;
d84b3131
FW
5581
5582 /*
5583 * Handle the tick only if it appears the remote CPU is running in full
5584 * dynticks mode. The check is racy by nature, but missing a tick or
5585 * having one too much is no big deal because the scheduler tick updates
5586 * statistics and checks timeslices in a time-independent way, regardless
5587 * of when exactly it is running.
5588 */
488603b8 5589 if (!tick_nohz_tick_stopped_cpu(cpu))
d9c0ffca 5590 goto out_requeue;
d84b3131 5591
d9c0ffca
FW
5592 rq_lock_irq(rq, &rf);
5593 curr = rq->curr;
488603b8 5594 if (cpu_is_offline(cpu))
d9c0ffca 5595 goto out_unlock;
d84b3131 5596
d9c0ffca 5597 update_rq_clock(rq);
d9c0ffca 5598
488603b8
SW
5599 if (!is_idle_task(curr)) {
5600 /*
5601 * Make sure the next tick runs within a reasonable
5602 * amount of time.
5603 */
5604 delta = rq_clock_task(rq) - curr->se.exec_start;
5605 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5606 }
d9c0ffca
FW
5607 curr->sched_class->task_tick(rq, curr, 0);
5608
ebc0f83c 5609 calc_load_nohz_remote(rq);
d9c0ffca
FW
5610out_unlock:
5611 rq_unlock_irq(rq, &rf);
d9c0ffca 5612out_requeue:
ebc0f83c 5613
d84b3131
FW
5614 /*
5615 * Run the remote tick once per second (1Hz). This arbitrary
5616 * frequency is large enough to avoid overload but short enough
b55bd585
PM
5617 * to keep scheduler internal stats reasonably up to date. But
5618 * first update state to reflect hotplug activity if required.
d84b3131 5619 */
b55bd585
PM
5620 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5621 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5622 if (os == TICK_SCHED_REMOTE_RUNNING)
5623 queue_delayed_work(system_unbound_wq, dwork, HZ);
d84b3131
FW
5624}
5625
5626static void sched_tick_start(int cpu)
5627{
b55bd585 5628 int os;
d84b3131
FW
5629 struct tick_work *twork;
5630
04d4e665 5631 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5632 return;
5633
5634 WARN_ON_ONCE(!tick_work_cpu);
5635
5636 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5637 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5638 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5639 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5640 twork->cpu = cpu;
5641 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5642 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5643 }
d84b3131
FW
5644}
5645
5646#ifdef CONFIG_HOTPLUG_CPU
5647static void sched_tick_stop(int cpu)
5648{
5649 struct tick_work *twork;
b55bd585 5650 int os;
d84b3131 5651
04d4e665 5652 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
d84b3131
FW
5653 return;
5654
5655 WARN_ON_ONCE(!tick_work_cpu);
5656
5657 twork = per_cpu_ptr(tick_work_cpu, cpu);
b55bd585
PM
5658 /* There cannot be competing actions, but don't rely on stop-machine. */
5659 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5660 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5661 /* Don't cancel, as this would mess up the state machine. */
d84b3131
FW
5662}
5663#endif /* CONFIG_HOTPLUG_CPU */
5664
5665int __init sched_tick_offload_init(void)
5666{
5667 tick_work_cpu = alloc_percpu(struct tick_work);
5668 BUG_ON(!tick_work_cpu);
d84b3131
FW
5669 return 0;
5670}
5671
5672#else /* !CONFIG_NO_HZ_FULL */
5673static inline void sched_tick_start(int cpu) { }
5674static inline void sched_tick_stop(int cpu) { }
265f22a9 5675#endif
1da177e4 5676
c1a280b6 5677#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
c3bc8fd6 5678 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
47252cfb
SR
5679/*
5680 * If the value passed in is equal to the current preempt count
5681 * then we just disabled preemption. Start timing the latency.
5682 */
5683static inline void preempt_latency_start(int val)
5684{
5685 if (preempt_count() == val) {
5686 unsigned long ip = get_lock_parent_ip();
5687#ifdef CONFIG_DEBUG_PREEMPT
5688 current->preempt_disable_ip = ip;
5689#endif
5690 trace_preempt_off(CALLER_ADDR0, ip);
5691 }
5692}
7e49fcce 5693
edafe3a5 5694void preempt_count_add(int val)
1da177e4 5695{
6cd8a4bb 5696#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5697 /*
5698 * Underflow?
5699 */
9a11b49a
IM
5700 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5701 return;
6cd8a4bb 5702#endif
bdb43806 5703 __preempt_count_add(val);
6cd8a4bb 5704#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5705 /*
5706 * Spinlock count overflowing soon?
5707 */
33859f7f
MOS
5708 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5709 PREEMPT_MASK - 10);
6cd8a4bb 5710#endif
47252cfb 5711 preempt_latency_start(val);
1da177e4 5712}
bdb43806 5713EXPORT_SYMBOL(preempt_count_add);
edafe3a5 5714NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 5715
47252cfb
SR
5716/*
5717 * If the value passed in equals to the current preempt count
5718 * then we just enabled preemption. Stop timing the latency.
5719 */
5720static inline void preempt_latency_stop(int val)
5721{
5722 if (preempt_count() == val)
5723 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5724}
5725
edafe3a5 5726void preempt_count_sub(int val)
1da177e4 5727{
6cd8a4bb 5728#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5729 /*
5730 * Underflow?
5731 */
01e3eb82 5732 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5733 return;
1da177e4
LT
5734 /*
5735 * Is the spinlock portion underflowing?
5736 */
9a11b49a
IM
5737 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5738 !(preempt_count() & PREEMPT_MASK)))
5739 return;
6cd8a4bb 5740#endif
9a11b49a 5741
47252cfb 5742 preempt_latency_stop(val);
bdb43806 5743 __preempt_count_sub(val);
1da177e4 5744}
bdb43806 5745EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 5746NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 5747
47252cfb
SR
5748#else
5749static inline void preempt_latency_start(int val) { }
5750static inline void preempt_latency_stop(int val) { }
1da177e4
LT
5751#endif
5752
59ddbcb2
IM
5753static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5754{
5755#ifdef CONFIG_DEBUG_PREEMPT
5756 return p->preempt_disable_ip;
5757#else
5758 return 0;
5759#endif
5760}
5761
1da177e4 5762/*
dd41f596 5763 * Print scheduling while atomic bug:
1da177e4 5764 */
dd41f596 5765static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5766{
d1c6d149
VN
5767 /* Save this before calling printk(), since that will clobber it */
5768 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5769
664dfa65
DJ
5770 if (oops_in_progress)
5771 return;
5772
3df0fc5b
PZ
5773 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5774 prev->comm, prev->pid, preempt_count());
838225b4 5775
dd41f596 5776 debug_show_held_locks(prev);
e21f5b15 5777 print_modules();
dd41f596
IM
5778 if (irqs_disabled())
5779 print_irqtrace_events(prev);
d1c6d149
VN
5780 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5781 && in_atomic_preempt_off()) {
8f47b187 5782 pr_err("Preemption disabled at:");
2062a4e8 5783 print_ip_sym(KERN_ERR, preempt_disable_ip);
8f47b187 5784 }
79cc1ba7 5785 check_panic_on_warn("scheduling while atomic");
748c7201 5786
6135fc1e 5787 dump_stack();
373d4d09 5788 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 5789}
1da177e4 5790
dd41f596
IM
5791/*
5792 * Various schedule()-time debugging checks and statistics:
5793 */
312364f3 5794static inline void schedule_debug(struct task_struct *prev, bool preempt)
dd41f596 5795{
0d9e2632 5796#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
5797 if (task_stack_end_corrupted(prev))
5798 panic("corrupted stack end detected inside scheduler\n");
88485be5
WD
5799
5800 if (task_scs_end_corrupted(prev))
5801 panic("corrupted shadow stack detected inside scheduler\n");
0d9e2632 5802#endif
b99def8b 5803
312364f3 5804#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
2f064a59 5805 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
312364f3
DV
5806 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5807 prev->comm, prev->pid, prev->non_block_count);
5808 dump_stack();
5809 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5810 }
5811#endif
5812
1dc0fffc 5813 if (unlikely(in_atomic_preempt_off())) {
dd41f596 5814 __schedule_bug(prev);
1dc0fffc
PZ
5815 preempt_count_set(PREEMPT_DISABLED);
5816 }
b3fbab05 5817 rcu_sleep_check();
9f68b5b7 5818 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
dd41f596 5819
1da177e4
LT
5820 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5821
ae92882e 5822 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
5823}
5824
457d1f46
CY
5825static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5826 struct rq_flags *rf)
5827{
5828#ifdef CONFIG_SMP
5829 const struct sched_class *class;
5830 /*
5831 * We must do the balancing pass before put_prev_task(), such
5832 * that when we release the rq->lock the task is in the same
5833 * state as before we took rq->lock.
5834 *
5835 * We can terminate the balance pass as soon as we know there is
5836 * a runnable task of @class priority or higher.
5837 */
5838 for_class_range(class, prev->sched_class, &idle_sched_class) {
5839 if (class->balance(rq, prev, rf))
5840 break;
5841 }
5842#endif
5843
5844 put_prev_task(rq, prev);
5845}
5846
dd41f596
IM
5847/*
5848 * Pick up the highest-prio task:
5849 */
5850static inline struct task_struct *
539f6512 5851__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
dd41f596 5852{
49ee5768 5853 const struct sched_class *class;
dd41f596 5854 struct task_struct *p;
1da177e4
LT
5855
5856 /*
0ba87bb2
PZ
5857 * Optimization: we know that if all tasks are in the fair class we can
5858 * call that function directly, but only if the @prev task wasn't of a
b19a888c 5859 * higher scheduling class, because otherwise those lose the
0ba87bb2 5860 * opportunity to pull in more work from other CPUs.
1da177e4 5861 */
546a3fee 5862 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
0ba87bb2
PZ
5863 rq->nr_running == rq->cfs.h_nr_running)) {
5864
5d7d6056 5865 p = pick_next_task_fair(rq, prev, rf);
6ccdc84b 5866 if (unlikely(p == RETRY_TASK))
67692435 5867 goto restart;
6ccdc84b 5868
1699949d 5869 /* Assume the next prioritized class is idle_sched_class */
5d7d6056 5870 if (!p) {
f488e105 5871 put_prev_task(rq, prev);
98c2f700 5872 p = pick_next_task_idle(rq);
f488e105 5873 }
6ccdc84b
PZ
5874
5875 return p;
1da177e4
LT
5876 }
5877
67692435 5878restart:
457d1f46 5879 put_prev_task_balance(rq, prev, rf);
67692435 5880
34f971f6 5881 for_each_class(class) {
98c2f700 5882 p = class->pick_next_task(rq);
67692435 5883 if (p)
dd41f596 5884 return p;
dd41f596 5885 }
34f971f6 5886
bc9ffef3 5887 BUG(); /* The idle class should always have a runnable task. */
dd41f596 5888}
1da177e4 5889
9edeaea1 5890#ifdef CONFIG_SCHED_CORE
539f6512
PZ
5891static inline bool is_task_rq_idle(struct task_struct *t)
5892{
5893 return (task_rq(t)->idle == t);
5894}
5895
5896static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5897{
5898 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5899}
5900
5901static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5902{
5903 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5904 return true;
5905
5906 return a->core_cookie == b->core_cookie;
5907}
5908
bc9ffef3 5909static inline struct task_struct *pick_task(struct rq *rq)
539f6512 5910{
bc9ffef3
PZ
5911 const struct sched_class *class;
5912 struct task_struct *p;
539f6512 5913
bc9ffef3
PZ
5914 for_each_class(class) {
5915 p = class->pick_task(rq);
5916 if (p)
5917 return p;
539f6512
PZ
5918 }
5919
bc9ffef3 5920 BUG(); /* The idle class should always have a runnable task. */
539f6512
PZ
5921}
5922
c6047c2e
JFG
5923extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5924
5b6547ed
PZ
5925static void queue_core_balance(struct rq *rq);
5926
539f6512
PZ
5927static struct task_struct *
5928pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5929{
bc9ffef3 5930 struct task_struct *next, *p, *max = NULL;
539f6512 5931 const struct cpumask *smt_mask;
c6047c2e 5932 bool fi_before = false;
4feee7d1 5933 bool core_clock_updated = (rq == rq->core);
bc9ffef3
PZ
5934 unsigned long cookie;
5935 int i, cpu, occ = 0;
5936 struct rq *rq_i;
539f6512 5937 bool need_sync;
539f6512
PZ
5938
5939 if (!sched_core_enabled(rq))
5940 return __pick_next_task(rq, prev, rf);
5941
5942 cpu = cpu_of(rq);
5943
5944 /* Stopper task is switching into idle, no need core-wide selection. */
5945 if (cpu_is_offline(cpu)) {
5946 /*
5947 * Reset core_pick so that we don't enter the fastpath when
5948 * coming online. core_pick would already be migrated to
5949 * another cpu during offline.
5950 */
5951 rq->core_pick = NULL;
5952 return __pick_next_task(rq, prev, rf);
5953 }
5954
5955 /*
5956 * If there were no {en,de}queues since we picked (IOW, the task
5957 * pointers are all still valid), and we haven't scheduled the last
5958 * pick yet, do so now.
5959 *
5960 * rq->core_pick can be NULL if no selection was made for a CPU because
5961 * it was either offline or went offline during a sibling's core-wide
5962 * selection. In this case, do a core-wide selection.
5963 */
5964 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5965 rq->core->core_pick_seq != rq->core_sched_seq &&
5966 rq->core_pick) {
5967 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5968
5969 next = rq->core_pick;
5970 if (next != prev) {
5971 put_prev_task(rq, prev);
5972 set_next_task(rq, next);
5973 }
5974
5975 rq->core_pick = NULL;
5b6547ed 5976 goto out;
539f6512
PZ
5977 }
5978
5979 put_prev_task_balance(rq, prev, rf);
5980
5981 smt_mask = cpu_smt_mask(cpu);
7afbba11
JFG
5982 need_sync = !!rq->core->core_cookie;
5983
5984 /* reset state */
5985 rq->core->core_cookie = 0UL;
4feee7d1
JD
5986 if (rq->core->core_forceidle_count) {
5987 if (!core_clock_updated) {
5988 update_rq_clock(rq->core);
5989 core_clock_updated = true;
5990 }
5991 sched_core_account_forceidle(rq);
5992 /* reset after accounting force idle */
5993 rq->core->core_forceidle_start = 0;
5994 rq->core->core_forceidle_count = 0;
5995 rq->core->core_forceidle_occupation = 0;
7afbba11
JFG
5996 need_sync = true;
5997 fi_before = true;
7afbba11 5998 }
539f6512
PZ
5999
6000 /*
6001 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6002 *
6003 * @task_seq guards the task state ({en,de}queues)
6004 * @pick_seq is the @task_seq we did a selection on
6005 * @sched_seq is the @pick_seq we scheduled
6006 *
6007 * However, preemptions can cause multiple picks on the same task set.
6008 * 'Fix' this by also increasing @task_seq for every pick.
6009 */
6010 rq->core->core_task_seq++;
539f6512 6011
7afbba11
JFG
6012 /*
6013 * Optimize for common case where this CPU has no cookies
6014 * and there are no cookied tasks running on siblings.
6015 */
6016 if (!need_sync) {
bc9ffef3 6017 next = pick_task(rq);
7afbba11
JFG
6018 if (!next->core_cookie) {
6019 rq->core_pick = NULL;
c6047c2e
JFG
6020 /*
6021 * For robustness, update the min_vruntime_fi for
6022 * unconstrained picks as well.
6023 */
6024 WARN_ON_ONCE(fi_before);
6025 task_vruntime_update(rq, next, false);
5b6547ed 6026 goto out_set_next;
7afbba11 6027 }
8039e96f 6028 }
7afbba11 6029
bc9ffef3
PZ
6030 /*
6031 * For each thread: do the regular task pick and find the max prio task
6032 * amongst them.
6033 *
6034 * Tie-break prio towards the current CPU
6035 */
6036 for_each_cpu_wrap(i, smt_mask, cpu) {
6037 rq_i = cpu_rq(i);
539f6512 6038
4feee7d1
JD
6039 /*
6040 * Current cpu always has its clock updated on entrance to
6041 * pick_next_task(). If the current cpu is not the core,
6042 * the core may also have been updated above.
6043 */
6044 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
539f6512 6045 update_rq_clock(rq_i);
bc9ffef3
PZ
6046
6047 p = rq_i->core_pick = pick_task(rq_i);
6048 if (!max || prio_less(max, p, fi_before))
6049 max = p;
539f6512
PZ
6050 }
6051
bc9ffef3
PZ
6052 cookie = rq->core->core_cookie = max->core_cookie;
6053
539f6512 6054 /*
bc9ffef3
PZ
6055 * For each thread: try and find a runnable task that matches @max or
6056 * force idle.
539f6512 6057 */
bc9ffef3
PZ
6058 for_each_cpu(i, smt_mask) {
6059 rq_i = cpu_rq(i);
6060 p = rq_i->core_pick;
539f6512 6061
bc9ffef3
PZ
6062 if (!cookie_equals(p, cookie)) {
6063 p = NULL;
6064 if (cookie)
6065 p = sched_core_find(rq_i, cookie);
7afbba11 6066 if (!p)
bc9ffef3
PZ
6067 p = idle_sched_class.pick_task(rq_i);
6068 }
539f6512 6069
bc9ffef3 6070 rq_i->core_pick = p;
d2dfa17b 6071
bc9ffef3
PZ
6072 if (p == rq_i->idle) {
6073 if (rq_i->nr_running) {
4feee7d1 6074 rq->core->core_forceidle_count++;
c6047c2e
JFG
6075 if (!fi_before)
6076 rq->core->core_forceidle_seq++;
6077 }
bc9ffef3
PZ
6078 } else {
6079 occ++;
539f6512 6080 }
539f6512
PZ
6081 }
6082
4feee7d1 6083 if (schedstat_enabled() && rq->core->core_forceidle_count) {
b171501f 6084 rq->core->core_forceidle_start = rq_clock(rq->core);
4feee7d1
JD
6085 rq->core->core_forceidle_occupation = occ;
6086 }
6087
539f6512
PZ
6088 rq->core->core_pick_seq = rq->core->core_task_seq;
6089 next = rq->core_pick;
6090 rq->core_sched_seq = rq->core->core_pick_seq;
6091
6092 /* Something should have been selected for current CPU */
6093 WARN_ON_ONCE(!next);
6094
6095 /*
6096 * Reschedule siblings
6097 *
6098 * NOTE: L1TF -- at this point we're no longer running the old task and
6099 * sending an IPI (below) ensures the sibling will no longer be running
6100 * their task. This ensures there is no inter-sibling overlap between
6101 * non-matching user state.
6102 */
6103 for_each_cpu(i, smt_mask) {
bc9ffef3 6104 rq_i = cpu_rq(i);
539f6512
PZ
6105
6106 /*
6107 * An online sibling might have gone offline before a task
6108 * could be picked for it, or it might be offline but later
6109 * happen to come online, but its too late and nothing was
6110 * picked for it. That's Ok - it will pick tasks for itself,
6111 * so ignore it.
6112 */
6113 if (!rq_i->core_pick)
6114 continue;
6115
c6047c2e
JFG
6116 /*
6117 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6118 * fi_before fi update?
6119 * 0 0 1
6120 * 0 1 1
6121 * 1 0 1
6122 * 1 1 0
6123 */
4feee7d1
JD
6124 if (!(fi_before && rq->core->core_forceidle_count))
6125 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
539f6512 6126
d2dfa17b
PZ
6127 rq_i->core_pick->core_occupation = occ;
6128
539f6512
PZ
6129 if (i == cpu) {
6130 rq_i->core_pick = NULL;
6131 continue;
6132 }
6133
6134 /* Did we break L1TF mitigation requirements? */
6135 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6136
6137 if (rq_i->curr == rq_i->core_pick) {
6138 rq_i->core_pick = NULL;
6139 continue;
6140 }
6141
6142 resched_curr(rq_i);
6143 }
6144
5b6547ed 6145out_set_next:
539f6512 6146 set_next_task(rq, next);
5b6547ed
PZ
6147out:
6148 if (rq->core->core_forceidle_count && next == rq->idle)
6149 queue_core_balance(rq);
6150
539f6512
PZ
6151 return next;
6152}
9edeaea1 6153
d2dfa17b
PZ
6154static bool try_steal_cookie(int this, int that)
6155{
6156 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6157 struct task_struct *p;
6158 unsigned long cookie;
6159 bool success = false;
6160
6161 local_irq_disable();
6162 double_rq_lock(dst, src);
6163
6164 cookie = dst->core->core_cookie;
6165 if (!cookie)
6166 goto unlock;
6167
6168 if (dst->curr != dst->idle)
6169 goto unlock;
6170
6171 p = sched_core_find(src, cookie);
6172 if (p == src->idle)
6173 goto unlock;
6174
6175 do {
6176 if (p == src->core_pick || p == src->curr)
6177 goto next;
6178
386ef214 6179 if (!is_cpu_allowed(p, this))
d2dfa17b
PZ
6180 goto next;
6181
6182 if (p->core_occupation > dst->idle->core_occupation)
6183 goto next;
6184
d2dfa17b
PZ
6185 deactivate_task(src, p, 0);
6186 set_task_cpu(p, this);
6187 activate_task(dst, p, 0);
d2dfa17b
PZ
6188
6189 resched_curr(dst);
6190
6191 success = true;
6192 break;
6193
6194next:
6195 p = sched_core_next(p, cookie);
6196 } while (p);
6197
6198unlock:
6199 double_rq_unlock(dst, src);
6200 local_irq_enable();
6201
6202 return success;
6203}
6204
6205static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6206{
6207 int i;
6208
6209 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6210 if (i == cpu)
6211 continue;
6212
6213 if (need_resched())
6214 break;
6215
6216 if (try_steal_cookie(cpu, i))
6217 return true;
6218 }
6219
6220 return false;
6221}
6222
6223static void sched_core_balance(struct rq *rq)
6224{
6225 struct sched_domain *sd;
6226 int cpu = cpu_of(rq);
6227
6228 preempt_disable();
6229 rcu_read_lock();
6230 raw_spin_rq_unlock_irq(rq);
6231 for_each_domain(cpu, sd) {
6232 if (need_resched())
6233 break;
6234
6235 if (steal_cookie_task(cpu, sd))
6236 break;
6237 }
6238 raw_spin_rq_lock_irq(rq);
6239 rcu_read_unlock();
6240 preempt_enable();
6241}
6242
8e5bad7d 6243static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
d2dfa17b 6244
5b6547ed 6245static void queue_core_balance(struct rq *rq)
d2dfa17b
PZ
6246{
6247 if (!sched_core_enabled(rq))
6248 return;
6249
6250 if (!rq->core->core_cookie)
6251 return;
6252
6253 if (!rq->nr_running) /* not forced idle */
6254 return;
6255
6256 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6257}
6258
3c474b32 6259static void sched_core_cpu_starting(unsigned int cpu)
9edeaea1
PZ
6260{
6261 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
3c474b32
PZ
6262 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6263 unsigned long flags;
6264 int t;
9edeaea1 6265
3c474b32 6266 sched_core_lock(cpu, &flags);
9edeaea1 6267
3c474b32
PZ
6268 WARN_ON_ONCE(rq->core != rq);
6269
6270 /* if we're the first, we'll be our own leader */
6271 if (cpumask_weight(smt_mask) == 1)
6272 goto unlock;
6273
6274 /* find the leader */
6275 for_each_cpu(t, smt_mask) {
6276 if (t == cpu)
6277 continue;
6278 rq = cpu_rq(t);
6279 if (rq->core == rq) {
6280 core_rq = rq;
6281 break;
9edeaea1 6282 }
3c474b32 6283 }
9edeaea1 6284
3c474b32
PZ
6285 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6286 goto unlock;
9edeaea1 6287
3c474b32
PZ
6288 /* install and validate core_rq */
6289 for_each_cpu(t, smt_mask) {
6290 rq = cpu_rq(t);
9edeaea1 6291
3c474b32 6292 if (t == cpu)
9edeaea1 6293 rq->core = core_rq;
3c474b32
PZ
6294
6295 WARN_ON_ONCE(rq->core != core_rq);
9edeaea1 6296 }
3c474b32
PZ
6297
6298unlock:
6299 sched_core_unlock(cpu, &flags);
9edeaea1 6300}
3c474b32
PZ
6301
6302static void sched_core_cpu_deactivate(unsigned int cpu)
6303{
6304 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6305 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6306 unsigned long flags;
6307 int t;
6308
6309 sched_core_lock(cpu, &flags);
6310
6311 /* if we're the last man standing, nothing to do */
6312 if (cpumask_weight(smt_mask) == 1) {
6313 WARN_ON_ONCE(rq->core != rq);
6314 goto unlock;
6315 }
6316
6317 /* if we're not the leader, nothing to do */
6318 if (rq->core != rq)
6319 goto unlock;
6320
6321 /* find a new leader */
6322 for_each_cpu(t, smt_mask) {
6323 if (t == cpu)
6324 continue;
6325 core_rq = cpu_rq(t);
6326 break;
6327 }
6328
6329 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6330 goto unlock;
6331
6332 /* copy the shared state to the new leader */
4feee7d1
JD
6333 core_rq->core_task_seq = rq->core_task_seq;
6334 core_rq->core_pick_seq = rq->core_pick_seq;
6335 core_rq->core_cookie = rq->core_cookie;
6336 core_rq->core_forceidle_count = rq->core_forceidle_count;
6337 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6338 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6339
6340 /*
6341 * Accounting edge for forced idle is handled in pick_next_task().
6342 * Don't need another one here, since the hotplug thread shouldn't
6343 * have a cookie.
6344 */
6345 core_rq->core_forceidle_start = 0;
3c474b32
PZ
6346
6347 /* install new leader */
6348 for_each_cpu(t, smt_mask) {
6349 rq = cpu_rq(t);
6350 rq->core = core_rq;
6351 }
6352
6353unlock:
6354 sched_core_unlock(cpu, &flags);
6355}
6356
6357static inline void sched_core_cpu_dying(unsigned int cpu)
6358{
6359 struct rq *rq = cpu_rq(cpu);
6360
6361 if (rq->core != rq)
6362 rq->core = rq;
6363}
6364
9edeaea1
PZ
6365#else /* !CONFIG_SCHED_CORE */
6366
6367static inline void sched_core_cpu_starting(unsigned int cpu) {}
3c474b32
PZ
6368static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6369static inline void sched_core_cpu_dying(unsigned int cpu) {}
9edeaea1 6370
539f6512
PZ
6371static struct task_struct *
6372pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6373{
6374 return __pick_next_task(rq, prev, rf);
6375}
6376
9edeaea1
PZ
6377#endif /* CONFIG_SCHED_CORE */
6378
b4bfa3fc
TG
6379/*
6380 * Constants for the sched_mode argument of __schedule().
6381 *
6382 * The mode argument allows RT enabled kernels to differentiate a
6383 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6384 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6385 * optimize the AND operation out and just check for zero.
6386 */
6387#define SM_NONE 0x0
6388#define SM_PREEMPT 0x1
6991436c
TG
6389#define SM_RTLOCK_WAIT 0x2
6390
6391#ifndef CONFIG_PREEMPT_RT
6392# define SM_MASK_PREEMPT (~0U)
6393#else
6394# define SM_MASK_PREEMPT SM_PREEMPT
6395#endif
b4bfa3fc 6396
dd41f596 6397/*
c259e01a 6398 * __schedule() is the main scheduler function.
edde96ea
PE
6399 *
6400 * The main means of driving the scheduler and thus entering this function are:
6401 *
6402 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6403 *
6404 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6405 * paths. For example, see arch/x86/entry_64.S.
6406 *
6407 * To drive preemption between tasks, the scheduler sets the flag in timer
6408 * interrupt handler scheduler_tick().
6409 *
6410 * 3. Wakeups don't really cause entry into schedule(). They add a
6411 * task to the run-queue and that's it.
6412 *
6413 * Now, if the new task added to the run-queue preempts the current
6414 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6415 * called on the nearest possible occasion:
6416 *
c1a280b6 6417 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
edde96ea
PE
6418 *
6419 * - in syscall or exception context, at the next outmost
6420 * preempt_enable(). (this might be as soon as the wake_up()'s
6421 * spin_unlock()!)
6422 *
6423 * - in IRQ context, return from interrupt-handler to
6424 * preemptible context
6425 *
c1a280b6 6426 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
edde96ea
PE
6427 * then at the next:
6428 *
6429 * - cond_resched() call
6430 * - explicit schedule() call
6431 * - return from syscall or exception to user-space
6432 * - return from interrupt-handler to user-space
bfd9b2b5 6433 *
b30f0e3f 6434 * WARNING: must be called with preemption disabled!
dd41f596 6435 */
b4bfa3fc 6436static void __sched notrace __schedule(unsigned int sched_mode)
dd41f596
IM
6437{
6438 struct task_struct *prev, *next;
67ca7bde 6439 unsigned long *switch_count;
dbfb089d 6440 unsigned long prev_state;
d8ac8971 6441 struct rq_flags rf;
dd41f596 6442 struct rq *rq;
31656519 6443 int cpu;
dd41f596 6444
dd41f596
IM
6445 cpu = smp_processor_id();
6446 rq = cpu_rq(cpu);
dd41f596 6447 prev = rq->curr;
dd41f596 6448
b4bfa3fc 6449 schedule_debug(prev, !!sched_mode);
1da177e4 6450
e0ee463c 6451 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
f333fdc9 6452 hrtick_clear(rq);
8f4d37ec 6453
46a5d164 6454 local_irq_disable();
b4bfa3fc 6455 rcu_note_context_switch(!!sched_mode);
46a5d164 6456
e0acd0a6
ON
6457 /*
6458 * Make sure that signal_pending_state()->signal_pending() below
6459 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
dbfb089d
PZ
6460 * done by the caller to avoid the race with signal_wake_up():
6461 *
6462 * __set_current_state(@state) signal_wake_up()
6463 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6464 * wake_up_state(p, state)
6465 * LOCK rq->lock LOCK p->pi_state
6466 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6467 * if (signal_pending_state()) if (p->state & @state)
306e0604 6468 *
dbfb089d 6469 * Also, the membarrier system call requires a full memory barrier
306e0604 6470 * after coming from user-space, before storing to rq->curr.
e0acd0a6 6471 */
8a8c69c3 6472 rq_lock(rq, &rf);
d89e588c 6473 smp_mb__after_spinlock();
1da177e4 6474
d1ccc66d
IM
6475 /* Promote REQ to ACT */
6476 rq->clock_update_flags <<= 1;
bce4dc80 6477 update_rq_clock(rq);
9edfbfed 6478
246d86b5 6479 switch_count = &prev->nivcsw;
d136122f 6480
dbfb089d 6481 /*
d136122f 6482 * We must load prev->state once (task_struct::state is volatile), such
2500ad1c 6483 * that we form a control dependency vs deactivate_task() below.
dbfb089d 6484 */
2f064a59 6485 prev_state = READ_ONCE(prev->__state);
b4bfa3fc 6486 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
dbfb089d 6487 if (signal_pending_state(prev_state, prev)) {
2f064a59 6488 WRITE_ONCE(prev->__state, TASK_RUNNING);
21aa9af0 6489 } else {
dbfb089d
PZ
6490 prev->sched_contributes_to_load =
6491 (prev_state & TASK_UNINTERRUPTIBLE) &&
6492 !(prev_state & TASK_NOLOAD) &&
f5d39b02 6493 !(prev_state & TASK_FROZEN);
dbfb089d
PZ
6494
6495 if (prev->sched_contributes_to_load)
6496 rq->nr_uninterruptible++;
6497
6498 /*
6499 * __schedule() ttwu()
d136122f
PZ
6500 * prev_state = prev->state; if (p->on_rq && ...)
6501 * if (prev_state) goto out;
6502 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6503 * p->state = TASK_WAKING
6504 *
6505 * Where __schedule() and ttwu() have matching control dependencies.
dbfb089d
PZ
6506 *
6507 * After this, schedule() must not care about p->state any more.
6508 */
bce4dc80 6509 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
2acca55e 6510
e33a9bba
TH
6511 if (prev->in_iowait) {
6512 atomic_inc(&rq->nr_iowait);
6513 delayacct_blkio_start();
6514 }
21aa9af0 6515 }
dd41f596 6516 switch_count = &prev->nvcsw;
1da177e4
LT
6517 }
6518
d8ac8971 6519 next = pick_next_task(rq, prev, &rf);
f26f9aff 6520 clear_tsk_need_resched(prev);
f27dde8d 6521 clear_preempt_need_resched();
c006fac5
PT
6522#ifdef CONFIG_SCHED_DEBUG
6523 rq->last_seen_need_resched_ns = 0;
6524#endif
1da177e4 6525
1da177e4 6526 if (likely(prev != next)) {
1da177e4 6527 rq->nr_switches++;
5311a98f
EB
6528 /*
6529 * RCU users of rcu_dereference(rq->curr) may not see
6530 * changes to task_struct made by pick_next_task().
6531 */
6532 RCU_INIT_POINTER(rq->curr, next);
22e4ebb9
MD
6533 /*
6534 * The membarrier system call requires each architecture
6535 * to have a full memory barrier after updating
306e0604
MD
6536 * rq->curr, before returning to user-space.
6537 *
6538 * Here are the schemes providing that barrier on the
6539 * various architectures:
6540 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6541 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6542 * - finish_lock_switch() for weakly-ordered
6543 * architectures where spin_unlock is a full barrier,
6544 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6545 * is a RELEASE barrier),
22e4ebb9 6546 */
1da177e4
LT
6547 ++*switch_count;
6548
af449901 6549 migrate_disable_switch(rq, prev);
b05e75d6
JW
6550 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6551
9c2136be 6552 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
d1ccc66d
IM
6553
6554 /* Also unlocks the rq: */
6555 rq = context_switch(rq, prev, next, &rf);
cbce1a68 6556 } else {
cb42c9a3 6557 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
1da177e4 6558
565790d2
PZ
6559 rq_unpin_lock(rq, &rf);
6560 __balance_callbacks(rq);
5cb9eaa3 6561 raw_spin_rq_unlock_irq(rq);
565790d2 6562 }
1da177e4 6563}
c259e01a 6564
9af6528e
PZ
6565void __noreturn do_task_dead(void)
6566{
d1ccc66d 6567 /* Causes final put_task_struct in finish_task_switch(): */
b5bf9a90 6568 set_special_state(TASK_DEAD);
d1ccc66d
IM
6569
6570 /* Tell freezer to ignore us: */
6571 current->flags |= PF_NOFREEZE;
6572
b4bfa3fc 6573 __schedule(SM_NONE);
9af6528e 6574 BUG();
d1ccc66d
IM
6575
6576 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
9af6528e 6577 for (;;)
d1ccc66d 6578 cpu_relax();
9af6528e
PZ
6579}
6580
9c40cef2
TG
6581static inline void sched_submit_work(struct task_struct *tsk)
6582{
c1cecf88
SAS
6583 unsigned int task_flags;
6584
b03fbd4f 6585 if (task_is_running(tsk))
9c40cef2 6586 return;
6d25be57 6587
c1cecf88 6588 task_flags = tsk->flags;
6d25be57 6589 /*
b945efcd
TG
6590 * If a worker goes to sleep, notify and ask workqueue whether it
6591 * wants to wake up a task to maintain concurrency.
6d25be57 6592 */
c1cecf88 6593 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
c1cecf88 6594 if (task_flags & PF_WQ_WORKER)
771b53d0
JA
6595 wq_worker_sleeping(tsk);
6596 else
6597 io_wq_worker_sleeping(tsk);
6d25be57
TG
6598 }
6599
401e4963
JK
6600 /*
6601 * spinlock and rwlock must not flush block requests. This will
6602 * deadlock if the callback attempts to acquire a lock which is
6603 * already acquired.
6604 */
6605 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
b0fdc013 6606
9c40cef2
TG
6607 /*
6608 * If we are going to sleep and we have plugged IO queued,
6609 * make sure to submit it to avoid deadlocks.
6610 */
aa8dccca 6611 blk_flush_plug(tsk->plug, true);
9c40cef2
TG
6612}
6613
6d25be57
TG
6614static void sched_update_worker(struct task_struct *tsk)
6615{
771b53d0
JA
6616 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6617 if (tsk->flags & PF_WQ_WORKER)
6618 wq_worker_running(tsk);
6619 else
6620 io_wq_worker_running(tsk);
6621 }
6d25be57
TG
6622}
6623
722a9f92 6624asmlinkage __visible void __sched schedule(void)
c259e01a 6625{
9c40cef2
TG
6626 struct task_struct *tsk = current;
6627
6628 sched_submit_work(tsk);
bfd9b2b5 6629 do {
b30f0e3f 6630 preempt_disable();
b4bfa3fc 6631 __schedule(SM_NONE);
b30f0e3f 6632 sched_preempt_enable_no_resched();
bfd9b2b5 6633 } while (need_resched());
6d25be57 6634 sched_update_worker(tsk);
c259e01a 6635}
1da177e4
LT
6636EXPORT_SYMBOL(schedule);
6637
8663effb
SRV
6638/*
6639 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6640 * state (have scheduled out non-voluntarily) by making sure that all
6641 * tasks have either left the run queue or have gone into user space.
6642 * As idle tasks do not do either, they must not ever be preempted
6643 * (schedule out non-voluntarily).
6644 *
6645 * schedule_idle() is similar to schedule_preempt_disable() except that it
6646 * never enables preemption because it does not call sched_submit_work().
6647 */
6648void __sched schedule_idle(void)
6649{
6650 /*
6651 * As this skips calling sched_submit_work(), which the idle task does
6652 * regardless because that function is a nop when the task is in a
6653 * TASK_RUNNING state, make sure this isn't used someplace that the
6654 * current task can be in any other state. Note, idle is always in the
6655 * TASK_RUNNING state.
6656 */
2f064a59 6657 WARN_ON_ONCE(current->__state);
8663effb 6658 do {
b4bfa3fc 6659 __schedule(SM_NONE);
8663effb
SRV
6660 } while (need_resched());
6661}
6662
24a9c541 6663#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
722a9f92 6664asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
6665{
6666 /*
6667 * If we come here after a random call to set_need_resched(),
6668 * or we have been woken up remotely but the IPI has not yet arrived,
6669 * we haven't yet exited the RCU idle mode. Do it here manually until
6670 * we find a better solution.
7cc78f8f
AL
6671 *
6672 * NB: There are buggy callers of this function. Ideally we
c467ea76 6673 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 6674 * too frequently to make sense yet.
20ab65e3 6675 */
7cc78f8f 6676 enum ctx_state prev_state = exception_enter();
20ab65e3 6677 schedule();
7cc78f8f 6678 exception_exit(prev_state);
20ab65e3
FW
6679}
6680#endif
6681
c5491ea7
TG
6682/**
6683 * schedule_preempt_disabled - called with preemption disabled
6684 *
6685 * Returns with preemption disabled. Note: preempt_count must be 1
6686 */
6687void __sched schedule_preempt_disabled(void)
6688{
ba74c144 6689 sched_preempt_enable_no_resched();
c5491ea7
TG
6690 schedule();
6691 preempt_disable();
6692}
6693
6991436c
TG
6694#ifdef CONFIG_PREEMPT_RT
6695void __sched notrace schedule_rtlock(void)
6696{
6697 do {
6698 preempt_disable();
6699 __schedule(SM_RTLOCK_WAIT);
6700 sched_preempt_enable_no_resched();
6701 } while (need_resched());
6702}
6703NOKPROBE_SYMBOL(schedule_rtlock);
6704#endif
6705
06b1f808 6706static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
6707{
6708 do {
47252cfb
SR
6709 /*
6710 * Because the function tracer can trace preempt_count_sub()
6711 * and it also uses preempt_enable/disable_notrace(), if
6712 * NEED_RESCHED is set, the preempt_enable_notrace() called
6713 * by the function tracer will call this function again and
6714 * cause infinite recursion.
6715 *
6716 * Preemption must be disabled here before the function
6717 * tracer can trace. Break up preempt_disable() into two
6718 * calls. One to disable preemption without fear of being
6719 * traced. The other to still record the preemption latency,
6720 * which can also be traced by the function tracer.
6721 */
499d7955 6722 preempt_disable_notrace();
47252cfb 6723 preempt_latency_start(1);
b4bfa3fc 6724 __schedule(SM_PREEMPT);
47252cfb 6725 preempt_latency_stop(1);
499d7955 6726 preempt_enable_no_resched_notrace();
a18b5d01
FW
6727
6728 /*
6729 * Check again in case we missed a preemption opportunity
6730 * between schedule and now.
6731 */
a18b5d01
FW
6732 } while (need_resched());
6733}
6734
c1a280b6 6735#ifdef CONFIG_PREEMPTION
1da177e4 6736/*
a49b4f40
VS
6737 * This is the entry point to schedule() from in-kernel preemption
6738 * off of preempt_enable.
1da177e4 6739 */
722a9f92 6740asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 6741{
1da177e4
LT
6742 /*
6743 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 6744 * we do not want to preempt the current task. Just return..
1da177e4 6745 */
fbb00b56 6746 if (likely(!preemptible()))
1da177e4 6747 return;
a18b5d01 6748 preempt_schedule_common();
1da177e4 6749}
376e2424 6750NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 6751EXPORT_SYMBOL(preempt_schedule);
009f60e2 6752
2c9a98d3 6753#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6754#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6755#ifndef preempt_schedule_dynamic_enabled
6756#define preempt_schedule_dynamic_enabled preempt_schedule
6757#define preempt_schedule_dynamic_disabled NULL
6758#endif
6759DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
ef72661e 6760EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
99cf983c
MR
6761#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6762static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6763void __sched notrace dynamic_preempt_schedule(void)
6764{
6765 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6766 return;
6767 preempt_schedule();
6768}
6769NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6770EXPORT_SYMBOL(dynamic_preempt_schedule);
6771#endif
2c9a98d3 6772#endif
2c9a98d3 6773
009f60e2 6774/**
4eaca0a8 6775 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
6776 *
6777 * The tracing infrastructure uses preempt_enable_notrace to prevent
6778 * recursion and tracing preempt enabling caused by the tracing
6779 * infrastructure itself. But as tracing can happen in areas coming
6780 * from userspace or just about to enter userspace, a preempt enable
6781 * can occur before user_exit() is called. This will cause the scheduler
6782 * to be called when the system is still in usermode.
6783 *
6784 * To prevent this, the preempt_enable_notrace will use this function
6785 * instead of preempt_schedule() to exit user context if needed before
6786 * calling the scheduler.
6787 */
4eaca0a8 6788asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
6789{
6790 enum ctx_state prev_ctx;
6791
6792 if (likely(!preemptible()))
6793 return;
6794
6795 do {
47252cfb
SR
6796 /*
6797 * Because the function tracer can trace preempt_count_sub()
6798 * and it also uses preempt_enable/disable_notrace(), if
6799 * NEED_RESCHED is set, the preempt_enable_notrace() called
6800 * by the function tracer will call this function again and
6801 * cause infinite recursion.
6802 *
6803 * Preemption must be disabled here before the function
6804 * tracer can trace. Break up preempt_disable() into two
6805 * calls. One to disable preemption without fear of being
6806 * traced. The other to still record the preemption latency,
6807 * which can also be traced by the function tracer.
6808 */
3d8f74dd 6809 preempt_disable_notrace();
47252cfb 6810 preempt_latency_start(1);
009f60e2
ON
6811 /*
6812 * Needs preempt disabled in case user_exit() is traced
6813 * and the tracer calls preempt_enable_notrace() causing
6814 * an infinite recursion.
6815 */
6816 prev_ctx = exception_enter();
b4bfa3fc 6817 __schedule(SM_PREEMPT);
009f60e2
ON
6818 exception_exit(prev_ctx);
6819
47252cfb 6820 preempt_latency_stop(1);
3d8f74dd 6821 preempt_enable_no_resched_notrace();
009f60e2
ON
6822 } while (need_resched());
6823}
4eaca0a8 6824EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 6825
2c9a98d3 6826#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 6827#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
6828#ifndef preempt_schedule_notrace_dynamic_enabled
6829#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6830#define preempt_schedule_notrace_dynamic_disabled NULL
2c9a98d3 6831#endif
8a69fe0b 6832DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
ef72661e 6833EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
99cf983c
MR
6834#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6835static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6836void __sched notrace dynamic_preempt_schedule_notrace(void)
c597bfdd 6837{
99cf983c
MR
6838 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6839 return;
6840 preempt_schedule_notrace();
c597bfdd 6841}
99cf983c
MR
6842NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6843EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6844#endif
2c9a98d3 6845#endif
c597bfdd 6846
c1a280b6 6847#endif /* CONFIG_PREEMPTION */
826bfeb3 6848
1da177e4 6849/*
a49b4f40 6850 * This is the entry point to schedule() from kernel preemption
1da177e4
LT
6851 * off of irq context.
6852 * Note, that this is called and return with irqs disabled. This will
6853 * protect us against recursive calling from irq.
6854 */
722a9f92 6855asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 6856{
b22366cd 6857 enum ctx_state prev_state;
6478d880 6858
2ed6e34f 6859 /* Catch callers which need to be fixed */
f27dde8d 6860 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 6861
b22366cd
FW
6862 prev_state = exception_enter();
6863
3a5c359a 6864 do {
3d8f74dd 6865 preempt_disable();
3a5c359a 6866 local_irq_enable();
b4bfa3fc 6867 __schedule(SM_PREEMPT);
3a5c359a 6868 local_irq_disable();
3d8f74dd 6869 sched_preempt_enable_no_resched();
5ed0cec0 6870 } while (need_resched());
b22366cd
FW
6871
6872 exception_exit(prev_state);
1da177e4
LT
6873}
6874
ac6424b9 6875int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
95cdf3b7 6876 void *key)
1da177e4 6877{
062d3f95 6878 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
63859d4f 6879 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 6880}
1da177e4
LT
6881EXPORT_SYMBOL(default_wake_function);
6882
f558c2b8
PZ
6883static void __setscheduler_prio(struct task_struct *p, int prio)
6884{
6885 if (dl_prio(prio))
6886 p->sched_class = &dl_sched_class;
6887 else if (rt_prio(prio))
6888 p->sched_class = &rt_sched_class;
6889 else
6890 p->sched_class = &fair_sched_class;
6891
6892 p->prio = prio;
6893}
6894
b29739f9
IM
6895#ifdef CONFIG_RT_MUTEXES
6896
acd58620
PZ
6897static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6898{
6899 if (pi_task)
6900 prio = min(prio, pi_task->prio);
6901
6902 return prio;
6903}
6904
6905static inline int rt_effective_prio(struct task_struct *p, int prio)
6906{
6907 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6908
6909 return __rt_effective_prio(pi_task, prio);
6910}
6911
b29739f9
IM
6912/*
6913 * rt_mutex_setprio - set the current priority of a task
acd58620
PZ
6914 * @p: task to boost
6915 * @pi_task: donor task
b29739f9
IM
6916 *
6917 * This function changes the 'effective' priority of a task. It does
6918 * not touch ->normal_prio like __setscheduler().
6919 *
c365c292
TG
6920 * Used by the rt_mutex code to implement priority inheritance
6921 * logic. Call site only calls if the priority of the task changed.
b29739f9 6922 */
acd58620 6923void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
b29739f9 6924{
acd58620 6925 int prio, oldprio, queued, running, queue_flag =
7a57f32a 6926 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
83ab0aa0 6927 const struct sched_class *prev_class;
eb580751
PZ
6928 struct rq_flags rf;
6929 struct rq *rq;
b29739f9 6930
acd58620
PZ
6931 /* XXX used to be waiter->prio, not waiter->task->prio */
6932 prio = __rt_effective_prio(pi_task, p->normal_prio);
6933
6934 /*
6935 * If nothing changed; bail early.
6936 */
6937 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6938 return;
b29739f9 6939
eb580751 6940 rq = __task_rq_lock(p, &rf);
80f5c1b8 6941 update_rq_clock(rq);
acd58620
PZ
6942 /*
6943 * Set under pi_lock && rq->lock, such that the value can be used under
6944 * either lock.
6945 *
6946 * Note that there is loads of tricky to make this pointer cache work
6947 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6948 * ensure a task is de-boosted (pi_task is set to NULL) before the
6949 * task is allowed to run again (and can exit). This ensures the pointer
b19a888c 6950 * points to a blocked task -- which guarantees the task is present.
acd58620
PZ
6951 */
6952 p->pi_top_task = pi_task;
6953
6954 /*
6955 * For FIFO/RR we only need to set prio, if that matches we're done.
6956 */
6957 if (prio == p->prio && !dl_prio(prio))
6958 goto out_unlock;
b29739f9 6959
1c4dd99b
TG
6960 /*
6961 * Idle task boosting is a nono in general. There is one
6962 * exception, when PREEMPT_RT and NOHZ is active:
6963 *
6964 * The idle task calls get_next_timer_interrupt() and holds
6965 * the timer wheel base->lock on the CPU and another CPU wants
6966 * to access the timer (probably to cancel it). We can safely
6967 * ignore the boosting request, as the idle CPU runs this code
6968 * with interrupts disabled and will complete the lock
6969 * protected section without being interrupted. So there is no
6970 * real need to boost.
6971 */
6972 if (unlikely(p == rq->idle)) {
6973 WARN_ON(p != rq->curr);
6974 WARN_ON(p->pi_blocked_on);
6975 goto out_unlock;
6976 }
6977
b91473ff 6978 trace_sched_pi_setprio(p, pi_task);
d5f9f942 6979 oldprio = p->prio;
ff77e468
PZ
6980
6981 if (oldprio == prio)
6982 queue_flag &= ~DEQUEUE_MOVE;
6983
83ab0aa0 6984 prev_class = p->sched_class;
da0c1e65 6985 queued = task_on_rq_queued(p);
051a1d1a 6986 running = task_current(rq, p);
da0c1e65 6987 if (queued)
ff77e468 6988 dequeue_task(rq, p, queue_flag);
0e1f3483 6989 if (running)
f3cd1c4e 6990 put_prev_task(rq, p);
dd41f596 6991
2d3d891d
DF
6992 /*
6993 * Boosting condition are:
6994 * 1. -rt task is running and holds mutex A
6995 * --> -dl task blocks on mutex A
6996 *
6997 * 2. -dl task is running and holds mutex A
6998 * --> -dl task blocks on mutex A and could preempt the
6999 * running task
7000 */
7001 if (dl_prio(prio)) {
466af29b 7002 if (!dl_prio(p->normal_prio) ||
740797ce
JL
7003 (pi_task && dl_prio(pi_task->prio) &&
7004 dl_entity_preempt(&pi_task->dl, &p->dl))) {
2279f540 7005 p->dl.pi_se = pi_task->dl.pi_se;
ff77e468 7006 queue_flag |= ENQUEUE_REPLENISH;
2279f540
JL
7007 } else {
7008 p->dl.pi_se = &p->dl;
7009 }
2d3d891d
DF
7010 } else if (rt_prio(prio)) {
7011 if (dl_prio(oldprio))
2279f540 7012 p->dl.pi_se = &p->dl;
2d3d891d 7013 if (oldprio < prio)
ff77e468 7014 queue_flag |= ENQUEUE_HEAD;
2d3d891d
DF
7015 } else {
7016 if (dl_prio(oldprio))
2279f540 7017 p->dl.pi_se = &p->dl;
746db944
BS
7018 if (rt_prio(oldprio))
7019 p->rt.timeout = 0;
2d3d891d 7020 }
dd41f596 7021
f558c2b8 7022 __setscheduler_prio(p, prio);
b29739f9 7023
da0c1e65 7024 if (queued)
ff77e468 7025 enqueue_task(rq, p, queue_flag);
a399d233 7026 if (running)
03b7fad1 7027 set_next_task(rq, p);
cb469845 7028
da7a735e 7029 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 7030out_unlock:
d1ccc66d
IM
7031 /* Avoid rq from going away on us: */
7032 preempt_disable();
4c9a4bc8 7033
565790d2
PZ
7034 rq_unpin_lock(rq, &rf);
7035 __balance_callbacks(rq);
5cb9eaa3 7036 raw_spin_rq_unlock(rq);
565790d2 7037
4c9a4bc8 7038 preempt_enable();
b29739f9 7039}
acd58620
PZ
7040#else
7041static inline int rt_effective_prio(struct task_struct *p, int prio)
7042{
7043 return prio;
7044}
b29739f9 7045#endif
d50dde5a 7046
36c8b586 7047void set_user_nice(struct task_struct *p, long nice)
1da177e4 7048{
49bd21ef 7049 bool queued, running;
53a23364 7050 int old_prio;
eb580751 7051 struct rq_flags rf;
70b97a7f 7052 struct rq *rq;
1da177e4 7053
75e45d51 7054 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
7055 return;
7056 /*
7057 * We have to be careful, if called from sys_setpriority(),
7058 * the task might be in the middle of scheduling on another CPU.
7059 */
eb580751 7060 rq = task_rq_lock(p, &rf);
2fb8d367
PZ
7061 update_rq_clock(rq);
7062
1da177e4
LT
7063 /*
7064 * The RT priorities are set via sched_setscheduler(), but we still
7065 * allow the 'normal' nice value to be set - but as expected
b19a888c 7066 * it won't have any effect on scheduling until the task is
aab03e05 7067 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 7068 */
aab03e05 7069 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
7070 p->static_prio = NICE_TO_PRIO(nice);
7071 goto out_unlock;
7072 }
da0c1e65 7073 queued = task_on_rq_queued(p);
49bd21ef 7074 running = task_current(rq, p);
da0c1e65 7075 if (queued)
7a57f32a 7076 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
49bd21ef
PZ
7077 if (running)
7078 put_prev_task(rq, p);
1da177e4 7079
1da177e4 7080 p->static_prio = NICE_TO_PRIO(nice);
b1e82065 7081 set_load_weight(p, true);
b29739f9
IM
7082 old_prio = p->prio;
7083 p->prio = effective_prio(p);
1da177e4 7084
5443a0be 7085 if (queued)
7134b3e9 7086 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
49bd21ef 7087 if (running)
03b7fad1 7088 set_next_task(rq, p);
5443a0be
FW
7089
7090 /*
7091 * If the task increased its priority or is running and
7092 * lowered its priority, then reschedule its CPU:
7093 */
7094 p->sched_class->prio_changed(rq, p, old_prio);
7095
1da177e4 7096out_unlock:
eb580751 7097 task_rq_unlock(rq, p, &rf);
1da177e4 7098}
1da177e4
LT
7099EXPORT_SYMBOL(set_user_nice);
7100
e43379f1 7101/*
700a7833
CG
7102 * is_nice_reduction - check if nice value is an actual reduction
7103 *
7104 * Similar to can_nice() but does not perform a capability check.
7105 *
e43379f1
MM
7106 * @p: task
7107 * @nice: nice value
7108 */
700a7833 7109static bool is_nice_reduction(const struct task_struct *p, const int nice)
e43379f1 7110{
d1ccc66d 7111 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7aa2c016 7112 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 7113
700a7833
CG
7114 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7115}
7116
7117/*
7118 * can_nice - check if a task can reduce its nice value
7119 * @p: task
7120 * @nice: nice value
7121 */
7122int can_nice(const struct task_struct *p, const int nice)
7123{
7124 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
e43379f1
MM
7125}
7126
1da177e4
LT
7127#ifdef __ARCH_WANT_SYS_NICE
7128
7129/*
7130 * sys_nice - change the priority of the current process.
7131 * @increment: priority increment
7132 *
7133 * sys_setpriority is a more generic, but much slower function that
7134 * does similar things.
7135 */
5add95d4 7136SYSCALL_DEFINE1(nice, int, increment)
1da177e4 7137{
48f24c4d 7138 long nice, retval;
1da177e4
LT
7139
7140 /*
7141 * Setpriority might change our priority at the same moment.
7142 * We don't have to worry. Conceptually one call occurs first
7143 * and we have a single winner.
7144 */
a9467fa3 7145 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 7146 nice = task_nice(current) + increment;
1da177e4 7147
a9467fa3 7148 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
7149 if (increment < 0 && !can_nice(current, nice))
7150 return -EPERM;
7151
1da177e4
LT
7152 retval = security_task_setnice(current, nice);
7153 if (retval)
7154 return retval;
7155
7156 set_user_nice(current, nice);
7157 return 0;
7158}
7159
7160#endif
7161
7162/**
7163 * task_prio - return the priority value of a given task.
7164 * @p: the task in question.
7165 *
e69f6186 7166 * Return: The priority value as seen by users in /proc.
c541bb78
DE
7167 *
7168 * sched policy return value kernel prio user prio/nice
7169 *
7170 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7171 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7172 * deadline -101 -1 0
1da177e4 7173 */
36c8b586 7174int task_prio(const struct task_struct *p)
1da177e4
LT
7175{
7176 return p->prio - MAX_RT_PRIO;
7177}
7178
1da177e4 7179/**
d1ccc66d 7180 * idle_cpu - is a given CPU idle currently?
1da177e4 7181 * @cpu: the processor in question.
e69f6186
YB
7182 *
7183 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
7184 */
7185int idle_cpu(int cpu)
7186{
908a3283
TG
7187 struct rq *rq = cpu_rq(cpu);
7188
7189 if (rq->curr != rq->idle)
7190 return 0;
7191
7192 if (rq->nr_running)
7193 return 0;
7194
7195#ifdef CONFIG_SMP
126c2092 7196 if (rq->ttwu_pending)
908a3283
TG
7197 return 0;
7198#endif
7199
7200 return 1;
1da177e4
LT
7201}
7202
943d355d
RJ
7203/**
7204 * available_idle_cpu - is a given CPU idle for enqueuing work.
7205 * @cpu: the CPU in question.
7206 *
7207 * Return: 1 if the CPU is currently idle. 0 otherwise.
7208 */
7209int available_idle_cpu(int cpu)
7210{
7211 if (!idle_cpu(cpu))
7212 return 0;
7213
247f2f6f
RJ
7214 if (vcpu_is_preempted(cpu))
7215 return 0;
7216
908a3283 7217 return 1;
1da177e4
LT
7218}
7219
1da177e4 7220/**
d1ccc66d 7221 * idle_task - return the idle task for a given CPU.
1da177e4 7222 * @cpu: the processor in question.
e69f6186 7223 *
d1ccc66d 7224 * Return: The idle task for the CPU @cpu.
1da177e4 7225 */
36c8b586 7226struct task_struct *idle_task(int cpu)
1da177e4
LT
7227{
7228 return cpu_rq(cpu)->idle;
7229}
7230
7d6a905f
VK
7231#ifdef CONFIG_SMP
7232/*
7233 * This function computes an effective utilization for the given CPU, to be
7234 * used for frequency selection given the linear relation: f = u * f_max.
7235 *
7236 * The scheduler tracks the following metrics:
7237 *
7238 * cpu_util_{cfs,rt,dl,irq}()
7239 * cpu_bw_dl()
7240 *
7241 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7242 * synchronized windows and are thus directly comparable.
7243 *
7244 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7245 * which excludes things like IRQ and steal-time. These latter are then accrued
7246 * in the irq utilization.
7247 *
7248 * The DL bandwidth number otoh is not a measured metric but a value computed
7249 * based on the task model parameters and gives the minimal utilization
7250 * required to meet deadlines.
7251 */
a5418be9 7252unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
bb447999 7253 enum cpu_util_type type,
7d6a905f
VK
7254 struct task_struct *p)
7255{
bb447999 7256 unsigned long dl_util, util, irq, max;
7d6a905f
VK
7257 struct rq *rq = cpu_rq(cpu);
7258
bb447999
DE
7259 max = arch_scale_cpu_capacity(cpu);
7260
7d6a905f
VK
7261 if (!uclamp_is_used() &&
7262 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7263 return max;
7264 }
7265
7266 /*
7267 * Early check to see if IRQ/steal time saturates the CPU, can be
7268 * because of inaccuracies in how we track these -- see
7269 * update_irq_load_avg().
7270 */
7271 irq = cpu_util_irq(rq);
7272 if (unlikely(irq >= max))
7273 return max;
7274
7275 /*
7276 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7277 * CFS tasks and we use the same metric to track the effective
7278 * utilization (PELT windows are synchronized) we can directly add them
7279 * to obtain the CPU's actual utilization.
7280 *
7281 * CFS and RT utilization can be boosted or capped, depending on
7282 * utilization clamp constraints requested by currently RUNNABLE
7283 * tasks.
7284 * When there are no CFS RUNNABLE tasks, clamps are released and
7285 * frequency will be gracefully reduced with the utilization decay.
7286 */
7287 util = util_cfs + cpu_util_rt(rq);
7288 if (type == FREQUENCY_UTIL)
7289 util = uclamp_rq_util_with(rq, util, p);
7290
7291 dl_util = cpu_util_dl(rq);
7292
7293 /*
7294 * For frequency selection we do not make cpu_util_dl() a permanent part
7295 * of this sum because we want to use cpu_bw_dl() later on, but we need
7296 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7297 * that we select f_max when there is no idle time.
7298 *
7299 * NOTE: numerical errors or stop class might cause us to not quite hit
7300 * saturation when we should -- something for later.
7301 */
7302 if (util + dl_util >= max)
7303 return max;
7304
7305 /*
7306 * OTOH, for energy computation we need the estimated running time, so
7307 * include util_dl and ignore dl_bw.
7308 */
7309 if (type == ENERGY_UTIL)
7310 util += dl_util;
7311
7312 /*
7313 * There is still idle time; further improve the number by using the
7314 * irq metric. Because IRQ/steal time is hidden from the task clock we
7315 * need to scale the task numbers:
7316 *
7317 * max - irq
7318 * U' = irq + --------- * U
7319 * max
7320 */
7321 util = scale_irq_capacity(util, irq, max);
7322 util += irq;
7323
7324 /*
7325 * Bandwidth required by DEADLINE must always be granted while, for
7326 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7327 * to gracefully reduce the frequency when no tasks show up for longer
7328 * periods of time.
7329 *
7330 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7331 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7332 * an interface. So, we only do the latter for now.
7333 */
7334 if (type == FREQUENCY_UTIL)
7335 util += cpu_bw_dl(rq);
7336
7337 return min(max, util);
7338}
a5418be9 7339
bb447999 7340unsigned long sched_cpu_util(int cpu)
a5418be9 7341{
bb447999 7342 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
a5418be9 7343}
7d6a905f
VK
7344#endif /* CONFIG_SMP */
7345
1da177e4
LT
7346/**
7347 * find_process_by_pid - find a process with a matching PID value.
7348 * @pid: the pid in question.
e69f6186
YB
7349 *
7350 * The task of @pid, if found. %NULL otherwise.
1da177e4 7351 */
a9957449 7352static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 7353{
228ebcbe 7354 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
7355}
7356
c13db6b1
SR
7357/*
7358 * sched_setparam() passes in -1 for its policy, to let the functions
7359 * it calls know not to change it.
7360 */
7361#define SETPARAM_POLICY -1
7362
c365c292
TG
7363static void __setscheduler_params(struct task_struct *p,
7364 const struct sched_attr *attr)
1da177e4 7365{
d50dde5a
DF
7366 int policy = attr->sched_policy;
7367
c13db6b1 7368 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
7369 policy = p->policy;
7370
1da177e4 7371 p->policy = policy;
d50dde5a 7372
aab03e05
DF
7373 if (dl_policy(policy))
7374 __setparam_dl(p, attr);
39fd8fd2 7375 else if (fair_policy(policy))
d50dde5a
DF
7376 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7377
39fd8fd2
PZ
7378 /*
7379 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7380 * !rt_policy. Always setting this ensures that things like
7381 * getparam()/getattr() don't report silly values for !rt tasks.
7382 */
7383 p->rt_priority = attr->sched_priority;
383afd09 7384 p->normal_prio = normal_prio(p);
b1e82065 7385 set_load_weight(p, true);
c365c292 7386}
39fd8fd2 7387
c69e8d9c 7388/*
d1ccc66d 7389 * Check the target process has a UID that matches the current process's:
c69e8d9c
DH
7390 */
7391static bool check_same_owner(struct task_struct *p)
7392{
7393 const struct cred *cred = current_cred(), *pcred;
7394 bool match;
7395
7396 rcu_read_lock();
7397 pcred = __task_cred(p);
9c806aa0
EB
7398 match = (uid_eq(cred->euid, pcred->euid) ||
7399 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
7400 rcu_read_unlock();
7401 return match;
7402}
7403
700a7833
CG
7404/*
7405 * Allow unprivileged RT tasks to decrease priority.
7406 * Only issue a capable test if needed and only once to avoid an audit
7407 * event on permitted non-privileged operations:
7408 */
7409static int user_check_sched_setscheduler(struct task_struct *p,
7410 const struct sched_attr *attr,
7411 int policy, int reset_on_fork)
7412{
7413 if (fair_policy(policy)) {
7414 if (attr->sched_nice < task_nice(p) &&
7415 !is_nice_reduction(p, attr->sched_nice))
7416 goto req_priv;
7417 }
7418
7419 if (rt_policy(policy)) {
7420 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7421
7422 /* Can't set/change the rt policy: */
7423 if (policy != p->policy && !rlim_rtprio)
7424 goto req_priv;
7425
7426 /* Can't increase priority: */
7427 if (attr->sched_priority > p->rt_priority &&
7428 attr->sched_priority > rlim_rtprio)
7429 goto req_priv;
7430 }
7431
7432 /*
7433 * Can't set/change SCHED_DEADLINE policy at all for now
7434 * (safest behavior); in the future we would like to allow
7435 * unprivileged DL tasks to increase their relative deadline
7436 * or reduce their runtime (both ways reducing utilization)
7437 */
7438 if (dl_policy(policy))
7439 goto req_priv;
7440
7441 /*
7442 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7443 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7444 */
7445 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7446 if (!is_nice_reduction(p, task_nice(p)))
7447 goto req_priv;
7448 }
7449
7450 /* Can't change other user's priorities: */
7451 if (!check_same_owner(p))
7452 goto req_priv;
7453
7454 /* Normal users shall not reset the sched_reset_on_fork flag: */
7455 if (p->sched_reset_on_fork && !reset_on_fork)
7456 goto req_priv;
7457
7458 return 0;
7459
7460req_priv:
7461 if (!capable(CAP_SYS_NICE))
7462 return -EPERM;
7463
7464 return 0;
7465}
7466
d50dde5a
DF
7467static int __sched_setscheduler(struct task_struct *p,
7468 const struct sched_attr *attr,
dbc7f069 7469 bool user, bool pi)
1da177e4 7470{
f558c2b8
PZ
7471 int oldpolicy = -1, policy = attr->sched_policy;
7472 int retval, oldprio, newprio, queued, running;
83ab0aa0 7473 const struct sched_class *prev_class;
8e5bad7d 7474 struct balance_callback *head;
eb580751 7475 struct rq_flags rf;
ca94c442 7476 int reset_on_fork;
7a57f32a 7477 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
eb580751 7478 struct rq *rq;
1da177e4 7479
896bbb25
SRV
7480 /* The pi code expects interrupts enabled */
7481 BUG_ON(pi && in_interrupt());
1da177e4 7482recheck:
d1ccc66d 7483 /* Double check policy once rq lock held: */
ca94c442
LP
7484 if (policy < 0) {
7485 reset_on_fork = p->sched_reset_on_fork;
1da177e4 7486 policy = oldpolicy = p->policy;
ca94c442 7487 } else {
7479f3c9 7488 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 7489
20f9cd2a 7490 if (!valid_policy(policy))
ca94c442
LP
7491 return -EINVAL;
7492 }
7493
794a56eb 7494 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7479f3c9
PZ
7495 return -EINVAL;
7496
1da177e4
LT
7497 /*
7498 * Valid priorities for SCHED_FIFO and SCHED_RR are
ae18ad28 7499 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
dd41f596 7500 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 7501 */
ae18ad28 7502 if (attr->sched_priority > MAX_RT_PRIO-1)
1da177e4 7503 return -EINVAL;
aab03e05
DF
7504 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7505 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
7506 return -EINVAL;
7507
725aad24 7508 if (user) {
700a7833
CG
7509 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7510 if (retval)
7511 return retval;
7512
794a56eb
JL
7513 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7514 return -EINVAL;
7515
b0ae1981 7516 retval = security_task_setscheduler(p);
725aad24
JF
7517 if (retval)
7518 return retval;
7519 }
7520
a509a7cd
PB
7521 /* Update task specific "requested" clamps */
7522 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7523 retval = uclamp_validate(p, attr);
7524 if (retval)
7525 return retval;
7526 }
7527
710da3c8
JL
7528 if (pi)
7529 cpuset_read_lock();
7530
b29739f9 7531 /*
d1ccc66d 7532 * Make sure no PI-waiters arrive (or leave) while we are
b29739f9 7533 * changing the priority of the task:
0122ec5b 7534 *
25985edc 7535 * To be able to change p->policy safely, the appropriate
1da177e4
LT
7536 * runqueue lock must be held.
7537 */
eb580751 7538 rq = task_rq_lock(p, &rf);
80f5c1b8 7539 update_rq_clock(rq);
dc61b1d6 7540
34f971f6 7541 /*
d1ccc66d 7542 * Changing the policy of the stop threads its a very bad idea:
34f971f6
PZ
7543 */
7544 if (p == rq->stop) {
4b211f2b
MP
7545 retval = -EINVAL;
7546 goto unlock;
34f971f6
PZ
7547 }
7548
a51e9198 7549 /*
d6b1e911
TG
7550 * If not changing anything there's no need to proceed further,
7551 * but store a possible modification of reset_on_fork.
a51e9198 7552 */
d50dde5a 7553 if (unlikely(policy == p->policy)) {
d0ea0268 7554 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
7555 goto change;
7556 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7557 goto change;
75381608 7558 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 7559 goto change;
a509a7cd
PB
7560 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7561 goto change;
d50dde5a 7562
d6b1e911 7563 p->sched_reset_on_fork = reset_on_fork;
4b211f2b
MP
7564 retval = 0;
7565 goto unlock;
a51e9198 7566 }
d50dde5a 7567change:
a51e9198 7568
dc61b1d6 7569 if (user) {
332ac17e 7570#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
7571 /*
7572 * Do not allow realtime tasks into groups that have no runtime
7573 * assigned.
7574 */
7575 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
7576 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7577 !task_group_is_autogroup(task_group(p))) {
4b211f2b
MP
7578 retval = -EPERM;
7579 goto unlock;
dc61b1d6 7580 }
dc61b1d6 7581#endif
332ac17e 7582#ifdef CONFIG_SMP
794a56eb
JL
7583 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7584 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
332ac17e 7585 cpumask_t *span = rq->rd->span;
332ac17e
DF
7586
7587 /*
7588 * Don't allow tasks with an affinity mask smaller than
7589 * the entire root_domain to become SCHED_DEADLINE. We
7590 * will also fail if there's no bandwidth available.
7591 */
3bd37062 7592 if (!cpumask_subset(span, p->cpus_ptr) ||
e4099a5e 7593 rq->rd->dl_bw.bw == 0) {
4b211f2b
MP
7594 retval = -EPERM;
7595 goto unlock;
332ac17e
DF
7596 }
7597 }
7598#endif
7599 }
dc61b1d6 7600
d1ccc66d 7601 /* Re-check policy now with rq lock held: */
1da177e4
LT
7602 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7603 policy = oldpolicy = -1;
eb580751 7604 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7605 if (pi)
7606 cpuset_read_unlock();
1da177e4
LT
7607 goto recheck;
7608 }
332ac17e
DF
7609
7610 /*
7611 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7612 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7613 * is available.
7614 */
06a76fe0 7615 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4b211f2b
MP
7616 retval = -EBUSY;
7617 goto unlock;
332ac17e
DF
7618 }
7619
c365c292
TG
7620 p->sched_reset_on_fork = reset_on_fork;
7621 oldprio = p->prio;
7622
f558c2b8 7623 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
dbc7f069
PZ
7624 if (pi) {
7625 /*
7626 * Take priority boosted tasks into account. If the new
7627 * effective priority is unchanged, we just store the new
7628 * normal parameters and do not touch the scheduler class and
7629 * the runqueue. This will be done when the task deboost
7630 * itself.
7631 */
f558c2b8
PZ
7632 newprio = rt_effective_prio(p, newprio);
7633 if (newprio == oldprio)
ff77e468 7634 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
7635 }
7636
da0c1e65 7637 queued = task_on_rq_queued(p);
051a1d1a 7638 running = task_current(rq, p);
da0c1e65 7639 if (queued)
ff77e468 7640 dequeue_task(rq, p, queue_flags);
0e1f3483 7641 if (running)
f3cd1c4e 7642 put_prev_task(rq, p);
f6b53205 7643
83ab0aa0 7644 prev_class = p->sched_class;
a509a7cd 7645
f558c2b8
PZ
7646 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7647 __setscheduler_params(p, attr);
7648 __setscheduler_prio(p, newprio);
7649 }
a509a7cd 7650 __setscheduler_uclamp(p, attr);
f6b53205 7651
da0c1e65 7652 if (queued) {
81a44c54
TG
7653 /*
7654 * We enqueue to tail when the priority of a task is
7655 * increased (user space view).
7656 */
ff77e468
PZ
7657 if (oldprio < p->prio)
7658 queue_flags |= ENQUEUE_HEAD;
1de64443 7659
ff77e468 7660 enqueue_task(rq, p, queue_flags);
81a44c54 7661 }
a399d233 7662 if (running)
03b7fad1 7663 set_next_task(rq, p);
cb469845 7664
da7a735e 7665 check_class_changed(rq, p, prev_class, oldprio);
d1ccc66d
IM
7666
7667 /* Avoid rq from going away on us: */
7668 preempt_disable();
565790d2 7669 head = splice_balance_callbacks(rq);
eb580751 7670 task_rq_unlock(rq, p, &rf);
b29739f9 7671
710da3c8
JL
7672 if (pi) {
7673 cpuset_read_unlock();
dbc7f069 7674 rt_mutex_adjust_pi(p);
710da3c8 7675 }
95e02ca9 7676
d1ccc66d 7677 /* Run balance callbacks after we've adjusted the PI chain: */
565790d2 7678 balance_callbacks(rq, head);
4c9a4bc8 7679 preempt_enable();
95e02ca9 7680
1da177e4 7681 return 0;
4b211f2b
MP
7682
7683unlock:
7684 task_rq_unlock(rq, p, &rf);
710da3c8
JL
7685 if (pi)
7686 cpuset_read_unlock();
4b211f2b 7687 return retval;
1da177e4 7688}
961ccddd 7689
7479f3c9
PZ
7690static int _sched_setscheduler(struct task_struct *p, int policy,
7691 const struct sched_param *param, bool check)
7692{
7693 struct sched_attr attr = {
7694 .sched_policy = policy,
7695 .sched_priority = param->sched_priority,
7696 .sched_nice = PRIO_TO_NICE(p->static_prio),
7697 };
7698
c13db6b1
SR
7699 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7700 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
7701 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7702 policy &= ~SCHED_RESET_ON_FORK;
7703 attr.sched_policy = policy;
7704 }
7705
dbc7f069 7706 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 7707}
961ccddd
RR
7708/**
7709 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7710 * @p: the task in question.
7711 * @policy: new policy.
7712 * @param: structure containing the new RT priority.
7713 *
7318d4cc
PZ
7714 * Use sched_set_fifo(), read its comment.
7715 *
e69f6186
YB
7716 * Return: 0 on success. An error code otherwise.
7717 *
961ccddd
RR
7718 * NOTE that the task may be already dead.
7719 */
7720int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 7721 const struct sched_param *param)
961ccddd 7722{
7479f3c9 7723 return _sched_setscheduler(p, policy, param, true);
961ccddd 7724}
1da177e4 7725
d50dde5a
DF
7726int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7727{
dbc7f069 7728 return __sched_setscheduler(p, attr, true, true);
d50dde5a 7729}
d50dde5a 7730
794a56eb
JL
7731int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7732{
7733 return __sched_setscheduler(p, attr, false, true);
7734}
1eb5dde6 7735EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
794a56eb 7736
961ccddd
RR
7737/**
7738 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7739 * @p: the task in question.
7740 * @policy: new policy.
7741 * @param: structure containing the new RT priority.
7742 *
7743 * Just like sched_setscheduler, only don't bother checking if the
7744 * current context has permission. For example, this is needed in
7745 * stop_machine(): we create temporary high priority worker threads,
7746 * but our caller might not have that capability.
e69f6186
YB
7747 *
7748 * Return: 0 on success. An error code otherwise.
961ccddd
RR
7749 */
7750int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 7751 const struct sched_param *param)
961ccddd 7752{
7479f3c9 7753 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
7754}
7755
7318d4cc
PZ
7756/*
7757 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7758 * incapable of resource management, which is the one thing an OS really should
7759 * be doing.
7760 *
7761 * This is of course the reason it is limited to privileged users only.
7762 *
7763 * Worse still; it is fundamentally impossible to compose static priority
7764 * workloads. You cannot take two correctly working static prio workloads
7765 * and smash them together and still expect them to work.
7766 *
7767 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7768 *
7769 * MAX_RT_PRIO / 2
7770 *
7771 * The administrator _MUST_ configure the system, the kernel simply doesn't
7772 * know enough information to make a sensible choice.
7773 */
8b700983 7774void sched_set_fifo(struct task_struct *p)
7318d4cc
PZ
7775{
7776 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
8b700983 7777 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7778}
7779EXPORT_SYMBOL_GPL(sched_set_fifo);
7780
7781/*
7782 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7783 */
8b700983 7784void sched_set_fifo_low(struct task_struct *p)
7318d4cc
PZ
7785{
7786 struct sched_param sp = { .sched_priority = 1 };
8b700983 7787 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7318d4cc
PZ
7788}
7789EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7790
8b700983 7791void sched_set_normal(struct task_struct *p, int nice)
7318d4cc
PZ
7792{
7793 struct sched_attr attr = {
7794 .sched_policy = SCHED_NORMAL,
7795 .sched_nice = nice,
7796 };
8b700983 7797 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7318d4cc
PZ
7798}
7799EXPORT_SYMBOL_GPL(sched_set_normal);
961ccddd 7800
95cdf3b7
IM
7801static int
7802do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 7803{
1da177e4
LT
7804 struct sched_param lparam;
7805 struct task_struct *p;
36c8b586 7806 int retval;
1da177e4
LT
7807
7808 if (!param || pid < 0)
7809 return -EINVAL;
7810 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7811 return -EFAULT;
5fe1d75f
ON
7812
7813 rcu_read_lock();
7814 retval = -ESRCH;
1da177e4 7815 p = find_process_by_pid(pid);
710da3c8
JL
7816 if (likely(p))
7817 get_task_struct(p);
5fe1d75f 7818 rcu_read_unlock();
36c8b586 7819
710da3c8
JL
7820 if (likely(p)) {
7821 retval = sched_setscheduler(p, policy, &lparam);
7822 put_task_struct(p);
7823 }
7824
1da177e4
LT
7825 return retval;
7826}
7827
d50dde5a
DF
7828/*
7829 * Mimics kernel/events/core.c perf_copy_attr().
7830 */
d1ccc66d 7831static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
d50dde5a
DF
7832{
7833 u32 size;
7834 int ret;
7835
d1ccc66d 7836 /* Zero the full structure, so that a short copy will be nice: */
d50dde5a
DF
7837 memset(attr, 0, sizeof(*attr));
7838
7839 ret = get_user(size, &uattr->size);
7840 if (ret)
7841 return ret;
7842
d1ccc66d
IM
7843 /* ABI compatibility quirk: */
7844 if (!size)
d50dde5a 7845 size = SCHED_ATTR_SIZE_VER0;
dff3a85f 7846 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
d50dde5a
DF
7847 goto err_size;
7848
dff3a85f
AS
7849 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7850 if (ret) {
7851 if (ret == -E2BIG)
7852 goto err_size;
7853 return ret;
d50dde5a
DF
7854 }
7855
a509a7cd
PB
7856 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7857 size < SCHED_ATTR_SIZE_VER1)
7858 return -EINVAL;
7859
d50dde5a 7860 /*
d1ccc66d 7861 * XXX: Do we want to be lenient like existing syscalls; or do we want
d50dde5a
DF
7862 * to be strict and return an error on out-of-bounds values?
7863 */
75e45d51 7864 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 7865
e78c7bca 7866 return 0;
d50dde5a
DF
7867
7868err_size:
7869 put_user(sizeof(*attr), &uattr->size);
e78c7bca 7870 return -E2BIG;
d50dde5a
DF
7871}
7872
f4dddf90
QP
7873static void get_params(struct task_struct *p, struct sched_attr *attr)
7874{
7875 if (task_has_dl_policy(p))
7876 __getparam_dl(p, attr);
7877 else if (task_has_rt_policy(p))
7878 attr->sched_priority = p->rt_priority;
7879 else
7880 attr->sched_nice = task_nice(p);
7881}
7882
1da177e4
LT
7883/**
7884 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7885 * @pid: the pid in question.
7886 * @policy: new policy.
7887 * @param: structure containing the new RT priority.
e69f6186
YB
7888 *
7889 * Return: 0 on success. An error code otherwise.
1da177e4 7890 */
d1ccc66d 7891SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
1da177e4 7892{
c21761f1
JB
7893 if (policy < 0)
7894 return -EINVAL;
7895
1da177e4
LT
7896 return do_sched_setscheduler(pid, policy, param);
7897}
7898
7899/**
7900 * sys_sched_setparam - set/change the RT priority of a thread
7901 * @pid: the pid in question.
7902 * @param: structure containing the new RT priority.
e69f6186
YB
7903 *
7904 * Return: 0 on success. An error code otherwise.
1da177e4 7905 */
5add95d4 7906SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7907{
c13db6b1 7908 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
7909}
7910
d50dde5a
DF
7911/**
7912 * sys_sched_setattr - same as above, but with extended sched_attr
7913 * @pid: the pid in question.
5778fccf 7914 * @uattr: structure containing the extended parameters.
db66d756 7915 * @flags: for future extension.
d50dde5a 7916 */
6d35ab48
PZ
7917SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7918 unsigned int, flags)
d50dde5a
DF
7919{
7920 struct sched_attr attr;
7921 struct task_struct *p;
7922 int retval;
7923
6d35ab48 7924 if (!uattr || pid < 0 || flags)
d50dde5a
DF
7925 return -EINVAL;
7926
143cf23d
MK
7927 retval = sched_copy_attr(uattr, &attr);
7928 if (retval)
7929 return retval;
d50dde5a 7930
b14ed2c2 7931 if ((int)attr.sched_policy < 0)
dbdb2275 7932 return -EINVAL;
1d6362fa
PB
7933 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7934 attr.sched_policy = SETPARAM_POLICY;
d50dde5a
DF
7935
7936 rcu_read_lock();
7937 retval = -ESRCH;
7938 p = find_process_by_pid(pid);
a509a7cd
PB
7939 if (likely(p))
7940 get_task_struct(p);
d50dde5a
DF
7941 rcu_read_unlock();
7942
a509a7cd 7943 if (likely(p)) {
f4dddf90
QP
7944 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7945 get_params(p, &attr);
a509a7cd
PB
7946 retval = sched_setattr(p, &attr);
7947 put_task_struct(p);
7948 }
7949
d50dde5a
DF
7950 return retval;
7951}
7952
1da177e4
LT
7953/**
7954 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7955 * @pid: the pid in question.
e69f6186
YB
7956 *
7957 * Return: On success, the policy of the thread. Otherwise, a negative error
7958 * code.
1da177e4 7959 */
5add95d4 7960SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 7961{
36c8b586 7962 struct task_struct *p;
3a5c359a 7963 int retval;
1da177e4
LT
7964
7965 if (pid < 0)
3a5c359a 7966 return -EINVAL;
1da177e4
LT
7967
7968 retval = -ESRCH;
5fe85be0 7969 rcu_read_lock();
1da177e4
LT
7970 p = find_process_by_pid(pid);
7971 if (p) {
7972 retval = security_task_getscheduler(p);
7973 if (!retval)
ca94c442
LP
7974 retval = p->policy
7975 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 7976 }
5fe85be0 7977 rcu_read_unlock();
1da177e4
LT
7978 return retval;
7979}
7980
7981/**
ca94c442 7982 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
7983 * @pid: the pid in question.
7984 * @param: structure containing the RT priority.
e69f6186
YB
7985 *
7986 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7987 * code.
1da177e4 7988 */
5add95d4 7989SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 7990{
ce5f7f82 7991 struct sched_param lp = { .sched_priority = 0 };
36c8b586 7992 struct task_struct *p;
3a5c359a 7993 int retval;
1da177e4
LT
7994
7995 if (!param || pid < 0)
3a5c359a 7996 return -EINVAL;
1da177e4 7997
5fe85be0 7998 rcu_read_lock();
1da177e4
LT
7999 p = find_process_by_pid(pid);
8000 retval = -ESRCH;
8001 if (!p)
8002 goto out_unlock;
8003
8004 retval = security_task_getscheduler(p);
8005 if (retval)
8006 goto out_unlock;
8007
ce5f7f82
PZ
8008 if (task_has_rt_policy(p))
8009 lp.sched_priority = p->rt_priority;
5fe85be0 8010 rcu_read_unlock();
1da177e4
LT
8011
8012 /*
8013 * This one might sleep, we cannot do it with a spinlock held ...
8014 */
8015 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8016
1da177e4
LT
8017 return retval;
8018
8019out_unlock:
5fe85be0 8020 rcu_read_unlock();
1da177e4
LT
8021 return retval;
8022}
8023
1251201c
IM
8024/*
8025 * Copy the kernel size attribute structure (which might be larger
8026 * than what user-space knows about) to user-space.
8027 *
8028 * Note that all cases are valid: user-space buffer can be larger or
8029 * smaller than the kernel-space buffer. The usual case is that both
8030 * have the same size.
8031 */
8032static int
8033sched_attr_copy_to_user(struct sched_attr __user *uattr,
8034 struct sched_attr *kattr,
8035 unsigned int usize)
d50dde5a 8036{
1251201c 8037 unsigned int ksize = sizeof(*kattr);
d50dde5a 8038
96d4f267 8039 if (!access_ok(uattr, usize))
d50dde5a
DF
8040 return -EFAULT;
8041
8042 /*
1251201c
IM
8043 * sched_getattr() ABI forwards and backwards compatibility:
8044 *
8045 * If usize == ksize then we just copy everything to user-space and all is good.
8046 *
8047 * If usize < ksize then we only copy as much as user-space has space for,
8048 * this keeps ABI compatibility as well. We skip the rest.
8049 *
8050 * If usize > ksize then user-space is using a newer version of the ABI,
8051 * which part the kernel doesn't know about. Just ignore it - tooling can
8052 * detect the kernel's knowledge of attributes from the attr->size value
8053 * which is set to ksize in this case.
d50dde5a 8054 */
1251201c 8055 kattr->size = min(usize, ksize);
d50dde5a 8056
1251201c 8057 if (copy_to_user(uattr, kattr, kattr->size))
d50dde5a
DF
8058 return -EFAULT;
8059
22400674 8060 return 0;
d50dde5a
DF
8061}
8062
8063/**
aab03e05 8064 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 8065 * @pid: the pid in question.
5778fccf 8066 * @uattr: structure containing the extended parameters.
dff3a85f 8067 * @usize: sizeof(attr) for fwd/bwd comp.
db66d756 8068 * @flags: for future extension.
d50dde5a 8069 */
6d35ab48 8070SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
1251201c 8071 unsigned int, usize, unsigned int, flags)
d50dde5a 8072{
1251201c 8073 struct sched_attr kattr = { };
d50dde5a
DF
8074 struct task_struct *p;
8075 int retval;
8076
1251201c
IM
8077 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8078 usize < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
8079 return -EINVAL;
8080
8081 rcu_read_lock();
8082 p = find_process_by_pid(pid);
8083 retval = -ESRCH;
8084 if (!p)
8085 goto out_unlock;
8086
8087 retval = security_task_getscheduler(p);
8088 if (retval)
8089 goto out_unlock;
8090
1251201c 8091 kattr.sched_policy = p->policy;
7479f3c9 8092 if (p->sched_reset_on_fork)
1251201c 8093 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
f4dddf90 8094 get_params(p, &kattr);
7ad721bf 8095 kattr.sched_flags &= SCHED_FLAG_ALL;
d50dde5a 8096
a509a7cd 8097#ifdef CONFIG_UCLAMP_TASK
13685c4a
QY
8098 /*
8099 * This could race with another potential updater, but this is fine
8100 * because it'll correctly read the old or the new value. We don't need
8101 * to guarantee who wins the race as long as it doesn't return garbage.
8102 */
1251201c
IM
8103 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8104 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
a509a7cd
PB
8105#endif
8106
d50dde5a
DF
8107 rcu_read_unlock();
8108
1251201c 8109 return sched_attr_copy_to_user(uattr, &kattr, usize);
d50dde5a
DF
8110
8111out_unlock:
8112 rcu_read_unlock();
8113 return retval;
8114}
8115
234b8ab6
WD
8116#ifdef CONFIG_SMP
8117int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1da177e4 8118{
234b8ab6
WD
8119 int ret = 0;
8120
8121 /*
8122 * If the task isn't a deadline task or admission control is
8123 * disabled then we don't care about affinity changes.
8124 */
8125 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8126 return 0;
8127
8128 /*
8129 * Since bandwidth control happens on root_domain basis,
8130 * if admission test is enabled, we only admit -deadline
8131 * tasks allowed to run on all the CPUs in the task's
8132 * root_domain.
8133 */
8134 rcu_read_lock();
8135 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8136 ret = -EBUSY;
8137 rcu_read_unlock();
8138 return ret;
8139}
8140#endif
8141
db3b02ae 8142static int
713a2e21 8143__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
1da177e4 8144{
36c8b586 8145 int retval;
5a16f3d3 8146 cpumask_var_t cpus_allowed, new_mask;
1da177e4 8147
db3b02ae
WD
8148 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8149 return -ENOMEM;
1da177e4 8150
5a16f3d3
RR
8151 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8152 retval = -ENOMEM;
8153 goto out_free_cpus_allowed;
8154 }
e4099a5e
PZ
8155
8156 cpuset_cpus_allowed(p, cpus_allowed);
713a2e21
WL
8157 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8158
8159 ctx->new_mask = new_mask;
8160 ctx->flags |= SCA_CHECK;
e4099a5e 8161
234b8ab6
WD
8162 retval = dl_task_check_affinity(p, new_mask);
8163 if (retval)
8164 goto out_free_new_mask;
8f9ea86f 8165
713a2e21 8166 retval = __set_cpus_allowed_ptr(p, ctx);
db3b02ae
WD
8167 if (retval)
8168 goto out_free_new_mask;
1da177e4 8169
db3b02ae
WD
8170 cpuset_cpus_allowed(p, cpus_allowed);
8171 if (!cpumask_subset(new_mask, cpus_allowed)) {
8172 /*
8173 * We must have raced with a concurrent cpuset update.
8174 * Just reset the cpumask to the cpuset's cpus_allowed.
8175 */
8176 cpumask_copy(new_mask, cpus_allowed);
8f9ea86f
WL
8177
8178 /*
8179 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8180 * will restore the previous user_cpus_ptr value.
8181 *
8182 * In the unlikely event a previous user_cpus_ptr exists,
8183 * we need to further restrict the mask to what is allowed
8184 * by that old user_cpus_ptr.
8185 */
8186 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8187 bool empty = !cpumask_and(new_mask, new_mask,
8188 ctx->user_mask);
8189
8190 if (WARN_ON_ONCE(empty))
8191 cpumask_copy(new_mask, cpus_allowed);
8192 }
8193 __set_cpus_allowed_ptr(p, ctx);
8194 retval = -EINVAL;
8707d8b8 8195 }
db3b02ae 8196
16303ab2 8197out_free_new_mask:
5a16f3d3
RR
8198 free_cpumask_var(new_mask);
8199out_free_cpus_allowed:
8200 free_cpumask_var(cpus_allowed);
db3b02ae
WD
8201 return retval;
8202}
8203
8204long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8205{
8f9ea86f
WL
8206 struct affinity_context ac;
8207 struct cpumask *user_mask;
36c8b586
IM
8208 struct task_struct *p;
8209 int retval;
1da177e4 8210
23f5d142 8211 rcu_read_lock();
1da177e4
LT
8212
8213 p = find_process_by_pid(pid);
8214 if (!p) {
23f5d142 8215 rcu_read_unlock();
1da177e4
LT
8216 return -ESRCH;
8217 }
8218
23f5d142 8219 /* Prevent p going away */
1da177e4 8220 get_task_struct(p);
23f5d142 8221 rcu_read_unlock();
1da177e4 8222
14a40ffc
TH
8223 if (p->flags & PF_NO_SETAFFINITY) {
8224 retval = -EINVAL;
8225 goto out_put_task;
8226 }
db3b02ae 8227
4c44aaaf
EB
8228 if (!check_same_owner(p)) {
8229 rcu_read_lock();
8230 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8231 rcu_read_unlock();
db3b02ae
WD
8232 retval = -EPERM;
8233 goto out_put_task;
4c44aaaf
EB
8234 }
8235 rcu_read_unlock();
8236 }
1da177e4 8237
b0ae1981 8238 retval = security_task_setscheduler(p);
e7834f8f 8239 if (retval)
db3b02ae 8240 goto out_put_task;
1da177e4 8241
8f9ea86f
WL
8242 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
8243 if (!user_mask) {
8244 retval = -ENOMEM;
8245 goto out_put_task;
8246 }
8247 cpumask_copy(user_mask, in_mask);
8248 ac = (struct affinity_context){
8249 .new_mask = in_mask,
8250 .user_mask = user_mask,
8251 .flags = SCA_USER,
8252 };
8253
713a2e21 8254 retval = __sched_setaffinity(p, &ac);
8f9ea86f
WL
8255 kfree(ac.user_mask);
8256
5a16f3d3 8257out_put_task:
1da177e4 8258 put_task_struct(p);
1da177e4
LT
8259 return retval;
8260}
8261
8262static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 8263 struct cpumask *new_mask)
1da177e4 8264{
96f874e2
RR
8265 if (len < cpumask_size())
8266 cpumask_clear(new_mask);
8267 else if (len > cpumask_size())
8268 len = cpumask_size();
8269
1da177e4
LT
8270 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8271}
8272
8273/**
d1ccc66d 8274 * sys_sched_setaffinity - set the CPU affinity of a process
1da177e4
LT
8275 * @pid: pid of the process
8276 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8277 * @user_mask_ptr: user-space pointer to the new CPU mask
e69f6186
YB
8278 *
8279 * Return: 0 on success. An error code otherwise.
1da177e4 8280 */
5add95d4
HC
8281SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8282 unsigned long __user *, user_mask_ptr)
1da177e4 8283{
5a16f3d3 8284 cpumask_var_t new_mask;
1da177e4
LT
8285 int retval;
8286
5a16f3d3
RR
8287 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8288 return -ENOMEM;
1da177e4 8289
5a16f3d3
RR
8290 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8291 if (retval == 0)
8292 retval = sched_setaffinity(pid, new_mask);
8293 free_cpumask_var(new_mask);
8294 return retval;
1da177e4
LT
8295}
8296
96f874e2 8297long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 8298{
36c8b586 8299 struct task_struct *p;
31605683 8300 unsigned long flags;
1da177e4 8301 int retval;
1da177e4 8302
23f5d142 8303 rcu_read_lock();
1da177e4
LT
8304
8305 retval = -ESRCH;
8306 p = find_process_by_pid(pid);
8307 if (!p)
8308 goto out_unlock;
8309
e7834f8f
DQ
8310 retval = security_task_getscheduler(p);
8311 if (retval)
8312 goto out_unlock;
8313
013fdb80 8314 raw_spin_lock_irqsave(&p->pi_lock, flags);
3bd37062 8315 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
013fdb80 8316 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
8317
8318out_unlock:
23f5d142 8319 rcu_read_unlock();
1da177e4 8320
9531b62f 8321 return retval;
1da177e4
LT
8322}
8323
8324/**
d1ccc66d 8325 * sys_sched_getaffinity - get the CPU affinity of a process
1da177e4
LT
8326 * @pid: pid of the process
8327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
d1ccc66d 8328 * @user_mask_ptr: user-space pointer to hold the current CPU mask
e69f6186 8329 *
599b4840
ZW
8330 * Return: size of CPU mask copied to user_mask_ptr on success. An
8331 * error code otherwise.
1da177e4 8332 */
5add95d4
HC
8333SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8334 unsigned long __user *, user_mask_ptr)
1da177e4
LT
8335{
8336 int ret;
f17c8607 8337 cpumask_var_t mask;
1da177e4 8338
84fba5ec 8339 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
8340 return -EINVAL;
8341 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
8342 return -EINVAL;
8343
f17c8607
RR
8344 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8345 return -ENOMEM;
1da177e4 8346
f17c8607
RR
8347 ret = sched_getaffinity(pid, mask);
8348 if (ret == 0) {
4de373a1 8349 unsigned int retlen = min(len, cpumask_size());
cd3d8031
KM
8350
8351 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
8352 ret = -EFAULT;
8353 else
cd3d8031 8354 ret = retlen;
f17c8607
RR
8355 }
8356 free_cpumask_var(mask);
1da177e4 8357
f17c8607 8358 return ret;
1da177e4
LT
8359}
8360
7d4dd4f1 8361static void do_sched_yield(void)
1da177e4 8362{
8a8c69c3
PZ
8363 struct rq_flags rf;
8364 struct rq *rq;
8365
246b3b33 8366 rq = this_rq_lock_irq(&rf);
1da177e4 8367
ae92882e 8368 schedstat_inc(rq->yld_count);
4530d7ab 8369 current->sched_class->yield_task(rq);
1da177e4 8370
8a8c69c3 8371 preempt_disable();
345a957f 8372 rq_unlock_irq(rq, &rf);
ba74c144 8373 sched_preempt_enable_no_resched();
1da177e4
LT
8374
8375 schedule();
7d4dd4f1 8376}
1da177e4 8377
59a74b15
MCC
8378/**
8379 * sys_sched_yield - yield the current processor to other threads.
8380 *
8381 * This function yields the current CPU to other tasks. If there are no
8382 * other threads running on this CPU then this function will return.
8383 *
8384 * Return: 0.
8385 */
7d4dd4f1
DB
8386SYSCALL_DEFINE0(sched_yield)
8387{
8388 do_sched_yield();
1da177e4
LT
8389 return 0;
8390}
8391
b965f1dd
PZI
8392#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8393int __sched __cond_resched(void)
1da177e4 8394{
fe32d3cd 8395 if (should_resched(0)) {
a18b5d01 8396 preempt_schedule_common();
1da177e4
LT
8397 return 1;
8398 }
50895825
FW
8399 /*
8400 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8401 * whether the current CPU is in an RCU read-side critical section,
8402 * so the tick can report quiescent states even for CPUs looping
8403 * in kernel context. In contrast, in non-preemptible kernels,
8404 * RCU readers leave no in-memory hints, which means that CPU-bound
8405 * processes executing in kernel context might never report an
8406 * RCU quiescent state. Therefore, the following code causes
8407 * cond_resched() to report a quiescent state, but only when RCU
8408 * is in urgent need of one.
8409 */
b965f1dd 8410#ifndef CONFIG_PREEMPT_RCU
f79c3ad6 8411 rcu_all_qs();
b965f1dd 8412#endif
1da177e4
LT
8413 return 0;
8414}
b965f1dd
PZI
8415EXPORT_SYMBOL(__cond_resched);
8416#endif
8417
8418#ifdef CONFIG_PREEMPT_DYNAMIC
99cf983c 8419#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8420#define cond_resched_dynamic_enabled __cond_resched
8421#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8422DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
ef72661e 8423EXPORT_STATIC_CALL_TRAMP(cond_resched);
b965f1dd 8424
8a69fe0b
MR
8425#define might_resched_dynamic_enabled __cond_resched
8426#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
b965f1dd 8427DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
ef72661e 8428EXPORT_STATIC_CALL_TRAMP(might_resched);
99cf983c
MR
8429#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8430static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8431int __sched dynamic_cond_resched(void)
8432{
8433 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8434 return 0;
8435 return __cond_resched();
8436}
8437EXPORT_SYMBOL(dynamic_cond_resched);
8438
8439static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8440int __sched dynamic_might_resched(void)
8441{
8442 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8443 return 0;
8444 return __cond_resched();
8445}
8446EXPORT_SYMBOL(dynamic_might_resched);
8447#endif
35a773a0 8448#endif
1da177e4
LT
8449
8450/*
613afbf8 8451 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
8452 * call schedule, and on return reacquire the lock.
8453 *
c1a280b6 8454 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
1da177e4
LT
8455 * operations here to prevent schedule() from being called twice (once via
8456 * spin_unlock(), once by hand).
8457 */
613afbf8 8458int __cond_resched_lock(spinlock_t *lock)
1da177e4 8459{
fe32d3cd 8460 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
8461 int ret = 0;
8462
f607c668
PZ
8463 lockdep_assert_held(lock);
8464
4a81e832 8465 if (spin_needbreak(lock) || resched) {
1da177e4 8466 spin_unlock(lock);
7e406d1f 8467 if (!_cond_resched())
95c354fe 8468 cpu_relax();
6df3cecb 8469 ret = 1;
1da177e4 8470 spin_lock(lock);
1da177e4 8471 }
6df3cecb 8472 return ret;
1da177e4 8473}
613afbf8 8474EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 8475
f3d4b4b1
BG
8476int __cond_resched_rwlock_read(rwlock_t *lock)
8477{
8478 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8479 int ret = 0;
8480
8481 lockdep_assert_held_read(lock);
8482
8483 if (rwlock_needbreak(lock) || resched) {
8484 read_unlock(lock);
7e406d1f 8485 if (!_cond_resched())
f3d4b4b1
BG
8486 cpu_relax();
8487 ret = 1;
8488 read_lock(lock);
8489 }
8490 return ret;
8491}
8492EXPORT_SYMBOL(__cond_resched_rwlock_read);
8493
8494int __cond_resched_rwlock_write(rwlock_t *lock)
8495{
8496 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8497 int ret = 0;
8498
8499 lockdep_assert_held_write(lock);
8500
8501 if (rwlock_needbreak(lock) || resched) {
8502 write_unlock(lock);
7e406d1f 8503 if (!_cond_resched())
f3d4b4b1
BG
8504 cpu_relax();
8505 ret = 1;
8506 write_lock(lock);
8507 }
8508 return ret;
8509}
8510EXPORT_SYMBOL(__cond_resched_rwlock_write);
8511
4c748558
MR
8512#ifdef CONFIG_PREEMPT_DYNAMIC
8513
33c64734 8514#ifdef CONFIG_GENERIC_ENTRY
4c748558 8515#include <linux/entry-common.h>
33c64734 8516#endif
4c748558
MR
8517
8518/*
8519 * SC:cond_resched
8520 * SC:might_resched
8521 * SC:preempt_schedule
8522 * SC:preempt_schedule_notrace
8523 * SC:irqentry_exit_cond_resched
8524 *
8525 *
8526 * NONE:
8527 * cond_resched <- __cond_resched
8528 * might_resched <- RET0
8529 * preempt_schedule <- NOP
8530 * preempt_schedule_notrace <- NOP
8531 * irqentry_exit_cond_resched <- NOP
8532 *
8533 * VOLUNTARY:
8534 * cond_resched <- __cond_resched
8535 * might_resched <- __cond_resched
8536 * preempt_schedule <- NOP
8537 * preempt_schedule_notrace <- NOP
8538 * irqentry_exit_cond_resched <- NOP
8539 *
8540 * FULL:
8541 * cond_resched <- RET0
8542 * might_resched <- RET0
8543 * preempt_schedule <- preempt_schedule
8544 * preempt_schedule_notrace <- preempt_schedule_notrace
8545 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8546 */
8547
8548enum {
8549 preempt_dynamic_undefined = -1,
8550 preempt_dynamic_none,
8551 preempt_dynamic_voluntary,
8552 preempt_dynamic_full,
8553};
8554
8555int preempt_dynamic_mode = preempt_dynamic_undefined;
8556
8557int sched_dynamic_mode(const char *str)
8558{
8559 if (!strcmp(str, "none"))
8560 return preempt_dynamic_none;
8561
8562 if (!strcmp(str, "voluntary"))
8563 return preempt_dynamic_voluntary;
8564
8565 if (!strcmp(str, "full"))
8566 return preempt_dynamic_full;
8567
8568 return -EINVAL;
8569}
8570
99cf983c 8571#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8a69fe0b
MR
8572#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8573#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
99cf983c
MR
8574#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8575#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8576#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8577#else
8578#error "Unsupported PREEMPT_DYNAMIC mechanism"
8579#endif
8a69fe0b 8580
4c748558
MR
8581void sched_dynamic_update(int mode)
8582{
8583 /*
8584 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8585 * the ZERO state, which is invalid.
8586 */
8a69fe0b
MR
8587 preempt_dynamic_enable(cond_resched);
8588 preempt_dynamic_enable(might_resched);
8589 preempt_dynamic_enable(preempt_schedule);
8590 preempt_dynamic_enable(preempt_schedule_notrace);
8591 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8592
8593 switch (mode) {
8594 case preempt_dynamic_none:
8a69fe0b
MR
8595 preempt_dynamic_enable(cond_resched);
8596 preempt_dynamic_disable(might_resched);
8597 preempt_dynamic_disable(preempt_schedule);
8598 preempt_dynamic_disable(preempt_schedule_notrace);
8599 preempt_dynamic_disable(irqentry_exit_cond_resched);
4c748558
MR
8600 pr_info("Dynamic Preempt: none\n");
8601 break;
8602
8603 case preempt_dynamic_voluntary:
8a69fe0b
MR
8604 preempt_dynamic_enable(cond_resched);
8605 preempt_dynamic_enable(might_resched);
8606 preempt_dynamic_disable(preempt_schedule);
8607 preempt_dynamic_disable(preempt_schedule_notrace);
8608 preempt_dynamic_disable(irqentry_exit_cond_resched);
4c748558
MR
8609 pr_info("Dynamic Preempt: voluntary\n");
8610 break;
8611
8612 case preempt_dynamic_full:
8a69fe0b
MR
8613 preempt_dynamic_disable(cond_resched);
8614 preempt_dynamic_disable(might_resched);
8615 preempt_dynamic_enable(preempt_schedule);
8616 preempt_dynamic_enable(preempt_schedule_notrace);
8617 preempt_dynamic_enable(irqentry_exit_cond_resched);
4c748558
MR
8618 pr_info("Dynamic Preempt: full\n");
8619 break;
8620 }
8621
8622 preempt_dynamic_mode = mode;
8623}
8624
8625static int __init setup_preempt_mode(char *str)
8626{
8627 int mode = sched_dynamic_mode(str);
8628 if (mode < 0) {
8629 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8630 return 0;
8631 }
8632
8633 sched_dynamic_update(mode);
8634 return 1;
8635}
8636__setup("preempt=", setup_preempt_mode);
8637
8638static void __init preempt_dynamic_init(void)
8639{
8640 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8641 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8642 sched_dynamic_update(preempt_dynamic_none);
8643 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8644 sched_dynamic_update(preempt_dynamic_voluntary);
8645 } else {
8646 /* Default static call setting, nothing to do */
8647 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8648 preempt_dynamic_mode = preempt_dynamic_full;
8649 pr_info("Dynamic Preempt: full\n");
8650 }
8651 }
8652}
8653
cfe43f47
VS
8654#define PREEMPT_MODEL_ACCESSOR(mode) \
8655 bool preempt_model_##mode(void) \
8656 { \
8657 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8658 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8659 } \
8660 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8661
8662PREEMPT_MODEL_ACCESSOR(none);
8663PREEMPT_MODEL_ACCESSOR(voluntary);
8664PREEMPT_MODEL_ACCESSOR(full);
8665
4c748558
MR
8666#else /* !CONFIG_PREEMPT_DYNAMIC */
8667
8668static inline void preempt_dynamic_init(void) { }
8669
8670#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8671
1da177e4
LT
8672/**
8673 * yield - yield the current processor to other threads.
8674 *
8e3fabfd
PZ
8675 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8676 *
8677 * The scheduler is at all times free to pick the calling task as the most
8678 * eligible task to run, if removing the yield() call from your code breaks
b19a888c 8679 * it, it's already broken.
8e3fabfd
PZ
8680 *
8681 * Typical broken usage is:
8682 *
8683 * while (!event)
d1ccc66d 8684 * yield();
8e3fabfd
PZ
8685 *
8686 * where one assumes that yield() will let 'the other' process run that will
8687 * make event true. If the current task is a SCHED_FIFO task that will never
8688 * happen. Never use yield() as a progress guarantee!!
8689 *
8690 * If you want to use yield() to wait for something, use wait_event().
8691 * If you want to use yield() to be 'nice' for others, use cond_resched().
8692 * If you still want to use yield(), do not!
1da177e4
LT
8693 */
8694void __sched yield(void)
8695{
8696 set_current_state(TASK_RUNNING);
7d4dd4f1 8697 do_sched_yield();
1da177e4 8698}
1da177e4
LT
8699EXPORT_SYMBOL(yield);
8700
d95f4122
MG
8701/**
8702 * yield_to - yield the current processor to another thread in
8703 * your thread group, or accelerate that thread toward the
8704 * processor it's on.
16addf95
RD
8705 * @p: target task
8706 * @preempt: whether task preemption is allowed or not
d95f4122
MG
8707 *
8708 * It's the caller's job to ensure that the target task struct
8709 * can't go away on us before we can do any checks.
8710 *
e69f6186 8711 * Return:
7b270f60
PZ
8712 * true (>0) if we indeed boosted the target task.
8713 * false (0) if we failed to boost the target.
8714 * -ESRCH if there's no task to yield to.
d95f4122 8715 */
fa93384f 8716int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
8717{
8718 struct task_struct *curr = current;
8719 struct rq *rq, *p_rq;
8720 unsigned long flags;
c3c18640 8721 int yielded = 0;
d95f4122
MG
8722
8723 local_irq_save(flags);
8724 rq = this_rq();
8725
8726again:
8727 p_rq = task_rq(p);
7b270f60
PZ
8728 /*
8729 * If we're the only runnable task on the rq and target rq also
8730 * has only one task, there's absolutely no point in yielding.
8731 */
8732 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8733 yielded = -ESRCH;
8734 goto out_irq;
8735 }
8736
d95f4122 8737 double_rq_lock(rq, p_rq);
39e24d8f 8738 if (task_rq(p) != p_rq) {
d95f4122
MG
8739 double_rq_unlock(rq, p_rq);
8740 goto again;
8741 }
8742
8743 if (!curr->sched_class->yield_to_task)
7b270f60 8744 goto out_unlock;
d95f4122
MG
8745
8746 if (curr->sched_class != p->sched_class)
7b270f60 8747 goto out_unlock;
d95f4122 8748
0b9d46fc 8749 if (task_on_cpu(p_rq, p) || !task_is_running(p))
7b270f60 8750 goto out_unlock;
d95f4122 8751
0900acf2 8752 yielded = curr->sched_class->yield_to_task(rq, p);
6d1cafd8 8753 if (yielded) {
ae92882e 8754 schedstat_inc(rq->yld_count);
6d1cafd8
VP
8755 /*
8756 * Make p's CPU reschedule; pick_next_entity takes care of
8757 * fairness.
8758 */
8759 if (preempt && rq != p_rq)
8875125e 8760 resched_curr(p_rq);
6d1cafd8 8761 }
d95f4122 8762
7b270f60 8763out_unlock:
d95f4122 8764 double_rq_unlock(rq, p_rq);
7b270f60 8765out_irq:
d95f4122
MG
8766 local_irq_restore(flags);
8767
7b270f60 8768 if (yielded > 0)
d95f4122
MG
8769 schedule();
8770
8771 return yielded;
8772}
8773EXPORT_SYMBOL_GPL(yield_to);
8774
10ab5643
TH
8775int io_schedule_prepare(void)
8776{
8777 int old_iowait = current->in_iowait;
8778
8779 current->in_iowait = 1;
aa8dccca 8780 blk_flush_plug(current->plug, true);
10ab5643
TH
8781 return old_iowait;
8782}
8783
8784void io_schedule_finish(int token)
8785{
8786 current->in_iowait = token;
8787}
8788
1da177e4 8789/*
41a2d6cf 8790 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 8791 * that process accounting knows that this is a task in IO wait state.
1da177e4 8792 */
1da177e4
LT
8793long __sched io_schedule_timeout(long timeout)
8794{
10ab5643 8795 int token;
1da177e4
LT
8796 long ret;
8797
10ab5643 8798 token = io_schedule_prepare();
1da177e4 8799 ret = schedule_timeout(timeout);
10ab5643 8800 io_schedule_finish(token);
9cff8ade 8801
1da177e4
LT
8802 return ret;
8803}
9cff8ade 8804EXPORT_SYMBOL(io_schedule_timeout);
1da177e4 8805
e3b929b0 8806void __sched io_schedule(void)
10ab5643
TH
8807{
8808 int token;
8809
8810 token = io_schedule_prepare();
8811 schedule();
8812 io_schedule_finish(token);
8813}
8814EXPORT_SYMBOL(io_schedule);
8815
1da177e4
LT
8816/**
8817 * sys_sched_get_priority_max - return maximum RT priority.
8818 * @policy: scheduling class.
8819 *
e69f6186
YB
8820 * Return: On success, this syscall returns the maximum
8821 * rt_priority that can be used by a given scheduling class.
8822 * On failure, a negative error code is returned.
1da177e4 8823 */
5add95d4 8824SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
8825{
8826 int ret = -EINVAL;
8827
8828 switch (policy) {
8829 case SCHED_FIFO:
8830 case SCHED_RR:
ae18ad28 8831 ret = MAX_RT_PRIO-1;
1da177e4 8832 break;
aab03e05 8833 case SCHED_DEADLINE:
1da177e4 8834 case SCHED_NORMAL:
b0a9499c 8835 case SCHED_BATCH:
dd41f596 8836 case SCHED_IDLE:
1da177e4
LT
8837 ret = 0;
8838 break;
8839 }
8840 return ret;
8841}
8842
8843/**
8844 * sys_sched_get_priority_min - return minimum RT priority.
8845 * @policy: scheduling class.
8846 *
e69f6186
YB
8847 * Return: On success, this syscall returns the minimum
8848 * rt_priority that can be used by a given scheduling class.
8849 * On failure, a negative error code is returned.
1da177e4 8850 */
5add95d4 8851SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
8852{
8853 int ret = -EINVAL;
8854
8855 switch (policy) {
8856 case SCHED_FIFO:
8857 case SCHED_RR:
8858 ret = 1;
8859 break;
aab03e05 8860 case SCHED_DEADLINE:
1da177e4 8861 case SCHED_NORMAL:
b0a9499c 8862 case SCHED_BATCH:
dd41f596 8863 case SCHED_IDLE:
1da177e4
LT
8864 ret = 0;
8865 }
8866 return ret;
8867}
8868
abca5fc5 8869static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
1da177e4 8870{
36c8b586 8871 struct task_struct *p;
a4ec24b4 8872 unsigned int time_slice;
eb580751 8873 struct rq_flags rf;
dba091b9 8874 struct rq *rq;
3a5c359a 8875 int retval;
1da177e4
LT
8876
8877 if (pid < 0)
3a5c359a 8878 return -EINVAL;
1da177e4
LT
8879
8880 retval = -ESRCH;
1a551ae7 8881 rcu_read_lock();
1da177e4
LT
8882 p = find_process_by_pid(pid);
8883 if (!p)
8884 goto out_unlock;
8885
8886 retval = security_task_getscheduler(p);
8887 if (retval)
8888 goto out_unlock;
8889
eb580751 8890 rq = task_rq_lock(p, &rf);
a57beec5
PZ
8891 time_slice = 0;
8892 if (p->sched_class->get_rr_interval)
8893 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 8894 task_rq_unlock(rq, p, &rf);
a4ec24b4 8895
1a551ae7 8896 rcu_read_unlock();
abca5fc5
AV
8897 jiffies_to_timespec64(time_slice, t);
8898 return 0;
3a5c359a 8899
1da177e4 8900out_unlock:
1a551ae7 8901 rcu_read_unlock();
1da177e4
LT
8902 return retval;
8903}
8904
2064a5ab
RD
8905/**
8906 * sys_sched_rr_get_interval - return the default timeslice of a process.
8907 * @pid: pid of the process.
8908 * @interval: userspace pointer to the timeslice value.
8909 *
8910 * this syscall writes the default timeslice value of a given process
8911 * into the user-space timespec buffer. A value of '0' means infinity.
8912 *
8913 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8914 * an error code.
8915 */
abca5fc5 8916SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
474b9c77 8917 struct __kernel_timespec __user *, interval)
abca5fc5
AV
8918{
8919 struct timespec64 t;
8920 int retval = sched_rr_get_interval(pid, &t);
8921
8922 if (retval == 0)
8923 retval = put_timespec64(&t, interval);
8924
8925 return retval;
8926}
8927
474b9c77 8928#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
8929SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8930 struct old_timespec32 __user *, interval)
abca5fc5
AV
8931{
8932 struct timespec64 t;
8933 int retval = sched_rr_get_interval(pid, &t);
8934
8935 if (retval == 0)
9afc5eee 8936 retval = put_old_timespec32(&t, interval);
abca5fc5
AV
8937 return retval;
8938}
8939#endif
8940
82a1fcb9 8941void sched_show_task(struct task_struct *p)
1da177e4 8942{
1da177e4 8943 unsigned long free = 0;
4e79752c 8944 int ppid;
c930b2c0 8945
38200502
TH
8946 if (!try_get_task_stack(p))
8947 return;
20435d84 8948
cc172ff3 8949 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
20435d84 8950
b03fbd4f 8951 if (task_is_running(p))
cc172ff3 8952 pr_cont(" running task ");
1da177e4 8953#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 8954 free = stack_not_used(p);
1da177e4 8955#endif
a90e984c 8956 ppid = 0;
4e79752c 8957 rcu_read_lock();
a90e984c
ON
8958 if (pid_alive(p))
8959 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 8960 rcu_read_unlock();
0f03d680 8961 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
cc172ff3 8962 free, task_pid_nr(p), ppid,
0569b245 8963 read_task_thread_flags(p));
1da177e4 8964
3d1cb205 8965 print_worker_info(KERN_INFO, p);
a8b62fd0 8966 print_stop_info(KERN_INFO, p);
9cb8f069 8967 show_stack(p, NULL, KERN_INFO);
38200502 8968 put_task_stack(p);
1da177e4 8969}
0032f4e8 8970EXPORT_SYMBOL_GPL(sched_show_task);
1da177e4 8971
5d68cc95
PZ
8972static inline bool
8973state_filter_match(unsigned long state_filter, struct task_struct *p)
8974{
2f064a59
PZ
8975 unsigned int state = READ_ONCE(p->__state);
8976
5d68cc95
PZ
8977 /* no filter, everything matches */
8978 if (!state_filter)
8979 return true;
8980
8981 /* filter, but doesn't match */
2f064a59 8982 if (!(state & state_filter))
5d68cc95
PZ
8983 return false;
8984
8985 /*
8986 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8987 * TASK_KILLABLE).
8988 */
5aec788a 8989 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
5d68cc95
PZ
8990 return false;
8991
8992 return true;
8993}
8994
8995
2f064a59 8996void show_state_filter(unsigned int state_filter)
1da177e4 8997{
36c8b586 8998 struct task_struct *g, *p;
1da177e4 8999
510f5acc 9000 rcu_read_lock();
5d07f420 9001 for_each_process_thread(g, p) {
1da177e4
LT
9002 /*
9003 * reset the NMI-timeout, listing all files on a slow
25985edc 9004 * console might take a lot of time:
57675cb9
AR
9005 * Also, reset softlockup watchdogs on all CPUs, because
9006 * another CPU might be blocked waiting for us to process
9007 * an IPI.
1da177e4
LT
9008 */
9009 touch_nmi_watchdog();
57675cb9 9010 touch_all_softlockup_watchdogs();
5d68cc95 9011 if (state_filter_match(state_filter, p))
82a1fcb9 9012 sched_show_task(p);
5d07f420 9013 }
1da177e4 9014
dd41f596 9015#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
9016 if (!state_filter)
9017 sysrq_sched_debug_show();
dd41f596 9018#endif
510f5acc 9019 rcu_read_unlock();
e59e2ae2
IM
9020 /*
9021 * Only show locks if all tasks are dumped:
9022 */
93335a21 9023 if (!state_filter)
e59e2ae2 9024 debug_show_all_locks();
1da177e4
LT
9025}
9026
f340c0d1
IM
9027/**
9028 * init_idle - set up an idle thread for a given CPU
9029 * @idle: task in question
d1ccc66d 9030 * @cpu: CPU the idle task belongs to
f340c0d1
IM
9031 *
9032 * NOTE: this function does not set the idle thread's NEED_RESCHED
9033 * flag, to make booting more robust.
9034 */
f1a0a376 9035void __init init_idle(struct task_struct *idle, int cpu)
1da177e4 9036{
713a2e21
WL
9037#ifdef CONFIG_SMP
9038 struct affinity_context ac = (struct affinity_context) {
9039 .new_mask = cpumask_of(cpu),
9040 .flags = 0,
9041 };
9042#endif
70b97a7f 9043 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
9044 unsigned long flags;
9045
ff51ff84
PZ
9046 __sched_fork(0, idle);
9047
25834c73 9048 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5cb9eaa3 9049 raw_spin_rq_lock(rq);
5cbd54ef 9050
2f064a59 9051 idle->__state = TASK_RUNNING;
dd41f596 9052 idle->se.exec_start = sched_clock();
00b89fe0
VS
9053 /*
9054 * PF_KTHREAD should already be set at this point; regardless, make it
9055 * look like a proper per-CPU kthread.
9056 */
9057 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9058 kthread_set_per_cpu(idle, cpu);
dd41f596 9059
de9b8f5d
PZ
9060#ifdef CONFIG_SMP
9061 /*
b19a888c 9062 * It's possible that init_idle() gets called multiple times on a task,
de9b8f5d
PZ
9063 * in that case do_set_cpus_allowed() will not do the right thing.
9064 *
9065 * And since this is boot we can forgo the serialization.
9066 */
713a2e21 9067 set_cpus_allowed_common(idle, &ac);
de9b8f5d 9068#endif
6506cf6c
PZ
9069 /*
9070 * We're having a chicken and egg problem, even though we are
d1ccc66d 9071 * holding rq->lock, the CPU isn't yet set to this CPU so the
6506cf6c
PZ
9072 * lockdep check in task_group() will fail.
9073 *
9074 * Similar case to sched_fork(). / Alternatively we could
9075 * use task_rq_lock() here and obtain the other rq->lock.
9076 *
9077 * Silence PROVE_RCU
9078 */
9079 rcu_read_lock();
dd41f596 9080 __set_task_cpu(idle, cpu);
6506cf6c 9081 rcu_read_unlock();
1da177e4 9082
5311a98f
EB
9083 rq->idle = idle;
9084 rcu_assign_pointer(rq->curr, idle);
da0c1e65 9085 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 9086#ifdef CONFIG_SMP
3ca7a440 9087 idle->on_cpu = 1;
4866cde0 9088#endif
5cb9eaa3 9089 raw_spin_rq_unlock(rq);
25834c73 9090 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
9091
9092 /* Set the preempt count _outside_ the spinlocks! */
01028747 9093 init_idle_preempt_count(idle, cpu);
55cd5340 9094
dd41f596
IM
9095 /*
9096 * The idle tasks have their own, simple scheduling class:
9097 */
9098 idle->sched_class = &idle_sched_class;
868baf07 9099 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 9100 vtime_init_idle(idle, cpu);
de9b8f5d 9101#ifdef CONFIG_SMP
f1c6f1a7
CE
9102 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9103#endif
19978ca6
IM
9104}
9105
e1d4eeec
NP
9106#ifdef CONFIG_SMP
9107
f82f8042
JL
9108int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9109 const struct cpumask *trial)
9110{
06a76fe0 9111 int ret = 1;
f82f8042 9112
1087ad4e 9113 if (cpumask_empty(cur))
bb2bc55a
MG
9114 return ret;
9115
06a76fe0 9116 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
f82f8042
JL
9117
9118 return ret;
9119}
9120
7f51412a 9121int task_can_attach(struct task_struct *p,
b6e8d40d 9122 const struct cpumask *cs_effective_cpus)
7f51412a
JL
9123{
9124 int ret = 0;
9125
9126 /*
9127 * Kthreads which disallow setaffinity shouldn't be moved
d1ccc66d 9128 * to a new cpuset; we don't want to change their CPU
7f51412a
JL
9129 * affinity and isolating such threads by their set of
9130 * allowed nodes is unnecessary. Thus, cpusets are not
9131 * applicable for such threads. This prevents checking for
9132 * success of set_cpus_allowed_ptr() on all attached tasks
3bd37062 9133 * before cpus_mask may be changed.
7f51412a
JL
9134 */
9135 if (p->flags & PF_NO_SETAFFINITY) {
9136 ret = -EINVAL;
9137 goto out;
9138 }
9139
7f51412a 9140 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
b6e8d40d
WL
9141 cs_effective_cpus)) {
9142 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
772b6539 9143
b6e8d40d
WL
9144 if (unlikely(cpu >= nr_cpu_ids))
9145 return -EINVAL;
772b6539
DE
9146 ret = dl_cpu_busy(cpu, p);
9147 }
7f51412a 9148
7f51412a
JL
9149out:
9150 return ret;
9151}
9152
f2cb1360 9153bool sched_smp_initialized __read_mostly;
e26fbffd 9154
e6628d5b
MG
9155#ifdef CONFIG_NUMA_BALANCING
9156/* Migrate current task p to target_cpu */
9157int migrate_task_to(struct task_struct *p, int target_cpu)
9158{
9159 struct migration_arg arg = { p, target_cpu };
9160 int curr_cpu = task_cpu(p);
9161
9162 if (curr_cpu == target_cpu)
9163 return 0;
9164
3bd37062 9165 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
e6628d5b
MG
9166 return -EINVAL;
9167
9168 /* TODO: This is not properly updating schedstats */
9169
286549dc 9170 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
9171 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9172}
0ec8aa00
PZ
9173
9174/*
9175 * Requeue a task on a given node and accurately track the number of NUMA
9176 * tasks on the runqueues
9177 */
9178void sched_setnuma(struct task_struct *p, int nid)
9179{
da0c1e65 9180 bool queued, running;
eb580751
PZ
9181 struct rq_flags rf;
9182 struct rq *rq;
0ec8aa00 9183
eb580751 9184 rq = task_rq_lock(p, &rf);
da0c1e65 9185 queued = task_on_rq_queued(p);
0ec8aa00
PZ
9186 running = task_current(rq, p);
9187
da0c1e65 9188 if (queued)
1de64443 9189 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 9190 if (running)
f3cd1c4e 9191 put_prev_task(rq, p);
0ec8aa00
PZ
9192
9193 p->numa_preferred_nid = nid;
0ec8aa00 9194
da0c1e65 9195 if (queued)
7134b3e9 9196 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
a399d233 9197 if (running)
03b7fad1 9198 set_next_task(rq, p);
eb580751 9199 task_rq_unlock(rq, p, &rf);
0ec8aa00 9200}
5cc389bc 9201#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 9202
1da177e4 9203#ifdef CONFIG_HOTPLUG_CPU
054b9108 9204/*
d1ccc66d 9205 * Ensure that the idle task is using init_mm right before its CPU goes
48c5ccae 9206 * offline.
054b9108 9207 */
48c5ccae 9208void idle_task_exit(void)
1da177e4 9209{
48c5ccae 9210 struct mm_struct *mm = current->active_mm;
e76bd8d9 9211
48c5ccae 9212 BUG_ON(cpu_online(smp_processor_id()));
bf2c59fc 9213 BUG_ON(current != this_rq()->idle);
e76bd8d9 9214
a53efe5f 9215 if (mm != &init_mm) {
252d2a41 9216 switch_mm(mm, &init_mm, current);
a53efe5f
MS
9217 finish_arch_post_lock_switch();
9218 }
bf2c59fc
PZ
9219
9220 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
1da177e4
LT
9221}
9222
2558aacf 9223static int __balance_push_cpu_stop(void *arg)
1da177e4 9224{
2558aacf
PZ
9225 struct task_struct *p = arg;
9226 struct rq *rq = this_rq();
9227 struct rq_flags rf;
9228 int cpu;
1da177e4 9229
2558aacf
PZ
9230 raw_spin_lock_irq(&p->pi_lock);
9231 rq_lock(rq, &rf);
3f1d2a31 9232
2558aacf
PZ
9233 update_rq_clock(rq);
9234
9235 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9236 cpu = select_fallback_rq(rq->cpu, p);
9237 rq = __migrate_task(rq, &rf, p, cpu);
10e7071b 9238 }
3f1d2a31 9239
2558aacf
PZ
9240 rq_unlock(rq, &rf);
9241 raw_spin_unlock_irq(&p->pi_lock);
9242
9243 put_task_struct(p);
9244
9245 return 0;
10e7071b 9246}
3f1d2a31 9247
2558aacf
PZ
9248static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9249
48f24c4d 9250/*
2558aacf 9251 * Ensure we only run per-cpu kthreads once the CPU goes !active.
b5c44773
PZ
9252 *
9253 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9254 * effective when the hotplug motion is down.
1da177e4 9255 */
2558aacf 9256static void balance_push(struct rq *rq)
1da177e4 9257{
2558aacf
PZ
9258 struct task_struct *push_task = rq->curr;
9259
5cb9eaa3 9260 lockdep_assert_rq_held(rq);
b5c44773 9261
ae792702
PZ
9262 /*
9263 * Ensure the thing is persistent until balance_push_set(.on = false);
9264 */
9265 rq->balance_callback = &balance_push_callback;
1da177e4 9266
b5c44773 9267 /*
868ad33b
TG
9268 * Only active while going offline and when invoked on the outgoing
9269 * CPU.
b5c44773 9270 */
868ad33b 9271 if (!cpu_dying(rq->cpu) || rq != this_rq())
b5c44773
PZ
9272 return;
9273
1da177e4 9274 /*
2558aacf
PZ
9275 * Both the cpu-hotplug and stop task are in this case and are
9276 * required to complete the hotplug process.
1da177e4 9277 */
00b89fe0 9278 if (kthread_is_per_cpu(push_task) ||
5ba2ffba
PZ
9279 is_migration_disabled(push_task)) {
9280
f2469a1f
TG
9281 /*
9282 * If this is the idle task on the outgoing CPU try to wake
9283 * up the hotplug control thread which might wait for the
9284 * last task to vanish. The rcuwait_active() check is
9285 * accurate here because the waiter is pinned on this CPU
9286 * and can't obviously be running in parallel.
3015ef4b
TG
9287 *
9288 * On RT kernels this also has to check whether there are
9289 * pinned and scheduled out tasks on the runqueue. They
9290 * need to leave the migrate disabled section first.
f2469a1f 9291 */
3015ef4b
TG
9292 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9293 rcuwait_active(&rq->hotplug_wait)) {
5cb9eaa3 9294 raw_spin_rq_unlock(rq);
f2469a1f 9295 rcuwait_wake_up(&rq->hotplug_wait);
5cb9eaa3 9296 raw_spin_rq_lock(rq);
f2469a1f 9297 }
2558aacf 9298 return;
f2469a1f 9299 }
48f24c4d 9300
2558aacf 9301 get_task_struct(push_task);
77bd3970 9302 /*
2558aacf
PZ
9303 * Temporarily drop rq->lock such that we can wake-up the stop task.
9304 * Both preemption and IRQs are still disabled.
77bd3970 9305 */
5cb9eaa3 9306 raw_spin_rq_unlock(rq);
2558aacf
PZ
9307 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9308 this_cpu_ptr(&push_work));
9309 /*
9310 * At this point need_resched() is true and we'll take the loop in
9311 * schedule(). The next pick is obviously going to be the stop task
5ba2ffba 9312 * which kthread_is_per_cpu() and will push this task away.
2558aacf 9313 */
5cb9eaa3 9314 raw_spin_rq_lock(rq);
2558aacf 9315}
77bd3970 9316
2558aacf
PZ
9317static void balance_push_set(int cpu, bool on)
9318{
9319 struct rq *rq = cpu_rq(cpu);
9320 struct rq_flags rf;
48c5ccae 9321
2558aacf 9322 rq_lock_irqsave(rq, &rf);
22f667c9
PZ
9323 if (on) {
9324 WARN_ON_ONCE(rq->balance_callback);
ae792702 9325 rq->balance_callback = &balance_push_callback;
22f667c9 9326 } else if (rq->balance_callback == &balance_push_callback) {
ae792702 9327 rq->balance_callback = NULL;
22f667c9 9328 }
2558aacf
PZ
9329 rq_unlock_irqrestore(rq, &rf);
9330}
e692ab53 9331
f2469a1f
TG
9332/*
9333 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9334 * inactive. All tasks which are not per CPU kernel threads are either
9335 * pushed off this CPU now via balance_push() or placed on a different CPU
9336 * during wakeup. Wait until the CPU is quiescent.
9337 */
9338static void balance_hotplug_wait(void)
9339{
9340 struct rq *rq = this_rq();
5473e0cc 9341
3015ef4b
TG
9342 rcuwait_wait_event(&rq->hotplug_wait,
9343 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
f2469a1f
TG
9344 TASK_UNINTERRUPTIBLE);
9345}
5473e0cc 9346
2558aacf 9347#else
dce48a84 9348
2558aacf
PZ
9349static inline void balance_push(struct rq *rq)
9350{
dce48a84 9351}
dce48a84 9352
2558aacf
PZ
9353static inline void balance_push_set(int cpu, bool on)
9354{
9355}
9356
f2469a1f
TG
9357static inline void balance_hotplug_wait(void)
9358{
dce48a84 9359}
f2469a1f 9360
1da177e4
LT
9361#endif /* CONFIG_HOTPLUG_CPU */
9362
f2cb1360 9363void set_rq_online(struct rq *rq)
1f11eb6a
GH
9364{
9365 if (!rq->online) {
9366 const struct sched_class *class;
9367
c6c4927b 9368 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9369 rq->online = 1;
9370
9371 for_each_class(class) {
9372 if (class->rq_online)
9373 class->rq_online(rq);
9374 }
9375 }
9376}
9377
f2cb1360 9378void set_rq_offline(struct rq *rq)
1f11eb6a
GH
9379{
9380 if (rq->online) {
9381 const struct sched_class *class;
9382
9383 for_each_class(class) {
9384 if (class->rq_offline)
9385 class->rq_offline(rq);
9386 }
9387
c6c4927b 9388 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
9389 rq->online = 0;
9390 }
9391}
9392
d1ccc66d
IM
9393/*
9394 * used to mark begin/end of suspend/resume:
9395 */
9396static int num_cpus_frozen;
d35be8ba 9397
1da177e4 9398/*
3a101d05
TH
9399 * Update cpusets according to cpu_active mask. If cpusets are
9400 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9401 * around partition_sched_domains().
d35be8ba
SB
9402 *
9403 * If we come here as part of a suspend/resume, don't touch cpusets because we
9404 * want to restore it back to its original state upon resume anyway.
1da177e4 9405 */
40190a78 9406static void cpuset_cpu_active(void)
e761b772 9407{
40190a78 9408 if (cpuhp_tasks_frozen) {
d35be8ba
SB
9409 /*
9410 * num_cpus_frozen tracks how many CPUs are involved in suspend
9411 * resume sequence. As long as this is not the last online
9412 * operation in the resume sequence, just build a single sched
9413 * domain, ignoring cpusets.
9414 */
50e76632
PZ
9415 partition_sched_domains(1, NULL, NULL);
9416 if (--num_cpus_frozen)
135fb3e1 9417 return;
d35be8ba
SB
9418 /*
9419 * This is the last CPU online operation. So fall through and
9420 * restore the original sched domains by considering the
9421 * cpuset configurations.
9422 */
50e76632 9423 cpuset_force_rebuild();
3a101d05 9424 }
30e03acd 9425 cpuset_update_active_cpus();
3a101d05 9426}
e761b772 9427
40190a78 9428static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 9429{
40190a78 9430 if (!cpuhp_tasks_frozen) {
772b6539
DE
9431 int ret = dl_cpu_busy(cpu, NULL);
9432
9433 if (ret)
9434 return ret;
30e03acd 9435 cpuset_update_active_cpus();
135fb3e1 9436 } else {
d35be8ba
SB
9437 num_cpus_frozen++;
9438 partition_sched_domains(1, NULL, NULL);
e761b772 9439 }
135fb3e1 9440 return 0;
e761b772 9441}
e761b772 9442
40190a78 9443int sched_cpu_activate(unsigned int cpu)
135fb3e1 9444{
7d976699 9445 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9446 struct rq_flags rf;
7d976699 9447
22f667c9 9448 /*
b5c44773
PZ
9449 * Clear the balance_push callback and prepare to schedule
9450 * regular tasks.
22f667c9 9451 */
2558aacf
PZ
9452 balance_push_set(cpu, false);
9453
ba2591a5
PZ
9454#ifdef CONFIG_SCHED_SMT
9455 /*
c5511d03 9456 * When going up, increment the number of cores with SMT present.
ba2591a5 9457 */
c5511d03
PZI
9458 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9459 static_branch_inc_cpuslocked(&sched_smt_present);
ba2591a5 9460#endif
40190a78 9461 set_cpu_active(cpu, true);
135fb3e1 9462
40190a78 9463 if (sched_smp_initialized) {
0fb3978b 9464 sched_update_numa(cpu, true);
135fb3e1 9465 sched_domains_numa_masks_set(cpu);
40190a78 9466 cpuset_cpu_active();
e761b772 9467 }
7d976699
TG
9468
9469 /*
9470 * Put the rq online, if not already. This happens:
9471 *
9472 * 1) In the early boot process, because we build the real domains
d1ccc66d 9473 * after all CPUs have been brought up.
7d976699
TG
9474 *
9475 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9476 * domains.
9477 */
8a8c69c3 9478 rq_lock_irqsave(rq, &rf);
7d976699
TG
9479 if (rq->rd) {
9480 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9481 set_rq_online(rq);
9482 }
8a8c69c3 9483 rq_unlock_irqrestore(rq, &rf);
7d976699 9484
40190a78 9485 return 0;
135fb3e1
TG
9486}
9487
40190a78 9488int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 9489{
120455c5
PZ
9490 struct rq *rq = cpu_rq(cpu);
9491 struct rq_flags rf;
135fb3e1
TG
9492 int ret;
9493
e0b257c3
AMB
9494 /*
9495 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9496 * load balancing when not active
9497 */
9498 nohz_balance_exit_idle(rq);
9499
40190a78 9500 set_cpu_active(cpu, false);
741ba80f
PZ
9501
9502 /*
9503 * From this point forward, this CPU will refuse to run any task that
9504 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9505 * push those tasks away until this gets cleared, see
9506 * sched_cpu_dying().
9507 */
975707f2
PZ
9508 balance_push_set(cpu, true);
9509
b2454caa 9510 /*
975707f2
PZ
9511 * We've cleared cpu_active_mask / set balance_push, wait for all
9512 * preempt-disabled and RCU users of this state to go away such that
9513 * all new such users will observe it.
b2454caa 9514 *
5ba2ffba
PZ
9515 * Specifically, we rely on ttwu to no longer target this CPU, see
9516 * ttwu_queue_cond() and is_cpu_allowed().
9517 *
b2454caa
PZ
9518 * Do sync before park smpboot threads to take care the rcu boost case.
9519 */
309ba859 9520 synchronize_rcu();
40190a78 9521
120455c5
PZ
9522 rq_lock_irqsave(rq, &rf);
9523 if (rq->rd) {
9524 update_rq_clock(rq);
9525 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9526 set_rq_offline(rq);
9527 }
9528 rq_unlock_irqrestore(rq, &rf);
9529
c5511d03
PZI
9530#ifdef CONFIG_SCHED_SMT
9531 /*
9532 * When going down, decrement the number of cores with SMT present.
9533 */
9534 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9535 static_branch_dec_cpuslocked(&sched_smt_present);
3c474b32
PZ
9536
9537 sched_core_cpu_deactivate(cpu);
c5511d03
PZI
9538#endif
9539
40190a78
TG
9540 if (!sched_smp_initialized)
9541 return 0;
9542
0fb3978b 9543 sched_update_numa(cpu, false);
40190a78
TG
9544 ret = cpuset_cpu_inactive(cpu);
9545 if (ret) {
2558aacf 9546 balance_push_set(cpu, false);
40190a78 9547 set_cpu_active(cpu, true);
0fb3978b 9548 sched_update_numa(cpu, true);
40190a78 9549 return ret;
135fb3e1 9550 }
40190a78
TG
9551 sched_domains_numa_masks_clear(cpu);
9552 return 0;
135fb3e1
TG
9553}
9554
94baf7a5
TG
9555static void sched_rq_cpu_starting(unsigned int cpu)
9556{
9557 struct rq *rq = cpu_rq(cpu);
9558
9559 rq->calc_load_update = calc_load_update;
94baf7a5
TG
9560 update_max_interval();
9561}
9562
135fb3e1
TG
9563int sched_cpu_starting(unsigned int cpu)
9564{
9edeaea1 9565 sched_core_cpu_starting(cpu);
94baf7a5 9566 sched_rq_cpu_starting(cpu);
d84b3131 9567 sched_tick_start(cpu);
135fb3e1 9568 return 0;
e761b772 9569}
e761b772 9570
f2785ddb 9571#ifdef CONFIG_HOTPLUG_CPU
1cf12e08
TG
9572
9573/*
9574 * Invoked immediately before the stopper thread is invoked to bring the
9575 * CPU down completely. At this point all per CPU kthreads except the
9576 * hotplug thread (current) and the stopper thread (inactive) have been
9577 * either parked or have been unbound from the outgoing CPU. Ensure that
9578 * any of those which might be on the way out are gone.
9579 *
9580 * If after this point a bound task is being woken on this CPU then the
9581 * responsible hotplug callback has failed to do it's job.
9582 * sched_cpu_dying() will catch it with the appropriate fireworks.
9583 */
9584int sched_cpu_wait_empty(unsigned int cpu)
9585{
9586 balance_hotplug_wait();
9587 return 0;
9588}
9589
9590/*
9591 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9592 * might have. Called from the CPU stopper task after ensuring that the
9593 * stopper is the last running task on the CPU, so nr_active count is
9594 * stable. We need to take the teardown thread which is calling this into
9595 * account, so we hand in adjust = 1 to the load calculation.
9596 *
9597 * Also see the comment "Global load-average calculations".
9598 */
9599static void calc_load_migrate(struct rq *rq)
9600{
9601 long delta = calc_load_fold_active(rq, 1);
9602
9603 if (delta)
9604 atomic_long_add(delta, &calc_load_tasks);
9605}
9606
36c6e17b
VS
9607static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9608{
9609 struct task_struct *g, *p;
9610 int cpu = cpu_of(rq);
9611
5cb9eaa3 9612 lockdep_assert_rq_held(rq);
36c6e17b
VS
9613
9614 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9615 for_each_process_thread(g, p) {
9616 if (task_cpu(p) != cpu)
9617 continue;
9618
9619 if (!task_on_rq_queued(p))
9620 continue;
9621
9622 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9623 }
9624}
9625
f2785ddb
TG
9626int sched_cpu_dying(unsigned int cpu)
9627{
9628 struct rq *rq = cpu_rq(cpu);
8a8c69c3 9629 struct rq_flags rf;
f2785ddb
TG
9630
9631 /* Handle pending wakeups and then migrate everything off */
d84b3131 9632 sched_tick_stop(cpu);
8a8c69c3
PZ
9633
9634 rq_lock_irqsave(rq, &rf);
36c6e17b
VS
9635 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9636 WARN(true, "Dying CPU not properly vacated!");
9637 dump_rq_tasks(rq, KERN_WARNING);
9638 }
8a8c69c3
PZ
9639 rq_unlock_irqrestore(rq, &rf);
9640
f2785ddb
TG
9641 calc_load_migrate(rq);
9642 update_max_interval();
e5ef27d0 9643 hrtick_clear(rq);
3c474b32 9644 sched_core_cpu_dying(cpu);
f2785ddb
TG
9645 return 0;
9646}
9647#endif
9648
1da177e4
LT
9649void __init sched_init_smp(void)
9650{
0fb3978b 9651 sched_init_numa(NUMA_NO_NODE);
cb83b629 9652
6acce3ef
PZ
9653 /*
9654 * There's no userspace yet to cause hotplug operations; hence all the
d1ccc66d 9655 * CPU masks are stable and all blatant races in the below code cannot
b5a4e2bb 9656 * happen.
6acce3ef 9657 */
712555ee 9658 mutex_lock(&sched_domains_mutex);
8d5dc512 9659 sched_init_domains(cpu_active_mask);
712555ee 9660 mutex_unlock(&sched_domains_mutex);
e761b772 9661
5c1e1767 9662 /* Move init over to a non-isolated CPU */
04d4e665 9663 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
5c1e1767 9664 BUG();
15faafc6 9665 current->flags &= ~PF_NO_SETAFFINITY;
19978ca6 9666 sched_init_granularity();
4212823f 9667
0e3900e6 9668 init_sched_rt_class();
1baca4ce 9669 init_sched_dl_class();
1b568f0a 9670
e26fbffd 9671 sched_smp_initialized = true;
1da177e4 9672}
e26fbffd
TG
9673
9674static int __init migration_init(void)
9675{
77a5352b 9676 sched_cpu_starting(smp_processor_id());
e26fbffd 9677 return 0;
1da177e4 9678}
e26fbffd
TG
9679early_initcall(migration_init);
9680
1da177e4
LT
9681#else
9682void __init sched_init_smp(void)
9683{
19978ca6 9684 sched_init_granularity();
1da177e4
LT
9685}
9686#endif /* CONFIG_SMP */
9687
9688int in_sched_functions(unsigned long addr)
9689{
1da177e4
LT
9690 return in_lock_functions(addr) ||
9691 (addr >= (unsigned long)__sched_text_start
9692 && addr < (unsigned long)__sched_text_end);
9693}
9694
029632fb 9695#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
9696/*
9697 * Default task group.
9698 * Every task in system belongs to this group at bootup.
9699 */
029632fb 9700struct task_group root_task_group;
35cf4e50 9701LIST_HEAD(task_groups);
b0367629
WL
9702
9703/* Cacheline aligned slab cache for task_group */
9704static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 9705#endif
6f505b16 9706
1da177e4
LT
9707void __init sched_init(void)
9708{
a1dc0446 9709 unsigned long ptr = 0;
55627e3c 9710 int i;
434d53b0 9711
c3a340f7 9712 /* Make sure the linker didn't screw up */
546a3fee
PZ
9713 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9714 &fair_sched_class != &rt_sched_class + 1 ||
9715 &rt_sched_class != &dl_sched_class + 1);
c3a340f7 9716#ifdef CONFIG_SMP
546a3fee 9717 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
c3a340f7
SRV
9718#endif
9719
5822a454 9720 wait_bit_init();
9dcb8b68 9721
434d53b0 9722#ifdef CONFIG_FAIR_GROUP_SCHED
a1dc0446 9723 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0
MT
9724#endif
9725#ifdef CONFIG_RT_GROUP_SCHED
a1dc0446 9726 ptr += 2 * nr_cpu_ids * sizeof(void **);
434d53b0 9727#endif
a1dc0446
QC
9728 if (ptr) {
9729 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
434d53b0
MT
9730
9731#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 9732 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
9733 ptr += nr_cpu_ids * sizeof(void **);
9734
07e06b01 9735 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 9736 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 9737
b1d1779e
WY
9738 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9739 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6d6bc0ad 9740#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 9741#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9742 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
9743 ptr += nr_cpu_ids * sizeof(void **);
9744
07e06b01 9745 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9746 ptr += nr_cpu_ids * sizeof(void **);
9747
6d6bc0ad 9748#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 9749 }
dd41f596 9750
d1ccc66d 9751 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
332ac17e 9752
57d885fe
GH
9753#ifdef CONFIG_SMP
9754 init_defrootdomain();
9755#endif
9756
d0b27fa7 9757#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9758 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 9759 global_rt_period(), global_rt_runtime());
6d6bc0ad 9760#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9761
7c941438 9762#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
9763 task_group_cache = KMEM_CACHE(task_group, 0);
9764
07e06b01
YZ
9765 list_add(&root_task_group.list, &task_groups);
9766 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 9767 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 9768 autogroup_init(&init_task);
7c941438 9769#endif /* CONFIG_CGROUP_SCHED */
6f505b16 9770
0a945022 9771 for_each_possible_cpu(i) {
70b97a7f 9772 struct rq *rq;
1da177e4
LT
9773
9774 rq = cpu_rq(i);
5cb9eaa3 9775 raw_spin_lock_init(&rq->__lock);
7897986b 9776 rq->nr_running = 0;
dce48a84
TG
9777 rq->calc_load_active = 0;
9778 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 9779 init_cfs_rq(&rq->cfs);
07c54f7a
AV
9780 init_rt_rq(&rq->rt);
9781 init_dl_rq(&rq->dl);
dd41f596 9782#ifdef CONFIG_FAIR_GROUP_SCHED
6f505b16 9783 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9c2791f9 9784 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
354d60c2 9785 /*
d1ccc66d 9786 * How much CPU bandwidth does root_task_group get?
354d60c2
DG
9787 *
9788 * In case of task-groups formed thr' the cgroup filesystem, it
d1ccc66d
IM
9789 * gets 100% of the CPU resources in the system. This overall
9790 * system CPU resource is divided among the tasks of
07e06b01 9791 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
9792 * based on each entity's (task or task-group's) weight
9793 * (se->load.weight).
9794 *
07e06b01 9795 * In other words, if root_task_group has 10 tasks of weight
354d60c2 9796 * 1024) and two child groups A0 and A1 (of weight 1024 each),
d1ccc66d 9797 * then A0's share of the CPU resource is:
354d60c2 9798 *
0d905bca 9799 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 9800 *
07e06b01
YZ
9801 * We achieve this by letting root_task_group's tasks sit
9802 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 9803 */
07e06b01 9804 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
9805#endif /* CONFIG_FAIR_GROUP_SCHED */
9806
9807 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9808#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 9809 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 9810#endif
1da177e4 9811#ifdef CONFIG_SMP
41c7ce9a 9812 rq->sd = NULL;
57d885fe 9813 rq->rd = NULL;
ca6d75e6 9814 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
b5c44773 9815 rq->balance_callback = &balance_push_callback;
1da177e4 9816 rq->active_balance = 0;
dd41f596 9817 rq->next_balance = jiffies;
1da177e4 9818 rq->push_cpu = 0;
0a2966b4 9819 rq->cpu = i;
1f11eb6a 9820 rq->online = 0;
eae0c9df
MG
9821 rq->idle_stamp = 0;
9822 rq->avg_idle = 2*sysctl_sched_migration_cost;
94aafc3e
PZ
9823 rq->wake_stamp = jiffies;
9824 rq->wake_avg_idle = rq->avg_idle;
9bd721c5 9825 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
9826
9827 INIT_LIST_HEAD(&rq->cfs_tasks);
9828
dc938520 9829 rq_attach_root(rq, &def_root_domain);
3451d024 9830#ifdef CONFIG_NO_HZ_COMMON
e022e0d3 9831 rq->last_blocked_load_update_tick = jiffies;
a22e47a4 9832 atomic_set(&rq->nohz_flags, 0);
90b5363a 9833
545b8c8d 9834 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
83cd4fe2 9835#endif
f2469a1f
TG
9836#ifdef CONFIG_HOTPLUG_CPU
9837 rcuwait_init(&rq->hotplug_wait);
83cd4fe2 9838#endif
9fd81dd5 9839#endif /* CONFIG_SMP */
77a021be 9840 hrtick_rq_init(rq);
1da177e4 9841 atomic_set(&rq->nr_iowait, 0);
9edeaea1
PZ
9842
9843#ifdef CONFIG_SCHED_CORE
3c474b32 9844 rq->core = rq;
539f6512 9845 rq->core_pick = NULL;
9edeaea1 9846 rq->core_enabled = 0;
539f6512 9847 rq->core_tree = RB_ROOT;
4feee7d1
JD
9848 rq->core_forceidle_count = 0;
9849 rq->core_forceidle_occupation = 0;
9850 rq->core_forceidle_start = 0;
539f6512
PZ
9851
9852 rq->core_cookie = 0UL;
9edeaea1 9853#endif
da019032 9854 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
1da177e4
LT
9855 }
9856
b1e82065 9857 set_load_weight(&init_task, false);
b50f60ce 9858
1da177e4
LT
9859 /*
9860 * The boot idle thread does lazy MMU switching as well:
9861 */
f1f10076 9862 mmgrab(&init_mm);
1da177e4
LT
9863 enter_lazy_tlb(&init_mm, current);
9864
40966e31
EB
9865 /*
9866 * The idle task doesn't need the kthread struct to function, but it
9867 * is dressed up as a per-CPU kthread and thus needs to play the part
9868 * if we want to avoid special-casing it in code that deals with per-CPU
9869 * kthreads.
9870 */
dd621ee0 9871 WARN_ON(!set_kthread_struct(current));
40966e31 9872
1da177e4
LT
9873 /*
9874 * Make us the idle thread. Technically, schedule() should not be
9875 * called from this thread, however somewhere below it might be,
9876 * but because we are the idle thread, we just pick up running again
9877 * when this runqueue becomes "idle".
9878 */
9879 init_idle(current, smp_processor_id());
dce48a84
TG
9880
9881 calc_load_update = jiffies + LOAD_FREQ;
9882
bf4d83f6 9883#ifdef CONFIG_SMP
29d5e047 9884 idle_thread_set_boot_cpu();
b5c44773 9885 balance_push_set(smp_processor_id(), false);
029632fb
PZ
9886#endif
9887 init_sched_fair_class();
6a7b3dc3 9888
eb414681
JW
9889 psi_init();
9890
69842cba
PB
9891 init_uclamp();
9892
c597bfdd
FW
9893 preempt_dynamic_init();
9894
6892b75e 9895 scheduler_running = 1;
1da177e4
LT
9896}
9897
d902db1e 9898#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2 9899
42a38756 9900void __might_sleep(const char *file, int line)
1da177e4 9901{
d6c23bb3 9902 unsigned int state = get_current_state();
8eb23b9f
PZ
9903 /*
9904 * Blocking primitives will set (and therefore destroy) current->state,
9905 * since we will exit with TASK_RUNNING make sure we enter with it,
9906 * otherwise we will destroy state.
9907 */
d6c23bb3 9908 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
8eb23b9f 9909 "do not call blocking ops when !TASK_RUNNING; "
d6c23bb3 9910 "state=%x set at [<%p>] %pS\n", state,
8eb23b9f 9911 (void *)current->task_state_change,
00845eb9 9912 (void *)current->task_state_change);
8eb23b9f 9913
42a38756 9914 __might_resched(file, line, 0);
3427445a
PZ
9915}
9916EXPORT_SYMBOL(__might_sleep);
9917
8d713b69
TG
9918static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9919{
9920 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9921 return;
9922
9923 if (preempt_count() == preempt_offset)
9924 return;
9925
9926 pr_err("Preemption disabled at:");
9927 print_ip_sym(KERN_ERR, ip);
9928}
9929
50e081b9
TG
9930static inline bool resched_offsets_ok(unsigned int offsets)
9931{
9932 unsigned int nested = preempt_count();
9933
9934 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9935
9936 return nested == offsets;
9937}
9938
9939void __might_resched(const char *file, int line, unsigned int offsets)
1da177e4 9940{
d1ccc66d
IM
9941 /* Ratelimiting timestamp: */
9942 static unsigned long prev_jiffy;
9943
d1c6d149 9944 unsigned long preempt_disable_ip;
1da177e4 9945
d1ccc66d
IM
9946 /* WARN_ON_ONCE() by default, no rate limit required: */
9947 rcu_sleep_check();
9948
50e081b9 9949 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
312364f3 9950 !is_idle_task(current) && !current->non_block_count) ||
1c3c5eab
TG
9951 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9952 oops_in_progress)
aef745fc 9953 return;
1c3c5eab 9954
aef745fc
IM
9955 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9956 return;
9957 prev_jiffy = jiffies;
9958
d1ccc66d 9959 /* Save this before calling printk(), since that will clobber it: */
d1c6d149
VN
9960 preempt_disable_ip = get_preempt_disable_ip(current);
9961
a45ed302
TG
9962 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9963 file, line);
9964 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9965 in_atomic(), irqs_disabled(), current->non_block_count,
9966 current->pid, current->comm);
8d713b69 9967 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
50e081b9 9968 offsets & MIGHT_RESCHED_PREEMPT_MASK);
8d713b69
TG
9969
9970 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
50e081b9
TG
9971 pr_err("RCU nest depth: %d, expected: %u\n",
9972 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
8d713b69 9973 }
aef745fc 9974
a8b686b3 9975 if (task_stack_end_corrupted(current))
a45ed302 9976 pr_emerg("Thread overran stack, or stack corrupted\n");
a8b686b3 9977
aef745fc
IM
9978 debug_show_held_locks(current);
9979 if (irqs_disabled())
9980 print_irqtrace_events(current);
8d713b69 9981
50e081b9
TG
9982 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9983 preempt_disable_ip);
8d713b69 9984
aef745fc 9985 dump_stack();
f0b22e39 9986 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 9987}
874f670e 9988EXPORT_SYMBOL(__might_resched);
568f1967
PZ
9989
9990void __cant_sleep(const char *file, int line, int preempt_offset)
9991{
9992 static unsigned long prev_jiffy;
9993
9994 if (irqs_disabled())
9995 return;
9996
9997 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9998 return;
9999
10000 if (preempt_count() > preempt_offset)
10001 return;
10002
10003 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10004 return;
10005 prev_jiffy = jiffies;
10006
10007 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10008 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10009 in_atomic(), irqs_disabled(),
10010 current->pid, current->comm);
10011
10012 debug_show_held_locks(current);
10013 dump_stack();
10014 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10015}
10016EXPORT_SYMBOL_GPL(__cant_sleep);
74d862b6
TG
10017
10018#ifdef CONFIG_SMP
10019void __cant_migrate(const char *file, int line)
10020{
10021 static unsigned long prev_jiffy;
10022
10023 if (irqs_disabled())
10024 return;
10025
10026 if (is_migration_disabled(current))
10027 return;
10028
10029 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10030 return;
10031
10032 if (preempt_count() > 0)
10033 return;
10034
10035 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10036 return;
10037 prev_jiffy = jiffies;
10038
10039 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10040 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10041 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10042 current->pid, current->comm);
10043
10044 debug_show_held_locks(current);
10045 dump_stack();
10046 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10047}
10048EXPORT_SYMBOL_GPL(__cant_migrate);
10049#endif
1da177e4
LT
10050#endif
10051
10052#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 10053void normalize_rt_tasks(void)
3a5e4dc1 10054{
dbc7f069 10055 struct task_struct *g, *p;
d50dde5a
DF
10056 struct sched_attr attr = {
10057 .sched_policy = SCHED_NORMAL,
10058 };
1da177e4 10059
3472eaa1 10060 read_lock(&tasklist_lock);
5d07f420 10061 for_each_process_thread(g, p) {
178be793
IM
10062 /*
10063 * Only normalize user tasks:
10064 */
3472eaa1 10065 if (p->flags & PF_KTHREAD)
178be793
IM
10066 continue;
10067
4fa8d299 10068 p->se.exec_start = 0;
ceeadb83
YS
10069 schedstat_set(p->stats.wait_start, 0);
10070 schedstat_set(p->stats.sleep_start, 0);
10071 schedstat_set(p->stats.block_start, 0);
dd41f596 10072
aab03e05 10073 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
10074 /*
10075 * Renice negative nice level userspace
10076 * tasks back to 0:
10077 */
3472eaa1 10078 if (task_nice(p) < 0)
dd41f596 10079 set_user_nice(p, 0);
1da177e4 10080 continue;
dd41f596 10081 }
1da177e4 10082
dbc7f069 10083 __sched_setscheduler(p, &attr, false, false);
5d07f420 10084 }
3472eaa1 10085 read_unlock(&tasklist_lock);
1da177e4
LT
10086}
10087
10088#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 10089
67fc4e0c 10090#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 10091/*
67fc4e0c 10092 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
10093 *
10094 * They can only be called when the whole system has been
10095 * stopped - every CPU needs to be quiescent, and no scheduling
10096 * activity can take place. Using them for anything else would
10097 * be a serious bug, and as a result, they aren't even visible
10098 * under any other configuration.
10099 */
10100
10101/**
d1ccc66d 10102 * curr_task - return the current task for a given CPU.
1df5c10a
LT
10103 * @cpu: the processor in question.
10104 *
10105 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
10106 *
10107 * Return: The current task for @cpu.
1df5c10a 10108 */
36c8b586 10109struct task_struct *curr_task(int cpu)
1df5c10a
LT
10110{
10111 return cpu_curr(cpu);
10112}
10113
67fc4e0c
JW
10114#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10115
10116#ifdef CONFIG_IA64
1df5c10a 10117/**
5feeb783 10118 * ia64_set_curr_task - set the current task for a given CPU.
1df5c10a
LT
10119 * @cpu: the processor in question.
10120 * @p: the task pointer to set.
10121 *
10122 * Description: This function must only be used when non-maskable interrupts
41a2d6cf 10123 * are serviced on a separate stack. It allows the architecture to switch the
d1ccc66d 10124 * notion of the current task on a CPU in a non-blocking manner. This function
1df5c10a
LT
10125 * must be called with all CPU's synchronized, and interrupts disabled, the
10126 * and caller must save the original value of the current task (see
10127 * curr_task() above) and restore that value before reenabling interrupts and
10128 * re-starting the system.
10129 *
10130 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10131 */
a458ae2e 10132void ia64_set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
10133{
10134 cpu_curr(cpu) = p;
10135}
10136
10137#endif
29f59db3 10138
7c941438 10139#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
10140/* task_group_lock serializes the addition/removal of task groups */
10141static DEFINE_SPINLOCK(task_group_lock);
10142
2480c093
PB
10143static inline void alloc_uclamp_sched_group(struct task_group *tg,
10144 struct task_group *parent)
10145{
10146#ifdef CONFIG_UCLAMP_TASK_GROUP
0413d7f3 10147 enum uclamp_id clamp_id;
2480c093
PB
10148
10149 for_each_clamp_id(clamp_id) {
10150 uclamp_se_set(&tg->uclamp_req[clamp_id],
10151 uclamp_none(clamp_id), false);
0b60ba2d 10152 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
2480c093
PB
10153 }
10154#endif
10155}
10156
2f5177f0 10157static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
10158{
10159 free_fair_sched_group(tg);
10160 free_rt_sched_group(tg);
e9aa1dd1 10161 autogroup_free(tg);
b0367629 10162 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
10163}
10164
b027789e
MK
10165static void sched_free_group_rcu(struct rcu_head *rcu)
10166{
10167 sched_free_group(container_of(rcu, struct task_group, rcu));
10168}
10169
10170static void sched_unregister_group(struct task_group *tg)
10171{
10172 unregister_fair_sched_group(tg);
10173 unregister_rt_sched_group(tg);
10174 /*
10175 * We have to wait for yet another RCU grace period to expire, as
10176 * print_cfs_stats() might run concurrently.
10177 */
10178 call_rcu(&tg->rcu, sched_free_group_rcu);
10179}
10180
bccbe08a 10181/* allocate runqueue etc for a new task group */
ec7dc8ac 10182struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
10183{
10184 struct task_group *tg;
bccbe08a 10185
b0367629 10186 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
10187 if (!tg)
10188 return ERR_PTR(-ENOMEM);
10189
ec7dc8ac 10190 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
10191 goto err;
10192
ec7dc8ac 10193 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
10194 goto err;
10195
2480c093
PB
10196 alloc_uclamp_sched_group(tg, parent);
10197
ace783b9
LZ
10198 return tg;
10199
10200err:
2f5177f0 10201 sched_free_group(tg);
ace783b9
LZ
10202 return ERR_PTR(-ENOMEM);
10203}
10204
10205void sched_online_group(struct task_group *tg, struct task_group *parent)
10206{
10207 unsigned long flags;
10208
8ed36996 10209 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10210 list_add_rcu(&tg->list, &task_groups);
f473aa5e 10211
d1ccc66d
IM
10212 /* Root should already exist: */
10213 WARN_ON(!parent);
f473aa5e
PZ
10214
10215 tg->parent = parent;
f473aa5e 10216 INIT_LIST_HEAD(&tg->children);
09f2724a 10217 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 10218 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
10219
10220 online_fair_sched_group(tg);
29f59db3
SV
10221}
10222
9b5b7751 10223/* rcu callback to free various structures associated with a task group */
b027789e 10224static void sched_unregister_group_rcu(struct rcu_head *rhp)
29f59db3 10225{
d1ccc66d 10226 /* Now it should be safe to free those cfs_rqs: */
b027789e 10227 sched_unregister_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
10228}
10229
4cf86d77 10230void sched_destroy_group(struct task_group *tg)
ace783b9 10231{
d1ccc66d 10232 /* Wait for possible concurrent references to cfs_rqs complete: */
b027789e 10233 call_rcu(&tg->rcu, sched_unregister_group_rcu);
ace783b9
LZ
10234}
10235
b027789e 10236void sched_release_group(struct task_group *tg)
29f59db3 10237{
8ed36996 10238 unsigned long flags;
29f59db3 10239
b027789e
MK
10240 /*
10241 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10242 * sched_cfs_period_timer()).
10243 *
10244 * For this to be effective, we have to wait for all pending users of
10245 * this task group to leave their RCU critical section to ensure no new
10246 * user will see our dying task group any more. Specifically ensure
10247 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10248 *
10249 * We therefore defer calling unregister_fair_sched_group() to
10250 * sched_unregister_group() which is guarantied to get called only after the
10251 * current RCU grace period has expired.
10252 */
3d4b47b4 10253 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 10254 list_del_rcu(&tg->list);
f473aa5e 10255 list_del_rcu(&tg->siblings);
8ed36996 10256 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
10257}
10258
39c42611 10259static void sched_change_group(struct task_struct *tsk)
29f59db3 10260{
8323f26c 10261 struct task_group *tg;
29f59db3 10262
f7b8a47d
KT
10263 /*
10264 * All callers are synchronized by task_rq_lock(); we do not use RCU
10265 * which is pointless here. Thus, we pass "true" to task_css_check()
10266 * to prevent lockdep warnings.
10267 */
10268 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
10269 struct task_group, css);
10270 tg = autogroup_task_group(tsk, tg);
10271 tsk->sched_task_group = tg;
10272
810b3817 10273#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 10274 if (tsk->sched_class->task_change_group)
39c42611 10275 tsk->sched_class->task_change_group(tsk);
b2b5ce02 10276 else
810b3817 10277#endif
b2b5ce02 10278 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
10279}
10280
10281/*
10282 * Change task's runqueue when it moves between groups.
10283 *
10284 * The caller of this function should have put the task in its new group by
10285 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10286 * its new group.
10287 */
10288void sched_move_task(struct task_struct *tsk)
10289{
7a57f32a
PZ
10290 int queued, running, queue_flags =
10291 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
ea86cb4b
VG
10292 struct rq_flags rf;
10293 struct rq *rq;
10294
10295 rq = task_rq_lock(tsk, &rf);
1b1d6225 10296 update_rq_clock(rq);
ea86cb4b
VG
10297
10298 running = task_current(rq, tsk);
10299 queued = task_on_rq_queued(tsk);
10300
10301 if (queued)
7a57f32a 10302 dequeue_task(rq, tsk, queue_flags);
bb3bac2c 10303 if (running)
ea86cb4b
VG
10304 put_prev_task(rq, tsk);
10305
39c42611 10306 sched_change_group(tsk);
810b3817 10307
da0c1e65 10308 if (queued)
7a57f32a 10309 enqueue_task(rq, tsk, queue_flags);
2a4b03ff 10310 if (running) {
03b7fad1 10311 set_next_task(rq, tsk);
2a4b03ff
VG
10312 /*
10313 * After changing group, the running task may have joined a
10314 * throttled one but it's still the running task. Trigger a
10315 * resched to make sure that task can still run.
10316 */
10317 resched_curr(rq);
10318 }
29f59db3 10319
eb580751 10320 task_rq_unlock(rq, tsk, &rf);
29f59db3 10321}
68318b8e 10322
a7c6d554 10323static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 10324{
a7c6d554 10325 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
10326}
10327
eb95419b
TH
10328static struct cgroup_subsys_state *
10329cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 10330{
eb95419b
TH
10331 struct task_group *parent = css_tg(parent_css);
10332 struct task_group *tg;
68318b8e 10333
eb95419b 10334 if (!parent) {
68318b8e 10335 /* This is early initialization for the top cgroup */
07e06b01 10336 return &root_task_group.css;
68318b8e
SV
10337 }
10338
ec7dc8ac 10339 tg = sched_create_group(parent);
68318b8e
SV
10340 if (IS_ERR(tg))
10341 return ERR_PTR(-ENOMEM);
10342
68318b8e
SV
10343 return &tg->css;
10344}
10345
96b77745
KK
10346/* Expose task group only after completing cgroup initialization */
10347static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10348{
10349 struct task_group *tg = css_tg(css);
10350 struct task_group *parent = css_tg(css->parent);
10351
10352 if (parent)
10353 sched_online_group(tg, parent);
7226017a
QY
10354
10355#ifdef CONFIG_UCLAMP_TASK_GROUP
10356 /* Propagate the effective uclamp value for the new group */
93b73858
QY
10357 mutex_lock(&uclamp_mutex);
10358 rcu_read_lock();
7226017a 10359 cpu_util_update_eff(css);
93b73858
QY
10360 rcu_read_unlock();
10361 mutex_unlock(&uclamp_mutex);
7226017a
QY
10362#endif
10363
96b77745
KK
10364 return 0;
10365}
10366
2f5177f0 10367static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 10368{
eb95419b 10369 struct task_group *tg = css_tg(css);
ace783b9 10370
b027789e 10371 sched_release_group(tg);
ace783b9
LZ
10372}
10373
eb95419b 10374static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 10375{
eb95419b 10376 struct task_group *tg = css_tg(css);
68318b8e 10377
2f5177f0
PZ
10378 /*
10379 * Relies on the RCU grace period between css_released() and this.
10380 */
b027789e 10381 sched_unregister_group(tg);
ace783b9
LZ
10382}
10383
df16b71c 10384#ifdef CONFIG_RT_GROUP_SCHED
1f7dd3e5 10385static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 10386{
bb9d97b6 10387 struct task_struct *task;
1f7dd3e5 10388 struct cgroup_subsys_state *css;
bb9d97b6 10389
1f7dd3e5 10390 cgroup_taskset_for_each(task, css, tset) {
eb95419b 10391 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 10392 return -EINVAL;
bb9d97b6 10393 }
df16b71c 10394 return 0;
be367d09 10395}
df16b71c 10396#endif
68318b8e 10397
1f7dd3e5 10398static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 10399{
bb9d97b6 10400 struct task_struct *task;
1f7dd3e5 10401 struct cgroup_subsys_state *css;
bb9d97b6 10402
1f7dd3e5 10403 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10404 sched_move_task(task);
68318b8e
SV
10405}
10406
2480c093 10407#ifdef CONFIG_UCLAMP_TASK_GROUP
0b60ba2d
PB
10408static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10409{
10410 struct cgroup_subsys_state *top_css = css;
10411 struct uclamp_se *uc_parent = NULL;
10412 struct uclamp_se *uc_se = NULL;
10413 unsigned int eff[UCLAMP_CNT];
0413d7f3 10414 enum uclamp_id clamp_id;
0b60ba2d
PB
10415 unsigned int clamps;
10416
93b73858
QY
10417 lockdep_assert_held(&uclamp_mutex);
10418 SCHED_WARN_ON(!rcu_read_lock_held());
10419
0b60ba2d
PB
10420 css_for_each_descendant_pre(css, top_css) {
10421 uc_parent = css_tg(css)->parent
10422 ? css_tg(css)->parent->uclamp : NULL;
10423
10424 for_each_clamp_id(clamp_id) {
10425 /* Assume effective clamps matches requested clamps */
10426 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10427 /* Cap effective clamps with parent's effective clamps */
10428 if (uc_parent &&
10429 eff[clamp_id] > uc_parent[clamp_id].value) {
10430 eff[clamp_id] = uc_parent[clamp_id].value;
10431 }
10432 }
10433 /* Ensure protection is always capped by limit */
10434 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10435
10436 /* Propagate most restrictive effective clamps */
10437 clamps = 0x0;
10438 uc_se = css_tg(css)->uclamp;
10439 for_each_clamp_id(clamp_id) {
10440 if (eff[clamp_id] == uc_se[clamp_id].value)
10441 continue;
10442 uc_se[clamp_id].value = eff[clamp_id];
10443 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10444 clamps |= (0x1 << clamp_id);
10445 }
babbe170 10446 if (!clamps) {
0b60ba2d 10447 css = css_rightmost_descendant(css);
babbe170
PB
10448 continue;
10449 }
10450
10451 /* Immediately update descendants RUNNABLE tasks */
0213b708 10452 uclamp_update_active_tasks(css);
0b60ba2d
PB
10453 }
10454}
2480c093
PB
10455
10456/*
10457 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10458 * C expression. Since there is no way to convert a macro argument (N) into a
10459 * character constant, use two levels of macros.
10460 */
10461#define _POW10(exp) ((unsigned int)1e##exp)
10462#define POW10(exp) _POW10(exp)
10463
10464struct uclamp_request {
10465#define UCLAMP_PERCENT_SHIFT 2
10466#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10467 s64 percent;
10468 u64 util;
10469 int ret;
10470};
10471
10472static inline struct uclamp_request
10473capacity_from_percent(char *buf)
10474{
10475 struct uclamp_request req = {
10476 .percent = UCLAMP_PERCENT_SCALE,
10477 .util = SCHED_CAPACITY_SCALE,
10478 .ret = 0,
10479 };
10480
10481 buf = strim(buf);
10482 if (strcmp(buf, "max")) {
10483 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10484 &req.percent);
10485 if (req.ret)
10486 return req;
b562d140 10487 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
2480c093
PB
10488 req.ret = -ERANGE;
10489 return req;
10490 }
10491
10492 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10493 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10494 }
10495
10496 return req;
10497}
10498
10499static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10500 size_t nbytes, loff_t off,
10501 enum uclamp_id clamp_id)
10502{
10503 struct uclamp_request req;
10504 struct task_group *tg;
10505
10506 req = capacity_from_percent(buf);
10507 if (req.ret)
10508 return req.ret;
10509
46609ce2
QY
10510 static_branch_enable(&sched_uclamp_used);
10511
2480c093
PB
10512 mutex_lock(&uclamp_mutex);
10513 rcu_read_lock();
10514
10515 tg = css_tg(of_css(of));
10516 if (tg->uclamp_req[clamp_id].value != req.util)
10517 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10518
10519 /*
10520 * Because of not recoverable conversion rounding we keep track of the
10521 * exact requested value
10522 */
10523 tg->uclamp_pct[clamp_id] = req.percent;
10524
0b60ba2d
PB
10525 /* Update effective clamps to track the most restrictive value */
10526 cpu_util_update_eff(of_css(of));
10527
2480c093
PB
10528 rcu_read_unlock();
10529 mutex_unlock(&uclamp_mutex);
10530
10531 return nbytes;
10532}
10533
10534static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10535 char *buf, size_t nbytes,
10536 loff_t off)
10537{
10538 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10539}
10540
10541static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10542 char *buf, size_t nbytes,
10543 loff_t off)
10544{
10545 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10546}
10547
10548static inline void cpu_uclamp_print(struct seq_file *sf,
10549 enum uclamp_id clamp_id)
10550{
10551 struct task_group *tg;
10552 u64 util_clamp;
10553 u64 percent;
10554 u32 rem;
10555
10556 rcu_read_lock();
10557 tg = css_tg(seq_css(sf));
10558 util_clamp = tg->uclamp_req[clamp_id].value;
10559 rcu_read_unlock();
10560
10561 if (util_clamp == SCHED_CAPACITY_SCALE) {
10562 seq_puts(sf, "max\n");
10563 return;
10564 }
10565
10566 percent = tg->uclamp_pct[clamp_id];
10567 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10568 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10569}
10570
10571static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10572{
10573 cpu_uclamp_print(sf, UCLAMP_MIN);
10574 return 0;
10575}
10576
10577static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10578{
10579 cpu_uclamp_print(sf, UCLAMP_MAX);
10580 return 0;
10581}
10582#endif /* CONFIG_UCLAMP_TASK_GROUP */
10583
052f1dc7 10584#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
10585static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10586 struct cftype *cftype, u64 shareval)
68318b8e 10587{
5b61d50a
KK
10588 if (shareval > scale_load_down(ULONG_MAX))
10589 shareval = MAX_SHARES;
182446d0 10590 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
10591}
10592
182446d0
TH
10593static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10594 struct cftype *cft)
68318b8e 10595{
182446d0 10596 struct task_group *tg = css_tg(css);
68318b8e 10597
c8b28116 10598 return (u64) scale_load_down(tg->shares);
68318b8e 10599}
ab84d31e
PT
10600
10601#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
10602static DEFINE_MUTEX(cfs_constraints_mutex);
10603
ab84d31e 10604const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
b1546edc 10605static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
d505b8af
HC
10606/* More than 203 days if BW_SHIFT equals 20. */
10607static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
ab84d31e 10608
a790de99
PT
10609static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10610
f4183717
HC
10611static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10612 u64 burst)
ab84d31e 10613{
56f570e5 10614 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 10615 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
10616
10617 if (tg == &root_task_group)
10618 return -EINVAL;
10619
10620 /*
10621 * Ensure we have at some amount of bandwidth every period. This is
10622 * to prevent reaching a state of large arrears when throttled via
10623 * entity_tick() resulting in prolonged exit starvation.
10624 */
10625 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10626 return -EINVAL;
10627
10628 /*
3b03706f 10629 * Likewise, bound things on the other side by preventing insane quota
ab84d31e
PT
10630 * periods. This also allows us to normalize in computing quota
10631 * feasibility.
10632 */
10633 if (period > max_cfs_quota_period)
10634 return -EINVAL;
10635
d505b8af
HC
10636 /*
10637 * Bound quota to defend quota against overflow during bandwidth shift.
10638 */
10639 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10640 return -EINVAL;
10641
f4183717
HC
10642 if (quota != RUNTIME_INF && (burst > quota ||
10643 burst + quota > max_cfs_runtime))
10644 return -EINVAL;
10645
0e59bdae
KT
10646 /*
10647 * Prevent race between setting of cfs_rq->runtime_enabled and
10648 * unthrottle_offline_cfs_rqs().
10649 */
746f5ea9 10650 cpus_read_lock();
a790de99
PT
10651 mutex_lock(&cfs_constraints_mutex);
10652 ret = __cfs_schedulable(tg, period, quota);
10653 if (ret)
10654 goto out_unlock;
10655
58088ad0 10656 runtime_enabled = quota != RUNTIME_INF;
56f570e5 10657 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
10658 /*
10659 * If we need to toggle cfs_bandwidth_used, off->on must occur
10660 * before making related changes, and on->off must occur afterwards
10661 */
10662 if (runtime_enabled && !runtime_was_enabled)
10663 cfs_bandwidth_usage_inc();
ab84d31e
PT
10664 raw_spin_lock_irq(&cfs_b->lock);
10665 cfs_b->period = ns_to_ktime(period);
10666 cfs_b->quota = quota;
f4183717 10667 cfs_b->burst = burst;
58088ad0 10668
a9cf55b2 10669 __refill_cfs_bandwidth_runtime(cfs_b);
d1ccc66d
IM
10670
10671 /* Restart the period timer (if active) to handle new period expiry: */
77a4d1a1
PZ
10672 if (runtime_enabled)
10673 start_cfs_bandwidth(cfs_b);
d1ccc66d 10674
ab84d31e
PT
10675 raw_spin_unlock_irq(&cfs_b->lock);
10676
0e59bdae 10677 for_each_online_cpu(i) {
ab84d31e 10678 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 10679 struct rq *rq = cfs_rq->rq;
8a8c69c3 10680 struct rq_flags rf;
ab84d31e 10681
8a8c69c3 10682 rq_lock_irq(rq, &rf);
58088ad0 10683 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 10684 cfs_rq->runtime_remaining = 0;
671fd9da 10685
029632fb 10686 if (cfs_rq->throttled)
671fd9da 10687 unthrottle_cfs_rq(cfs_rq);
8a8c69c3 10688 rq_unlock_irq(rq, &rf);
ab84d31e 10689 }
1ee14e6c
BS
10690 if (runtime_was_enabled && !runtime_enabled)
10691 cfs_bandwidth_usage_dec();
a790de99
PT
10692out_unlock:
10693 mutex_unlock(&cfs_constraints_mutex);
746f5ea9 10694 cpus_read_unlock();
ab84d31e 10695
a790de99 10696 return ret;
ab84d31e
PT
10697}
10698
b1546edc 10699static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
ab84d31e 10700{
f4183717 10701 u64 quota, period, burst;
ab84d31e 10702
029632fb 10703 period = ktime_to_ns(tg->cfs_bandwidth.period);
f4183717 10704 burst = tg->cfs_bandwidth.burst;
ab84d31e
PT
10705 if (cfs_quota_us < 0)
10706 quota = RUNTIME_INF;
1a8b4540 10707 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
ab84d31e 10708 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
1a8b4540
KK
10709 else
10710 return -EINVAL;
ab84d31e 10711
f4183717 10712 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10713}
10714
b1546edc 10715static long tg_get_cfs_quota(struct task_group *tg)
ab84d31e
PT
10716{
10717 u64 quota_us;
10718
029632fb 10719 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
10720 return -1;
10721
029632fb 10722 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
10723 do_div(quota_us, NSEC_PER_USEC);
10724
10725 return quota_us;
10726}
10727
b1546edc 10728static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
ab84d31e 10729{
f4183717 10730 u64 quota, period, burst;
ab84d31e 10731
1a8b4540
KK
10732 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10733 return -EINVAL;
10734
ab84d31e 10735 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 10736 quota = tg->cfs_bandwidth.quota;
f4183717 10737 burst = tg->cfs_bandwidth.burst;
ab84d31e 10738
f4183717 10739 return tg_set_cfs_bandwidth(tg, period, quota, burst);
ab84d31e
PT
10740}
10741
b1546edc 10742static long tg_get_cfs_period(struct task_group *tg)
ab84d31e
PT
10743{
10744 u64 cfs_period_us;
10745
029632fb 10746 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
10747 do_div(cfs_period_us, NSEC_PER_USEC);
10748
10749 return cfs_period_us;
10750}
10751
f4183717
HC
10752static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10753{
10754 u64 quota, period, burst;
10755
10756 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10757 return -EINVAL;
10758
10759 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10760 period = ktime_to_ns(tg->cfs_bandwidth.period);
10761 quota = tg->cfs_bandwidth.quota;
10762
10763 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10764}
10765
10766static long tg_get_cfs_burst(struct task_group *tg)
10767{
10768 u64 burst_us;
10769
10770 burst_us = tg->cfs_bandwidth.burst;
10771 do_div(burst_us, NSEC_PER_USEC);
10772
10773 return burst_us;
10774}
10775
182446d0
TH
10776static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10777 struct cftype *cft)
ab84d31e 10778{
182446d0 10779 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
10780}
10781
182446d0
TH
10782static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10783 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 10784{
182446d0 10785 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
10786}
10787
182446d0
TH
10788static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10789 struct cftype *cft)
ab84d31e 10790{
182446d0 10791 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
10792}
10793
182446d0
TH
10794static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10795 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 10796{
182446d0 10797 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
10798}
10799
f4183717
HC
10800static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10801 struct cftype *cft)
10802{
10803 return tg_get_cfs_burst(css_tg(css));
10804}
10805
10806static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10807 struct cftype *cftype, u64 cfs_burst_us)
10808{
10809 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10810}
10811
a790de99
PT
10812struct cfs_schedulable_data {
10813 struct task_group *tg;
10814 u64 period, quota;
10815};
10816
10817/*
10818 * normalize group quota/period to be quota/max_period
10819 * note: units are usecs
10820 */
10821static u64 normalize_cfs_quota(struct task_group *tg,
10822 struct cfs_schedulable_data *d)
10823{
10824 u64 quota, period;
10825
10826 if (tg == d->tg) {
10827 period = d->period;
10828 quota = d->quota;
10829 } else {
10830 period = tg_get_cfs_period(tg);
10831 quota = tg_get_cfs_quota(tg);
10832 }
10833
10834 /* note: these should typically be equivalent */
10835 if (quota == RUNTIME_INF || quota == -1)
10836 return RUNTIME_INF;
10837
10838 return to_ratio(period, quota);
10839}
10840
10841static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10842{
10843 struct cfs_schedulable_data *d = data;
029632fb 10844 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
10845 s64 quota = 0, parent_quota = -1;
10846
10847 if (!tg->parent) {
10848 quota = RUNTIME_INF;
10849 } else {
029632fb 10850 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
10851
10852 quota = normalize_cfs_quota(tg, d);
9c58c79a 10853 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
10854
10855 /*
c53593e5
TH
10856 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10857 * always take the min. On cgroup1, only inherit when no
d1ccc66d 10858 * limit is set:
a790de99 10859 */
c53593e5
TH
10860 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10861 quota = min(quota, parent_quota);
10862 } else {
10863 if (quota == RUNTIME_INF)
10864 quota = parent_quota;
10865 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10866 return -EINVAL;
10867 }
a790de99 10868 }
9c58c79a 10869 cfs_b->hierarchical_quota = quota;
a790de99
PT
10870
10871 return 0;
10872}
10873
10874static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10875{
8277434e 10876 int ret;
a790de99
PT
10877 struct cfs_schedulable_data data = {
10878 .tg = tg,
10879 .period = period,
10880 .quota = quota,
10881 };
10882
10883 if (quota != RUNTIME_INF) {
10884 do_div(data.period, NSEC_PER_USEC);
10885 do_div(data.quota, NSEC_PER_USEC);
10886 }
10887
8277434e
PT
10888 rcu_read_lock();
10889 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10890 rcu_read_unlock();
10891
10892 return ret;
a790de99 10893}
e8da1b18 10894
a1f7164c 10895static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
e8da1b18 10896{
2da8ca82 10897 struct task_group *tg = css_tg(seq_css(sf));
029632fb 10898 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 10899
44ffc75b
TH
10900 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10901 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10902 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18 10903
3d6c50c2 10904 if (schedstat_enabled() && tg != &root_task_group) {
ceeadb83 10905 struct sched_statistics *stats;
3d6c50c2
YW
10906 u64 ws = 0;
10907 int i;
10908
ceeadb83
YS
10909 for_each_possible_cpu(i) {
10910 stats = __schedstats_from_se(tg->se[i]);
10911 ws += schedstat_val(stats->wait_sum);
10912 }
3d6c50c2
YW
10913
10914 seq_printf(sf, "wait_sum %llu\n", ws);
10915 }
10916
bcb1704a
HC
10917 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10918 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10919
e8da1b18
NR
10920 return 0;
10921}
ab84d31e 10922#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 10923#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10924
052f1dc7 10925#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
10926static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10927 struct cftype *cft, s64 val)
6f505b16 10928{
182446d0 10929 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
10930}
10931
182446d0
TH
10932static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10933 struct cftype *cft)
6f505b16 10934{
182446d0 10935 return sched_group_rt_runtime(css_tg(css));
6f505b16 10936}
d0b27fa7 10937
182446d0
TH
10938static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10939 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 10940{
182446d0 10941 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
10942}
10943
182446d0
TH
10944static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10945 struct cftype *cft)
d0b27fa7 10946{
182446d0 10947 return sched_group_rt_period(css_tg(css));
d0b27fa7 10948}
6d6bc0ad 10949#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10950
30400039
JD
10951#ifdef CONFIG_FAIR_GROUP_SCHED
10952static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10953 struct cftype *cft)
10954{
10955 return css_tg(css)->idle;
10956}
10957
10958static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10959 struct cftype *cft, s64 idle)
10960{
10961 return sched_group_set_idle(css_tg(css), idle);
10962}
10963#endif
10964
a1f7164c 10965static struct cftype cpu_legacy_files[] = {
052f1dc7 10966#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10967 {
10968 .name = "shares",
f4c753b7
PM
10969 .read_u64 = cpu_shares_read_u64,
10970 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10971 },
30400039
JD
10972 {
10973 .name = "idle",
10974 .read_s64 = cpu_idle_read_s64,
10975 .write_s64 = cpu_idle_write_s64,
10976 },
052f1dc7 10977#endif
ab84d31e
PT
10978#ifdef CONFIG_CFS_BANDWIDTH
10979 {
10980 .name = "cfs_quota_us",
10981 .read_s64 = cpu_cfs_quota_read_s64,
10982 .write_s64 = cpu_cfs_quota_write_s64,
10983 },
10984 {
10985 .name = "cfs_period_us",
10986 .read_u64 = cpu_cfs_period_read_u64,
10987 .write_u64 = cpu_cfs_period_write_u64,
10988 },
f4183717
HC
10989 {
10990 .name = "cfs_burst_us",
10991 .read_u64 = cpu_cfs_burst_read_u64,
10992 .write_u64 = cpu_cfs_burst_write_u64,
10993 },
e8da1b18
NR
10994 {
10995 .name = "stat",
a1f7164c 10996 .seq_show = cpu_cfs_stat_show,
e8da1b18 10997 },
ab84d31e 10998#endif
052f1dc7 10999#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 11000 {
9f0c1e56 11001 .name = "rt_runtime_us",
06ecb27c
PM
11002 .read_s64 = cpu_rt_runtime_read,
11003 .write_s64 = cpu_rt_runtime_write,
6f505b16 11004 },
d0b27fa7
PZ
11005 {
11006 .name = "rt_period_us",
f4c753b7
PM
11007 .read_u64 = cpu_rt_period_read_uint,
11008 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 11009 },
2480c093
PB
11010#endif
11011#ifdef CONFIG_UCLAMP_TASK_GROUP
11012 {
11013 .name = "uclamp.min",
11014 .flags = CFTYPE_NOT_ON_ROOT,
11015 .seq_show = cpu_uclamp_min_show,
11016 .write = cpu_uclamp_min_write,
11017 },
11018 {
11019 .name = "uclamp.max",
11020 .flags = CFTYPE_NOT_ON_ROOT,
11021 .seq_show = cpu_uclamp_max_show,
11022 .write = cpu_uclamp_max_write,
11023 },
052f1dc7 11024#endif
d1ccc66d 11025 { } /* Terminate */
68318b8e
SV
11026};
11027
d41bf8c9
TH
11028static int cpu_extra_stat_show(struct seq_file *sf,
11029 struct cgroup_subsys_state *css)
0d593634 11030{
0d593634
TH
11031#ifdef CONFIG_CFS_BANDWIDTH
11032 {
d41bf8c9 11033 struct task_group *tg = css_tg(css);
0d593634 11034 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
bcb1704a 11035 u64 throttled_usec, burst_usec;
0d593634
TH
11036
11037 throttled_usec = cfs_b->throttled_time;
11038 do_div(throttled_usec, NSEC_PER_USEC);
bcb1704a
HC
11039 burst_usec = cfs_b->burst_time;
11040 do_div(burst_usec, NSEC_PER_USEC);
0d593634
TH
11041
11042 seq_printf(sf, "nr_periods %d\n"
11043 "nr_throttled %d\n"
bcb1704a
HC
11044 "throttled_usec %llu\n"
11045 "nr_bursts %d\n"
11046 "burst_usec %llu\n",
0d593634 11047 cfs_b->nr_periods, cfs_b->nr_throttled,
bcb1704a 11048 throttled_usec, cfs_b->nr_burst, burst_usec);
0d593634
TH
11049 }
11050#endif
11051 return 0;
11052}
11053
11054#ifdef CONFIG_FAIR_GROUP_SCHED
11055static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11056 struct cftype *cft)
11057{
11058 struct task_group *tg = css_tg(css);
11059 u64 weight = scale_load_down(tg->shares);
11060
11061 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11062}
11063
11064static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11065 struct cftype *cft, u64 weight)
11066{
11067 /*
11068 * cgroup weight knobs should use the common MIN, DFL and MAX
11069 * values which are 1, 100 and 10000 respectively. While it loses
11070 * a bit of range on both ends, it maps pretty well onto the shares
11071 * value used by scheduler and the round-trip conversions preserve
11072 * the original value over the entire range.
11073 */
11074 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11075 return -ERANGE;
11076
11077 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11078
11079 return sched_group_set_shares(css_tg(css), scale_load(weight));
11080}
11081
11082static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11083 struct cftype *cft)
11084{
11085 unsigned long weight = scale_load_down(css_tg(css)->shares);
11086 int last_delta = INT_MAX;
11087 int prio, delta;
11088
11089 /* find the closest nice value to the current weight */
11090 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11091 delta = abs(sched_prio_to_weight[prio] - weight);
11092 if (delta >= last_delta)
11093 break;
11094 last_delta = delta;
11095 }
11096
11097 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11098}
11099
11100static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11101 struct cftype *cft, s64 nice)
11102{
11103 unsigned long weight;
7281c8de 11104 int idx;
0d593634
TH
11105
11106 if (nice < MIN_NICE || nice > MAX_NICE)
11107 return -ERANGE;
11108
7281c8de
PZ
11109 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11110 idx = array_index_nospec(idx, 40);
11111 weight = sched_prio_to_weight[idx];
11112
0d593634
TH
11113 return sched_group_set_shares(css_tg(css), scale_load(weight));
11114}
11115#endif
11116
11117static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11118 long period, long quota)
11119{
11120 if (quota < 0)
11121 seq_puts(sf, "max");
11122 else
11123 seq_printf(sf, "%ld", quota);
11124
11125 seq_printf(sf, " %ld\n", period);
11126}
11127
11128/* caller should put the current value in *@periodp before calling */
11129static int __maybe_unused cpu_period_quota_parse(char *buf,
11130 u64 *periodp, u64 *quotap)
11131{
11132 char tok[21]; /* U64_MAX */
11133
4c47acd8 11134 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
0d593634
TH
11135 return -EINVAL;
11136
11137 *periodp *= NSEC_PER_USEC;
11138
11139 if (sscanf(tok, "%llu", quotap))
11140 *quotap *= NSEC_PER_USEC;
11141 else if (!strcmp(tok, "max"))
11142 *quotap = RUNTIME_INF;
11143 else
11144 return -EINVAL;
11145
11146 return 0;
11147}
11148
11149#ifdef CONFIG_CFS_BANDWIDTH
11150static int cpu_max_show(struct seq_file *sf, void *v)
11151{
11152 struct task_group *tg = css_tg(seq_css(sf));
11153
11154 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11155 return 0;
11156}
11157
11158static ssize_t cpu_max_write(struct kernfs_open_file *of,
11159 char *buf, size_t nbytes, loff_t off)
11160{
11161 struct task_group *tg = css_tg(of_css(of));
11162 u64 period = tg_get_cfs_period(tg);
f4183717 11163 u64 burst = tg_get_cfs_burst(tg);
0d593634
TH
11164 u64 quota;
11165 int ret;
11166
11167 ret = cpu_period_quota_parse(buf, &period, &quota);
11168 if (!ret)
f4183717 11169 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
0d593634
TH
11170 return ret ?: nbytes;
11171}
11172#endif
11173
11174static struct cftype cpu_files[] = {
0d593634
TH
11175#ifdef CONFIG_FAIR_GROUP_SCHED
11176 {
11177 .name = "weight",
11178 .flags = CFTYPE_NOT_ON_ROOT,
11179 .read_u64 = cpu_weight_read_u64,
11180 .write_u64 = cpu_weight_write_u64,
11181 },
11182 {
11183 .name = "weight.nice",
11184 .flags = CFTYPE_NOT_ON_ROOT,
11185 .read_s64 = cpu_weight_nice_read_s64,
11186 .write_s64 = cpu_weight_nice_write_s64,
11187 },
30400039
JD
11188 {
11189 .name = "idle",
11190 .flags = CFTYPE_NOT_ON_ROOT,
11191 .read_s64 = cpu_idle_read_s64,
11192 .write_s64 = cpu_idle_write_s64,
11193 },
0d593634
TH
11194#endif
11195#ifdef CONFIG_CFS_BANDWIDTH
11196 {
11197 .name = "max",
11198 .flags = CFTYPE_NOT_ON_ROOT,
11199 .seq_show = cpu_max_show,
11200 .write = cpu_max_write,
11201 },
f4183717
HC
11202 {
11203 .name = "max.burst",
11204 .flags = CFTYPE_NOT_ON_ROOT,
11205 .read_u64 = cpu_cfs_burst_read_u64,
11206 .write_u64 = cpu_cfs_burst_write_u64,
11207 },
2480c093
PB
11208#endif
11209#ifdef CONFIG_UCLAMP_TASK_GROUP
11210 {
11211 .name = "uclamp.min",
11212 .flags = CFTYPE_NOT_ON_ROOT,
11213 .seq_show = cpu_uclamp_min_show,
11214 .write = cpu_uclamp_min_write,
11215 },
11216 {
11217 .name = "uclamp.max",
11218 .flags = CFTYPE_NOT_ON_ROOT,
11219 .seq_show = cpu_uclamp_max_show,
11220 .write = cpu_uclamp_max_write,
11221 },
0d593634
TH
11222#endif
11223 { } /* terminate */
11224};
11225
073219e9 11226struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 11227 .css_alloc = cpu_cgroup_css_alloc,
96b77745 11228 .css_online = cpu_cgroup_css_online,
2f5177f0 11229 .css_released = cpu_cgroup_css_released,
92fb9748 11230 .css_free = cpu_cgroup_css_free,
d41bf8c9 11231 .css_extra_stat_show = cpu_extra_stat_show,
df16b71c 11232#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6 11233 .can_attach = cpu_cgroup_can_attach,
df16b71c 11234#endif
bb9d97b6 11235 .attach = cpu_cgroup_attach,
a1f7164c 11236 .legacy_cftypes = cpu_legacy_files,
0d593634 11237 .dfl_cftypes = cpu_files,
b38e42e9 11238 .early_init = true,
0d593634 11239 .threaded = true,
68318b8e
SV
11240};
11241
052f1dc7 11242#endif /* CONFIG_CGROUP_SCHED */
d842de87 11243
b637a328
PM
11244void dump_cpu_task(int cpu)
11245{
bc1cca97
ZL
11246 if (cpu == smp_processor_id() && in_hardirq()) {
11247 struct pt_regs *regs;
11248
11249 regs = get_irq_regs();
11250 if (regs) {
11251 show_regs(regs);
11252 return;
11253 }
11254 }
11255
e73dfe30
ZL
11256 if (trigger_single_cpu_backtrace(cpu))
11257 return;
11258
b637a328
PM
11259 pr_info("Task dump for CPU %d:\n", cpu);
11260 sched_show_task(cpu_curr(cpu));
11261}
ed82b8a1
AK
11262
11263/*
11264 * Nice levels are multiplicative, with a gentle 10% change for every
11265 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11266 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11267 * that remained on nice 0.
11268 *
11269 * The "10% effect" is relative and cumulative: from _any_ nice level,
11270 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11271 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11272 * If a task goes up by ~10% and another task goes down by ~10% then
11273 * the relative distance between them is ~25%.)
11274 */
11275const int sched_prio_to_weight[40] = {
11276 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11277 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11278 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11279 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11280 /* 0 */ 1024, 820, 655, 526, 423,
11281 /* 5 */ 335, 272, 215, 172, 137,
11282 /* 10 */ 110, 87, 70, 56, 45,
11283 /* 15 */ 36, 29, 23, 18, 15,
11284};
11285
11286/*
11287 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11288 *
11289 * In cases where the weight does not change often, we can use the
11290 * precalculated inverse to speed up arithmetics by turning divisions
11291 * into multiplications:
11292 */
11293const u32 sched_prio_to_wmult[40] = {
11294 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11295 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11296 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11297 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11298 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11299 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11300 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11301 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11302};
14a7405b 11303
9d246053
PA
11304void call_trace_sched_update_nr_running(struct rq *rq, int count)
11305{
11306 trace_sched_update_nr_running_tp(rq, count);
11307}