]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - kernel/sched/core.c
sched/core: Remove unnecessary initialization in sched_init()
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
5cc389bc
PZ
1071 local_irq_enable();
1072 return 0;
1073}
1074
c5b28038
PZ
1075/*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1080{
5cc389bc
PZ
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083}
1084
c5b28038
PZ
1085void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086{
6c37067e
PZ
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
c5b28038 1090 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1de64443 1101 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
c5b28038 1106 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1de64443 1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1112}
1113
5cc389bc
PZ
1114/*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
25834c73
PZ
1123static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
5cc389bc 1125{
e9d867a6 1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1127 unsigned int dest_cpu;
eb580751
PZ
1128 struct rq_flags rf;
1129 struct rq *rq;
5cc389bc
PZ
1130 int ret = 0;
1131
eb580751 1132 rq = task_rq_lock(p, &rf);
5cc389bc 1133
e9d867a6
PZI
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
25834c73
PZ
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
5cc389bc
PZ
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
e9d867a6 1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
e9d867a6
PZI
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
5cc389bc
PZ
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
e9d867a6 1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
eb580751 1178 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
cbce1a68
PZ
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
e7904a28 1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1188 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1189 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1190 }
5cc389bc 1191out:
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193
1194 return ret;
1195}
25834c73
PZ
1196
1197int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198{
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200}
5cc389bc
PZ
1201EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
dd41f596 1203void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1204{
e2912009
PZ
1205#ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
077614ee 1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1211 !p->on_rq);
0122ec5b 1212
3ea94de1
JP
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
0122ec5b 1222#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1228 * see task_group().
6c6c54e1
PZ
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
0122ec5b
PZ
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235#endif
e2912009
PZ
1236#endif
1237
de1d7286 1238 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1239
0c69774e 1240 if (task_cpu(p) != new_cpu) {
0a74bef8 1241 if (p->sched_class->migrate_task_rq)
5a4fd036 1242 p->sched_class->migrate_task_rq(p);
0c69774e 1243 p->se.nr_migrations++;
ff303e66 1244 perf_event_task_migrate(p);
0c69774e 1245 }
dd41f596
IM
1246
1247 __set_task_cpu(p, new_cpu);
c65cc870
IM
1248}
1249
ac66f547
PZ
1250static void __migrate_swap_task(struct task_struct *p, int cpu)
1251{
da0c1e65 1252 if (task_on_rq_queued(p)) {
ac66f547
PZ
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
3ea94de1 1258 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
3ea94de1 1262 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1268 * previous cpu our target instead of where it really is.
ac66f547
PZ
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272}
1273
1274struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277};
1278
1279static int migrate_swap_stop(void *data)
1280{
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
62694cd5
PZ
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
ac66f547
PZ
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
74602315
PZ
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
ac66f547 1293 double_rq_lock(src_rq, dst_rq);
62694cd5 1294
ac66f547
PZ
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312unlock:
1313 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1316
1317 return ret;
1318}
1319
1320/*
1321 * Cross migrate two tasks
1322 */
1323int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324{
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
ac66f547
PZ
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
6acce3ef
PZ
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
ac66f547
PZ
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
286549dc 1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354out:
ac66f547
PZ
1355 return ret;
1356}
1357
1da177e4
LT
1358/*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
85ba2d86
RM
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1da177e4
LT
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
85ba2d86 1374unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1375{
da0c1e65 1376 int running, queued;
eb580751 1377 struct rq_flags rf;
85ba2d86 1378 unsigned long ncsw;
70b97a7f 1379 struct rq *rq;
1da177e4 1380
3a5c359a
AK
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
fa490cfd 1389
3a5c359a
AK
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
85ba2d86
RM
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
3a5c359a 1404 cpu_relax();
85ba2d86 1405 }
fa490cfd 1406
3a5c359a
AK
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
eb580751 1412 rq = task_rq_lock(p, &rf);
27a9da65 1413 trace_sched_wait_task(p);
3a5c359a 1414 running = task_running(rq, p);
da0c1e65 1415 queued = task_on_rq_queued(p);
85ba2d86 1416 ncsw = 0;
f31e11d8 1417 if (!match_state || p->state == match_state)
93dcf55f 1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1419 task_rq_unlock(rq, p, &rf);
fa490cfd 1420
85ba2d86
RM
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
3a5c359a
AK
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
fa490cfd 1437
3a5c359a
AK
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
80dd99b3 1443 * So if it was still runnable (but just not actively
3a5c359a
AK
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
da0c1e65 1447 if (unlikely(queued)) {
8eb90c30
TG
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1452 continue;
1453 }
fa490cfd 1454
3a5c359a
AK
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
85ba2d86
RM
1462
1463 return ncsw;
1da177e4
LT
1464}
1465
1466/***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
25985edc 1473 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
36c8b586 1479void kick_process(struct task_struct *p)
1da177e4
LT
1480{
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488}
b43e3521 1489EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1490
30da688e 1491/*
013fdb80 1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
30da688e 1512 */
5da9a0fb
PZ
1513static int select_fallback_rq(int cpu, struct task_struct *p)
1514{
aa00d89c
TC
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
5da9a0fb 1519
aa00d89c
TC
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
2baab4e9 1535 }
5da9a0fb 1536
2baab4e9
PZ
1537 for (;;) {
1538 /* Any allowed, online CPU? */
e3831edd 1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1543 continue;
1544 goto out;
1545 }
5da9a0fb 1546
e73e85f0 1547 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1548 switch (state) {
1549 case cpuset:
e73e85f0
ON
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
2baab4e9
PZ
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
aac74dc4 1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1576 task_pid_nr(p), p->comm, cpu);
1577 }
5da9a0fb
PZ
1578 }
1579
1580 return dest_cpu;
1581}
1582
e2912009 1583/*
013fdb80 1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1585 */
970b13ba 1586static inline
ac66f547 1587int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1588{
cbce1a68
PZ
1589 lockdep_assert_held(&p->pi_lock);
1590
50605ffb 1591 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
fa17b507 1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1607 !cpu_online(cpu)))
5da9a0fb 1608 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1609
1610 return cpu;
970b13ba 1611}
09a40af5
MG
1612
1613static void update_avg(u64 *avg, u64 sample)
1614{
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617}
25834c73
PZ
1618
1619#else
1620
1621static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623{
1624 return set_cpus_allowed_ptr(p, new_mask);
1625}
1626
5cc389bc 1627#endif /* CONFIG_SMP */
970b13ba 1628
d7c01d27 1629static void
b84cb5df 1630ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1631{
4fa8d299 1632 struct rq *rq;
b84cb5df 1633
4fa8d299
JP
1634 if (!schedstat_enabled())
1635 return;
1636
1637 rq = this_rq();
d7c01d27 1638
4fa8d299
JP
1639#ifdef CONFIG_SMP
1640 if (cpu == rq->cpu) {
ae92882e
JP
1641 schedstat_inc(rq->ttwu_local);
1642 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1643 } else {
1644 struct sched_domain *sd;
1645
ae92882e 1646 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1647 rcu_read_lock();
4fa8d299 1648 for_each_domain(rq->cpu, sd) {
d7c01d27 1649 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1650 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1651 break;
1652 }
1653 }
057f3fad 1654 rcu_read_unlock();
d7c01d27 1655 }
f339b9dc
PZ
1656
1657 if (wake_flags & WF_MIGRATED)
ae92882e 1658 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1659#endif /* CONFIG_SMP */
1660
ae92882e
JP
1661 schedstat_inc(rq->ttwu_count);
1662 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1663
1664 if (wake_flags & WF_SYNC)
ae92882e 1665 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1666}
1667
1de64443 1668static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1669{
9ed3811a 1670 activate_task(rq, p, en_flags);
da0c1e65 1671 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1672
1673 /* if a worker is waking up, notify workqueue */
1674 if (p->flags & PF_WQ_WORKER)
1675 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1676}
1677
23f41eeb
PZ
1678/*
1679 * Mark the task runnable and perform wakeup-preemption.
1680 */
e7904a28
PZ
1681static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1682 struct pin_cookie cookie)
9ed3811a 1683{
9ed3811a 1684 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1685 p->state = TASK_RUNNING;
fbd705a0
PZ
1686 trace_sched_wakeup(p);
1687
9ed3811a 1688#ifdef CONFIG_SMP
4c9a4bc8
PZ
1689 if (p->sched_class->task_woken) {
1690 /*
cbce1a68
PZ
1691 * Our task @p is fully woken up and running; so its safe to
1692 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1693 */
e7904a28 1694 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1695 p->sched_class->task_woken(rq, p);
e7904a28 1696 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1697 }
9ed3811a 1698
e69c6341 1699 if (rq->idle_stamp) {
78becc27 1700 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1701 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1702
abfafa54
JL
1703 update_avg(&rq->avg_idle, delta);
1704
1705 if (rq->avg_idle > max)
9ed3811a 1706 rq->avg_idle = max;
abfafa54 1707
9ed3811a
TH
1708 rq->idle_stamp = 0;
1709 }
1710#endif
1711}
1712
c05fbafb 1713static void
e7904a28
PZ
1714ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1715 struct pin_cookie cookie)
c05fbafb 1716{
b5179ac7
PZ
1717 int en_flags = ENQUEUE_WAKEUP;
1718
cbce1a68
PZ
1719 lockdep_assert_held(&rq->lock);
1720
c05fbafb
PZ
1721#ifdef CONFIG_SMP
1722 if (p->sched_contributes_to_load)
1723 rq->nr_uninterruptible--;
b5179ac7 1724
b5179ac7 1725 if (wake_flags & WF_MIGRATED)
59efa0ba 1726 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1727#endif
1728
b5179ac7 1729 ttwu_activate(rq, p, en_flags);
e7904a28 1730 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1731}
1732
1733/*
1734 * Called in case the task @p isn't fully descheduled from its runqueue,
1735 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1736 * since all we need to do is flip p->state to TASK_RUNNING, since
1737 * the task is still ->on_rq.
1738 */
1739static int ttwu_remote(struct task_struct *p, int wake_flags)
1740{
eb580751 1741 struct rq_flags rf;
c05fbafb
PZ
1742 struct rq *rq;
1743 int ret = 0;
1744
eb580751 1745 rq = __task_rq_lock(p, &rf);
da0c1e65 1746 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1747 /* check_preempt_curr() may use rq clock */
1748 update_rq_clock(rq);
e7904a28 1749 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1750 ret = 1;
1751 }
eb580751 1752 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1753
1754 return ret;
1755}
1756
317f3941 1757#ifdef CONFIG_SMP
e3baac47 1758void sched_ttwu_pending(void)
317f3941
PZ
1759{
1760 struct rq *rq = this_rq();
fa14ff4a 1761 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1762 struct pin_cookie cookie;
fa14ff4a 1763 struct task_struct *p;
e3baac47 1764 unsigned long flags;
317f3941 1765
e3baac47
PZ
1766 if (!llist)
1767 return;
1768
1769 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1770 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1771
fa14ff4a 1772 while (llist) {
b7e7ade3
PZ
1773 int wake_flags = 0;
1774
fa14ff4a
PZ
1775 p = llist_entry(llist, struct task_struct, wake_entry);
1776 llist = llist_next(llist);
b7e7ade3
PZ
1777
1778 if (p->sched_remote_wakeup)
1779 wake_flags = WF_MIGRATED;
1780
1781 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1782 }
1783
e7904a28 1784 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1785 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1786}
1787
1788void scheduler_ipi(void)
1789{
f27dde8d
PZ
1790 /*
1791 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1792 * TIF_NEED_RESCHED remotely (for the first time) will also send
1793 * this IPI.
1794 */
8cb75e0c 1795 preempt_fold_need_resched();
f27dde8d 1796
fd2ac4f4 1797 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1798 return;
1799
1800 /*
1801 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1802 * traditionally all their work was done from the interrupt return
1803 * path. Now that we actually do some work, we need to make sure
1804 * we do call them.
1805 *
1806 * Some archs already do call them, luckily irq_enter/exit nest
1807 * properly.
1808 *
1809 * Arguably we should visit all archs and update all handlers,
1810 * however a fair share of IPIs are still resched only so this would
1811 * somewhat pessimize the simple resched case.
1812 */
1813 irq_enter();
fa14ff4a 1814 sched_ttwu_pending();
ca38062e
SS
1815
1816 /*
1817 * Check if someone kicked us for doing the nohz idle load balance.
1818 */
873b4c65 1819 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1820 this_rq()->idle_balance = 1;
ca38062e 1821 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1822 }
c5d753a5 1823 irq_exit();
317f3941
PZ
1824}
1825
b7e7ade3 1826static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1827{
e3baac47
PZ
1828 struct rq *rq = cpu_rq(cpu);
1829
b7e7ade3
PZ
1830 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1831
e3baac47
PZ
1832 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1833 if (!set_nr_if_polling(rq->idle))
1834 smp_send_reschedule(cpu);
1835 else
1836 trace_sched_wake_idle_without_ipi(cpu);
1837 }
317f3941 1838}
d6aa8f85 1839
f6be8af1
CL
1840void wake_up_if_idle(int cpu)
1841{
1842 struct rq *rq = cpu_rq(cpu);
1843 unsigned long flags;
1844
fd7de1e8
AL
1845 rcu_read_lock();
1846
1847 if (!is_idle_task(rcu_dereference(rq->curr)))
1848 goto out;
f6be8af1
CL
1849
1850 if (set_nr_if_polling(rq->idle)) {
1851 trace_sched_wake_idle_without_ipi(cpu);
1852 } else {
1853 raw_spin_lock_irqsave(&rq->lock, flags);
1854 if (is_idle_task(rq->curr))
1855 smp_send_reschedule(cpu);
1856 /* Else cpu is not in idle, do nothing here */
1857 raw_spin_unlock_irqrestore(&rq->lock, flags);
1858 }
fd7de1e8
AL
1859
1860out:
1861 rcu_read_unlock();
f6be8af1
CL
1862}
1863
39be3501 1864bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1865{
1866 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1867}
d6aa8f85 1868#endif /* CONFIG_SMP */
317f3941 1869
b5179ac7 1870static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1871{
1872 struct rq *rq = cpu_rq(cpu);
e7904a28 1873 struct pin_cookie cookie;
c05fbafb 1874
17d9f311 1875#if defined(CONFIG_SMP)
39be3501 1876 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1877 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1878 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1879 return;
1880 }
1881#endif
1882
c05fbafb 1883 raw_spin_lock(&rq->lock);
e7904a28 1884 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1885 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1886 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1887 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1888}
1889
8643cda5
PZ
1890/*
1891 * Notes on Program-Order guarantees on SMP systems.
1892 *
1893 * MIGRATION
1894 *
1895 * The basic program-order guarantee on SMP systems is that when a task [t]
1896 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1897 * execution on its new cpu [c1].
1898 *
1899 * For migration (of runnable tasks) this is provided by the following means:
1900 *
1901 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1902 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1903 * rq(c1)->lock (if not at the same time, then in that order).
1904 * C) LOCK of the rq(c1)->lock scheduling in task
1905 *
1906 * Transitivity guarantees that B happens after A and C after B.
1907 * Note: we only require RCpc transitivity.
1908 * Note: the cpu doing B need not be c0 or c1
1909 *
1910 * Example:
1911 *
1912 * CPU0 CPU1 CPU2
1913 *
1914 * LOCK rq(0)->lock
1915 * sched-out X
1916 * sched-in Y
1917 * UNLOCK rq(0)->lock
1918 *
1919 * LOCK rq(0)->lock // orders against CPU0
1920 * dequeue X
1921 * UNLOCK rq(0)->lock
1922 *
1923 * LOCK rq(1)->lock
1924 * enqueue X
1925 * UNLOCK rq(1)->lock
1926 *
1927 * LOCK rq(1)->lock // orders against CPU2
1928 * sched-out Z
1929 * sched-in X
1930 * UNLOCK rq(1)->lock
1931 *
1932 *
1933 * BLOCKING -- aka. SLEEP + WAKEUP
1934 *
1935 * For blocking we (obviously) need to provide the same guarantee as for
1936 * migration. However the means are completely different as there is no lock
1937 * chain to provide order. Instead we do:
1938 *
1939 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1940 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1941 *
1942 * Example:
1943 *
1944 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1945 *
1946 * LOCK rq(0)->lock LOCK X->pi_lock
1947 * dequeue X
1948 * sched-out X
1949 * smp_store_release(X->on_cpu, 0);
1950 *
1f03e8d2 1951 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1952 * X->state = WAKING
1953 * set_task_cpu(X,2)
1954 *
1955 * LOCK rq(2)->lock
1956 * enqueue X
1957 * X->state = RUNNING
1958 * UNLOCK rq(2)->lock
1959 *
1960 * LOCK rq(2)->lock // orders against CPU1
1961 * sched-out Z
1962 * sched-in X
1963 * UNLOCK rq(2)->lock
1964 *
1965 * UNLOCK X->pi_lock
1966 * UNLOCK rq(0)->lock
1967 *
1968 *
1969 * However; for wakeups there is a second guarantee we must provide, namely we
1970 * must observe the state that lead to our wakeup. That is, not only must our
1971 * task observe its own prior state, it must also observe the stores prior to
1972 * its wakeup.
1973 *
1974 * This means that any means of doing remote wakeups must order the CPU doing
1975 * the wakeup against the CPU the task is going to end up running on. This,
1976 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1977 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1978 *
1979 */
1980
9ed3811a 1981/**
1da177e4 1982 * try_to_wake_up - wake up a thread
9ed3811a 1983 * @p: the thread to be awakened
1da177e4 1984 * @state: the mask of task states that can be woken
9ed3811a 1985 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1986 *
1987 * Put it on the run-queue if it's not already there. The "current"
1988 * thread is always on the run-queue (except when the actual
1989 * re-schedule is in progress), and as such you're allowed to do
1990 * the simpler "current->state = TASK_RUNNING" to mark yourself
1991 * runnable without the overhead of this.
1992 *
e69f6186 1993 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1994 * or @state didn't match @p's state.
1da177e4 1995 */
e4a52bcb
PZ
1996static int
1997try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1998{
1da177e4 1999 unsigned long flags;
c05fbafb 2000 int cpu, success = 0;
2398f2c6 2001
e0acd0a6
ON
2002 /*
2003 * If we are going to wake up a thread waiting for CONDITION we
2004 * need to ensure that CONDITION=1 done by the caller can not be
2005 * reordered with p->state check below. This pairs with mb() in
2006 * set_current_state() the waiting thread does.
2007 */
2008 smp_mb__before_spinlock();
013fdb80 2009 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2010 if (!(p->state & state))
1da177e4
LT
2011 goto out;
2012
fbd705a0
PZ
2013 trace_sched_waking(p);
2014
c05fbafb 2015 success = 1; /* we're going to change ->state */
1da177e4 2016 cpu = task_cpu(p);
1da177e4 2017
135e8c92
BS
2018 /*
2019 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2020 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2021 * in smp_cond_load_acquire() below.
2022 *
2023 * sched_ttwu_pending() try_to_wake_up()
2024 * [S] p->on_rq = 1; [L] P->state
2025 * UNLOCK rq->lock -----.
2026 * \
2027 * +--- RMB
2028 * schedule() /
2029 * LOCK rq->lock -----'
2030 * UNLOCK rq->lock
2031 *
2032 * [task p]
2033 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2034 *
2035 * Pairs with the UNLOCK+LOCK on rq->lock from the
2036 * last wakeup of our task and the schedule that got our task
2037 * current.
2038 */
2039 smp_rmb();
c05fbafb
PZ
2040 if (p->on_rq && ttwu_remote(p, wake_flags))
2041 goto stat;
1da177e4 2042
1da177e4 2043#ifdef CONFIG_SMP
ecf7d01c
PZ
2044 /*
2045 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2046 * possible to, falsely, observe p->on_cpu == 0.
2047 *
2048 * One must be running (->on_cpu == 1) in order to remove oneself
2049 * from the runqueue.
2050 *
2051 * [S] ->on_cpu = 1; [L] ->on_rq
2052 * UNLOCK rq->lock
2053 * RMB
2054 * LOCK rq->lock
2055 * [S] ->on_rq = 0; [L] ->on_cpu
2056 *
2057 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2058 * from the consecutive calls to schedule(); the first switching to our
2059 * task, the second putting it to sleep.
2060 */
2061 smp_rmb();
2062
e9c84311 2063 /*
c05fbafb
PZ
2064 * If the owning (remote) cpu is still in the middle of schedule() with
2065 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2066 *
2067 * Pairs with the smp_store_release() in finish_lock_switch().
2068 *
2069 * This ensures that tasks getting woken will be fully ordered against
2070 * their previous state and preserve Program Order.
0970d299 2071 */
1f03e8d2 2072 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2073
a8e4f2ea 2074 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2075 p->state = TASK_WAKING;
e7693a36 2076
ac66f547 2077 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2078 if (task_cpu(p) != cpu) {
2079 wake_flags |= WF_MIGRATED;
e4a52bcb 2080 set_task_cpu(p, cpu);
f339b9dc 2081 }
1da177e4 2082#endif /* CONFIG_SMP */
1da177e4 2083
b5179ac7 2084 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2085stat:
4fa8d299 2086 ttwu_stat(p, cpu, wake_flags);
1da177e4 2087out:
013fdb80 2088 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2089
2090 return success;
2091}
2092
21aa9af0
TH
2093/**
2094 * try_to_wake_up_local - try to wake up a local task with rq lock held
2095 * @p: the thread to be awakened
9279e0d2 2096 * @cookie: context's cookie for pinning
21aa9af0 2097 *
2acca55e 2098 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2099 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2100 * the current task.
21aa9af0 2101 */
e7904a28 2102static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2103{
2104 struct rq *rq = task_rq(p);
21aa9af0 2105
383efcd0
TH
2106 if (WARN_ON_ONCE(rq != this_rq()) ||
2107 WARN_ON_ONCE(p == current))
2108 return;
2109
21aa9af0
TH
2110 lockdep_assert_held(&rq->lock);
2111
2acca55e 2112 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2113 /*
2114 * This is OK, because current is on_cpu, which avoids it being
2115 * picked for load-balance and preemption/IRQs are still
2116 * disabled avoiding further scheduler activity on it and we've
2117 * not yet picked a replacement task.
2118 */
e7904a28 2119 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2120 raw_spin_unlock(&rq->lock);
2121 raw_spin_lock(&p->pi_lock);
2122 raw_spin_lock(&rq->lock);
e7904a28 2123 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2124 }
2125
21aa9af0 2126 if (!(p->state & TASK_NORMAL))
2acca55e 2127 goto out;
21aa9af0 2128
fbd705a0
PZ
2129 trace_sched_waking(p);
2130
da0c1e65 2131 if (!task_on_rq_queued(p))
d7c01d27
PZ
2132 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2133
e7904a28 2134 ttwu_do_wakeup(rq, p, 0, cookie);
4fa8d299 2135 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2136out:
2137 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2138}
2139
50fa610a
DH
2140/**
2141 * wake_up_process - Wake up a specific process
2142 * @p: The process to be woken up.
2143 *
2144 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2145 * processes.
2146 *
2147 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2148 *
2149 * It may be assumed that this function implies a write memory barrier before
2150 * changing the task state if and only if any tasks are woken up.
2151 */
7ad5b3a5 2152int wake_up_process(struct task_struct *p)
1da177e4 2153{
9067ac85 2154 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2155}
1da177e4
LT
2156EXPORT_SYMBOL(wake_up_process);
2157
7ad5b3a5 2158int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2159{
2160 return try_to_wake_up(p, state, 0);
2161}
2162
a5e7be3b
JL
2163/*
2164 * This function clears the sched_dl_entity static params.
2165 */
2166void __dl_clear_params(struct task_struct *p)
2167{
2168 struct sched_dl_entity *dl_se = &p->dl;
2169
2170 dl_se->dl_runtime = 0;
2171 dl_se->dl_deadline = 0;
2172 dl_se->dl_period = 0;
2173 dl_se->flags = 0;
2174 dl_se->dl_bw = 0;
40767b0d
PZ
2175
2176 dl_se->dl_throttled = 0;
40767b0d 2177 dl_se->dl_yielded = 0;
a5e7be3b
JL
2178}
2179
1da177e4
LT
2180/*
2181 * Perform scheduler related setup for a newly forked process p.
2182 * p is forked by current.
dd41f596
IM
2183 *
2184 * __sched_fork() is basic setup used by init_idle() too:
2185 */
5e1576ed 2186static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2187{
fd2f4419
PZ
2188 p->on_rq = 0;
2189
2190 p->se.on_rq = 0;
dd41f596
IM
2191 p->se.exec_start = 0;
2192 p->se.sum_exec_runtime = 0;
f6cf891c 2193 p->se.prev_sum_exec_runtime = 0;
6c594c21 2194 p->se.nr_migrations = 0;
da7a735e 2195 p->se.vruntime = 0;
fd2f4419 2196 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2197
ad936d86
BP
2198#ifdef CONFIG_FAIR_GROUP_SCHED
2199 p->se.cfs_rq = NULL;
2200#endif
2201
6cfb0d5d 2202#ifdef CONFIG_SCHEDSTATS
cb251765 2203 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2204 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2205#endif
476d139c 2206
aab03e05 2207 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2208 init_dl_task_timer(&p->dl);
a5e7be3b 2209 __dl_clear_params(p);
aab03e05 2210
fa717060 2211 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2212 p->rt.timeout = 0;
2213 p->rt.time_slice = sched_rr_timeslice;
2214 p->rt.on_rq = 0;
2215 p->rt.on_list = 0;
476d139c 2216
e107be36
AK
2217#ifdef CONFIG_PREEMPT_NOTIFIERS
2218 INIT_HLIST_HEAD(&p->preempt_notifiers);
2219#endif
cbee9f88
PZ
2220
2221#ifdef CONFIG_NUMA_BALANCING
2222 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2223 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2224 p->mm->numa_scan_seq = 0;
2225 }
2226
5e1576ed
RR
2227 if (clone_flags & CLONE_VM)
2228 p->numa_preferred_nid = current->numa_preferred_nid;
2229 else
2230 p->numa_preferred_nid = -1;
2231
cbee9f88
PZ
2232 p->node_stamp = 0ULL;
2233 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2234 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2235 p->numa_work.next = &p->numa_work;
44dba3d5 2236 p->numa_faults = NULL;
7e2703e6
RR
2237 p->last_task_numa_placement = 0;
2238 p->last_sum_exec_runtime = 0;
8c8a743c 2239
8c8a743c 2240 p->numa_group = NULL;
cbee9f88 2241#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2242}
2243
2a595721
SD
2244DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2245
1a687c2e 2246#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2247
1a687c2e
MG
2248void set_numabalancing_state(bool enabled)
2249{
2250 if (enabled)
2a595721 2251 static_branch_enable(&sched_numa_balancing);
1a687c2e 2252 else
2a595721 2253 static_branch_disable(&sched_numa_balancing);
1a687c2e 2254}
54a43d54
AK
2255
2256#ifdef CONFIG_PROC_SYSCTL
2257int sysctl_numa_balancing(struct ctl_table *table, int write,
2258 void __user *buffer, size_t *lenp, loff_t *ppos)
2259{
2260 struct ctl_table t;
2261 int err;
2a595721 2262 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2263
2264 if (write && !capable(CAP_SYS_ADMIN))
2265 return -EPERM;
2266
2267 t = *table;
2268 t.data = &state;
2269 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2270 if (err < 0)
2271 return err;
2272 if (write)
2273 set_numabalancing_state(state);
2274 return err;
2275}
2276#endif
2277#endif
dd41f596 2278
4698f88c
JP
2279#ifdef CONFIG_SCHEDSTATS
2280
cb251765 2281DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2282static bool __initdata __sched_schedstats = false;
cb251765 2283
cb251765
MG
2284static void set_schedstats(bool enabled)
2285{
2286 if (enabled)
2287 static_branch_enable(&sched_schedstats);
2288 else
2289 static_branch_disable(&sched_schedstats);
2290}
2291
2292void force_schedstat_enabled(void)
2293{
2294 if (!schedstat_enabled()) {
2295 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2296 static_branch_enable(&sched_schedstats);
2297 }
2298}
2299
2300static int __init setup_schedstats(char *str)
2301{
2302 int ret = 0;
2303 if (!str)
2304 goto out;
2305
4698f88c
JP
2306 /*
2307 * This code is called before jump labels have been set up, so we can't
2308 * change the static branch directly just yet. Instead set a temporary
2309 * variable so init_schedstats() can do it later.
2310 */
cb251765 2311 if (!strcmp(str, "enable")) {
4698f88c 2312 __sched_schedstats = true;
cb251765
MG
2313 ret = 1;
2314 } else if (!strcmp(str, "disable")) {
4698f88c 2315 __sched_schedstats = false;
cb251765
MG
2316 ret = 1;
2317 }
2318out:
2319 if (!ret)
2320 pr_warn("Unable to parse schedstats=\n");
2321
2322 return ret;
2323}
2324__setup("schedstats=", setup_schedstats);
2325
4698f88c
JP
2326static void __init init_schedstats(void)
2327{
2328 set_schedstats(__sched_schedstats);
2329}
2330
cb251765
MG
2331#ifdef CONFIG_PROC_SYSCTL
2332int sysctl_schedstats(struct ctl_table *table, int write,
2333 void __user *buffer, size_t *lenp, loff_t *ppos)
2334{
2335 struct ctl_table t;
2336 int err;
2337 int state = static_branch_likely(&sched_schedstats);
2338
2339 if (write && !capable(CAP_SYS_ADMIN))
2340 return -EPERM;
2341
2342 t = *table;
2343 t.data = &state;
2344 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2345 if (err < 0)
2346 return err;
2347 if (write)
2348 set_schedstats(state);
2349 return err;
2350}
4698f88c
JP
2351#endif /* CONFIG_PROC_SYSCTL */
2352#else /* !CONFIG_SCHEDSTATS */
2353static inline void init_schedstats(void) {}
2354#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2355
2356/*
2357 * fork()/clone()-time setup:
2358 */
aab03e05 2359int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2360{
0122ec5b 2361 unsigned long flags;
dd41f596
IM
2362 int cpu = get_cpu();
2363
5e1576ed 2364 __sched_fork(clone_flags, p);
06b83b5f 2365 /*
7dc603c9 2366 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2367 * nobody will actually run it, and a signal or other external
2368 * event cannot wake it up and insert it on the runqueue either.
2369 */
7dc603c9 2370 p->state = TASK_NEW;
dd41f596 2371
c350a04e
MG
2372 /*
2373 * Make sure we do not leak PI boosting priority to the child.
2374 */
2375 p->prio = current->normal_prio;
2376
b9dc29e7
MG
2377 /*
2378 * Revert to default priority/policy on fork if requested.
2379 */
2380 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2381 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2382 p->policy = SCHED_NORMAL;
6c697bdf 2383 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2384 p->rt_priority = 0;
2385 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2386 p->static_prio = NICE_TO_PRIO(0);
2387
2388 p->prio = p->normal_prio = __normal_prio(p);
2389 set_load_weight(p);
6c697bdf 2390
b9dc29e7
MG
2391 /*
2392 * We don't need the reset flag anymore after the fork. It has
2393 * fulfilled its duty:
2394 */
2395 p->sched_reset_on_fork = 0;
2396 }
ca94c442 2397
aab03e05
DF
2398 if (dl_prio(p->prio)) {
2399 put_cpu();
2400 return -EAGAIN;
2401 } else if (rt_prio(p->prio)) {
2402 p->sched_class = &rt_sched_class;
2403 } else {
2ddbf952 2404 p->sched_class = &fair_sched_class;
aab03e05 2405 }
b29739f9 2406
7dc603c9 2407 init_entity_runnable_average(&p->se);
cd29fe6f 2408
86951599
PZ
2409 /*
2410 * The child is not yet in the pid-hash so no cgroup attach races,
2411 * and the cgroup is pinned to this child due to cgroup_fork()
2412 * is ran before sched_fork().
2413 *
2414 * Silence PROVE_RCU.
2415 */
0122ec5b 2416 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2417 /*
2418 * We're setting the cpu for the first time, we don't migrate,
2419 * so use __set_task_cpu().
2420 */
2421 __set_task_cpu(p, cpu);
2422 if (p->sched_class->task_fork)
2423 p->sched_class->task_fork(p);
0122ec5b 2424 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2425
f6db8347 2426#ifdef CONFIG_SCHED_INFO
dd41f596 2427 if (likely(sched_info_on()))
52f17b6c 2428 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2429#endif
3ca7a440
PZ
2430#if defined(CONFIG_SMP)
2431 p->on_cpu = 0;
4866cde0 2432#endif
01028747 2433 init_task_preempt_count(p);
806c09a7 2434#ifdef CONFIG_SMP
917b627d 2435 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2436 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2437#endif
917b627d 2438
476d139c 2439 put_cpu();
aab03e05 2440 return 0;
1da177e4
LT
2441}
2442
332ac17e
DF
2443unsigned long to_ratio(u64 period, u64 runtime)
2444{
2445 if (runtime == RUNTIME_INF)
2446 return 1ULL << 20;
2447
2448 /*
2449 * Doing this here saves a lot of checks in all
2450 * the calling paths, and returning zero seems
2451 * safe for them anyway.
2452 */
2453 if (period == 0)
2454 return 0;
2455
2456 return div64_u64(runtime << 20, period);
2457}
2458
2459#ifdef CONFIG_SMP
2460inline struct dl_bw *dl_bw_of(int i)
2461{
f78f5b90
PM
2462 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2463 "sched RCU must be held");
332ac17e
DF
2464 return &cpu_rq(i)->rd->dl_bw;
2465}
2466
de212f18 2467static inline int dl_bw_cpus(int i)
332ac17e 2468{
de212f18
PZ
2469 struct root_domain *rd = cpu_rq(i)->rd;
2470 int cpus = 0;
2471
f78f5b90
PM
2472 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2473 "sched RCU must be held");
de212f18
PZ
2474 for_each_cpu_and(i, rd->span, cpu_active_mask)
2475 cpus++;
2476
2477 return cpus;
332ac17e
DF
2478}
2479#else
2480inline struct dl_bw *dl_bw_of(int i)
2481{
2482 return &cpu_rq(i)->dl.dl_bw;
2483}
2484
de212f18 2485static inline int dl_bw_cpus(int i)
332ac17e
DF
2486{
2487 return 1;
2488}
2489#endif
2490
332ac17e
DF
2491/*
2492 * We must be sure that accepting a new task (or allowing changing the
2493 * parameters of an existing one) is consistent with the bandwidth
2494 * constraints. If yes, this function also accordingly updates the currently
2495 * allocated bandwidth to reflect the new situation.
2496 *
2497 * This function is called while holding p's rq->lock.
40767b0d
PZ
2498 *
2499 * XXX we should delay bw change until the task's 0-lag point, see
2500 * __setparam_dl().
332ac17e
DF
2501 */
2502static int dl_overflow(struct task_struct *p, int policy,
2503 const struct sched_attr *attr)
2504{
2505
2506 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2507 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2508 u64 runtime = attr->sched_runtime;
2509 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2510 int cpus, err = -1;
332ac17e 2511
fec148c0
XP
2512 /* !deadline task may carry old deadline bandwidth */
2513 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2514 return 0;
2515
2516 /*
2517 * Either if a task, enters, leave, or stays -deadline but changes
2518 * its parameters, we may need to update accordingly the total
2519 * allocated bandwidth of the container.
2520 */
2521 raw_spin_lock(&dl_b->lock);
de212f18 2522 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2523 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2524 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2525 __dl_add(dl_b, new_bw);
2526 err = 0;
2527 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2528 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2529 __dl_clear(dl_b, p->dl.dl_bw);
2530 __dl_add(dl_b, new_bw);
2531 err = 0;
2532 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2533 __dl_clear(dl_b, p->dl.dl_bw);
2534 err = 0;
2535 }
2536 raw_spin_unlock(&dl_b->lock);
2537
2538 return err;
2539}
2540
2541extern void init_dl_bw(struct dl_bw *dl_b);
2542
1da177e4
LT
2543/*
2544 * wake_up_new_task - wake up a newly created task for the first time.
2545 *
2546 * This function will do some initial scheduler statistics housekeeping
2547 * that must be done for every newly created context, then puts the task
2548 * on the runqueue and wakes it.
2549 */
3e51e3ed 2550void wake_up_new_task(struct task_struct *p)
1da177e4 2551{
eb580751 2552 struct rq_flags rf;
dd41f596 2553 struct rq *rq;
fabf318e 2554
eb580751 2555 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2556 p->state = TASK_RUNNING;
fabf318e
PZ
2557#ifdef CONFIG_SMP
2558 /*
2559 * Fork balancing, do it here and not earlier because:
2560 * - cpus_allowed can change in the fork path
2561 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2562 *
2563 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2564 * as we're not fully set-up yet.
fabf318e 2565 */
e210bffd 2566 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2567#endif
b7fa30c9 2568 rq = __task_rq_lock(p, &rf);
2b8c41da 2569 post_init_entity_util_avg(&p->se);
0017d735 2570
cd29fe6f 2571 activate_task(rq, p, 0);
da0c1e65 2572 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2573 trace_sched_wakeup_new(p);
a7558e01 2574 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2575#ifdef CONFIG_SMP
0aaafaab
PZ
2576 if (p->sched_class->task_woken) {
2577 /*
2578 * Nothing relies on rq->lock after this, so its fine to
2579 * drop it.
2580 */
e7904a28 2581 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2582 p->sched_class->task_woken(rq, p);
e7904a28 2583 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2584 }
9a897c5a 2585#endif
eb580751 2586 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2587}
2588
e107be36
AK
2589#ifdef CONFIG_PREEMPT_NOTIFIERS
2590
1cde2930
PZ
2591static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2592
2ecd9d29
PZ
2593void preempt_notifier_inc(void)
2594{
2595 static_key_slow_inc(&preempt_notifier_key);
2596}
2597EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2598
2599void preempt_notifier_dec(void)
2600{
2601 static_key_slow_dec(&preempt_notifier_key);
2602}
2603EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2604
e107be36 2605/**
80dd99b3 2606 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2607 * @notifier: notifier struct to register
e107be36
AK
2608 */
2609void preempt_notifier_register(struct preempt_notifier *notifier)
2610{
2ecd9d29
PZ
2611 if (!static_key_false(&preempt_notifier_key))
2612 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2613
e107be36
AK
2614 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2615}
2616EXPORT_SYMBOL_GPL(preempt_notifier_register);
2617
2618/**
2619 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2620 * @notifier: notifier struct to unregister
e107be36 2621 *
d84525a8 2622 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2623 */
2624void preempt_notifier_unregister(struct preempt_notifier *notifier)
2625{
2626 hlist_del(&notifier->link);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2629
1cde2930 2630static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2631{
2632 struct preempt_notifier *notifier;
e107be36 2633
b67bfe0d 2634 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2635 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2636}
2637
1cde2930
PZ
2638static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2639{
2640 if (static_key_false(&preempt_notifier_key))
2641 __fire_sched_in_preempt_notifiers(curr);
2642}
2643
e107be36 2644static void
1cde2930
PZ
2645__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2646 struct task_struct *next)
e107be36
AK
2647{
2648 struct preempt_notifier *notifier;
e107be36 2649
b67bfe0d 2650 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2651 notifier->ops->sched_out(notifier, next);
2652}
2653
1cde2930
PZ
2654static __always_inline void
2655fire_sched_out_preempt_notifiers(struct task_struct *curr,
2656 struct task_struct *next)
2657{
2658 if (static_key_false(&preempt_notifier_key))
2659 __fire_sched_out_preempt_notifiers(curr, next);
2660}
2661
6d6bc0ad 2662#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2663
1cde2930 2664static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2665{
2666}
2667
1cde2930 2668static inline void
e107be36
AK
2669fire_sched_out_preempt_notifiers(struct task_struct *curr,
2670 struct task_struct *next)
2671{
2672}
2673
6d6bc0ad 2674#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2675
4866cde0
NP
2676/**
2677 * prepare_task_switch - prepare to switch tasks
2678 * @rq: the runqueue preparing to switch
421cee29 2679 * @prev: the current task that is being switched out
4866cde0
NP
2680 * @next: the task we are going to switch to.
2681 *
2682 * This is called with the rq lock held and interrupts off. It must
2683 * be paired with a subsequent finish_task_switch after the context
2684 * switch.
2685 *
2686 * prepare_task_switch sets up locking and calls architecture specific
2687 * hooks.
2688 */
e107be36
AK
2689static inline void
2690prepare_task_switch(struct rq *rq, struct task_struct *prev,
2691 struct task_struct *next)
4866cde0 2692{
43148951 2693 sched_info_switch(rq, prev, next);
fe4b04fa 2694 perf_event_task_sched_out(prev, next);
e107be36 2695 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2696 prepare_lock_switch(rq, next);
2697 prepare_arch_switch(next);
2698}
2699
1da177e4
LT
2700/**
2701 * finish_task_switch - clean up after a task-switch
2702 * @prev: the thread we just switched away from.
2703 *
4866cde0
NP
2704 * finish_task_switch must be called after the context switch, paired
2705 * with a prepare_task_switch call before the context switch.
2706 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2707 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2708 *
2709 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2710 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2711 * with the lock held can cause deadlocks; see schedule() for
2712 * details.)
dfa50b60
ON
2713 *
2714 * The context switch have flipped the stack from under us and restored the
2715 * local variables which were saved when this task called schedule() in the
2716 * past. prev == current is still correct but we need to recalculate this_rq
2717 * because prev may have moved to another CPU.
1da177e4 2718 */
dfa50b60 2719static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2720 __releases(rq->lock)
2721{
dfa50b60 2722 struct rq *rq = this_rq();
1da177e4 2723 struct mm_struct *mm = rq->prev_mm;
55a101f8 2724 long prev_state;
1da177e4 2725
609ca066
PZ
2726 /*
2727 * The previous task will have left us with a preempt_count of 2
2728 * because it left us after:
2729 *
2730 * schedule()
2731 * preempt_disable(); // 1
2732 * __schedule()
2733 * raw_spin_lock_irq(&rq->lock) // 2
2734 *
2735 * Also, see FORK_PREEMPT_COUNT.
2736 */
e2bf1c4b
PZ
2737 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2738 "corrupted preempt_count: %s/%d/0x%x\n",
2739 current->comm, current->pid, preempt_count()))
2740 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2741
1da177e4
LT
2742 rq->prev_mm = NULL;
2743
2744 /*
2745 * A task struct has one reference for the use as "current".
c394cc9f 2746 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2747 * schedule one last time. The schedule call will never return, and
2748 * the scheduled task must drop that reference.
95913d97
PZ
2749 *
2750 * We must observe prev->state before clearing prev->on_cpu (in
2751 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2752 * running on another CPU and we could rave with its RUNNING -> DEAD
2753 * transition, resulting in a double drop.
1da177e4 2754 */
55a101f8 2755 prev_state = prev->state;
bf9fae9f 2756 vtime_task_switch(prev);
a8d757ef 2757 perf_event_task_sched_in(prev, current);
4866cde0 2758 finish_lock_switch(rq, prev);
01f23e16 2759 finish_arch_post_lock_switch();
e8fa1362 2760
e107be36 2761 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2762 if (mm)
2763 mmdrop(mm);
c394cc9f 2764 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2765 if (prev->sched_class->task_dead)
2766 prev->sched_class->task_dead(prev);
2767
c6fd91f0 2768 /*
2769 * Remove function-return probe instances associated with this
2770 * task and put them back on the free list.
9761eea8 2771 */
c6fd91f0 2772 kprobe_flush_task(prev);
1da177e4 2773 put_task_struct(prev);
c6fd91f0 2774 }
99e5ada9 2775
de734f89 2776 tick_nohz_task_switch();
dfa50b60 2777 return rq;
1da177e4
LT
2778}
2779
3f029d3c
GH
2780#ifdef CONFIG_SMP
2781
3f029d3c 2782/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2783static void __balance_callback(struct rq *rq)
3f029d3c 2784{
e3fca9e7
PZ
2785 struct callback_head *head, *next;
2786 void (*func)(struct rq *rq);
2787 unsigned long flags;
3f029d3c 2788
e3fca9e7
PZ
2789 raw_spin_lock_irqsave(&rq->lock, flags);
2790 head = rq->balance_callback;
2791 rq->balance_callback = NULL;
2792 while (head) {
2793 func = (void (*)(struct rq *))head->func;
2794 next = head->next;
2795 head->next = NULL;
2796 head = next;
3f029d3c 2797
e3fca9e7 2798 func(rq);
3f029d3c 2799 }
e3fca9e7
PZ
2800 raw_spin_unlock_irqrestore(&rq->lock, flags);
2801}
2802
2803static inline void balance_callback(struct rq *rq)
2804{
2805 if (unlikely(rq->balance_callback))
2806 __balance_callback(rq);
3f029d3c
GH
2807}
2808
2809#else
da19ab51 2810
e3fca9e7 2811static inline void balance_callback(struct rq *rq)
3f029d3c 2812{
1da177e4
LT
2813}
2814
3f029d3c
GH
2815#endif
2816
1da177e4
LT
2817/**
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2820 */
722a9f92 2821asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2822 __releases(rq->lock)
2823{
1a43a14a 2824 struct rq *rq;
da19ab51 2825
609ca066
PZ
2826 /*
2827 * New tasks start with FORK_PREEMPT_COUNT, see there and
2828 * finish_task_switch() for details.
2829 *
2830 * finish_task_switch() will drop rq->lock() and lower preempt_count
2831 * and the preempt_enable() will end up enabling preemption (on
2832 * PREEMPT_COUNT kernels).
2833 */
2834
dfa50b60 2835 rq = finish_task_switch(prev);
e3fca9e7 2836 balance_callback(rq);
1a43a14a 2837 preempt_enable();
70b97a7f 2838
1da177e4 2839 if (current->set_child_tid)
b488893a 2840 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2841}
2842
2843/*
dfa50b60 2844 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2845 */
04936948 2846static __always_inline struct rq *
70b97a7f 2847context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2848 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2849{
dd41f596 2850 struct mm_struct *mm, *oldmm;
1da177e4 2851
e107be36 2852 prepare_task_switch(rq, prev, next);
fe4b04fa 2853
dd41f596
IM
2854 mm = next->mm;
2855 oldmm = prev->active_mm;
9226d125
ZA
2856 /*
2857 * For paravirt, this is coupled with an exit in switch_to to
2858 * combine the page table reload and the switch backend into
2859 * one hypercall.
2860 */
224101ed 2861 arch_start_context_switch(prev);
9226d125 2862
31915ab4 2863 if (!mm) {
1da177e4
LT
2864 next->active_mm = oldmm;
2865 atomic_inc(&oldmm->mm_count);
2866 enter_lazy_tlb(oldmm, next);
2867 } else
f98db601 2868 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2869
31915ab4 2870 if (!prev->mm) {
1da177e4 2871 prev->active_mm = NULL;
1da177e4
LT
2872 rq->prev_mm = oldmm;
2873 }
3a5f5e48
IM
2874 /*
2875 * Since the runqueue lock will be released by the next
2876 * task (which is an invalid locking op but in the case
2877 * of the scheduler it's an obvious special-case), so we
2878 * do an early lockdep release here:
2879 */
e7904a28 2880 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2881 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2882
2883 /* Here we just switch the register state and the stack. */
2884 switch_to(prev, next, prev);
dd41f596 2885 barrier();
dfa50b60
ON
2886
2887 return finish_task_switch(prev);
1da177e4
LT
2888}
2889
2890/*
1c3e8264 2891 * nr_running and nr_context_switches:
1da177e4
LT
2892 *
2893 * externally visible scheduler statistics: current number of runnable
1c3e8264 2894 * threads, total number of context switches performed since bootup.
1da177e4
LT
2895 */
2896unsigned long nr_running(void)
2897{
2898 unsigned long i, sum = 0;
2899
2900 for_each_online_cpu(i)
2901 sum += cpu_rq(i)->nr_running;
2902
2903 return sum;
f711f609 2904}
1da177e4 2905
2ee507c4
TC
2906/*
2907 * Check if only the current task is running on the cpu.
00cc1633
DD
2908 *
2909 * Caution: this function does not check that the caller has disabled
2910 * preemption, thus the result might have a time-of-check-to-time-of-use
2911 * race. The caller is responsible to use it correctly, for example:
2912 *
2913 * - from a non-preemptable section (of course)
2914 *
2915 * - from a thread that is bound to a single CPU
2916 *
2917 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2918 */
2919bool single_task_running(void)
2920{
00cc1633 2921 return raw_rq()->nr_running == 1;
2ee507c4
TC
2922}
2923EXPORT_SYMBOL(single_task_running);
2924
1da177e4 2925unsigned long long nr_context_switches(void)
46cb4b7c 2926{
cc94abfc
SR
2927 int i;
2928 unsigned long long sum = 0;
46cb4b7c 2929
0a945022 2930 for_each_possible_cpu(i)
1da177e4 2931 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2932
1da177e4
LT
2933 return sum;
2934}
483b4ee6 2935
1da177e4
LT
2936unsigned long nr_iowait(void)
2937{
2938 unsigned long i, sum = 0;
483b4ee6 2939
0a945022 2940 for_each_possible_cpu(i)
1da177e4 2941 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2942
1da177e4
LT
2943 return sum;
2944}
483b4ee6 2945
8c215bd3 2946unsigned long nr_iowait_cpu(int cpu)
69d25870 2947{
8c215bd3 2948 struct rq *this = cpu_rq(cpu);
69d25870
AV
2949 return atomic_read(&this->nr_iowait);
2950}
46cb4b7c 2951
372ba8cb
MG
2952void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2953{
3289bdb4
PZ
2954 struct rq *rq = this_rq();
2955 *nr_waiters = atomic_read(&rq->nr_iowait);
2956 *load = rq->load.weight;
372ba8cb
MG
2957}
2958
dd41f596 2959#ifdef CONFIG_SMP
8a0be9ef 2960
46cb4b7c 2961/*
38022906
PZ
2962 * sched_exec - execve() is a valuable balancing opportunity, because at
2963 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2964 */
38022906 2965void sched_exec(void)
46cb4b7c 2966{
38022906 2967 struct task_struct *p = current;
1da177e4 2968 unsigned long flags;
0017d735 2969 int dest_cpu;
46cb4b7c 2970
8f42ced9 2971 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2972 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2973 if (dest_cpu == smp_processor_id())
2974 goto unlock;
38022906 2975
8f42ced9 2976 if (likely(cpu_active(dest_cpu))) {
969c7921 2977 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2978
8f42ced9
PZ
2979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2980 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2981 return;
2982 }
0017d735 2983unlock:
8f42ced9 2984 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2985}
dd41f596 2986
1da177e4
LT
2987#endif
2988
1da177e4 2989DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2990DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2991
2992EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2993EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2994
6075620b
GG
2995/*
2996 * The function fair_sched_class.update_curr accesses the struct curr
2997 * and its field curr->exec_start; when called from task_sched_runtime(),
2998 * we observe a high rate of cache misses in practice.
2999 * Prefetching this data results in improved performance.
3000 */
3001static inline void prefetch_curr_exec_start(struct task_struct *p)
3002{
3003#ifdef CONFIG_FAIR_GROUP_SCHED
3004 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3005#else
3006 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3007#endif
3008 prefetch(curr);
3009 prefetch(&curr->exec_start);
3010}
3011
c5f8d995
HS
3012/*
3013 * Return accounted runtime for the task.
3014 * In case the task is currently running, return the runtime plus current's
3015 * pending runtime that have not been accounted yet.
3016 */
3017unsigned long long task_sched_runtime(struct task_struct *p)
3018{
eb580751 3019 struct rq_flags rf;
c5f8d995 3020 struct rq *rq;
6e998916 3021 u64 ns;
c5f8d995 3022
911b2898
PZ
3023#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3024 /*
3025 * 64-bit doesn't need locks to atomically read a 64bit value.
3026 * So we have a optimization chance when the task's delta_exec is 0.
3027 * Reading ->on_cpu is racy, but this is ok.
3028 *
3029 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3030 * If we race with it entering cpu, unaccounted time is 0. This is
3031 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3032 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3033 * been accounted, so we're correct here as well.
911b2898 3034 */
da0c1e65 3035 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3036 return p->se.sum_exec_runtime;
3037#endif
3038
eb580751 3039 rq = task_rq_lock(p, &rf);
6e998916
SG
3040 /*
3041 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3042 * project cycles that may never be accounted to this
3043 * thread, breaking clock_gettime().
3044 */
3045 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3046 prefetch_curr_exec_start(p);
6e998916
SG
3047 update_rq_clock(rq);
3048 p->sched_class->update_curr(rq);
3049 }
3050 ns = p->se.sum_exec_runtime;
eb580751 3051 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3052
3053 return ns;
3054}
48f24c4d 3055
7835b98b
CL
3056/*
3057 * This function gets called by the timer code, with HZ frequency.
3058 * We call it with interrupts disabled.
7835b98b
CL
3059 */
3060void scheduler_tick(void)
3061{
7835b98b
CL
3062 int cpu = smp_processor_id();
3063 struct rq *rq = cpu_rq(cpu);
dd41f596 3064 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3065
3066 sched_clock_tick();
dd41f596 3067
05fa785c 3068 raw_spin_lock(&rq->lock);
3e51f33f 3069 update_rq_clock(rq);
fa85ae24 3070 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3071 cpu_load_update_active(rq);
3289bdb4 3072 calc_global_load_tick(rq);
05fa785c 3073 raw_spin_unlock(&rq->lock);
7835b98b 3074
e9d2b064 3075 perf_event_task_tick();
e220d2dc 3076
e418e1c2 3077#ifdef CONFIG_SMP
6eb57e0d 3078 rq->idle_balance = idle_cpu(cpu);
7caff66f 3079 trigger_load_balance(rq);
e418e1c2 3080#endif
265f22a9 3081 rq_last_tick_reset(rq);
1da177e4
LT
3082}
3083
265f22a9
FW
3084#ifdef CONFIG_NO_HZ_FULL
3085/**
3086 * scheduler_tick_max_deferment
3087 *
3088 * Keep at least one tick per second when a single
3089 * active task is running because the scheduler doesn't
3090 * yet completely support full dynticks environment.
3091 *
3092 * This makes sure that uptime, CFS vruntime, load
3093 * balancing, etc... continue to move forward, even
3094 * with a very low granularity.
e69f6186
YB
3095 *
3096 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3097 */
3098u64 scheduler_tick_max_deferment(void)
3099{
3100 struct rq *rq = this_rq();
316c1608 3101 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3102
3103 next = rq->last_sched_tick + HZ;
3104
3105 if (time_before_eq(next, now))
3106 return 0;
3107
8fe8ff09 3108 return jiffies_to_nsecs(next - now);
1da177e4 3109}
265f22a9 3110#endif
1da177e4 3111
7e49fcce
SR
3112#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3113 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3114/*
3115 * If the value passed in is equal to the current preempt count
3116 * then we just disabled preemption. Start timing the latency.
3117 */
3118static inline void preempt_latency_start(int val)
3119{
3120 if (preempt_count() == val) {
3121 unsigned long ip = get_lock_parent_ip();
3122#ifdef CONFIG_DEBUG_PREEMPT
3123 current->preempt_disable_ip = ip;
3124#endif
3125 trace_preempt_off(CALLER_ADDR0, ip);
3126 }
3127}
7e49fcce 3128
edafe3a5 3129void preempt_count_add(int val)
1da177e4 3130{
6cd8a4bb 3131#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3132 /*
3133 * Underflow?
3134 */
9a11b49a
IM
3135 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3136 return;
6cd8a4bb 3137#endif
bdb43806 3138 __preempt_count_add(val);
6cd8a4bb 3139#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3140 /*
3141 * Spinlock count overflowing soon?
3142 */
33859f7f
MOS
3143 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3144 PREEMPT_MASK - 10);
6cd8a4bb 3145#endif
47252cfb 3146 preempt_latency_start(val);
1da177e4 3147}
bdb43806 3148EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3149NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3150
47252cfb
SR
3151/*
3152 * If the value passed in equals to the current preempt count
3153 * then we just enabled preemption. Stop timing the latency.
3154 */
3155static inline void preempt_latency_stop(int val)
3156{
3157 if (preempt_count() == val)
3158 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3159}
3160
edafe3a5 3161void preempt_count_sub(int val)
1da177e4 3162{
6cd8a4bb 3163#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3164 /*
3165 * Underflow?
3166 */
01e3eb82 3167 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3168 return;
1da177e4
LT
3169 /*
3170 * Is the spinlock portion underflowing?
3171 */
9a11b49a
IM
3172 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3173 !(preempt_count() & PREEMPT_MASK)))
3174 return;
6cd8a4bb 3175#endif
9a11b49a 3176
47252cfb 3177 preempt_latency_stop(val);
bdb43806 3178 __preempt_count_sub(val);
1da177e4 3179}
bdb43806 3180EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3181NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3182
47252cfb
SR
3183#else
3184static inline void preempt_latency_start(int val) { }
3185static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3186#endif
3187
3188/*
dd41f596 3189 * Print scheduling while atomic bug:
1da177e4 3190 */
dd41f596 3191static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3192{
d1c6d149
VN
3193 /* Save this before calling printk(), since that will clobber it */
3194 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3195
664dfa65
DJ
3196 if (oops_in_progress)
3197 return;
3198
3df0fc5b
PZ
3199 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3200 prev->comm, prev->pid, preempt_count());
838225b4 3201
dd41f596 3202 debug_show_held_locks(prev);
e21f5b15 3203 print_modules();
dd41f596
IM
3204 if (irqs_disabled())
3205 print_irqtrace_events(prev);
d1c6d149
VN
3206 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3207 && in_atomic_preempt_off()) {
8f47b187 3208 pr_err("Preemption disabled at:");
d1c6d149 3209 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3210 pr_cont("\n");
3211 }
748c7201
DBO
3212 if (panic_on_warn)
3213 panic("scheduling while atomic\n");
3214
6135fc1e 3215 dump_stack();
373d4d09 3216 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3217}
1da177e4 3218
dd41f596
IM
3219/*
3220 * Various schedule()-time debugging checks and statistics:
3221 */
3222static inline void schedule_debug(struct task_struct *prev)
3223{
0d9e2632 3224#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3225 if (task_stack_end_corrupted(prev))
3226 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3227#endif
b99def8b 3228
1dc0fffc 3229 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3230 __schedule_bug(prev);
1dc0fffc
PZ
3231 preempt_count_set(PREEMPT_DISABLED);
3232 }
b3fbab05 3233 rcu_sleep_check();
dd41f596 3234
1da177e4
LT
3235 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3236
ae92882e 3237 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3238}
3239
3240/*
3241 * Pick up the highest-prio task:
3242 */
3243static inline struct task_struct *
e7904a28 3244pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3245{
37e117c0 3246 const struct sched_class *class = &fair_sched_class;
dd41f596 3247 struct task_struct *p;
1da177e4
LT
3248
3249 /*
dd41f596
IM
3250 * Optimization: we know that if all tasks are in
3251 * the fair class we can call that function directly:
1da177e4 3252 */
37e117c0 3253 if (likely(prev->sched_class == class &&
38033c37 3254 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3255 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3256 if (unlikely(p == RETRY_TASK))
3257 goto again;
3258
3259 /* assumes fair_sched_class->next == idle_sched_class */
3260 if (unlikely(!p))
e7904a28 3261 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3262
3263 return p;
1da177e4
LT
3264 }
3265
37e117c0 3266again:
34f971f6 3267 for_each_class(class) {
e7904a28 3268 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3269 if (p) {
3270 if (unlikely(p == RETRY_TASK))
3271 goto again;
dd41f596 3272 return p;
37e117c0 3273 }
dd41f596 3274 }
34f971f6
PZ
3275
3276 BUG(); /* the idle class will always have a runnable task */
dd41f596 3277}
1da177e4 3278
dd41f596 3279/*
c259e01a 3280 * __schedule() is the main scheduler function.
edde96ea
PE
3281 *
3282 * The main means of driving the scheduler and thus entering this function are:
3283 *
3284 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3285 *
3286 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3287 * paths. For example, see arch/x86/entry_64.S.
3288 *
3289 * To drive preemption between tasks, the scheduler sets the flag in timer
3290 * interrupt handler scheduler_tick().
3291 *
3292 * 3. Wakeups don't really cause entry into schedule(). They add a
3293 * task to the run-queue and that's it.
3294 *
3295 * Now, if the new task added to the run-queue preempts the current
3296 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3297 * called on the nearest possible occasion:
3298 *
3299 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3300 *
3301 * - in syscall or exception context, at the next outmost
3302 * preempt_enable(). (this might be as soon as the wake_up()'s
3303 * spin_unlock()!)
3304 *
3305 * - in IRQ context, return from interrupt-handler to
3306 * preemptible context
3307 *
3308 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3309 * then at the next:
3310 *
3311 * - cond_resched() call
3312 * - explicit schedule() call
3313 * - return from syscall or exception to user-space
3314 * - return from interrupt-handler to user-space
bfd9b2b5 3315 *
b30f0e3f 3316 * WARNING: must be called with preemption disabled!
dd41f596 3317 */
499d7955 3318static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3319{
3320 struct task_struct *prev, *next;
67ca7bde 3321 unsigned long *switch_count;
e7904a28 3322 struct pin_cookie cookie;
dd41f596 3323 struct rq *rq;
31656519 3324 int cpu;
dd41f596 3325
dd41f596
IM
3326 cpu = smp_processor_id();
3327 rq = cpu_rq(cpu);
dd41f596 3328 prev = rq->curr;
dd41f596 3329
b99def8b
PZ
3330 /*
3331 * do_exit() calls schedule() with preemption disabled as an exception;
3332 * however we must fix that up, otherwise the next task will see an
3333 * inconsistent (higher) preempt count.
3334 *
3335 * It also avoids the below schedule_debug() test from complaining
3336 * about this.
3337 */
3338 if (unlikely(prev->state == TASK_DEAD))
3339 preempt_enable_no_resched_notrace();
3340
dd41f596 3341 schedule_debug(prev);
1da177e4 3342
31656519 3343 if (sched_feat(HRTICK))
f333fdc9 3344 hrtick_clear(rq);
8f4d37ec 3345
46a5d164
PM
3346 local_irq_disable();
3347 rcu_note_context_switch();
3348
e0acd0a6
ON
3349 /*
3350 * Make sure that signal_pending_state()->signal_pending() below
3351 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3352 * done by the caller to avoid the race with signal_wake_up().
3353 */
3354 smp_mb__before_spinlock();
46a5d164 3355 raw_spin_lock(&rq->lock);
e7904a28 3356 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3357
9edfbfed
PZ
3358 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3359
246d86b5 3360 switch_count = &prev->nivcsw;
fc13aeba 3361 if (!preempt && prev->state) {
21aa9af0 3362 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3363 prev->state = TASK_RUNNING;
21aa9af0 3364 } else {
2acca55e
PZ
3365 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3366 prev->on_rq = 0;
3367
21aa9af0 3368 /*
2acca55e
PZ
3369 * If a worker went to sleep, notify and ask workqueue
3370 * whether it wants to wake up a task to maintain
3371 * concurrency.
21aa9af0
TH
3372 */
3373 if (prev->flags & PF_WQ_WORKER) {
3374 struct task_struct *to_wakeup;
3375
9b7f6597 3376 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3377 if (to_wakeup)
e7904a28 3378 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3379 }
21aa9af0 3380 }
dd41f596 3381 switch_count = &prev->nvcsw;
1da177e4
LT
3382 }
3383
9edfbfed 3384 if (task_on_rq_queued(prev))
606dba2e
PZ
3385 update_rq_clock(rq);
3386
e7904a28 3387 next = pick_next_task(rq, prev, cookie);
f26f9aff 3388 clear_tsk_need_resched(prev);
f27dde8d 3389 clear_preempt_need_resched();
9edfbfed 3390 rq->clock_skip_update = 0;
1da177e4 3391
1da177e4 3392 if (likely(prev != next)) {
1da177e4
LT
3393 rq->nr_switches++;
3394 rq->curr = next;
3395 ++*switch_count;
3396
c73464b1 3397 trace_sched_switch(preempt, prev, next);
e7904a28 3398 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3399 } else {
e7904a28 3400 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3401 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3402 }
1da177e4 3403
e3fca9e7 3404 balance_callback(rq);
1da177e4 3405}
8e05e96a 3406STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3407
9c40cef2
TG
3408static inline void sched_submit_work(struct task_struct *tsk)
3409{
3c7d5184 3410 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3411 return;
3412 /*
3413 * If we are going to sleep and we have plugged IO queued,
3414 * make sure to submit it to avoid deadlocks.
3415 */
3416 if (blk_needs_flush_plug(tsk))
3417 blk_schedule_flush_plug(tsk);
3418}
3419
722a9f92 3420asmlinkage __visible void __sched schedule(void)
c259e01a 3421{
9c40cef2
TG
3422 struct task_struct *tsk = current;
3423
3424 sched_submit_work(tsk);
bfd9b2b5 3425 do {
b30f0e3f 3426 preempt_disable();
fc13aeba 3427 __schedule(false);
b30f0e3f 3428 sched_preempt_enable_no_resched();
bfd9b2b5 3429 } while (need_resched());
c259e01a 3430}
1da177e4
LT
3431EXPORT_SYMBOL(schedule);
3432
91d1aa43 3433#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3434asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3435{
3436 /*
3437 * If we come here after a random call to set_need_resched(),
3438 * or we have been woken up remotely but the IPI has not yet arrived,
3439 * we haven't yet exited the RCU idle mode. Do it here manually until
3440 * we find a better solution.
7cc78f8f
AL
3441 *
3442 * NB: There are buggy callers of this function. Ideally we
c467ea76 3443 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3444 * too frequently to make sense yet.
20ab65e3 3445 */
7cc78f8f 3446 enum ctx_state prev_state = exception_enter();
20ab65e3 3447 schedule();
7cc78f8f 3448 exception_exit(prev_state);
20ab65e3
FW
3449}
3450#endif
3451
c5491ea7
TG
3452/**
3453 * schedule_preempt_disabled - called with preemption disabled
3454 *
3455 * Returns with preemption disabled. Note: preempt_count must be 1
3456 */
3457void __sched schedule_preempt_disabled(void)
3458{
ba74c144 3459 sched_preempt_enable_no_resched();
c5491ea7
TG
3460 schedule();
3461 preempt_disable();
3462}
3463
06b1f808 3464static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3465{
3466 do {
47252cfb
SR
3467 /*
3468 * Because the function tracer can trace preempt_count_sub()
3469 * and it also uses preempt_enable/disable_notrace(), if
3470 * NEED_RESCHED is set, the preempt_enable_notrace() called
3471 * by the function tracer will call this function again and
3472 * cause infinite recursion.
3473 *
3474 * Preemption must be disabled here before the function
3475 * tracer can trace. Break up preempt_disable() into two
3476 * calls. One to disable preemption without fear of being
3477 * traced. The other to still record the preemption latency,
3478 * which can also be traced by the function tracer.
3479 */
499d7955 3480 preempt_disable_notrace();
47252cfb 3481 preempt_latency_start(1);
fc13aeba 3482 __schedule(true);
47252cfb 3483 preempt_latency_stop(1);
499d7955 3484 preempt_enable_no_resched_notrace();
a18b5d01
FW
3485
3486 /*
3487 * Check again in case we missed a preemption opportunity
3488 * between schedule and now.
3489 */
a18b5d01
FW
3490 } while (need_resched());
3491}
3492
1da177e4
LT
3493#ifdef CONFIG_PREEMPT
3494/*
2ed6e34f 3495 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3496 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3497 * occur there and call schedule directly.
3498 */
722a9f92 3499asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3500{
1da177e4
LT
3501 /*
3502 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3503 * we do not want to preempt the current task. Just return..
1da177e4 3504 */
fbb00b56 3505 if (likely(!preemptible()))
1da177e4
LT
3506 return;
3507
a18b5d01 3508 preempt_schedule_common();
1da177e4 3509}
376e2424 3510NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3511EXPORT_SYMBOL(preempt_schedule);
009f60e2 3512
009f60e2 3513/**
4eaca0a8 3514 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3515 *
3516 * The tracing infrastructure uses preempt_enable_notrace to prevent
3517 * recursion and tracing preempt enabling caused by the tracing
3518 * infrastructure itself. But as tracing can happen in areas coming
3519 * from userspace or just about to enter userspace, a preempt enable
3520 * can occur before user_exit() is called. This will cause the scheduler
3521 * to be called when the system is still in usermode.
3522 *
3523 * To prevent this, the preempt_enable_notrace will use this function
3524 * instead of preempt_schedule() to exit user context if needed before
3525 * calling the scheduler.
3526 */
4eaca0a8 3527asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3528{
3529 enum ctx_state prev_ctx;
3530
3531 if (likely(!preemptible()))
3532 return;
3533
3534 do {
47252cfb
SR
3535 /*
3536 * Because the function tracer can trace preempt_count_sub()
3537 * and it also uses preempt_enable/disable_notrace(), if
3538 * NEED_RESCHED is set, the preempt_enable_notrace() called
3539 * by the function tracer will call this function again and
3540 * cause infinite recursion.
3541 *
3542 * Preemption must be disabled here before the function
3543 * tracer can trace. Break up preempt_disable() into two
3544 * calls. One to disable preemption without fear of being
3545 * traced. The other to still record the preemption latency,
3546 * which can also be traced by the function tracer.
3547 */
3d8f74dd 3548 preempt_disable_notrace();
47252cfb 3549 preempt_latency_start(1);
009f60e2
ON
3550 /*
3551 * Needs preempt disabled in case user_exit() is traced
3552 * and the tracer calls preempt_enable_notrace() causing
3553 * an infinite recursion.
3554 */
3555 prev_ctx = exception_enter();
fc13aeba 3556 __schedule(true);
009f60e2
ON
3557 exception_exit(prev_ctx);
3558
47252cfb 3559 preempt_latency_stop(1);
3d8f74dd 3560 preempt_enable_no_resched_notrace();
009f60e2
ON
3561 } while (need_resched());
3562}
4eaca0a8 3563EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3564
32e475d7 3565#endif /* CONFIG_PREEMPT */
1da177e4
LT
3566
3567/*
2ed6e34f 3568 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3569 * off of irq context.
3570 * Note, that this is called and return with irqs disabled. This will
3571 * protect us against recursive calling from irq.
3572 */
722a9f92 3573asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3574{
b22366cd 3575 enum ctx_state prev_state;
6478d880 3576
2ed6e34f 3577 /* Catch callers which need to be fixed */
f27dde8d 3578 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3579
b22366cd
FW
3580 prev_state = exception_enter();
3581
3a5c359a 3582 do {
3d8f74dd 3583 preempt_disable();
3a5c359a 3584 local_irq_enable();
fc13aeba 3585 __schedule(true);
3a5c359a 3586 local_irq_disable();
3d8f74dd 3587 sched_preempt_enable_no_resched();
5ed0cec0 3588 } while (need_resched());
b22366cd
FW
3589
3590 exception_exit(prev_state);
1da177e4
LT
3591}
3592
63859d4f 3593int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3594 void *key)
1da177e4 3595{
63859d4f 3596 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3597}
1da177e4
LT
3598EXPORT_SYMBOL(default_wake_function);
3599
b29739f9
IM
3600#ifdef CONFIG_RT_MUTEXES
3601
3602/*
3603 * rt_mutex_setprio - set the current priority of a task
3604 * @p: task
3605 * @prio: prio value (kernel-internal form)
3606 *
3607 * This function changes the 'effective' priority of a task. It does
3608 * not touch ->normal_prio like __setscheduler().
3609 *
c365c292
TG
3610 * Used by the rt_mutex code to implement priority inheritance
3611 * logic. Call site only calls if the priority of the task changed.
b29739f9 3612 */
36c8b586 3613void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3614{
ff77e468 3615 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3616 const struct sched_class *prev_class;
eb580751
PZ
3617 struct rq_flags rf;
3618 struct rq *rq;
b29739f9 3619
aab03e05 3620 BUG_ON(prio > MAX_PRIO);
b29739f9 3621
eb580751 3622 rq = __task_rq_lock(p, &rf);
b29739f9 3623
1c4dd99b
TG
3624 /*
3625 * Idle task boosting is a nono in general. There is one
3626 * exception, when PREEMPT_RT and NOHZ is active:
3627 *
3628 * The idle task calls get_next_timer_interrupt() and holds
3629 * the timer wheel base->lock on the CPU and another CPU wants
3630 * to access the timer (probably to cancel it). We can safely
3631 * ignore the boosting request, as the idle CPU runs this code
3632 * with interrupts disabled and will complete the lock
3633 * protected section without being interrupted. So there is no
3634 * real need to boost.
3635 */
3636 if (unlikely(p == rq->idle)) {
3637 WARN_ON(p != rq->curr);
3638 WARN_ON(p->pi_blocked_on);
3639 goto out_unlock;
3640 }
3641
a8027073 3642 trace_sched_pi_setprio(p, prio);
d5f9f942 3643 oldprio = p->prio;
ff77e468
PZ
3644
3645 if (oldprio == prio)
3646 queue_flag &= ~DEQUEUE_MOVE;
3647
83ab0aa0 3648 prev_class = p->sched_class;
da0c1e65 3649 queued = task_on_rq_queued(p);
051a1d1a 3650 running = task_current(rq, p);
da0c1e65 3651 if (queued)
ff77e468 3652 dequeue_task(rq, p, queue_flag);
0e1f3483 3653 if (running)
f3cd1c4e 3654 put_prev_task(rq, p);
dd41f596 3655
2d3d891d
DF
3656 /*
3657 * Boosting condition are:
3658 * 1. -rt task is running and holds mutex A
3659 * --> -dl task blocks on mutex A
3660 *
3661 * 2. -dl task is running and holds mutex A
3662 * --> -dl task blocks on mutex A and could preempt the
3663 * running task
3664 */
3665 if (dl_prio(prio)) {
466af29b
ON
3666 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3667 if (!dl_prio(p->normal_prio) ||
3668 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3669 p->dl.dl_boosted = 1;
ff77e468 3670 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3671 } else
3672 p->dl.dl_boosted = 0;
aab03e05 3673 p->sched_class = &dl_sched_class;
2d3d891d
DF
3674 } else if (rt_prio(prio)) {
3675 if (dl_prio(oldprio))
3676 p->dl.dl_boosted = 0;
3677 if (oldprio < prio)
ff77e468 3678 queue_flag |= ENQUEUE_HEAD;
dd41f596 3679 p->sched_class = &rt_sched_class;
2d3d891d
DF
3680 } else {
3681 if (dl_prio(oldprio))
3682 p->dl.dl_boosted = 0;
746db944
BS
3683 if (rt_prio(oldprio))
3684 p->rt.timeout = 0;
dd41f596 3685 p->sched_class = &fair_sched_class;
2d3d891d 3686 }
dd41f596 3687
b29739f9
IM
3688 p->prio = prio;
3689
0e1f3483
HS
3690 if (running)
3691 p->sched_class->set_curr_task(rq);
da0c1e65 3692 if (queued)
ff77e468 3693 enqueue_task(rq, p, queue_flag);
cb469845 3694
da7a735e 3695 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3696out_unlock:
4c9a4bc8 3697 preempt_disable(); /* avoid rq from going away on us */
eb580751 3698 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3699
3700 balance_callback(rq);
3701 preempt_enable();
b29739f9 3702}
b29739f9 3703#endif
d50dde5a 3704
36c8b586 3705void set_user_nice(struct task_struct *p, long nice)
1da177e4 3706{
da0c1e65 3707 int old_prio, delta, queued;
eb580751 3708 struct rq_flags rf;
70b97a7f 3709 struct rq *rq;
1da177e4 3710
75e45d51 3711 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3712 return;
3713 /*
3714 * We have to be careful, if called from sys_setpriority(),
3715 * the task might be in the middle of scheduling on another CPU.
3716 */
eb580751 3717 rq = task_rq_lock(p, &rf);
1da177e4
LT
3718 /*
3719 * The RT priorities are set via sched_setscheduler(), but we still
3720 * allow the 'normal' nice value to be set - but as expected
3721 * it wont have any effect on scheduling until the task is
aab03e05 3722 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3723 */
aab03e05 3724 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3725 p->static_prio = NICE_TO_PRIO(nice);
3726 goto out_unlock;
3727 }
da0c1e65
KT
3728 queued = task_on_rq_queued(p);
3729 if (queued)
1de64443 3730 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3731
1da177e4 3732 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3733 set_load_weight(p);
b29739f9
IM
3734 old_prio = p->prio;
3735 p->prio = effective_prio(p);
3736 delta = p->prio - old_prio;
1da177e4 3737
da0c1e65 3738 if (queued) {
1de64443 3739 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3740 /*
d5f9f942
AM
3741 * If the task increased its priority or is running and
3742 * lowered its priority, then reschedule its CPU:
1da177e4 3743 */
d5f9f942 3744 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3745 resched_curr(rq);
1da177e4
LT
3746 }
3747out_unlock:
eb580751 3748 task_rq_unlock(rq, p, &rf);
1da177e4 3749}
1da177e4
LT
3750EXPORT_SYMBOL(set_user_nice);
3751
e43379f1
MM
3752/*
3753 * can_nice - check if a task can reduce its nice value
3754 * @p: task
3755 * @nice: nice value
3756 */
36c8b586 3757int can_nice(const struct task_struct *p, const int nice)
e43379f1 3758{
024f4747 3759 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3760 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3761
78d7d407 3762 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3763 capable(CAP_SYS_NICE));
3764}
3765
1da177e4
LT
3766#ifdef __ARCH_WANT_SYS_NICE
3767
3768/*
3769 * sys_nice - change the priority of the current process.
3770 * @increment: priority increment
3771 *
3772 * sys_setpriority is a more generic, but much slower function that
3773 * does similar things.
3774 */
5add95d4 3775SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3776{
48f24c4d 3777 long nice, retval;
1da177e4
LT
3778
3779 /*
3780 * Setpriority might change our priority at the same moment.
3781 * We don't have to worry. Conceptually one call occurs first
3782 * and we have a single winner.
3783 */
a9467fa3 3784 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3785 nice = task_nice(current) + increment;
1da177e4 3786
a9467fa3 3787 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3788 if (increment < 0 && !can_nice(current, nice))
3789 return -EPERM;
3790
1da177e4
LT
3791 retval = security_task_setnice(current, nice);
3792 if (retval)
3793 return retval;
3794
3795 set_user_nice(current, nice);
3796 return 0;
3797}
3798
3799#endif
3800
3801/**
3802 * task_prio - return the priority value of a given task.
3803 * @p: the task in question.
3804 *
e69f6186 3805 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3806 * RT tasks are offset by -200. Normal tasks are centered
3807 * around 0, value goes from -16 to +15.
3808 */
36c8b586 3809int task_prio(const struct task_struct *p)
1da177e4
LT
3810{
3811 return p->prio - MAX_RT_PRIO;
3812}
3813
1da177e4
LT
3814/**
3815 * idle_cpu - is a given cpu idle currently?
3816 * @cpu: the processor in question.
e69f6186
YB
3817 *
3818 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3819 */
3820int idle_cpu(int cpu)
3821{
908a3283
TG
3822 struct rq *rq = cpu_rq(cpu);
3823
3824 if (rq->curr != rq->idle)
3825 return 0;
3826
3827 if (rq->nr_running)
3828 return 0;
3829
3830#ifdef CONFIG_SMP
3831 if (!llist_empty(&rq->wake_list))
3832 return 0;
3833#endif
3834
3835 return 1;
1da177e4
LT
3836}
3837
1da177e4
LT
3838/**
3839 * idle_task - return the idle task for a given cpu.
3840 * @cpu: the processor in question.
e69f6186
YB
3841 *
3842 * Return: The idle task for the cpu @cpu.
1da177e4 3843 */
36c8b586 3844struct task_struct *idle_task(int cpu)
1da177e4
LT
3845{
3846 return cpu_rq(cpu)->idle;
3847}
3848
3849/**
3850 * find_process_by_pid - find a process with a matching PID value.
3851 * @pid: the pid in question.
e69f6186
YB
3852 *
3853 * The task of @pid, if found. %NULL otherwise.
1da177e4 3854 */
a9957449 3855static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3856{
228ebcbe 3857 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3858}
3859
aab03e05
DF
3860/*
3861 * This function initializes the sched_dl_entity of a newly becoming
3862 * SCHED_DEADLINE task.
3863 *
3864 * Only the static values are considered here, the actual runtime and the
3865 * absolute deadline will be properly calculated when the task is enqueued
3866 * for the first time with its new policy.
3867 */
3868static void
3869__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3870{
3871 struct sched_dl_entity *dl_se = &p->dl;
3872
aab03e05
DF
3873 dl_se->dl_runtime = attr->sched_runtime;
3874 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3875 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3876 dl_se->flags = attr->sched_flags;
332ac17e 3877 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3878
3879 /*
3880 * Changing the parameters of a task is 'tricky' and we're not doing
3881 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3882 *
3883 * What we SHOULD do is delay the bandwidth release until the 0-lag
3884 * point. This would include retaining the task_struct until that time
3885 * and change dl_overflow() to not immediately decrement the current
3886 * amount.
3887 *
3888 * Instead we retain the current runtime/deadline and let the new
3889 * parameters take effect after the current reservation period lapses.
3890 * This is safe (albeit pessimistic) because the 0-lag point is always
3891 * before the current scheduling deadline.
3892 *
3893 * We can still have temporary overloads because we do not delay the
3894 * change in bandwidth until that time; so admission control is
3895 * not on the safe side. It does however guarantee tasks will never
3896 * consume more than promised.
3897 */
aab03e05
DF
3898}
3899
c13db6b1
SR
3900/*
3901 * sched_setparam() passes in -1 for its policy, to let the functions
3902 * it calls know not to change it.
3903 */
3904#define SETPARAM_POLICY -1
3905
c365c292
TG
3906static void __setscheduler_params(struct task_struct *p,
3907 const struct sched_attr *attr)
1da177e4 3908{
d50dde5a
DF
3909 int policy = attr->sched_policy;
3910
c13db6b1 3911 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3912 policy = p->policy;
3913
1da177e4 3914 p->policy = policy;
d50dde5a 3915
aab03e05
DF
3916 if (dl_policy(policy))
3917 __setparam_dl(p, attr);
39fd8fd2 3918 else if (fair_policy(policy))
d50dde5a
DF
3919 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3920
39fd8fd2
PZ
3921 /*
3922 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3923 * !rt_policy. Always setting this ensures that things like
3924 * getparam()/getattr() don't report silly values for !rt tasks.
3925 */
3926 p->rt_priority = attr->sched_priority;
383afd09 3927 p->normal_prio = normal_prio(p);
c365c292
TG
3928 set_load_weight(p);
3929}
39fd8fd2 3930
c365c292
TG
3931/* Actually do priority change: must hold pi & rq lock. */
3932static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3933 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3934{
3935 __setscheduler_params(p, attr);
d50dde5a 3936
383afd09 3937 /*
0782e63b
TG
3938 * Keep a potential priority boosting if called from
3939 * sched_setscheduler().
383afd09 3940 */
0782e63b
TG
3941 if (keep_boost)
3942 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3943 else
3944 p->prio = normal_prio(p);
383afd09 3945
aab03e05
DF
3946 if (dl_prio(p->prio))
3947 p->sched_class = &dl_sched_class;
3948 else if (rt_prio(p->prio))
ffd44db5
PZ
3949 p->sched_class = &rt_sched_class;
3950 else
3951 p->sched_class = &fair_sched_class;
1da177e4 3952}
aab03e05
DF
3953
3954static void
3955__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3956{
3957 struct sched_dl_entity *dl_se = &p->dl;
3958
3959 attr->sched_priority = p->rt_priority;
3960 attr->sched_runtime = dl_se->dl_runtime;
3961 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3962 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3963 attr->sched_flags = dl_se->flags;
3964}
3965
3966/*
3967 * This function validates the new parameters of a -deadline task.
3968 * We ask for the deadline not being zero, and greater or equal
755378a4 3969 * than the runtime, as well as the period of being zero or
332ac17e 3970 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3971 * user parameters are above the internal resolution of 1us (we
3972 * check sched_runtime only since it is always the smaller one) and
3973 * below 2^63 ns (we have to check both sched_deadline and
3974 * sched_period, as the latter can be zero).
aab03e05
DF
3975 */
3976static bool
3977__checkparam_dl(const struct sched_attr *attr)
3978{
b0827819
JL
3979 /* deadline != 0 */
3980 if (attr->sched_deadline == 0)
3981 return false;
3982
3983 /*
3984 * Since we truncate DL_SCALE bits, make sure we're at least
3985 * that big.
3986 */
3987 if (attr->sched_runtime < (1ULL << DL_SCALE))
3988 return false;
3989
3990 /*
3991 * Since we use the MSB for wrap-around and sign issues, make
3992 * sure it's not set (mind that period can be equal to zero).
3993 */
3994 if (attr->sched_deadline & (1ULL << 63) ||
3995 attr->sched_period & (1ULL << 63))
3996 return false;
3997
3998 /* runtime <= deadline <= period (if period != 0) */
3999 if ((attr->sched_period != 0 &&
4000 attr->sched_period < attr->sched_deadline) ||
4001 attr->sched_deadline < attr->sched_runtime)
4002 return false;
4003
4004 return true;
aab03e05
DF
4005}
4006
c69e8d9c
DH
4007/*
4008 * check the target process has a UID that matches the current process's
4009 */
4010static bool check_same_owner(struct task_struct *p)
4011{
4012 const struct cred *cred = current_cred(), *pcred;
4013 bool match;
4014
4015 rcu_read_lock();
4016 pcred = __task_cred(p);
9c806aa0
EB
4017 match = (uid_eq(cred->euid, pcred->euid) ||
4018 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4019 rcu_read_unlock();
4020 return match;
4021}
4022
75381608
WL
4023static bool dl_param_changed(struct task_struct *p,
4024 const struct sched_attr *attr)
4025{
4026 struct sched_dl_entity *dl_se = &p->dl;
4027
4028 if (dl_se->dl_runtime != attr->sched_runtime ||
4029 dl_se->dl_deadline != attr->sched_deadline ||
4030 dl_se->dl_period != attr->sched_period ||
4031 dl_se->flags != attr->sched_flags)
4032 return true;
4033
4034 return false;
4035}
4036
d50dde5a
DF
4037static int __sched_setscheduler(struct task_struct *p,
4038 const struct sched_attr *attr,
dbc7f069 4039 bool user, bool pi)
1da177e4 4040{
383afd09
SR
4041 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4042 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4043 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4044 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4045 const struct sched_class *prev_class;
eb580751 4046 struct rq_flags rf;
ca94c442 4047 int reset_on_fork;
ff77e468 4048 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4049 struct rq *rq;
1da177e4 4050
66e5393a
SR
4051 /* may grab non-irq protected spin_locks */
4052 BUG_ON(in_interrupt());
1da177e4
LT
4053recheck:
4054 /* double check policy once rq lock held */
ca94c442
LP
4055 if (policy < 0) {
4056 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4057 policy = oldpolicy = p->policy;
ca94c442 4058 } else {
7479f3c9 4059 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4060
20f9cd2a 4061 if (!valid_policy(policy))
ca94c442
LP
4062 return -EINVAL;
4063 }
4064
7479f3c9
PZ
4065 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4066 return -EINVAL;
4067
1da177e4
LT
4068 /*
4069 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4070 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4071 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4072 */
0bb040a4 4073 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4074 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4075 return -EINVAL;
aab03e05
DF
4076 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4077 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4078 return -EINVAL;
4079
37e4ab3f
OC
4080 /*
4081 * Allow unprivileged RT tasks to decrease priority:
4082 */
961ccddd 4083 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4084 if (fair_policy(policy)) {
d0ea0268 4085 if (attr->sched_nice < task_nice(p) &&
eaad4513 4086 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4087 return -EPERM;
4088 }
4089
e05606d3 4090 if (rt_policy(policy)) {
a44702e8
ON
4091 unsigned long rlim_rtprio =
4092 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4093
4094 /* can't set/change the rt policy */
4095 if (policy != p->policy && !rlim_rtprio)
4096 return -EPERM;
4097
4098 /* can't increase priority */
d50dde5a
DF
4099 if (attr->sched_priority > p->rt_priority &&
4100 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4101 return -EPERM;
4102 }
c02aa73b 4103
d44753b8
JL
4104 /*
4105 * Can't set/change SCHED_DEADLINE policy at all for now
4106 * (safest behavior); in the future we would like to allow
4107 * unprivileged DL tasks to increase their relative deadline
4108 * or reduce their runtime (both ways reducing utilization)
4109 */
4110 if (dl_policy(policy))
4111 return -EPERM;
4112
dd41f596 4113 /*
c02aa73b
DH
4114 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4115 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4116 */
20f9cd2a 4117 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4118 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4119 return -EPERM;
4120 }
5fe1d75f 4121
37e4ab3f 4122 /* can't change other user's priorities */
c69e8d9c 4123 if (!check_same_owner(p))
37e4ab3f 4124 return -EPERM;
ca94c442
LP
4125
4126 /* Normal users shall not reset the sched_reset_on_fork flag */
4127 if (p->sched_reset_on_fork && !reset_on_fork)
4128 return -EPERM;
37e4ab3f 4129 }
1da177e4 4130
725aad24 4131 if (user) {
b0ae1981 4132 retval = security_task_setscheduler(p);
725aad24
JF
4133 if (retval)
4134 return retval;
4135 }
4136
b29739f9
IM
4137 /*
4138 * make sure no PI-waiters arrive (or leave) while we are
4139 * changing the priority of the task:
0122ec5b 4140 *
25985edc 4141 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4142 * runqueue lock must be held.
4143 */
eb580751 4144 rq = task_rq_lock(p, &rf);
dc61b1d6 4145
34f971f6
PZ
4146 /*
4147 * Changing the policy of the stop threads its a very bad idea
4148 */
4149 if (p == rq->stop) {
eb580751 4150 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4151 return -EINVAL;
4152 }
4153
a51e9198 4154 /*
d6b1e911
TG
4155 * If not changing anything there's no need to proceed further,
4156 * but store a possible modification of reset_on_fork.
a51e9198 4157 */
d50dde5a 4158 if (unlikely(policy == p->policy)) {
d0ea0268 4159 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4160 goto change;
4161 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4162 goto change;
75381608 4163 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4164 goto change;
d50dde5a 4165
d6b1e911 4166 p->sched_reset_on_fork = reset_on_fork;
eb580751 4167 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4168 return 0;
4169 }
d50dde5a 4170change:
a51e9198 4171
dc61b1d6 4172 if (user) {
332ac17e 4173#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4174 /*
4175 * Do not allow realtime tasks into groups that have no runtime
4176 * assigned.
4177 */
4178 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4179 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4180 !task_group_is_autogroup(task_group(p))) {
eb580751 4181 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4182 return -EPERM;
4183 }
dc61b1d6 4184#endif
332ac17e
DF
4185#ifdef CONFIG_SMP
4186 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4187 cpumask_t *span = rq->rd->span;
332ac17e
DF
4188
4189 /*
4190 * Don't allow tasks with an affinity mask smaller than
4191 * the entire root_domain to become SCHED_DEADLINE. We
4192 * will also fail if there's no bandwidth available.
4193 */
e4099a5e
PZ
4194 if (!cpumask_subset(span, &p->cpus_allowed) ||
4195 rq->rd->dl_bw.bw == 0) {
eb580751 4196 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4197 return -EPERM;
4198 }
4199 }
4200#endif
4201 }
dc61b1d6 4202
1da177e4
LT
4203 /* recheck policy now with rq lock held */
4204 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4205 policy = oldpolicy = -1;
eb580751 4206 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4207 goto recheck;
4208 }
332ac17e
DF
4209
4210 /*
4211 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4212 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4213 * is available.
4214 */
e4099a5e 4215 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4216 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4217 return -EBUSY;
4218 }
4219
c365c292
TG
4220 p->sched_reset_on_fork = reset_on_fork;
4221 oldprio = p->prio;
4222
dbc7f069
PZ
4223 if (pi) {
4224 /*
4225 * Take priority boosted tasks into account. If the new
4226 * effective priority is unchanged, we just store the new
4227 * normal parameters and do not touch the scheduler class and
4228 * the runqueue. This will be done when the task deboost
4229 * itself.
4230 */
4231 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4232 if (new_effective_prio == oldprio)
4233 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4234 }
4235
da0c1e65 4236 queued = task_on_rq_queued(p);
051a1d1a 4237 running = task_current(rq, p);
da0c1e65 4238 if (queued)
ff77e468 4239 dequeue_task(rq, p, queue_flags);
0e1f3483 4240 if (running)
f3cd1c4e 4241 put_prev_task(rq, p);
f6b53205 4242
83ab0aa0 4243 prev_class = p->sched_class;
dbc7f069 4244 __setscheduler(rq, p, attr, pi);
f6b53205 4245
0e1f3483
HS
4246 if (running)
4247 p->sched_class->set_curr_task(rq);
da0c1e65 4248 if (queued) {
81a44c54
TG
4249 /*
4250 * We enqueue to tail when the priority of a task is
4251 * increased (user space view).
4252 */
ff77e468
PZ
4253 if (oldprio < p->prio)
4254 queue_flags |= ENQUEUE_HEAD;
1de64443 4255
ff77e468 4256 enqueue_task(rq, p, queue_flags);
81a44c54 4257 }
cb469845 4258
da7a735e 4259 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4260 preempt_disable(); /* avoid rq from going away on us */
eb580751 4261 task_rq_unlock(rq, p, &rf);
b29739f9 4262
dbc7f069
PZ
4263 if (pi)
4264 rt_mutex_adjust_pi(p);
95e02ca9 4265
4c9a4bc8
PZ
4266 /*
4267 * Run balance callbacks after we've adjusted the PI chain.
4268 */
4269 balance_callback(rq);
4270 preempt_enable();
95e02ca9 4271
1da177e4
LT
4272 return 0;
4273}
961ccddd 4274
7479f3c9
PZ
4275static int _sched_setscheduler(struct task_struct *p, int policy,
4276 const struct sched_param *param, bool check)
4277{
4278 struct sched_attr attr = {
4279 .sched_policy = policy,
4280 .sched_priority = param->sched_priority,
4281 .sched_nice = PRIO_TO_NICE(p->static_prio),
4282 };
4283
c13db6b1
SR
4284 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4285 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4286 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4287 policy &= ~SCHED_RESET_ON_FORK;
4288 attr.sched_policy = policy;
4289 }
4290
dbc7f069 4291 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4292}
961ccddd
RR
4293/**
4294 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4295 * @p: the task in question.
4296 * @policy: new policy.
4297 * @param: structure containing the new RT priority.
4298 *
e69f6186
YB
4299 * Return: 0 on success. An error code otherwise.
4300 *
961ccddd
RR
4301 * NOTE that the task may be already dead.
4302 */
4303int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4304 const struct sched_param *param)
961ccddd 4305{
7479f3c9 4306 return _sched_setscheduler(p, policy, param, true);
961ccddd 4307}
1da177e4
LT
4308EXPORT_SYMBOL_GPL(sched_setscheduler);
4309
d50dde5a
DF
4310int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4311{
dbc7f069 4312 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4313}
4314EXPORT_SYMBOL_GPL(sched_setattr);
4315
961ccddd
RR
4316/**
4317 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4318 * @p: the task in question.
4319 * @policy: new policy.
4320 * @param: structure containing the new RT priority.
4321 *
4322 * Just like sched_setscheduler, only don't bother checking if the
4323 * current context has permission. For example, this is needed in
4324 * stop_machine(): we create temporary high priority worker threads,
4325 * but our caller might not have that capability.
e69f6186
YB
4326 *
4327 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4328 */
4329int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4330 const struct sched_param *param)
961ccddd 4331{
7479f3c9 4332 return _sched_setscheduler(p, policy, param, false);
961ccddd 4333}
84778472 4334EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4335
95cdf3b7
IM
4336static int
4337do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4338{
1da177e4
LT
4339 struct sched_param lparam;
4340 struct task_struct *p;
36c8b586 4341 int retval;
1da177e4
LT
4342
4343 if (!param || pid < 0)
4344 return -EINVAL;
4345 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4346 return -EFAULT;
5fe1d75f
ON
4347
4348 rcu_read_lock();
4349 retval = -ESRCH;
1da177e4 4350 p = find_process_by_pid(pid);
5fe1d75f
ON
4351 if (p != NULL)
4352 retval = sched_setscheduler(p, policy, &lparam);
4353 rcu_read_unlock();
36c8b586 4354
1da177e4
LT
4355 return retval;
4356}
4357
d50dde5a
DF
4358/*
4359 * Mimics kernel/events/core.c perf_copy_attr().
4360 */
4361static int sched_copy_attr(struct sched_attr __user *uattr,
4362 struct sched_attr *attr)
4363{
4364 u32 size;
4365 int ret;
4366
4367 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4368 return -EFAULT;
4369
4370 /*
4371 * zero the full structure, so that a short copy will be nice.
4372 */
4373 memset(attr, 0, sizeof(*attr));
4374
4375 ret = get_user(size, &uattr->size);
4376 if (ret)
4377 return ret;
4378
4379 if (size > PAGE_SIZE) /* silly large */
4380 goto err_size;
4381
4382 if (!size) /* abi compat */
4383 size = SCHED_ATTR_SIZE_VER0;
4384
4385 if (size < SCHED_ATTR_SIZE_VER0)
4386 goto err_size;
4387
4388 /*
4389 * If we're handed a bigger struct than we know of,
4390 * ensure all the unknown bits are 0 - i.e. new
4391 * user-space does not rely on any kernel feature
4392 * extensions we dont know about yet.
4393 */
4394 if (size > sizeof(*attr)) {
4395 unsigned char __user *addr;
4396 unsigned char __user *end;
4397 unsigned char val;
4398
4399 addr = (void __user *)uattr + sizeof(*attr);
4400 end = (void __user *)uattr + size;
4401
4402 for (; addr < end; addr++) {
4403 ret = get_user(val, addr);
4404 if (ret)
4405 return ret;
4406 if (val)
4407 goto err_size;
4408 }
4409 size = sizeof(*attr);
4410 }
4411
4412 ret = copy_from_user(attr, uattr, size);
4413 if (ret)
4414 return -EFAULT;
4415
4416 /*
4417 * XXX: do we want to be lenient like existing syscalls; or do we want
4418 * to be strict and return an error on out-of-bounds values?
4419 */
75e45d51 4420 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4421
e78c7bca 4422 return 0;
d50dde5a
DF
4423
4424err_size:
4425 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4426 return -E2BIG;
d50dde5a
DF
4427}
4428
1da177e4
LT
4429/**
4430 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4431 * @pid: the pid in question.
4432 * @policy: new policy.
4433 * @param: structure containing the new RT priority.
e69f6186
YB
4434 *
4435 * Return: 0 on success. An error code otherwise.
1da177e4 4436 */
5add95d4
HC
4437SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4438 struct sched_param __user *, param)
1da177e4 4439{
c21761f1
JB
4440 /* negative values for policy are not valid */
4441 if (policy < 0)
4442 return -EINVAL;
4443
1da177e4
LT
4444 return do_sched_setscheduler(pid, policy, param);
4445}
4446
4447/**
4448 * sys_sched_setparam - set/change the RT priority of a thread
4449 * @pid: the pid in question.
4450 * @param: structure containing the new RT priority.
e69f6186
YB
4451 *
4452 * Return: 0 on success. An error code otherwise.
1da177e4 4453 */
5add95d4 4454SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4455{
c13db6b1 4456 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4457}
4458
d50dde5a
DF
4459/**
4460 * sys_sched_setattr - same as above, but with extended sched_attr
4461 * @pid: the pid in question.
5778fccf 4462 * @uattr: structure containing the extended parameters.
db66d756 4463 * @flags: for future extension.
d50dde5a 4464 */
6d35ab48
PZ
4465SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4466 unsigned int, flags)
d50dde5a
DF
4467{
4468 struct sched_attr attr;
4469 struct task_struct *p;
4470 int retval;
4471
6d35ab48 4472 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4473 return -EINVAL;
4474
143cf23d
MK
4475 retval = sched_copy_attr(uattr, &attr);
4476 if (retval)
4477 return retval;
d50dde5a 4478
b14ed2c2 4479 if ((int)attr.sched_policy < 0)
dbdb2275 4480 return -EINVAL;
d50dde5a
DF
4481
4482 rcu_read_lock();
4483 retval = -ESRCH;
4484 p = find_process_by_pid(pid);
4485 if (p != NULL)
4486 retval = sched_setattr(p, &attr);
4487 rcu_read_unlock();
4488
4489 return retval;
4490}
4491
1da177e4
LT
4492/**
4493 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4494 * @pid: the pid in question.
e69f6186
YB
4495 *
4496 * Return: On success, the policy of the thread. Otherwise, a negative error
4497 * code.
1da177e4 4498 */
5add95d4 4499SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4500{
36c8b586 4501 struct task_struct *p;
3a5c359a 4502 int retval;
1da177e4
LT
4503
4504 if (pid < 0)
3a5c359a 4505 return -EINVAL;
1da177e4
LT
4506
4507 retval = -ESRCH;
5fe85be0 4508 rcu_read_lock();
1da177e4
LT
4509 p = find_process_by_pid(pid);
4510 if (p) {
4511 retval = security_task_getscheduler(p);
4512 if (!retval)
ca94c442
LP
4513 retval = p->policy
4514 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4515 }
5fe85be0 4516 rcu_read_unlock();
1da177e4
LT
4517 return retval;
4518}
4519
4520/**
ca94c442 4521 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4522 * @pid: the pid in question.
4523 * @param: structure containing the RT priority.
e69f6186
YB
4524 *
4525 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4526 * code.
1da177e4 4527 */
5add95d4 4528SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4529{
ce5f7f82 4530 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4531 struct task_struct *p;
3a5c359a 4532 int retval;
1da177e4
LT
4533
4534 if (!param || pid < 0)
3a5c359a 4535 return -EINVAL;
1da177e4 4536
5fe85be0 4537 rcu_read_lock();
1da177e4
LT
4538 p = find_process_by_pid(pid);
4539 retval = -ESRCH;
4540 if (!p)
4541 goto out_unlock;
4542
4543 retval = security_task_getscheduler(p);
4544 if (retval)
4545 goto out_unlock;
4546
ce5f7f82
PZ
4547 if (task_has_rt_policy(p))
4548 lp.sched_priority = p->rt_priority;
5fe85be0 4549 rcu_read_unlock();
1da177e4
LT
4550
4551 /*
4552 * This one might sleep, we cannot do it with a spinlock held ...
4553 */
4554 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4555
1da177e4
LT
4556 return retval;
4557
4558out_unlock:
5fe85be0 4559 rcu_read_unlock();
1da177e4
LT
4560 return retval;
4561}
4562
d50dde5a
DF
4563static int sched_read_attr(struct sched_attr __user *uattr,
4564 struct sched_attr *attr,
4565 unsigned int usize)
4566{
4567 int ret;
4568
4569 if (!access_ok(VERIFY_WRITE, uattr, usize))
4570 return -EFAULT;
4571
4572 /*
4573 * If we're handed a smaller struct than we know of,
4574 * ensure all the unknown bits are 0 - i.e. old
4575 * user-space does not get uncomplete information.
4576 */
4577 if (usize < sizeof(*attr)) {
4578 unsigned char *addr;
4579 unsigned char *end;
4580
4581 addr = (void *)attr + usize;
4582 end = (void *)attr + sizeof(*attr);
4583
4584 for (; addr < end; addr++) {
4585 if (*addr)
22400674 4586 return -EFBIG;
d50dde5a
DF
4587 }
4588
4589 attr->size = usize;
4590 }
4591
4efbc454 4592 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4593 if (ret)
4594 return -EFAULT;
4595
22400674 4596 return 0;
d50dde5a
DF
4597}
4598
4599/**
aab03e05 4600 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4601 * @pid: the pid in question.
5778fccf 4602 * @uattr: structure containing the extended parameters.
d50dde5a 4603 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4604 * @flags: for future extension.
d50dde5a 4605 */
6d35ab48
PZ
4606SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4607 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4608{
4609 struct sched_attr attr = {
4610 .size = sizeof(struct sched_attr),
4611 };
4612 struct task_struct *p;
4613 int retval;
4614
4615 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4616 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4617 return -EINVAL;
4618
4619 rcu_read_lock();
4620 p = find_process_by_pid(pid);
4621 retval = -ESRCH;
4622 if (!p)
4623 goto out_unlock;
4624
4625 retval = security_task_getscheduler(p);
4626 if (retval)
4627 goto out_unlock;
4628
4629 attr.sched_policy = p->policy;
7479f3c9
PZ
4630 if (p->sched_reset_on_fork)
4631 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4632 if (task_has_dl_policy(p))
4633 __getparam_dl(p, &attr);
4634 else if (task_has_rt_policy(p))
d50dde5a
DF
4635 attr.sched_priority = p->rt_priority;
4636 else
d0ea0268 4637 attr.sched_nice = task_nice(p);
d50dde5a
DF
4638
4639 rcu_read_unlock();
4640
4641 retval = sched_read_attr(uattr, &attr, size);
4642 return retval;
4643
4644out_unlock:
4645 rcu_read_unlock();
4646 return retval;
4647}
4648
96f874e2 4649long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4650{
5a16f3d3 4651 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4652 struct task_struct *p;
4653 int retval;
1da177e4 4654
23f5d142 4655 rcu_read_lock();
1da177e4
LT
4656
4657 p = find_process_by_pid(pid);
4658 if (!p) {
23f5d142 4659 rcu_read_unlock();
1da177e4
LT
4660 return -ESRCH;
4661 }
4662
23f5d142 4663 /* Prevent p going away */
1da177e4 4664 get_task_struct(p);
23f5d142 4665 rcu_read_unlock();
1da177e4 4666
14a40ffc
TH
4667 if (p->flags & PF_NO_SETAFFINITY) {
4668 retval = -EINVAL;
4669 goto out_put_task;
4670 }
5a16f3d3
RR
4671 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4672 retval = -ENOMEM;
4673 goto out_put_task;
4674 }
4675 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4676 retval = -ENOMEM;
4677 goto out_free_cpus_allowed;
4678 }
1da177e4 4679 retval = -EPERM;
4c44aaaf
EB
4680 if (!check_same_owner(p)) {
4681 rcu_read_lock();
4682 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4683 rcu_read_unlock();
16303ab2 4684 goto out_free_new_mask;
4c44aaaf
EB
4685 }
4686 rcu_read_unlock();
4687 }
1da177e4 4688
b0ae1981 4689 retval = security_task_setscheduler(p);
e7834f8f 4690 if (retval)
16303ab2 4691 goto out_free_new_mask;
e7834f8f 4692
e4099a5e
PZ
4693
4694 cpuset_cpus_allowed(p, cpus_allowed);
4695 cpumask_and(new_mask, in_mask, cpus_allowed);
4696
332ac17e
DF
4697 /*
4698 * Since bandwidth control happens on root_domain basis,
4699 * if admission test is enabled, we only admit -deadline
4700 * tasks allowed to run on all the CPUs in the task's
4701 * root_domain.
4702 */
4703#ifdef CONFIG_SMP
f1e3a093
KT
4704 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4705 rcu_read_lock();
4706 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4707 retval = -EBUSY;
f1e3a093 4708 rcu_read_unlock();
16303ab2 4709 goto out_free_new_mask;
332ac17e 4710 }
f1e3a093 4711 rcu_read_unlock();
332ac17e
DF
4712 }
4713#endif
49246274 4714again:
25834c73 4715 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4716
8707d8b8 4717 if (!retval) {
5a16f3d3
RR
4718 cpuset_cpus_allowed(p, cpus_allowed);
4719 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4720 /*
4721 * We must have raced with a concurrent cpuset
4722 * update. Just reset the cpus_allowed to the
4723 * cpuset's cpus_allowed
4724 */
5a16f3d3 4725 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4726 goto again;
4727 }
4728 }
16303ab2 4729out_free_new_mask:
5a16f3d3
RR
4730 free_cpumask_var(new_mask);
4731out_free_cpus_allowed:
4732 free_cpumask_var(cpus_allowed);
4733out_put_task:
1da177e4 4734 put_task_struct(p);
1da177e4
LT
4735 return retval;
4736}
4737
4738static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4739 struct cpumask *new_mask)
1da177e4 4740{
96f874e2
RR
4741 if (len < cpumask_size())
4742 cpumask_clear(new_mask);
4743 else if (len > cpumask_size())
4744 len = cpumask_size();
4745
1da177e4
LT
4746 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747}
4748
4749/**
4750 * sys_sched_setaffinity - set the cpu affinity of a process
4751 * @pid: pid of the process
4752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4754 *
4755 * Return: 0 on success. An error code otherwise.
1da177e4 4756 */
5add95d4
HC
4757SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4758 unsigned long __user *, user_mask_ptr)
1da177e4 4759{
5a16f3d3 4760 cpumask_var_t new_mask;
1da177e4
LT
4761 int retval;
4762
5a16f3d3
RR
4763 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4764 return -ENOMEM;
1da177e4 4765
5a16f3d3
RR
4766 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4767 if (retval == 0)
4768 retval = sched_setaffinity(pid, new_mask);
4769 free_cpumask_var(new_mask);
4770 return retval;
1da177e4
LT
4771}
4772
96f874e2 4773long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4774{
36c8b586 4775 struct task_struct *p;
31605683 4776 unsigned long flags;
1da177e4 4777 int retval;
1da177e4 4778
23f5d142 4779 rcu_read_lock();
1da177e4
LT
4780
4781 retval = -ESRCH;
4782 p = find_process_by_pid(pid);
4783 if (!p)
4784 goto out_unlock;
4785
e7834f8f
DQ
4786 retval = security_task_getscheduler(p);
4787 if (retval)
4788 goto out_unlock;
4789
013fdb80 4790 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4791 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4792 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4793
4794out_unlock:
23f5d142 4795 rcu_read_unlock();
1da177e4 4796
9531b62f 4797 return retval;
1da177e4
LT
4798}
4799
4800/**
4801 * sys_sched_getaffinity - get the cpu affinity of a process
4802 * @pid: pid of the process
4803 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4804 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4805 *
599b4840
ZW
4806 * Return: size of CPU mask copied to user_mask_ptr on success. An
4807 * error code otherwise.
1da177e4 4808 */
5add95d4
HC
4809SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4810 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4811{
4812 int ret;
f17c8607 4813 cpumask_var_t mask;
1da177e4 4814
84fba5ec 4815 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4816 return -EINVAL;
4817 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4818 return -EINVAL;
4819
f17c8607
RR
4820 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4821 return -ENOMEM;
1da177e4 4822
f17c8607
RR
4823 ret = sched_getaffinity(pid, mask);
4824 if (ret == 0) {
8bc037fb 4825 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4826
4827 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4828 ret = -EFAULT;
4829 else
cd3d8031 4830 ret = retlen;
f17c8607
RR
4831 }
4832 free_cpumask_var(mask);
1da177e4 4833
f17c8607 4834 return ret;
1da177e4
LT
4835}
4836
4837/**
4838 * sys_sched_yield - yield the current processor to other threads.
4839 *
dd41f596
IM
4840 * This function yields the current CPU to other tasks. If there are no
4841 * other threads running on this CPU then this function will return.
e69f6186
YB
4842 *
4843 * Return: 0.
1da177e4 4844 */
5add95d4 4845SYSCALL_DEFINE0(sched_yield)
1da177e4 4846{
70b97a7f 4847 struct rq *rq = this_rq_lock();
1da177e4 4848
ae92882e 4849 schedstat_inc(rq->yld_count);
4530d7ab 4850 current->sched_class->yield_task(rq);
1da177e4
LT
4851
4852 /*
4853 * Since we are going to call schedule() anyway, there's
4854 * no need to preempt or enable interrupts:
4855 */
4856 __release(rq->lock);
8a25d5de 4857 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4858 do_raw_spin_unlock(&rq->lock);
ba74c144 4859 sched_preempt_enable_no_resched();
1da177e4
LT
4860
4861 schedule();
4862
4863 return 0;
4864}
4865
02b67cc3 4866int __sched _cond_resched(void)
1da177e4 4867{
fe32d3cd 4868 if (should_resched(0)) {
a18b5d01 4869 preempt_schedule_common();
1da177e4
LT
4870 return 1;
4871 }
4872 return 0;
4873}
02b67cc3 4874EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4875
4876/*
613afbf8 4877 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4878 * call schedule, and on return reacquire the lock.
4879 *
41a2d6cf 4880 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4881 * operations here to prevent schedule() from being called twice (once via
4882 * spin_unlock(), once by hand).
4883 */
613afbf8 4884int __cond_resched_lock(spinlock_t *lock)
1da177e4 4885{
fe32d3cd 4886 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4887 int ret = 0;
4888
f607c668
PZ
4889 lockdep_assert_held(lock);
4890
4a81e832 4891 if (spin_needbreak(lock) || resched) {
1da177e4 4892 spin_unlock(lock);
d86ee480 4893 if (resched)
a18b5d01 4894 preempt_schedule_common();
95c354fe
NP
4895 else
4896 cpu_relax();
6df3cecb 4897 ret = 1;
1da177e4 4898 spin_lock(lock);
1da177e4 4899 }
6df3cecb 4900 return ret;
1da177e4 4901}
613afbf8 4902EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4903
613afbf8 4904int __sched __cond_resched_softirq(void)
1da177e4
LT
4905{
4906 BUG_ON(!in_softirq());
4907
fe32d3cd 4908 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4909 local_bh_enable();
a18b5d01 4910 preempt_schedule_common();
1da177e4
LT
4911 local_bh_disable();
4912 return 1;
4913 }
4914 return 0;
4915}
613afbf8 4916EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4917
1da177e4
LT
4918/**
4919 * yield - yield the current processor to other threads.
4920 *
8e3fabfd
PZ
4921 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4922 *
4923 * The scheduler is at all times free to pick the calling task as the most
4924 * eligible task to run, if removing the yield() call from your code breaks
4925 * it, its already broken.
4926 *
4927 * Typical broken usage is:
4928 *
4929 * while (!event)
4930 * yield();
4931 *
4932 * where one assumes that yield() will let 'the other' process run that will
4933 * make event true. If the current task is a SCHED_FIFO task that will never
4934 * happen. Never use yield() as a progress guarantee!!
4935 *
4936 * If you want to use yield() to wait for something, use wait_event().
4937 * If you want to use yield() to be 'nice' for others, use cond_resched().
4938 * If you still want to use yield(), do not!
1da177e4
LT
4939 */
4940void __sched yield(void)
4941{
4942 set_current_state(TASK_RUNNING);
4943 sys_sched_yield();
4944}
1da177e4
LT
4945EXPORT_SYMBOL(yield);
4946
d95f4122
MG
4947/**
4948 * yield_to - yield the current processor to another thread in
4949 * your thread group, or accelerate that thread toward the
4950 * processor it's on.
16addf95
RD
4951 * @p: target task
4952 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4953 *
4954 * It's the caller's job to ensure that the target task struct
4955 * can't go away on us before we can do any checks.
4956 *
e69f6186 4957 * Return:
7b270f60
PZ
4958 * true (>0) if we indeed boosted the target task.
4959 * false (0) if we failed to boost the target.
4960 * -ESRCH if there's no task to yield to.
d95f4122 4961 */
fa93384f 4962int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4963{
4964 struct task_struct *curr = current;
4965 struct rq *rq, *p_rq;
4966 unsigned long flags;
c3c18640 4967 int yielded = 0;
d95f4122
MG
4968
4969 local_irq_save(flags);
4970 rq = this_rq();
4971
4972again:
4973 p_rq = task_rq(p);
7b270f60
PZ
4974 /*
4975 * If we're the only runnable task on the rq and target rq also
4976 * has only one task, there's absolutely no point in yielding.
4977 */
4978 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4979 yielded = -ESRCH;
4980 goto out_irq;
4981 }
4982
d95f4122 4983 double_rq_lock(rq, p_rq);
39e24d8f 4984 if (task_rq(p) != p_rq) {
d95f4122
MG
4985 double_rq_unlock(rq, p_rq);
4986 goto again;
4987 }
4988
4989 if (!curr->sched_class->yield_to_task)
7b270f60 4990 goto out_unlock;
d95f4122
MG
4991
4992 if (curr->sched_class != p->sched_class)
7b270f60 4993 goto out_unlock;
d95f4122
MG
4994
4995 if (task_running(p_rq, p) || p->state)
7b270f60 4996 goto out_unlock;
d95f4122
MG
4997
4998 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4999 if (yielded) {
ae92882e 5000 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5001 /*
5002 * Make p's CPU reschedule; pick_next_entity takes care of
5003 * fairness.
5004 */
5005 if (preempt && rq != p_rq)
8875125e 5006 resched_curr(p_rq);
6d1cafd8 5007 }
d95f4122 5008
7b270f60 5009out_unlock:
d95f4122 5010 double_rq_unlock(rq, p_rq);
7b270f60 5011out_irq:
d95f4122
MG
5012 local_irq_restore(flags);
5013
7b270f60 5014 if (yielded > 0)
d95f4122
MG
5015 schedule();
5016
5017 return yielded;
5018}
5019EXPORT_SYMBOL_GPL(yield_to);
5020
1da177e4 5021/*
41a2d6cf 5022 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5023 * that process accounting knows that this is a task in IO wait state.
1da177e4 5024 */
1da177e4
LT
5025long __sched io_schedule_timeout(long timeout)
5026{
9cff8ade
N
5027 int old_iowait = current->in_iowait;
5028 struct rq *rq;
1da177e4
LT
5029 long ret;
5030
9cff8ade 5031 current->in_iowait = 1;
10d784ea 5032 blk_schedule_flush_plug(current);
9cff8ade 5033
0ff92245 5034 delayacct_blkio_start();
9cff8ade 5035 rq = raw_rq();
1da177e4
LT
5036 atomic_inc(&rq->nr_iowait);
5037 ret = schedule_timeout(timeout);
9cff8ade 5038 current->in_iowait = old_iowait;
1da177e4 5039 atomic_dec(&rq->nr_iowait);
0ff92245 5040 delayacct_blkio_end();
9cff8ade 5041
1da177e4
LT
5042 return ret;
5043}
9cff8ade 5044EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5045
5046/**
5047 * sys_sched_get_priority_max - return maximum RT priority.
5048 * @policy: scheduling class.
5049 *
e69f6186
YB
5050 * Return: On success, this syscall returns the maximum
5051 * rt_priority that can be used by a given scheduling class.
5052 * On failure, a negative error code is returned.
1da177e4 5053 */
5add95d4 5054SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5055{
5056 int ret = -EINVAL;
5057
5058 switch (policy) {
5059 case SCHED_FIFO:
5060 case SCHED_RR:
5061 ret = MAX_USER_RT_PRIO-1;
5062 break;
aab03e05 5063 case SCHED_DEADLINE:
1da177e4 5064 case SCHED_NORMAL:
b0a9499c 5065 case SCHED_BATCH:
dd41f596 5066 case SCHED_IDLE:
1da177e4
LT
5067 ret = 0;
5068 break;
5069 }
5070 return ret;
5071}
5072
5073/**
5074 * sys_sched_get_priority_min - return minimum RT priority.
5075 * @policy: scheduling class.
5076 *
e69f6186
YB
5077 * Return: On success, this syscall returns the minimum
5078 * rt_priority that can be used by a given scheduling class.
5079 * On failure, a negative error code is returned.
1da177e4 5080 */
5add95d4 5081SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5082{
5083 int ret = -EINVAL;
5084
5085 switch (policy) {
5086 case SCHED_FIFO:
5087 case SCHED_RR:
5088 ret = 1;
5089 break;
aab03e05 5090 case SCHED_DEADLINE:
1da177e4 5091 case SCHED_NORMAL:
b0a9499c 5092 case SCHED_BATCH:
dd41f596 5093 case SCHED_IDLE:
1da177e4
LT
5094 ret = 0;
5095 }
5096 return ret;
5097}
5098
5099/**
5100 * sys_sched_rr_get_interval - return the default timeslice of a process.
5101 * @pid: pid of the process.
5102 * @interval: userspace pointer to the timeslice value.
5103 *
5104 * this syscall writes the default timeslice value of a given process
5105 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5106 *
5107 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5108 * an error code.
1da177e4 5109 */
17da2bd9 5110SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5111 struct timespec __user *, interval)
1da177e4 5112{
36c8b586 5113 struct task_struct *p;
a4ec24b4 5114 unsigned int time_slice;
eb580751
PZ
5115 struct rq_flags rf;
5116 struct timespec t;
dba091b9 5117 struct rq *rq;
3a5c359a 5118 int retval;
1da177e4
LT
5119
5120 if (pid < 0)
3a5c359a 5121 return -EINVAL;
1da177e4
LT
5122
5123 retval = -ESRCH;
1a551ae7 5124 rcu_read_lock();
1da177e4
LT
5125 p = find_process_by_pid(pid);
5126 if (!p)
5127 goto out_unlock;
5128
5129 retval = security_task_getscheduler(p);
5130 if (retval)
5131 goto out_unlock;
5132
eb580751 5133 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5134 time_slice = 0;
5135 if (p->sched_class->get_rr_interval)
5136 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5137 task_rq_unlock(rq, p, &rf);
a4ec24b4 5138
1a551ae7 5139 rcu_read_unlock();
a4ec24b4 5140 jiffies_to_timespec(time_slice, &t);
1da177e4 5141 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5142 return retval;
3a5c359a 5143
1da177e4 5144out_unlock:
1a551ae7 5145 rcu_read_unlock();
1da177e4
LT
5146 return retval;
5147}
5148
7c731e0a 5149static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5150
82a1fcb9 5151void sched_show_task(struct task_struct *p)
1da177e4 5152{
1da177e4 5153 unsigned long free = 0;
4e79752c 5154 int ppid;
1f8a7633 5155 unsigned long state = p->state;
1da177e4 5156
1f8a7633
TH
5157 if (state)
5158 state = __ffs(state) + 1;
28d0686c 5159 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5160 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5161#if BITS_PER_LONG == 32
1da177e4 5162 if (state == TASK_RUNNING)
3df0fc5b 5163 printk(KERN_CONT " running ");
1da177e4 5164 else
3df0fc5b 5165 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5166#else
5167 if (state == TASK_RUNNING)
3df0fc5b 5168 printk(KERN_CONT " running task ");
1da177e4 5169 else
3df0fc5b 5170 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5171#endif
5172#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5173 free = stack_not_used(p);
1da177e4 5174#endif
a90e984c 5175 ppid = 0;
4e79752c 5176 rcu_read_lock();
a90e984c
ON
5177 if (pid_alive(p))
5178 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5179 rcu_read_unlock();
3df0fc5b 5180 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5181 task_pid_nr(p), ppid,
aa47b7e0 5182 (unsigned long)task_thread_info(p)->flags);
1da177e4 5183
3d1cb205 5184 print_worker_info(KERN_INFO, p);
5fb5e6de 5185 show_stack(p, NULL);
1da177e4
LT
5186}
5187
e59e2ae2 5188void show_state_filter(unsigned long state_filter)
1da177e4 5189{
36c8b586 5190 struct task_struct *g, *p;
1da177e4 5191
4bd77321 5192#if BITS_PER_LONG == 32
3df0fc5b
PZ
5193 printk(KERN_INFO
5194 " task PC stack pid father\n");
1da177e4 5195#else
3df0fc5b
PZ
5196 printk(KERN_INFO
5197 " task PC stack pid father\n");
1da177e4 5198#endif
510f5acc 5199 rcu_read_lock();
5d07f420 5200 for_each_process_thread(g, p) {
1da177e4
LT
5201 /*
5202 * reset the NMI-timeout, listing all files on a slow
25985edc 5203 * console might take a lot of time:
57675cb9
AR
5204 * Also, reset softlockup watchdogs on all CPUs, because
5205 * another CPU might be blocked waiting for us to process
5206 * an IPI.
1da177e4
LT
5207 */
5208 touch_nmi_watchdog();
57675cb9 5209 touch_all_softlockup_watchdogs();
39bc89fd 5210 if (!state_filter || (p->state & state_filter))
82a1fcb9 5211 sched_show_task(p);
5d07f420 5212 }
1da177e4 5213
dd41f596 5214#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5215 if (!state_filter)
5216 sysrq_sched_debug_show();
dd41f596 5217#endif
510f5acc 5218 rcu_read_unlock();
e59e2ae2
IM
5219 /*
5220 * Only show locks if all tasks are dumped:
5221 */
93335a21 5222 if (!state_filter)
e59e2ae2 5223 debug_show_all_locks();
1da177e4
LT
5224}
5225
0db0628d 5226void init_idle_bootup_task(struct task_struct *idle)
1df21055 5227{
dd41f596 5228 idle->sched_class = &idle_sched_class;
1df21055
IM
5229}
5230
f340c0d1
IM
5231/**
5232 * init_idle - set up an idle thread for a given CPU
5233 * @idle: task in question
5234 * @cpu: cpu the idle task belongs to
5235 *
5236 * NOTE: this function does not set the idle thread's NEED_RESCHED
5237 * flag, to make booting more robust.
5238 */
0db0628d 5239void init_idle(struct task_struct *idle, int cpu)
1da177e4 5240{
70b97a7f 5241 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5242 unsigned long flags;
5243
25834c73
PZ
5244 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5245 raw_spin_lock(&rq->lock);
5cbd54ef 5246
5e1576ed 5247 __sched_fork(0, idle);
06b83b5f 5248 idle->state = TASK_RUNNING;
dd41f596
IM
5249 idle->se.exec_start = sched_clock();
5250
e1b77c92
MR
5251 kasan_unpoison_task_stack(idle);
5252
de9b8f5d
PZ
5253#ifdef CONFIG_SMP
5254 /*
5255 * Its possible that init_idle() gets called multiple times on a task,
5256 * in that case do_set_cpus_allowed() will not do the right thing.
5257 *
5258 * And since this is boot we can forgo the serialization.
5259 */
5260 set_cpus_allowed_common(idle, cpumask_of(cpu));
5261#endif
6506cf6c
PZ
5262 /*
5263 * We're having a chicken and egg problem, even though we are
5264 * holding rq->lock, the cpu isn't yet set to this cpu so the
5265 * lockdep check in task_group() will fail.
5266 *
5267 * Similar case to sched_fork(). / Alternatively we could
5268 * use task_rq_lock() here and obtain the other rq->lock.
5269 *
5270 * Silence PROVE_RCU
5271 */
5272 rcu_read_lock();
dd41f596 5273 __set_task_cpu(idle, cpu);
6506cf6c 5274 rcu_read_unlock();
1da177e4 5275
1da177e4 5276 rq->curr = rq->idle = idle;
da0c1e65 5277 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5278#ifdef CONFIG_SMP
3ca7a440 5279 idle->on_cpu = 1;
4866cde0 5280#endif
25834c73
PZ
5281 raw_spin_unlock(&rq->lock);
5282 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5283
5284 /* Set the preempt count _outside_ the spinlocks! */
01028747 5285 init_idle_preempt_count(idle, cpu);
55cd5340 5286
dd41f596
IM
5287 /*
5288 * The idle tasks have their own, simple scheduling class:
5289 */
5290 idle->sched_class = &idle_sched_class;
868baf07 5291 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5292 vtime_init_idle(idle, cpu);
de9b8f5d 5293#ifdef CONFIG_SMP
f1c6f1a7
CE
5294 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5295#endif
19978ca6
IM
5296}
5297
f82f8042
JL
5298int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5299 const struct cpumask *trial)
5300{
5301 int ret = 1, trial_cpus;
5302 struct dl_bw *cur_dl_b;
5303 unsigned long flags;
5304
bb2bc55a
MG
5305 if (!cpumask_weight(cur))
5306 return ret;
5307
75e23e49 5308 rcu_read_lock_sched();
f82f8042
JL
5309 cur_dl_b = dl_bw_of(cpumask_any(cur));
5310 trial_cpus = cpumask_weight(trial);
5311
5312 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5313 if (cur_dl_b->bw != -1 &&
5314 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5315 ret = 0;
5316 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5317 rcu_read_unlock_sched();
f82f8042
JL
5318
5319 return ret;
5320}
5321
7f51412a
JL
5322int task_can_attach(struct task_struct *p,
5323 const struct cpumask *cs_cpus_allowed)
5324{
5325 int ret = 0;
5326
5327 /*
5328 * Kthreads which disallow setaffinity shouldn't be moved
5329 * to a new cpuset; we don't want to change their cpu
5330 * affinity and isolating such threads by their set of
5331 * allowed nodes is unnecessary. Thus, cpusets are not
5332 * applicable for such threads. This prevents checking for
5333 * success of set_cpus_allowed_ptr() on all attached tasks
5334 * before cpus_allowed may be changed.
5335 */
5336 if (p->flags & PF_NO_SETAFFINITY) {
5337 ret = -EINVAL;
5338 goto out;
5339 }
5340
5341#ifdef CONFIG_SMP
5342 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5343 cs_cpus_allowed)) {
5344 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5345 cs_cpus_allowed);
75e23e49 5346 struct dl_bw *dl_b;
7f51412a
JL
5347 bool overflow;
5348 int cpus;
5349 unsigned long flags;
5350
75e23e49
JL
5351 rcu_read_lock_sched();
5352 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5353 raw_spin_lock_irqsave(&dl_b->lock, flags);
5354 cpus = dl_bw_cpus(dest_cpu);
5355 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5356 if (overflow)
5357 ret = -EBUSY;
5358 else {
5359 /*
5360 * We reserve space for this task in the destination
5361 * root_domain, as we can't fail after this point.
5362 * We will free resources in the source root_domain
5363 * later on (see set_cpus_allowed_dl()).
5364 */
5365 __dl_add(dl_b, p->dl.dl_bw);
5366 }
5367 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5368 rcu_read_unlock_sched();
7f51412a
JL
5369
5370 }
5371#endif
5372out:
5373 return ret;
5374}
5375
1da177e4 5376#ifdef CONFIG_SMP
1da177e4 5377
e26fbffd
TG
5378static bool sched_smp_initialized __read_mostly;
5379
e6628d5b
MG
5380#ifdef CONFIG_NUMA_BALANCING
5381/* Migrate current task p to target_cpu */
5382int migrate_task_to(struct task_struct *p, int target_cpu)
5383{
5384 struct migration_arg arg = { p, target_cpu };
5385 int curr_cpu = task_cpu(p);
5386
5387 if (curr_cpu == target_cpu)
5388 return 0;
5389
5390 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5391 return -EINVAL;
5392
5393 /* TODO: This is not properly updating schedstats */
5394
286549dc 5395 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5396 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5397}
0ec8aa00
PZ
5398
5399/*
5400 * Requeue a task on a given node and accurately track the number of NUMA
5401 * tasks on the runqueues
5402 */
5403void sched_setnuma(struct task_struct *p, int nid)
5404{
da0c1e65 5405 bool queued, running;
eb580751
PZ
5406 struct rq_flags rf;
5407 struct rq *rq;
0ec8aa00 5408
eb580751 5409 rq = task_rq_lock(p, &rf);
da0c1e65 5410 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5411 running = task_current(rq, p);
5412
da0c1e65 5413 if (queued)
1de64443 5414 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5415 if (running)
f3cd1c4e 5416 put_prev_task(rq, p);
0ec8aa00
PZ
5417
5418 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5419
5420 if (running)
5421 p->sched_class->set_curr_task(rq);
da0c1e65 5422 if (queued)
1de64443 5423 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5424 task_rq_unlock(rq, p, &rf);
0ec8aa00 5425}
5cc389bc 5426#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5427
1da177e4 5428#ifdef CONFIG_HOTPLUG_CPU
054b9108 5429/*
48c5ccae
PZ
5430 * Ensures that the idle task is using init_mm right before its cpu goes
5431 * offline.
054b9108 5432 */
48c5ccae 5433void idle_task_exit(void)
1da177e4 5434{
48c5ccae 5435 struct mm_struct *mm = current->active_mm;
e76bd8d9 5436
48c5ccae 5437 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5438
a53efe5f 5439 if (mm != &init_mm) {
f98db601 5440 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5441 finish_arch_post_lock_switch();
5442 }
48c5ccae 5443 mmdrop(mm);
1da177e4
LT
5444}
5445
5446/*
5d180232
PZ
5447 * Since this CPU is going 'away' for a while, fold any nr_active delta
5448 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5449 * nr_active count is stable. We need to take the teardown thread which
5450 * is calling this into account, so we hand in adjust = 1 to the load
5451 * calculation.
5d180232
PZ
5452 *
5453 * Also see the comment "Global load-average calculations".
1da177e4 5454 */
5d180232 5455static void calc_load_migrate(struct rq *rq)
1da177e4 5456{
d60585c5 5457 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5458 if (delta)
5459 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5460}
5461
3f1d2a31
PZ
5462static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5463{
5464}
5465
5466static const struct sched_class fake_sched_class = {
5467 .put_prev_task = put_prev_task_fake,
5468};
5469
5470static struct task_struct fake_task = {
5471 /*
5472 * Avoid pull_{rt,dl}_task()
5473 */
5474 .prio = MAX_PRIO + 1,
5475 .sched_class = &fake_sched_class,
5476};
5477
48f24c4d 5478/*
48c5ccae
PZ
5479 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5480 * try_to_wake_up()->select_task_rq().
5481 *
5482 * Called with rq->lock held even though we'er in stop_machine() and
5483 * there's no concurrency possible, we hold the required locks anyway
5484 * because of lock validation efforts.
1da177e4 5485 */
5e16bbc2 5486static void migrate_tasks(struct rq *dead_rq)
1da177e4 5487{
5e16bbc2 5488 struct rq *rq = dead_rq;
48c5ccae 5489 struct task_struct *next, *stop = rq->stop;
e7904a28 5490 struct pin_cookie cookie;
48c5ccae 5491 int dest_cpu;
1da177e4
LT
5492
5493 /*
48c5ccae
PZ
5494 * Fudge the rq selection such that the below task selection loop
5495 * doesn't get stuck on the currently eligible stop task.
5496 *
5497 * We're currently inside stop_machine() and the rq is either stuck
5498 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5499 * either way we should never end up calling schedule() until we're
5500 * done here.
1da177e4 5501 */
48c5ccae 5502 rq->stop = NULL;
48f24c4d 5503
77bd3970
FW
5504 /*
5505 * put_prev_task() and pick_next_task() sched
5506 * class method both need to have an up-to-date
5507 * value of rq->clock[_task]
5508 */
5509 update_rq_clock(rq);
5510
5e16bbc2 5511 for (;;) {
48c5ccae
PZ
5512 /*
5513 * There's this thread running, bail when that's the only
5514 * remaining thread.
5515 */
5516 if (rq->nr_running == 1)
dd41f596 5517 break;
48c5ccae 5518
cbce1a68 5519 /*
5473e0cc 5520 * pick_next_task assumes pinned rq->lock.
cbce1a68 5521 */
e7904a28
PZ
5522 cookie = lockdep_pin_lock(&rq->lock);
5523 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5524 BUG_ON(!next);
79c53799 5525 next->sched_class->put_prev_task(rq, next);
e692ab53 5526
5473e0cc
WL
5527 /*
5528 * Rules for changing task_struct::cpus_allowed are holding
5529 * both pi_lock and rq->lock, such that holding either
5530 * stabilizes the mask.
5531 *
5532 * Drop rq->lock is not quite as disastrous as it usually is
5533 * because !cpu_active at this point, which means load-balance
5534 * will not interfere. Also, stop-machine.
5535 */
e7904a28 5536 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5537 raw_spin_unlock(&rq->lock);
5538 raw_spin_lock(&next->pi_lock);
5539 raw_spin_lock(&rq->lock);
5540
5541 /*
5542 * Since we're inside stop-machine, _nothing_ should have
5543 * changed the task, WARN if weird stuff happened, because in
5544 * that case the above rq->lock drop is a fail too.
5545 */
5546 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5547 raw_spin_unlock(&next->pi_lock);
5548 continue;
5549 }
5550
48c5ccae 5551 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5552 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5553
5e16bbc2
PZ
5554 rq = __migrate_task(rq, next, dest_cpu);
5555 if (rq != dead_rq) {
5556 raw_spin_unlock(&rq->lock);
5557 rq = dead_rq;
5558 raw_spin_lock(&rq->lock);
5559 }
5473e0cc 5560 raw_spin_unlock(&next->pi_lock);
1da177e4 5561 }
dce48a84 5562
48c5ccae 5563 rq->stop = stop;
dce48a84 5564}
1da177e4
LT
5565#endif /* CONFIG_HOTPLUG_CPU */
5566
1f11eb6a
GH
5567static void set_rq_online(struct rq *rq)
5568{
5569 if (!rq->online) {
5570 const struct sched_class *class;
5571
c6c4927b 5572 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5573 rq->online = 1;
5574
5575 for_each_class(class) {
5576 if (class->rq_online)
5577 class->rq_online(rq);
5578 }
5579 }
5580}
5581
5582static void set_rq_offline(struct rq *rq)
5583{
5584 if (rq->online) {
5585 const struct sched_class *class;
5586
5587 for_each_class(class) {
5588 if (class->rq_offline)
5589 class->rq_offline(rq);
5590 }
5591
c6c4927b 5592 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5593 rq->online = 0;
5594 }
5595}
5596
9cf7243d 5597static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5598{
969c7921 5599 struct rq *rq = cpu_rq(cpu);
1da177e4 5600
a803f026
CM
5601 rq->age_stamp = sched_clock_cpu(cpu);
5602}
5603
4cb98839
PZ
5604static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5605
3e9830dc 5606#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5607
d039ac60 5608static __read_mostly int sched_debug_enabled;
f6630114 5609
d039ac60 5610static int __init sched_debug_setup(char *str)
f6630114 5611{
d039ac60 5612 sched_debug_enabled = 1;
f6630114
MT
5613
5614 return 0;
5615}
d039ac60
PZ
5616early_param("sched_debug", sched_debug_setup);
5617
5618static inline bool sched_debug(void)
5619{
5620 return sched_debug_enabled;
5621}
f6630114 5622
7c16ec58 5623static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5624 struct cpumask *groupmask)
1da177e4 5625{
4dcf6aff 5626 struct sched_group *group = sd->groups;
1da177e4 5627
96f874e2 5628 cpumask_clear(groupmask);
4dcf6aff
IM
5629
5630 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5631
5632 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5633 printk("does not load-balance\n");
4dcf6aff 5634 if (sd->parent)
3df0fc5b
PZ
5635 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5636 " has parent");
4dcf6aff 5637 return -1;
41c7ce9a
NP
5638 }
5639
333470ee
TH
5640 printk(KERN_CONT "span %*pbl level %s\n",
5641 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5642
758b2cdc 5643 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5644 printk(KERN_ERR "ERROR: domain->span does not contain "
5645 "CPU%d\n", cpu);
4dcf6aff 5646 }
758b2cdc 5647 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5648 printk(KERN_ERR "ERROR: domain->groups does not contain"
5649 " CPU%d\n", cpu);
4dcf6aff 5650 }
1da177e4 5651
4dcf6aff 5652 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5653 do {
4dcf6aff 5654 if (!group) {
3df0fc5b
PZ
5655 printk("\n");
5656 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5657 break;
5658 }
5659
758b2cdc 5660 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5661 printk(KERN_CONT "\n");
5662 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5663 break;
5664 }
1da177e4 5665
cb83b629
PZ
5666 if (!(sd->flags & SD_OVERLAP) &&
5667 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5668 printk(KERN_CONT "\n");
5669 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5670 break;
5671 }
1da177e4 5672
758b2cdc 5673 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5674
333470ee
TH
5675 printk(KERN_CONT " %*pbl",
5676 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5677 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5678 printk(KERN_CONT " (cpu_capacity = %d)",
5679 group->sgc->capacity);
381512cf 5680 }
1da177e4 5681
4dcf6aff
IM
5682 group = group->next;
5683 } while (group != sd->groups);
3df0fc5b 5684 printk(KERN_CONT "\n");
1da177e4 5685
758b2cdc 5686 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5687 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5688
758b2cdc
RR
5689 if (sd->parent &&
5690 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5691 printk(KERN_ERR "ERROR: parent span is not a superset "
5692 "of domain->span\n");
4dcf6aff
IM
5693 return 0;
5694}
1da177e4 5695
4dcf6aff
IM
5696static void sched_domain_debug(struct sched_domain *sd, int cpu)
5697{
5698 int level = 0;
1da177e4 5699
d039ac60 5700 if (!sched_debug_enabled)
f6630114
MT
5701 return;
5702
4dcf6aff
IM
5703 if (!sd) {
5704 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5705 return;
5706 }
1da177e4 5707
4dcf6aff
IM
5708 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5709
5710 for (;;) {
4cb98839 5711 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5712 break;
1da177e4
LT
5713 level++;
5714 sd = sd->parent;
33859f7f 5715 if (!sd)
4dcf6aff
IM
5716 break;
5717 }
1da177e4 5718}
6d6bc0ad 5719#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5720# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5721static inline bool sched_debug(void)
5722{
5723 return false;
5724}
6d6bc0ad 5725#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5726
1a20ff27 5727static int sd_degenerate(struct sched_domain *sd)
245af2c7 5728{
758b2cdc 5729 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5730 return 1;
5731
5732 /* Following flags need at least 2 groups */
5733 if (sd->flags & (SD_LOAD_BALANCE |
5734 SD_BALANCE_NEWIDLE |
5735 SD_BALANCE_FORK |
89c4710e 5736 SD_BALANCE_EXEC |
5d4dfddd 5737 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5738 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5739 SD_SHARE_PKG_RESOURCES |
5740 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5741 if (sd->groups != sd->groups->next)
5742 return 0;
5743 }
5744
5745 /* Following flags don't use groups */
c88d5910 5746 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5747 return 0;
5748
5749 return 1;
5750}
5751
48f24c4d
IM
5752static int
5753sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5754{
5755 unsigned long cflags = sd->flags, pflags = parent->flags;
5756
5757 if (sd_degenerate(parent))
5758 return 1;
5759
758b2cdc 5760 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5761 return 0;
5762
245af2c7
SS
5763 /* Flags needing groups don't count if only 1 group in parent */
5764 if (parent->groups == parent->groups->next) {
5765 pflags &= ~(SD_LOAD_BALANCE |
5766 SD_BALANCE_NEWIDLE |
5767 SD_BALANCE_FORK |
89c4710e 5768 SD_BALANCE_EXEC |
1f6e6c7c 5769 SD_ASYM_CPUCAPACITY |
5d4dfddd 5770 SD_SHARE_CPUCAPACITY |
10866e62 5771 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5772 SD_PREFER_SIBLING |
5773 SD_SHARE_POWERDOMAIN);
5436499e
KC
5774 if (nr_node_ids == 1)
5775 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5776 }
5777 if (~cflags & pflags)
5778 return 0;
5779
5780 return 1;
5781}
5782
dce840a0 5783static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5784{
dce840a0 5785 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5786
68e74568 5787 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5788 cpudl_cleanup(&rd->cpudl);
1baca4ce 5789 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5790 free_cpumask_var(rd->rto_mask);
5791 free_cpumask_var(rd->online);
5792 free_cpumask_var(rd->span);
5793 kfree(rd);
5794}
5795
57d885fe
GH
5796static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5797{
a0490fa3 5798 struct root_domain *old_rd = NULL;
57d885fe 5799 unsigned long flags;
57d885fe 5800
05fa785c 5801 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5802
5803 if (rq->rd) {
a0490fa3 5804 old_rd = rq->rd;
57d885fe 5805
c6c4927b 5806 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5807 set_rq_offline(rq);
57d885fe 5808
c6c4927b 5809 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5810
a0490fa3 5811 /*
0515973f 5812 * If we dont want to free the old_rd yet then
a0490fa3
IM
5813 * set old_rd to NULL to skip the freeing later
5814 * in this function:
5815 */
5816 if (!atomic_dec_and_test(&old_rd->refcount))
5817 old_rd = NULL;
57d885fe
GH
5818 }
5819
5820 atomic_inc(&rd->refcount);
5821 rq->rd = rd;
5822
c6c4927b 5823 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5824 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5825 set_rq_online(rq);
57d885fe 5826
05fa785c 5827 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5828
5829 if (old_rd)
dce840a0 5830 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5831}
5832
68c38fc3 5833static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5834{
5835 memset(rd, 0, sizeof(*rd));
5836
8295c699 5837 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5838 goto out;
8295c699 5839 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5840 goto free_span;
8295c699 5841 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5842 goto free_online;
8295c699 5843 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5844 goto free_dlo_mask;
6e0534f2 5845
332ac17e 5846 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5847 if (cpudl_init(&rd->cpudl) != 0)
5848 goto free_dlo_mask;
332ac17e 5849
68c38fc3 5850 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5851 goto free_rto_mask;
c6c4927b 5852 return 0;
6e0534f2 5853
68e74568
RR
5854free_rto_mask:
5855 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5856free_dlo_mask:
5857 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5858free_online:
5859 free_cpumask_var(rd->online);
5860free_span:
5861 free_cpumask_var(rd->span);
0c910d28 5862out:
c6c4927b 5863 return -ENOMEM;
57d885fe
GH
5864}
5865
029632fb
PZ
5866/*
5867 * By default the system creates a single root-domain with all cpus as
5868 * members (mimicking the global state we have today).
5869 */
5870struct root_domain def_root_domain;
5871
57d885fe
GH
5872static void init_defrootdomain(void)
5873{
68c38fc3 5874 init_rootdomain(&def_root_domain);
c6c4927b 5875
57d885fe
GH
5876 atomic_set(&def_root_domain.refcount, 1);
5877}
5878
dc938520 5879static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5880{
5881 struct root_domain *rd;
5882
5883 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5884 if (!rd)
5885 return NULL;
5886
68c38fc3 5887 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5888 kfree(rd);
5889 return NULL;
5890 }
57d885fe
GH
5891
5892 return rd;
5893}
5894
63b2ca30 5895static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5896{
5897 struct sched_group *tmp, *first;
5898
5899 if (!sg)
5900 return;
5901
5902 first = sg;
5903 do {
5904 tmp = sg->next;
5905
63b2ca30
NP
5906 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5907 kfree(sg->sgc);
e3589f6c
PZ
5908
5909 kfree(sg);
5910 sg = tmp;
5911 } while (sg != first);
5912}
5913
dce840a0
PZ
5914static void free_sched_domain(struct rcu_head *rcu)
5915{
5916 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5917
5918 /*
5919 * If its an overlapping domain it has private groups, iterate and
5920 * nuke them all.
5921 */
5922 if (sd->flags & SD_OVERLAP) {
5923 free_sched_groups(sd->groups, 1);
5924 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5925 kfree(sd->groups->sgc);
dce840a0 5926 kfree(sd->groups);
9c3f75cb 5927 }
dce840a0
PZ
5928 kfree(sd);
5929}
5930
5931static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5932{
5933 call_rcu(&sd->rcu, free_sched_domain);
5934}
5935
5936static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5937{
5938 for (; sd; sd = sd->parent)
5939 destroy_sched_domain(sd, cpu);
5940}
5941
518cd623
PZ
5942/*
5943 * Keep a special pointer to the highest sched_domain that has
5944 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5945 * allows us to avoid some pointer chasing select_idle_sibling().
5946 *
5947 * Also keep a unique ID per domain (we use the first cpu number in
5948 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5949 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5950 */
5951DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5952DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5953DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5954DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5955DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5956DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5957
5958static void update_top_cache_domain(int cpu)
5959{
5960 struct sched_domain *sd;
5d4cf996 5961 struct sched_domain *busy_sd = NULL;
518cd623 5962 int id = cpu;
7d9ffa89 5963 int size = 1;
518cd623
PZ
5964
5965 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5966 if (sd) {
518cd623 5967 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5968 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5969 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5970 }
5d4cf996 5971 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5972
5973 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5974 per_cpu(sd_llc_size, cpu) = size;
518cd623 5975 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5976
5977 sd = lowest_flag_domain(cpu, SD_NUMA);
5978 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5979
5980 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5981 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5982}
5983
1da177e4 5984/*
0eab9146 5985 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5986 * hold the hotplug lock.
5987 */
0eab9146
IM
5988static void
5989cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5990{
70b97a7f 5991 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5992 struct sched_domain *tmp;
5993
5994 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5995 for (tmp = sd; tmp; ) {
245af2c7
SS
5996 struct sched_domain *parent = tmp->parent;
5997 if (!parent)
5998 break;
f29c9b1c 5999
1a848870 6000 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6001 tmp->parent = parent->parent;
1a848870
SS
6002 if (parent->parent)
6003 parent->parent->child = tmp;
10866e62
PZ
6004 /*
6005 * Transfer SD_PREFER_SIBLING down in case of a
6006 * degenerate parent; the spans match for this
6007 * so the property transfers.
6008 */
6009 if (parent->flags & SD_PREFER_SIBLING)
6010 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6011 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6012 } else
6013 tmp = tmp->parent;
245af2c7
SS
6014 }
6015
1a848870 6016 if (sd && sd_degenerate(sd)) {
dce840a0 6017 tmp = sd;
245af2c7 6018 sd = sd->parent;
dce840a0 6019 destroy_sched_domain(tmp, cpu);
1a848870
SS
6020 if (sd)
6021 sd->child = NULL;
6022 }
1da177e4 6023
4cb98839 6024 sched_domain_debug(sd, cpu);
1da177e4 6025
57d885fe 6026 rq_attach_root(rq, rd);
dce840a0 6027 tmp = rq->sd;
674311d5 6028 rcu_assign_pointer(rq->sd, sd);
dce840a0 6029 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6030
6031 update_top_cache_domain(cpu);
1da177e4
LT
6032}
6033
1da177e4
LT
6034/* Setup the mask of cpus configured for isolated domains */
6035static int __init isolated_cpu_setup(char *str)
6036{
a6e4491c
PB
6037 int ret;
6038
bdddd296 6039 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6040 ret = cpulist_parse(str, cpu_isolated_map);
6041 if (ret) {
6042 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6043 return 0;
6044 }
1da177e4
LT
6045 return 1;
6046}
8927f494 6047__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6048
49a02c51 6049struct s_data {
21d42ccf 6050 struct sched_domain ** __percpu sd;
49a02c51
AH
6051 struct root_domain *rd;
6052};
6053
2109b99e 6054enum s_alloc {
2109b99e 6055 sa_rootdomain,
21d42ccf 6056 sa_sd,
dce840a0 6057 sa_sd_storage,
2109b99e
AH
6058 sa_none,
6059};
6060
c1174876
PZ
6061/*
6062 * Build an iteration mask that can exclude certain CPUs from the upwards
6063 * domain traversal.
6064 *
6065 * Asymmetric node setups can result in situations where the domain tree is of
6066 * unequal depth, make sure to skip domains that already cover the entire
6067 * range.
6068 *
6069 * In that case build_sched_domains() will have terminated the iteration early
6070 * and our sibling sd spans will be empty. Domains should always include the
6071 * cpu they're built on, so check that.
6072 *
6073 */
6074static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6075{
6076 const struct cpumask *span = sched_domain_span(sd);
6077 struct sd_data *sdd = sd->private;
6078 struct sched_domain *sibling;
6079 int i;
6080
6081 for_each_cpu(i, span) {
6082 sibling = *per_cpu_ptr(sdd->sd, i);
6083 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6084 continue;
6085
6086 cpumask_set_cpu(i, sched_group_mask(sg));
6087 }
6088}
6089
6090/*
6091 * Return the canonical balance cpu for this group, this is the first cpu
6092 * of this group that's also in the iteration mask.
6093 */
6094int group_balance_cpu(struct sched_group *sg)
6095{
6096 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6097}
6098
e3589f6c
PZ
6099static int
6100build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6101{
6102 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6103 const struct cpumask *span = sched_domain_span(sd);
6104 struct cpumask *covered = sched_domains_tmpmask;
6105 struct sd_data *sdd = sd->private;
aaecac4a 6106 struct sched_domain *sibling;
e3589f6c
PZ
6107 int i;
6108
6109 cpumask_clear(covered);
6110
6111 for_each_cpu(i, span) {
6112 struct cpumask *sg_span;
6113
6114 if (cpumask_test_cpu(i, covered))
6115 continue;
6116
aaecac4a 6117 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6118
6119 /* See the comment near build_group_mask(). */
aaecac4a 6120 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6121 continue;
6122
e3589f6c 6123 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6124 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6125
6126 if (!sg)
6127 goto fail;
6128
6129 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6130 if (sibling->child)
6131 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6132 else
e3589f6c
PZ
6133 cpumask_set_cpu(i, sg_span);
6134
6135 cpumask_or(covered, covered, sg_span);
6136
63b2ca30
NP
6137 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6138 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6139 build_group_mask(sd, sg);
6140
c3decf0d 6141 /*
63b2ca30 6142 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6143 * domains and no possible iteration will get us here, we won't
6144 * die on a /0 trap.
6145 */
ca8ce3d0 6146 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6147
c1174876
PZ
6148 /*
6149 * Make sure the first group of this domain contains the
6150 * canonical balance cpu. Otherwise the sched_domain iteration
6151 * breaks. See update_sg_lb_stats().
6152 */
74a5ce20 6153 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6154 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6155 groups = sg;
6156
6157 if (!first)
6158 first = sg;
6159 if (last)
6160 last->next = sg;
6161 last = sg;
6162 last->next = first;
6163 }
6164 sd->groups = groups;
6165
6166 return 0;
6167
6168fail:
6169 free_sched_groups(first, 0);
6170
6171 return -ENOMEM;
6172}
6173
dce840a0 6174static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6175{
dce840a0
PZ
6176 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6177 struct sched_domain *child = sd->child;
1da177e4 6178
dce840a0
PZ
6179 if (child)
6180 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6181
9c3f75cb 6182 if (sg) {
dce840a0 6183 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6184 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6185 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6186 }
dce840a0
PZ
6187
6188 return cpu;
1e9f28fa 6189}
1e9f28fa 6190
01a08546 6191/*
dce840a0
PZ
6192 * build_sched_groups will build a circular linked list of the groups
6193 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6194 * and ->cpu_capacity to 0.
e3589f6c
PZ
6195 *
6196 * Assumes the sched_domain tree is fully constructed
01a08546 6197 */
e3589f6c
PZ
6198static int
6199build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6200{
dce840a0
PZ
6201 struct sched_group *first = NULL, *last = NULL;
6202 struct sd_data *sdd = sd->private;
6203 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6204 struct cpumask *covered;
dce840a0 6205 int i;
9c1cfda2 6206
e3589f6c
PZ
6207 get_group(cpu, sdd, &sd->groups);
6208 atomic_inc(&sd->groups->ref);
6209
0936629f 6210 if (cpu != cpumask_first(span))
e3589f6c
PZ
6211 return 0;
6212
f96225fd
PZ
6213 lockdep_assert_held(&sched_domains_mutex);
6214 covered = sched_domains_tmpmask;
6215
dce840a0 6216 cpumask_clear(covered);
6711cab4 6217
dce840a0
PZ
6218 for_each_cpu(i, span) {
6219 struct sched_group *sg;
cd08e923 6220 int group, j;
6711cab4 6221
dce840a0
PZ
6222 if (cpumask_test_cpu(i, covered))
6223 continue;
6711cab4 6224
cd08e923 6225 group = get_group(i, sdd, &sg);
c1174876 6226 cpumask_setall(sched_group_mask(sg));
0601a88d 6227
dce840a0
PZ
6228 for_each_cpu(j, span) {
6229 if (get_group(j, sdd, NULL) != group)
6230 continue;
0601a88d 6231
dce840a0
PZ
6232 cpumask_set_cpu(j, covered);
6233 cpumask_set_cpu(j, sched_group_cpus(sg));
6234 }
0601a88d 6235
dce840a0
PZ
6236 if (!first)
6237 first = sg;
6238 if (last)
6239 last->next = sg;
6240 last = sg;
6241 }
6242 last->next = first;
e3589f6c
PZ
6243
6244 return 0;
0601a88d 6245}
51888ca2 6246
89c4710e 6247/*
63b2ca30 6248 * Initialize sched groups cpu_capacity.
89c4710e 6249 *
63b2ca30 6250 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6251 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6252 * Typically cpu_capacity for all the groups in a sched domain will be same
6253 * unless there are asymmetries in the topology. If there are asymmetries,
6254 * group having more cpu_capacity will pickup more load compared to the
6255 * group having less cpu_capacity.
89c4710e 6256 */
63b2ca30 6257static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6258{
e3589f6c 6259 struct sched_group *sg = sd->groups;
89c4710e 6260
94c95ba6 6261 WARN_ON(!sg);
e3589f6c
PZ
6262
6263 do {
6264 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6265 sg = sg->next;
6266 } while (sg != sd->groups);
89c4710e 6267
c1174876 6268 if (cpu != group_balance_cpu(sg))
e3589f6c 6269 return;
aae6d3dd 6270
63b2ca30
NP
6271 update_group_capacity(sd, cpu);
6272 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6273}
6274
7c16ec58
MT
6275/*
6276 * Initializers for schedule domains
6277 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6278 */
6279
1d3504fc 6280static int default_relax_domain_level = -1;
60495e77 6281int sched_domain_level_max;
1d3504fc
HS
6282
6283static int __init setup_relax_domain_level(char *str)
6284{
a841f8ce
DS
6285 if (kstrtoint(str, 0, &default_relax_domain_level))
6286 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6287
1d3504fc
HS
6288 return 1;
6289}
6290__setup("relax_domain_level=", setup_relax_domain_level);
6291
6292static void set_domain_attribute(struct sched_domain *sd,
6293 struct sched_domain_attr *attr)
6294{
6295 int request;
6296
6297 if (!attr || attr->relax_domain_level < 0) {
6298 if (default_relax_domain_level < 0)
6299 return;
6300 else
6301 request = default_relax_domain_level;
6302 } else
6303 request = attr->relax_domain_level;
6304 if (request < sd->level) {
6305 /* turn off idle balance on this domain */
c88d5910 6306 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6307 } else {
6308 /* turn on idle balance on this domain */
c88d5910 6309 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6310 }
6311}
6312
54ab4ff4
PZ
6313static void __sdt_free(const struct cpumask *cpu_map);
6314static int __sdt_alloc(const struct cpumask *cpu_map);
6315
2109b99e
AH
6316static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6317 const struct cpumask *cpu_map)
6318{
6319 switch (what) {
2109b99e 6320 case sa_rootdomain:
822ff793
PZ
6321 if (!atomic_read(&d->rd->refcount))
6322 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6323 case sa_sd:
6324 free_percpu(d->sd); /* fall through */
dce840a0 6325 case sa_sd_storage:
54ab4ff4 6326 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6327 case sa_none:
6328 break;
6329 }
6330}
3404c8d9 6331
2109b99e
AH
6332static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6333 const struct cpumask *cpu_map)
6334{
dce840a0
PZ
6335 memset(d, 0, sizeof(*d));
6336
54ab4ff4
PZ
6337 if (__sdt_alloc(cpu_map))
6338 return sa_sd_storage;
dce840a0
PZ
6339 d->sd = alloc_percpu(struct sched_domain *);
6340 if (!d->sd)
6341 return sa_sd_storage;
2109b99e 6342 d->rd = alloc_rootdomain();
dce840a0 6343 if (!d->rd)
21d42ccf 6344 return sa_sd;
2109b99e
AH
6345 return sa_rootdomain;
6346}
57d885fe 6347
dce840a0
PZ
6348/*
6349 * NULL the sd_data elements we've used to build the sched_domain and
6350 * sched_group structure so that the subsequent __free_domain_allocs()
6351 * will not free the data we're using.
6352 */
6353static void claim_allocations(int cpu, struct sched_domain *sd)
6354{
6355 struct sd_data *sdd = sd->private;
dce840a0
PZ
6356
6357 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6358 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6359
e3589f6c 6360 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6361 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6362
63b2ca30
NP
6363 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6364 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6365}
6366
cb83b629 6367#ifdef CONFIG_NUMA
cb83b629 6368static int sched_domains_numa_levels;
e3fe70b1 6369enum numa_topology_type sched_numa_topology_type;
cb83b629 6370static int *sched_domains_numa_distance;
9942f79b 6371int sched_max_numa_distance;
cb83b629
PZ
6372static struct cpumask ***sched_domains_numa_masks;
6373static int sched_domains_curr_level;
143e1e28 6374#endif
cb83b629 6375
143e1e28
VG
6376/*
6377 * SD_flags allowed in topology descriptions.
6378 *
94f438c8
PZ
6379 * These flags are purely descriptive of the topology and do not prescribe
6380 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6381 * function:
143e1e28 6382 *
94f438c8
PZ
6383 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6384 * SD_SHARE_PKG_RESOURCES - describes shared caches
6385 * SD_NUMA - describes NUMA topologies
6386 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6387 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6388 *
6389 * Odd one out, which beside describing the topology has a quirk also
6390 * prescribes the desired behaviour that goes along with it:
6391 *
6392 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6393 */
6394#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6395 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6396 SD_SHARE_PKG_RESOURCES | \
6397 SD_NUMA | \
d77b3ed5 6398 SD_ASYM_PACKING | \
1f6e6c7c 6399 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6400 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6401
6402static struct sched_domain *
3676b13e
MR
6403sd_init(struct sched_domain_topology_level *tl,
6404 struct sched_domain *child, int cpu)
cb83b629
PZ
6405{
6406 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6407 int sd_weight, sd_flags = 0;
6408
6409#ifdef CONFIG_NUMA
6410 /*
6411 * Ugly hack to pass state to sd_numa_mask()...
6412 */
6413 sched_domains_curr_level = tl->numa_level;
6414#endif
6415
6416 sd_weight = cpumask_weight(tl->mask(cpu));
6417
6418 if (tl->sd_flags)
6419 sd_flags = (*tl->sd_flags)();
6420 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6421 "wrong sd_flags in topology description\n"))
6422 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6423
6424 *sd = (struct sched_domain){
6425 .min_interval = sd_weight,
6426 .max_interval = 2*sd_weight,
6427 .busy_factor = 32,
870a0bb5 6428 .imbalance_pct = 125,
143e1e28
VG
6429
6430 .cache_nice_tries = 0,
6431 .busy_idx = 0,
6432 .idle_idx = 0,
cb83b629
PZ
6433 .newidle_idx = 0,
6434 .wake_idx = 0,
6435 .forkexec_idx = 0,
6436
6437 .flags = 1*SD_LOAD_BALANCE
6438 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6439 | 1*SD_BALANCE_EXEC
6440 | 1*SD_BALANCE_FORK
cb83b629 6441 | 0*SD_BALANCE_WAKE
143e1e28 6442 | 1*SD_WAKE_AFFINE
5d4dfddd 6443 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6444 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6445 | 0*SD_SERIALIZE
cb83b629 6446 | 0*SD_PREFER_SIBLING
143e1e28
VG
6447 | 0*SD_NUMA
6448 | sd_flags
cb83b629 6449 ,
143e1e28 6450
cb83b629
PZ
6451 .last_balance = jiffies,
6452 .balance_interval = sd_weight,
143e1e28 6453 .smt_gain = 0,
2b4cfe64
JL
6454 .max_newidle_lb_cost = 0,
6455 .next_decay_max_lb_cost = jiffies,
3676b13e 6456 .child = child,
143e1e28
VG
6457#ifdef CONFIG_SCHED_DEBUG
6458 .name = tl->name,
6459#endif
cb83b629 6460 };
cb83b629
PZ
6461
6462 /*
143e1e28 6463 * Convert topological properties into behaviour.
cb83b629 6464 */
143e1e28 6465
9ee1cda5
MR
6466 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6467 struct sched_domain *t = sd;
6468
6469 for_each_lower_domain(t)
6470 t->flags |= SD_BALANCE_WAKE;
6471 }
6472
5d4dfddd 6473 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6474 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6475 sd->imbalance_pct = 110;
6476 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6477
6478 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6479 sd->imbalance_pct = 117;
6480 sd->cache_nice_tries = 1;
6481 sd->busy_idx = 2;
6482
6483#ifdef CONFIG_NUMA
6484 } else if (sd->flags & SD_NUMA) {
6485 sd->cache_nice_tries = 2;
6486 sd->busy_idx = 3;
6487 sd->idle_idx = 2;
6488
6489 sd->flags |= SD_SERIALIZE;
6490 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6491 sd->flags &= ~(SD_BALANCE_EXEC |
6492 SD_BALANCE_FORK |
6493 SD_WAKE_AFFINE);
6494 }
6495
6496#endif
6497 } else {
6498 sd->flags |= SD_PREFER_SIBLING;
6499 sd->cache_nice_tries = 1;
6500 sd->busy_idx = 2;
6501 sd->idle_idx = 1;
6502 }
6503
6504 sd->private = &tl->data;
cb83b629
PZ
6505
6506 return sd;
6507}
6508
143e1e28
VG
6509/*
6510 * Topology list, bottom-up.
6511 */
6512static struct sched_domain_topology_level default_topology[] = {
6513#ifdef CONFIG_SCHED_SMT
6514 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6515#endif
6516#ifdef CONFIG_SCHED_MC
6517 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6518#endif
6519 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6520 { NULL, },
6521};
6522
c6e1e7b5
JG
6523static struct sched_domain_topology_level *sched_domain_topology =
6524 default_topology;
143e1e28
VG
6525
6526#define for_each_sd_topology(tl) \
6527 for (tl = sched_domain_topology; tl->mask; tl++)
6528
6529void set_sched_topology(struct sched_domain_topology_level *tl)
6530{
6531 sched_domain_topology = tl;
6532}
6533
6534#ifdef CONFIG_NUMA
6535
cb83b629
PZ
6536static const struct cpumask *sd_numa_mask(int cpu)
6537{
6538 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6539}
6540
d039ac60
PZ
6541static void sched_numa_warn(const char *str)
6542{
6543 static int done = false;
6544 int i,j;
6545
6546 if (done)
6547 return;
6548
6549 done = true;
6550
6551 printk(KERN_WARNING "ERROR: %s\n\n", str);
6552
6553 for (i = 0; i < nr_node_ids; i++) {
6554 printk(KERN_WARNING " ");
6555 for (j = 0; j < nr_node_ids; j++)
6556 printk(KERN_CONT "%02d ", node_distance(i,j));
6557 printk(KERN_CONT "\n");
6558 }
6559 printk(KERN_WARNING "\n");
6560}
6561
9942f79b 6562bool find_numa_distance(int distance)
d039ac60
PZ
6563{
6564 int i;
6565
6566 if (distance == node_distance(0, 0))
6567 return true;
6568
6569 for (i = 0; i < sched_domains_numa_levels; i++) {
6570 if (sched_domains_numa_distance[i] == distance)
6571 return true;
6572 }
6573
6574 return false;
6575}
6576
e3fe70b1
RR
6577/*
6578 * A system can have three types of NUMA topology:
6579 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6580 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6581 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6582 *
6583 * The difference between a glueless mesh topology and a backplane
6584 * topology lies in whether communication between not directly
6585 * connected nodes goes through intermediary nodes (where programs
6586 * could run), or through backplane controllers. This affects
6587 * placement of programs.
6588 *
6589 * The type of topology can be discerned with the following tests:
6590 * - If the maximum distance between any nodes is 1 hop, the system
6591 * is directly connected.
6592 * - If for two nodes A and B, located N > 1 hops away from each other,
6593 * there is an intermediary node C, which is < N hops away from both
6594 * nodes A and B, the system is a glueless mesh.
6595 */
6596static void init_numa_topology_type(void)
6597{
6598 int a, b, c, n;
6599
6600 n = sched_max_numa_distance;
6601
e237882b 6602 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6603 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6604 return;
6605 }
e3fe70b1
RR
6606
6607 for_each_online_node(a) {
6608 for_each_online_node(b) {
6609 /* Find two nodes furthest removed from each other. */
6610 if (node_distance(a, b) < n)
6611 continue;
6612
6613 /* Is there an intermediary node between a and b? */
6614 for_each_online_node(c) {
6615 if (node_distance(a, c) < n &&
6616 node_distance(b, c) < n) {
6617 sched_numa_topology_type =
6618 NUMA_GLUELESS_MESH;
6619 return;
6620 }
6621 }
6622
6623 sched_numa_topology_type = NUMA_BACKPLANE;
6624 return;
6625 }
6626 }
6627}
6628
cb83b629
PZ
6629static void sched_init_numa(void)
6630{
6631 int next_distance, curr_distance = node_distance(0, 0);
6632 struct sched_domain_topology_level *tl;
6633 int level = 0;
6634 int i, j, k;
6635
cb83b629
PZ
6636 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6637 if (!sched_domains_numa_distance)
6638 return;
6639
6640 /*
6641 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6642 * unique distances in the node_distance() table.
6643 *
6644 * Assumes node_distance(0,j) includes all distances in
6645 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6646 */
6647 next_distance = curr_distance;
6648 for (i = 0; i < nr_node_ids; i++) {
6649 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6650 for (k = 0; k < nr_node_ids; k++) {
6651 int distance = node_distance(i, k);
6652
6653 if (distance > curr_distance &&
6654 (distance < next_distance ||
6655 next_distance == curr_distance))
6656 next_distance = distance;
6657
6658 /*
6659 * While not a strong assumption it would be nice to know
6660 * about cases where if node A is connected to B, B is not
6661 * equally connected to A.
6662 */
6663 if (sched_debug() && node_distance(k, i) != distance)
6664 sched_numa_warn("Node-distance not symmetric");
6665
6666 if (sched_debug() && i && !find_numa_distance(distance))
6667 sched_numa_warn("Node-0 not representative");
6668 }
6669 if (next_distance != curr_distance) {
6670 sched_domains_numa_distance[level++] = next_distance;
6671 sched_domains_numa_levels = level;
6672 curr_distance = next_distance;
6673 } else break;
cb83b629 6674 }
d039ac60
PZ
6675
6676 /*
6677 * In case of sched_debug() we verify the above assumption.
6678 */
6679 if (!sched_debug())
6680 break;
cb83b629 6681 }
c123588b
AR
6682
6683 if (!level)
6684 return;
6685
cb83b629
PZ
6686 /*
6687 * 'level' contains the number of unique distances, excluding the
6688 * identity distance node_distance(i,i).
6689 *
28b4a521 6690 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6691 * numbers.
6692 */
6693
5f7865f3
TC
6694 /*
6695 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6696 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6697 * the array will contain less then 'level' members. This could be
6698 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6699 * in other functions.
6700 *
6701 * We reset it to 'level' at the end of this function.
6702 */
6703 sched_domains_numa_levels = 0;
6704
cb83b629
PZ
6705 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6706 if (!sched_domains_numa_masks)
6707 return;
6708
6709 /*
6710 * Now for each level, construct a mask per node which contains all
6711 * cpus of nodes that are that many hops away from us.
6712 */
6713 for (i = 0; i < level; i++) {
6714 sched_domains_numa_masks[i] =
6715 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6716 if (!sched_domains_numa_masks[i])
6717 return;
6718
6719 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6720 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6721 if (!mask)
6722 return;
6723
6724 sched_domains_numa_masks[i][j] = mask;
6725
9c03ee14 6726 for_each_node(k) {
dd7d8634 6727 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6728 continue;
6729
6730 cpumask_or(mask, mask, cpumask_of_node(k));
6731 }
6732 }
6733 }
6734
143e1e28
VG
6735 /* Compute default topology size */
6736 for (i = 0; sched_domain_topology[i].mask; i++);
6737
c515db8c 6738 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6739 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6740 if (!tl)
6741 return;
6742
6743 /*
6744 * Copy the default topology bits..
6745 */
143e1e28
VG
6746 for (i = 0; sched_domain_topology[i].mask; i++)
6747 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6748
6749 /*
6750 * .. and append 'j' levels of NUMA goodness.
6751 */
6752 for (j = 0; j < level; i++, j++) {
6753 tl[i] = (struct sched_domain_topology_level){
cb83b629 6754 .mask = sd_numa_mask,
143e1e28 6755 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6756 .flags = SDTL_OVERLAP,
6757 .numa_level = j,
143e1e28 6758 SD_INIT_NAME(NUMA)
cb83b629
PZ
6759 };
6760 }
6761
6762 sched_domain_topology = tl;
5f7865f3
TC
6763
6764 sched_domains_numa_levels = level;
9942f79b 6765 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6766
6767 init_numa_topology_type();
cb83b629 6768}
301a5cba 6769
135fb3e1 6770static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6771{
301a5cba 6772 int node = cpu_to_node(cpu);
135fb3e1 6773 int i, j;
301a5cba
TC
6774
6775 for (i = 0; i < sched_domains_numa_levels; i++) {
6776 for (j = 0; j < nr_node_ids; j++) {
6777 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6778 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6779 }
6780 }
6781}
6782
135fb3e1 6783static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6784{
6785 int i, j;
135fb3e1 6786
301a5cba
TC
6787 for (i = 0; i < sched_domains_numa_levels; i++) {
6788 for (j = 0; j < nr_node_ids; j++)
6789 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6790 }
6791}
6792
cb83b629 6793#else
135fb3e1
TG
6794static inline void sched_init_numa(void) { }
6795static void sched_domains_numa_masks_set(unsigned int cpu) { }
6796static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6797#endif /* CONFIG_NUMA */
6798
54ab4ff4
PZ
6799static int __sdt_alloc(const struct cpumask *cpu_map)
6800{
6801 struct sched_domain_topology_level *tl;
6802 int j;
6803
27723a68 6804 for_each_sd_topology(tl) {
54ab4ff4
PZ
6805 struct sd_data *sdd = &tl->data;
6806
6807 sdd->sd = alloc_percpu(struct sched_domain *);
6808 if (!sdd->sd)
6809 return -ENOMEM;
6810
6811 sdd->sg = alloc_percpu(struct sched_group *);
6812 if (!sdd->sg)
6813 return -ENOMEM;
6814
63b2ca30
NP
6815 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6816 if (!sdd->sgc)
9c3f75cb
PZ
6817 return -ENOMEM;
6818
54ab4ff4
PZ
6819 for_each_cpu(j, cpu_map) {
6820 struct sched_domain *sd;
6821 struct sched_group *sg;
63b2ca30 6822 struct sched_group_capacity *sgc;
54ab4ff4 6823
5cc389bc 6824 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6825 GFP_KERNEL, cpu_to_node(j));
6826 if (!sd)
6827 return -ENOMEM;
6828
6829 *per_cpu_ptr(sdd->sd, j) = sd;
6830
6831 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6832 GFP_KERNEL, cpu_to_node(j));
6833 if (!sg)
6834 return -ENOMEM;
6835
30b4e9eb
IM
6836 sg->next = sg;
6837
54ab4ff4 6838 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6839
63b2ca30 6840 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6841 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6842 if (!sgc)
9c3f75cb
PZ
6843 return -ENOMEM;
6844
63b2ca30 6845 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6846 }
6847 }
6848
6849 return 0;
6850}
6851
6852static void __sdt_free(const struct cpumask *cpu_map)
6853{
6854 struct sched_domain_topology_level *tl;
6855 int j;
6856
27723a68 6857 for_each_sd_topology(tl) {
54ab4ff4
PZ
6858 struct sd_data *sdd = &tl->data;
6859
6860 for_each_cpu(j, cpu_map) {
fb2cf2c6 6861 struct sched_domain *sd;
6862
6863 if (sdd->sd) {
6864 sd = *per_cpu_ptr(sdd->sd, j);
6865 if (sd && (sd->flags & SD_OVERLAP))
6866 free_sched_groups(sd->groups, 0);
6867 kfree(*per_cpu_ptr(sdd->sd, j));
6868 }
6869
6870 if (sdd->sg)
6871 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6872 if (sdd->sgc)
6873 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6874 }
6875 free_percpu(sdd->sd);
fb2cf2c6 6876 sdd->sd = NULL;
54ab4ff4 6877 free_percpu(sdd->sg);
fb2cf2c6 6878 sdd->sg = NULL;
63b2ca30
NP
6879 free_percpu(sdd->sgc);
6880 sdd->sgc = NULL;
54ab4ff4
PZ
6881 }
6882}
6883
2c402dc3 6884struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6885 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6886 struct sched_domain *child, int cpu)
2c402dc3 6887{
3676b13e 6888 struct sched_domain *sd = sd_init(tl, child, cpu);
2c402dc3 6889
2c402dc3 6890 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6891 if (child) {
6892 sd->level = child->level + 1;
6893 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6894 child->parent = sd;
6ae72dff
PZ
6895
6896 if (!cpumask_subset(sched_domain_span(child),
6897 sched_domain_span(sd))) {
6898 pr_err("BUG: arch topology borken\n");
6899#ifdef CONFIG_SCHED_DEBUG
6900 pr_err(" the %s domain not a subset of the %s domain\n",
6901 child->name, sd->name);
6902#endif
6903 /* Fixup, ensure @sd has at least @child cpus. */
6904 cpumask_or(sched_domain_span(sd),
6905 sched_domain_span(sd),
6906 sched_domain_span(child));
6907 }
6908
60495e77 6909 }
a841f8ce 6910 set_domain_attribute(sd, attr);
2c402dc3
PZ
6911
6912 return sd;
6913}
6914
2109b99e
AH
6915/*
6916 * Build sched domains for a given set of cpus and attach the sched domains
6917 * to the individual cpus
6918 */
dce840a0
PZ
6919static int build_sched_domains(const struct cpumask *cpu_map,
6920 struct sched_domain_attr *attr)
2109b99e 6921{
1c632169 6922 enum s_alloc alloc_state;
dce840a0 6923 struct sched_domain *sd;
2109b99e 6924 struct s_data d;
cd92bfd3 6925 struct rq *rq = NULL;
822ff793 6926 int i, ret = -ENOMEM;
9c1cfda2 6927
2109b99e
AH
6928 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6929 if (alloc_state != sa_rootdomain)
6930 goto error;
9c1cfda2 6931
dce840a0 6932 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6933 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6934 struct sched_domain_topology_level *tl;
6935
3bd65a80 6936 sd = NULL;
27723a68 6937 for_each_sd_topology(tl) {
4a850cbe 6938 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6939 if (tl == sched_domain_topology)
6940 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6941 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6942 sd->flags |= SD_OVERLAP;
d110235d
PZ
6943 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6944 break;
e3589f6c 6945 }
dce840a0
PZ
6946 }
6947
6948 /* Build the groups for the domains */
6949 for_each_cpu(i, cpu_map) {
6950 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6951 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6952 if (sd->flags & SD_OVERLAP) {
6953 if (build_overlap_sched_groups(sd, i))
6954 goto error;
6955 } else {
6956 if (build_sched_groups(sd, i))
6957 goto error;
6958 }
1cf51902 6959 }
a06dadbe 6960 }
9c1cfda2 6961
ced549fa 6962 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6963 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6964 if (!cpumask_test_cpu(i, cpu_map))
6965 continue;
9c1cfda2 6966
dce840a0
PZ
6967 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6968 claim_allocations(i, sd);
63b2ca30 6969 init_sched_groups_capacity(i, sd);
dce840a0 6970 }
f712c0c7 6971 }
9c1cfda2 6972
1da177e4 6973 /* Attach the domains */
dce840a0 6974 rcu_read_lock();
abcd083a 6975 for_each_cpu(i, cpu_map) {
cd92bfd3 6976 rq = cpu_rq(i);
21d42ccf 6977 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
6978
6979 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
6980 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
6981 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
6982
49a02c51 6983 cpu_attach_domain(sd, d.rd, i);
1da177e4 6984 }
dce840a0 6985 rcu_read_unlock();
51888ca2 6986
cd92bfd3
DE
6987 if (rq) {
6988 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
6989 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
6990 }
6991
822ff793 6992 ret = 0;
51888ca2 6993error:
2109b99e 6994 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6995 return ret;
1da177e4 6996}
029190c5 6997
acc3f5d7 6998static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6999static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7000static struct sched_domain_attr *dattr_cur;
7001 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7002
7003/*
7004 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7005 * cpumask) fails, then fallback to a single sched domain,
7006 * as determined by the single cpumask fallback_doms.
029190c5 7007 */
4212823f 7008static cpumask_var_t fallback_doms;
029190c5 7009
ee79d1bd
HC
7010/*
7011 * arch_update_cpu_topology lets virtualized architectures update the
7012 * cpu core maps. It is supposed to return 1 if the topology changed
7013 * or 0 if it stayed the same.
7014 */
52f5684c 7015int __weak arch_update_cpu_topology(void)
22e52b07 7016{
ee79d1bd 7017 return 0;
22e52b07
HC
7018}
7019
acc3f5d7
RR
7020cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7021{
7022 int i;
7023 cpumask_var_t *doms;
7024
7025 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7026 if (!doms)
7027 return NULL;
7028 for (i = 0; i < ndoms; i++) {
7029 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7030 free_sched_domains(doms, i);
7031 return NULL;
7032 }
7033 }
7034 return doms;
7035}
7036
7037void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7038{
7039 unsigned int i;
7040 for (i = 0; i < ndoms; i++)
7041 free_cpumask_var(doms[i]);
7042 kfree(doms);
7043}
7044
1a20ff27 7045/*
41a2d6cf 7046 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7047 * For now this just excludes isolated cpus, but could be used to
7048 * exclude other special cases in the future.
1a20ff27 7049 */
c4a8849a 7050static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7051{
7378547f
MM
7052 int err;
7053
22e52b07 7054 arch_update_cpu_topology();
029190c5 7055 ndoms_cur = 1;
acc3f5d7 7056 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7057 if (!doms_cur)
acc3f5d7
RR
7058 doms_cur = &fallback_doms;
7059 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7060 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7061 register_sched_domain_sysctl();
7378547f
MM
7062
7063 return err;
1a20ff27
DG
7064}
7065
1a20ff27
DG
7066/*
7067 * Detach sched domains from a group of cpus specified in cpu_map
7068 * These cpus will now be attached to the NULL domain
7069 */
96f874e2 7070static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7071{
7072 int i;
7073
dce840a0 7074 rcu_read_lock();
abcd083a 7075 for_each_cpu(i, cpu_map)
57d885fe 7076 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7077 rcu_read_unlock();
1a20ff27
DG
7078}
7079
1d3504fc
HS
7080/* handle null as "default" */
7081static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7082 struct sched_domain_attr *new, int idx_new)
7083{
7084 struct sched_domain_attr tmp;
7085
7086 /* fast path */
7087 if (!new && !cur)
7088 return 1;
7089
7090 tmp = SD_ATTR_INIT;
7091 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7092 new ? (new + idx_new) : &tmp,
7093 sizeof(struct sched_domain_attr));
7094}
7095
029190c5
PJ
7096/*
7097 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7098 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7099 * doms_new[] to the current sched domain partitioning, doms_cur[].
7100 * It destroys each deleted domain and builds each new domain.
7101 *
acc3f5d7 7102 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7103 * The masks don't intersect (don't overlap.) We should setup one
7104 * sched domain for each mask. CPUs not in any of the cpumasks will
7105 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7106 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7107 * it as it is.
7108 *
acc3f5d7
RR
7109 * The passed in 'doms_new' should be allocated using
7110 * alloc_sched_domains. This routine takes ownership of it and will
7111 * free_sched_domains it when done with it. If the caller failed the
7112 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7113 * and partition_sched_domains() will fallback to the single partition
7114 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7115 *
96f874e2 7116 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7117 * ndoms_new == 0 is a special case for destroying existing domains,
7118 * and it will not create the default domain.
dfb512ec 7119 *
029190c5
PJ
7120 * Call with hotplug lock held
7121 */
acc3f5d7 7122void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7123 struct sched_domain_attr *dattr_new)
029190c5 7124{
dfb512ec 7125 int i, j, n;
d65bd5ec 7126 int new_topology;
029190c5 7127
712555ee 7128 mutex_lock(&sched_domains_mutex);
a1835615 7129
7378547f
MM
7130 /* always unregister in case we don't destroy any domains */
7131 unregister_sched_domain_sysctl();
7132
d65bd5ec
HC
7133 /* Let architecture update cpu core mappings. */
7134 new_topology = arch_update_cpu_topology();
7135
dfb512ec 7136 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7137
7138 /* Destroy deleted domains */
7139 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7140 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7141 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7142 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7143 goto match1;
7144 }
7145 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7146 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7147match1:
7148 ;
7149 }
7150
c8d2d47a 7151 n = ndoms_cur;
e761b772 7152 if (doms_new == NULL) {
c8d2d47a 7153 n = 0;
acc3f5d7 7154 doms_new = &fallback_doms;
6ad4c188 7155 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7156 WARN_ON_ONCE(dattr_new);
e761b772
MK
7157 }
7158
029190c5
PJ
7159 /* Build new domains */
7160 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7161 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7162 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7163 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7164 goto match2;
7165 }
7166 /* no match - add a new doms_new */
dce840a0 7167 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7168match2:
7169 ;
7170 }
7171
7172 /* Remember the new sched domains */
acc3f5d7
RR
7173 if (doms_cur != &fallback_doms)
7174 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7175 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7176 doms_cur = doms_new;
1d3504fc 7177 dattr_cur = dattr_new;
029190c5 7178 ndoms_cur = ndoms_new;
7378547f
MM
7179
7180 register_sched_domain_sysctl();
a1835615 7181
712555ee 7182 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7183}
7184
d35be8ba
SB
7185static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7186
1da177e4 7187/*
3a101d05
TH
7188 * Update cpusets according to cpu_active mask. If cpusets are
7189 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7190 * around partition_sched_domains().
d35be8ba
SB
7191 *
7192 * If we come here as part of a suspend/resume, don't touch cpusets because we
7193 * want to restore it back to its original state upon resume anyway.
1da177e4 7194 */
40190a78 7195static void cpuset_cpu_active(void)
e761b772 7196{
40190a78 7197 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7198 /*
7199 * num_cpus_frozen tracks how many CPUs are involved in suspend
7200 * resume sequence. As long as this is not the last online
7201 * operation in the resume sequence, just build a single sched
7202 * domain, ignoring cpusets.
7203 */
7204 num_cpus_frozen--;
7205 if (likely(num_cpus_frozen)) {
7206 partition_sched_domains(1, NULL, NULL);
135fb3e1 7207 return;
d35be8ba 7208 }
d35be8ba
SB
7209 /*
7210 * This is the last CPU online operation. So fall through and
7211 * restore the original sched domains by considering the
7212 * cpuset configurations.
7213 */
3a101d05 7214 }
135fb3e1 7215 cpuset_update_active_cpus(true);
3a101d05 7216}
e761b772 7217
40190a78 7218static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7219{
3c18d447 7220 unsigned long flags;
3c18d447 7221 struct dl_bw *dl_b;
533445c6
OS
7222 bool overflow;
7223 int cpus;
3c18d447 7224
40190a78 7225 if (!cpuhp_tasks_frozen) {
533445c6
OS
7226 rcu_read_lock_sched();
7227 dl_b = dl_bw_of(cpu);
3c18d447 7228
533445c6
OS
7229 raw_spin_lock_irqsave(&dl_b->lock, flags);
7230 cpus = dl_bw_cpus(cpu);
7231 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7232 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7233
533445c6 7234 rcu_read_unlock_sched();
3c18d447 7235
533445c6 7236 if (overflow)
135fb3e1 7237 return -EBUSY;
7ddf96b0 7238 cpuset_update_active_cpus(false);
135fb3e1 7239 } else {
d35be8ba
SB
7240 num_cpus_frozen++;
7241 partition_sched_domains(1, NULL, NULL);
e761b772 7242 }
135fb3e1 7243 return 0;
e761b772 7244}
e761b772 7245
40190a78 7246int sched_cpu_activate(unsigned int cpu)
135fb3e1 7247{
7d976699
TG
7248 struct rq *rq = cpu_rq(cpu);
7249 unsigned long flags;
7250
40190a78 7251 set_cpu_active(cpu, true);
135fb3e1 7252
40190a78 7253 if (sched_smp_initialized) {
135fb3e1 7254 sched_domains_numa_masks_set(cpu);
40190a78 7255 cpuset_cpu_active();
e761b772 7256 }
7d976699
TG
7257
7258 /*
7259 * Put the rq online, if not already. This happens:
7260 *
7261 * 1) In the early boot process, because we build the real domains
7262 * after all cpus have been brought up.
7263 *
7264 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7265 * domains.
7266 */
7267 raw_spin_lock_irqsave(&rq->lock, flags);
7268 if (rq->rd) {
7269 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7270 set_rq_online(rq);
7271 }
7272 raw_spin_unlock_irqrestore(&rq->lock, flags);
7273
7274 update_max_interval();
7275
40190a78 7276 return 0;
135fb3e1
TG
7277}
7278
40190a78 7279int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7280{
135fb3e1
TG
7281 int ret;
7282
40190a78 7283 set_cpu_active(cpu, false);
b2454caa
PZ
7284 /*
7285 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7286 * users of this state to go away such that all new such users will
7287 * observe it.
7288 *
7289 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7290 * not imply sync_sched(), so wait for both.
7291 *
7292 * Do sync before park smpboot threads to take care the rcu boost case.
7293 */
7294 if (IS_ENABLED(CONFIG_PREEMPT))
7295 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7296 else
7297 synchronize_rcu();
40190a78
TG
7298
7299 if (!sched_smp_initialized)
7300 return 0;
7301
7302 ret = cpuset_cpu_inactive(cpu);
7303 if (ret) {
7304 set_cpu_active(cpu, true);
7305 return ret;
135fb3e1 7306 }
40190a78
TG
7307 sched_domains_numa_masks_clear(cpu);
7308 return 0;
135fb3e1
TG
7309}
7310
94baf7a5
TG
7311static void sched_rq_cpu_starting(unsigned int cpu)
7312{
7313 struct rq *rq = cpu_rq(cpu);
7314
7315 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7316 update_max_interval();
7317}
7318
135fb3e1
TG
7319int sched_cpu_starting(unsigned int cpu)
7320{
7321 set_cpu_rq_start_time(cpu);
94baf7a5 7322 sched_rq_cpu_starting(cpu);
135fb3e1 7323 return 0;
e761b772 7324}
e761b772 7325
f2785ddb
TG
7326#ifdef CONFIG_HOTPLUG_CPU
7327int sched_cpu_dying(unsigned int cpu)
7328{
7329 struct rq *rq = cpu_rq(cpu);
7330 unsigned long flags;
7331
7332 /* Handle pending wakeups and then migrate everything off */
7333 sched_ttwu_pending();
7334 raw_spin_lock_irqsave(&rq->lock, flags);
7335 if (rq->rd) {
7336 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7337 set_rq_offline(rq);
7338 }
7339 migrate_tasks(rq);
7340 BUG_ON(rq->nr_running != 1);
7341 raw_spin_unlock_irqrestore(&rq->lock, flags);
7342 calc_load_migrate(rq);
7343 update_max_interval();
20a5c8cc 7344 nohz_balance_exit_idle(cpu);
e5ef27d0 7345 hrtick_clear(rq);
f2785ddb
TG
7346 return 0;
7347}
7348#endif
7349
1da177e4
LT
7350void __init sched_init_smp(void)
7351{
dcc30a35
RR
7352 cpumask_var_t non_isolated_cpus;
7353
7354 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7355 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7356
cb83b629
PZ
7357 sched_init_numa();
7358
6acce3ef
PZ
7359 /*
7360 * There's no userspace yet to cause hotplug operations; hence all the
7361 * cpu masks are stable and all blatant races in the below code cannot
7362 * happen.
7363 */
712555ee 7364 mutex_lock(&sched_domains_mutex);
c4a8849a 7365 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7366 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7367 if (cpumask_empty(non_isolated_cpus))
7368 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7369 mutex_unlock(&sched_domains_mutex);
e761b772 7370
5c1e1767 7371 /* Move init over to a non-isolated CPU */
dcc30a35 7372 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7373 BUG();
19978ca6 7374 sched_init_granularity();
dcc30a35 7375 free_cpumask_var(non_isolated_cpus);
4212823f 7376
0e3900e6 7377 init_sched_rt_class();
1baca4ce 7378 init_sched_dl_class();
e26fbffd 7379 sched_smp_initialized = true;
1da177e4 7380}
e26fbffd
TG
7381
7382static int __init migration_init(void)
7383{
94baf7a5 7384 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7385 return 0;
1da177e4 7386}
e26fbffd
TG
7387early_initcall(migration_init);
7388
1da177e4
LT
7389#else
7390void __init sched_init_smp(void)
7391{
19978ca6 7392 sched_init_granularity();
1da177e4
LT
7393}
7394#endif /* CONFIG_SMP */
7395
7396int in_sched_functions(unsigned long addr)
7397{
1da177e4
LT
7398 return in_lock_functions(addr) ||
7399 (addr >= (unsigned long)__sched_text_start
7400 && addr < (unsigned long)__sched_text_end);
7401}
7402
029632fb 7403#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7404/*
7405 * Default task group.
7406 * Every task in system belongs to this group at bootup.
7407 */
029632fb 7408struct task_group root_task_group;
35cf4e50 7409LIST_HEAD(task_groups);
b0367629
WL
7410
7411/* Cacheline aligned slab cache for task_group */
7412static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7413#endif
6f505b16 7414
e6252c3e 7415DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7416
1da177e4
LT
7417void __init sched_init(void)
7418{
dd41f596 7419 int i, j;
434d53b0
MT
7420 unsigned long alloc_size = 0, ptr;
7421
7422#ifdef CONFIG_FAIR_GROUP_SCHED
7423 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7424#endif
7425#ifdef CONFIG_RT_GROUP_SCHED
7426 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7427#endif
434d53b0 7428 if (alloc_size) {
36b7b6d4 7429 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7430
7431#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7432 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7433 ptr += nr_cpu_ids * sizeof(void **);
7434
07e06b01 7435 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7436 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7437
6d6bc0ad 7438#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7439#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7440 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7441 ptr += nr_cpu_ids * sizeof(void **);
7442
07e06b01 7443 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7444 ptr += nr_cpu_ids * sizeof(void **);
7445
6d6bc0ad 7446#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7447 }
df7c8e84 7448#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7449 for_each_possible_cpu(i) {
7450 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7451 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7452 }
b74e6278 7453#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7454
332ac17e
DF
7455 init_rt_bandwidth(&def_rt_bandwidth,
7456 global_rt_period(), global_rt_runtime());
7457 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7458 global_rt_period(), global_rt_runtime());
332ac17e 7459
57d885fe
GH
7460#ifdef CONFIG_SMP
7461 init_defrootdomain();
7462#endif
7463
d0b27fa7 7464#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7465 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7466 global_rt_period(), global_rt_runtime());
6d6bc0ad 7467#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7468
7c941438 7469#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7470 task_group_cache = KMEM_CACHE(task_group, 0);
7471
07e06b01
YZ
7472 list_add(&root_task_group.list, &task_groups);
7473 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7474 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7475 autogroup_init(&init_task);
7c941438 7476#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7477
0a945022 7478 for_each_possible_cpu(i) {
70b97a7f 7479 struct rq *rq;
1da177e4
LT
7480
7481 rq = cpu_rq(i);
05fa785c 7482 raw_spin_lock_init(&rq->lock);
7897986b 7483 rq->nr_running = 0;
dce48a84
TG
7484 rq->calc_load_active = 0;
7485 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7486 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7487 init_rt_rq(&rq->rt);
7488 init_dl_rq(&rq->dl);
dd41f596 7489#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7490 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7491 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7492 /*
07e06b01 7493 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7494 *
7495 * In case of task-groups formed thr' the cgroup filesystem, it
7496 * gets 100% of the cpu resources in the system. This overall
7497 * system cpu resource is divided among the tasks of
07e06b01 7498 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7499 * based on each entity's (task or task-group's) weight
7500 * (se->load.weight).
7501 *
07e06b01 7502 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7503 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7504 * then A0's share of the cpu resource is:
7505 *
0d905bca 7506 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7507 *
07e06b01
YZ
7508 * We achieve this by letting root_task_group's tasks sit
7509 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7510 */
ab84d31e 7511 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7512 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7513#endif /* CONFIG_FAIR_GROUP_SCHED */
7514
7515 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7516#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7517 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7518#endif
1da177e4 7519
dd41f596
IM
7520 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7521 rq->cpu_load[j] = 0;
fdf3e95d 7522
1da177e4 7523#ifdef CONFIG_SMP
41c7ce9a 7524 rq->sd = NULL;
57d885fe 7525 rq->rd = NULL;
ca6d75e6 7526 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7527 rq->balance_callback = NULL;
1da177e4 7528 rq->active_balance = 0;
dd41f596 7529 rq->next_balance = jiffies;
1da177e4 7530 rq->push_cpu = 0;
0a2966b4 7531 rq->cpu = i;
1f11eb6a 7532 rq->online = 0;
eae0c9df
MG
7533 rq->idle_stamp = 0;
7534 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7535 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7536
7537 INIT_LIST_HEAD(&rq->cfs_tasks);
7538
dc938520 7539 rq_attach_root(rq, &def_root_domain);
3451d024 7540#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7541 rq->last_load_update_tick = jiffies;
1c792db7 7542 rq->nohz_flags = 0;
83cd4fe2 7543#endif
265f22a9
FW
7544#ifdef CONFIG_NO_HZ_FULL
7545 rq->last_sched_tick = 0;
7546#endif
9fd81dd5 7547#endif /* CONFIG_SMP */
8f4d37ec 7548 init_rq_hrtick(rq);
1da177e4 7549 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7550 }
7551
2dd73a4f 7552 set_load_weight(&init_task);
b50f60ce 7553
1da177e4
LT
7554 /*
7555 * The boot idle thread does lazy MMU switching as well:
7556 */
7557 atomic_inc(&init_mm.mm_count);
7558 enter_lazy_tlb(&init_mm, current);
7559
7560 /*
7561 * Make us the idle thread. Technically, schedule() should not be
7562 * called from this thread, however somewhere below it might be,
7563 * but because we are the idle thread, we just pick up running again
7564 * when this runqueue becomes "idle".
7565 */
7566 init_idle(current, smp_processor_id());
dce48a84
TG
7567
7568 calc_load_update = jiffies + LOAD_FREQ;
7569
bf4d83f6 7570#ifdef CONFIG_SMP
4cb98839 7571 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7572 /* May be allocated at isolcpus cmdline parse time */
7573 if (cpu_isolated_map == NULL)
7574 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7575 idle_thread_set_boot_cpu();
9cf7243d 7576 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7577#endif
7578 init_sched_fair_class();
6a7b3dc3 7579
4698f88c
JP
7580 init_schedstats();
7581
6892b75e 7582 scheduler_running = 1;
1da177e4
LT
7583}
7584
d902db1e 7585#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7586static inline int preempt_count_equals(int preempt_offset)
7587{
da7142e2 7588 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7589
4ba8216c 7590 return (nested == preempt_offset);
e4aafea2
FW
7591}
7592
d894837f 7593void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7594{
8eb23b9f
PZ
7595 /*
7596 * Blocking primitives will set (and therefore destroy) current->state,
7597 * since we will exit with TASK_RUNNING make sure we enter with it,
7598 * otherwise we will destroy state.
7599 */
00845eb9 7600 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7601 "do not call blocking ops when !TASK_RUNNING; "
7602 "state=%lx set at [<%p>] %pS\n",
7603 current->state,
7604 (void *)current->task_state_change,
00845eb9 7605 (void *)current->task_state_change);
8eb23b9f 7606
3427445a
PZ
7607 ___might_sleep(file, line, preempt_offset);
7608}
7609EXPORT_SYMBOL(__might_sleep);
7610
7611void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7612{
1da177e4 7613 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7614 unsigned long preempt_disable_ip;
1da177e4 7615
b3fbab05 7616 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7617 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7618 !is_idle_task(current)) ||
e4aafea2 7619 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7620 return;
7621 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7622 return;
7623 prev_jiffy = jiffies;
7624
d1c6d149
VN
7625 /* Save this before calling printk(), since that will clobber it */
7626 preempt_disable_ip = get_preempt_disable_ip(current);
7627
3df0fc5b
PZ
7628 printk(KERN_ERR
7629 "BUG: sleeping function called from invalid context at %s:%d\n",
7630 file, line);
7631 printk(KERN_ERR
7632 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7633 in_atomic(), irqs_disabled(),
7634 current->pid, current->comm);
aef745fc 7635
a8b686b3
ES
7636 if (task_stack_end_corrupted(current))
7637 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7638
aef745fc
IM
7639 debug_show_held_locks(current);
7640 if (irqs_disabled())
7641 print_irqtrace_events(current);
d1c6d149
VN
7642 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7643 && !preempt_count_equals(preempt_offset)) {
8f47b187 7644 pr_err("Preemption disabled at:");
d1c6d149 7645 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7646 pr_cont("\n");
7647 }
aef745fc 7648 dump_stack();
f0b22e39 7649 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7650}
3427445a 7651EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7652#endif
7653
7654#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7655void normalize_rt_tasks(void)
3a5e4dc1 7656{
dbc7f069 7657 struct task_struct *g, *p;
d50dde5a
DF
7658 struct sched_attr attr = {
7659 .sched_policy = SCHED_NORMAL,
7660 };
1da177e4 7661
3472eaa1 7662 read_lock(&tasklist_lock);
5d07f420 7663 for_each_process_thread(g, p) {
178be793
IM
7664 /*
7665 * Only normalize user tasks:
7666 */
3472eaa1 7667 if (p->flags & PF_KTHREAD)
178be793
IM
7668 continue;
7669
4fa8d299
JP
7670 p->se.exec_start = 0;
7671 schedstat_set(p->se.statistics.wait_start, 0);
7672 schedstat_set(p->se.statistics.sleep_start, 0);
7673 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7674
aab03e05 7675 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7676 /*
7677 * Renice negative nice level userspace
7678 * tasks back to 0:
7679 */
3472eaa1 7680 if (task_nice(p) < 0)
dd41f596 7681 set_user_nice(p, 0);
1da177e4 7682 continue;
dd41f596 7683 }
1da177e4 7684
dbc7f069 7685 __sched_setscheduler(p, &attr, false, false);
5d07f420 7686 }
3472eaa1 7687 read_unlock(&tasklist_lock);
1da177e4
LT
7688}
7689
7690#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7691
67fc4e0c 7692#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7693/*
67fc4e0c 7694 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7695 *
7696 * They can only be called when the whole system has been
7697 * stopped - every CPU needs to be quiescent, and no scheduling
7698 * activity can take place. Using them for anything else would
7699 * be a serious bug, and as a result, they aren't even visible
7700 * under any other configuration.
7701 */
7702
7703/**
7704 * curr_task - return the current task for a given cpu.
7705 * @cpu: the processor in question.
7706 *
7707 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7708 *
7709 * Return: The current task for @cpu.
1df5c10a 7710 */
36c8b586 7711struct task_struct *curr_task(int cpu)
1df5c10a
LT
7712{
7713 return cpu_curr(cpu);
7714}
7715
67fc4e0c
JW
7716#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7717
7718#ifdef CONFIG_IA64
1df5c10a
LT
7719/**
7720 * set_curr_task - set the current task for a given cpu.
7721 * @cpu: the processor in question.
7722 * @p: the task pointer to set.
7723 *
7724 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7725 * are serviced on a separate stack. It allows the architecture to switch the
7726 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7727 * must be called with all CPU's synchronized, and interrupts disabled, the
7728 * and caller must save the original value of the current task (see
7729 * curr_task() above) and restore that value before reenabling interrupts and
7730 * re-starting the system.
7731 *
7732 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7733 */
36c8b586 7734void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7735{
7736 cpu_curr(cpu) = p;
7737}
7738
7739#endif
29f59db3 7740
7c941438 7741#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7742/* task_group_lock serializes the addition/removal of task groups */
7743static DEFINE_SPINLOCK(task_group_lock);
7744
2f5177f0 7745static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7746{
7747 free_fair_sched_group(tg);
7748 free_rt_sched_group(tg);
e9aa1dd1 7749 autogroup_free(tg);
b0367629 7750 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7751}
7752
7753/* allocate runqueue etc for a new task group */
ec7dc8ac 7754struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7755{
7756 struct task_group *tg;
bccbe08a 7757
b0367629 7758 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7759 if (!tg)
7760 return ERR_PTR(-ENOMEM);
7761
ec7dc8ac 7762 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7763 goto err;
7764
ec7dc8ac 7765 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7766 goto err;
7767
ace783b9
LZ
7768 return tg;
7769
7770err:
2f5177f0 7771 sched_free_group(tg);
ace783b9
LZ
7772 return ERR_PTR(-ENOMEM);
7773}
7774
7775void sched_online_group(struct task_group *tg, struct task_group *parent)
7776{
7777 unsigned long flags;
7778
8ed36996 7779 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7780 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7781
7782 WARN_ON(!parent); /* root should already exist */
7783
7784 tg->parent = parent;
f473aa5e 7785 INIT_LIST_HEAD(&tg->children);
09f2724a 7786 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7787 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7788
7789 online_fair_sched_group(tg);
29f59db3
SV
7790}
7791
9b5b7751 7792/* rcu callback to free various structures associated with a task group */
2f5177f0 7793static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7794{
29f59db3 7795 /* now it should be safe to free those cfs_rqs */
2f5177f0 7796 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7797}
7798
4cf86d77 7799void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7800{
7801 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7802 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7803}
7804
7805void sched_offline_group(struct task_group *tg)
29f59db3 7806{
8ed36996 7807 unsigned long flags;
29f59db3 7808
3d4b47b4 7809 /* end participation in shares distribution */
6fe1f348 7810 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7811
7812 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7813 list_del_rcu(&tg->list);
f473aa5e 7814 list_del_rcu(&tg->siblings);
8ed36996 7815 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7816}
7817
ea86cb4b 7818static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7819{
8323f26c 7820 struct task_group *tg;
29f59db3 7821
f7b8a47d
KT
7822 /*
7823 * All callers are synchronized by task_rq_lock(); we do not use RCU
7824 * which is pointless here. Thus, we pass "true" to task_css_check()
7825 * to prevent lockdep warnings.
7826 */
7827 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7828 struct task_group, css);
7829 tg = autogroup_task_group(tsk, tg);
7830 tsk->sched_task_group = tg;
7831
810b3817 7832#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7833 if (tsk->sched_class->task_change_group)
7834 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7835 else
810b3817 7836#endif
b2b5ce02 7837 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7838}
7839
7840/*
7841 * Change task's runqueue when it moves between groups.
7842 *
7843 * The caller of this function should have put the task in its new group by
7844 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7845 * its new group.
7846 */
7847void sched_move_task(struct task_struct *tsk)
7848{
7849 int queued, running;
7850 struct rq_flags rf;
7851 struct rq *rq;
7852
7853 rq = task_rq_lock(tsk, &rf);
7854
7855 running = task_current(rq, tsk);
7856 queued = task_on_rq_queued(tsk);
7857
7858 if (queued)
7859 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7860 if (unlikely(running))
7861 put_prev_task(rq, tsk);
7862
7863 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7864
0e1f3483
HS
7865 if (unlikely(running))
7866 tsk->sched_class->set_curr_task(rq);
da0c1e65 7867 if (queued)
ff77e468 7868 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7869
eb580751 7870 task_rq_unlock(rq, tsk, &rf);
29f59db3 7871}
7c941438 7872#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7873
a790de99
PT
7874#ifdef CONFIG_RT_GROUP_SCHED
7875/*
7876 * Ensure that the real time constraints are schedulable.
7877 */
7878static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7879
9a7e0b18
PZ
7880/* Must be called with tasklist_lock held */
7881static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7882{
9a7e0b18 7883 struct task_struct *g, *p;
b40b2e8e 7884
1fe89e1b
PZ
7885 /*
7886 * Autogroups do not have RT tasks; see autogroup_create().
7887 */
7888 if (task_group_is_autogroup(tg))
7889 return 0;
7890
5d07f420 7891 for_each_process_thread(g, p) {
8651c658 7892 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7893 return 1;
5d07f420 7894 }
b40b2e8e 7895
9a7e0b18
PZ
7896 return 0;
7897}
b40b2e8e 7898
9a7e0b18
PZ
7899struct rt_schedulable_data {
7900 struct task_group *tg;
7901 u64 rt_period;
7902 u64 rt_runtime;
7903};
b40b2e8e 7904
a790de99 7905static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7906{
7907 struct rt_schedulable_data *d = data;
7908 struct task_group *child;
7909 unsigned long total, sum = 0;
7910 u64 period, runtime;
b40b2e8e 7911
9a7e0b18
PZ
7912 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7913 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7914
9a7e0b18
PZ
7915 if (tg == d->tg) {
7916 period = d->rt_period;
7917 runtime = d->rt_runtime;
b40b2e8e 7918 }
b40b2e8e 7919
4653f803
PZ
7920 /*
7921 * Cannot have more runtime than the period.
7922 */
7923 if (runtime > period && runtime != RUNTIME_INF)
7924 return -EINVAL;
6f505b16 7925
4653f803
PZ
7926 /*
7927 * Ensure we don't starve existing RT tasks.
7928 */
9a7e0b18
PZ
7929 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7930 return -EBUSY;
6f505b16 7931
9a7e0b18 7932 total = to_ratio(period, runtime);
6f505b16 7933
4653f803
PZ
7934 /*
7935 * Nobody can have more than the global setting allows.
7936 */
7937 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7938 return -EINVAL;
6f505b16 7939
4653f803
PZ
7940 /*
7941 * The sum of our children's runtime should not exceed our own.
7942 */
9a7e0b18
PZ
7943 list_for_each_entry_rcu(child, &tg->children, siblings) {
7944 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7945 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7946
9a7e0b18
PZ
7947 if (child == d->tg) {
7948 period = d->rt_period;
7949 runtime = d->rt_runtime;
7950 }
6f505b16 7951
9a7e0b18 7952 sum += to_ratio(period, runtime);
9f0c1e56 7953 }
6f505b16 7954
9a7e0b18
PZ
7955 if (sum > total)
7956 return -EINVAL;
7957
7958 return 0;
6f505b16
PZ
7959}
7960
9a7e0b18 7961static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7962{
8277434e
PT
7963 int ret;
7964
9a7e0b18
PZ
7965 struct rt_schedulable_data data = {
7966 .tg = tg,
7967 .rt_period = period,
7968 .rt_runtime = runtime,
7969 };
7970
8277434e
PT
7971 rcu_read_lock();
7972 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7973 rcu_read_unlock();
7974
7975 return ret;
521f1a24
DG
7976}
7977
ab84d31e 7978static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7979 u64 rt_period, u64 rt_runtime)
6f505b16 7980{
ac086bc2 7981 int i, err = 0;
9f0c1e56 7982
2636ed5f
PZ
7983 /*
7984 * Disallowing the root group RT runtime is BAD, it would disallow the
7985 * kernel creating (and or operating) RT threads.
7986 */
7987 if (tg == &root_task_group && rt_runtime == 0)
7988 return -EINVAL;
7989
7990 /* No period doesn't make any sense. */
7991 if (rt_period == 0)
7992 return -EINVAL;
7993
9f0c1e56 7994 mutex_lock(&rt_constraints_mutex);
521f1a24 7995 read_lock(&tasklist_lock);
9a7e0b18
PZ
7996 err = __rt_schedulable(tg, rt_period, rt_runtime);
7997 if (err)
9f0c1e56 7998 goto unlock;
ac086bc2 7999
0986b11b 8000 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8001 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8002 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8003
8004 for_each_possible_cpu(i) {
8005 struct rt_rq *rt_rq = tg->rt_rq[i];
8006
0986b11b 8007 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8008 rt_rq->rt_runtime = rt_runtime;
0986b11b 8009 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8010 }
0986b11b 8011 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8012unlock:
521f1a24 8013 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8014 mutex_unlock(&rt_constraints_mutex);
8015
8016 return err;
6f505b16
PZ
8017}
8018
25cc7da7 8019static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8020{
8021 u64 rt_runtime, rt_period;
8022
8023 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8024 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8025 if (rt_runtime_us < 0)
8026 rt_runtime = RUNTIME_INF;
8027
ab84d31e 8028 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8029}
8030
25cc7da7 8031static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8032{
8033 u64 rt_runtime_us;
8034
d0b27fa7 8035 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8036 return -1;
8037
d0b27fa7 8038 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8039 do_div(rt_runtime_us, NSEC_PER_USEC);
8040 return rt_runtime_us;
8041}
d0b27fa7 8042
ce2f5fe4 8043static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8044{
8045 u64 rt_runtime, rt_period;
8046
ce2f5fe4 8047 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8048 rt_runtime = tg->rt_bandwidth.rt_runtime;
8049
ab84d31e 8050 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8051}
8052
25cc7da7 8053static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8054{
8055 u64 rt_period_us;
8056
8057 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8058 do_div(rt_period_us, NSEC_PER_USEC);
8059 return rt_period_us;
8060}
332ac17e 8061#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8062
332ac17e 8063#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8064static int sched_rt_global_constraints(void)
8065{
8066 int ret = 0;
8067
8068 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8069 read_lock(&tasklist_lock);
4653f803 8070 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8071 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8072 mutex_unlock(&rt_constraints_mutex);
8073
8074 return ret;
8075}
54e99124 8076
25cc7da7 8077static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8078{
8079 /* Don't accept realtime tasks when there is no way for them to run */
8080 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8081 return 0;
8082
8083 return 1;
8084}
8085
6d6bc0ad 8086#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8087static int sched_rt_global_constraints(void)
8088{
ac086bc2 8089 unsigned long flags;
8c5e9554 8090 int i;
ec5d4989 8091
0986b11b 8092 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8093 for_each_possible_cpu(i) {
8094 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8095
0986b11b 8096 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8097 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8098 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8099 }
0986b11b 8100 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8101
8c5e9554 8102 return 0;
d0b27fa7 8103}
6d6bc0ad 8104#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8105
a1963b81 8106static int sched_dl_global_validate(void)
332ac17e 8107{
1724813d
PZ
8108 u64 runtime = global_rt_runtime();
8109 u64 period = global_rt_period();
332ac17e 8110 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8111 struct dl_bw *dl_b;
1724813d 8112 int cpu, ret = 0;
49516342 8113 unsigned long flags;
332ac17e
DF
8114
8115 /*
8116 * Here we want to check the bandwidth not being set to some
8117 * value smaller than the currently allocated bandwidth in
8118 * any of the root_domains.
8119 *
8120 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8121 * cycling on root_domains... Discussion on different/better
8122 * solutions is welcome!
8123 */
1724813d 8124 for_each_possible_cpu(cpu) {
f10e00f4
KT
8125 rcu_read_lock_sched();
8126 dl_b = dl_bw_of(cpu);
332ac17e 8127
49516342 8128 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8129 if (new_bw < dl_b->total_bw)
8130 ret = -EBUSY;
49516342 8131 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8132
f10e00f4
KT
8133 rcu_read_unlock_sched();
8134
1724813d
PZ
8135 if (ret)
8136 break;
332ac17e
DF
8137 }
8138
1724813d 8139 return ret;
332ac17e
DF
8140}
8141
1724813d 8142static void sched_dl_do_global(void)
ce0dbbbb 8143{
1724813d 8144 u64 new_bw = -1;
f10e00f4 8145 struct dl_bw *dl_b;
1724813d 8146 int cpu;
49516342 8147 unsigned long flags;
ce0dbbbb 8148
1724813d
PZ
8149 def_dl_bandwidth.dl_period = global_rt_period();
8150 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8151
8152 if (global_rt_runtime() != RUNTIME_INF)
8153 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8154
8155 /*
8156 * FIXME: As above...
8157 */
8158 for_each_possible_cpu(cpu) {
f10e00f4
KT
8159 rcu_read_lock_sched();
8160 dl_b = dl_bw_of(cpu);
1724813d 8161
49516342 8162 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8163 dl_b->bw = new_bw;
49516342 8164 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8165
8166 rcu_read_unlock_sched();
ce0dbbbb 8167 }
1724813d
PZ
8168}
8169
8170static int sched_rt_global_validate(void)
8171{
8172 if (sysctl_sched_rt_period <= 0)
8173 return -EINVAL;
8174
e9e7cb38
JL
8175 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8176 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8177 return -EINVAL;
8178
8179 return 0;
8180}
8181
8182static void sched_rt_do_global(void)
8183{
8184 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8185 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8186}
8187
d0b27fa7 8188int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8189 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8190 loff_t *ppos)
8191{
d0b27fa7
PZ
8192 int old_period, old_runtime;
8193 static DEFINE_MUTEX(mutex);
1724813d 8194 int ret;
d0b27fa7
PZ
8195
8196 mutex_lock(&mutex);
8197 old_period = sysctl_sched_rt_period;
8198 old_runtime = sysctl_sched_rt_runtime;
8199
8d65af78 8200 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8201
8202 if (!ret && write) {
1724813d
PZ
8203 ret = sched_rt_global_validate();
8204 if (ret)
8205 goto undo;
8206
a1963b81 8207 ret = sched_dl_global_validate();
1724813d
PZ
8208 if (ret)
8209 goto undo;
8210
a1963b81 8211 ret = sched_rt_global_constraints();
1724813d
PZ
8212 if (ret)
8213 goto undo;
8214
8215 sched_rt_do_global();
8216 sched_dl_do_global();
8217 }
8218 if (0) {
8219undo:
8220 sysctl_sched_rt_period = old_period;
8221 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8222 }
8223 mutex_unlock(&mutex);
8224
8225 return ret;
8226}
68318b8e 8227
1724813d 8228int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8229 void __user *buffer, size_t *lenp,
8230 loff_t *ppos)
8231{
8232 int ret;
332ac17e 8233 static DEFINE_MUTEX(mutex);
332ac17e
DF
8234
8235 mutex_lock(&mutex);
332ac17e 8236 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8237 /* make sure that internally we keep jiffies */
8238 /* also, writing zero resets timeslice to default */
332ac17e 8239 if (!ret && write) {
1724813d
PZ
8240 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8241 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8242 }
8243 mutex_unlock(&mutex);
332ac17e
DF
8244 return ret;
8245}
8246
052f1dc7 8247#ifdef CONFIG_CGROUP_SCHED
68318b8e 8248
a7c6d554 8249static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8250{
a7c6d554 8251 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8252}
8253
eb95419b
TH
8254static struct cgroup_subsys_state *
8255cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8256{
eb95419b
TH
8257 struct task_group *parent = css_tg(parent_css);
8258 struct task_group *tg;
68318b8e 8259
eb95419b 8260 if (!parent) {
68318b8e 8261 /* This is early initialization for the top cgroup */
07e06b01 8262 return &root_task_group.css;
68318b8e
SV
8263 }
8264
ec7dc8ac 8265 tg = sched_create_group(parent);
68318b8e
SV
8266 if (IS_ERR(tg))
8267 return ERR_PTR(-ENOMEM);
8268
2f5177f0
PZ
8269 sched_online_group(tg, parent);
8270
68318b8e
SV
8271 return &tg->css;
8272}
8273
2f5177f0 8274static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8275{
eb95419b 8276 struct task_group *tg = css_tg(css);
ace783b9 8277
2f5177f0 8278 sched_offline_group(tg);
ace783b9
LZ
8279}
8280
eb95419b 8281static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8282{
eb95419b 8283 struct task_group *tg = css_tg(css);
68318b8e 8284
2f5177f0
PZ
8285 /*
8286 * Relies on the RCU grace period between css_released() and this.
8287 */
8288 sched_free_group(tg);
ace783b9
LZ
8289}
8290
ea86cb4b
VG
8291/*
8292 * This is called before wake_up_new_task(), therefore we really only
8293 * have to set its group bits, all the other stuff does not apply.
8294 */
b53202e6 8295static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8296{
ea86cb4b
VG
8297 struct rq_flags rf;
8298 struct rq *rq;
8299
8300 rq = task_rq_lock(task, &rf);
8301
8302 sched_change_group(task, TASK_SET_GROUP);
8303
8304 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8305}
8306
1f7dd3e5 8307static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8308{
bb9d97b6 8309 struct task_struct *task;
1f7dd3e5 8310 struct cgroup_subsys_state *css;
7dc603c9 8311 int ret = 0;
bb9d97b6 8312
1f7dd3e5 8313 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8314#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8315 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8316 return -EINVAL;
b68aa230 8317#else
bb9d97b6
TH
8318 /* We don't support RT-tasks being in separate groups */
8319 if (task->sched_class != &fair_sched_class)
8320 return -EINVAL;
b68aa230 8321#endif
7dc603c9
PZ
8322 /*
8323 * Serialize against wake_up_new_task() such that if its
8324 * running, we're sure to observe its full state.
8325 */
8326 raw_spin_lock_irq(&task->pi_lock);
8327 /*
8328 * Avoid calling sched_move_task() before wake_up_new_task()
8329 * has happened. This would lead to problems with PELT, due to
8330 * move wanting to detach+attach while we're not attached yet.
8331 */
8332 if (task->state == TASK_NEW)
8333 ret = -EINVAL;
8334 raw_spin_unlock_irq(&task->pi_lock);
8335
8336 if (ret)
8337 break;
bb9d97b6 8338 }
7dc603c9 8339 return ret;
be367d09 8340}
68318b8e 8341
1f7dd3e5 8342static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8343{
bb9d97b6 8344 struct task_struct *task;
1f7dd3e5 8345 struct cgroup_subsys_state *css;
bb9d97b6 8346
1f7dd3e5 8347 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8348 sched_move_task(task);
68318b8e
SV
8349}
8350
052f1dc7 8351#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8352static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8353 struct cftype *cftype, u64 shareval)
68318b8e 8354{
182446d0 8355 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8356}
8357
182446d0
TH
8358static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8359 struct cftype *cft)
68318b8e 8360{
182446d0 8361 struct task_group *tg = css_tg(css);
68318b8e 8362
c8b28116 8363 return (u64) scale_load_down(tg->shares);
68318b8e 8364}
ab84d31e
PT
8365
8366#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8367static DEFINE_MUTEX(cfs_constraints_mutex);
8368
ab84d31e
PT
8369const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8370const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8371
a790de99
PT
8372static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8373
ab84d31e
PT
8374static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8375{
56f570e5 8376 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8377 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8378
8379 if (tg == &root_task_group)
8380 return -EINVAL;
8381
8382 /*
8383 * Ensure we have at some amount of bandwidth every period. This is
8384 * to prevent reaching a state of large arrears when throttled via
8385 * entity_tick() resulting in prolonged exit starvation.
8386 */
8387 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8388 return -EINVAL;
8389
8390 /*
8391 * Likewise, bound things on the otherside by preventing insane quota
8392 * periods. This also allows us to normalize in computing quota
8393 * feasibility.
8394 */
8395 if (period > max_cfs_quota_period)
8396 return -EINVAL;
8397
0e59bdae
KT
8398 /*
8399 * Prevent race between setting of cfs_rq->runtime_enabled and
8400 * unthrottle_offline_cfs_rqs().
8401 */
8402 get_online_cpus();
a790de99
PT
8403 mutex_lock(&cfs_constraints_mutex);
8404 ret = __cfs_schedulable(tg, period, quota);
8405 if (ret)
8406 goto out_unlock;
8407
58088ad0 8408 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8409 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8410 /*
8411 * If we need to toggle cfs_bandwidth_used, off->on must occur
8412 * before making related changes, and on->off must occur afterwards
8413 */
8414 if (runtime_enabled && !runtime_was_enabled)
8415 cfs_bandwidth_usage_inc();
ab84d31e
PT
8416 raw_spin_lock_irq(&cfs_b->lock);
8417 cfs_b->period = ns_to_ktime(period);
8418 cfs_b->quota = quota;
58088ad0 8419
a9cf55b2 8420 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8421 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8422 if (runtime_enabled)
8423 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8424 raw_spin_unlock_irq(&cfs_b->lock);
8425
0e59bdae 8426 for_each_online_cpu(i) {
ab84d31e 8427 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8428 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8429
8430 raw_spin_lock_irq(&rq->lock);
58088ad0 8431 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8432 cfs_rq->runtime_remaining = 0;
671fd9da 8433
029632fb 8434 if (cfs_rq->throttled)
671fd9da 8435 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8436 raw_spin_unlock_irq(&rq->lock);
8437 }
1ee14e6c
BS
8438 if (runtime_was_enabled && !runtime_enabled)
8439 cfs_bandwidth_usage_dec();
a790de99
PT
8440out_unlock:
8441 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8442 put_online_cpus();
ab84d31e 8443
a790de99 8444 return ret;
ab84d31e
PT
8445}
8446
8447int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8448{
8449 u64 quota, period;
8450
029632fb 8451 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8452 if (cfs_quota_us < 0)
8453 quota = RUNTIME_INF;
8454 else
8455 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8456
8457 return tg_set_cfs_bandwidth(tg, period, quota);
8458}
8459
8460long tg_get_cfs_quota(struct task_group *tg)
8461{
8462 u64 quota_us;
8463
029632fb 8464 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8465 return -1;
8466
029632fb 8467 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8468 do_div(quota_us, NSEC_PER_USEC);
8469
8470 return quota_us;
8471}
8472
8473int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8474{
8475 u64 quota, period;
8476
8477 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8478 quota = tg->cfs_bandwidth.quota;
ab84d31e 8479
ab84d31e
PT
8480 return tg_set_cfs_bandwidth(tg, period, quota);
8481}
8482
8483long tg_get_cfs_period(struct task_group *tg)
8484{
8485 u64 cfs_period_us;
8486
029632fb 8487 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8488 do_div(cfs_period_us, NSEC_PER_USEC);
8489
8490 return cfs_period_us;
8491}
8492
182446d0
TH
8493static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8494 struct cftype *cft)
ab84d31e 8495{
182446d0 8496 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8497}
8498
182446d0
TH
8499static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8500 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8501{
182446d0 8502 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8503}
8504
182446d0
TH
8505static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8506 struct cftype *cft)
ab84d31e 8507{
182446d0 8508 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8509}
8510
182446d0
TH
8511static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8512 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8513{
182446d0 8514 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8515}
8516
a790de99
PT
8517struct cfs_schedulable_data {
8518 struct task_group *tg;
8519 u64 period, quota;
8520};
8521
8522/*
8523 * normalize group quota/period to be quota/max_period
8524 * note: units are usecs
8525 */
8526static u64 normalize_cfs_quota(struct task_group *tg,
8527 struct cfs_schedulable_data *d)
8528{
8529 u64 quota, period;
8530
8531 if (tg == d->tg) {
8532 period = d->period;
8533 quota = d->quota;
8534 } else {
8535 period = tg_get_cfs_period(tg);
8536 quota = tg_get_cfs_quota(tg);
8537 }
8538
8539 /* note: these should typically be equivalent */
8540 if (quota == RUNTIME_INF || quota == -1)
8541 return RUNTIME_INF;
8542
8543 return to_ratio(period, quota);
8544}
8545
8546static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8547{
8548 struct cfs_schedulable_data *d = data;
029632fb 8549 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8550 s64 quota = 0, parent_quota = -1;
8551
8552 if (!tg->parent) {
8553 quota = RUNTIME_INF;
8554 } else {
029632fb 8555 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8556
8557 quota = normalize_cfs_quota(tg, d);
9c58c79a 8558 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8559
8560 /*
8561 * ensure max(child_quota) <= parent_quota, inherit when no
8562 * limit is set
8563 */
8564 if (quota == RUNTIME_INF)
8565 quota = parent_quota;
8566 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8567 return -EINVAL;
8568 }
9c58c79a 8569 cfs_b->hierarchical_quota = quota;
a790de99
PT
8570
8571 return 0;
8572}
8573
8574static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8575{
8277434e 8576 int ret;
a790de99
PT
8577 struct cfs_schedulable_data data = {
8578 .tg = tg,
8579 .period = period,
8580 .quota = quota,
8581 };
8582
8583 if (quota != RUNTIME_INF) {
8584 do_div(data.period, NSEC_PER_USEC);
8585 do_div(data.quota, NSEC_PER_USEC);
8586 }
8587
8277434e
PT
8588 rcu_read_lock();
8589 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8590 rcu_read_unlock();
8591
8592 return ret;
a790de99 8593}
e8da1b18 8594
2da8ca82 8595static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8596{
2da8ca82 8597 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8598 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8599
44ffc75b
TH
8600 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8601 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8602 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8603
8604 return 0;
8605}
ab84d31e 8606#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8607#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8608
052f1dc7 8609#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8610static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8611 struct cftype *cft, s64 val)
6f505b16 8612{
182446d0 8613 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8614}
8615
182446d0
TH
8616static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8617 struct cftype *cft)
6f505b16 8618{
182446d0 8619 return sched_group_rt_runtime(css_tg(css));
6f505b16 8620}
d0b27fa7 8621
182446d0
TH
8622static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8623 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8624{
182446d0 8625 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8626}
8627
182446d0
TH
8628static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8629 struct cftype *cft)
d0b27fa7 8630{
182446d0 8631 return sched_group_rt_period(css_tg(css));
d0b27fa7 8632}
6d6bc0ad 8633#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8634
fe5c7cc2 8635static struct cftype cpu_files[] = {
052f1dc7 8636#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8637 {
8638 .name = "shares",
f4c753b7
PM
8639 .read_u64 = cpu_shares_read_u64,
8640 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8641 },
052f1dc7 8642#endif
ab84d31e
PT
8643#ifdef CONFIG_CFS_BANDWIDTH
8644 {
8645 .name = "cfs_quota_us",
8646 .read_s64 = cpu_cfs_quota_read_s64,
8647 .write_s64 = cpu_cfs_quota_write_s64,
8648 },
8649 {
8650 .name = "cfs_period_us",
8651 .read_u64 = cpu_cfs_period_read_u64,
8652 .write_u64 = cpu_cfs_period_write_u64,
8653 },
e8da1b18
NR
8654 {
8655 .name = "stat",
2da8ca82 8656 .seq_show = cpu_stats_show,
e8da1b18 8657 },
ab84d31e 8658#endif
052f1dc7 8659#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8660 {
9f0c1e56 8661 .name = "rt_runtime_us",
06ecb27c
PM
8662 .read_s64 = cpu_rt_runtime_read,
8663 .write_s64 = cpu_rt_runtime_write,
6f505b16 8664 },
d0b27fa7
PZ
8665 {
8666 .name = "rt_period_us",
f4c753b7
PM
8667 .read_u64 = cpu_rt_period_read_uint,
8668 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8669 },
052f1dc7 8670#endif
4baf6e33 8671 { } /* terminate */
68318b8e
SV
8672};
8673
073219e9 8674struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8675 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8676 .css_released = cpu_cgroup_css_released,
92fb9748 8677 .css_free = cpu_cgroup_css_free,
eeb61e53 8678 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8679 .can_attach = cpu_cgroup_can_attach,
8680 .attach = cpu_cgroup_attach,
5577964e 8681 .legacy_cftypes = cpu_files,
b38e42e9 8682 .early_init = true,
68318b8e
SV
8683};
8684
052f1dc7 8685#endif /* CONFIG_CGROUP_SCHED */
d842de87 8686
b637a328
PM
8687void dump_cpu_task(int cpu)
8688{
8689 pr_info("Task dump for CPU %d:\n", cpu);
8690 sched_show_task(cpu_curr(cpu));
8691}
ed82b8a1
AK
8692
8693/*
8694 * Nice levels are multiplicative, with a gentle 10% change for every
8695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8697 * that remained on nice 0.
8698 *
8699 * The "10% effect" is relative and cumulative: from _any_ nice level,
8700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8702 * If a task goes up by ~10% and another task goes down by ~10% then
8703 * the relative distance between them is ~25%.)
8704 */
8705const int sched_prio_to_weight[40] = {
8706 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8707 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8708 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8709 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8710 /* 0 */ 1024, 820, 655, 526, 423,
8711 /* 5 */ 335, 272, 215, 172, 137,
8712 /* 10 */ 110, 87, 70, 56, 45,
8713 /* 15 */ 36, 29, 23, 18, 15,
8714};
8715
8716/*
8717 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8718 *
8719 * In cases where the weight does not change often, we can use the
8720 * precalculated inverse to speed up arithmetics by turning divisions
8721 * into multiplications:
8722 */
8723const u32 sched_prio_to_wmult[40] = {
8724 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8725 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8726 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8727 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8728 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8729 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8730 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8731 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8732};