]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - kernel/sched/core.c
sched/core: Restructure destroy_sched_domain()
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
bf89a304
CC
1066 if (task_rq(p) == rq) {
1067 if (task_on_rq_queued(p))
1068 rq = __migrate_task(rq, p, arg->dest_cpu);
1069 else
1070 p->wake_cpu = arg->dest_cpu;
1071 }
5e16bbc2
PZ
1072 raw_spin_unlock(&rq->lock);
1073 raw_spin_unlock(&p->pi_lock);
1074
5cc389bc
PZ
1075 local_irq_enable();
1076 return 0;
1077}
1078
c5b28038
PZ
1079/*
1080 * sched_class::set_cpus_allowed must do the below, but is not required to
1081 * actually call this function.
1082 */
1083void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1084{
5cc389bc
PZ
1085 cpumask_copy(&p->cpus_allowed, new_mask);
1086 p->nr_cpus_allowed = cpumask_weight(new_mask);
1087}
1088
c5b28038
PZ
1089void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1090{
6c37067e
PZ
1091 struct rq *rq = task_rq(p);
1092 bool queued, running;
1093
c5b28038 1094 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1095
1096 queued = task_on_rq_queued(p);
1097 running = task_current(rq, p);
1098
1099 if (queued) {
1100 /*
1101 * Because __kthread_bind() calls this on blocked tasks without
1102 * holding rq->lock.
1103 */
1104 lockdep_assert_held(&rq->lock);
1de64443 1105 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1106 }
1107 if (running)
1108 put_prev_task(rq, p);
1109
c5b28038 1110 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1111
1112 if (running)
1113 p->sched_class->set_curr_task(rq);
1114 if (queued)
1de64443 1115 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1116}
1117
5cc389bc
PZ
1118/*
1119 * Change a given task's CPU affinity. Migrate the thread to a
1120 * proper CPU and schedule it away if the CPU it's executing on
1121 * is removed from the allowed bitmask.
1122 *
1123 * NOTE: the caller must have a valid reference to the task, the
1124 * task must not exit() & deallocate itself prematurely. The
1125 * call is not atomic; no spinlocks may be held.
1126 */
25834c73
PZ
1127static int __set_cpus_allowed_ptr(struct task_struct *p,
1128 const struct cpumask *new_mask, bool check)
5cc389bc 1129{
e9d867a6 1130 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1131 unsigned int dest_cpu;
eb580751
PZ
1132 struct rq_flags rf;
1133 struct rq *rq;
5cc389bc
PZ
1134 int ret = 0;
1135
eb580751 1136 rq = task_rq_lock(p, &rf);
5cc389bc 1137
e9d867a6
PZI
1138 if (p->flags & PF_KTHREAD) {
1139 /*
1140 * Kernel threads are allowed on online && !active CPUs
1141 */
1142 cpu_valid_mask = cpu_online_mask;
1143 }
1144
25834c73
PZ
1145 /*
1146 * Must re-check here, to close a race against __kthread_bind(),
1147 * sched_setaffinity() is not guaranteed to observe the flag.
1148 */
1149 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1150 ret = -EINVAL;
1151 goto out;
1152 }
1153
5cc389bc
PZ
1154 if (cpumask_equal(&p->cpus_allowed, new_mask))
1155 goto out;
1156
e9d867a6 1157 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1158 ret = -EINVAL;
1159 goto out;
1160 }
1161
1162 do_set_cpus_allowed(p, new_mask);
1163
e9d867a6
PZI
1164 if (p->flags & PF_KTHREAD) {
1165 /*
1166 * For kernel threads that do indeed end up on online &&
1167 * !active we want to ensure they are strict per-cpu threads.
1168 */
1169 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1170 !cpumask_intersects(new_mask, cpu_active_mask) &&
1171 p->nr_cpus_allowed != 1);
1172 }
1173
5cc389bc
PZ
1174 /* Can the task run on the task's current CPU? If so, we're done */
1175 if (cpumask_test_cpu(task_cpu(p), new_mask))
1176 goto out;
1177
e9d867a6 1178 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1179 if (task_running(rq, p) || p->state == TASK_WAKING) {
1180 struct migration_arg arg = { p, dest_cpu };
1181 /* Need help from migration thread: drop lock and wait. */
eb580751 1182 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1183 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1184 tlb_migrate_finish(p->mm);
1185 return 0;
cbce1a68
PZ
1186 } else if (task_on_rq_queued(p)) {
1187 /*
1188 * OK, since we're going to drop the lock immediately
1189 * afterwards anyway.
1190 */
e7904a28 1191 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1192 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1193 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1194 }
5cc389bc 1195out:
eb580751 1196 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1197
1198 return ret;
1199}
25834c73
PZ
1200
1201int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1202{
1203 return __set_cpus_allowed_ptr(p, new_mask, false);
1204}
5cc389bc
PZ
1205EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1206
dd41f596 1207void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1208{
e2912009
PZ
1209#ifdef CONFIG_SCHED_DEBUG
1210 /*
1211 * We should never call set_task_cpu() on a blocked task,
1212 * ttwu() will sort out the placement.
1213 */
077614ee 1214 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1215 !p->on_rq);
0122ec5b 1216
3ea94de1
JP
1217 /*
1218 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1219 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1220 * time relying on p->on_rq.
1221 */
1222 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1223 p->sched_class == &fair_sched_class &&
1224 (p->on_rq && !task_on_rq_migrating(p)));
1225
0122ec5b 1226#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1227 /*
1228 * The caller should hold either p->pi_lock or rq->lock, when changing
1229 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1230 *
1231 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1232 * see task_group().
6c6c54e1
PZ
1233 *
1234 * Furthermore, all task_rq users should acquire both locks, see
1235 * task_rq_lock().
1236 */
0122ec5b
PZ
1237 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1238 lockdep_is_held(&task_rq(p)->lock)));
1239#endif
e2912009
PZ
1240#endif
1241
de1d7286 1242 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1243
0c69774e 1244 if (task_cpu(p) != new_cpu) {
0a74bef8 1245 if (p->sched_class->migrate_task_rq)
5a4fd036 1246 p->sched_class->migrate_task_rq(p);
0c69774e 1247 p->se.nr_migrations++;
ff303e66 1248 perf_event_task_migrate(p);
0c69774e 1249 }
dd41f596
IM
1250
1251 __set_task_cpu(p, new_cpu);
c65cc870
IM
1252}
1253
ac66f547
PZ
1254static void __migrate_swap_task(struct task_struct *p, int cpu)
1255{
da0c1e65 1256 if (task_on_rq_queued(p)) {
ac66f547
PZ
1257 struct rq *src_rq, *dst_rq;
1258
1259 src_rq = task_rq(p);
1260 dst_rq = cpu_rq(cpu);
1261
3ea94de1 1262 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1263 deactivate_task(src_rq, p, 0);
1264 set_task_cpu(p, cpu);
1265 activate_task(dst_rq, p, 0);
3ea94de1 1266 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1267 check_preempt_curr(dst_rq, p, 0);
1268 } else {
1269 /*
1270 * Task isn't running anymore; make it appear like we migrated
1271 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1272 * previous cpu our target instead of where it really is.
ac66f547
PZ
1273 */
1274 p->wake_cpu = cpu;
1275 }
1276}
1277
1278struct migration_swap_arg {
1279 struct task_struct *src_task, *dst_task;
1280 int src_cpu, dst_cpu;
1281};
1282
1283static int migrate_swap_stop(void *data)
1284{
1285 struct migration_swap_arg *arg = data;
1286 struct rq *src_rq, *dst_rq;
1287 int ret = -EAGAIN;
1288
62694cd5
PZ
1289 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1290 return -EAGAIN;
1291
ac66f547
PZ
1292 src_rq = cpu_rq(arg->src_cpu);
1293 dst_rq = cpu_rq(arg->dst_cpu);
1294
74602315
PZ
1295 double_raw_lock(&arg->src_task->pi_lock,
1296 &arg->dst_task->pi_lock);
ac66f547 1297 double_rq_lock(src_rq, dst_rq);
62694cd5 1298
ac66f547
PZ
1299 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1300 goto unlock;
1301
1302 if (task_cpu(arg->src_task) != arg->src_cpu)
1303 goto unlock;
1304
1305 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1306 goto unlock;
1307
1308 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1309 goto unlock;
1310
1311 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1312 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1313
1314 ret = 0;
1315
1316unlock:
1317 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1318 raw_spin_unlock(&arg->dst_task->pi_lock);
1319 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1320
1321 return ret;
1322}
1323
1324/*
1325 * Cross migrate two tasks
1326 */
1327int migrate_swap(struct task_struct *cur, struct task_struct *p)
1328{
1329 struct migration_swap_arg arg;
1330 int ret = -EINVAL;
1331
ac66f547
PZ
1332 arg = (struct migration_swap_arg){
1333 .src_task = cur,
1334 .src_cpu = task_cpu(cur),
1335 .dst_task = p,
1336 .dst_cpu = task_cpu(p),
1337 };
1338
1339 if (arg.src_cpu == arg.dst_cpu)
1340 goto out;
1341
6acce3ef
PZ
1342 /*
1343 * These three tests are all lockless; this is OK since all of them
1344 * will be re-checked with proper locks held further down the line.
1345 */
ac66f547
PZ
1346 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1347 goto out;
1348
1349 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1350 goto out;
1351
1352 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1353 goto out;
1354
286549dc 1355 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1356 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1357
1358out:
ac66f547
PZ
1359 return ret;
1360}
1361
1da177e4
LT
1362/*
1363 * wait_task_inactive - wait for a thread to unschedule.
1364 *
85ba2d86
RM
1365 * If @match_state is nonzero, it's the @p->state value just checked and
1366 * not expected to change. If it changes, i.e. @p might have woken up,
1367 * then return zero. When we succeed in waiting for @p to be off its CPU,
1368 * we return a positive number (its total switch count). If a second call
1369 * a short while later returns the same number, the caller can be sure that
1370 * @p has remained unscheduled the whole time.
1371 *
1da177e4
LT
1372 * The caller must ensure that the task *will* unschedule sometime soon,
1373 * else this function might spin for a *long* time. This function can't
1374 * be called with interrupts off, or it may introduce deadlock with
1375 * smp_call_function() if an IPI is sent by the same process we are
1376 * waiting to become inactive.
1377 */
85ba2d86 1378unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1379{
da0c1e65 1380 int running, queued;
eb580751 1381 struct rq_flags rf;
85ba2d86 1382 unsigned long ncsw;
70b97a7f 1383 struct rq *rq;
1da177e4 1384
3a5c359a
AK
1385 for (;;) {
1386 /*
1387 * We do the initial early heuristics without holding
1388 * any task-queue locks at all. We'll only try to get
1389 * the runqueue lock when things look like they will
1390 * work out!
1391 */
1392 rq = task_rq(p);
fa490cfd 1393
3a5c359a
AK
1394 /*
1395 * If the task is actively running on another CPU
1396 * still, just relax and busy-wait without holding
1397 * any locks.
1398 *
1399 * NOTE! Since we don't hold any locks, it's not
1400 * even sure that "rq" stays as the right runqueue!
1401 * But we don't care, since "task_running()" will
1402 * return false if the runqueue has changed and p
1403 * is actually now running somewhere else!
1404 */
85ba2d86
RM
1405 while (task_running(rq, p)) {
1406 if (match_state && unlikely(p->state != match_state))
1407 return 0;
3a5c359a 1408 cpu_relax();
85ba2d86 1409 }
fa490cfd 1410
3a5c359a
AK
1411 /*
1412 * Ok, time to look more closely! We need the rq
1413 * lock now, to be *sure*. If we're wrong, we'll
1414 * just go back and repeat.
1415 */
eb580751 1416 rq = task_rq_lock(p, &rf);
27a9da65 1417 trace_sched_wait_task(p);
3a5c359a 1418 running = task_running(rq, p);
da0c1e65 1419 queued = task_on_rq_queued(p);
85ba2d86 1420 ncsw = 0;
f31e11d8 1421 if (!match_state || p->state == match_state)
93dcf55f 1422 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1423 task_rq_unlock(rq, p, &rf);
fa490cfd 1424
85ba2d86
RM
1425 /*
1426 * If it changed from the expected state, bail out now.
1427 */
1428 if (unlikely(!ncsw))
1429 break;
1430
3a5c359a
AK
1431 /*
1432 * Was it really running after all now that we
1433 * checked with the proper locks actually held?
1434 *
1435 * Oops. Go back and try again..
1436 */
1437 if (unlikely(running)) {
1438 cpu_relax();
1439 continue;
1440 }
fa490cfd 1441
3a5c359a
AK
1442 /*
1443 * It's not enough that it's not actively running,
1444 * it must be off the runqueue _entirely_, and not
1445 * preempted!
1446 *
80dd99b3 1447 * So if it was still runnable (but just not actively
3a5c359a
AK
1448 * running right now), it's preempted, and we should
1449 * yield - it could be a while.
1450 */
da0c1e65 1451 if (unlikely(queued)) {
8eb90c30
TG
1452 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1453
1454 set_current_state(TASK_UNINTERRUPTIBLE);
1455 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1456 continue;
1457 }
fa490cfd 1458
3a5c359a
AK
1459 /*
1460 * Ahh, all good. It wasn't running, and it wasn't
1461 * runnable, which means that it will never become
1462 * running in the future either. We're all done!
1463 */
1464 break;
1465 }
85ba2d86
RM
1466
1467 return ncsw;
1da177e4
LT
1468}
1469
1470/***
1471 * kick_process - kick a running thread to enter/exit the kernel
1472 * @p: the to-be-kicked thread
1473 *
1474 * Cause a process which is running on another CPU to enter
1475 * kernel-mode, without any delay. (to get signals handled.)
1476 *
25985edc 1477 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1478 * because all it wants to ensure is that the remote task enters
1479 * the kernel. If the IPI races and the task has been migrated
1480 * to another CPU then no harm is done and the purpose has been
1481 * achieved as well.
1482 */
36c8b586 1483void kick_process(struct task_struct *p)
1da177e4
LT
1484{
1485 int cpu;
1486
1487 preempt_disable();
1488 cpu = task_cpu(p);
1489 if ((cpu != smp_processor_id()) && task_curr(p))
1490 smp_send_reschedule(cpu);
1491 preempt_enable();
1492}
b43e3521 1493EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1494
30da688e 1495/*
013fdb80 1496 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1497 *
1498 * A few notes on cpu_active vs cpu_online:
1499 *
1500 * - cpu_active must be a subset of cpu_online
1501 *
1502 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1503 * see __set_cpus_allowed_ptr(). At this point the newly online
1504 * cpu isn't yet part of the sched domains, and balancing will not
1505 * see it.
1506 *
1507 * - on cpu-down we clear cpu_active() to mask the sched domains and
1508 * avoid the load balancer to place new tasks on the to be removed
1509 * cpu. Existing tasks will remain running there and will be taken
1510 * off.
1511 *
1512 * This means that fallback selection must not select !active CPUs.
1513 * And can assume that any active CPU must be online. Conversely
1514 * select_task_rq() below may allow selection of !active CPUs in order
1515 * to satisfy the above rules.
30da688e 1516 */
5da9a0fb
PZ
1517static int select_fallback_rq(int cpu, struct task_struct *p)
1518{
aa00d89c
TC
1519 int nid = cpu_to_node(cpu);
1520 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1521 enum { cpuset, possible, fail } state = cpuset;
1522 int dest_cpu;
5da9a0fb 1523
aa00d89c
TC
1524 /*
1525 * If the node that the cpu is on has been offlined, cpu_to_node()
1526 * will return -1. There is no cpu on the node, and we should
1527 * select the cpu on the other node.
1528 */
1529 if (nid != -1) {
1530 nodemask = cpumask_of_node(nid);
1531
1532 /* Look for allowed, online CPU in same node. */
1533 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1534 if (!cpu_active(dest_cpu))
1535 continue;
1536 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1537 return dest_cpu;
1538 }
2baab4e9 1539 }
5da9a0fb 1540
2baab4e9
PZ
1541 for (;;) {
1542 /* Any allowed, online CPU? */
e3831edd 1543 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1544 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1545 continue;
1546 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1547 continue;
1548 goto out;
1549 }
5da9a0fb 1550
e73e85f0 1551 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1552 switch (state) {
1553 case cpuset:
e73e85f0
ON
1554 if (IS_ENABLED(CONFIG_CPUSETS)) {
1555 cpuset_cpus_allowed_fallback(p);
1556 state = possible;
1557 break;
1558 }
1559 /* fall-through */
2baab4e9
PZ
1560 case possible:
1561 do_set_cpus_allowed(p, cpu_possible_mask);
1562 state = fail;
1563 break;
1564
1565 case fail:
1566 BUG();
1567 break;
1568 }
1569 }
1570
1571out:
1572 if (state != cpuset) {
1573 /*
1574 * Don't tell them about moving exiting tasks or
1575 * kernel threads (both mm NULL), since they never
1576 * leave kernel.
1577 */
1578 if (p->mm && printk_ratelimit()) {
aac74dc4 1579 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1580 task_pid_nr(p), p->comm, cpu);
1581 }
5da9a0fb
PZ
1582 }
1583
1584 return dest_cpu;
1585}
1586
e2912009 1587/*
013fdb80 1588 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1589 */
970b13ba 1590static inline
ac66f547 1591int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1592{
cbce1a68
PZ
1593 lockdep_assert_held(&p->pi_lock);
1594
50605ffb 1595 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1596 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1597 else
1598 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1599
1600 /*
1601 * In order not to call set_task_cpu() on a blocking task we need
1602 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1603 * cpu.
1604 *
1605 * Since this is common to all placement strategies, this lives here.
1606 *
1607 * [ this allows ->select_task() to simply return task_cpu(p) and
1608 * not worry about this generic constraint ]
1609 */
fa17b507 1610 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1611 !cpu_online(cpu)))
5da9a0fb 1612 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1613
1614 return cpu;
970b13ba 1615}
09a40af5
MG
1616
1617static void update_avg(u64 *avg, u64 sample)
1618{
1619 s64 diff = sample - *avg;
1620 *avg += diff >> 3;
1621}
25834c73
PZ
1622
1623#else
1624
1625static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1626 const struct cpumask *new_mask, bool check)
1627{
1628 return set_cpus_allowed_ptr(p, new_mask);
1629}
1630
5cc389bc 1631#endif /* CONFIG_SMP */
970b13ba 1632
d7c01d27 1633static void
b84cb5df 1634ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1635{
4fa8d299 1636 struct rq *rq;
b84cb5df 1637
4fa8d299
JP
1638 if (!schedstat_enabled())
1639 return;
1640
1641 rq = this_rq();
d7c01d27 1642
4fa8d299
JP
1643#ifdef CONFIG_SMP
1644 if (cpu == rq->cpu) {
ae92882e
JP
1645 schedstat_inc(rq->ttwu_local);
1646 schedstat_inc(p->se.statistics.nr_wakeups_local);
d7c01d27
PZ
1647 } else {
1648 struct sched_domain *sd;
1649
ae92882e 1650 schedstat_inc(p->se.statistics.nr_wakeups_remote);
057f3fad 1651 rcu_read_lock();
4fa8d299 1652 for_each_domain(rq->cpu, sd) {
d7c01d27 1653 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
ae92882e 1654 schedstat_inc(sd->ttwu_wake_remote);
d7c01d27
PZ
1655 break;
1656 }
1657 }
057f3fad 1658 rcu_read_unlock();
d7c01d27 1659 }
f339b9dc
PZ
1660
1661 if (wake_flags & WF_MIGRATED)
ae92882e 1662 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
d7c01d27
PZ
1663#endif /* CONFIG_SMP */
1664
ae92882e
JP
1665 schedstat_inc(rq->ttwu_count);
1666 schedstat_inc(p->se.statistics.nr_wakeups);
d7c01d27
PZ
1667
1668 if (wake_flags & WF_SYNC)
ae92882e 1669 schedstat_inc(p->se.statistics.nr_wakeups_sync);
d7c01d27
PZ
1670}
1671
1de64443 1672static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1673{
9ed3811a 1674 activate_task(rq, p, en_flags);
da0c1e65 1675 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1676
1677 /* if a worker is waking up, notify workqueue */
1678 if (p->flags & PF_WQ_WORKER)
1679 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1680}
1681
23f41eeb
PZ
1682/*
1683 * Mark the task runnable and perform wakeup-preemption.
1684 */
e7904a28
PZ
1685static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1686 struct pin_cookie cookie)
9ed3811a 1687{
9ed3811a 1688 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1689 p->state = TASK_RUNNING;
fbd705a0
PZ
1690 trace_sched_wakeup(p);
1691
9ed3811a 1692#ifdef CONFIG_SMP
4c9a4bc8
PZ
1693 if (p->sched_class->task_woken) {
1694 /*
cbce1a68
PZ
1695 * Our task @p is fully woken up and running; so its safe to
1696 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1697 */
e7904a28 1698 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1699 p->sched_class->task_woken(rq, p);
e7904a28 1700 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1701 }
9ed3811a 1702
e69c6341 1703 if (rq->idle_stamp) {
78becc27 1704 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1705 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1706
abfafa54
JL
1707 update_avg(&rq->avg_idle, delta);
1708
1709 if (rq->avg_idle > max)
9ed3811a 1710 rq->avg_idle = max;
abfafa54 1711
9ed3811a
TH
1712 rq->idle_stamp = 0;
1713 }
1714#endif
1715}
1716
c05fbafb 1717static void
e7904a28
PZ
1718ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1719 struct pin_cookie cookie)
c05fbafb 1720{
b5179ac7
PZ
1721 int en_flags = ENQUEUE_WAKEUP;
1722
cbce1a68
PZ
1723 lockdep_assert_held(&rq->lock);
1724
c05fbafb
PZ
1725#ifdef CONFIG_SMP
1726 if (p->sched_contributes_to_load)
1727 rq->nr_uninterruptible--;
b5179ac7 1728
b5179ac7 1729 if (wake_flags & WF_MIGRATED)
59efa0ba 1730 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1731#endif
1732
b5179ac7 1733 ttwu_activate(rq, p, en_flags);
e7904a28 1734 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1735}
1736
1737/*
1738 * Called in case the task @p isn't fully descheduled from its runqueue,
1739 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1740 * since all we need to do is flip p->state to TASK_RUNNING, since
1741 * the task is still ->on_rq.
1742 */
1743static int ttwu_remote(struct task_struct *p, int wake_flags)
1744{
eb580751 1745 struct rq_flags rf;
c05fbafb
PZ
1746 struct rq *rq;
1747 int ret = 0;
1748
eb580751 1749 rq = __task_rq_lock(p, &rf);
da0c1e65 1750 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1751 /* check_preempt_curr() may use rq clock */
1752 update_rq_clock(rq);
e7904a28 1753 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1754 ret = 1;
1755 }
eb580751 1756 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1757
1758 return ret;
1759}
1760
317f3941 1761#ifdef CONFIG_SMP
e3baac47 1762void sched_ttwu_pending(void)
317f3941
PZ
1763{
1764 struct rq *rq = this_rq();
fa14ff4a 1765 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1766 struct pin_cookie cookie;
fa14ff4a 1767 struct task_struct *p;
e3baac47 1768 unsigned long flags;
317f3941 1769
e3baac47
PZ
1770 if (!llist)
1771 return;
1772
1773 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1774 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1775
fa14ff4a 1776 while (llist) {
b7e7ade3
PZ
1777 int wake_flags = 0;
1778
fa14ff4a
PZ
1779 p = llist_entry(llist, struct task_struct, wake_entry);
1780 llist = llist_next(llist);
b7e7ade3
PZ
1781
1782 if (p->sched_remote_wakeup)
1783 wake_flags = WF_MIGRATED;
1784
1785 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1786 }
1787
e7904a28 1788 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1789 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1790}
1791
1792void scheduler_ipi(void)
1793{
f27dde8d
PZ
1794 /*
1795 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1796 * TIF_NEED_RESCHED remotely (for the first time) will also send
1797 * this IPI.
1798 */
8cb75e0c 1799 preempt_fold_need_resched();
f27dde8d 1800
fd2ac4f4 1801 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1802 return;
1803
1804 /*
1805 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1806 * traditionally all their work was done from the interrupt return
1807 * path. Now that we actually do some work, we need to make sure
1808 * we do call them.
1809 *
1810 * Some archs already do call them, luckily irq_enter/exit nest
1811 * properly.
1812 *
1813 * Arguably we should visit all archs and update all handlers,
1814 * however a fair share of IPIs are still resched only so this would
1815 * somewhat pessimize the simple resched case.
1816 */
1817 irq_enter();
fa14ff4a 1818 sched_ttwu_pending();
ca38062e
SS
1819
1820 /*
1821 * Check if someone kicked us for doing the nohz idle load balance.
1822 */
873b4c65 1823 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1824 this_rq()->idle_balance = 1;
ca38062e 1825 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1826 }
c5d753a5 1827 irq_exit();
317f3941
PZ
1828}
1829
b7e7ade3 1830static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1831{
e3baac47
PZ
1832 struct rq *rq = cpu_rq(cpu);
1833
b7e7ade3
PZ
1834 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1835
e3baac47
PZ
1836 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1837 if (!set_nr_if_polling(rq->idle))
1838 smp_send_reschedule(cpu);
1839 else
1840 trace_sched_wake_idle_without_ipi(cpu);
1841 }
317f3941 1842}
d6aa8f85 1843
f6be8af1
CL
1844void wake_up_if_idle(int cpu)
1845{
1846 struct rq *rq = cpu_rq(cpu);
1847 unsigned long flags;
1848
fd7de1e8
AL
1849 rcu_read_lock();
1850
1851 if (!is_idle_task(rcu_dereference(rq->curr)))
1852 goto out;
f6be8af1
CL
1853
1854 if (set_nr_if_polling(rq->idle)) {
1855 trace_sched_wake_idle_without_ipi(cpu);
1856 } else {
1857 raw_spin_lock_irqsave(&rq->lock, flags);
1858 if (is_idle_task(rq->curr))
1859 smp_send_reschedule(cpu);
1860 /* Else cpu is not in idle, do nothing here */
1861 raw_spin_unlock_irqrestore(&rq->lock, flags);
1862 }
fd7de1e8
AL
1863
1864out:
1865 rcu_read_unlock();
f6be8af1
CL
1866}
1867
39be3501 1868bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1869{
1870 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1871}
d6aa8f85 1872#endif /* CONFIG_SMP */
317f3941 1873
b5179ac7 1874static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1875{
1876 struct rq *rq = cpu_rq(cpu);
e7904a28 1877 struct pin_cookie cookie;
c05fbafb 1878
17d9f311 1879#if defined(CONFIG_SMP)
39be3501 1880 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1881 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1882 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1883 return;
1884 }
1885#endif
1886
c05fbafb 1887 raw_spin_lock(&rq->lock);
e7904a28 1888 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1889 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1890 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1891 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1892}
1893
8643cda5
PZ
1894/*
1895 * Notes on Program-Order guarantees on SMP systems.
1896 *
1897 * MIGRATION
1898 *
1899 * The basic program-order guarantee on SMP systems is that when a task [t]
1900 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1901 * execution on its new cpu [c1].
1902 *
1903 * For migration (of runnable tasks) this is provided by the following means:
1904 *
1905 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1906 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1907 * rq(c1)->lock (if not at the same time, then in that order).
1908 * C) LOCK of the rq(c1)->lock scheduling in task
1909 *
1910 * Transitivity guarantees that B happens after A and C after B.
1911 * Note: we only require RCpc transitivity.
1912 * Note: the cpu doing B need not be c0 or c1
1913 *
1914 * Example:
1915 *
1916 * CPU0 CPU1 CPU2
1917 *
1918 * LOCK rq(0)->lock
1919 * sched-out X
1920 * sched-in Y
1921 * UNLOCK rq(0)->lock
1922 *
1923 * LOCK rq(0)->lock // orders against CPU0
1924 * dequeue X
1925 * UNLOCK rq(0)->lock
1926 *
1927 * LOCK rq(1)->lock
1928 * enqueue X
1929 * UNLOCK rq(1)->lock
1930 *
1931 * LOCK rq(1)->lock // orders against CPU2
1932 * sched-out Z
1933 * sched-in X
1934 * UNLOCK rq(1)->lock
1935 *
1936 *
1937 * BLOCKING -- aka. SLEEP + WAKEUP
1938 *
1939 * For blocking we (obviously) need to provide the same guarantee as for
1940 * migration. However the means are completely different as there is no lock
1941 * chain to provide order. Instead we do:
1942 *
1943 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1944 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1945 *
1946 * Example:
1947 *
1948 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1949 *
1950 * LOCK rq(0)->lock LOCK X->pi_lock
1951 * dequeue X
1952 * sched-out X
1953 * smp_store_release(X->on_cpu, 0);
1954 *
1f03e8d2 1955 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1956 * X->state = WAKING
1957 * set_task_cpu(X,2)
1958 *
1959 * LOCK rq(2)->lock
1960 * enqueue X
1961 * X->state = RUNNING
1962 * UNLOCK rq(2)->lock
1963 *
1964 * LOCK rq(2)->lock // orders against CPU1
1965 * sched-out Z
1966 * sched-in X
1967 * UNLOCK rq(2)->lock
1968 *
1969 * UNLOCK X->pi_lock
1970 * UNLOCK rq(0)->lock
1971 *
1972 *
1973 * However; for wakeups there is a second guarantee we must provide, namely we
1974 * must observe the state that lead to our wakeup. That is, not only must our
1975 * task observe its own prior state, it must also observe the stores prior to
1976 * its wakeup.
1977 *
1978 * This means that any means of doing remote wakeups must order the CPU doing
1979 * the wakeup against the CPU the task is going to end up running on. This,
1980 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1981 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1982 *
1983 */
1984
9ed3811a 1985/**
1da177e4 1986 * try_to_wake_up - wake up a thread
9ed3811a 1987 * @p: the thread to be awakened
1da177e4 1988 * @state: the mask of task states that can be woken
9ed3811a 1989 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1990 *
1991 * Put it on the run-queue if it's not already there. The "current"
1992 * thread is always on the run-queue (except when the actual
1993 * re-schedule is in progress), and as such you're allowed to do
1994 * the simpler "current->state = TASK_RUNNING" to mark yourself
1995 * runnable without the overhead of this.
1996 *
e69f6186 1997 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1998 * or @state didn't match @p's state.
1da177e4 1999 */
e4a52bcb
PZ
2000static int
2001try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 2002{
1da177e4 2003 unsigned long flags;
c05fbafb 2004 int cpu, success = 0;
2398f2c6 2005
e0acd0a6
ON
2006 /*
2007 * If we are going to wake up a thread waiting for CONDITION we
2008 * need to ensure that CONDITION=1 done by the caller can not be
2009 * reordered with p->state check below. This pairs with mb() in
2010 * set_current_state() the waiting thread does.
2011 */
2012 smp_mb__before_spinlock();
013fdb80 2013 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2014 if (!(p->state & state))
1da177e4
LT
2015 goto out;
2016
fbd705a0
PZ
2017 trace_sched_waking(p);
2018
c05fbafb 2019 success = 1; /* we're going to change ->state */
1da177e4 2020 cpu = task_cpu(p);
1da177e4 2021
135e8c92
BS
2022 /*
2023 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2024 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2025 * in smp_cond_load_acquire() below.
2026 *
2027 * sched_ttwu_pending() try_to_wake_up()
2028 * [S] p->on_rq = 1; [L] P->state
2029 * UNLOCK rq->lock -----.
2030 * \
2031 * +--- RMB
2032 * schedule() /
2033 * LOCK rq->lock -----'
2034 * UNLOCK rq->lock
2035 *
2036 * [task p]
2037 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2038 *
2039 * Pairs with the UNLOCK+LOCK on rq->lock from the
2040 * last wakeup of our task and the schedule that got our task
2041 * current.
2042 */
2043 smp_rmb();
c05fbafb
PZ
2044 if (p->on_rq && ttwu_remote(p, wake_flags))
2045 goto stat;
1da177e4 2046
1da177e4 2047#ifdef CONFIG_SMP
ecf7d01c
PZ
2048 /*
2049 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2050 * possible to, falsely, observe p->on_cpu == 0.
2051 *
2052 * One must be running (->on_cpu == 1) in order to remove oneself
2053 * from the runqueue.
2054 *
2055 * [S] ->on_cpu = 1; [L] ->on_rq
2056 * UNLOCK rq->lock
2057 * RMB
2058 * LOCK rq->lock
2059 * [S] ->on_rq = 0; [L] ->on_cpu
2060 *
2061 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2062 * from the consecutive calls to schedule(); the first switching to our
2063 * task, the second putting it to sleep.
2064 */
2065 smp_rmb();
2066
e9c84311 2067 /*
c05fbafb
PZ
2068 * If the owning (remote) cpu is still in the middle of schedule() with
2069 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2070 *
2071 * Pairs with the smp_store_release() in finish_lock_switch().
2072 *
2073 * This ensures that tasks getting woken will be fully ordered against
2074 * their previous state and preserve Program Order.
0970d299 2075 */
1f03e8d2 2076 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2077
a8e4f2ea 2078 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2079 p->state = TASK_WAKING;
e7693a36 2080
ac66f547 2081 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2082 if (task_cpu(p) != cpu) {
2083 wake_flags |= WF_MIGRATED;
e4a52bcb 2084 set_task_cpu(p, cpu);
f339b9dc 2085 }
1da177e4 2086#endif /* CONFIG_SMP */
1da177e4 2087
b5179ac7 2088 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2089stat:
4fa8d299 2090 ttwu_stat(p, cpu, wake_flags);
1da177e4 2091out:
013fdb80 2092 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2093
2094 return success;
2095}
2096
21aa9af0
TH
2097/**
2098 * try_to_wake_up_local - try to wake up a local task with rq lock held
2099 * @p: the thread to be awakened
9279e0d2 2100 * @cookie: context's cookie for pinning
21aa9af0 2101 *
2acca55e 2102 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2103 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2104 * the current task.
21aa9af0 2105 */
e7904a28 2106static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2107{
2108 struct rq *rq = task_rq(p);
21aa9af0 2109
383efcd0
TH
2110 if (WARN_ON_ONCE(rq != this_rq()) ||
2111 WARN_ON_ONCE(p == current))
2112 return;
2113
21aa9af0
TH
2114 lockdep_assert_held(&rq->lock);
2115
2acca55e 2116 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2117 /*
2118 * This is OK, because current is on_cpu, which avoids it being
2119 * picked for load-balance and preemption/IRQs are still
2120 * disabled avoiding further scheduler activity on it and we've
2121 * not yet picked a replacement task.
2122 */
e7904a28 2123 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2124 raw_spin_unlock(&rq->lock);
2125 raw_spin_lock(&p->pi_lock);
2126 raw_spin_lock(&rq->lock);
e7904a28 2127 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2128 }
2129
21aa9af0 2130 if (!(p->state & TASK_NORMAL))
2acca55e 2131 goto out;
21aa9af0 2132
fbd705a0
PZ
2133 trace_sched_waking(p);
2134
da0c1e65 2135 if (!task_on_rq_queued(p))
d7c01d27
PZ
2136 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2137
e7904a28 2138 ttwu_do_wakeup(rq, p, 0, cookie);
4fa8d299 2139 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2140out:
2141 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2142}
2143
50fa610a
DH
2144/**
2145 * wake_up_process - Wake up a specific process
2146 * @p: The process to be woken up.
2147 *
2148 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2149 * processes.
2150 *
2151 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2152 *
2153 * It may be assumed that this function implies a write memory barrier before
2154 * changing the task state if and only if any tasks are woken up.
2155 */
7ad5b3a5 2156int wake_up_process(struct task_struct *p)
1da177e4 2157{
9067ac85 2158 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2159}
1da177e4
LT
2160EXPORT_SYMBOL(wake_up_process);
2161
7ad5b3a5 2162int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2163{
2164 return try_to_wake_up(p, state, 0);
2165}
2166
a5e7be3b
JL
2167/*
2168 * This function clears the sched_dl_entity static params.
2169 */
2170void __dl_clear_params(struct task_struct *p)
2171{
2172 struct sched_dl_entity *dl_se = &p->dl;
2173
2174 dl_se->dl_runtime = 0;
2175 dl_se->dl_deadline = 0;
2176 dl_se->dl_period = 0;
2177 dl_se->flags = 0;
2178 dl_se->dl_bw = 0;
40767b0d
PZ
2179
2180 dl_se->dl_throttled = 0;
40767b0d 2181 dl_se->dl_yielded = 0;
a5e7be3b
JL
2182}
2183
1da177e4
LT
2184/*
2185 * Perform scheduler related setup for a newly forked process p.
2186 * p is forked by current.
dd41f596
IM
2187 *
2188 * __sched_fork() is basic setup used by init_idle() too:
2189 */
5e1576ed 2190static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2191{
fd2f4419
PZ
2192 p->on_rq = 0;
2193
2194 p->se.on_rq = 0;
dd41f596
IM
2195 p->se.exec_start = 0;
2196 p->se.sum_exec_runtime = 0;
f6cf891c 2197 p->se.prev_sum_exec_runtime = 0;
6c594c21 2198 p->se.nr_migrations = 0;
da7a735e 2199 p->se.vruntime = 0;
fd2f4419 2200 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2201
ad936d86
BP
2202#ifdef CONFIG_FAIR_GROUP_SCHED
2203 p->se.cfs_rq = NULL;
2204#endif
2205
6cfb0d5d 2206#ifdef CONFIG_SCHEDSTATS
cb251765 2207 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2208 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2209#endif
476d139c 2210
aab03e05 2211 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2212 init_dl_task_timer(&p->dl);
a5e7be3b 2213 __dl_clear_params(p);
aab03e05 2214
fa717060 2215 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2216 p->rt.timeout = 0;
2217 p->rt.time_slice = sched_rr_timeslice;
2218 p->rt.on_rq = 0;
2219 p->rt.on_list = 0;
476d139c 2220
e107be36
AK
2221#ifdef CONFIG_PREEMPT_NOTIFIERS
2222 INIT_HLIST_HEAD(&p->preempt_notifiers);
2223#endif
cbee9f88
PZ
2224
2225#ifdef CONFIG_NUMA_BALANCING
2226 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2227 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2228 p->mm->numa_scan_seq = 0;
2229 }
2230
5e1576ed
RR
2231 if (clone_flags & CLONE_VM)
2232 p->numa_preferred_nid = current->numa_preferred_nid;
2233 else
2234 p->numa_preferred_nid = -1;
2235
cbee9f88
PZ
2236 p->node_stamp = 0ULL;
2237 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2238 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2239 p->numa_work.next = &p->numa_work;
44dba3d5 2240 p->numa_faults = NULL;
7e2703e6
RR
2241 p->last_task_numa_placement = 0;
2242 p->last_sum_exec_runtime = 0;
8c8a743c 2243
8c8a743c 2244 p->numa_group = NULL;
cbee9f88 2245#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2246}
2247
2a595721
SD
2248DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2249
1a687c2e 2250#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2251
1a687c2e
MG
2252void set_numabalancing_state(bool enabled)
2253{
2254 if (enabled)
2a595721 2255 static_branch_enable(&sched_numa_balancing);
1a687c2e 2256 else
2a595721 2257 static_branch_disable(&sched_numa_balancing);
1a687c2e 2258}
54a43d54
AK
2259
2260#ifdef CONFIG_PROC_SYSCTL
2261int sysctl_numa_balancing(struct ctl_table *table, int write,
2262 void __user *buffer, size_t *lenp, loff_t *ppos)
2263{
2264 struct ctl_table t;
2265 int err;
2a595721 2266 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2267
2268 if (write && !capable(CAP_SYS_ADMIN))
2269 return -EPERM;
2270
2271 t = *table;
2272 t.data = &state;
2273 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2274 if (err < 0)
2275 return err;
2276 if (write)
2277 set_numabalancing_state(state);
2278 return err;
2279}
2280#endif
2281#endif
dd41f596 2282
4698f88c
JP
2283#ifdef CONFIG_SCHEDSTATS
2284
cb251765 2285DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2286static bool __initdata __sched_schedstats = false;
cb251765 2287
cb251765
MG
2288static void set_schedstats(bool enabled)
2289{
2290 if (enabled)
2291 static_branch_enable(&sched_schedstats);
2292 else
2293 static_branch_disable(&sched_schedstats);
2294}
2295
2296void force_schedstat_enabled(void)
2297{
2298 if (!schedstat_enabled()) {
2299 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2300 static_branch_enable(&sched_schedstats);
2301 }
2302}
2303
2304static int __init setup_schedstats(char *str)
2305{
2306 int ret = 0;
2307 if (!str)
2308 goto out;
2309
4698f88c
JP
2310 /*
2311 * This code is called before jump labels have been set up, so we can't
2312 * change the static branch directly just yet. Instead set a temporary
2313 * variable so init_schedstats() can do it later.
2314 */
cb251765 2315 if (!strcmp(str, "enable")) {
4698f88c 2316 __sched_schedstats = true;
cb251765
MG
2317 ret = 1;
2318 } else if (!strcmp(str, "disable")) {
4698f88c 2319 __sched_schedstats = false;
cb251765
MG
2320 ret = 1;
2321 }
2322out:
2323 if (!ret)
2324 pr_warn("Unable to parse schedstats=\n");
2325
2326 return ret;
2327}
2328__setup("schedstats=", setup_schedstats);
2329
4698f88c
JP
2330static void __init init_schedstats(void)
2331{
2332 set_schedstats(__sched_schedstats);
2333}
2334
cb251765
MG
2335#ifdef CONFIG_PROC_SYSCTL
2336int sysctl_schedstats(struct ctl_table *table, int write,
2337 void __user *buffer, size_t *lenp, loff_t *ppos)
2338{
2339 struct ctl_table t;
2340 int err;
2341 int state = static_branch_likely(&sched_schedstats);
2342
2343 if (write && !capable(CAP_SYS_ADMIN))
2344 return -EPERM;
2345
2346 t = *table;
2347 t.data = &state;
2348 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2349 if (err < 0)
2350 return err;
2351 if (write)
2352 set_schedstats(state);
2353 return err;
2354}
4698f88c
JP
2355#endif /* CONFIG_PROC_SYSCTL */
2356#else /* !CONFIG_SCHEDSTATS */
2357static inline void init_schedstats(void) {}
2358#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2359
2360/*
2361 * fork()/clone()-time setup:
2362 */
aab03e05 2363int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2364{
0122ec5b 2365 unsigned long flags;
dd41f596
IM
2366 int cpu = get_cpu();
2367
5e1576ed 2368 __sched_fork(clone_flags, p);
06b83b5f 2369 /*
7dc603c9 2370 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2371 * nobody will actually run it, and a signal or other external
2372 * event cannot wake it up and insert it on the runqueue either.
2373 */
7dc603c9 2374 p->state = TASK_NEW;
dd41f596 2375
c350a04e
MG
2376 /*
2377 * Make sure we do not leak PI boosting priority to the child.
2378 */
2379 p->prio = current->normal_prio;
2380
b9dc29e7
MG
2381 /*
2382 * Revert to default priority/policy on fork if requested.
2383 */
2384 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2385 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2386 p->policy = SCHED_NORMAL;
6c697bdf 2387 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2388 p->rt_priority = 0;
2389 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2390 p->static_prio = NICE_TO_PRIO(0);
2391
2392 p->prio = p->normal_prio = __normal_prio(p);
2393 set_load_weight(p);
6c697bdf 2394
b9dc29e7
MG
2395 /*
2396 * We don't need the reset flag anymore after the fork. It has
2397 * fulfilled its duty:
2398 */
2399 p->sched_reset_on_fork = 0;
2400 }
ca94c442 2401
aab03e05
DF
2402 if (dl_prio(p->prio)) {
2403 put_cpu();
2404 return -EAGAIN;
2405 } else if (rt_prio(p->prio)) {
2406 p->sched_class = &rt_sched_class;
2407 } else {
2ddbf952 2408 p->sched_class = &fair_sched_class;
aab03e05 2409 }
b29739f9 2410
7dc603c9 2411 init_entity_runnable_average(&p->se);
cd29fe6f 2412
86951599
PZ
2413 /*
2414 * The child is not yet in the pid-hash so no cgroup attach races,
2415 * and the cgroup is pinned to this child due to cgroup_fork()
2416 * is ran before sched_fork().
2417 *
2418 * Silence PROVE_RCU.
2419 */
0122ec5b 2420 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2421 /*
2422 * We're setting the cpu for the first time, we don't migrate,
2423 * so use __set_task_cpu().
2424 */
2425 __set_task_cpu(p, cpu);
2426 if (p->sched_class->task_fork)
2427 p->sched_class->task_fork(p);
0122ec5b 2428 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2429
f6db8347 2430#ifdef CONFIG_SCHED_INFO
dd41f596 2431 if (likely(sched_info_on()))
52f17b6c 2432 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2433#endif
3ca7a440
PZ
2434#if defined(CONFIG_SMP)
2435 p->on_cpu = 0;
4866cde0 2436#endif
01028747 2437 init_task_preempt_count(p);
806c09a7 2438#ifdef CONFIG_SMP
917b627d 2439 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2440 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2441#endif
917b627d 2442
476d139c 2443 put_cpu();
aab03e05 2444 return 0;
1da177e4
LT
2445}
2446
332ac17e
DF
2447unsigned long to_ratio(u64 period, u64 runtime)
2448{
2449 if (runtime == RUNTIME_INF)
2450 return 1ULL << 20;
2451
2452 /*
2453 * Doing this here saves a lot of checks in all
2454 * the calling paths, and returning zero seems
2455 * safe for them anyway.
2456 */
2457 if (period == 0)
2458 return 0;
2459
2460 return div64_u64(runtime << 20, period);
2461}
2462
2463#ifdef CONFIG_SMP
2464inline struct dl_bw *dl_bw_of(int i)
2465{
f78f5b90
PM
2466 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2467 "sched RCU must be held");
332ac17e
DF
2468 return &cpu_rq(i)->rd->dl_bw;
2469}
2470
de212f18 2471static inline int dl_bw_cpus(int i)
332ac17e 2472{
de212f18
PZ
2473 struct root_domain *rd = cpu_rq(i)->rd;
2474 int cpus = 0;
2475
f78f5b90
PM
2476 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2477 "sched RCU must be held");
de212f18
PZ
2478 for_each_cpu_and(i, rd->span, cpu_active_mask)
2479 cpus++;
2480
2481 return cpus;
332ac17e
DF
2482}
2483#else
2484inline struct dl_bw *dl_bw_of(int i)
2485{
2486 return &cpu_rq(i)->dl.dl_bw;
2487}
2488
de212f18 2489static inline int dl_bw_cpus(int i)
332ac17e
DF
2490{
2491 return 1;
2492}
2493#endif
2494
332ac17e
DF
2495/*
2496 * We must be sure that accepting a new task (or allowing changing the
2497 * parameters of an existing one) is consistent with the bandwidth
2498 * constraints. If yes, this function also accordingly updates the currently
2499 * allocated bandwidth to reflect the new situation.
2500 *
2501 * This function is called while holding p's rq->lock.
40767b0d
PZ
2502 *
2503 * XXX we should delay bw change until the task's 0-lag point, see
2504 * __setparam_dl().
332ac17e
DF
2505 */
2506static int dl_overflow(struct task_struct *p, int policy,
2507 const struct sched_attr *attr)
2508{
2509
2510 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2511 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2512 u64 runtime = attr->sched_runtime;
2513 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2514 int cpus, err = -1;
332ac17e 2515
fec148c0
XP
2516 /* !deadline task may carry old deadline bandwidth */
2517 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2518 return 0;
2519
2520 /*
2521 * Either if a task, enters, leave, or stays -deadline but changes
2522 * its parameters, we may need to update accordingly the total
2523 * allocated bandwidth of the container.
2524 */
2525 raw_spin_lock(&dl_b->lock);
de212f18 2526 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2527 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2528 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2529 __dl_add(dl_b, new_bw);
2530 err = 0;
2531 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2532 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2533 __dl_clear(dl_b, p->dl.dl_bw);
2534 __dl_add(dl_b, new_bw);
2535 err = 0;
2536 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2537 __dl_clear(dl_b, p->dl.dl_bw);
2538 err = 0;
2539 }
2540 raw_spin_unlock(&dl_b->lock);
2541
2542 return err;
2543}
2544
2545extern void init_dl_bw(struct dl_bw *dl_b);
2546
1da177e4
LT
2547/*
2548 * wake_up_new_task - wake up a newly created task for the first time.
2549 *
2550 * This function will do some initial scheduler statistics housekeeping
2551 * that must be done for every newly created context, then puts the task
2552 * on the runqueue and wakes it.
2553 */
3e51e3ed 2554void wake_up_new_task(struct task_struct *p)
1da177e4 2555{
eb580751 2556 struct rq_flags rf;
dd41f596 2557 struct rq *rq;
fabf318e 2558
eb580751 2559 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2560 p->state = TASK_RUNNING;
fabf318e
PZ
2561#ifdef CONFIG_SMP
2562 /*
2563 * Fork balancing, do it here and not earlier because:
2564 * - cpus_allowed can change in the fork path
2565 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2566 *
2567 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2568 * as we're not fully set-up yet.
fabf318e 2569 */
e210bffd 2570 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2571#endif
b7fa30c9 2572 rq = __task_rq_lock(p, &rf);
2b8c41da 2573 post_init_entity_util_avg(&p->se);
0017d735 2574
cd29fe6f 2575 activate_task(rq, p, 0);
da0c1e65 2576 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2577 trace_sched_wakeup_new(p);
a7558e01 2578 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2579#ifdef CONFIG_SMP
0aaafaab
PZ
2580 if (p->sched_class->task_woken) {
2581 /*
2582 * Nothing relies on rq->lock after this, so its fine to
2583 * drop it.
2584 */
e7904a28 2585 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2586 p->sched_class->task_woken(rq, p);
e7904a28 2587 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2588 }
9a897c5a 2589#endif
eb580751 2590 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2591}
2592
e107be36
AK
2593#ifdef CONFIG_PREEMPT_NOTIFIERS
2594
1cde2930
PZ
2595static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2596
2ecd9d29
PZ
2597void preempt_notifier_inc(void)
2598{
2599 static_key_slow_inc(&preempt_notifier_key);
2600}
2601EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2602
2603void preempt_notifier_dec(void)
2604{
2605 static_key_slow_dec(&preempt_notifier_key);
2606}
2607EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2608
e107be36 2609/**
80dd99b3 2610 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2611 * @notifier: notifier struct to register
e107be36
AK
2612 */
2613void preempt_notifier_register(struct preempt_notifier *notifier)
2614{
2ecd9d29
PZ
2615 if (!static_key_false(&preempt_notifier_key))
2616 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2617
e107be36
AK
2618 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2619}
2620EXPORT_SYMBOL_GPL(preempt_notifier_register);
2621
2622/**
2623 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2624 * @notifier: notifier struct to unregister
e107be36 2625 *
d84525a8 2626 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2627 */
2628void preempt_notifier_unregister(struct preempt_notifier *notifier)
2629{
2630 hlist_del(&notifier->link);
2631}
2632EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2633
1cde2930 2634static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2635{
2636 struct preempt_notifier *notifier;
e107be36 2637
b67bfe0d 2638 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2639 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2640}
2641
1cde2930
PZ
2642static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643{
2644 if (static_key_false(&preempt_notifier_key))
2645 __fire_sched_in_preempt_notifiers(curr);
2646}
2647
e107be36 2648static void
1cde2930
PZ
2649__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2650 struct task_struct *next)
e107be36
AK
2651{
2652 struct preempt_notifier *notifier;
e107be36 2653
b67bfe0d 2654 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2655 notifier->ops->sched_out(notifier, next);
2656}
2657
1cde2930
PZ
2658static __always_inline void
2659fire_sched_out_preempt_notifiers(struct task_struct *curr,
2660 struct task_struct *next)
2661{
2662 if (static_key_false(&preempt_notifier_key))
2663 __fire_sched_out_preempt_notifiers(curr, next);
2664}
2665
6d6bc0ad 2666#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2667
1cde2930 2668static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2669{
2670}
2671
1cde2930 2672static inline void
e107be36
AK
2673fire_sched_out_preempt_notifiers(struct task_struct *curr,
2674 struct task_struct *next)
2675{
2676}
2677
6d6bc0ad 2678#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2679
4866cde0
NP
2680/**
2681 * prepare_task_switch - prepare to switch tasks
2682 * @rq: the runqueue preparing to switch
421cee29 2683 * @prev: the current task that is being switched out
4866cde0
NP
2684 * @next: the task we are going to switch to.
2685 *
2686 * This is called with the rq lock held and interrupts off. It must
2687 * be paired with a subsequent finish_task_switch after the context
2688 * switch.
2689 *
2690 * prepare_task_switch sets up locking and calls architecture specific
2691 * hooks.
2692 */
e107be36
AK
2693static inline void
2694prepare_task_switch(struct rq *rq, struct task_struct *prev,
2695 struct task_struct *next)
4866cde0 2696{
43148951 2697 sched_info_switch(rq, prev, next);
fe4b04fa 2698 perf_event_task_sched_out(prev, next);
e107be36 2699 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2700 prepare_lock_switch(rq, next);
2701 prepare_arch_switch(next);
2702}
2703
1da177e4
LT
2704/**
2705 * finish_task_switch - clean up after a task-switch
2706 * @prev: the thread we just switched away from.
2707 *
4866cde0
NP
2708 * finish_task_switch must be called after the context switch, paired
2709 * with a prepare_task_switch call before the context switch.
2710 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2711 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2712 *
2713 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2714 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2715 * with the lock held can cause deadlocks; see schedule() for
2716 * details.)
dfa50b60
ON
2717 *
2718 * The context switch have flipped the stack from under us and restored the
2719 * local variables which were saved when this task called schedule() in the
2720 * past. prev == current is still correct but we need to recalculate this_rq
2721 * because prev may have moved to another CPU.
1da177e4 2722 */
dfa50b60 2723static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2724 __releases(rq->lock)
2725{
dfa50b60 2726 struct rq *rq = this_rq();
1da177e4 2727 struct mm_struct *mm = rq->prev_mm;
55a101f8 2728 long prev_state;
1da177e4 2729
609ca066
PZ
2730 /*
2731 * The previous task will have left us with a preempt_count of 2
2732 * because it left us after:
2733 *
2734 * schedule()
2735 * preempt_disable(); // 1
2736 * __schedule()
2737 * raw_spin_lock_irq(&rq->lock) // 2
2738 *
2739 * Also, see FORK_PREEMPT_COUNT.
2740 */
e2bf1c4b
PZ
2741 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2742 "corrupted preempt_count: %s/%d/0x%x\n",
2743 current->comm, current->pid, preempt_count()))
2744 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2745
1da177e4
LT
2746 rq->prev_mm = NULL;
2747
2748 /*
2749 * A task struct has one reference for the use as "current".
c394cc9f 2750 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2751 * schedule one last time. The schedule call will never return, and
2752 * the scheduled task must drop that reference.
95913d97
PZ
2753 *
2754 * We must observe prev->state before clearing prev->on_cpu (in
2755 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2756 * running on another CPU and we could rave with its RUNNING -> DEAD
2757 * transition, resulting in a double drop.
1da177e4 2758 */
55a101f8 2759 prev_state = prev->state;
bf9fae9f 2760 vtime_task_switch(prev);
a8d757ef 2761 perf_event_task_sched_in(prev, current);
4866cde0 2762 finish_lock_switch(rq, prev);
01f23e16 2763 finish_arch_post_lock_switch();
e8fa1362 2764
e107be36 2765 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2766 if (mm)
2767 mmdrop(mm);
c394cc9f 2768 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2769 if (prev->sched_class->task_dead)
2770 prev->sched_class->task_dead(prev);
2771
c6fd91f0 2772 /*
2773 * Remove function-return probe instances associated with this
2774 * task and put them back on the free list.
9761eea8 2775 */
c6fd91f0 2776 kprobe_flush_task(prev);
1da177e4 2777 put_task_struct(prev);
c6fd91f0 2778 }
99e5ada9 2779
de734f89 2780 tick_nohz_task_switch();
dfa50b60 2781 return rq;
1da177e4
LT
2782}
2783
3f029d3c
GH
2784#ifdef CONFIG_SMP
2785
3f029d3c 2786/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2787static void __balance_callback(struct rq *rq)
3f029d3c 2788{
e3fca9e7
PZ
2789 struct callback_head *head, *next;
2790 void (*func)(struct rq *rq);
2791 unsigned long flags;
3f029d3c 2792
e3fca9e7
PZ
2793 raw_spin_lock_irqsave(&rq->lock, flags);
2794 head = rq->balance_callback;
2795 rq->balance_callback = NULL;
2796 while (head) {
2797 func = (void (*)(struct rq *))head->func;
2798 next = head->next;
2799 head->next = NULL;
2800 head = next;
3f029d3c 2801
e3fca9e7 2802 func(rq);
3f029d3c 2803 }
e3fca9e7
PZ
2804 raw_spin_unlock_irqrestore(&rq->lock, flags);
2805}
2806
2807static inline void balance_callback(struct rq *rq)
2808{
2809 if (unlikely(rq->balance_callback))
2810 __balance_callback(rq);
3f029d3c
GH
2811}
2812
2813#else
da19ab51 2814
e3fca9e7 2815static inline void balance_callback(struct rq *rq)
3f029d3c 2816{
1da177e4
LT
2817}
2818
3f029d3c
GH
2819#endif
2820
1da177e4
LT
2821/**
2822 * schedule_tail - first thing a freshly forked thread must call.
2823 * @prev: the thread we just switched away from.
2824 */
722a9f92 2825asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2826 __releases(rq->lock)
2827{
1a43a14a 2828 struct rq *rq;
da19ab51 2829
609ca066
PZ
2830 /*
2831 * New tasks start with FORK_PREEMPT_COUNT, see there and
2832 * finish_task_switch() for details.
2833 *
2834 * finish_task_switch() will drop rq->lock() and lower preempt_count
2835 * and the preempt_enable() will end up enabling preemption (on
2836 * PREEMPT_COUNT kernels).
2837 */
2838
dfa50b60 2839 rq = finish_task_switch(prev);
e3fca9e7 2840 balance_callback(rq);
1a43a14a 2841 preempt_enable();
70b97a7f 2842
1da177e4 2843 if (current->set_child_tid)
b488893a 2844 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2845}
2846
2847/*
dfa50b60 2848 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2849 */
04936948 2850static __always_inline struct rq *
70b97a7f 2851context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2852 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2853{
dd41f596 2854 struct mm_struct *mm, *oldmm;
1da177e4 2855
e107be36 2856 prepare_task_switch(rq, prev, next);
fe4b04fa 2857
dd41f596
IM
2858 mm = next->mm;
2859 oldmm = prev->active_mm;
9226d125
ZA
2860 /*
2861 * For paravirt, this is coupled with an exit in switch_to to
2862 * combine the page table reload and the switch backend into
2863 * one hypercall.
2864 */
224101ed 2865 arch_start_context_switch(prev);
9226d125 2866
31915ab4 2867 if (!mm) {
1da177e4
LT
2868 next->active_mm = oldmm;
2869 atomic_inc(&oldmm->mm_count);
2870 enter_lazy_tlb(oldmm, next);
2871 } else
f98db601 2872 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2873
31915ab4 2874 if (!prev->mm) {
1da177e4 2875 prev->active_mm = NULL;
1da177e4
LT
2876 rq->prev_mm = oldmm;
2877 }
3a5f5e48
IM
2878 /*
2879 * Since the runqueue lock will be released by the next
2880 * task (which is an invalid locking op but in the case
2881 * of the scheduler it's an obvious special-case), so we
2882 * do an early lockdep release here:
2883 */
e7904a28 2884 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2885 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2886
2887 /* Here we just switch the register state and the stack. */
2888 switch_to(prev, next, prev);
dd41f596 2889 barrier();
dfa50b60
ON
2890
2891 return finish_task_switch(prev);
1da177e4
LT
2892}
2893
2894/*
1c3e8264 2895 * nr_running and nr_context_switches:
1da177e4
LT
2896 *
2897 * externally visible scheduler statistics: current number of runnable
1c3e8264 2898 * threads, total number of context switches performed since bootup.
1da177e4
LT
2899 */
2900unsigned long nr_running(void)
2901{
2902 unsigned long i, sum = 0;
2903
2904 for_each_online_cpu(i)
2905 sum += cpu_rq(i)->nr_running;
2906
2907 return sum;
f711f609 2908}
1da177e4 2909
2ee507c4
TC
2910/*
2911 * Check if only the current task is running on the cpu.
00cc1633
DD
2912 *
2913 * Caution: this function does not check that the caller has disabled
2914 * preemption, thus the result might have a time-of-check-to-time-of-use
2915 * race. The caller is responsible to use it correctly, for example:
2916 *
2917 * - from a non-preemptable section (of course)
2918 *
2919 * - from a thread that is bound to a single CPU
2920 *
2921 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2922 */
2923bool single_task_running(void)
2924{
00cc1633 2925 return raw_rq()->nr_running == 1;
2ee507c4
TC
2926}
2927EXPORT_SYMBOL(single_task_running);
2928
1da177e4 2929unsigned long long nr_context_switches(void)
46cb4b7c 2930{
cc94abfc
SR
2931 int i;
2932 unsigned long long sum = 0;
46cb4b7c 2933
0a945022 2934 for_each_possible_cpu(i)
1da177e4 2935 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2936
1da177e4
LT
2937 return sum;
2938}
483b4ee6 2939
1da177e4
LT
2940unsigned long nr_iowait(void)
2941{
2942 unsigned long i, sum = 0;
483b4ee6 2943
0a945022 2944 for_each_possible_cpu(i)
1da177e4 2945 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2946
1da177e4
LT
2947 return sum;
2948}
483b4ee6 2949
8c215bd3 2950unsigned long nr_iowait_cpu(int cpu)
69d25870 2951{
8c215bd3 2952 struct rq *this = cpu_rq(cpu);
69d25870
AV
2953 return atomic_read(&this->nr_iowait);
2954}
46cb4b7c 2955
372ba8cb
MG
2956void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2957{
3289bdb4
PZ
2958 struct rq *rq = this_rq();
2959 *nr_waiters = atomic_read(&rq->nr_iowait);
2960 *load = rq->load.weight;
372ba8cb
MG
2961}
2962
dd41f596 2963#ifdef CONFIG_SMP
8a0be9ef 2964
46cb4b7c 2965/*
38022906
PZ
2966 * sched_exec - execve() is a valuable balancing opportunity, because at
2967 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2968 */
38022906 2969void sched_exec(void)
46cb4b7c 2970{
38022906 2971 struct task_struct *p = current;
1da177e4 2972 unsigned long flags;
0017d735 2973 int dest_cpu;
46cb4b7c 2974
8f42ced9 2975 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2976 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2977 if (dest_cpu == smp_processor_id())
2978 goto unlock;
38022906 2979
8f42ced9 2980 if (likely(cpu_active(dest_cpu))) {
969c7921 2981 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2982
8f42ced9
PZ
2983 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2984 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2985 return;
2986 }
0017d735 2987unlock:
8f42ced9 2988 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2989}
dd41f596 2990
1da177e4
LT
2991#endif
2992
1da177e4 2993DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2994DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2995
2996EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2997EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2998
6075620b
GG
2999/*
3000 * The function fair_sched_class.update_curr accesses the struct curr
3001 * and its field curr->exec_start; when called from task_sched_runtime(),
3002 * we observe a high rate of cache misses in practice.
3003 * Prefetching this data results in improved performance.
3004 */
3005static inline void prefetch_curr_exec_start(struct task_struct *p)
3006{
3007#ifdef CONFIG_FAIR_GROUP_SCHED
3008 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3009#else
3010 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3011#endif
3012 prefetch(curr);
3013 prefetch(&curr->exec_start);
3014}
3015
c5f8d995
HS
3016/*
3017 * Return accounted runtime for the task.
3018 * In case the task is currently running, return the runtime plus current's
3019 * pending runtime that have not been accounted yet.
3020 */
3021unsigned long long task_sched_runtime(struct task_struct *p)
3022{
eb580751 3023 struct rq_flags rf;
c5f8d995 3024 struct rq *rq;
6e998916 3025 u64 ns;
c5f8d995 3026
911b2898
PZ
3027#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3028 /*
3029 * 64-bit doesn't need locks to atomically read a 64bit value.
3030 * So we have a optimization chance when the task's delta_exec is 0.
3031 * Reading ->on_cpu is racy, but this is ok.
3032 *
3033 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3034 * If we race with it entering cpu, unaccounted time is 0. This is
3035 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3036 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3037 * been accounted, so we're correct here as well.
911b2898 3038 */
da0c1e65 3039 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3040 return p->se.sum_exec_runtime;
3041#endif
3042
eb580751 3043 rq = task_rq_lock(p, &rf);
6e998916
SG
3044 /*
3045 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3046 * project cycles that may never be accounted to this
3047 * thread, breaking clock_gettime().
3048 */
3049 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3050 prefetch_curr_exec_start(p);
6e998916
SG
3051 update_rq_clock(rq);
3052 p->sched_class->update_curr(rq);
3053 }
3054 ns = p->se.sum_exec_runtime;
eb580751 3055 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3056
3057 return ns;
3058}
48f24c4d 3059
7835b98b
CL
3060/*
3061 * This function gets called by the timer code, with HZ frequency.
3062 * We call it with interrupts disabled.
7835b98b
CL
3063 */
3064void scheduler_tick(void)
3065{
7835b98b
CL
3066 int cpu = smp_processor_id();
3067 struct rq *rq = cpu_rq(cpu);
dd41f596 3068 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3069
3070 sched_clock_tick();
dd41f596 3071
05fa785c 3072 raw_spin_lock(&rq->lock);
3e51f33f 3073 update_rq_clock(rq);
fa85ae24 3074 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3075 cpu_load_update_active(rq);
3289bdb4 3076 calc_global_load_tick(rq);
05fa785c 3077 raw_spin_unlock(&rq->lock);
7835b98b 3078
e9d2b064 3079 perf_event_task_tick();
e220d2dc 3080
e418e1c2 3081#ifdef CONFIG_SMP
6eb57e0d 3082 rq->idle_balance = idle_cpu(cpu);
7caff66f 3083 trigger_load_balance(rq);
e418e1c2 3084#endif
265f22a9 3085 rq_last_tick_reset(rq);
1da177e4
LT
3086}
3087
265f22a9
FW
3088#ifdef CONFIG_NO_HZ_FULL
3089/**
3090 * scheduler_tick_max_deferment
3091 *
3092 * Keep at least one tick per second when a single
3093 * active task is running because the scheduler doesn't
3094 * yet completely support full dynticks environment.
3095 *
3096 * This makes sure that uptime, CFS vruntime, load
3097 * balancing, etc... continue to move forward, even
3098 * with a very low granularity.
e69f6186
YB
3099 *
3100 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3101 */
3102u64 scheduler_tick_max_deferment(void)
3103{
3104 struct rq *rq = this_rq();
316c1608 3105 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3106
3107 next = rq->last_sched_tick + HZ;
3108
3109 if (time_before_eq(next, now))
3110 return 0;
3111
8fe8ff09 3112 return jiffies_to_nsecs(next - now);
1da177e4 3113}
265f22a9 3114#endif
1da177e4 3115
7e49fcce
SR
3116#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3117 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3118/*
3119 * If the value passed in is equal to the current preempt count
3120 * then we just disabled preemption. Start timing the latency.
3121 */
3122static inline void preempt_latency_start(int val)
3123{
3124 if (preempt_count() == val) {
3125 unsigned long ip = get_lock_parent_ip();
3126#ifdef CONFIG_DEBUG_PREEMPT
3127 current->preempt_disable_ip = ip;
3128#endif
3129 trace_preempt_off(CALLER_ADDR0, ip);
3130 }
3131}
7e49fcce 3132
edafe3a5 3133void preempt_count_add(int val)
1da177e4 3134{
6cd8a4bb 3135#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3136 /*
3137 * Underflow?
3138 */
9a11b49a
IM
3139 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3140 return;
6cd8a4bb 3141#endif
bdb43806 3142 __preempt_count_add(val);
6cd8a4bb 3143#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3144 /*
3145 * Spinlock count overflowing soon?
3146 */
33859f7f
MOS
3147 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3148 PREEMPT_MASK - 10);
6cd8a4bb 3149#endif
47252cfb 3150 preempt_latency_start(val);
1da177e4 3151}
bdb43806 3152EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3153NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3154
47252cfb
SR
3155/*
3156 * If the value passed in equals to the current preempt count
3157 * then we just enabled preemption. Stop timing the latency.
3158 */
3159static inline void preempt_latency_stop(int val)
3160{
3161 if (preempt_count() == val)
3162 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3163}
3164
edafe3a5 3165void preempt_count_sub(int val)
1da177e4 3166{
6cd8a4bb 3167#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3168 /*
3169 * Underflow?
3170 */
01e3eb82 3171 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3172 return;
1da177e4
LT
3173 /*
3174 * Is the spinlock portion underflowing?
3175 */
9a11b49a
IM
3176 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3177 !(preempt_count() & PREEMPT_MASK)))
3178 return;
6cd8a4bb 3179#endif
9a11b49a 3180
47252cfb 3181 preempt_latency_stop(val);
bdb43806 3182 __preempt_count_sub(val);
1da177e4 3183}
bdb43806 3184EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3185NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3186
47252cfb
SR
3187#else
3188static inline void preempt_latency_start(int val) { }
3189static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3190#endif
3191
3192/*
dd41f596 3193 * Print scheduling while atomic bug:
1da177e4 3194 */
dd41f596 3195static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3196{
d1c6d149
VN
3197 /* Save this before calling printk(), since that will clobber it */
3198 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3199
664dfa65
DJ
3200 if (oops_in_progress)
3201 return;
3202
3df0fc5b
PZ
3203 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3204 prev->comm, prev->pid, preempt_count());
838225b4 3205
dd41f596 3206 debug_show_held_locks(prev);
e21f5b15 3207 print_modules();
dd41f596
IM
3208 if (irqs_disabled())
3209 print_irqtrace_events(prev);
d1c6d149
VN
3210 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3211 && in_atomic_preempt_off()) {
8f47b187 3212 pr_err("Preemption disabled at:");
d1c6d149 3213 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3214 pr_cont("\n");
3215 }
748c7201
DBO
3216 if (panic_on_warn)
3217 panic("scheduling while atomic\n");
3218
6135fc1e 3219 dump_stack();
373d4d09 3220 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3221}
1da177e4 3222
dd41f596
IM
3223/*
3224 * Various schedule()-time debugging checks and statistics:
3225 */
3226static inline void schedule_debug(struct task_struct *prev)
3227{
0d9e2632 3228#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3229 if (task_stack_end_corrupted(prev))
3230 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3231#endif
b99def8b 3232
1dc0fffc 3233 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3234 __schedule_bug(prev);
1dc0fffc
PZ
3235 preempt_count_set(PREEMPT_DISABLED);
3236 }
b3fbab05 3237 rcu_sleep_check();
dd41f596 3238
1da177e4
LT
3239 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3240
ae92882e 3241 schedstat_inc(this_rq()->sched_count);
dd41f596
IM
3242}
3243
3244/*
3245 * Pick up the highest-prio task:
3246 */
3247static inline struct task_struct *
e7904a28 3248pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3249{
37e117c0 3250 const struct sched_class *class = &fair_sched_class;
dd41f596 3251 struct task_struct *p;
1da177e4
LT
3252
3253 /*
dd41f596
IM
3254 * Optimization: we know that if all tasks are in
3255 * the fair class we can call that function directly:
1da177e4 3256 */
37e117c0 3257 if (likely(prev->sched_class == class &&
38033c37 3258 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3259 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3260 if (unlikely(p == RETRY_TASK))
3261 goto again;
3262
3263 /* assumes fair_sched_class->next == idle_sched_class */
3264 if (unlikely(!p))
e7904a28 3265 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3266
3267 return p;
1da177e4
LT
3268 }
3269
37e117c0 3270again:
34f971f6 3271 for_each_class(class) {
e7904a28 3272 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3273 if (p) {
3274 if (unlikely(p == RETRY_TASK))
3275 goto again;
dd41f596 3276 return p;
37e117c0 3277 }
dd41f596 3278 }
34f971f6
PZ
3279
3280 BUG(); /* the idle class will always have a runnable task */
dd41f596 3281}
1da177e4 3282
dd41f596 3283/*
c259e01a 3284 * __schedule() is the main scheduler function.
edde96ea
PE
3285 *
3286 * The main means of driving the scheduler and thus entering this function are:
3287 *
3288 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3289 *
3290 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3291 * paths. For example, see arch/x86/entry_64.S.
3292 *
3293 * To drive preemption between tasks, the scheduler sets the flag in timer
3294 * interrupt handler scheduler_tick().
3295 *
3296 * 3. Wakeups don't really cause entry into schedule(). They add a
3297 * task to the run-queue and that's it.
3298 *
3299 * Now, if the new task added to the run-queue preempts the current
3300 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3301 * called on the nearest possible occasion:
3302 *
3303 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3304 *
3305 * - in syscall or exception context, at the next outmost
3306 * preempt_enable(). (this might be as soon as the wake_up()'s
3307 * spin_unlock()!)
3308 *
3309 * - in IRQ context, return from interrupt-handler to
3310 * preemptible context
3311 *
3312 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3313 * then at the next:
3314 *
3315 * - cond_resched() call
3316 * - explicit schedule() call
3317 * - return from syscall or exception to user-space
3318 * - return from interrupt-handler to user-space
bfd9b2b5 3319 *
b30f0e3f 3320 * WARNING: must be called with preemption disabled!
dd41f596 3321 */
499d7955 3322static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3323{
3324 struct task_struct *prev, *next;
67ca7bde 3325 unsigned long *switch_count;
e7904a28 3326 struct pin_cookie cookie;
dd41f596 3327 struct rq *rq;
31656519 3328 int cpu;
dd41f596 3329
dd41f596
IM
3330 cpu = smp_processor_id();
3331 rq = cpu_rq(cpu);
dd41f596 3332 prev = rq->curr;
dd41f596 3333
dd41f596 3334 schedule_debug(prev);
1da177e4 3335
31656519 3336 if (sched_feat(HRTICK))
f333fdc9 3337 hrtick_clear(rq);
8f4d37ec 3338
46a5d164
PM
3339 local_irq_disable();
3340 rcu_note_context_switch();
3341
e0acd0a6
ON
3342 /*
3343 * Make sure that signal_pending_state()->signal_pending() below
3344 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3345 * done by the caller to avoid the race with signal_wake_up().
3346 */
3347 smp_mb__before_spinlock();
46a5d164 3348 raw_spin_lock(&rq->lock);
e7904a28 3349 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3350
9edfbfed
PZ
3351 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3352
246d86b5 3353 switch_count = &prev->nivcsw;
fc13aeba 3354 if (!preempt && prev->state) {
21aa9af0 3355 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3356 prev->state = TASK_RUNNING;
21aa9af0 3357 } else {
2acca55e
PZ
3358 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3359 prev->on_rq = 0;
3360
21aa9af0 3361 /*
2acca55e
PZ
3362 * If a worker went to sleep, notify and ask workqueue
3363 * whether it wants to wake up a task to maintain
3364 * concurrency.
21aa9af0
TH
3365 */
3366 if (prev->flags & PF_WQ_WORKER) {
3367 struct task_struct *to_wakeup;
3368
9b7f6597 3369 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3370 if (to_wakeup)
e7904a28 3371 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3372 }
21aa9af0 3373 }
dd41f596 3374 switch_count = &prev->nvcsw;
1da177e4
LT
3375 }
3376
9edfbfed 3377 if (task_on_rq_queued(prev))
606dba2e
PZ
3378 update_rq_clock(rq);
3379
e7904a28 3380 next = pick_next_task(rq, prev, cookie);
f26f9aff 3381 clear_tsk_need_resched(prev);
f27dde8d 3382 clear_preempt_need_resched();
9edfbfed 3383 rq->clock_skip_update = 0;
1da177e4 3384
1da177e4 3385 if (likely(prev != next)) {
1da177e4
LT
3386 rq->nr_switches++;
3387 rq->curr = next;
3388 ++*switch_count;
3389
c73464b1 3390 trace_sched_switch(preempt, prev, next);
e7904a28 3391 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3392 } else {
e7904a28 3393 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3394 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3395 }
1da177e4 3396
e3fca9e7 3397 balance_callback(rq);
1da177e4 3398}
8e05e96a 3399STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3400
9af6528e
PZ
3401void __noreturn do_task_dead(void)
3402{
3403 /*
3404 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3405 * when the following two conditions become true.
3406 * - There is race condition of mmap_sem (It is acquired by
3407 * exit_mm()), and
3408 * - SMI occurs before setting TASK_RUNINNG.
3409 * (or hypervisor of virtual machine switches to other guest)
3410 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3411 *
3412 * To avoid it, we have to wait for releasing tsk->pi_lock which
3413 * is held by try_to_wake_up()
3414 */
3415 smp_mb();
3416 raw_spin_unlock_wait(&current->pi_lock);
3417
3418 /* causes final put_task_struct in finish_task_switch(). */
3419 __set_current_state(TASK_DEAD);
3420 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3421 __schedule(false);
3422 BUG();
3423 /* Avoid "noreturn function does return". */
3424 for (;;)
3425 cpu_relax(); /* For when BUG is null */
3426}
3427
9c40cef2
TG
3428static inline void sched_submit_work(struct task_struct *tsk)
3429{
3c7d5184 3430 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3431 return;
3432 /*
3433 * If we are going to sleep and we have plugged IO queued,
3434 * make sure to submit it to avoid deadlocks.
3435 */
3436 if (blk_needs_flush_plug(tsk))
3437 blk_schedule_flush_plug(tsk);
3438}
3439
722a9f92 3440asmlinkage __visible void __sched schedule(void)
c259e01a 3441{
9c40cef2
TG
3442 struct task_struct *tsk = current;
3443
3444 sched_submit_work(tsk);
bfd9b2b5 3445 do {
b30f0e3f 3446 preempt_disable();
fc13aeba 3447 __schedule(false);
b30f0e3f 3448 sched_preempt_enable_no_resched();
bfd9b2b5 3449 } while (need_resched());
c259e01a 3450}
1da177e4
LT
3451EXPORT_SYMBOL(schedule);
3452
91d1aa43 3453#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3454asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3455{
3456 /*
3457 * If we come here after a random call to set_need_resched(),
3458 * or we have been woken up remotely but the IPI has not yet arrived,
3459 * we haven't yet exited the RCU idle mode. Do it here manually until
3460 * we find a better solution.
7cc78f8f
AL
3461 *
3462 * NB: There are buggy callers of this function. Ideally we
c467ea76 3463 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3464 * too frequently to make sense yet.
20ab65e3 3465 */
7cc78f8f 3466 enum ctx_state prev_state = exception_enter();
20ab65e3 3467 schedule();
7cc78f8f 3468 exception_exit(prev_state);
20ab65e3
FW
3469}
3470#endif
3471
c5491ea7
TG
3472/**
3473 * schedule_preempt_disabled - called with preemption disabled
3474 *
3475 * Returns with preemption disabled. Note: preempt_count must be 1
3476 */
3477void __sched schedule_preempt_disabled(void)
3478{
ba74c144 3479 sched_preempt_enable_no_resched();
c5491ea7
TG
3480 schedule();
3481 preempt_disable();
3482}
3483
06b1f808 3484static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3485{
3486 do {
47252cfb
SR
3487 /*
3488 * Because the function tracer can trace preempt_count_sub()
3489 * and it also uses preempt_enable/disable_notrace(), if
3490 * NEED_RESCHED is set, the preempt_enable_notrace() called
3491 * by the function tracer will call this function again and
3492 * cause infinite recursion.
3493 *
3494 * Preemption must be disabled here before the function
3495 * tracer can trace. Break up preempt_disable() into two
3496 * calls. One to disable preemption without fear of being
3497 * traced. The other to still record the preemption latency,
3498 * which can also be traced by the function tracer.
3499 */
499d7955 3500 preempt_disable_notrace();
47252cfb 3501 preempt_latency_start(1);
fc13aeba 3502 __schedule(true);
47252cfb 3503 preempt_latency_stop(1);
499d7955 3504 preempt_enable_no_resched_notrace();
a18b5d01
FW
3505
3506 /*
3507 * Check again in case we missed a preemption opportunity
3508 * between schedule and now.
3509 */
a18b5d01
FW
3510 } while (need_resched());
3511}
3512
1da177e4
LT
3513#ifdef CONFIG_PREEMPT
3514/*
2ed6e34f 3515 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3516 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3517 * occur there and call schedule directly.
3518 */
722a9f92 3519asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3520{
1da177e4
LT
3521 /*
3522 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3523 * we do not want to preempt the current task. Just return..
1da177e4 3524 */
fbb00b56 3525 if (likely(!preemptible()))
1da177e4
LT
3526 return;
3527
a18b5d01 3528 preempt_schedule_common();
1da177e4 3529}
376e2424 3530NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3531EXPORT_SYMBOL(preempt_schedule);
009f60e2 3532
009f60e2 3533/**
4eaca0a8 3534 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3535 *
3536 * The tracing infrastructure uses preempt_enable_notrace to prevent
3537 * recursion and tracing preempt enabling caused by the tracing
3538 * infrastructure itself. But as tracing can happen in areas coming
3539 * from userspace or just about to enter userspace, a preempt enable
3540 * can occur before user_exit() is called. This will cause the scheduler
3541 * to be called when the system is still in usermode.
3542 *
3543 * To prevent this, the preempt_enable_notrace will use this function
3544 * instead of preempt_schedule() to exit user context if needed before
3545 * calling the scheduler.
3546 */
4eaca0a8 3547asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3548{
3549 enum ctx_state prev_ctx;
3550
3551 if (likely(!preemptible()))
3552 return;
3553
3554 do {
47252cfb
SR
3555 /*
3556 * Because the function tracer can trace preempt_count_sub()
3557 * and it also uses preempt_enable/disable_notrace(), if
3558 * NEED_RESCHED is set, the preempt_enable_notrace() called
3559 * by the function tracer will call this function again and
3560 * cause infinite recursion.
3561 *
3562 * Preemption must be disabled here before the function
3563 * tracer can trace. Break up preempt_disable() into two
3564 * calls. One to disable preemption without fear of being
3565 * traced. The other to still record the preemption latency,
3566 * which can also be traced by the function tracer.
3567 */
3d8f74dd 3568 preempt_disable_notrace();
47252cfb 3569 preempt_latency_start(1);
009f60e2
ON
3570 /*
3571 * Needs preempt disabled in case user_exit() is traced
3572 * and the tracer calls preempt_enable_notrace() causing
3573 * an infinite recursion.
3574 */
3575 prev_ctx = exception_enter();
fc13aeba 3576 __schedule(true);
009f60e2
ON
3577 exception_exit(prev_ctx);
3578
47252cfb 3579 preempt_latency_stop(1);
3d8f74dd 3580 preempt_enable_no_resched_notrace();
009f60e2
ON
3581 } while (need_resched());
3582}
4eaca0a8 3583EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3584
32e475d7 3585#endif /* CONFIG_PREEMPT */
1da177e4
LT
3586
3587/*
2ed6e34f 3588 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3589 * off of irq context.
3590 * Note, that this is called and return with irqs disabled. This will
3591 * protect us against recursive calling from irq.
3592 */
722a9f92 3593asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3594{
b22366cd 3595 enum ctx_state prev_state;
6478d880 3596
2ed6e34f 3597 /* Catch callers which need to be fixed */
f27dde8d 3598 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3599
b22366cd
FW
3600 prev_state = exception_enter();
3601
3a5c359a 3602 do {
3d8f74dd 3603 preempt_disable();
3a5c359a 3604 local_irq_enable();
fc13aeba 3605 __schedule(true);
3a5c359a 3606 local_irq_disable();
3d8f74dd 3607 sched_preempt_enable_no_resched();
5ed0cec0 3608 } while (need_resched());
b22366cd
FW
3609
3610 exception_exit(prev_state);
1da177e4
LT
3611}
3612
63859d4f 3613int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3614 void *key)
1da177e4 3615{
63859d4f 3616 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3617}
1da177e4
LT
3618EXPORT_SYMBOL(default_wake_function);
3619
b29739f9
IM
3620#ifdef CONFIG_RT_MUTEXES
3621
3622/*
3623 * rt_mutex_setprio - set the current priority of a task
3624 * @p: task
3625 * @prio: prio value (kernel-internal form)
3626 *
3627 * This function changes the 'effective' priority of a task. It does
3628 * not touch ->normal_prio like __setscheduler().
3629 *
c365c292
TG
3630 * Used by the rt_mutex code to implement priority inheritance
3631 * logic. Call site only calls if the priority of the task changed.
b29739f9 3632 */
36c8b586 3633void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3634{
ff77e468 3635 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3636 const struct sched_class *prev_class;
eb580751
PZ
3637 struct rq_flags rf;
3638 struct rq *rq;
b29739f9 3639
aab03e05 3640 BUG_ON(prio > MAX_PRIO);
b29739f9 3641
eb580751 3642 rq = __task_rq_lock(p, &rf);
b29739f9 3643
1c4dd99b
TG
3644 /*
3645 * Idle task boosting is a nono in general. There is one
3646 * exception, when PREEMPT_RT and NOHZ is active:
3647 *
3648 * The idle task calls get_next_timer_interrupt() and holds
3649 * the timer wheel base->lock on the CPU and another CPU wants
3650 * to access the timer (probably to cancel it). We can safely
3651 * ignore the boosting request, as the idle CPU runs this code
3652 * with interrupts disabled and will complete the lock
3653 * protected section without being interrupted. So there is no
3654 * real need to boost.
3655 */
3656 if (unlikely(p == rq->idle)) {
3657 WARN_ON(p != rq->curr);
3658 WARN_ON(p->pi_blocked_on);
3659 goto out_unlock;
3660 }
3661
a8027073 3662 trace_sched_pi_setprio(p, prio);
d5f9f942 3663 oldprio = p->prio;
ff77e468
PZ
3664
3665 if (oldprio == prio)
3666 queue_flag &= ~DEQUEUE_MOVE;
3667
83ab0aa0 3668 prev_class = p->sched_class;
da0c1e65 3669 queued = task_on_rq_queued(p);
051a1d1a 3670 running = task_current(rq, p);
da0c1e65 3671 if (queued)
ff77e468 3672 dequeue_task(rq, p, queue_flag);
0e1f3483 3673 if (running)
f3cd1c4e 3674 put_prev_task(rq, p);
dd41f596 3675
2d3d891d
DF
3676 /*
3677 * Boosting condition are:
3678 * 1. -rt task is running and holds mutex A
3679 * --> -dl task blocks on mutex A
3680 *
3681 * 2. -dl task is running and holds mutex A
3682 * --> -dl task blocks on mutex A and could preempt the
3683 * running task
3684 */
3685 if (dl_prio(prio)) {
466af29b
ON
3686 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3687 if (!dl_prio(p->normal_prio) ||
3688 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3689 p->dl.dl_boosted = 1;
ff77e468 3690 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3691 } else
3692 p->dl.dl_boosted = 0;
aab03e05 3693 p->sched_class = &dl_sched_class;
2d3d891d
DF
3694 } else if (rt_prio(prio)) {
3695 if (dl_prio(oldprio))
3696 p->dl.dl_boosted = 0;
3697 if (oldprio < prio)
ff77e468 3698 queue_flag |= ENQUEUE_HEAD;
dd41f596 3699 p->sched_class = &rt_sched_class;
2d3d891d
DF
3700 } else {
3701 if (dl_prio(oldprio))
3702 p->dl.dl_boosted = 0;
746db944
BS
3703 if (rt_prio(oldprio))
3704 p->rt.timeout = 0;
dd41f596 3705 p->sched_class = &fair_sched_class;
2d3d891d 3706 }
dd41f596 3707
b29739f9
IM
3708 p->prio = prio;
3709
0e1f3483
HS
3710 if (running)
3711 p->sched_class->set_curr_task(rq);
da0c1e65 3712 if (queued)
ff77e468 3713 enqueue_task(rq, p, queue_flag);
cb469845 3714
da7a735e 3715 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3716out_unlock:
4c9a4bc8 3717 preempt_disable(); /* avoid rq from going away on us */
eb580751 3718 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3719
3720 balance_callback(rq);
3721 preempt_enable();
b29739f9 3722}
b29739f9 3723#endif
d50dde5a 3724
36c8b586 3725void set_user_nice(struct task_struct *p, long nice)
1da177e4 3726{
da0c1e65 3727 int old_prio, delta, queued;
eb580751 3728 struct rq_flags rf;
70b97a7f 3729 struct rq *rq;
1da177e4 3730
75e45d51 3731 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3732 return;
3733 /*
3734 * We have to be careful, if called from sys_setpriority(),
3735 * the task might be in the middle of scheduling on another CPU.
3736 */
eb580751 3737 rq = task_rq_lock(p, &rf);
1da177e4
LT
3738 /*
3739 * The RT priorities are set via sched_setscheduler(), but we still
3740 * allow the 'normal' nice value to be set - but as expected
3741 * it wont have any effect on scheduling until the task is
aab03e05 3742 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3743 */
aab03e05 3744 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3745 p->static_prio = NICE_TO_PRIO(nice);
3746 goto out_unlock;
3747 }
da0c1e65
KT
3748 queued = task_on_rq_queued(p);
3749 if (queued)
1de64443 3750 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3751
1da177e4 3752 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3753 set_load_weight(p);
b29739f9
IM
3754 old_prio = p->prio;
3755 p->prio = effective_prio(p);
3756 delta = p->prio - old_prio;
1da177e4 3757
da0c1e65 3758 if (queued) {
1de64443 3759 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3760 /*
d5f9f942
AM
3761 * If the task increased its priority or is running and
3762 * lowered its priority, then reschedule its CPU:
1da177e4 3763 */
d5f9f942 3764 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3765 resched_curr(rq);
1da177e4
LT
3766 }
3767out_unlock:
eb580751 3768 task_rq_unlock(rq, p, &rf);
1da177e4 3769}
1da177e4
LT
3770EXPORT_SYMBOL(set_user_nice);
3771
e43379f1
MM
3772/*
3773 * can_nice - check if a task can reduce its nice value
3774 * @p: task
3775 * @nice: nice value
3776 */
36c8b586 3777int can_nice(const struct task_struct *p, const int nice)
e43379f1 3778{
024f4747 3779 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3780 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3781
78d7d407 3782 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3783 capable(CAP_SYS_NICE));
3784}
3785
1da177e4
LT
3786#ifdef __ARCH_WANT_SYS_NICE
3787
3788/*
3789 * sys_nice - change the priority of the current process.
3790 * @increment: priority increment
3791 *
3792 * sys_setpriority is a more generic, but much slower function that
3793 * does similar things.
3794 */
5add95d4 3795SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3796{
48f24c4d 3797 long nice, retval;
1da177e4
LT
3798
3799 /*
3800 * Setpriority might change our priority at the same moment.
3801 * We don't have to worry. Conceptually one call occurs first
3802 * and we have a single winner.
3803 */
a9467fa3 3804 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3805 nice = task_nice(current) + increment;
1da177e4 3806
a9467fa3 3807 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3808 if (increment < 0 && !can_nice(current, nice))
3809 return -EPERM;
3810
1da177e4
LT
3811 retval = security_task_setnice(current, nice);
3812 if (retval)
3813 return retval;
3814
3815 set_user_nice(current, nice);
3816 return 0;
3817}
3818
3819#endif
3820
3821/**
3822 * task_prio - return the priority value of a given task.
3823 * @p: the task in question.
3824 *
e69f6186 3825 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3826 * RT tasks are offset by -200. Normal tasks are centered
3827 * around 0, value goes from -16 to +15.
3828 */
36c8b586 3829int task_prio(const struct task_struct *p)
1da177e4
LT
3830{
3831 return p->prio - MAX_RT_PRIO;
3832}
3833
1da177e4
LT
3834/**
3835 * idle_cpu - is a given cpu idle currently?
3836 * @cpu: the processor in question.
e69f6186
YB
3837 *
3838 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3839 */
3840int idle_cpu(int cpu)
3841{
908a3283
TG
3842 struct rq *rq = cpu_rq(cpu);
3843
3844 if (rq->curr != rq->idle)
3845 return 0;
3846
3847 if (rq->nr_running)
3848 return 0;
3849
3850#ifdef CONFIG_SMP
3851 if (!llist_empty(&rq->wake_list))
3852 return 0;
3853#endif
3854
3855 return 1;
1da177e4
LT
3856}
3857
1da177e4
LT
3858/**
3859 * idle_task - return the idle task for a given cpu.
3860 * @cpu: the processor in question.
e69f6186
YB
3861 *
3862 * Return: The idle task for the cpu @cpu.
1da177e4 3863 */
36c8b586 3864struct task_struct *idle_task(int cpu)
1da177e4
LT
3865{
3866 return cpu_rq(cpu)->idle;
3867}
3868
3869/**
3870 * find_process_by_pid - find a process with a matching PID value.
3871 * @pid: the pid in question.
e69f6186
YB
3872 *
3873 * The task of @pid, if found. %NULL otherwise.
1da177e4 3874 */
a9957449 3875static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3876{
228ebcbe 3877 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3878}
3879
aab03e05
DF
3880/*
3881 * This function initializes the sched_dl_entity of a newly becoming
3882 * SCHED_DEADLINE task.
3883 *
3884 * Only the static values are considered here, the actual runtime and the
3885 * absolute deadline will be properly calculated when the task is enqueued
3886 * for the first time with its new policy.
3887 */
3888static void
3889__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3890{
3891 struct sched_dl_entity *dl_se = &p->dl;
3892
aab03e05
DF
3893 dl_se->dl_runtime = attr->sched_runtime;
3894 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3895 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3896 dl_se->flags = attr->sched_flags;
332ac17e 3897 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3898
3899 /*
3900 * Changing the parameters of a task is 'tricky' and we're not doing
3901 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3902 *
3903 * What we SHOULD do is delay the bandwidth release until the 0-lag
3904 * point. This would include retaining the task_struct until that time
3905 * and change dl_overflow() to not immediately decrement the current
3906 * amount.
3907 *
3908 * Instead we retain the current runtime/deadline and let the new
3909 * parameters take effect after the current reservation period lapses.
3910 * This is safe (albeit pessimistic) because the 0-lag point is always
3911 * before the current scheduling deadline.
3912 *
3913 * We can still have temporary overloads because we do not delay the
3914 * change in bandwidth until that time; so admission control is
3915 * not on the safe side. It does however guarantee tasks will never
3916 * consume more than promised.
3917 */
aab03e05
DF
3918}
3919
c13db6b1
SR
3920/*
3921 * sched_setparam() passes in -1 for its policy, to let the functions
3922 * it calls know not to change it.
3923 */
3924#define SETPARAM_POLICY -1
3925
c365c292
TG
3926static void __setscheduler_params(struct task_struct *p,
3927 const struct sched_attr *attr)
1da177e4 3928{
d50dde5a
DF
3929 int policy = attr->sched_policy;
3930
c13db6b1 3931 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3932 policy = p->policy;
3933
1da177e4 3934 p->policy = policy;
d50dde5a 3935
aab03e05
DF
3936 if (dl_policy(policy))
3937 __setparam_dl(p, attr);
39fd8fd2 3938 else if (fair_policy(policy))
d50dde5a
DF
3939 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3940
39fd8fd2
PZ
3941 /*
3942 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3943 * !rt_policy. Always setting this ensures that things like
3944 * getparam()/getattr() don't report silly values for !rt tasks.
3945 */
3946 p->rt_priority = attr->sched_priority;
383afd09 3947 p->normal_prio = normal_prio(p);
c365c292
TG
3948 set_load_weight(p);
3949}
39fd8fd2 3950
c365c292
TG
3951/* Actually do priority change: must hold pi & rq lock. */
3952static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3953 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3954{
3955 __setscheduler_params(p, attr);
d50dde5a 3956
383afd09 3957 /*
0782e63b
TG
3958 * Keep a potential priority boosting if called from
3959 * sched_setscheduler().
383afd09 3960 */
0782e63b
TG
3961 if (keep_boost)
3962 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3963 else
3964 p->prio = normal_prio(p);
383afd09 3965
aab03e05
DF
3966 if (dl_prio(p->prio))
3967 p->sched_class = &dl_sched_class;
3968 else if (rt_prio(p->prio))
ffd44db5
PZ
3969 p->sched_class = &rt_sched_class;
3970 else
3971 p->sched_class = &fair_sched_class;
1da177e4 3972}
aab03e05
DF
3973
3974static void
3975__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3976{
3977 struct sched_dl_entity *dl_se = &p->dl;
3978
3979 attr->sched_priority = p->rt_priority;
3980 attr->sched_runtime = dl_se->dl_runtime;
3981 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3982 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3983 attr->sched_flags = dl_se->flags;
3984}
3985
3986/*
3987 * This function validates the new parameters of a -deadline task.
3988 * We ask for the deadline not being zero, and greater or equal
755378a4 3989 * than the runtime, as well as the period of being zero or
332ac17e 3990 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3991 * user parameters are above the internal resolution of 1us (we
3992 * check sched_runtime only since it is always the smaller one) and
3993 * below 2^63 ns (we have to check both sched_deadline and
3994 * sched_period, as the latter can be zero).
aab03e05
DF
3995 */
3996static bool
3997__checkparam_dl(const struct sched_attr *attr)
3998{
b0827819
JL
3999 /* deadline != 0 */
4000 if (attr->sched_deadline == 0)
4001 return false;
4002
4003 /*
4004 * Since we truncate DL_SCALE bits, make sure we're at least
4005 * that big.
4006 */
4007 if (attr->sched_runtime < (1ULL << DL_SCALE))
4008 return false;
4009
4010 /*
4011 * Since we use the MSB for wrap-around and sign issues, make
4012 * sure it's not set (mind that period can be equal to zero).
4013 */
4014 if (attr->sched_deadline & (1ULL << 63) ||
4015 attr->sched_period & (1ULL << 63))
4016 return false;
4017
4018 /* runtime <= deadline <= period (if period != 0) */
4019 if ((attr->sched_period != 0 &&
4020 attr->sched_period < attr->sched_deadline) ||
4021 attr->sched_deadline < attr->sched_runtime)
4022 return false;
4023
4024 return true;
aab03e05
DF
4025}
4026
c69e8d9c
DH
4027/*
4028 * check the target process has a UID that matches the current process's
4029 */
4030static bool check_same_owner(struct task_struct *p)
4031{
4032 const struct cred *cred = current_cred(), *pcred;
4033 bool match;
4034
4035 rcu_read_lock();
4036 pcred = __task_cred(p);
9c806aa0
EB
4037 match = (uid_eq(cred->euid, pcred->euid) ||
4038 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4039 rcu_read_unlock();
4040 return match;
4041}
4042
75381608
WL
4043static bool dl_param_changed(struct task_struct *p,
4044 const struct sched_attr *attr)
4045{
4046 struct sched_dl_entity *dl_se = &p->dl;
4047
4048 if (dl_se->dl_runtime != attr->sched_runtime ||
4049 dl_se->dl_deadline != attr->sched_deadline ||
4050 dl_se->dl_period != attr->sched_period ||
4051 dl_se->flags != attr->sched_flags)
4052 return true;
4053
4054 return false;
4055}
4056
d50dde5a
DF
4057static int __sched_setscheduler(struct task_struct *p,
4058 const struct sched_attr *attr,
dbc7f069 4059 bool user, bool pi)
1da177e4 4060{
383afd09
SR
4061 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4062 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4063 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4064 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4065 const struct sched_class *prev_class;
eb580751 4066 struct rq_flags rf;
ca94c442 4067 int reset_on_fork;
ff77e468 4068 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4069 struct rq *rq;
1da177e4 4070
66e5393a
SR
4071 /* may grab non-irq protected spin_locks */
4072 BUG_ON(in_interrupt());
1da177e4
LT
4073recheck:
4074 /* double check policy once rq lock held */
ca94c442
LP
4075 if (policy < 0) {
4076 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4077 policy = oldpolicy = p->policy;
ca94c442 4078 } else {
7479f3c9 4079 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4080
20f9cd2a 4081 if (!valid_policy(policy))
ca94c442
LP
4082 return -EINVAL;
4083 }
4084
7479f3c9
PZ
4085 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4086 return -EINVAL;
4087
1da177e4
LT
4088 /*
4089 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4090 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4091 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4092 */
0bb040a4 4093 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4094 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4095 return -EINVAL;
aab03e05
DF
4096 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4097 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4098 return -EINVAL;
4099
37e4ab3f
OC
4100 /*
4101 * Allow unprivileged RT tasks to decrease priority:
4102 */
961ccddd 4103 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4104 if (fair_policy(policy)) {
d0ea0268 4105 if (attr->sched_nice < task_nice(p) &&
eaad4513 4106 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4107 return -EPERM;
4108 }
4109
e05606d3 4110 if (rt_policy(policy)) {
a44702e8
ON
4111 unsigned long rlim_rtprio =
4112 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4113
4114 /* can't set/change the rt policy */
4115 if (policy != p->policy && !rlim_rtprio)
4116 return -EPERM;
4117
4118 /* can't increase priority */
d50dde5a
DF
4119 if (attr->sched_priority > p->rt_priority &&
4120 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4121 return -EPERM;
4122 }
c02aa73b 4123
d44753b8
JL
4124 /*
4125 * Can't set/change SCHED_DEADLINE policy at all for now
4126 * (safest behavior); in the future we would like to allow
4127 * unprivileged DL tasks to increase their relative deadline
4128 * or reduce their runtime (both ways reducing utilization)
4129 */
4130 if (dl_policy(policy))
4131 return -EPERM;
4132
dd41f596 4133 /*
c02aa73b
DH
4134 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4135 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4136 */
20f9cd2a 4137 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4138 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4139 return -EPERM;
4140 }
5fe1d75f 4141
37e4ab3f 4142 /* can't change other user's priorities */
c69e8d9c 4143 if (!check_same_owner(p))
37e4ab3f 4144 return -EPERM;
ca94c442
LP
4145
4146 /* Normal users shall not reset the sched_reset_on_fork flag */
4147 if (p->sched_reset_on_fork && !reset_on_fork)
4148 return -EPERM;
37e4ab3f 4149 }
1da177e4 4150
725aad24 4151 if (user) {
b0ae1981 4152 retval = security_task_setscheduler(p);
725aad24
JF
4153 if (retval)
4154 return retval;
4155 }
4156
b29739f9
IM
4157 /*
4158 * make sure no PI-waiters arrive (or leave) while we are
4159 * changing the priority of the task:
0122ec5b 4160 *
25985edc 4161 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4162 * runqueue lock must be held.
4163 */
eb580751 4164 rq = task_rq_lock(p, &rf);
dc61b1d6 4165
34f971f6
PZ
4166 /*
4167 * Changing the policy of the stop threads its a very bad idea
4168 */
4169 if (p == rq->stop) {
eb580751 4170 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4171 return -EINVAL;
4172 }
4173
a51e9198 4174 /*
d6b1e911
TG
4175 * If not changing anything there's no need to proceed further,
4176 * but store a possible modification of reset_on_fork.
a51e9198 4177 */
d50dde5a 4178 if (unlikely(policy == p->policy)) {
d0ea0268 4179 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4180 goto change;
4181 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4182 goto change;
75381608 4183 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4184 goto change;
d50dde5a 4185
d6b1e911 4186 p->sched_reset_on_fork = reset_on_fork;
eb580751 4187 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4188 return 0;
4189 }
d50dde5a 4190change:
a51e9198 4191
dc61b1d6 4192 if (user) {
332ac17e 4193#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4194 /*
4195 * Do not allow realtime tasks into groups that have no runtime
4196 * assigned.
4197 */
4198 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4199 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4200 !task_group_is_autogroup(task_group(p))) {
eb580751 4201 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4202 return -EPERM;
4203 }
dc61b1d6 4204#endif
332ac17e
DF
4205#ifdef CONFIG_SMP
4206 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4207 cpumask_t *span = rq->rd->span;
332ac17e
DF
4208
4209 /*
4210 * Don't allow tasks with an affinity mask smaller than
4211 * the entire root_domain to become SCHED_DEADLINE. We
4212 * will also fail if there's no bandwidth available.
4213 */
e4099a5e
PZ
4214 if (!cpumask_subset(span, &p->cpus_allowed) ||
4215 rq->rd->dl_bw.bw == 0) {
eb580751 4216 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4217 return -EPERM;
4218 }
4219 }
4220#endif
4221 }
dc61b1d6 4222
1da177e4
LT
4223 /* recheck policy now with rq lock held */
4224 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4225 policy = oldpolicy = -1;
eb580751 4226 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4227 goto recheck;
4228 }
332ac17e
DF
4229
4230 /*
4231 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4232 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4233 * is available.
4234 */
e4099a5e 4235 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4236 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4237 return -EBUSY;
4238 }
4239
c365c292
TG
4240 p->sched_reset_on_fork = reset_on_fork;
4241 oldprio = p->prio;
4242
dbc7f069
PZ
4243 if (pi) {
4244 /*
4245 * Take priority boosted tasks into account. If the new
4246 * effective priority is unchanged, we just store the new
4247 * normal parameters and do not touch the scheduler class and
4248 * the runqueue. This will be done when the task deboost
4249 * itself.
4250 */
4251 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4252 if (new_effective_prio == oldprio)
4253 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4254 }
4255
da0c1e65 4256 queued = task_on_rq_queued(p);
051a1d1a 4257 running = task_current(rq, p);
da0c1e65 4258 if (queued)
ff77e468 4259 dequeue_task(rq, p, queue_flags);
0e1f3483 4260 if (running)
f3cd1c4e 4261 put_prev_task(rq, p);
f6b53205 4262
83ab0aa0 4263 prev_class = p->sched_class;
dbc7f069 4264 __setscheduler(rq, p, attr, pi);
f6b53205 4265
0e1f3483
HS
4266 if (running)
4267 p->sched_class->set_curr_task(rq);
da0c1e65 4268 if (queued) {
81a44c54
TG
4269 /*
4270 * We enqueue to tail when the priority of a task is
4271 * increased (user space view).
4272 */
ff77e468
PZ
4273 if (oldprio < p->prio)
4274 queue_flags |= ENQUEUE_HEAD;
1de64443 4275
ff77e468 4276 enqueue_task(rq, p, queue_flags);
81a44c54 4277 }
cb469845 4278
da7a735e 4279 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4280 preempt_disable(); /* avoid rq from going away on us */
eb580751 4281 task_rq_unlock(rq, p, &rf);
b29739f9 4282
dbc7f069
PZ
4283 if (pi)
4284 rt_mutex_adjust_pi(p);
95e02ca9 4285
4c9a4bc8
PZ
4286 /*
4287 * Run balance callbacks after we've adjusted the PI chain.
4288 */
4289 balance_callback(rq);
4290 preempt_enable();
95e02ca9 4291
1da177e4
LT
4292 return 0;
4293}
961ccddd 4294
7479f3c9
PZ
4295static int _sched_setscheduler(struct task_struct *p, int policy,
4296 const struct sched_param *param, bool check)
4297{
4298 struct sched_attr attr = {
4299 .sched_policy = policy,
4300 .sched_priority = param->sched_priority,
4301 .sched_nice = PRIO_TO_NICE(p->static_prio),
4302 };
4303
c13db6b1
SR
4304 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4305 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4306 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4307 policy &= ~SCHED_RESET_ON_FORK;
4308 attr.sched_policy = policy;
4309 }
4310
dbc7f069 4311 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4312}
961ccddd
RR
4313/**
4314 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4315 * @p: the task in question.
4316 * @policy: new policy.
4317 * @param: structure containing the new RT priority.
4318 *
e69f6186
YB
4319 * Return: 0 on success. An error code otherwise.
4320 *
961ccddd
RR
4321 * NOTE that the task may be already dead.
4322 */
4323int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4324 const struct sched_param *param)
961ccddd 4325{
7479f3c9 4326 return _sched_setscheduler(p, policy, param, true);
961ccddd 4327}
1da177e4
LT
4328EXPORT_SYMBOL_GPL(sched_setscheduler);
4329
d50dde5a
DF
4330int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4331{
dbc7f069 4332 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4333}
4334EXPORT_SYMBOL_GPL(sched_setattr);
4335
961ccddd
RR
4336/**
4337 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4338 * @p: the task in question.
4339 * @policy: new policy.
4340 * @param: structure containing the new RT priority.
4341 *
4342 * Just like sched_setscheduler, only don't bother checking if the
4343 * current context has permission. For example, this is needed in
4344 * stop_machine(): we create temporary high priority worker threads,
4345 * but our caller might not have that capability.
e69f6186
YB
4346 *
4347 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4348 */
4349int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4350 const struct sched_param *param)
961ccddd 4351{
7479f3c9 4352 return _sched_setscheduler(p, policy, param, false);
961ccddd 4353}
84778472 4354EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4355
95cdf3b7
IM
4356static int
4357do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4358{
1da177e4
LT
4359 struct sched_param lparam;
4360 struct task_struct *p;
36c8b586 4361 int retval;
1da177e4
LT
4362
4363 if (!param || pid < 0)
4364 return -EINVAL;
4365 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4366 return -EFAULT;
5fe1d75f
ON
4367
4368 rcu_read_lock();
4369 retval = -ESRCH;
1da177e4 4370 p = find_process_by_pid(pid);
5fe1d75f
ON
4371 if (p != NULL)
4372 retval = sched_setscheduler(p, policy, &lparam);
4373 rcu_read_unlock();
36c8b586 4374
1da177e4
LT
4375 return retval;
4376}
4377
d50dde5a
DF
4378/*
4379 * Mimics kernel/events/core.c perf_copy_attr().
4380 */
4381static int sched_copy_attr(struct sched_attr __user *uattr,
4382 struct sched_attr *attr)
4383{
4384 u32 size;
4385 int ret;
4386
4387 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4388 return -EFAULT;
4389
4390 /*
4391 * zero the full structure, so that a short copy will be nice.
4392 */
4393 memset(attr, 0, sizeof(*attr));
4394
4395 ret = get_user(size, &uattr->size);
4396 if (ret)
4397 return ret;
4398
4399 if (size > PAGE_SIZE) /* silly large */
4400 goto err_size;
4401
4402 if (!size) /* abi compat */
4403 size = SCHED_ATTR_SIZE_VER0;
4404
4405 if (size < SCHED_ATTR_SIZE_VER0)
4406 goto err_size;
4407
4408 /*
4409 * If we're handed a bigger struct than we know of,
4410 * ensure all the unknown bits are 0 - i.e. new
4411 * user-space does not rely on any kernel feature
4412 * extensions we dont know about yet.
4413 */
4414 if (size > sizeof(*attr)) {
4415 unsigned char __user *addr;
4416 unsigned char __user *end;
4417 unsigned char val;
4418
4419 addr = (void __user *)uattr + sizeof(*attr);
4420 end = (void __user *)uattr + size;
4421
4422 for (; addr < end; addr++) {
4423 ret = get_user(val, addr);
4424 if (ret)
4425 return ret;
4426 if (val)
4427 goto err_size;
4428 }
4429 size = sizeof(*attr);
4430 }
4431
4432 ret = copy_from_user(attr, uattr, size);
4433 if (ret)
4434 return -EFAULT;
4435
4436 /*
4437 * XXX: do we want to be lenient like existing syscalls; or do we want
4438 * to be strict and return an error on out-of-bounds values?
4439 */
75e45d51 4440 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4441
e78c7bca 4442 return 0;
d50dde5a
DF
4443
4444err_size:
4445 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4446 return -E2BIG;
d50dde5a
DF
4447}
4448
1da177e4
LT
4449/**
4450 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4451 * @pid: the pid in question.
4452 * @policy: new policy.
4453 * @param: structure containing the new RT priority.
e69f6186
YB
4454 *
4455 * Return: 0 on success. An error code otherwise.
1da177e4 4456 */
5add95d4
HC
4457SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4458 struct sched_param __user *, param)
1da177e4 4459{
c21761f1
JB
4460 /* negative values for policy are not valid */
4461 if (policy < 0)
4462 return -EINVAL;
4463
1da177e4
LT
4464 return do_sched_setscheduler(pid, policy, param);
4465}
4466
4467/**
4468 * sys_sched_setparam - set/change the RT priority of a thread
4469 * @pid: the pid in question.
4470 * @param: structure containing the new RT priority.
e69f6186
YB
4471 *
4472 * Return: 0 on success. An error code otherwise.
1da177e4 4473 */
5add95d4 4474SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4475{
c13db6b1 4476 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4477}
4478
d50dde5a
DF
4479/**
4480 * sys_sched_setattr - same as above, but with extended sched_attr
4481 * @pid: the pid in question.
5778fccf 4482 * @uattr: structure containing the extended parameters.
db66d756 4483 * @flags: for future extension.
d50dde5a 4484 */
6d35ab48
PZ
4485SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4486 unsigned int, flags)
d50dde5a
DF
4487{
4488 struct sched_attr attr;
4489 struct task_struct *p;
4490 int retval;
4491
6d35ab48 4492 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4493 return -EINVAL;
4494
143cf23d
MK
4495 retval = sched_copy_attr(uattr, &attr);
4496 if (retval)
4497 return retval;
d50dde5a 4498
b14ed2c2 4499 if ((int)attr.sched_policy < 0)
dbdb2275 4500 return -EINVAL;
d50dde5a
DF
4501
4502 rcu_read_lock();
4503 retval = -ESRCH;
4504 p = find_process_by_pid(pid);
4505 if (p != NULL)
4506 retval = sched_setattr(p, &attr);
4507 rcu_read_unlock();
4508
4509 return retval;
4510}
4511
1da177e4
LT
4512/**
4513 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4514 * @pid: the pid in question.
e69f6186
YB
4515 *
4516 * Return: On success, the policy of the thread. Otherwise, a negative error
4517 * code.
1da177e4 4518 */
5add95d4 4519SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4520{
36c8b586 4521 struct task_struct *p;
3a5c359a 4522 int retval;
1da177e4
LT
4523
4524 if (pid < 0)
3a5c359a 4525 return -EINVAL;
1da177e4
LT
4526
4527 retval = -ESRCH;
5fe85be0 4528 rcu_read_lock();
1da177e4
LT
4529 p = find_process_by_pid(pid);
4530 if (p) {
4531 retval = security_task_getscheduler(p);
4532 if (!retval)
ca94c442
LP
4533 retval = p->policy
4534 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4535 }
5fe85be0 4536 rcu_read_unlock();
1da177e4
LT
4537 return retval;
4538}
4539
4540/**
ca94c442 4541 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4542 * @pid: the pid in question.
4543 * @param: structure containing the RT priority.
e69f6186
YB
4544 *
4545 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4546 * code.
1da177e4 4547 */
5add95d4 4548SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4549{
ce5f7f82 4550 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4551 struct task_struct *p;
3a5c359a 4552 int retval;
1da177e4
LT
4553
4554 if (!param || pid < 0)
3a5c359a 4555 return -EINVAL;
1da177e4 4556
5fe85be0 4557 rcu_read_lock();
1da177e4
LT
4558 p = find_process_by_pid(pid);
4559 retval = -ESRCH;
4560 if (!p)
4561 goto out_unlock;
4562
4563 retval = security_task_getscheduler(p);
4564 if (retval)
4565 goto out_unlock;
4566
ce5f7f82
PZ
4567 if (task_has_rt_policy(p))
4568 lp.sched_priority = p->rt_priority;
5fe85be0 4569 rcu_read_unlock();
1da177e4
LT
4570
4571 /*
4572 * This one might sleep, we cannot do it with a spinlock held ...
4573 */
4574 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4575
1da177e4
LT
4576 return retval;
4577
4578out_unlock:
5fe85be0 4579 rcu_read_unlock();
1da177e4
LT
4580 return retval;
4581}
4582
d50dde5a
DF
4583static int sched_read_attr(struct sched_attr __user *uattr,
4584 struct sched_attr *attr,
4585 unsigned int usize)
4586{
4587 int ret;
4588
4589 if (!access_ok(VERIFY_WRITE, uattr, usize))
4590 return -EFAULT;
4591
4592 /*
4593 * If we're handed a smaller struct than we know of,
4594 * ensure all the unknown bits are 0 - i.e. old
4595 * user-space does not get uncomplete information.
4596 */
4597 if (usize < sizeof(*attr)) {
4598 unsigned char *addr;
4599 unsigned char *end;
4600
4601 addr = (void *)attr + usize;
4602 end = (void *)attr + sizeof(*attr);
4603
4604 for (; addr < end; addr++) {
4605 if (*addr)
22400674 4606 return -EFBIG;
d50dde5a
DF
4607 }
4608
4609 attr->size = usize;
4610 }
4611
4efbc454 4612 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4613 if (ret)
4614 return -EFAULT;
4615
22400674 4616 return 0;
d50dde5a
DF
4617}
4618
4619/**
aab03e05 4620 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4621 * @pid: the pid in question.
5778fccf 4622 * @uattr: structure containing the extended parameters.
d50dde5a 4623 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4624 * @flags: for future extension.
d50dde5a 4625 */
6d35ab48
PZ
4626SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4627 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4628{
4629 struct sched_attr attr = {
4630 .size = sizeof(struct sched_attr),
4631 };
4632 struct task_struct *p;
4633 int retval;
4634
4635 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4636 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4637 return -EINVAL;
4638
4639 rcu_read_lock();
4640 p = find_process_by_pid(pid);
4641 retval = -ESRCH;
4642 if (!p)
4643 goto out_unlock;
4644
4645 retval = security_task_getscheduler(p);
4646 if (retval)
4647 goto out_unlock;
4648
4649 attr.sched_policy = p->policy;
7479f3c9
PZ
4650 if (p->sched_reset_on_fork)
4651 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4652 if (task_has_dl_policy(p))
4653 __getparam_dl(p, &attr);
4654 else if (task_has_rt_policy(p))
d50dde5a
DF
4655 attr.sched_priority = p->rt_priority;
4656 else
d0ea0268 4657 attr.sched_nice = task_nice(p);
d50dde5a
DF
4658
4659 rcu_read_unlock();
4660
4661 retval = sched_read_attr(uattr, &attr, size);
4662 return retval;
4663
4664out_unlock:
4665 rcu_read_unlock();
4666 return retval;
4667}
4668
96f874e2 4669long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4670{
5a16f3d3 4671 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4672 struct task_struct *p;
4673 int retval;
1da177e4 4674
23f5d142 4675 rcu_read_lock();
1da177e4
LT
4676
4677 p = find_process_by_pid(pid);
4678 if (!p) {
23f5d142 4679 rcu_read_unlock();
1da177e4
LT
4680 return -ESRCH;
4681 }
4682
23f5d142 4683 /* Prevent p going away */
1da177e4 4684 get_task_struct(p);
23f5d142 4685 rcu_read_unlock();
1da177e4 4686
14a40ffc
TH
4687 if (p->flags & PF_NO_SETAFFINITY) {
4688 retval = -EINVAL;
4689 goto out_put_task;
4690 }
5a16f3d3
RR
4691 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4692 retval = -ENOMEM;
4693 goto out_put_task;
4694 }
4695 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4696 retval = -ENOMEM;
4697 goto out_free_cpus_allowed;
4698 }
1da177e4 4699 retval = -EPERM;
4c44aaaf
EB
4700 if (!check_same_owner(p)) {
4701 rcu_read_lock();
4702 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4703 rcu_read_unlock();
16303ab2 4704 goto out_free_new_mask;
4c44aaaf
EB
4705 }
4706 rcu_read_unlock();
4707 }
1da177e4 4708
b0ae1981 4709 retval = security_task_setscheduler(p);
e7834f8f 4710 if (retval)
16303ab2 4711 goto out_free_new_mask;
e7834f8f 4712
e4099a5e
PZ
4713
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 cpumask_and(new_mask, in_mask, cpus_allowed);
4716
332ac17e
DF
4717 /*
4718 * Since bandwidth control happens on root_domain basis,
4719 * if admission test is enabled, we only admit -deadline
4720 * tasks allowed to run on all the CPUs in the task's
4721 * root_domain.
4722 */
4723#ifdef CONFIG_SMP
f1e3a093
KT
4724 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4725 rcu_read_lock();
4726 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4727 retval = -EBUSY;
f1e3a093 4728 rcu_read_unlock();
16303ab2 4729 goto out_free_new_mask;
332ac17e 4730 }
f1e3a093 4731 rcu_read_unlock();
332ac17e
DF
4732 }
4733#endif
49246274 4734again:
25834c73 4735 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4736
8707d8b8 4737 if (!retval) {
5a16f3d3
RR
4738 cpuset_cpus_allowed(p, cpus_allowed);
4739 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4740 /*
4741 * We must have raced with a concurrent cpuset
4742 * update. Just reset the cpus_allowed to the
4743 * cpuset's cpus_allowed
4744 */
5a16f3d3 4745 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4746 goto again;
4747 }
4748 }
16303ab2 4749out_free_new_mask:
5a16f3d3
RR
4750 free_cpumask_var(new_mask);
4751out_free_cpus_allowed:
4752 free_cpumask_var(cpus_allowed);
4753out_put_task:
1da177e4 4754 put_task_struct(p);
1da177e4
LT
4755 return retval;
4756}
4757
4758static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4759 struct cpumask *new_mask)
1da177e4 4760{
96f874e2
RR
4761 if (len < cpumask_size())
4762 cpumask_clear(new_mask);
4763 else if (len > cpumask_size())
4764 len = cpumask_size();
4765
1da177e4
LT
4766 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4767}
4768
4769/**
4770 * sys_sched_setaffinity - set the cpu affinity of a process
4771 * @pid: pid of the process
4772 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4773 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4774 *
4775 * Return: 0 on success. An error code otherwise.
1da177e4 4776 */
5add95d4
HC
4777SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4778 unsigned long __user *, user_mask_ptr)
1da177e4 4779{
5a16f3d3 4780 cpumask_var_t new_mask;
1da177e4
LT
4781 int retval;
4782
5a16f3d3
RR
4783 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4784 return -ENOMEM;
1da177e4 4785
5a16f3d3
RR
4786 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4787 if (retval == 0)
4788 retval = sched_setaffinity(pid, new_mask);
4789 free_cpumask_var(new_mask);
4790 return retval;
1da177e4
LT
4791}
4792
96f874e2 4793long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4794{
36c8b586 4795 struct task_struct *p;
31605683 4796 unsigned long flags;
1da177e4 4797 int retval;
1da177e4 4798
23f5d142 4799 rcu_read_lock();
1da177e4
LT
4800
4801 retval = -ESRCH;
4802 p = find_process_by_pid(pid);
4803 if (!p)
4804 goto out_unlock;
4805
e7834f8f
DQ
4806 retval = security_task_getscheduler(p);
4807 if (retval)
4808 goto out_unlock;
4809
013fdb80 4810 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4811 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4812 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4813
4814out_unlock:
23f5d142 4815 rcu_read_unlock();
1da177e4 4816
9531b62f 4817 return retval;
1da177e4
LT
4818}
4819
4820/**
4821 * sys_sched_getaffinity - get the cpu affinity of a process
4822 * @pid: pid of the process
4823 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4824 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4825 *
599b4840
ZW
4826 * Return: size of CPU mask copied to user_mask_ptr on success. An
4827 * error code otherwise.
1da177e4 4828 */
5add95d4
HC
4829SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4830 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4831{
4832 int ret;
f17c8607 4833 cpumask_var_t mask;
1da177e4 4834
84fba5ec 4835 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4836 return -EINVAL;
4837 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4838 return -EINVAL;
4839
f17c8607
RR
4840 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4841 return -ENOMEM;
1da177e4 4842
f17c8607
RR
4843 ret = sched_getaffinity(pid, mask);
4844 if (ret == 0) {
8bc037fb 4845 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4846
4847 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4848 ret = -EFAULT;
4849 else
cd3d8031 4850 ret = retlen;
f17c8607
RR
4851 }
4852 free_cpumask_var(mask);
1da177e4 4853
f17c8607 4854 return ret;
1da177e4
LT
4855}
4856
4857/**
4858 * sys_sched_yield - yield the current processor to other threads.
4859 *
dd41f596
IM
4860 * This function yields the current CPU to other tasks. If there are no
4861 * other threads running on this CPU then this function will return.
e69f6186
YB
4862 *
4863 * Return: 0.
1da177e4 4864 */
5add95d4 4865SYSCALL_DEFINE0(sched_yield)
1da177e4 4866{
70b97a7f 4867 struct rq *rq = this_rq_lock();
1da177e4 4868
ae92882e 4869 schedstat_inc(rq->yld_count);
4530d7ab 4870 current->sched_class->yield_task(rq);
1da177e4
LT
4871
4872 /*
4873 * Since we are going to call schedule() anyway, there's
4874 * no need to preempt or enable interrupts:
4875 */
4876 __release(rq->lock);
8a25d5de 4877 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4878 do_raw_spin_unlock(&rq->lock);
ba74c144 4879 sched_preempt_enable_no_resched();
1da177e4
LT
4880
4881 schedule();
4882
4883 return 0;
4884}
4885
35a773a0 4886#ifndef CONFIG_PREEMPT
02b67cc3 4887int __sched _cond_resched(void)
1da177e4 4888{
fe32d3cd 4889 if (should_resched(0)) {
a18b5d01 4890 preempt_schedule_common();
1da177e4
LT
4891 return 1;
4892 }
4893 return 0;
4894}
02b67cc3 4895EXPORT_SYMBOL(_cond_resched);
35a773a0 4896#endif
1da177e4
LT
4897
4898/*
613afbf8 4899 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4900 * call schedule, and on return reacquire the lock.
4901 *
41a2d6cf 4902 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4903 * operations here to prevent schedule() from being called twice (once via
4904 * spin_unlock(), once by hand).
4905 */
613afbf8 4906int __cond_resched_lock(spinlock_t *lock)
1da177e4 4907{
fe32d3cd 4908 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4909 int ret = 0;
4910
f607c668
PZ
4911 lockdep_assert_held(lock);
4912
4a81e832 4913 if (spin_needbreak(lock) || resched) {
1da177e4 4914 spin_unlock(lock);
d86ee480 4915 if (resched)
a18b5d01 4916 preempt_schedule_common();
95c354fe
NP
4917 else
4918 cpu_relax();
6df3cecb 4919 ret = 1;
1da177e4 4920 spin_lock(lock);
1da177e4 4921 }
6df3cecb 4922 return ret;
1da177e4 4923}
613afbf8 4924EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4925
613afbf8 4926int __sched __cond_resched_softirq(void)
1da177e4
LT
4927{
4928 BUG_ON(!in_softirq());
4929
fe32d3cd 4930 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4931 local_bh_enable();
a18b5d01 4932 preempt_schedule_common();
1da177e4
LT
4933 local_bh_disable();
4934 return 1;
4935 }
4936 return 0;
4937}
613afbf8 4938EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4939
1da177e4
LT
4940/**
4941 * yield - yield the current processor to other threads.
4942 *
8e3fabfd
PZ
4943 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4944 *
4945 * The scheduler is at all times free to pick the calling task as the most
4946 * eligible task to run, if removing the yield() call from your code breaks
4947 * it, its already broken.
4948 *
4949 * Typical broken usage is:
4950 *
4951 * while (!event)
4952 * yield();
4953 *
4954 * where one assumes that yield() will let 'the other' process run that will
4955 * make event true. If the current task is a SCHED_FIFO task that will never
4956 * happen. Never use yield() as a progress guarantee!!
4957 *
4958 * If you want to use yield() to wait for something, use wait_event().
4959 * If you want to use yield() to be 'nice' for others, use cond_resched().
4960 * If you still want to use yield(), do not!
1da177e4
LT
4961 */
4962void __sched yield(void)
4963{
4964 set_current_state(TASK_RUNNING);
4965 sys_sched_yield();
4966}
1da177e4
LT
4967EXPORT_SYMBOL(yield);
4968
d95f4122
MG
4969/**
4970 * yield_to - yield the current processor to another thread in
4971 * your thread group, or accelerate that thread toward the
4972 * processor it's on.
16addf95
RD
4973 * @p: target task
4974 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4975 *
4976 * It's the caller's job to ensure that the target task struct
4977 * can't go away on us before we can do any checks.
4978 *
e69f6186 4979 * Return:
7b270f60
PZ
4980 * true (>0) if we indeed boosted the target task.
4981 * false (0) if we failed to boost the target.
4982 * -ESRCH if there's no task to yield to.
d95f4122 4983 */
fa93384f 4984int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4985{
4986 struct task_struct *curr = current;
4987 struct rq *rq, *p_rq;
4988 unsigned long flags;
c3c18640 4989 int yielded = 0;
d95f4122
MG
4990
4991 local_irq_save(flags);
4992 rq = this_rq();
4993
4994again:
4995 p_rq = task_rq(p);
7b270f60
PZ
4996 /*
4997 * If we're the only runnable task on the rq and target rq also
4998 * has only one task, there's absolutely no point in yielding.
4999 */
5000 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5001 yielded = -ESRCH;
5002 goto out_irq;
5003 }
5004
d95f4122 5005 double_rq_lock(rq, p_rq);
39e24d8f 5006 if (task_rq(p) != p_rq) {
d95f4122
MG
5007 double_rq_unlock(rq, p_rq);
5008 goto again;
5009 }
5010
5011 if (!curr->sched_class->yield_to_task)
7b270f60 5012 goto out_unlock;
d95f4122
MG
5013
5014 if (curr->sched_class != p->sched_class)
7b270f60 5015 goto out_unlock;
d95f4122
MG
5016
5017 if (task_running(p_rq, p) || p->state)
7b270f60 5018 goto out_unlock;
d95f4122
MG
5019
5020 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5021 if (yielded) {
ae92882e 5022 schedstat_inc(rq->yld_count);
6d1cafd8
VP
5023 /*
5024 * Make p's CPU reschedule; pick_next_entity takes care of
5025 * fairness.
5026 */
5027 if (preempt && rq != p_rq)
8875125e 5028 resched_curr(p_rq);
6d1cafd8 5029 }
d95f4122 5030
7b270f60 5031out_unlock:
d95f4122 5032 double_rq_unlock(rq, p_rq);
7b270f60 5033out_irq:
d95f4122
MG
5034 local_irq_restore(flags);
5035
7b270f60 5036 if (yielded > 0)
d95f4122
MG
5037 schedule();
5038
5039 return yielded;
5040}
5041EXPORT_SYMBOL_GPL(yield_to);
5042
1da177e4 5043/*
41a2d6cf 5044 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5045 * that process accounting knows that this is a task in IO wait state.
1da177e4 5046 */
1da177e4
LT
5047long __sched io_schedule_timeout(long timeout)
5048{
9cff8ade
N
5049 int old_iowait = current->in_iowait;
5050 struct rq *rq;
1da177e4
LT
5051 long ret;
5052
9cff8ade 5053 current->in_iowait = 1;
10d784ea 5054 blk_schedule_flush_plug(current);
9cff8ade 5055
0ff92245 5056 delayacct_blkio_start();
9cff8ade 5057 rq = raw_rq();
1da177e4
LT
5058 atomic_inc(&rq->nr_iowait);
5059 ret = schedule_timeout(timeout);
9cff8ade 5060 current->in_iowait = old_iowait;
1da177e4 5061 atomic_dec(&rq->nr_iowait);
0ff92245 5062 delayacct_blkio_end();
9cff8ade 5063
1da177e4
LT
5064 return ret;
5065}
9cff8ade 5066EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5067
5068/**
5069 * sys_sched_get_priority_max - return maximum RT priority.
5070 * @policy: scheduling class.
5071 *
e69f6186
YB
5072 * Return: On success, this syscall returns the maximum
5073 * rt_priority that can be used by a given scheduling class.
5074 * On failure, a negative error code is returned.
1da177e4 5075 */
5add95d4 5076SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5077{
5078 int ret = -EINVAL;
5079
5080 switch (policy) {
5081 case SCHED_FIFO:
5082 case SCHED_RR:
5083 ret = MAX_USER_RT_PRIO-1;
5084 break;
aab03e05 5085 case SCHED_DEADLINE:
1da177e4 5086 case SCHED_NORMAL:
b0a9499c 5087 case SCHED_BATCH:
dd41f596 5088 case SCHED_IDLE:
1da177e4
LT
5089 ret = 0;
5090 break;
5091 }
5092 return ret;
5093}
5094
5095/**
5096 * sys_sched_get_priority_min - return minimum RT priority.
5097 * @policy: scheduling class.
5098 *
e69f6186
YB
5099 * Return: On success, this syscall returns the minimum
5100 * rt_priority that can be used by a given scheduling class.
5101 * On failure, a negative error code is returned.
1da177e4 5102 */
5add95d4 5103SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5104{
5105 int ret = -EINVAL;
5106
5107 switch (policy) {
5108 case SCHED_FIFO:
5109 case SCHED_RR:
5110 ret = 1;
5111 break;
aab03e05 5112 case SCHED_DEADLINE:
1da177e4 5113 case SCHED_NORMAL:
b0a9499c 5114 case SCHED_BATCH:
dd41f596 5115 case SCHED_IDLE:
1da177e4
LT
5116 ret = 0;
5117 }
5118 return ret;
5119}
5120
5121/**
5122 * sys_sched_rr_get_interval - return the default timeslice of a process.
5123 * @pid: pid of the process.
5124 * @interval: userspace pointer to the timeslice value.
5125 *
5126 * this syscall writes the default timeslice value of a given process
5127 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5128 *
5129 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5130 * an error code.
1da177e4 5131 */
17da2bd9 5132SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5133 struct timespec __user *, interval)
1da177e4 5134{
36c8b586 5135 struct task_struct *p;
a4ec24b4 5136 unsigned int time_slice;
eb580751
PZ
5137 struct rq_flags rf;
5138 struct timespec t;
dba091b9 5139 struct rq *rq;
3a5c359a 5140 int retval;
1da177e4
LT
5141
5142 if (pid < 0)
3a5c359a 5143 return -EINVAL;
1da177e4
LT
5144
5145 retval = -ESRCH;
1a551ae7 5146 rcu_read_lock();
1da177e4
LT
5147 p = find_process_by_pid(pid);
5148 if (!p)
5149 goto out_unlock;
5150
5151 retval = security_task_getscheduler(p);
5152 if (retval)
5153 goto out_unlock;
5154
eb580751 5155 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5156 time_slice = 0;
5157 if (p->sched_class->get_rr_interval)
5158 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5159 task_rq_unlock(rq, p, &rf);
a4ec24b4 5160
1a551ae7 5161 rcu_read_unlock();
a4ec24b4 5162 jiffies_to_timespec(time_slice, &t);
1da177e4 5163 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5164 return retval;
3a5c359a 5165
1da177e4 5166out_unlock:
1a551ae7 5167 rcu_read_unlock();
1da177e4
LT
5168 return retval;
5169}
5170
7c731e0a 5171static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5172
82a1fcb9 5173void sched_show_task(struct task_struct *p)
1da177e4 5174{
1da177e4 5175 unsigned long free = 0;
4e79752c 5176 int ppid;
1f8a7633 5177 unsigned long state = p->state;
1da177e4 5178
1f8a7633
TH
5179 if (state)
5180 state = __ffs(state) + 1;
28d0686c 5181 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5182 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5183#if BITS_PER_LONG == 32
1da177e4 5184 if (state == TASK_RUNNING)
3df0fc5b 5185 printk(KERN_CONT " running ");
1da177e4 5186 else
3df0fc5b 5187 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5188#else
5189 if (state == TASK_RUNNING)
3df0fc5b 5190 printk(KERN_CONT " running task ");
1da177e4 5191 else
3df0fc5b 5192 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5193#endif
5194#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5195 free = stack_not_used(p);
1da177e4 5196#endif
a90e984c 5197 ppid = 0;
4e79752c 5198 rcu_read_lock();
a90e984c
ON
5199 if (pid_alive(p))
5200 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5201 rcu_read_unlock();
3df0fc5b 5202 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5203 task_pid_nr(p), ppid,
aa47b7e0 5204 (unsigned long)task_thread_info(p)->flags);
1da177e4 5205
3d1cb205 5206 print_worker_info(KERN_INFO, p);
5fb5e6de 5207 show_stack(p, NULL);
1da177e4
LT
5208}
5209
e59e2ae2 5210void show_state_filter(unsigned long state_filter)
1da177e4 5211{
36c8b586 5212 struct task_struct *g, *p;
1da177e4 5213
4bd77321 5214#if BITS_PER_LONG == 32
3df0fc5b
PZ
5215 printk(KERN_INFO
5216 " task PC stack pid father\n");
1da177e4 5217#else
3df0fc5b
PZ
5218 printk(KERN_INFO
5219 " task PC stack pid father\n");
1da177e4 5220#endif
510f5acc 5221 rcu_read_lock();
5d07f420 5222 for_each_process_thread(g, p) {
1da177e4
LT
5223 /*
5224 * reset the NMI-timeout, listing all files on a slow
25985edc 5225 * console might take a lot of time:
57675cb9
AR
5226 * Also, reset softlockup watchdogs on all CPUs, because
5227 * another CPU might be blocked waiting for us to process
5228 * an IPI.
1da177e4
LT
5229 */
5230 touch_nmi_watchdog();
57675cb9 5231 touch_all_softlockup_watchdogs();
39bc89fd 5232 if (!state_filter || (p->state & state_filter))
82a1fcb9 5233 sched_show_task(p);
5d07f420 5234 }
1da177e4 5235
dd41f596 5236#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5237 if (!state_filter)
5238 sysrq_sched_debug_show();
dd41f596 5239#endif
510f5acc 5240 rcu_read_unlock();
e59e2ae2
IM
5241 /*
5242 * Only show locks if all tasks are dumped:
5243 */
93335a21 5244 if (!state_filter)
e59e2ae2 5245 debug_show_all_locks();
1da177e4
LT
5246}
5247
0db0628d 5248void init_idle_bootup_task(struct task_struct *idle)
1df21055 5249{
dd41f596 5250 idle->sched_class = &idle_sched_class;
1df21055
IM
5251}
5252
f340c0d1
IM
5253/**
5254 * init_idle - set up an idle thread for a given CPU
5255 * @idle: task in question
5256 * @cpu: cpu the idle task belongs to
5257 *
5258 * NOTE: this function does not set the idle thread's NEED_RESCHED
5259 * flag, to make booting more robust.
5260 */
0db0628d 5261void init_idle(struct task_struct *idle, int cpu)
1da177e4 5262{
70b97a7f 5263 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5264 unsigned long flags;
5265
25834c73
PZ
5266 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5267 raw_spin_lock(&rq->lock);
5cbd54ef 5268
5e1576ed 5269 __sched_fork(0, idle);
06b83b5f 5270 idle->state = TASK_RUNNING;
dd41f596
IM
5271 idle->se.exec_start = sched_clock();
5272
e1b77c92
MR
5273 kasan_unpoison_task_stack(idle);
5274
de9b8f5d
PZ
5275#ifdef CONFIG_SMP
5276 /*
5277 * Its possible that init_idle() gets called multiple times on a task,
5278 * in that case do_set_cpus_allowed() will not do the right thing.
5279 *
5280 * And since this is boot we can forgo the serialization.
5281 */
5282 set_cpus_allowed_common(idle, cpumask_of(cpu));
5283#endif
6506cf6c
PZ
5284 /*
5285 * We're having a chicken and egg problem, even though we are
5286 * holding rq->lock, the cpu isn't yet set to this cpu so the
5287 * lockdep check in task_group() will fail.
5288 *
5289 * Similar case to sched_fork(). / Alternatively we could
5290 * use task_rq_lock() here and obtain the other rq->lock.
5291 *
5292 * Silence PROVE_RCU
5293 */
5294 rcu_read_lock();
dd41f596 5295 __set_task_cpu(idle, cpu);
6506cf6c 5296 rcu_read_unlock();
1da177e4 5297
1da177e4 5298 rq->curr = rq->idle = idle;
da0c1e65 5299 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5300#ifdef CONFIG_SMP
3ca7a440 5301 idle->on_cpu = 1;
4866cde0 5302#endif
25834c73
PZ
5303 raw_spin_unlock(&rq->lock);
5304 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5305
5306 /* Set the preempt count _outside_ the spinlocks! */
01028747 5307 init_idle_preempt_count(idle, cpu);
55cd5340 5308
dd41f596
IM
5309 /*
5310 * The idle tasks have their own, simple scheduling class:
5311 */
5312 idle->sched_class = &idle_sched_class;
868baf07 5313 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5314 vtime_init_idle(idle, cpu);
de9b8f5d 5315#ifdef CONFIG_SMP
f1c6f1a7
CE
5316 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5317#endif
19978ca6
IM
5318}
5319
f82f8042
JL
5320int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5321 const struct cpumask *trial)
5322{
5323 int ret = 1, trial_cpus;
5324 struct dl_bw *cur_dl_b;
5325 unsigned long flags;
5326
bb2bc55a
MG
5327 if (!cpumask_weight(cur))
5328 return ret;
5329
75e23e49 5330 rcu_read_lock_sched();
f82f8042
JL
5331 cur_dl_b = dl_bw_of(cpumask_any(cur));
5332 trial_cpus = cpumask_weight(trial);
5333
5334 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5335 if (cur_dl_b->bw != -1 &&
5336 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5337 ret = 0;
5338 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5339 rcu_read_unlock_sched();
f82f8042
JL
5340
5341 return ret;
5342}
5343
7f51412a
JL
5344int task_can_attach(struct task_struct *p,
5345 const struct cpumask *cs_cpus_allowed)
5346{
5347 int ret = 0;
5348
5349 /*
5350 * Kthreads which disallow setaffinity shouldn't be moved
5351 * to a new cpuset; we don't want to change their cpu
5352 * affinity and isolating such threads by their set of
5353 * allowed nodes is unnecessary. Thus, cpusets are not
5354 * applicable for such threads. This prevents checking for
5355 * success of set_cpus_allowed_ptr() on all attached tasks
5356 * before cpus_allowed may be changed.
5357 */
5358 if (p->flags & PF_NO_SETAFFINITY) {
5359 ret = -EINVAL;
5360 goto out;
5361 }
5362
5363#ifdef CONFIG_SMP
5364 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5365 cs_cpus_allowed)) {
5366 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5367 cs_cpus_allowed);
75e23e49 5368 struct dl_bw *dl_b;
7f51412a
JL
5369 bool overflow;
5370 int cpus;
5371 unsigned long flags;
5372
75e23e49
JL
5373 rcu_read_lock_sched();
5374 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5375 raw_spin_lock_irqsave(&dl_b->lock, flags);
5376 cpus = dl_bw_cpus(dest_cpu);
5377 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5378 if (overflow)
5379 ret = -EBUSY;
5380 else {
5381 /*
5382 * We reserve space for this task in the destination
5383 * root_domain, as we can't fail after this point.
5384 * We will free resources in the source root_domain
5385 * later on (see set_cpus_allowed_dl()).
5386 */
5387 __dl_add(dl_b, p->dl.dl_bw);
5388 }
5389 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5390 rcu_read_unlock_sched();
7f51412a
JL
5391
5392 }
5393#endif
5394out:
5395 return ret;
5396}
5397
1da177e4 5398#ifdef CONFIG_SMP
1da177e4 5399
e26fbffd
TG
5400static bool sched_smp_initialized __read_mostly;
5401
e6628d5b
MG
5402#ifdef CONFIG_NUMA_BALANCING
5403/* Migrate current task p to target_cpu */
5404int migrate_task_to(struct task_struct *p, int target_cpu)
5405{
5406 struct migration_arg arg = { p, target_cpu };
5407 int curr_cpu = task_cpu(p);
5408
5409 if (curr_cpu == target_cpu)
5410 return 0;
5411
5412 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5413 return -EINVAL;
5414
5415 /* TODO: This is not properly updating schedstats */
5416
286549dc 5417 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5418 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5419}
0ec8aa00
PZ
5420
5421/*
5422 * Requeue a task on a given node and accurately track the number of NUMA
5423 * tasks on the runqueues
5424 */
5425void sched_setnuma(struct task_struct *p, int nid)
5426{
da0c1e65 5427 bool queued, running;
eb580751
PZ
5428 struct rq_flags rf;
5429 struct rq *rq;
0ec8aa00 5430
eb580751 5431 rq = task_rq_lock(p, &rf);
da0c1e65 5432 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5433 running = task_current(rq, p);
5434
da0c1e65 5435 if (queued)
1de64443 5436 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5437 if (running)
f3cd1c4e 5438 put_prev_task(rq, p);
0ec8aa00
PZ
5439
5440 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5441
5442 if (running)
5443 p->sched_class->set_curr_task(rq);
da0c1e65 5444 if (queued)
1de64443 5445 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5446 task_rq_unlock(rq, p, &rf);
0ec8aa00 5447}
5cc389bc 5448#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5449
1da177e4 5450#ifdef CONFIG_HOTPLUG_CPU
054b9108 5451/*
48c5ccae
PZ
5452 * Ensures that the idle task is using init_mm right before its cpu goes
5453 * offline.
054b9108 5454 */
48c5ccae 5455void idle_task_exit(void)
1da177e4 5456{
48c5ccae 5457 struct mm_struct *mm = current->active_mm;
e76bd8d9 5458
48c5ccae 5459 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5460
a53efe5f 5461 if (mm != &init_mm) {
f98db601 5462 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5463 finish_arch_post_lock_switch();
5464 }
48c5ccae 5465 mmdrop(mm);
1da177e4
LT
5466}
5467
5468/*
5d180232
PZ
5469 * Since this CPU is going 'away' for a while, fold any nr_active delta
5470 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5471 * nr_active count is stable. We need to take the teardown thread which
5472 * is calling this into account, so we hand in adjust = 1 to the load
5473 * calculation.
5d180232
PZ
5474 *
5475 * Also see the comment "Global load-average calculations".
1da177e4 5476 */
5d180232 5477static void calc_load_migrate(struct rq *rq)
1da177e4 5478{
d60585c5 5479 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5480 if (delta)
5481 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5482}
5483
3f1d2a31
PZ
5484static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5485{
5486}
5487
5488static const struct sched_class fake_sched_class = {
5489 .put_prev_task = put_prev_task_fake,
5490};
5491
5492static struct task_struct fake_task = {
5493 /*
5494 * Avoid pull_{rt,dl}_task()
5495 */
5496 .prio = MAX_PRIO + 1,
5497 .sched_class = &fake_sched_class,
5498};
5499
48f24c4d 5500/*
48c5ccae
PZ
5501 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5502 * try_to_wake_up()->select_task_rq().
5503 *
5504 * Called with rq->lock held even though we'er in stop_machine() and
5505 * there's no concurrency possible, we hold the required locks anyway
5506 * because of lock validation efforts.
1da177e4 5507 */
5e16bbc2 5508static void migrate_tasks(struct rq *dead_rq)
1da177e4 5509{
5e16bbc2 5510 struct rq *rq = dead_rq;
48c5ccae 5511 struct task_struct *next, *stop = rq->stop;
e7904a28 5512 struct pin_cookie cookie;
48c5ccae 5513 int dest_cpu;
1da177e4
LT
5514
5515 /*
48c5ccae
PZ
5516 * Fudge the rq selection such that the below task selection loop
5517 * doesn't get stuck on the currently eligible stop task.
5518 *
5519 * We're currently inside stop_machine() and the rq is either stuck
5520 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5521 * either way we should never end up calling schedule() until we're
5522 * done here.
1da177e4 5523 */
48c5ccae 5524 rq->stop = NULL;
48f24c4d 5525
77bd3970
FW
5526 /*
5527 * put_prev_task() and pick_next_task() sched
5528 * class method both need to have an up-to-date
5529 * value of rq->clock[_task]
5530 */
5531 update_rq_clock(rq);
5532
5e16bbc2 5533 for (;;) {
48c5ccae
PZ
5534 /*
5535 * There's this thread running, bail when that's the only
5536 * remaining thread.
5537 */
5538 if (rq->nr_running == 1)
dd41f596 5539 break;
48c5ccae 5540
cbce1a68 5541 /*
5473e0cc 5542 * pick_next_task assumes pinned rq->lock.
cbce1a68 5543 */
e7904a28
PZ
5544 cookie = lockdep_pin_lock(&rq->lock);
5545 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5546 BUG_ON(!next);
79c53799 5547 next->sched_class->put_prev_task(rq, next);
e692ab53 5548
5473e0cc
WL
5549 /*
5550 * Rules for changing task_struct::cpus_allowed are holding
5551 * both pi_lock and rq->lock, such that holding either
5552 * stabilizes the mask.
5553 *
5554 * Drop rq->lock is not quite as disastrous as it usually is
5555 * because !cpu_active at this point, which means load-balance
5556 * will not interfere. Also, stop-machine.
5557 */
e7904a28 5558 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5559 raw_spin_unlock(&rq->lock);
5560 raw_spin_lock(&next->pi_lock);
5561 raw_spin_lock(&rq->lock);
5562
5563 /*
5564 * Since we're inside stop-machine, _nothing_ should have
5565 * changed the task, WARN if weird stuff happened, because in
5566 * that case the above rq->lock drop is a fail too.
5567 */
5568 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5569 raw_spin_unlock(&next->pi_lock);
5570 continue;
5571 }
5572
48c5ccae 5573 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5574 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5575
5e16bbc2
PZ
5576 rq = __migrate_task(rq, next, dest_cpu);
5577 if (rq != dead_rq) {
5578 raw_spin_unlock(&rq->lock);
5579 rq = dead_rq;
5580 raw_spin_lock(&rq->lock);
5581 }
5473e0cc 5582 raw_spin_unlock(&next->pi_lock);
1da177e4 5583 }
dce48a84 5584
48c5ccae 5585 rq->stop = stop;
dce48a84 5586}
1da177e4
LT
5587#endif /* CONFIG_HOTPLUG_CPU */
5588
1f11eb6a
GH
5589static void set_rq_online(struct rq *rq)
5590{
5591 if (!rq->online) {
5592 const struct sched_class *class;
5593
c6c4927b 5594 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5595 rq->online = 1;
5596
5597 for_each_class(class) {
5598 if (class->rq_online)
5599 class->rq_online(rq);
5600 }
5601 }
5602}
5603
5604static void set_rq_offline(struct rq *rq)
5605{
5606 if (rq->online) {
5607 const struct sched_class *class;
5608
5609 for_each_class(class) {
5610 if (class->rq_offline)
5611 class->rq_offline(rq);
5612 }
5613
c6c4927b 5614 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5615 rq->online = 0;
5616 }
5617}
5618
9cf7243d 5619static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5620{
969c7921 5621 struct rq *rq = cpu_rq(cpu);
1da177e4 5622
a803f026
CM
5623 rq->age_stamp = sched_clock_cpu(cpu);
5624}
5625
4cb98839
PZ
5626static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5627
3e9830dc 5628#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5629
d039ac60 5630static __read_mostly int sched_debug_enabled;
f6630114 5631
d039ac60 5632static int __init sched_debug_setup(char *str)
f6630114 5633{
d039ac60 5634 sched_debug_enabled = 1;
f6630114
MT
5635
5636 return 0;
5637}
d039ac60
PZ
5638early_param("sched_debug", sched_debug_setup);
5639
5640static inline bool sched_debug(void)
5641{
5642 return sched_debug_enabled;
5643}
f6630114 5644
7c16ec58 5645static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5646 struct cpumask *groupmask)
1da177e4 5647{
4dcf6aff 5648 struct sched_group *group = sd->groups;
1da177e4 5649
96f874e2 5650 cpumask_clear(groupmask);
4dcf6aff
IM
5651
5652 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5653
5654 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5655 printk("does not load-balance\n");
4dcf6aff 5656 if (sd->parent)
3df0fc5b
PZ
5657 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5658 " has parent");
4dcf6aff 5659 return -1;
41c7ce9a
NP
5660 }
5661
333470ee
TH
5662 printk(KERN_CONT "span %*pbl level %s\n",
5663 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5664
758b2cdc 5665 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5666 printk(KERN_ERR "ERROR: domain->span does not contain "
5667 "CPU%d\n", cpu);
4dcf6aff 5668 }
758b2cdc 5669 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5670 printk(KERN_ERR "ERROR: domain->groups does not contain"
5671 " CPU%d\n", cpu);
4dcf6aff 5672 }
1da177e4 5673
4dcf6aff 5674 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5675 do {
4dcf6aff 5676 if (!group) {
3df0fc5b
PZ
5677 printk("\n");
5678 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5679 break;
5680 }
5681
758b2cdc 5682 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5683 printk(KERN_CONT "\n");
5684 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5685 break;
5686 }
1da177e4 5687
cb83b629
PZ
5688 if (!(sd->flags & SD_OVERLAP) &&
5689 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5690 printk(KERN_CONT "\n");
5691 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5692 break;
5693 }
1da177e4 5694
758b2cdc 5695 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5696
333470ee
TH
5697 printk(KERN_CONT " %*pbl",
5698 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5699 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5700 printk(KERN_CONT " (cpu_capacity = %d)",
5701 group->sgc->capacity);
381512cf 5702 }
1da177e4 5703
4dcf6aff
IM
5704 group = group->next;
5705 } while (group != sd->groups);
3df0fc5b 5706 printk(KERN_CONT "\n");
1da177e4 5707
758b2cdc 5708 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5709 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5710
758b2cdc
RR
5711 if (sd->parent &&
5712 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5713 printk(KERN_ERR "ERROR: parent span is not a superset "
5714 "of domain->span\n");
4dcf6aff
IM
5715 return 0;
5716}
1da177e4 5717
4dcf6aff
IM
5718static void sched_domain_debug(struct sched_domain *sd, int cpu)
5719{
5720 int level = 0;
1da177e4 5721
d039ac60 5722 if (!sched_debug_enabled)
f6630114
MT
5723 return;
5724
4dcf6aff
IM
5725 if (!sd) {
5726 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5727 return;
5728 }
1da177e4 5729
4dcf6aff
IM
5730 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5731
5732 for (;;) {
4cb98839 5733 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5734 break;
1da177e4
LT
5735 level++;
5736 sd = sd->parent;
33859f7f 5737 if (!sd)
4dcf6aff
IM
5738 break;
5739 }
1da177e4 5740}
6d6bc0ad 5741#else /* !CONFIG_SCHED_DEBUG */
a18a579e
PZ
5742
5743# define sched_debug_enabled 0
48f24c4d 5744# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5745static inline bool sched_debug(void)
5746{
5747 return false;
5748}
6d6bc0ad 5749#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5750
1a20ff27 5751static int sd_degenerate(struct sched_domain *sd)
245af2c7 5752{
758b2cdc 5753 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5754 return 1;
5755
5756 /* Following flags need at least 2 groups */
5757 if (sd->flags & (SD_LOAD_BALANCE |
5758 SD_BALANCE_NEWIDLE |
5759 SD_BALANCE_FORK |
89c4710e 5760 SD_BALANCE_EXEC |
5d4dfddd 5761 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5762 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5763 SD_SHARE_PKG_RESOURCES |
5764 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5765 if (sd->groups != sd->groups->next)
5766 return 0;
5767 }
5768
5769 /* Following flags don't use groups */
c88d5910 5770 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5771 return 0;
5772
5773 return 1;
5774}
5775
48f24c4d
IM
5776static int
5777sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5778{
5779 unsigned long cflags = sd->flags, pflags = parent->flags;
5780
5781 if (sd_degenerate(parent))
5782 return 1;
5783
758b2cdc 5784 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5785 return 0;
5786
245af2c7
SS
5787 /* Flags needing groups don't count if only 1 group in parent */
5788 if (parent->groups == parent->groups->next) {
5789 pflags &= ~(SD_LOAD_BALANCE |
5790 SD_BALANCE_NEWIDLE |
5791 SD_BALANCE_FORK |
89c4710e 5792 SD_BALANCE_EXEC |
1f6e6c7c 5793 SD_ASYM_CPUCAPACITY |
5d4dfddd 5794 SD_SHARE_CPUCAPACITY |
10866e62 5795 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5796 SD_PREFER_SIBLING |
5797 SD_SHARE_POWERDOMAIN);
5436499e
KC
5798 if (nr_node_ids == 1)
5799 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5800 }
5801 if (~cflags & pflags)
5802 return 0;
5803
5804 return 1;
5805}
5806
dce840a0 5807static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5808{
dce840a0 5809 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5810
68e74568 5811 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5812 cpudl_cleanup(&rd->cpudl);
1baca4ce 5813 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5814 free_cpumask_var(rd->rto_mask);
5815 free_cpumask_var(rd->online);
5816 free_cpumask_var(rd->span);
5817 kfree(rd);
5818}
5819
57d885fe
GH
5820static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5821{
a0490fa3 5822 struct root_domain *old_rd = NULL;
57d885fe 5823 unsigned long flags;
57d885fe 5824
05fa785c 5825 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5826
5827 if (rq->rd) {
a0490fa3 5828 old_rd = rq->rd;
57d885fe 5829
c6c4927b 5830 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5831 set_rq_offline(rq);
57d885fe 5832
c6c4927b 5833 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5834
a0490fa3 5835 /*
0515973f 5836 * If we dont want to free the old_rd yet then
a0490fa3
IM
5837 * set old_rd to NULL to skip the freeing later
5838 * in this function:
5839 */
5840 if (!atomic_dec_and_test(&old_rd->refcount))
5841 old_rd = NULL;
57d885fe
GH
5842 }
5843
5844 atomic_inc(&rd->refcount);
5845 rq->rd = rd;
5846
c6c4927b 5847 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5848 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5849 set_rq_online(rq);
57d885fe 5850
05fa785c 5851 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5852
5853 if (old_rd)
dce840a0 5854 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5855}
5856
68c38fc3 5857static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5858{
5859 memset(rd, 0, sizeof(*rd));
5860
8295c699 5861 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5862 goto out;
8295c699 5863 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5864 goto free_span;
8295c699 5865 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5866 goto free_online;
8295c699 5867 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5868 goto free_dlo_mask;
6e0534f2 5869
332ac17e 5870 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5871 if (cpudl_init(&rd->cpudl) != 0)
5872 goto free_dlo_mask;
332ac17e 5873
68c38fc3 5874 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5875 goto free_rto_mask;
c6c4927b 5876 return 0;
6e0534f2 5877
68e74568
RR
5878free_rto_mask:
5879 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5880free_dlo_mask:
5881 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5882free_online:
5883 free_cpumask_var(rd->online);
5884free_span:
5885 free_cpumask_var(rd->span);
0c910d28 5886out:
c6c4927b 5887 return -ENOMEM;
57d885fe
GH
5888}
5889
029632fb
PZ
5890/*
5891 * By default the system creates a single root-domain with all cpus as
5892 * members (mimicking the global state we have today).
5893 */
5894struct root_domain def_root_domain;
5895
57d885fe
GH
5896static void init_defrootdomain(void)
5897{
68c38fc3 5898 init_rootdomain(&def_root_domain);
c6c4927b 5899
57d885fe
GH
5900 atomic_set(&def_root_domain.refcount, 1);
5901}
5902
dc938520 5903static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5904{
5905 struct root_domain *rd;
5906
5907 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5908 if (!rd)
5909 return NULL;
5910
68c38fc3 5911 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5912 kfree(rd);
5913 return NULL;
5914 }
57d885fe
GH
5915
5916 return rd;
5917}
5918
63b2ca30 5919static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5920{
5921 struct sched_group *tmp, *first;
5922
5923 if (!sg)
5924 return;
5925
5926 first = sg;
5927 do {
5928 tmp = sg->next;
5929
63b2ca30
NP
5930 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5931 kfree(sg->sgc);
e3589f6c
PZ
5932
5933 kfree(sg);
5934 sg = tmp;
5935 } while (sg != first);
5936}
5937
16f3ef46 5938static void destroy_sched_domain(struct sched_domain *sd)
dce840a0 5939{
e3589f6c
PZ
5940 /*
5941 * If its an overlapping domain it has private groups, iterate and
5942 * nuke them all.
5943 */
5944 if (sd->flags & SD_OVERLAP) {
5945 free_sched_groups(sd->groups, 1);
5946 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5947 kfree(sd->groups->sgc);
dce840a0 5948 kfree(sd->groups);
9c3f75cb 5949 }
dce840a0
PZ
5950 kfree(sd);
5951}
5952
16f3ef46 5953static void destroy_sched_domains_rcu(struct rcu_head *rcu)
dce840a0 5954{
16f3ef46
PZ
5955 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5956
5957 while (sd) {
5958 struct sched_domain *parent = sd->parent;
5959 destroy_sched_domain(sd);
5960 sd = parent;
5961 }
dce840a0
PZ
5962}
5963
f39180ef 5964static void destroy_sched_domains(struct sched_domain *sd)
dce840a0 5965{
16f3ef46
PZ
5966 if (sd)
5967 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
dce840a0
PZ
5968}
5969
518cd623
PZ
5970/*
5971 * Keep a special pointer to the highest sched_domain that has
5972 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5973 * allows us to avoid some pointer chasing select_idle_sibling().
5974 *
5975 * Also keep a unique ID per domain (we use the first cpu number in
5976 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5977 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5978 */
5979DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5980DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5981DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5982DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5983DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5984DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5985
5986static void update_top_cache_domain(int cpu)
5987{
5988 struct sched_domain *sd;
5d4cf996 5989 struct sched_domain *busy_sd = NULL;
518cd623 5990 int id = cpu;
7d9ffa89 5991 int size = 1;
518cd623
PZ
5992
5993 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5994 if (sd) {
518cd623 5995 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5996 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5997 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5998 }
5d4cf996 5999 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
6000
6001 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 6002 per_cpu(sd_llc_size, cpu) = size;
518cd623 6003 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
6004
6005 sd = lowest_flag_domain(cpu, SD_NUMA);
6006 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
6007
6008 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6009 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
6010}
6011
1da177e4 6012/*
0eab9146 6013 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6014 * hold the hotplug lock.
6015 */
0eab9146
IM
6016static void
6017cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6018{
70b97a7f 6019 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6020 struct sched_domain *tmp;
6021
6022 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6023 for (tmp = sd; tmp; ) {
245af2c7
SS
6024 struct sched_domain *parent = tmp->parent;
6025 if (!parent)
6026 break;
f29c9b1c 6027
1a848870 6028 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6029 tmp->parent = parent->parent;
1a848870
SS
6030 if (parent->parent)
6031 parent->parent->child = tmp;
10866e62
PZ
6032 /*
6033 * Transfer SD_PREFER_SIBLING down in case of a
6034 * degenerate parent; the spans match for this
6035 * so the property transfers.
6036 */
6037 if (parent->flags & SD_PREFER_SIBLING)
6038 tmp->flags |= SD_PREFER_SIBLING;
f39180ef 6039 destroy_sched_domain(parent);
f29c9b1c
LZ
6040 } else
6041 tmp = tmp->parent;
245af2c7
SS
6042 }
6043
1a848870 6044 if (sd && sd_degenerate(sd)) {
dce840a0 6045 tmp = sd;
245af2c7 6046 sd = sd->parent;
f39180ef 6047 destroy_sched_domain(tmp);
1a848870
SS
6048 if (sd)
6049 sd->child = NULL;
6050 }
1da177e4 6051
4cb98839 6052 sched_domain_debug(sd, cpu);
1da177e4 6053
57d885fe 6054 rq_attach_root(rq, rd);
dce840a0 6055 tmp = rq->sd;
674311d5 6056 rcu_assign_pointer(rq->sd, sd);
f39180ef 6057 destroy_sched_domains(tmp);
518cd623
PZ
6058
6059 update_top_cache_domain(cpu);
1da177e4
LT
6060}
6061
1da177e4
LT
6062/* Setup the mask of cpus configured for isolated domains */
6063static int __init isolated_cpu_setup(char *str)
6064{
a6e4491c
PB
6065 int ret;
6066
bdddd296 6067 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6068 ret = cpulist_parse(str, cpu_isolated_map);
6069 if (ret) {
6070 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6071 return 0;
6072 }
1da177e4
LT
6073 return 1;
6074}
8927f494 6075__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6076
49a02c51 6077struct s_data {
21d42ccf 6078 struct sched_domain ** __percpu sd;
49a02c51
AH
6079 struct root_domain *rd;
6080};
6081
2109b99e 6082enum s_alloc {
2109b99e 6083 sa_rootdomain,
21d42ccf 6084 sa_sd,
dce840a0 6085 sa_sd_storage,
2109b99e
AH
6086 sa_none,
6087};
6088
c1174876
PZ
6089/*
6090 * Build an iteration mask that can exclude certain CPUs from the upwards
6091 * domain traversal.
6092 *
6093 * Asymmetric node setups can result in situations where the domain tree is of
6094 * unequal depth, make sure to skip domains that already cover the entire
6095 * range.
6096 *
6097 * In that case build_sched_domains() will have terminated the iteration early
6098 * and our sibling sd spans will be empty. Domains should always include the
6099 * cpu they're built on, so check that.
6100 *
6101 */
6102static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6103{
6104 const struct cpumask *span = sched_domain_span(sd);
6105 struct sd_data *sdd = sd->private;
6106 struct sched_domain *sibling;
6107 int i;
6108
6109 for_each_cpu(i, span) {
6110 sibling = *per_cpu_ptr(sdd->sd, i);
6111 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6112 continue;
6113
6114 cpumask_set_cpu(i, sched_group_mask(sg));
6115 }
6116}
6117
6118/*
6119 * Return the canonical balance cpu for this group, this is the first cpu
6120 * of this group that's also in the iteration mask.
6121 */
6122int group_balance_cpu(struct sched_group *sg)
6123{
6124 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6125}
6126
e3589f6c
PZ
6127static int
6128build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6129{
6130 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6131 const struct cpumask *span = sched_domain_span(sd);
6132 struct cpumask *covered = sched_domains_tmpmask;
6133 struct sd_data *sdd = sd->private;
aaecac4a 6134 struct sched_domain *sibling;
e3589f6c
PZ
6135 int i;
6136
6137 cpumask_clear(covered);
6138
6139 for_each_cpu(i, span) {
6140 struct cpumask *sg_span;
6141
6142 if (cpumask_test_cpu(i, covered))
6143 continue;
6144
aaecac4a 6145 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6146
6147 /* See the comment near build_group_mask(). */
aaecac4a 6148 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6149 continue;
6150
e3589f6c 6151 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6152 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6153
6154 if (!sg)
6155 goto fail;
6156
6157 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6158 if (sibling->child)
6159 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6160 else
e3589f6c
PZ
6161 cpumask_set_cpu(i, sg_span);
6162
6163 cpumask_or(covered, covered, sg_span);
6164
63b2ca30
NP
6165 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6166 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6167 build_group_mask(sd, sg);
6168
c3decf0d 6169 /*
63b2ca30 6170 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6171 * domains and no possible iteration will get us here, we won't
6172 * die on a /0 trap.
6173 */
ca8ce3d0 6174 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6175
c1174876
PZ
6176 /*
6177 * Make sure the first group of this domain contains the
6178 * canonical balance cpu. Otherwise the sched_domain iteration
6179 * breaks. See update_sg_lb_stats().
6180 */
74a5ce20 6181 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6182 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6183 groups = sg;
6184
6185 if (!first)
6186 first = sg;
6187 if (last)
6188 last->next = sg;
6189 last = sg;
6190 last->next = first;
6191 }
6192 sd->groups = groups;
6193
6194 return 0;
6195
6196fail:
6197 free_sched_groups(first, 0);
6198
6199 return -ENOMEM;
6200}
6201
dce840a0 6202static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6203{
dce840a0
PZ
6204 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6205 struct sched_domain *child = sd->child;
1da177e4 6206
dce840a0
PZ
6207 if (child)
6208 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6209
9c3f75cb 6210 if (sg) {
dce840a0 6211 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6212 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6213 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6214 }
dce840a0
PZ
6215
6216 return cpu;
1e9f28fa 6217}
1e9f28fa 6218
01a08546 6219/*
dce840a0
PZ
6220 * build_sched_groups will build a circular linked list of the groups
6221 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6222 * and ->cpu_capacity to 0.
e3589f6c
PZ
6223 *
6224 * Assumes the sched_domain tree is fully constructed
01a08546 6225 */
e3589f6c
PZ
6226static int
6227build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6228{
dce840a0
PZ
6229 struct sched_group *first = NULL, *last = NULL;
6230 struct sd_data *sdd = sd->private;
6231 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6232 struct cpumask *covered;
dce840a0 6233 int i;
9c1cfda2 6234
e3589f6c
PZ
6235 get_group(cpu, sdd, &sd->groups);
6236 atomic_inc(&sd->groups->ref);
6237
0936629f 6238 if (cpu != cpumask_first(span))
e3589f6c
PZ
6239 return 0;
6240
f96225fd
PZ
6241 lockdep_assert_held(&sched_domains_mutex);
6242 covered = sched_domains_tmpmask;
6243
dce840a0 6244 cpumask_clear(covered);
6711cab4 6245
dce840a0
PZ
6246 for_each_cpu(i, span) {
6247 struct sched_group *sg;
cd08e923 6248 int group, j;
6711cab4 6249
dce840a0
PZ
6250 if (cpumask_test_cpu(i, covered))
6251 continue;
6711cab4 6252
cd08e923 6253 group = get_group(i, sdd, &sg);
c1174876 6254 cpumask_setall(sched_group_mask(sg));
0601a88d 6255
dce840a0
PZ
6256 for_each_cpu(j, span) {
6257 if (get_group(j, sdd, NULL) != group)
6258 continue;
0601a88d 6259
dce840a0
PZ
6260 cpumask_set_cpu(j, covered);
6261 cpumask_set_cpu(j, sched_group_cpus(sg));
6262 }
0601a88d 6263
dce840a0
PZ
6264 if (!first)
6265 first = sg;
6266 if (last)
6267 last->next = sg;
6268 last = sg;
6269 }
6270 last->next = first;
e3589f6c
PZ
6271
6272 return 0;
0601a88d 6273}
51888ca2 6274
89c4710e 6275/*
63b2ca30 6276 * Initialize sched groups cpu_capacity.
89c4710e 6277 *
63b2ca30 6278 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6279 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6280 * Typically cpu_capacity for all the groups in a sched domain will be same
6281 * unless there are asymmetries in the topology. If there are asymmetries,
6282 * group having more cpu_capacity will pickup more load compared to the
6283 * group having less cpu_capacity.
89c4710e 6284 */
63b2ca30 6285static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6286{
e3589f6c 6287 struct sched_group *sg = sd->groups;
89c4710e 6288
94c95ba6 6289 WARN_ON(!sg);
e3589f6c
PZ
6290
6291 do {
6292 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6293 sg = sg->next;
6294 } while (sg != sd->groups);
89c4710e 6295
c1174876 6296 if (cpu != group_balance_cpu(sg))
e3589f6c 6297 return;
aae6d3dd 6298
63b2ca30
NP
6299 update_group_capacity(sd, cpu);
6300 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6301}
6302
7c16ec58
MT
6303/*
6304 * Initializers for schedule domains
6305 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6306 */
6307
1d3504fc 6308static int default_relax_domain_level = -1;
60495e77 6309int sched_domain_level_max;
1d3504fc
HS
6310
6311static int __init setup_relax_domain_level(char *str)
6312{
a841f8ce
DS
6313 if (kstrtoint(str, 0, &default_relax_domain_level))
6314 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6315
1d3504fc
HS
6316 return 1;
6317}
6318__setup("relax_domain_level=", setup_relax_domain_level);
6319
6320static void set_domain_attribute(struct sched_domain *sd,
6321 struct sched_domain_attr *attr)
6322{
6323 int request;
6324
6325 if (!attr || attr->relax_domain_level < 0) {
6326 if (default_relax_domain_level < 0)
6327 return;
6328 else
6329 request = default_relax_domain_level;
6330 } else
6331 request = attr->relax_domain_level;
6332 if (request < sd->level) {
6333 /* turn off idle balance on this domain */
c88d5910 6334 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6335 } else {
6336 /* turn on idle balance on this domain */
c88d5910 6337 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6338 }
6339}
6340
54ab4ff4
PZ
6341static void __sdt_free(const struct cpumask *cpu_map);
6342static int __sdt_alloc(const struct cpumask *cpu_map);
6343
2109b99e
AH
6344static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6345 const struct cpumask *cpu_map)
6346{
6347 switch (what) {
2109b99e 6348 case sa_rootdomain:
822ff793
PZ
6349 if (!atomic_read(&d->rd->refcount))
6350 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6351 case sa_sd:
6352 free_percpu(d->sd); /* fall through */
dce840a0 6353 case sa_sd_storage:
54ab4ff4 6354 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6355 case sa_none:
6356 break;
6357 }
6358}
3404c8d9 6359
2109b99e
AH
6360static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6361 const struct cpumask *cpu_map)
6362{
dce840a0
PZ
6363 memset(d, 0, sizeof(*d));
6364
54ab4ff4
PZ
6365 if (__sdt_alloc(cpu_map))
6366 return sa_sd_storage;
dce840a0
PZ
6367 d->sd = alloc_percpu(struct sched_domain *);
6368 if (!d->sd)
6369 return sa_sd_storage;
2109b99e 6370 d->rd = alloc_rootdomain();
dce840a0 6371 if (!d->rd)
21d42ccf 6372 return sa_sd;
2109b99e
AH
6373 return sa_rootdomain;
6374}
57d885fe 6375
dce840a0
PZ
6376/*
6377 * NULL the sd_data elements we've used to build the sched_domain and
6378 * sched_group structure so that the subsequent __free_domain_allocs()
6379 * will not free the data we're using.
6380 */
6381static void claim_allocations(int cpu, struct sched_domain *sd)
6382{
6383 struct sd_data *sdd = sd->private;
dce840a0
PZ
6384
6385 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6386 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6387
e3589f6c 6388 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6389 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6390
63b2ca30
NP
6391 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6392 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6393}
6394
cb83b629 6395#ifdef CONFIG_NUMA
cb83b629 6396static int sched_domains_numa_levels;
e3fe70b1 6397enum numa_topology_type sched_numa_topology_type;
cb83b629 6398static int *sched_domains_numa_distance;
9942f79b 6399int sched_max_numa_distance;
cb83b629
PZ
6400static struct cpumask ***sched_domains_numa_masks;
6401static int sched_domains_curr_level;
143e1e28 6402#endif
cb83b629 6403
143e1e28
VG
6404/*
6405 * SD_flags allowed in topology descriptions.
6406 *
94f438c8
PZ
6407 * These flags are purely descriptive of the topology and do not prescribe
6408 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6409 * function:
143e1e28 6410 *
94f438c8
PZ
6411 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6412 * SD_SHARE_PKG_RESOURCES - describes shared caches
6413 * SD_NUMA - describes NUMA topologies
6414 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6415 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6416 *
6417 * Odd one out, which beside describing the topology has a quirk also
6418 * prescribes the desired behaviour that goes along with it:
6419 *
6420 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6421 */
6422#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6423 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6424 SD_SHARE_PKG_RESOURCES | \
6425 SD_NUMA | \
d77b3ed5 6426 SD_ASYM_PACKING | \
1f6e6c7c 6427 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6428 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6429
6430static struct sched_domain *
3676b13e
MR
6431sd_init(struct sched_domain_topology_level *tl,
6432 struct sched_domain *child, int cpu)
cb83b629
PZ
6433{
6434 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6435 int sd_weight, sd_flags = 0;
6436
6437#ifdef CONFIG_NUMA
6438 /*
6439 * Ugly hack to pass state to sd_numa_mask()...
6440 */
6441 sched_domains_curr_level = tl->numa_level;
6442#endif
6443
6444 sd_weight = cpumask_weight(tl->mask(cpu));
6445
6446 if (tl->sd_flags)
6447 sd_flags = (*tl->sd_flags)();
6448 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6449 "wrong sd_flags in topology description\n"))
6450 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6451
6452 *sd = (struct sched_domain){
6453 .min_interval = sd_weight,
6454 .max_interval = 2*sd_weight,
6455 .busy_factor = 32,
870a0bb5 6456 .imbalance_pct = 125,
143e1e28
VG
6457
6458 .cache_nice_tries = 0,
6459 .busy_idx = 0,
6460 .idle_idx = 0,
cb83b629
PZ
6461 .newidle_idx = 0,
6462 .wake_idx = 0,
6463 .forkexec_idx = 0,
6464
6465 .flags = 1*SD_LOAD_BALANCE
6466 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6467 | 1*SD_BALANCE_EXEC
6468 | 1*SD_BALANCE_FORK
cb83b629 6469 | 0*SD_BALANCE_WAKE
143e1e28 6470 | 1*SD_WAKE_AFFINE
5d4dfddd 6471 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6472 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6473 | 0*SD_SERIALIZE
cb83b629 6474 | 0*SD_PREFER_SIBLING
143e1e28
VG
6475 | 0*SD_NUMA
6476 | sd_flags
cb83b629 6477 ,
143e1e28 6478
cb83b629
PZ
6479 .last_balance = jiffies,
6480 .balance_interval = sd_weight,
143e1e28 6481 .smt_gain = 0,
2b4cfe64
JL
6482 .max_newidle_lb_cost = 0,
6483 .next_decay_max_lb_cost = jiffies,
3676b13e 6484 .child = child,
143e1e28
VG
6485#ifdef CONFIG_SCHED_DEBUG
6486 .name = tl->name,
6487#endif
cb83b629 6488 };
cb83b629
PZ
6489
6490 /*
143e1e28 6491 * Convert topological properties into behaviour.
cb83b629 6492 */
143e1e28 6493
9ee1cda5
MR
6494 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6495 struct sched_domain *t = sd;
6496
6497 for_each_lower_domain(t)
6498 t->flags |= SD_BALANCE_WAKE;
6499 }
6500
5d4dfddd 6501 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6502 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6503 sd->imbalance_pct = 110;
6504 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6505
6506 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6507 sd->imbalance_pct = 117;
6508 sd->cache_nice_tries = 1;
6509 sd->busy_idx = 2;
6510
6511#ifdef CONFIG_NUMA
6512 } else if (sd->flags & SD_NUMA) {
6513 sd->cache_nice_tries = 2;
6514 sd->busy_idx = 3;
6515 sd->idle_idx = 2;
6516
6517 sd->flags |= SD_SERIALIZE;
6518 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6519 sd->flags &= ~(SD_BALANCE_EXEC |
6520 SD_BALANCE_FORK |
6521 SD_WAKE_AFFINE);
6522 }
6523
6524#endif
6525 } else {
6526 sd->flags |= SD_PREFER_SIBLING;
6527 sd->cache_nice_tries = 1;
6528 sd->busy_idx = 2;
6529 sd->idle_idx = 1;
6530 }
6531
6532 sd->private = &tl->data;
cb83b629
PZ
6533
6534 return sd;
6535}
6536
143e1e28
VG
6537/*
6538 * Topology list, bottom-up.
6539 */
6540static struct sched_domain_topology_level default_topology[] = {
6541#ifdef CONFIG_SCHED_SMT
6542 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6543#endif
6544#ifdef CONFIG_SCHED_MC
6545 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6546#endif
6547 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6548 { NULL, },
6549};
6550
c6e1e7b5
JG
6551static struct sched_domain_topology_level *sched_domain_topology =
6552 default_topology;
143e1e28
VG
6553
6554#define for_each_sd_topology(tl) \
6555 for (tl = sched_domain_topology; tl->mask; tl++)
6556
6557void set_sched_topology(struct sched_domain_topology_level *tl)
6558{
8f37961c
TC
6559 if (WARN_ON_ONCE(sched_smp_initialized))
6560 return;
6561
143e1e28
VG
6562 sched_domain_topology = tl;
6563}
6564
6565#ifdef CONFIG_NUMA
6566
cb83b629
PZ
6567static const struct cpumask *sd_numa_mask(int cpu)
6568{
6569 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6570}
6571
d039ac60
PZ
6572static void sched_numa_warn(const char *str)
6573{
6574 static int done = false;
6575 int i,j;
6576
6577 if (done)
6578 return;
6579
6580 done = true;
6581
6582 printk(KERN_WARNING "ERROR: %s\n\n", str);
6583
6584 for (i = 0; i < nr_node_ids; i++) {
6585 printk(KERN_WARNING " ");
6586 for (j = 0; j < nr_node_ids; j++)
6587 printk(KERN_CONT "%02d ", node_distance(i,j));
6588 printk(KERN_CONT "\n");
6589 }
6590 printk(KERN_WARNING "\n");
6591}
6592
9942f79b 6593bool find_numa_distance(int distance)
d039ac60
PZ
6594{
6595 int i;
6596
6597 if (distance == node_distance(0, 0))
6598 return true;
6599
6600 for (i = 0; i < sched_domains_numa_levels; i++) {
6601 if (sched_domains_numa_distance[i] == distance)
6602 return true;
6603 }
6604
6605 return false;
6606}
6607
e3fe70b1
RR
6608/*
6609 * A system can have three types of NUMA topology:
6610 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6611 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6612 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6613 *
6614 * The difference between a glueless mesh topology and a backplane
6615 * topology lies in whether communication between not directly
6616 * connected nodes goes through intermediary nodes (where programs
6617 * could run), or through backplane controllers. This affects
6618 * placement of programs.
6619 *
6620 * The type of topology can be discerned with the following tests:
6621 * - If the maximum distance between any nodes is 1 hop, the system
6622 * is directly connected.
6623 * - If for two nodes A and B, located N > 1 hops away from each other,
6624 * there is an intermediary node C, which is < N hops away from both
6625 * nodes A and B, the system is a glueless mesh.
6626 */
6627static void init_numa_topology_type(void)
6628{
6629 int a, b, c, n;
6630
6631 n = sched_max_numa_distance;
6632
e237882b 6633 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6634 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6635 return;
6636 }
e3fe70b1
RR
6637
6638 for_each_online_node(a) {
6639 for_each_online_node(b) {
6640 /* Find two nodes furthest removed from each other. */
6641 if (node_distance(a, b) < n)
6642 continue;
6643
6644 /* Is there an intermediary node between a and b? */
6645 for_each_online_node(c) {
6646 if (node_distance(a, c) < n &&
6647 node_distance(b, c) < n) {
6648 sched_numa_topology_type =
6649 NUMA_GLUELESS_MESH;
6650 return;
6651 }
6652 }
6653
6654 sched_numa_topology_type = NUMA_BACKPLANE;
6655 return;
6656 }
6657 }
6658}
6659
cb83b629
PZ
6660static void sched_init_numa(void)
6661{
6662 int next_distance, curr_distance = node_distance(0, 0);
6663 struct sched_domain_topology_level *tl;
6664 int level = 0;
6665 int i, j, k;
6666
cb83b629
PZ
6667 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6668 if (!sched_domains_numa_distance)
6669 return;
6670
6671 /*
6672 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6673 * unique distances in the node_distance() table.
6674 *
6675 * Assumes node_distance(0,j) includes all distances in
6676 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6677 */
6678 next_distance = curr_distance;
6679 for (i = 0; i < nr_node_ids; i++) {
6680 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6681 for (k = 0; k < nr_node_ids; k++) {
6682 int distance = node_distance(i, k);
6683
6684 if (distance > curr_distance &&
6685 (distance < next_distance ||
6686 next_distance == curr_distance))
6687 next_distance = distance;
6688
6689 /*
6690 * While not a strong assumption it would be nice to know
6691 * about cases where if node A is connected to B, B is not
6692 * equally connected to A.
6693 */
6694 if (sched_debug() && node_distance(k, i) != distance)
6695 sched_numa_warn("Node-distance not symmetric");
6696
6697 if (sched_debug() && i && !find_numa_distance(distance))
6698 sched_numa_warn("Node-0 not representative");
6699 }
6700 if (next_distance != curr_distance) {
6701 sched_domains_numa_distance[level++] = next_distance;
6702 sched_domains_numa_levels = level;
6703 curr_distance = next_distance;
6704 } else break;
cb83b629 6705 }
d039ac60
PZ
6706
6707 /*
6708 * In case of sched_debug() we verify the above assumption.
6709 */
6710 if (!sched_debug())
6711 break;
cb83b629 6712 }
c123588b
AR
6713
6714 if (!level)
6715 return;
6716
cb83b629
PZ
6717 /*
6718 * 'level' contains the number of unique distances, excluding the
6719 * identity distance node_distance(i,i).
6720 *
28b4a521 6721 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6722 * numbers.
6723 */
6724
5f7865f3
TC
6725 /*
6726 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6727 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6728 * the array will contain less then 'level' members. This could be
6729 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6730 * in other functions.
6731 *
6732 * We reset it to 'level' at the end of this function.
6733 */
6734 sched_domains_numa_levels = 0;
6735
cb83b629
PZ
6736 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6737 if (!sched_domains_numa_masks)
6738 return;
6739
6740 /*
6741 * Now for each level, construct a mask per node which contains all
6742 * cpus of nodes that are that many hops away from us.
6743 */
6744 for (i = 0; i < level; i++) {
6745 sched_domains_numa_masks[i] =
6746 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6747 if (!sched_domains_numa_masks[i])
6748 return;
6749
6750 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6751 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6752 if (!mask)
6753 return;
6754
6755 sched_domains_numa_masks[i][j] = mask;
6756
9c03ee14 6757 for_each_node(k) {
dd7d8634 6758 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6759 continue;
6760
6761 cpumask_or(mask, mask, cpumask_of_node(k));
6762 }
6763 }
6764 }
6765
143e1e28
VG
6766 /* Compute default topology size */
6767 for (i = 0; sched_domain_topology[i].mask; i++);
6768
c515db8c 6769 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6770 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6771 if (!tl)
6772 return;
6773
6774 /*
6775 * Copy the default topology bits..
6776 */
143e1e28
VG
6777 for (i = 0; sched_domain_topology[i].mask; i++)
6778 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6779
6780 /*
6781 * .. and append 'j' levels of NUMA goodness.
6782 */
6783 for (j = 0; j < level; i++, j++) {
6784 tl[i] = (struct sched_domain_topology_level){
cb83b629 6785 .mask = sd_numa_mask,
143e1e28 6786 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6787 .flags = SDTL_OVERLAP,
6788 .numa_level = j,
143e1e28 6789 SD_INIT_NAME(NUMA)
cb83b629
PZ
6790 };
6791 }
6792
6793 sched_domain_topology = tl;
5f7865f3
TC
6794
6795 sched_domains_numa_levels = level;
9942f79b 6796 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6797
6798 init_numa_topology_type();
cb83b629 6799}
301a5cba 6800
135fb3e1 6801static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6802{
301a5cba 6803 int node = cpu_to_node(cpu);
135fb3e1 6804 int i, j;
301a5cba
TC
6805
6806 for (i = 0; i < sched_domains_numa_levels; i++) {
6807 for (j = 0; j < nr_node_ids; j++) {
6808 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6809 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6810 }
6811 }
6812}
6813
135fb3e1 6814static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6815{
6816 int i, j;
135fb3e1 6817
301a5cba
TC
6818 for (i = 0; i < sched_domains_numa_levels; i++) {
6819 for (j = 0; j < nr_node_ids; j++)
6820 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6821 }
6822}
6823
cb83b629 6824#else
135fb3e1
TG
6825static inline void sched_init_numa(void) { }
6826static void sched_domains_numa_masks_set(unsigned int cpu) { }
6827static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6828#endif /* CONFIG_NUMA */
6829
54ab4ff4
PZ
6830static int __sdt_alloc(const struct cpumask *cpu_map)
6831{
6832 struct sched_domain_topology_level *tl;
6833 int j;
6834
27723a68 6835 for_each_sd_topology(tl) {
54ab4ff4
PZ
6836 struct sd_data *sdd = &tl->data;
6837
6838 sdd->sd = alloc_percpu(struct sched_domain *);
6839 if (!sdd->sd)
6840 return -ENOMEM;
6841
6842 sdd->sg = alloc_percpu(struct sched_group *);
6843 if (!sdd->sg)
6844 return -ENOMEM;
6845
63b2ca30
NP
6846 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6847 if (!sdd->sgc)
9c3f75cb
PZ
6848 return -ENOMEM;
6849
54ab4ff4
PZ
6850 for_each_cpu(j, cpu_map) {
6851 struct sched_domain *sd;
6852 struct sched_group *sg;
63b2ca30 6853 struct sched_group_capacity *sgc;
54ab4ff4 6854
5cc389bc 6855 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6856 GFP_KERNEL, cpu_to_node(j));
6857 if (!sd)
6858 return -ENOMEM;
6859
6860 *per_cpu_ptr(sdd->sd, j) = sd;
6861
6862 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6863 GFP_KERNEL, cpu_to_node(j));
6864 if (!sg)
6865 return -ENOMEM;
6866
30b4e9eb
IM
6867 sg->next = sg;
6868
54ab4ff4 6869 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6870
63b2ca30 6871 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6872 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6873 if (!sgc)
9c3f75cb
PZ
6874 return -ENOMEM;
6875
63b2ca30 6876 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6877 }
6878 }
6879
6880 return 0;
6881}
6882
6883static void __sdt_free(const struct cpumask *cpu_map)
6884{
6885 struct sched_domain_topology_level *tl;
6886 int j;
6887
27723a68 6888 for_each_sd_topology(tl) {
54ab4ff4
PZ
6889 struct sd_data *sdd = &tl->data;
6890
6891 for_each_cpu(j, cpu_map) {
fb2cf2c6 6892 struct sched_domain *sd;
6893
6894 if (sdd->sd) {
6895 sd = *per_cpu_ptr(sdd->sd, j);
6896 if (sd && (sd->flags & SD_OVERLAP))
6897 free_sched_groups(sd->groups, 0);
6898 kfree(*per_cpu_ptr(sdd->sd, j));
6899 }
6900
6901 if (sdd->sg)
6902 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6903 if (sdd->sgc)
6904 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6905 }
6906 free_percpu(sdd->sd);
fb2cf2c6 6907 sdd->sd = NULL;
54ab4ff4 6908 free_percpu(sdd->sg);
fb2cf2c6 6909 sdd->sg = NULL;
63b2ca30
NP
6910 free_percpu(sdd->sgc);
6911 sdd->sgc = NULL;
54ab4ff4
PZ
6912 }
6913}
6914
2c402dc3 6915struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6916 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6917 struct sched_domain *child, int cpu)
2c402dc3 6918{
3676b13e 6919 struct sched_domain *sd = sd_init(tl, child, cpu);
2c402dc3 6920
2c402dc3 6921 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6922 if (child) {
6923 sd->level = child->level + 1;
6924 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6925 child->parent = sd;
6ae72dff
PZ
6926
6927 if (!cpumask_subset(sched_domain_span(child),
6928 sched_domain_span(sd))) {
6929 pr_err("BUG: arch topology borken\n");
6930#ifdef CONFIG_SCHED_DEBUG
6931 pr_err(" the %s domain not a subset of the %s domain\n",
6932 child->name, sd->name);
6933#endif
6934 /* Fixup, ensure @sd has at least @child cpus. */
6935 cpumask_or(sched_domain_span(sd),
6936 sched_domain_span(sd),
6937 sched_domain_span(child));
6938 }
6939
60495e77 6940 }
a841f8ce 6941 set_domain_attribute(sd, attr);
2c402dc3
PZ
6942
6943 return sd;
6944}
6945
2109b99e
AH
6946/*
6947 * Build sched domains for a given set of cpus and attach the sched domains
6948 * to the individual cpus
6949 */
dce840a0
PZ
6950static int build_sched_domains(const struct cpumask *cpu_map,
6951 struct sched_domain_attr *attr)
2109b99e 6952{
1c632169 6953 enum s_alloc alloc_state;
dce840a0 6954 struct sched_domain *sd;
2109b99e 6955 struct s_data d;
cd92bfd3 6956 struct rq *rq = NULL;
822ff793 6957 int i, ret = -ENOMEM;
9c1cfda2 6958
2109b99e
AH
6959 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6960 if (alloc_state != sa_rootdomain)
6961 goto error;
9c1cfda2 6962
dce840a0 6963 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6964 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6965 struct sched_domain_topology_level *tl;
6966
3bd65a80 6967 sd = NULL;
27723a68 6968 for_each_sd_topology(tl) {
4a850cbe 6969 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6970 if (tl == sched_domain_topology)
6971 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6972 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6973 sd->flags |= SD_OVERLAP;
d110235d
PZ
6974 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6975 break;
e3589f6c 6976 }
dce840a0
PZ
6977 }
6978
6979 /* Build the groups for the domains */
6980 for_each_cpu(i, cpu_map) {
6981 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6982 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6983 if (sd->flags & SD_OVERLAP) {
6984 if (build_overlap_sched_groups(sd, i))
6985 goto error;
6986 } else {
6987 if (build_sched_groups(sd, i))
6988 goto error;
6989 }
1cf51902 6990 }
a06dadbe 6991 }
9c1cfda2 6992
ced549fa 6993 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6994 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6995 if (!cpumask_test_cpu(i, cpu_map))
6996 continue;
9c1cfda2 6997
dce840a0
PZ
6998 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6999 claim_allocations(i, sd);
63b2ca30 7000 init_sched_groups_capacity(i, sd);
dce840a0 7001 }
f712c0c7 7002 }
9c1cfda2 7003
1da177e4 7004 /* Attach the domains */
dce840a0 7005 rcu_read_lock();
abcd083a 7006 for_each_cpu(i, cpu_map) {
cd92bfd3 7007 rq = cpu_rq(i);
21d42ccf 7008 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
7009
7010 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7011 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7012 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7013
49a02c51 7014 cpu_attach_domain(sd, d.rd, i);
1da177e4 7015 }
dce840a0 7016 rcu_read_unlock();
51888ca2 7017
a18a579e 7018 if (rq && sched_debug_enabled) {
cd92bfd3
DE
7019 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7020 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7021 }
7022
822ff793 7023 ret = 0;
51888ca2 7024error:
2109b99e 7025 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 7026 return ret;
1da177e4 7027}
029190c5 7028
acc3f5d7 7029static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7030static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7031static struct sched_domain_attr *dattr_cur;
7032 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7033
7034/*
7035 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7036 * cpumask) fails, then fallback to a single sched domain,
7037 * as determined by the single cpumask fallback_doms.
029190c5 7038 */
4212823f 7039static cpumask_var_t fallback_doms;
029190c5 7040
ee79d1bd
HC
7041/*
7042 * arch_update_cpu_topology lets virtualized architectures update the
7043 * cpu core maps. It is supposed to return 1 if the topology changed
7044 * or 0 if it stayed the same.
7045 */
52f5684c 7046int __weak arch_update_cpu_topology(void)
22e52b07 7047{
ee79d1bd 7048 return 0;
22e52b07
HC
7049}
7050
acc3f5d7
RR
7051cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7052{
7053 int i;
7054 cpumask_var_t *doms;
7055
7056 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7057 if (!doms)
7058 return NULL;
7059 for (i = 0; i < ndoms; i++) {
7060 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7061 free_sched_domains(doms, i);
7062 return NULL;
7063 }
7064 }
7065 return doms;
7066}
7067
7068void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7069{
7070 unsigned int i;
7071 for (i = 0; i < ndoms; i++)
7072 free_cpumask_var(doms[i]);
7073 kfree(doms);
7074}
7075
1a20ff27 7076/*
41a2d6cf 7077 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7078 * For now this just excludes isolated cpus, but could be used to
7079 * exclude other special cases in the future.
1a20ff27 7080 */
c4a8849a 7081static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7082{
7378547f
MM
7083 int err;
7084
22e52b07 7085 arch_update_cpu_topology();
029190c5 7086 ndoms_cur = 1;
acc3f5d7 7087 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7088 if (!doms_cur)
acc3f5d7
RR
7089 doms_cur = &fallback_doms;
7090 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7091 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7092 register_sched_domain_sysctl();
7378547f
MM
7093
7094 return err;
1a20ff27
DG
7095}
7096
1a20ff27
DG
7097/*
7098 * Detach sched domains from a group of cpus specified in cpu_map
7099 * These cpus will now be attached to the NULL domain
7100 */
96f874e2 7101static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7102{
7103 int i;
7104
dce840a0 7105 rcu_read_lock();
abcd083a 7106 for_each_cpu(i, cpu_map)
57d885fe 7107 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7108 rcu_read_unlock();
1a20ff27
DG
7109}
7110
1d3504fc
HS
7111/* handle null as "default" */
7112static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7113 struct sched_domain_attr *new, int idx_new)
7114{
7115 struct sched_domain_attr tmp;
7116
7117 /* fast path */
7118 if (!new && !cur)
7119 return 1;
7120
7121 tmp = SD_ATTR_INIT;
7122 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7123 new ? (new + idx_new) : &tmp,
7124 sizeof(struct sched_domain_attr));
7125}
7126
029190c5
PJ
7127/*
7128 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7129 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7130 * doms_new[] to the current sched domain partitioning, doms_cur[].
7131 * It destroys each deleted domain and builds each new domain.
7132 *
acc3f5d7 7133 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7134 * The masks don't intersect (don't overlap.) We should setup one
7135 * sched domain for each mask. CPUs not in any of the cpumasks will
7136 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7137 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7138 * it as it is.
7139 *
acc3f5d7
RR
7140 * The passed in 'doms_new' should be allocated using
7141 * alloc_sched_domains. This routine takes ownership of it and will
7142 * free_sched_domains it when done with it. If the caller failed the
7143 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7144 * and partition_sched_domains() will fallback to the single partition
7145 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7146 *
96f874e2 7147 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7148 * ndoms_new == 0 is a special case for destroying existing domains,
7149 * and it will not create the default domain.
dfb512ec 7150 *
029190c5
PJ
7151 * Call with hotplug lock held
7152 */
acc3f5d7 7153void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7154 struct sched_domain_attr *dattr_new)
029190c5 7155{
dfb512ec 7156 int i, j, n;
d65bd5ec 7157 int new_topology;
029190c5 7158
712555ee 7159 mutex_lock(&sched_domains_mutex);
a1835615 7160
7378547f
MM
7161 /* always unregister in case we don't destroy any domains */
7162 unregister_sched_domain_sysctl();
7163
d65bd5ec
HC
7164 /* Let architecture update cpu core mappings. */
7165 new_topology = arch_update_cpu_topology();
7166
dfb512ec 7167 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7168
7169 /* Destroy deleted domains */
7170 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7171 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7172 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7173 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7174 goto match1;
7175 }
7176 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7177 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7178match1:
7179 ;
7180 }
7181
c8d2d47a 7182 n = ndoms_cur;
e761b772 7183 if (doms_new == NULL) {
c8d2d47a 7184 n = 0;
acc3f5d7 7185 doms_new = &fallback_doms;
6ad4c188 7186 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7187 WARN_ON_ONCE(dattr_new);
e761b772
MK
7188 }
7189
029190c5
PJ
7190 /* Build new domains */
7191 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7192 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7193 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7194 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7195 goto match2;
7196 }
7197 /* no match - add a new doms_new */
dce840a0 7198 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7199match2:
7200 ;
7201 }
7202
7203 /* Remember the new sched domains */
acc3f5d7
RR
7204 if (doms_cur != &fallback_doms)
7205 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7206 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7207 doms_cur = doms_new;
1d3504fc 7208 dattr_cur = dattr_new;
029190c5 7209 ndoms_cur = ndoms_new;
7378547f
MM
7210
7211 register_sched_domain_sysctl();
a1835615 7212
712555ee 7213 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7214}
7215
d35be8ba
SB
7216static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7217
1da177e4 7218/*
3a101d05
TH
7219 * Update cpusets according to cpu_active mask. If cpusets are
7220 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7221 * around partition_sched_domains().
d35be8ba
SB
7222 *
7223 * If we come here as part of a suspend/resume, don't touch cpusets because we
7224 * want to restore it back to its original state upon resume anyway.
1da177e4 7225 */
40190a78 7226static void cpuset_cpu_active(void)
e761b772 7227{
40190a78 7228 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7229 /*
7230 * num_cpus_frozen tracks how many CPUs are involved in suspend
7231 * resume sequence. As long as this is not the last online
7232 * operation in the resume sequence, just build a single sched
7233 * domain, ignoring cpusets.
7234 */
7235 num_cpus_frozen--;
7236 if (likely(num_cpus_frozen)) {
7237 partition_sched_domains(1, NULL, NULL);
135fb3e1 7238 return;
d35be8ba 7239 }
d35be8ba
SB
7240 /*
7241 * This is the last CPU online operation. So fall through and
7242 * restore the original sched domains by considering the
7243 * cpuset configurations.
7244 */
3a101d05 7245 }
135fb3e1 7246 cpuset_update_active_cpus(true);
3a101d05 7247}
e761b772 7248
40190a78 7249static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7250{
3c18d447 7251 unsigned long flags;
3c18d447 7252 struct dl_bw *dl_b;
533445c6
OS
7253 bool overflow;
7254 int cpus;
3c18d447 7255
40190a78 7256 if (!cpuhp_tasks_frozen) {
533445c6
OS
7257 rcu_read_lock_sched();
7258 dl_b = dl_bw_of(cpu);
3c18d447 7259
533445c6
OS
7260 raw_spin_lock_irqsave(&dl_b->lock, flags);
7261 cpus = dl_bw_cpus(cpu);
7262 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7263 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7264
533445c6 7265 rcu_read_unlock_sched();
3c18d447 7266
533445c6 7267 if (overflow)
135fb3e1 7268 return -EBUSY;
7ddf96b0 7269 cpuset_update_active_cpus(false);
135fb3e1 7270 } else {
d35be8ba
SB
7271 num_cpus_frozen++;
7272 partition_sched_domains(1, NULL, NULL);
e761b772 7273 }
135fb3e1 7274 return 0;
e761b772 7275}
e761b772 7276
40190a78 7277int sched_cpu_activate(unsigned int cpu)
135fb3e1 7278{
7d976699
TG
7279 struct rq *rq = cpu_rq(cpu);
7280 unsigned long flags;
7281
40190a78 7282 set_cpu_active(cpu, true);
135fb3e1 7283
40190a78 7284 if (sched_smp_initialized) {
135fb3e1 7285 sched_domains_numa_masks_set(cpu);
40190a78 7286 cpuset_cpu_active();
e761b772 7287 }
7d976699
TG
7288
7289 /*
7290 * Put the rq online, if not already. This happens:
7291 *
7292 * 1) In the early boot process, because we build the real domains
7293 * after all cpus have been brought up.
7294 *
7295 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7296 * domains.
7297 */
7298 raw_spin_lock_irqsave(&rq->lock, flags);
7299 if (rq->rd) {
7300 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7301 set_rq_online(rq);
7302 }
7303 raw_spin_unlock_irqrestore(&rq->lock, flags);
7304
7305 update_max_interval();
7306
40190a78 7307 return 0;
135fb3e1
TG
7308}
7309
40190a78 7310int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7311{
135fb3e1
TG
7312 int ret;
7313
40190a78 7314 set_cpu_active(cpu, false);
b2454caa
PZ
7315 /*
7316 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7317 * users of this state to go away such that all new such users will
7318 * observe it.
7319 *
7320 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7321 * not imply sync_sched(), so wait for both.
7322 *
7323 * Do sync before park smpboot threads to take care the rcu boost case.
7324 */
7325 if (IS_ENABLED(CONFIG_PREEMPT))
7326 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7327 else
7328 synchronize_rcu();
40190a78
TG
7329
7330 if (!sched_smp_initialized)
7331 return 0;
7332
7333 ret = cpuset_cpu_inactive(cpu);
7334 if (ret) {
7335 set_cpu_active(cpu, true);
7336 return ret;
135fb3e1 7337 }
40190a78
TG
7338 sched_domains_numa_masks_clear(cpu);
7339 return 0;
135fb3e1
TG
7340}
7341
94baf7a5
TG
7342static void sched_rq_cpu_starting(unsigned int cpu)
7343{
7344 struct rq *rq = cpu_rq(cpu);
7345
7346 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7347 update_max_interval();
7348}
7349
135fb3e1
TG
7350int sched_cpu_starting(unsigned int cpu)
7351{
7352 set_cpu_rq_start_time(cpu);
94baf7a5 7353 sched_rq_cpu_starting(cpu);
135fb3e1 7354 return 0;
e761b772 7355}
e761b772 7356
f2785ddb
TG
7357#ifdef CONFIG_HOTPLUG_CPU
7358int sched_cpu_dying(unsigned int cpu)
7359{
7360 struct rq *rq = cpu_rq(cpu);
7361 unsigned long flags;
7362
7363 /* Handle pending wakeups and then migrate everything off */
7364 sched_ttwu_pending();
7365 raw_spin_lock_irqsave(&rq->lock, flags);
7366 if (rq->rd) {
7367 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7368 set_rq_offline(rq);
7369 }
7370 migrate_tasks(rq);
7371 BUG_ON(rq->nr_running != 1);
7372 raw_spin_unlock_irqrestore(&rq->lock, flags);
7373 calc_load_migrate(rq);
7374 update_max_interval();
20a5c8cc 7375 nohz_balance_exit_idle(cpu);
e5ef27d0 7376 hrtick_clear(rq);
f2785ddb
TG
7377 return 0;
7378}
7379#endif
7380
1da177e4
LT
7381void __init sched_init_smp(void)
7382{
dcc30a35
RR
7383 cpumask_var_t non_isolated_cpus;
7384
7385 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7386 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7387
cb83b629
PZ
7388 sched_init_numa();
7389
6acce3ef
PZ
7390 /*
7391 * There's no userspace yet to cause hotplug operations; hence all the
7392 * cpu masks are stable and all blatant races in the below code cannot
7393 * happen.
7394 */
712555ee 7395 mutex_lock(&sched_domains_mutex);
c4a8849a 7396 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7397 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7398 if (cpumask_empty(non_isolated_cpus))
7399 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7400 mutex_unlock(&sched_domains_mutex);
e761b772 7401
5c1e1767 7402 /* Move init over to a non-isolated CPU */
dcc30a35 7403 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7404 BUG();
19978ca6 7405 sched_init_granularity();
dcc30a35 7406 free_cpumask_var(non_isolated_cpus);
4212823f 7407
0e3900e6 7408 init_sched_rt_class();
1baca4ce 7409 init_sched_dl_class();
e26fbffd 7410 sched_smp_initialized = true;
1da177e4 7411}
e26fbffd
TG
7412
7413static int __init migration_init(void)
7414{
94baf7a5 7415 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7416 return 0;
1da177e4 7417}
e26fbffd
TG
7418early_initcall(migration_init);
7419
1da177e4
LT
7420#else
7421void __init sched_init_smp(void)
7422{
19978ca6 7423 sched_init_granularity();
1da177e4
LT
7424}
7425#endif /* CONFIG_SMP */
7426
7427int in_sched_functions(unsigned long addr)
7428{
1da177e4
LT
7429 return in_lock_functions(addr) ||
7430 (addr >= (unsigned long)__sched_text_start
7431 && addr < (unsigned long)__sched_text_end);
7432}
7433
029632fb 7434#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7435/*
7436 * Default task group.
7437 * Every task in system belongs to this group at bootup.
7438 */
029632fb 7439struct task_group root_task_group;
35cf4e50 7440LIST_HEAD(task_groups);
b0367629
WL
7441
7442/* Cacheline aligned slab cache for task_group */
7443static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7444#endif
6f505b16 7445
e6252c3e 7446DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7447
1da177e4
LT
7448void __init sched_init(void)
7449{
dd41f596 7450 int i, j;
434d53b0
MT
7451 unsigned long alloc_size = 0, ptr;
7452
7453#ifdef CONFIG_FAIR_GROUP_SCHED
7454 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7455#endif
7456#ifdef CONFIG_RT_GROUP_SCHED
7457 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7458#endif
434d53b0 7459 if (alloc_size) {
36b7b6d4 7460 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7461
7462#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7463 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7464 ptr += nr_cpu_ids * sizeof(void **);
7465
07e06b01 7466 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7467 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7468
6d6bc0ad 7469#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7470#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7471 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7472 ptr += nr_cpu_ids * sizeof(void **);
7473
07e06b01 7474 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7475 ptr += nr_cpu_ids * sizeof(void **);
7476
6d6bc0ad 7477#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7478 }
df7c8e84 7479#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7480 for_each_possible_cpu(i) {
7481 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7482 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7483 }
b74e6278 7484#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7485
332ac17e
DF
7486 init_rt_bandwidth(&def_rt_bandwidth,
7487 global_rt_period(), global_rt_runtime());
7488 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7489 global_rt_period(), global_rt_runtime());
332ac17e 7490
57d885fe
GH
7491#ifdef CONFIG_SMP
7492 init_defrootdomain();
7493#endif
7494
d0b27fa7 7495#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7496 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7497 global_rt_period(), global_rt_runtime());
6d6bc0ad 7498#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7499
7c941438 7500#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7501 task_group_cache = KMEM_CACHE(task_group, 0);
7502
07e06b01
YZ
7503 list_add(&root_task_group.list, &task_groups);
7504 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7505 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7506 autogroup_init(&init_task);
7c941438 7507#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7508
0a945022 7509 for_each_possible_cpu(i) {
70b97a7f 7510 struct rq *rq;
1da177e4
LT
7511
7512 rq = cpu_rq(i);
05fa785c 7513 raw_spin_lock_init(&rq->lock);
7897986b 7514 rq->nr_running = 0;
dce48a84
TG
7515 rq->calc_load_active = 0;
7516 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7517 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7518 init_rt_rq(&rq->rt);
7519 init_dl_rq(&rq->dl);
dd41f596 7520#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7521 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7522 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7523 /*
07e06b01 7524 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7525 *
7526 * In case of task-groups formed thr' the cgroup filesystem, it
7527 * gets 100% of the cpu resources in the system. This overall
7528 * system cpu resource is divided among the tasks of
07e06b01 7529 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7530 * based on each entity's (task or task-group's) weight
7531 * (se->load.weight).
7532 *
07e06b01 7533 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7534 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7535 * then A0's share of the cpu resource is:
7536 *
0d905bca 7537 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7538 *
07e06b01
YZ
7539 * We achieve this by letting root_task_group's tasks sit
7540 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7541 */
ab84d31e 7542 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7543 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7544#endif /* CONFIG_FAIR_GROUP_SCHED */
7545
7546 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7547#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7548 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7549#endif
1da177e4 7550
dd41f596
IM
7551 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7552 rq->cpu_load[j] = 0;
fdf3e95d 7553
1da177e4 7554#ifdef CONFIG_SMP
41c7ce9a 7555 rq->sd = NULL;
57d885fe 7556 rq->rd = NULL;
ca6d75e6 7557 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7558 rq->balance_callback = NULL;
1da177e4 7559 rq->active_balance = 0;
dd41f596 7560 rq->next_balance = jiffies;
1da177e4 7561 rq->push_cpu = 0;
0a2966b4 7562 rq->cpu = i;
1f11eb6a 7563 rq->online = 0;
eae0c9df
MG
7564 rq->idle_stamp = 0;
7565 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7566 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7567
7568 INIT_LIST_HEAD(&rq->cfs_tasks);
7569
dc938520 7570 rq_attach_root(rq, &def_root_domain);
3451d024 7571#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7572 rq->last_load_update_tick = jiffies;
1c792db7 7573 rq->nohz_flags = 0;
83cd4fe2 7574#endif
265f22a9
FW
7575#ifdef CONFIG_NO_HZ_FULL
7576 rq->last_sched_tick = 0;
7577#endif
9fd81dd5 7578#endif /* CONFIG_SMP */
8f4d37ec 7579 init_rq_hrtick(rq);
1da177e4 7580 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7581 }
7582
2dd73a4f 7583 set_load_weight(&init_task);
b50f60ce 7584
1da177e4
LT
7585 /*
7586 * The boot idle thread does lazy MMU switching as well:
7587 */
7588 atomic_inc(&init_mm.mm_count);
7589 enter_lazy_tlb(&init_mm, current);
7590
7591 /*
7592 * Make us the idle thread. Technically, schedule() should not be
7593 * called from this thread, however somewhere below it might be,
7594 * but because we are the idle thread, we just pick up running again
7595 * when this runqueue becomes "idle".
7596 */
7597 init_idle(current, smp_processor_id());
dce48a84
TG
7598
7599 calc_load_update = jiffies + LOAD_FREQ;
7600
bf4d83f6 7601#ifdef CONFIG_SMP
4cb98839 7602 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7603 /* May be allocated at isolcpus cmdline parse time */
7604 if (cpu_isolated_map == NULL)
7605 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7606 idle_thread_set_boot_cpu();
9cf7243d 7607 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7608#endif
7609 init_sched_fair_class();
6a7b3dc3 7610
4698f88c
JP
7611 init_schedstats();
7612
6892b75e 7613 scheduler_running = 1;
1da177e4
LT
7614}
7615
d902db1e 7616#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7617static inline int preempt_count_equals(int preempt_offset)
7618{
da7142e2 7619 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7620
4ba8216c 7621 return (nested == preempt_offset);
e4aafea2
FW
7622}
7623
d894837f 7624void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7625{
8eb23b9f
PZ
7626 /*
7627 * Blocking primitives will set (and therefore destroy) current->state,
7628 * since we will exit with TASK_RUNNING make sure we enter with it,
7629 * otherwise we will destroy state.
7630 */
00845eb9 7631 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7632 "do not call blocking ops when !TASK_RUNNING; "
7633 "state=%lx set at [<%p>] %pS\n",
7634 current->state,
7635 (void *)current->task_state_change,
00845eb9 7636 (void *)current->task_state_change);
8eb23b9f 7637
3427445a
PZ
7638 ___might_sleep(file, line, preempt_offset);
7639}
7640EXPORT_SYMBOL(__might_sleep);
7641
7642void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7643{
1da177e4 7644 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7645 unsigned long preempt_disable_ip;
1da177e4 7646
b3fbab05 7647 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7648 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7649 !is_idle_task(current)) ||
e4aafea2 7650 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7651 return;
7652 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7653 return;
7654 prev_jiffy = jiffies;
7655
d1c6d149
VN
7656 /* Save this before calling printk(), since that will clobber it */
7657 preempt_disable_ip = get_preempt_disable_ip(current);
7658
3df0fc5b
PZ
7659 printk(KERN_ERR
7660 "BUG: sleeping function called from invalid context at %s:%d\n",
7661 file, line);
7662 printk(KERN_ERR
7663 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7664 in_atomic(), irqs_disabled(),
7665 current->pid, current->comm);
aef745fc 7666
a8b686b3
ES
7667 if (task_stack_end_corrupted(current))
7668 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7669
aef745fc
IM
7670 debug_show_held_locks(current);
7671 if (irqs_disabled())
7672 print_irqtrace_events(current);
d1c6d149
VN
7673 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7674 && !preempt_count_equals(preempt_offset)) {
8f47b187 7675 pr_err("Preemption disabled at:");
d1c6d149 7676 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7677 pr_cont("\n");
7678 }
aef745fc 7679 dump_stack();
f0b22e39 7680 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7681}
3427445a 7682EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7683#endif
7684
7685#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7686void normalize_rt_tasks(void)
3a5e4dc1 7687{
dbc7f069 7688 struct task_struct *g, *p;
d50dde5a
DF
7689 struct sched_attr attr = {
7690 .sched_policy = SCHED_NORMAL,
7691 };
1da177e4 7692
3472eaa1 7693 read_lock(&tasklist_lock);
5d07f420 7694 for_each_process_thread(g, p) {
178be793
IM
7695 /*
7696 * Only normalize user tasks:
7697 */
3472eaa1 7698 if (p->flags & PF_KTHREAD)
178be793
IM
7699 continue;
7700
4fa8d299
JP
7701 p->se.exec_start = 0;
7702 schedstat_set(p->se.statistics.wait_start, 0);
7703 schedstat_set(p->se.statistics.sleep_start, 0);
7704 schedstat_set(p->se.statistics.block_start, 0);
dd41f596 7705
aab03e05 7706 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7707 /*
7708 * Renice negative nice level userspace
7709 * tasks back to 0:
7710 */
3472eaa1 7711 if (task_nice(p) < 0)
dd41f596 7712 set_user_nice(p, 0);
1da177e4 7713 continue;
dd41f596 7714 }
1da177e4 7715
dbc7f069 7716 __sched_setscheduler(p, &attr, false, false);
5d07f420 7717 }
3472eaa1 7718 read_unlock(&tasklist_lock);
1da177e4
LT
7719}
7720
7721#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7722
67fc4e0c 7723#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7724/*
67fc4e0c 7725 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7726 *
7727 * They can only be called when the whole system has been
7728 * stopped - every CPU needs to be quiescent, and no scheduling
7729 * activity can take place. Using them for anything else would
7730 * be a serious bug, and as a result, they aren't even visible
7731 * under any other configuration.
7732 */
7733
7734/**
7735 * curr_task - return the current task for a given cpu.
7736 * @cpu: the processor in question.
7737 *
7738 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7739 *
7740 * Return: The current task for @cpu.
1df5c10a 7741 */
36c8b586 7742struct task_struct *curr_task(int cpu)
1df5c10a
LT
7743{
7744 return cpu_curr(cpu);
7745}
7746
67fc4e0c
JW
7747#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7748
7749#ifdef CONFIG_IA64
1df5c10a
LT
7750/**
7751 * set_curr_task - set the current task for a given cpu.
7752 * @cpu: the processor in question.
7753 * @p: the task pointer to set.
7754 *
7755 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7756 * are serviced on a separate stack. It allows the architecture to switch the
7757 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7758 * must be called with all CPU's synchronized, and interrupts disabled, the
7759 * and caller must save the original value of the current task (see
7760 * curr_task() above) and restore that value before reenabling interrupts and
7761 * re-starting the system.
7762 *
7763 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7764 */
36c8b586 7765void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7766{
7767 cpu_curr(cpu) = p;
7768}
7769
7770#endif
29f59db3 7771
7c941438 7772#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7773/* task_group_lock serializes the addition/removal of task groups */
7774static DEFINE_SPINLOCK(task_group_lock);
7775
2f5177f0 7776static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7777{
7778 free_fair_sched_group(tg);
7779 free_rt_sched_group(tg);
e9aa1dd1 7780 autogroup_free(tg);
b0367629 7781 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7782}
7783
7784/* allocate runqueue etc for a new task group */
ec7dc8ac 7785struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7786{
7787 struct task_group *tg;
bccbe08a 7788
b0367629 7789 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7790 if (!tg)
7791 return ERR_PTR(-ENOMEM);
7792
ec7dc8ac 7793 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7794 goto err;
7795
ec7dc8ac 7796 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7797 goto err;
7798
ace783b9
LZ
7799 return tg;
7800
7801err:
2f5177f0 7802 sched_free_group(tg);
ace783b9
LZ
7803 return ERR_PTR(-ENOMEM);
7804}
7805
7806void sched_online_group(struct task_group *tg, struct task_group *parent)
7807{
7808 unsigned long flags;
7809
8ed36996 7810 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7811 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7812
7813 WARN_ON(!parent); /* root should already exist */
7814
7815 tg->parent = parent;
f473aa5e 7816 INIT_LIST_HEAD(&tg->children);
09f2724a 7817 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7818 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7819
7820 online_fair_sched_group(tg);
29f59db3
SV
7821}
7822
9b5b7751 7823/* rcu callback to free various structures associated with a task group */
2f5177f0 7824static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7825{
29f59db3 7826 /* now it should be safe to free those cfs_rqs */
2f5177f0 7827 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7828}
7829
4cf86d77 7830void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7831{
7832 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7833 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7834}
7835
7836void sched_offline_group(struct task_group *tg)
29f59db3 7837{
8ed36996 7838 unsigned long flags;
29f59db3 7839
3d4b47b4 7840 /* end participation in shares distribution */
6fe1f348 7841 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7842
7843 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7844 list_del_rcu(&tg->list);
f473aa5e 7845 list_del_rcu(&tg->siblings);
8ed36996 7846 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7847}
7848
ea86cb4b 7849static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7850{
8323f26c 7851 struct task_group *tg;
29f59db3 7852
f7b8a47d
KT
7853 /*
7854 * All callers are synchronized by task_rq_lock(); we do not use RCU
7855 * which is pointless here. Thus, we pass "true" to task_css_check()
7856 * to prevent lockdep warnings.
7857 */
7858 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7859 struct task_group, css);
7860 tg = autogroup_task_group(tsk, tg);
7861 tsk->sched_task_group = tg;
7862
810b3817 7863#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7864 if (tsk->sched_class->task_change_group)
7865 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7866 else
810b3817 7867#endif
b2b5ce02 7868 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7869}
7870
7871/*
7872 * Change task's runqueue when it moves between groups.
7873 *
7874 * The caller of this function should have put the task in its new group by
7875 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7876 * its new group.
7877 */
7878void sched_move_task(struct task_struct *tsk)
7879{
7880 int queued, running;
7881 struct rq_flags rf;
7882 struct rq *rq;
7883
7884 rq = task_rq_lock(tsk, &rf);
7885
7886 running = task_current(rq, tsk);
7887 queued = task_on_rq_queued(tsk);
7888
7889 if (queued)
7890 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7891 if (unlikely(running))
7892 put_prev_task(rq, tsk);
7893
7894 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7895
0e1f3483
HS
7896 if (unlikely(running))
7897 tsk->sched_class->set_curr_task(rq);
da0c1e65 7898 if (queued)
ff77e468 7899 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7900
eb580751 7901 task_rq_unlock(rq, tsk, &rf);
29f59db3 7902}
7c941438 7903#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7904
a790de99
PT
7905#ifdef CONFIG_RT_GROUP_SCHED
7906/*
7907 * Ensure that the real time constraints are schedulable.
7908 */
7909static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7910
9a7e0b18
PZ
7911/* Must be called with tasklist_lock held */
7912static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7913{
9a7e0b18 7914 struct task_struct *g, *p;
b40b2e8e 7915
1fe89e1b
PZ
7916 /*
7917 * Autogroups do not have RT tasks; see autogroup_create().
7918 */
7919 if (task_group_is_autogroup(tg))
7920 return 0;
7921
5d07f420 7922 for_each_process_thread(g, p) {
8651c658 7923 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7924 return 1;
5d07f420 7925 }
b40b2e8e 7926
9a7e0b18
PZ
7927 return 0;
7928}
b40b2e8e 7929
9a7e0b18
PZ
7930struct rt_schedulable_data {
7931 struct task_group *tg;
7932 u64 rt_period;
7933 u64 rt_runtime;
7934};
b40b2e8e 7935
a790de99 7936static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7937{
7938 struct rt_schedulable_data *d = data;
7939 struct task_group *child;
7940 unsigned long total, sum = 0;
7941 u64 period, runtime;
b40b2e8e 7942
9a7e0b18
PZ
7943 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7944 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7945
9a7e0b18
PZ
7946 if (tg == d->tg) {
7947 period = d->rt_period;
7948 runtime = d->rt_runtime;
b40b2e8e 7949 }
b40b2e8e 7950
4653f803
PZ
7951 /*
7952 * Cannot have more runtime than the period.
7953 */
7954 if (runtime > period && runtime != RUNTIME_INF)
7955 return -EINVAL;
6f505b16 7956
4653f803
PZ
7957 /*
7958 * Ensure we don't starve existing RT tasks.
7959 */
9a7e0b18
PZ
7960 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7961 return -EBUSY;
6f505b16 7962
9a7e0b18 7963 total = to_ratio(period, runtime);
6f505b16 7964
4653f803
PZ
7965 /*
7966 * Nobody can have more than the global setting allows.
7967 */
7968 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7969 return -EINVAL;
6f505b16 7970
4653f803
PZ
7971 /*
7972 * The sum of our children's runtime should not exceed our own.
7973 */
9a7e0b18
PZ
7974 list_for_each_entry_rcu(child, &tg->children, siblings) {
7975 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7976 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7977
9a7e0b18
PZ
7978 if (child == d->tg) {
7979 period = d->rt_period;
7980 runtime = d->rt_runtime;
7981 }
6f505b16 7982
9a7e0b18 7983 sum += to_ratio(period, runtime);
9f0c1e56 7984 }
6f505b16 7985
9a7e0b18
PZ
7986 if (sum > total)
7987 return -EINVAL;
7988
7989 return 0;
6f505b16
PZ
7990}
7991
9a7e0b18 7992static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7993{
8277434e
PT
7994 int ret;
7995
9a7e0b18
PZ
7996 struct rt_schedulable_data data = {
7997 .tg = tg,
7998 .rt_period = period,
7999 .rt_runtime = runtime,
8000 };
8001
8277434e
PT
8002 rcu_read_lock();
8003 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8004 rcu_read_unlock();
8005
8006 return ret;
521f1a24
DG
8007}
8008
ab84d31e 8009static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 8010 u64 rt_period, u64 rt_runtime)
6f505b16 8011{
ac086bc2 8012 int i, err = 0;
9f0c1e56 8013
2636ed5f
PZ
8014 /*
8015 * Disallowing the root group RT runtime is BAD, it would disallow the
8016 * kernel creating (and or operating) RT threads.
8017 */
8018 if (tg == &root_task_group && rt_runtime == 0)
8019 return -EINVAL;
8020
8021 /* No period doesn't make any sense. */
8022 if (rt_period == 0)
8023 return -EINVAL;
8024
9f0c1e56 8025 mutex_lock(&rt_constraints_mutex);
521f1a24 8026 read_lock(&tasklist_lock);
9a7e0b18
PZ
8027 err = __rt_schedulable(tg, rt_period, rt_runtime);
8028 if (err)
9f0c1e56 8029 goto unlock;
ac086bc2 8030
0986b11b 8031 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8032 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8033 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8034
8035 for_each_possible_cpu(i) {
8036 struct rt_rq *rt_rq = tg->rt_rq[i];
8037
0986b11b 8038 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8039 rt_rq->rt_runtime = rt_runtime;
0986b11b 8040 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8041 }
0986b11b 8042 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8043unlock:
521f1a24 8044 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8045 mutex_unlock(&rt_constraints_mutex);
8046
8047 return err;
6f505b16
PZ
8048}
8049
25cc7da7 8050static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8051{
8052 u64 rt_runtime, rt_period;
8053
8054 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8055 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8056 if (rt_runtime_us < 0)
8057 rt_runtime = RUNTIME_INF;
8058
ab84d31e 8059 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8060}
8061
25cc7da7 8062static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8063{
8064 u64 rt_runtime_us;
8065
d0b27fa7 8066 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8067 return -1;
8068
d0b27fa7 8069 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8070 do_div(rt_runtime_us, NSEC_PER_USEC);
8071 return rt_runtime_us;
8072}
d0b27fa7 8073
ce2f5fe4 8074static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8075{
8076 u64 rt_runtime, rt_period;
8077
ce2f5fe4 8078 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8079 rt_runtime = tg->rt_bandwidth.rt_runtime;
8080
ab84d31e 8081 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8082}
8083
25cc7da7 8084static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8085{
8086 u64 rt_period_us;
8087
8088 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8089 do_div(rt_period_us, NSEC_PER_USEC);
8090 return rt_period_us;
8091}
332ac17e 8092#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8093
332ac17e 8094#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8095static int sched_rt_global_constraints(void)
8096{
8097 int ret = 0;
8098
8099 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8100 read_lock(&tasklist_lock);
4653f803 8101 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8102 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8103 mutex_unlock(&rt_constraints_mutex);
8104
8105 return ret;
8106}
54e99124 8107
25cc7da7 8108static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8109{
8110 /* Don't accept realtime tasks when there is no way for them to run */
8111 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8112 return 0;
8113
8114 return 1;
8115}
8116
6d6bc0ad 8117#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8118static int sched_rt_global_constraints(void)
8119{
ac086bc2 8120 unsigned long flags;
8c5e9554 8121 int i;
ec5d4989 8122
0986b11b 8123 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8124 for_each_possible_cpu(i) {
8125 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8126
0986b11b 8127 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8128 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8129 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8130 }
0986b11b 8131 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8132
8c5e9554 8133 return 0;
d0b27fa7 8134}
6d6bc0ad 8135#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8136
a1963b81 8137static int sched_dl_global_validate(void)
332ac17e 8138{
1724813d
PZ
8139 u64 runtime = global_rt_runtime();
8140 u64 period = global_rt_period();
332ac17e 8141 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8142 struct dl_bw *dl_b;
1724813d 8143 int cpu, ret = 0;
49516342 8144 unsigned long flags;
332ac17e
DF
8145
8146 /*
8147 * Here we want to check the bandwidth not being set to some
8148 * value smaller than the currently allocated bandwidth in
8149 * any of the root_domains.
8150 *
8151 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8152 * cycling on root_domains... Discussion on different/better
8153 * solutions is welcome!
8154 */
1724813d 8155 for_each_possible_cpu(cpu) {
f10e00f4
KT
8156 rcu_read_lock_sched();
8157 dl_b = dl_bw_of(cpu);
332ac17e 8158
49516342 8159 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8160 if (new_bw < dl_b->total_bw)
8161 ret = -EBUSY;
49516342 8162 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8163
f10e00f4
KT
8164 rcu_read_unlock_sched();
8165
1724813d
PZ
8166 if (ret)
8167 break;
332ac17e
DF
8168 }
8169
1724813d 8170 return ret;
332ac17e
DF
8171}
8172
1724813d 8173static void sched_dl_do_global(void)
ce0dbbbb 8174{
1724813d 8175 u64 new_bw = -1;
f10e00f4 8176 struct dl_bw *dl_b;
1724813d 8177 int cpu;
49516342 8178 unsigned long flags;
ce0dbbbb 8179
1724813d
PZ
8180 def_dl_bandwidth.dl_period = global_rt_period();
8181 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8182
8183 if (global_rt_runtime() != RUNTIME_INF)
8184 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8185
8186 /*
8187 * FIXME: As above...
8188 */
8189 for_each_possible_cpu(cpu) {
f10e00f4
KT
8190 rcu_read_lock_sched();
8191 dl_b = dl_bw_of(cpu);
1724813d 8192
49516342 8193 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8194 dl_b->bw = new_bw;
49516342 8195 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8196
8197 rcu_read_unlock_sched();
ce0dbbbb 8198 }
1724813d
PZ
8199}
8200
8201static int sched_rt_global_validate(void)
8202{
8203 if (sysctl_sched_rt_period <= 0)
8204 return -EINVAL;
8205
e9e7cb38
JL
8206 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8207 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8208 return -EINVAL;
8209
8210 return 0;
8211}
8212
8213static void sched_rt_do_global(void)
8214{
8215 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8216 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8217}
8218
d0b27fa7 8219int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8220 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8221 loff_t *ppos)
8222{
d0b27fa7
PZ
8223 int old_period, old_runtime;
8224 static DEFINE_MUTEX(mutex);
1724813d 8225 int ret;
d0b27fa7
PZ
8226
8227 mutex_lock(&mutex);
8228 old_period = sysctl_sched_rt_period;
8229 old_runtime = sysctl_sched_rt_runtime;
8230
8d65af78 8231 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8232
8233 if (!ret && write) {
1724813d
PZ
8234 ret = sched_rt_global_validate();
8235 if (ret)
8236 goto undo;
8237
a1963b81 8238 ret = sched_dl_global_validate();
1724813d
PZ
8239 if (ret)
8240 goto undo;
8241
a1963b81 8242 ret = sched_rt_global_constraints();
1724813d
PZ
8243 if (ret)
8244 goto undo;
8245
8246 sched_rt_do_global();
8247 sched_dl_do_global();
8248 }
8249 if (0) {
8250undo:
8251 sysctl_sched_rt_period = old_period;
8252 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8253 }
8254 mutex_unlock(&mutex);
8255
8256 return ret;
8257}
68318b8e 8258
1724813d 8259int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8260 void __user *buffer, size_t *lenp,
8261 loff_t *ppos)
8262{
8263 int ret;
332ac17e 8264 static DEFINE_MUTEX(mutex);
332ac17e
DF
8265
8266 mutex_lock(&mutex);
332ac17e 8267 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8268 /* make sure that internally we keep jiffies */
8269 /* also, writing zero resets timeslice to default */
332ac17e 8270 if (!ret && write) {
1724813d
PZ
8271 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8272 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8273 }
8274 mutex_unlock(&mutex);
332ac17e
DF
8275 return ret;
8276}
8277
052f1dc7 8278#ifdef CONFIG_CGROUP_SCHED
68318b8e 8279
a7c6d554 8280static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8281{
a7c6d554 8282 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8283}
8284
eb95419b
TH
8285static struct cgroup_subsys_state *
8286cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8287{
eb95419b
TH
8288 struct task_group *parent = css_tg(parent_css);
8289 struct task_group *tg;
68318b8e 8290
eb95419b 8291 if (!parent) {
68318b8e 8292 /* This is early initialization for the top cgroup */
07e06b01 8293 return &root_task_group.css;
68318b8e
SV
8294 }
8295
ec7dc8ac 8296 tg = sched_create_group(parent);
68318b8e
SV
8297 if (IS_ERR(tg))
8298 return ERR_PTR(-ENOMEM);
8299
2f5177f0
PZ
8300 sched_online_group(tg, parent);
8301
68318b8e
SV
8302 return &tg->css;
8303}
8304
2f5177f0 8305static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8306{
eb95419b 8307 struct task_group *tg = css_tg(css);
ace783b9 8308
2f5177f0 8309 sched_offline_group(tg);
ace783b9
LZ
8310}
8311
eb95419b 8312static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8313{
eb95419b 8314 struct task_group *tg = css_tg(css);
68318b8e 8315
2f5177f0
PZ
8316 /*
8317 * Relies on the RCU grace period between css_released() and this.
8318 */
8319 sched_free_group(tg);
ace783b9
LZ
8320}
8321
ea86cb4b
VG
8322/*
8323 * This is called before wake_up_new_task(), therefore we really only
8324 * have to set its group bits, all the other stuff does not apply.
8325 */
b53202e6 8326static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8327{
ea86cb4b
VG
8328 struct rq_flags rf;
8329 struct rq *rq;
8330
8331 rq = task_rq_lock(task, &rf);
8332
8333 sched_change_group(task, TASK_SET_GROUP);
8334
8335 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8336}
8337
1f7dd3e5 8338static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8339{
bb9d97b6 8340 struct task_struct *task;
1f7dd3e5 8341 struct cgroup_subsys_state *css;
7dc603c9 8342 int ret = 0;
bb9d97b6 8343
1f7dd3e5 8344 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8345#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8346 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8347 return -EINVAL;
b68aa230 8348#else
bb9d97b6
TH
8349 /* We don't support RT-tasks being in separate groups */
8350 if (task->sched_class != &fair_sched_class)
8351 return -EINVAL;
b68aa230 8352#endif
7dc603c9
PZ
8353 /*
8354 * Serialize against wake_up_new_task() such that if its
8355 * running, we're sure to observe its full state.
8356 */
8357 raw_spin_lock_irq(&task->pi_lock);
8358 /*
8359 * Avoid calling sched_move_task() before wake_up_new_task()
8360 * has happened. This would lead to problems with PELT, due to
8361 * move wanting to detach+attach while we're not attached yet.
8362 */
8363 if (task->state == TASK_NEW)
8364 ret = -EINVAL;
8365 raw_spin_unlock_irq(&task->pi_lock);
8366
8367 if (ret)
8368 break;
bb9d97b6 8369 }
7dc603c9 8370 return ret;
be367d09 8371}
68318b8e 8372
1f7dd3e5 8373static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8374{
bb9d97b6 8375 struct task_struct *task;
1f7dd3e5 8376 struct cgroup_subsys_state *css;
bb9d97b6 8377
1f7dd3e5 8378 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8379 sched_move_task(task);
68318b8e
SV
8380}
8381
052f1dc7 8382#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8383static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8384 struct cftype *cftype, u64 shareval)
68318b8e 8385{
182446d0 8386 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8387}
8388
182446d0
TH
8389static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8390 struct cftype *cft)
68318b8e 8391{
182446d0 8392 struct task_group *tg = css_tg(css);
68318b8e 8393
c8b28116 8394 return (u64) scale_load_down(tg->shares);
68318b8e 8395}
ab84d31e
PT
8396
8397#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8398static DEFINE_MUTEX(cfs_constraints_mutex);
8399
ab84d31e
PT
8400const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8401const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8402
a790de99
PT
8403static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8404
ab84d31e
PT
8405static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8406{
56f570e5 8407 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8408 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8409
8410 if (tg == &root_task_group)
8411 return -EINVAL;
8412
8413 /*
8414 * Ensure we have at some amount of bandwidth every period. This is
8415 * to prevent reaching a state of large arrears when throttled via
8416 * entity_tick() resulting in prolonged exit starvation.
8417 */
8418 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8419 return -EINVAL;
8420
8421 /*
8422 * Likewise, bound things on the otherside by preventing insane quota
8423 * periods. This also allows us to normalize in computing quota
8424 * feasibility.
8425 */
8426 if (period > max_cfs_quota_period)
8427 return -EINVAL;
8428
0e59bdae
KT
8429 /*
8430 * Prevent race between setting of cfs_rq->runtime_enabled and
8431 * unthrottle_offline_cfs_rqs().
8432 */
8433 get_online_cpus();
a790de99
PT
8434 mutex_lock(&cfs_constraints_mutex);
8435 ret = __cfs_schedulable(tg, period, quota);
8436 if (ret)
8437 goto out_unlock;
8438
58088ad0 8439 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8440 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8441 /*
8442 * If we need to toggle cfs_bandwidth_used, off->on must occur
8443 * before making related changes, and on->off must occur afterwards
8444 */
8445 if (runtime_enabled && !runtime_was_enabled)
8446 cfs_bandwidth_usage_inc();
ab84d31e
PT
8447 raw_spin_lock_irq(&cfs_b->lock);
8448 cfs_b->period = ns_to_ktime(period);
8449 cfs_b->quota = quota;
58088ad0 8450
a9cf55b2 8451 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8452 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8453 if (runtime_enabled)
8454 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8455 raw_spin_unlock_irq(&cfs_b->lock);
8456
0e59bdae 8457 for_each_online_cpu(i) {
ab84d31e 8458 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8459 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8460
8461 raw_spin_lock_irq(&rq->lock);
58088ad0 8462 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8463 cfs_rq->runtime_remaining = 0;
671fd9da 8464
029632fb 8465 if (cfs_rq->throttled)
671fd9da 8466 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8467 raw_spin_unlock_irq(&rq->lock);
8468 }
1ee14e6c
BS
8469 if (runtime_was_enabled && !runtime_enabled)
8470 cfs_bandwidth_usage_dec();
a790de99
PT
8471out_unlock:
8472 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8473 put_online_cpus();
ab84d31e 8474
a790de99 8475 return ret;
ab84d31e
PT
8476}
8477
8478int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8479{
8480 u64 quota, period;
8481
029632fb 8482 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8483 if (cfs_quota_us < 0)
8484 quota = RUNTIME_INF;
8485 else
8486 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8487
8488 return tg_set_cfs_bandwidth(tg, period, quota);
8489}
8490
8491long tg_get_cfs_quota(struct task_group *tg)
8492{
8493 u64 quota_us;
8494
029632fb 8495 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8496 return -1;
8497
029632fb 8498 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8499 do_div(quota_us, NSEC_PER_USEC);
8500
8501 return quota_us;
8502}
8503
8504int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8505{
8506 u64 quota, period;
8507
8508 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8509 quota = tg->cfs_bandwidth.quota;
ab84d31e 8510
ab84d31e
PT
8511 return tg_set_cfs_bandwidth(tg, period, quota);
8512}
8513
8514long tg_get_cfs_period(struct task_group *tg)
8515{
8516 u64 cfs_period_us;
8517
029632fb 8518 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8519 do_div(cfs_period_us, NSEC_PER_USEC);
8520
8521 return cfs_period_us;
8522}
8523
182446d0
TH
8524static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8525 struct cftype *cft)
ab84d31e 8526{
182446d0 8527 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8528}
8529
182446d0
TH
8530static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8531 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8532{
182446d0 8533 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8534}
8535
182446d0
TH
8536static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8537 struct cftype *cft)
ab84d31e 8538{
182446d0 8539 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8540}
8541
182446d0
TH
8542static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8543 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8544{
182446d0 8545 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8546}
8547
a790de99
PT
8548struct cfs_schedulable_data {
8549 struct task_group *tg;
8550 u64 period, quota;
8551};
8552
8553/*
8554 * normalize group quota/period to be quota/max_period
8555 * note: units are usecs
8556 */
8557static u64 normalize_cfs_quota(struct task_group *tg,
8558 struct cfs_schedulable_data *d)
8559{
8560 u64 quota, period;
8561
8562 if (tg == d->tg) {
8563 period = d->period;
8564 quota = d->quota;
8565 } else {
8566 period = tg_get_cfs_period(tg);
8567 quota = tg_get_cfs_quota(tg);
8568 }
8569
8570 /* note: these should typically be equivalent */
8571 if (quota == RUNTIME_INF || quota == -1)
8572 return RUNTIME_INF;
8573
8574 return to_ratio(period, quota);
8575}
8576
8577static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8578{
8579 struct cfs_schedulable_data *d = data;
029632fb 8580 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8581 s64 quota = 0, parent_quota = -1;
8582
8583 if (!tg->parent) {
8584 quota = RUNTIME_INF;
8585 } else {
029632fb 8586 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8587
8588 quota = normalize_cfs_quota(tg, d);
9c58c79a 8589 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8590
8591 /*
8592 * ensure max(child_quota) <= parent_quota, inherit when no
8593 * limit is set
8594 */
8595 if (quota == RUNTIME_INF)
8596 quota = parent_quota;
8597 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8598 return -EINVAL;
8599 }
9c58c79a 8600 cfs_b->hierarchical_quota = quota;
a790de99
PT
8601
8602 return 0;
8603}
8604
8605static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8606{
8277434e 8607 int ret;
a790de99
PT
8608 struct cfs_schedulable_data data = {
8609 .tg = tg,
8610 .period = period,
8611 .quota = quota,
8612 };
8613
8614 if (quota != RUNTIME_INF) {
8615 do_div(data.period, NSEC_PER_USEC);
8616 do_div(data.quota, NSEC_PER_USEC);
8617 }
8618
8277434e
PT
8619 rcu_read_lock();
8620 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8621 rcu_read_unlock();
8622
8623 return ret;
a790de99 8624}
e8da1b18 8625
2da8ca82 8626static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8627{
2da8ca82 8628 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8629 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8630
44ffc75b
TH
8631 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8632 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8633 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8634
8635 return 0;
8636}
ab84d31e 8637#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8638#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8639
052f1dc7 8640#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8641static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8642 struct cftype *cft, s64 val)
6f505b16 8643{
182446d0 8644 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8645}
8646
182446d0
TH
8647static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8648 struct cftype *cft)
6f505b16 8649{
182446d0 8650 return sched_group_rt_runtime(css_tg(css));
6f505b16 8651}
d0b27fa7 8652
182446d0
TH
8653static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8654 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8655{
182446d0 8656 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8657}
8658
182446d0
TH
8659static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8660 struct cftype *cft)
d0b27fa7 8661{
182446d0 8662 return sched_group_rt_period(css_tg(css));
d0b27fa7 8663}
6d6bc0ad 8664#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8665
fe5c7cc2 8666static struct cftype cpu_files[] = {
052f1dc7 8667#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8668 {
8669 .name = "shares",
f4c753b7
PM
8670 .read_u64 = cpu_shares_read_u64,
8671 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8672 },
052f1dc7 8673#endif
ab84d31e
PT
8674#ifdef CONFIG_CFS_BANDWIDTH
8675 {
8676 .name = "cfs_quota_us",
8677 .read_s64 = cpu_cfs_quota_read_s64,
8678 .write_s64 = cpu_cfs_quota_write_s64,
8679 },
8680 {
8681 .name = "cfs_period_us",
8682 .read_u64 = cpu_cfs_period_read_u64,
8683 .write_u64 = cpu_cfs_period_write_u64,
8684 },
e8da1b18
NR
8685 {
8686 .name = "stat",
2da8ca82 8687 .seq_show = cpu_stats_show,
e8da1b18 8688 },
ab84d31e 8689#endif
052f1dc7 8690#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8691 {
9f0c1e56 8692 .name = "rt_runtime_us",
06ecb27c
PM
8693 .read_s64 = cpu_rt_runtime_read,
8694 .write_s64 = cpu_rt_runtime_write,
6f505b16 8695 },
d0b27fa7
PZ
8696 {
8697 .name = "rt_period_us",
f4c753b7
PM
8698 .read_u64 = cpu_rt_period_read_uint,
8699 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8700 },
052f1dc7 8701#endif
4baf6e33 8702 { } /* terminate */
68318b8e
SV
8703};
8704
073219e9 8705struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8706 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8707 .css_released = cpu_cgroup_css_released,
92fb9748 8708 .css_free = cpu_cgroup_css_free,
eeb61e53 8709 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8710 .can_attach = cpu_cgroup_can_attach,
8711 .attach = cpu_cgroup_attach,
5577964e 8712 .legacy_cftypes = cpu_files,
b38e42e9 8713 .early_init = true,
68318b8e
SV
8714};
8715
052f1dc7 8716#endif /* CONFIG_CGROUP_SCHED */
d842de87 8717
b637a328
PM
8718void dump_cpu_task(int cpu)
8719{
8720 pr_info("Task dump for CPU %d:\n", cpu);
8721 sched_show_task(cpu_curr(cpu));
8722}
ed82b8a1
AK
8723
8724/*
8725 * Nice levels are multiplicative, with a gentle 10% change for every
8726 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8727 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8728 * that remained on nice 0.
8729 *
8730 * The "10% effect" is relative and cumulative: from _any_ nice level,
8731 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8732 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8733 * If a task goes up by ~10% and another task goes down by ~10% then
8734 * the relative distance between them is ~25%.)
8735 */
8736const int sched_prio_to_weight[40] = {
8737 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8738 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8739 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8740 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8741 /* 0 */ 1024, 820, 655, 526, 423,
8742 /* 5 */ 335, 272, 215, 172, 137,
8743 /* 10 */ 110, 87, 70, 56, 45,
8744 /* 15 */ 36, 29, 23, 18, 15,
8745};
8746
8747/*
8748 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8749 *
8750 * In cases where the weight does not change often, we can use the
8751 * precalculated inverse to speed up arithmetics by turning divisions
8752 * into multiplications:
8753 */
8754const u32 sched_prio_to_wmult[40] = {
8755 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8756 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8757 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8758 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8759 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8760 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8761 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8762 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8763};