]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/sched/core.c
sched/debug: Rename and move enqueue_sleeper()
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
f98db601 36#include <linux/mmu_context.h>
1da177e4 37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
6075620b 77#include <linux/prefetch.h>
1da177e4 78
96f951ed 79#include <asm/switch_to.h>
5517d86b 80#include <asm/tlb.h>
838225b4 81#include <asm/irq_regs.h>
db7e527d 82#include <asm/mutex.h>
e6e6685a
GC
83#ifdef CONFIG_PARAVIRT
84#include <asm/paravirt.h>
85#endif
1da177e4 86
029632fb 87#include "sched.h"
ea138446 88#include "../workqueue_internal.h"
29d5e047 89#include "../smpboot.h"
6e0534f2 90
a8d154b0 91#define CREATE_TRACE_POINTS
ad8d75ff 92#include <trace/events/sched.h>
a8d154b0 93
029632fb
PZ
94DEFINE_MUTEX(sched_domains_mutex);
95DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 96
fe44d621 97static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 98
029632fb 99void update_rq_clock(struct rq *rq)
3e51f33f 100{
fe44d621 101 s64 delta;
305e6835 102
9edfbfed
PZ
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 106 return;
aa483808 107
fe44d621 108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
109 if (delta < 0)
110 return;
fe44d621
PZ
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
3e51f33f
PZ
113}
114
bf5c91ba
IM
115/*
116 * Debugging: various feature bits
117 */
f00b45c1 118
f00b45c1
PZ
119#define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
bf5c91ba 122const_debug unsigned int sysctl_sched_features =
391e43da 123#include "features.h"
f00b45c1
PZ
124 0;
125
126#undef SCHED_FEAT
127
b82d9fdd
PZ
128/*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
e9e9250b
PZ
134/*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
fa85ae24 142/*
9f0c1e56 143 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
144 * default: 1s
145 */
9f0c1e56 146unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 147
029632fb 148__read_mostly int scheduler_running;
6892b75e 149
9f0c1e56
PZ
150/*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154int sysctl_sched_rt_runtime = 950000;
fa85ae24 155
3fa0818b
RR
156/* cpus with isolated domains */
157cpumask_var_t cpu_isolated_map;
158
1da177e4 159/*
cc2a73b5 160 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 161 */
a9957449 162static struct rq *this_rq_lock(void)
1da177e4
LT
163 __acquires(rq->lock)
164{
70b97a7f 165 struct rq *rq;
1da177e4
LT
166
167 local_irq_disable();
168 rq = this_rq();
05fa785c 169 raw_spin_lock(&rq->lock);
1da177e4
LT
170
171 return rq;
172}
173
3e71a462
PZ
174/*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
eb580751 177struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
178 __acquires(rq->lock)
179{
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 188 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196}
197
198/*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
eb580751 201struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
3e71a462
PZ
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204{
205 struct rq *rq;
206
207 for (;;) {
eb580751 208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
3e71a462
PZ
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
e7904a28 228 rf->cookie = lockdep_pin_lock(&rq->lock);
3e71a462
PZ
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
eb580751 232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
3e71a462
PZ
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237}
238
8f4d37ec
PZ
239#ifdef CONFIG_SCHED_HRTICK
240/*
241 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 242 */
8f4d37ec 243
8f4d37ec
PZ
244static void hrtick_clear(struct rq *rq)
245{
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248}
249
8f4d37ec
PZ
250/*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254static enum hrtimer_restart hrtick(struct hrtimer *timer)
255{
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
05fa785c 260 raw_spin_lock(&rq->lock);
3e51f33f 261 update_rq_clock(rq);
8f4d37ec 262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 263 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
264
265 return HRTIMER_NORESTART;
266}
267
95e904c7 268#ifdef CONFIG_SMP
971ee28c 269
4961b6e1 270static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
271{
272 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 273
4961b6e1 274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
275}
276
31656519
PZ
277/*
278 * called from hardirq (IPI) context
279 */
280static void __hrtick_start(void *arg)
b328ca18 281{
31656519 282 struct rq *rq = arg;
b328ca18 283
05fa785c 284 raw_spin_lock(&rq->lock);
971ee28c 285 __hrtick_restart(rq);
31656519 286 rq->hrtick_csd_pending = 0;
05fa785c 287 raw_spin_unlock(&rq->lock);
b328ca18
PZ
288}
289
31656519
PZ
290/*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
029632fb 295void hrtick_start(struct rq *rq, u64 delay)
b328ca18 296{
31656519 297 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 307
cc584b21 308 hrtimer_set_expires(timer, time);
31656519
PZ
309
310 if (rq == this_rq()) {
971ee28c 311 __hrtick_restart(rq);
31656519 312 } else if (!rq->hrtick_csd_pending) {
c46fff2a 313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
314 rq->hrtick_csd_pending = 1;
315 }
b328ca18
PZ
316}
317
31656519
PZ
318#else
319/*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
029632fb 324void hrtick_start(struct rq *rq, u64 delay)
31656519 325{
86893335
WL
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
31656519 333}
31656519 334#endif /* CONFIG_SMP */
8f4d37ec 335
31656519 336static void init_rq_hrtick(struct rq *rq)
8f4d37ec 337{
31656519
PZ
338#ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
8f4d37ec 340
31656519
PZ
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344#endif
8f4d37ec 345
31656519
PZ
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
8f4d37ec 348}
006c75f1 349#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
350static inline void hrtick_clear(struct rq *rq)
351{
352}
353
8f4d37ec
PZ
354static inline void init_rq_hrtick(struct rq *rq)
355{
356}
006c75f1 357#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 358
5529578a
FW
359/*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362#define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375})
376
e3baac47 377#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
378/*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383static bool set_nr_and_not_polling(struct task_struct *p)
384{
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387}
e3baac47
PZ
388
389/*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395static bool set_nr_if_polling(struct task_struct *p)
396{
397 struct thread_info *ti = task_thread_info(p);
316c1608 398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411}
412
fd99f91a
PZ
413#else
414static bool set_nr_and_not_polling(struct task_struct *p)
415{
416 set_tsk_need_resched(p);
417 return true;
418}
e3baac47
PZ
419
420#ifdef CONFIG_SMP
421static bool set_nr_if_polling(struct task_struct *p)
422{
423 return false;
424}
425#endif
fd99f91a
PZ
426#endif
427
76751049
PZ
428void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429{
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
58fe9c46 438 * barrier implied by the wakeup in wake_up_q().
76751049
PZ
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450}
451
452void wake_up_q(struct wake_q_head *head)
453{
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472}
473
c24d20db 474/*
8875125e 475 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
8875125e 481void resched_curr(struct rq *rq)
c24d20db 482{
8875125e 483 struct task_struct *curr = rq->curr;
c24d20db
IM
484 int cpu;
485
8875125e 486 lockdep_assert_held(&rq->lock);
c24d20db 487
8875125e 488 if (test_tsk_need_resched(curr))
c24d20db
IM
489 return;
490
8875125e 491 cpu = cpu_of(rq);
fd99f91a 492
f27dde8d 493 if (cpu == smp_processor_id()) {
8875125e 494 set_tsk_need_resched(curr);
f27dde8d 495 set_preempt_need_resched();
c24d20db 496 return;
f27dde8d 497 }
c24d20db 498
8875125e 499 if (set_nr_and_not_polling(curr))
c24d20db 500 smp_send_reschedule(cpu);
dfc68f29
AL
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
503}
504
029632fb 505void resched_cpu(int cpu)
c24d20db
IM
506{
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
05fa785c 510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 511 return;
8875125e 512 resched_curr(rq);
05fa785c 513 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 514}
06d8308c 515
b021fe3e 516#ifdef CONFIG_SMP
3451d024 517#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
518/*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
bc7a34b8 526int get_nohz_timer_target(void)
83cd4fe2 527{
bc7a34b8 528 int i, cpu = smp_processor_id();
83cd4fe2
VP
529 struct sched_domain *sd;
530
9642d18e 531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
532 return cpu;
533
057f3fad 534 rcu_read_lock();
83cd4fe2 535 for_each_domain(cpu, sd) {
057f3fad 536 for_each_cpu(i, sched_domain_span(sd)) {
44496922
WL
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
057f3fad
PZ
541 cpu = i;
542 goto unlock;
543 }
544 }
83cd4fe2 545 }
9642d18e
VH
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
057f3fad
PZ
549unlock:
550 rcu_read_unlock();
83cd4fe2
VP
551 return cpu;
552}
06d8308c
TG
553/*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
1c20091e 563static void wake_up_idle_cpu(int cpu)
06d8308c
TG
564{
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
67b9ca70 570 if (set_nr_and_not_polling(rq->idle))
06d8308c 571 smp_send_reschedule(cpu);
dfc68f29
AL
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
574}
575
c5bfece2 576static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 577{
53c5fa16
FW
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
c5bfece2 584 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
585 if (cpu != smp_processor_id() ||
586 tick_nohz_tick_stopped())
53c5fa16 587 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
588 return true;
589 }
590
591 return false;
592}
593
594void wake_up_nohz_cpu(int cpu)
595{
c5bfece2 596 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
597 wake_up_idle_cpu(cpu);
598}
599
ca38062e 600static inline bool got_nohz_idle_kick(void)
45bf76df 601{
1c792db7 602 int cpu = smp_processor_id();
873b4c65
VG
603
604 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
605 return false;
606
607 if (idle_cpu(cpu) && !need_resched())
608 return true;
609
610 /*
611 * We can't run Idle Load Balance on this CPU for this time so we
612 * cancel it and clear NOHZ_BALANCE_KICK
613 */
614 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 return false;
45bf76df
IM
616}
617
3451d024 618#else /* CONFIG_NO_HZ_COMMON */
45bf76df 619
ca38062e 620static inline bool got_nohz_idle_kick(void)
2069dd75 621{
ca38062e 622 return false;
2069dd75
PZ
623}
624
3451d024 625#endif /* CONFIG_NO_HZ_COMMON */
d842de87 626
ce831b38 627#ifdef CONFIG_NO_HZ_FULL
76d92ac3 628bool sched_can_stop_tick(struct rq *rq)
ce831b38 629{
76d92ac3
FW
630 int fifo_nr_running;
631
632 /* Deadline tasks, even if single, need the tick */
633 if (rq->dl.dl_nr_running)
634 return false;
635
1e78cdbd 636 /*
2548d546
PZ
637 * If there are more than one RR tasks, we need the tick to effect the
638 * actual RR behaviour.
1e78cdbd 639 */
76d92ac3
FW
640 if (rq->rt.rr_nr_running) {
641 if (rq->rt.rr_nr_running == 1)
642 return true;
643 else
644 return false;
1e78cdbd
RR
645 }
646
2548d546
PZ
647 /*
648 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
649 * forced preemption between FIFO tasks.
650 */
651 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
652 if (fifo_nr_running)
653 return true;
654
655 /*
656 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
657 * if there's more than one we need the tick for involuntary
658 * preemption.
659 */
660 if (rq->nr_running > 1)
541b8264 661 return false;
ce831b38 662
541b8264 663 return true;
ce831b38
FW
664}
665#endif /* CONFIG_NO_HZ_FULL */
d842de87 666
029632fb 667void sched_avg_update(struct rq *rq)
18d95a28 668{
e9e9250b
PZ
669 s64 period = sched_avg_period();
670
78becc27 671 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
672 /*
673 * Inline assembly required to prevent the compiler
674 * optimising this loop into a divmod call.
675 * See __iter_div_u64_rem() for another example of this.
676 */
677 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
678 rq->age_stamp += period;
679 rq->rt_avg /= 2;
680 }
18d95a28
PZ
681}
682
6d6bc0ad 683#endif /* CONFIG_SMP */
18d95a28 684
a790de99
PT
685#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
686 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 687/*
8277434e
PT
688 * Iterate task_group tree rooted at *from, calling @down when first entering a
689 * node and @up when leaving it for the final time.
690 *
691 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 692 */
029632fb 693int walk_tg_tree_from(struct task_group *from,
8277434e 694 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
695{
696 struct task_group *parent, *child;
eb755805 697 int ret;
c09595f6 698
8277434e
PT
699 parent = from;
700
c09595f6 701down:
eb755805
PZ
702 ret = (*down)(parent, data);
703 if (ret)
8277434e 704 goto out;
c09595f6
PZ
705 list_for_each_entry_rcu(child, &parent->children, siblings) {
706 parent = child;
707 goto down;
708
709up:
710 continue;
711 }
eb755805 712 ret = (*up)(parent, data);
8277434e
PT
713 if (ret || parent == from)
714 goto out;
c09595f6
PZ
715
716 child = parent;
717 parent = parent->parent;
718 if (parent)
719 goto up;
8277434e 720out:
eb755805 721 return ret;
c09595f6
PZ
722}
723
029632fb 724int tg_nop(struct task_group *tg, void *data)
eb755805 725{
e2b245f8 726 return 0;
eb755805 727}
18d95a28
PZ
728#endif
729
45bf76df
IM
730static void set_load_weight(struct task_struct *p)
731{
f05998d4
NR
732 int prio = p->static_prio - MAX_RT_PRIO;
733 struct load_weight *load = &p->se.load;
734
dd41f596
IM
735 /*
736 * SCHED_IDLE tasks get minimal weight:
737 */
20f9cd2a 738 if (idle_policy(p->policy)) {
c8b28116 739 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 740 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
741 return;
742 }
71f8bd46 743
ed82b8a1
AK
744 load->weight = scale_load(sched_prio_to_weight[prio]);
745 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
746}
747
1de64443 748static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 749{
a64692a3 750 update_rq_clock(rq);
1de64443
PZ
751 if (!(flags & ENQUEUE_RESTORE))
752 sched_info_queued(rq, p);
371fd7e7 753 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
754}
755
1de64443 756static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 757{
a64692a3 758 update_rq_clock(rq);
1de64443
PZ
759 if (!(flags & DEQUEUE_SAVE))
760 sched_info_dequeued(rq, p);
371fd7e7 761 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
762}
763
029632fb 764void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
765{
766 if (task_contributes_to_load(p))
767 rq->nr_uninterruptible--;
768
371fd7e7 769 enqueue_task(rq, p, flags);
1e3c88bd
PZ
770}
771
029632fb 772void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
773{
774 if (task_contributes_to_load(p))
775 rq->nr_uninterruptible++;
776
371fd7e7 777 dequeue_task(rq, p, flags);
1e3c88bd
PZ
778}
779
fe44d621 780static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 781{
095c0aa8
GC
782/*
783 * In theory, the compile should just see 0 here, and optimize out the call
784 * to sched_rt_avg_update. But I don't trust it...
785 */
786#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
787 s64 steal = 0, irq_delta = 0;
788#endif
789#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 790 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
791
792 /*
793 * Since irq_time is only updated on {soft,}irq_exit, we might run into
794 * this case when a previous update_rq_clock() happened inside a
795 * {soft,}irq region.
796 *
797 * When this happens, we stop ->clock_task and only update the
798 * prev_irq_time stamp to account for the part that fit, so that a next
799 * update will consume the rest. This ensures ->clock_task is
800 * monotonic.
801 *
802 * It does however cause some slight miss-attribution of {soft,}irq
803 * time, a more accurate solution would be to update the irq_time using
804 * the current rq->clock timestamp, except that would require using
805 * atomic ops.
806 */
807 if (irq_delta > delta)
808 irq_delta = delta;
809
810 rq->prev_irq_time += irq_delta;
811 delta -= irq_delta;
095c0aa8
GC
812#endif
813#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 814 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
815 steal = paravirt_steal_clock(cpu_of(rq));
816 steal -= rq->prev_steal_time_rq;
817
818 if (unlikely(steal > delta))
819 steal = delta;
820
095c0aa8 821 rq->prev_steal_time_rq += steal;
095c0aa8
GC
822 delta -= steal;
823 }
824#endif
825
fe44d621
PZ
826 rq->clock_task += delta;
827
095c0aa8 828#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 829 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
830 sched_rt_avg_update(rq, irq_delta + steal);
831#endif
aa483808
VP
832}
833
34f971f6
PZ
834void sched_set_stop_task(int cpu, struct task_struct *stop)
835{
836 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
837 struct task_struct *old_stop = cpu_rq(cpu)->stop;
838
839 if (stop) {
840 /*
841 * Make it appear like a SCHED_FIFO task, its something
842 * userspace knows about and won't get confused about.
843 *
844 * Also, it will make PI more or less work without too
845 * much confusion -- but then, stop work should not
846 * rely on PI working anyway.
847 */
848 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
849
850 stop->sched_class = &stop_sched_class;
851 }
852
853 cpu_rq(cpu)->stop = stop;
854
855 if (old_stop) {
856 /*
857 * Reset it back to a normal scheduling class so that
858 * it can die in pieces.
859 */
860 old_stop->sched_class = &rt_sched_class;
861 }
862}
863
14531189 864/*
dd41f596 865 * __normal_prio - return the priority that is based on the static prio
14531189 866 */
14531189
IM
867static inline int __normal_prio(struct task_struct *p)
868{
dd41f596 869 return p->static_prio;
14531189
IM
870}
871
b29739f9
IM
872/*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
36c8b586 879static inline int normal_prio(struct task_struct *p)
b29739f9
IM
880{
881 int prio;
882
aab03e05
DF
883 if (task_has_dl_policy(p))
884 prio = MAX_DL_PRIO-1;
885 else if (task_has_rt_policy(p))
b29739f9
IM
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890}
891
892/*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
36c8b586 899static int effective_prio(struct task_struct *p)
b29739f9
IM
900{
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910}
911
1da177e4
LT
912/**
913 * task_curr - is this task currently executing on a CPU?
914 * @p: the task in question.
e69f6186
YB
915 *
916 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 917 */
36c8b586 918inline int task_curr(const struct task_struct *p)
1da177e4
LT
919{
920 return cpu_curr(task_cpu(p)) == p;
921}
922
67dfa1b7 923/*
4c9a4bc8
PZ
924 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
925 * use the balance_callback list if you want balancing.
926 *
927 * this means any call to check_class_changed() must be followed by a call to
928 * balance_callback().
67dfa1b7 929 */
cb469845
SR
930static inline void check_class_changed(struct rq *rq, struct task_struct *p,
931 const struct sched_class *prev_class,
da7a735e 932 int oldprio)
cb469845
SR
933{
934 if (prev_class != p->sched_class) {
935 if (prev_class->switched_from)
da7a735e 936 prev_class->switched_from(rq, p);
4c9a4bc8 937
da7a735e 938 p->sched_class->switched_to(rq, p);
2d3d891d 939 } else if (oldprio != p->prio || dl_task(p))
da7a735e 940 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
941}
942
029632fb 943void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
944{
945 const struct sched_class *class;
946
947 if (p->sched_class == rq->curr->sched_class) {
948 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
949 } else {
950 for_each_class(class) {
951 if (class == rq->curr->sched_class)
952 break;
953 if (class == p->sched_class) {
8875125e 954 resched_curr(rq);
1e5a7405
PZ
955 break;
956 }
957 }
958 }
959
960 /*
961 * A queue event has occurred, and we're going to schedule. In
962 * this case, we can save a useless back to back clock update.
963 */
da0c1e65 964 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 965 rq_clock_skip_update(rq, true);
1e5a7405
PZ
966}
967
1da177e4 968#ifdef CONFIG_SMP
5cc389bc
PZ
969/*
970 * This is how migration works:
971 *
972 * 1) we invoke migration_cpu_stop() on the target CPU using
973 * stop_one_cpu().
974 * 2) stopper starts to run (implicitly forcing the migrated thread
975 * off the CPU)
976 * 3) it checks whether the migrated task is still in the wrong runqueue.
977 * 4) if it's in the wrong runqueue then the migration thread removes
978 * it and puts it into the right queue.
979 * 5) stopper completes and stop_one_cpu() returns and the migration
980 * is done.
981 */
982
983/*
984 * move_queued_task - move a queued task to new rq.
985 *
986 * Returns (locked) new rq. Old rq's lock is released.
987 */
5e16bbc2 988static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 989{
5cc389bc
PZ
990 lockdep_assert_held(&rq->lock);
991
5cc389bc 992 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 993 dequeue_task(rq, p, 0);
5cc389bc
PZ
994 set_task_cpu(p, new_cpu);
995 raw_spin_unlock(&rq->lock);
996
997 rq = cpu_rq(new_cpu);
998
999 raw_spin_lock(&rq->lock);
1000 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 1001 enqueue_task(rq, p, 0);
3ea94de1 1002 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
1003 check_preempt_curr(rq, p, 0);
1004
1005 return rq;
1006}
1007
1008struct migration_arg {
1009 struct task_struct *task;
1010 int dest_cpu;
1011};
1012
1013/*
1014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1015 * this because either it can't run here any more (set_cpus_allowed()
1016 * away from this CPU, or CPU going down), or because we're
1017 * attempting to rebalance this task on exec (sched_exec).
1018 *
1019 * So we race with normal scheduler movements, but that's OK, as long
1020 * as the task is no longer on this CPU.
5cc389bc 1021 */
5e16bbc2 1022static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 1023{
5cc389bc 1024 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 1025 return rq;
5cc389bc
PZ
1026
1027 /* Affinity changed (again). */
1028 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 1029 return rq;
5cc389bc 1030
5e16bbc2
PZ
1031 rq = move_queued_task(rq, p, dest_cpu);
1032
1033 return rq;
5cc389bc
PZ
1034}
1035
1036/*
1037 * migration_cpu_stop - this will be executed by a highprio stopper thread
1038 * and performs thread migration by bumping thread off CPU then
1039 * 'pushing' onto another runqueue.
1040 */
1041static int migration_cpu_stop(void *data)
1042{
1043 struct migration_arg *arg = data;
5e16bbc2
PZ
1044 struct task_struct *p = arg->task;
1045 struct rq *rq = this_rq();
5cc389bc
PZ
1046
1047 /*
1048 * The original target cpu might have gone down and we might
1049 * be on another cpu but it doesn't matter.
1050 */
1051 local_irq_disable();
1052 /*
1053 * We need to explicitly wake pending tasks before running
1054 * __migrate_task() such that we will not miss enforcing cpus_allowed
1055 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1056 */
1057 sched_ttwu_pending();
5e16bbc2
PZ
1058
1059 raw_spin_lock(&p->pi_lock);
1060 raw_spin_lock(&rq->lock);
1061 /*
1062 * If task_rq(p) != rq, it cannot be migrated here, because we're
1063 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1064 * we're holding p->pi_lock.
1065 */
1066 if (task_rq(p) == rq && task_on_rq_queued(p))
1067 rq = __migrate_task(rq, p, arg->dest_cpu);
1068 raw_spin_unlock(&rq->lock);
1069 raw_spin_unlock(&p->pi_lock);
1070
5cc389bc
PZ
1071 local_irq_enable();
1072 return 0;
1073}
1074
c5b28038
PZ
1075/*
1076 * sched_class::set_cpus_allowed must do the below, but is not required to
1077 * actually call this function.
1078 */
1079void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1080{
5cc389bc
PZ
1081 cpumask_copy(&p->cpus_allowed, new_mask);
1082 p->nr_cpus_allowed = cpumask_weight(new_mask);
1083}
1084
c5b28038
PZ
1085void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1086{
6c37067e
PZ
1087 struct rq *rq = task_rq(p);
1088 bool queued, running;
1089
c5b28038 1090 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1091
1092 queued = task_on_rq_queued(p);
1093 running = task_current(rq, p);
1094
1095 if (queued) {
1096 /*
1097 * Because __kthread_bind() calls this on blocked tasks without
1098 * holding rq->lock.
1099 */
1100 lockdep_assert_held(&rq->lock);
1de64443 1101 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1102 }
1103 if (running)
1104 put_prev_task(rq, p);
1105
c5b28038 1106 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1107
1108 if (running)
1109 p->sched_class->set_curr_task(rq);
1110 if (queued)
1de64443 1111 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1112}
1113
5cc389bc
PZ
1114/*
1115 * Change a given task's CPU affinity. Migrate the thread to a
1116 * proper CPU and schedule it away if the CPU it's executing on
1117 * is removed from the allowed bitmask.
1118 *
1119 * NOTE: the caller must have a valid reference to the task, the
1120 * task must not exit() & deallocate itself prematurely. The
1121 * call is not atomic; no spinlocks may be held.
1122 */
25834c73
PZ
1123static int __set_cpus_allowed_ptr(struct task_struct *p,
1124 const struct cpumask *new_mask, bool check)
5cc389bc 1125{
e9d867a6 1126 const struct cpumask *cpu_valid_mask = cpu_active_mask;
5cc389bc 1127 unsigned int dest_cpu;
eb580751
PZ
1128 struct rq_flags rf;
1129 struct rq *rq;
5cc389bc
PZ
1130 int ret = 0;
1131
eb580751 1132 rq = task_rq_lock(p, &rf);
5cc389bc 1133
e9d867a6
PZI
1134 if (p->flags & PF_KTHREAD) {
1135 /*
1136 * Kernel threads are allowed on online && !active CPUs
1137 */
1138 cpu_valid_mask = cpu_online_mask;
1139 }
1140
25834c73
PZ
1141 /*
1142 * Must re-check here, to close a race against __kthread_bind(),
1143 * sched_setaffinity() is not guaranteed to observe the flag.
1144 */
1145 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1146 ret = -EINVAL;
1147 goto out;
1148 }
1149
5cc389bc
PZ
1150 if (cpumask_equal(&p->cpus_allowed, new_mask))
1151 goto out;
1152
e9d867a6 1153 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
5cc389bc
PZ
1154 ret = -EINVAL;
1155 goto out;
1156 }
1157
1158 do_set_cpus_allowed(p, new_mask);
1159
e9d867a6
PZI
1160 if (p->flags & PF_KTHREAD) {
1161 /*
1162 * For kernel threads that do indeed end up on online &&
1163 * !active we want to ensure they are strict per-cpu threads.
1164 */
1165 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1166 !cpumask_intersects(new_mask, cpu_active_mask) &&
1167 p->nr_cpus_allowed != 1);
1168 }
1169
5cc389bc
PZ
1170 /* Can the task run on the task's current CPU? If so, we're done */
1171 if (cpumask_test_cpu(task_cpu(p), new_mask))
1172 goto out;
1173
e9d867a6 1174 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
5cc389bc
PZ
1175 if (task_running(rq, p) || p->state == TASK_WAKING) {
1176 struct migration_arg arg = { p, dest_cpu };
1177 /* Need help from migration thread: drop lock and wait. */
eb580751 1178 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1179 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1180 tlb_migrate_finish(p->mm);
1181 return 0;
cbce1a68
PZ
1182 } else if (task_on_rq_queued(p)) {
1183 /*
1184 * OK, since we're going to drop the lock immediately
1185 * afterwards anyway.
1186 */
e7904a28 1187 lockdep_unpin_lock(&rq->lock, rf.cookie);
5e16bbc2 1188 rq = move_queued_task(rq, p, dest_cpu);
e7904a28 1189 lockdep_repin_lock(&rq->lock, rf.cookie);
cbce1a68 1190 }
5cc389bc 1191out:
eb580751 1192 task_rq_unlock(rq, p, &rf);
5cc389bc
PZ
1193
1194 return ret;
1195}
25834c73
PZ
1196
1197int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1198{
1199 return __set_cpus_allowed_ptr(p, new_mask, false);
1200}
5cc389bc
PZ
1201EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1202
dd41f596 1203void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1204{
e2912009
PZ
1205#ifdef CONFIG_SCHED_DEBUG
1206 /*
1207 * We should never call set_task_cpu() on a blocked task,
1208 * ttwu() will sort out the placement.
1209 */
077614ee 1210 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1211 !p->on_rq);
0122ec5b 1212
3ea94de1
JP
1213 /*
1214 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1215 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1216 * time relying on p->on_rq.
1217 */
1218 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1219 p->sched_class == &fair_sched_class &&
1220 (p->on_rq && !task_on_rq_migrating(p)));
1221
0122ec5b 1222#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1223 /*
1224 * The caller should hold either p->pi_lock or rq->lock, when changing
1225 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1226 *
1227 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1228 * see task_group().
6c6c54e1
PZ
1229 *
1230 * Furthermore, all task_rq users should acquire both locks, see
1231 * task_rq_lock().
1232 */
0122ec5b
PZ
1233 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1234 lockdep_is_held(&task_rq(p)->lock)));
1235#endif
e2912009
PZ
1236#endif
1237
de1d7286 1238 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1239
0c69774e 1240 if (task_cpu(p) != new_cpu) {
0a74bef8 1241 if (p->sched_class->migrate_task_rq)
5a4fd036 1242 p->sched_class->migrate_task_rq(p);
0c69774e 1243 p->se.nr_migrations++;
ff303e66 1244 perf_event_task_migrate(p);
0c69774e 1245 }
dd41f596
IM
1246
1247 __set_task_cpu(p, new_cpu);
c65cc870
IM
1248}
1249
ac66f547
PZ
1250static void __migrate_swap_task(struct task_struct *p, int cpu)
1251{
da0c1e65 1252 if (task_on_rq_queued(p)) {
ac66f547
PZ
1253 struct rq *src_rq, *dst_rq;
1254
1255 src_rq = task_rq(p);
1256 dst_rq = cpu_rq(cpu);
1257
3ea94de1 1258 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1259 deactivate_task(src_rq, p, 0);
1260 set_task_cpu(p, cpu);
1261 activate_task(dst_rq, p, 0);
3ea94de1 1262 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1263 check_preempt_curr(dst_rq, p, 0);
1264 } else {
1265 /*
1266 * Task isn't running anymore; make it appear like we migrated
1267 * it before it went to sleep. This means on wakeup we make the
a1fd4656 1268 * previous cpu our target instead of where it really is.
ac66f547
PZ
1269 */
1270 p->wake_cpu = cpu;
1271 }
1272}
1273
1274struct migration_swap_arg {
1275 struct task_struct *src_task, *dst_task;
1276 int src_cpu, dst_cpu;
1277};
1278
1279static int migrate_swap_stop(void *data)
1280{
1281 struct migration_swap_arg *arg = data;
1282 struct rq *src_rq, *dst_rq;
1283 int ret = -EAGAIN;
1284
62694cd5
PZ
1285 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1286 return -EAGAIN;
1287
ac66f547
PZ
1288 src_rq = cpu_rq(arg->src_cpu);
1289 dst_rq = cpu_rq(arg->dst_cpu);
1290
74602315
PZ
1291 double_raw_lock(&arg->src_task->pi_lock,
1292 &arg->dst_task->pi_lock);
ac66f547 1293 double_rq_lock(src_rq, dst_rq);
62694cd5 1294
ac66f547
PZ
1295 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1296 goto unlock;
1297
1298 if (task_cpu(arg->src_task) != arg->src_cpu)
1299 goto unlock;
1300
1301 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1302 goto unlock;
1303
1304 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1305 goto unlock;
1306
1307 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1308 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1309
1310 ret = 0;
1311
1312unlock:
1313 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1314 raw_spin_unlock(&arg->dst_task->pi_lock);
1315 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1316
1317 return ret;
1318}
1319
1320/*
1321 * Cross migrate two tasks
1322 */
1323int migrate_swap(struct task_struct *cur, struct task_struct *p)
1324{
1325 struct migration_swap_arg arg;
1326 int ret = -EINVAL;
1327
ac66f547
PZ
1328 arg = (struct migration_swap_arg){
1329 .src_task = cur,
1330 .src_cpu = task_cpu(cur),
1331 .dst_task = p,
1332 .dst_cpu = task_cpu(p),
1333 };
1334
1335 if (arg.src_cpu == arg.dst_cpu)
1336 goto out;
1337
6acce3ef
PZ
1338 /*
1339 * These three tests are all lockless; this is OK since all of them
1340 * will be re-checked with proper locks held further down the line.
1341 */
ac66f547
PZ
1342 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1343 goto out;
1344
1345 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1346 goto out;
1347
1348 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1349 goto out;
1350
286549dc 1351 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1352 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1353
1354out:
ac66f547
PZ
1355 return ret;
1356}
1357
1da177e4
LT
1358/*
1359 * wait_task_inactive - wait for a thread to unschedule.
1360 *
85ba2d86
RM
1361 * If @match_state is nonzero, it's the @p->state value just checked and
1362 * not expected to change. If it changes, i.e. @p might have woken up,
1363 * then return zero. When we succeed in waiting for @p to be off its CPU,
1364 * we return a positive number (its total switch count). If a second call
1365 * a short while later returns the same number, the caller can be sure that
1366 * @p has remained unscheduled the whole time.
1367 *
1da177e4
LT
1368 * The caller must ensure that the task *will* unschedule sometime soon,
1369 * else this function might spin for a *long* time. This function can't
1370 * be called with interrupts off, or it may introduce deadlock with
1371 * smp_call_function() if an IPI is sent by the same process we are
1372 * waiting to become inactive.
1373 */
85ba2d86 1374unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4 1375{
da0c1e65 1376 int running, queued;
eb580751 1377 struct rq_flags rf;
85ba2d86 1378 unsigned long ncsw;
70b97a7f 1379 struct rq *rq;
1da177e4 1380
3a5c359a
AK
1381 for (;;) {
1382 /*
1383 * We do the initial early heuristics without holding
1384 * any task-queue locks at all. We'll only try to get
1385 * the runqueue lock when things look like they will
1386 * work out!
1387 */
1388 rq = task_rq(p);
fa490cfd 1389
3a5c359a
AK
1390 /*
1391 * If the task is actively running on another CPU
1392 * still, just relax and busy-wait without holding
1393 * any locks.
1394 *
1395 * NOTE! Since we don't hold any locks, it's not
1396 * even sure that "rq" stays as the right runqueue!
1397 * But we don't care, since "task_running()" will
1398 * return false if the runqueue has changed and p
1399 * is actually now running somewhere else!
1400 */
85ba2d86
RM
1401 while (task_running(rq, p)) {
1402 if (match_state && unlikely(p->state != match_state))
1403 return 0;
3a5c359a 1404 cpu_relax();
85ba2d86 1405 }
fa490cfd 1406
3a5c359a
AK
1407 /*
1408 * Ok, time to look more closely! We need the rq
1409 * lock now, to be *sure*. If we're wrong, we'll
1410 * just go back and repeat.
1411 */
eb580751 1412 rq = task_rq_lock(p, &rf);
27a9da65 1413 trace_sched_wait_task(p);
3a5c359a 1414 running = task_running(rq, p);
da0c1e65 1415 queued = task_on_rq_queued(p);
85ba2d86 1416 ncsw = 0;
f31e11d8 1417 if (!match_state || p->state == match_state)
93dcf55f 1418 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
eb580751 1419 task_rq_unlock(rq, p, &rf);
fa490cfd 1420
85ba2d86
RM
1421 /*
1422 * If it changed from the expected state, bail out now.
1423 */
1424 if (unlikely(!ncsw))
1425 break;
1426
3a5c359a
AK
1427 /*
1428 * Was it really running after all now that we
1429 * checked with the proper locks actually held?
1430 *
1431 * Oops. Go back and try again..
1432 */
1433 if (unlikely(running)) {
1434 cpu_relax();
1435 continue;
1436 }
fa490cfd 1437
3a5c359a
AK
1438 /*
1439 * It's not enough that it's not actively running,
1440 * it must be off the runqueue _entirely_, and not
1441 * preempted!
1442 *
80dd99b3 1443 * So if it was still runnable (but just not actively
3a5c359a
AK
1444 * running right now), it's preempted, and we should
1445 * yield - it could be a while.
1446 */
da0c1e65 1447 if (unlikely(queued)) {
8eb90c30
TG
1448 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1449
1450 set_current_state(TASK_UNINTERRUPTIBLE);
1451 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1452 continue;
1453 }
fa490cfd 1454
3a5c359a
AK
1455 /*
1456 * Ahh, all good. It wasn't running, and it wasn't
1457 * runnable, which means that it will never become
1458 * running in the future either. We're all done!
1459 */
1460 break;
1461 }
85ba2d86
RM
1462
1463 return ncsw;
1da177e4
LT
1464}
1465
1466/***
1467 * kick_process - kick a running thread to enter/exit the kernel
1468 * @p: the to-be-kicked thread
1469 *
1470 * Cause a process which is running on another CPU to enter
1471 * kernel-mode, without any delay. (to get signals handled.)
1472 *
25985edc 1473 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1474 * because all it wants to ensure is that the remote task enters
1475 * the kernel. If the IPI races and the task has been migrated
1476 * to another CPU then no harm is done and the purpose has been
1477 * achieved as well.
1478 */
36c8b586 1479void kick_process(struct task_struct *p)
1da177e4
LT
1480{
1481 int cpu;
1482
1483 preempt_disable();
1484 cpu = task_cpu(p);
1485 if ((cpu != smp_processor_id()) && task_curr(p))
1486 smp_send_reschedule(cpu);
1487 preempt_enable();
1488}
b43e3521 1489EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1490
30da688e 1491/*
013fdb80 1492 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
e9d867a6
PZI
1493 *
1494 * A few notes on cpu_active vs cpu_online:
1495 *
1496 * - cpu_active must be a subset of cpu_online
1497 *
1498 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1499 * see __set_cpus_allowed_ptr(). At this point the newly online
1500 * cpu isn't yet part of the sched domains, and balancing will not
1501 * see it.
1502 *
1503 * - on cpu-down we clear cpu_active() to mask the sched domains and
1504 * avoid the load balancer to place new tasks on the to be removed
1505 * cpu. Existing tasks will remain running there and will be taken
1506 * off.
1507 *
1508 * This means that fallback selection must not select !active CPUs.
1509 * And can assume that any active CPU must be online. Conversely
1510 * select_task_rq() below may allow selection of !active CPUs in order
1511 * to satisfy the above rules.
30da688e 1512 */
5da9a0fb
PZ
1513static int select_fallback_rq(int cpu, struct task_struct *p)
1514{
aa00d89c
TC
1515 int nid = cpu_to_node(cpu);
1516 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1517 enum { cpuset, possible, fail } state = cpuset;
1518 int dest_cpu;
5da9a0fb 1519
aa00d89c
TC
1520 /*
1521 * If the node that the cpu is on has been offlined, cpu_to_node()
1522 * will return -1. There is no cpu on the node, and we should
1523 * select the cpu on the other node.
1524 */
1525 if (nid != -1) {
1526 nodemask = cpumask_of_node(nid);
1527
1528 /* Look for allowed, online CPU in same node. */
1529 for_each_cpu(dest_cpu, nodemask) {
aa00d89c
TC
1530 if (!cpu_active(dest_cpu))
1531 continue;
1532 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1533 return dest_cpu;
1534 }
2baab4e9 1535 }
5da9a0fb 1536
2baab4e9
PZ
1537 for (;;) {
1538 /* Any allowed, online CPU? */
e3831edd 1539 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
feb245e3
TH
1540 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1541 continue;
1542 if (!cpu_online(dest_cpu))
2baab4e9
PZ
1543 continue;
1544 goto out;
1545 }
5da9a0fb 1546
e73e85f0 1547 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1548 switch (state) {
1549 case cpuset:
e73e85f0
ON
1550 if (IS_ENABLED(CONFIG_CPUSETS)) {
1551 cpuset_cpus_allowed_fallback(p);
1552 state = possible;
1553 break;
1554 }
1555 /* fall-through */
2baab4e9
PZ
1556 case possible:
1557 do_set_cpus_allowed(p, cpu_possible_mask);
1558 state = fail;
1559 break;
1560
1561 case fail:
1562 BUG();
1563 break;
1564 }
1565 }
1566
1567out:
1568 if (state != cpuset) {
1569 /*
1570 * Don't tell them about moving exiting tasks or
1571 * kernel threads (both mm NULL), since they never
1572 * leave kernel.
1573 */
1574 if (p->mm && printk_ratelimit()) {
aac74dc4 1575 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1576 task_pid_nr(p), p->comm, cpu);
1577 }
5da9a0fb
PZ
1578 }
1579
1580 return dest_cpu;
1581}
1582
e2912009 1583/*
013fdb80 1584 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1585 */
970b13ba 1586static inline
ac66f547 1587int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1588{
cbce1a68
PZ
1589 lockdep_assert_held(&p->pi_lock);
1590
50605ffb 1591 if (tsk_nr_cpus_allowed(p) > 1)
6c1d9410 1592 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e9d867a6
PZI
1593 else
1594 cpu = cpumask_any(tsk_cpus_allowed(p));
e2912009
PZ
1595
1596 /*
1597 * In order not to call set_task_cpu() on a blocking task we need
1598 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1599 * cpu.
1600 *
1601 * Since this is common to all placement strategies, this lives here.
1602 *
1603 * [ this allows ->select_task() to simply return task_cpu(p) and
1604 * not worry about this generic constraint ]
1605 */
fa17b507 1606 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1607 !cpu_online(cpu)))
5da9a0fb 1608 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1609
1610 return cpu;
970b13ba 1611}
09a40af5
MG
1612
1613static void update_avg(u64 *avg, u64 sample)
1614{
1615 s64 diff = sample - *avg;
1616 *avg += diff >> 3;
1617}
25834c73
PZ
1618
1619#else
1620
1621static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1622 const struct cpumask *new_mask, bool check)
1623{
1624 return set_cpus_allowed_ptr(p, new_mask);
1625}
1626
5cc389bc 1627#endif /* CONFIG_SMP */
970b13ba 1628
d7c01d27 1629static void
b84cb5df 1630ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1631{
d7c01d27 1632#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1633 struct rq *rq = this_rq();
1634
d7c01d27
PZ
1635#ifdef CONFIG_SMP
1636 int this_cpu = smp_processor_id();
1637
1638 if (cpu == this_cpu) {
1639 schedstat_inc(rq, ttwu_local);
1640 schedstat_inc(p, se.statistics.nr_wakeups_local);
1641 } else {
1642 struct sched_domain *sd;
1643
1644 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1645 rcu_read_lock();
d7c01d27
PZ
1646 for_each_domain(this_cpu, sd) {
1647 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1648 schedstat_inc(sd, ttwu_wake_remote);
1649 break;
1650 }
1651 }
057f3fad 1652 rcu_read_unlock();
d7c01d27 1653 }
f339b9dc
PZ
1654
1655 if (wake_flags & WF_MIGRATED)
1656 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1657
d7c01d27
PZ
1658#endif /* CONFIG_SMP */
1659
1660 schedstat_inc(rq, ttwu_count);
9ed3811a 1661 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1662
1663 if (wake_flags & WF_SYNC)
9ed3811a 1664 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1665
d7c01d27
PZ
1666#endif /* CONFIG_SCHEDSTATS */
1667}
1668
1de64443 1669static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1670{
9ed3811a 1671 activate_task(rq, p, en_flags);
da0c1e65 1672 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1673
1674 /* if a worker is waking up, notify workqueue */
1675 if (p->flags & PF_WQ_WORKER)
1676 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1677}
1678
23f41eeb
PZ
1679/*
1680 * Mark the task runnable and perform wakeup-preemption.
1681 */
e7904a28
PZ
1682static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1683 struct pin_cookie cookie)
9ed3811a 1684{
9ed3811a 1685 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1686 p->state = TASK_RUNNING;
fbd705a0
PZ
1687 trace_sched_wakeup(p);
1688
9ed3811a 1689#ifdef CONFIG_SMP
4c9a4bc8
PZ
1690 if (p->sched_class->task_woken) {
1691 /*
cbce1a68
PZ
1692 * Our task @p is fully woken up and running; so its safe to
1693 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1694 */
e7904a28 1695 lockdep_unpin_lock(&rq->lock, cookie);
9ed3811a 1696 p->sched_class->task_woken(rq, p);
e7904a28 1697 lockdep_repin_lock(&rq->lock, cookie);
4c9a4bc8 1698 }
9ed3811a 1699
e69c6341 1700 if (rq->idle_stamp) {
78becc27 1701 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1702 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1703
abfafa54
JL
1704 update_avg(&rq->avg_idle, delta);
1705
1706 if (rq->avg_idle > max)
9ed3811a 1707 rq->avg_idle = max;
abfafa54 1708
9ed3811a
TH
1709 rq->idle_stamp = 0;
1710 }
1711#endif
1712}
1713
c05fbafb 1714static void
e7904a28
PZ
1715ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1716 struct pin_cookie cookie)
c05fbafb 1717{
b5179ac7
PZ
1718 int en_flags = ENQUEUE_WAKEUP;
1719
cbce1a68
PZ
1720 lockdep_assert_held(&rq->lock);
1721
c05fbafb
PZ
1722#ifdef CONFIG_SMP
1723 if (p->sched_contributes_to_load)
1724 rq->nr_uninterruptible--;
b5179ac7 1725
b5179ac7 1726 if (wake_flags & WF_MIGRATED)
59efa0ba 1727 en_flags |= ENQUEUE_MIGRATED;
c05fbafb
PZ
1728#endif
1729
b5179ac7 1730 ttwu_activate(rq, p, en_flags);
e7904a28 1731 ttwu_do_wakeup(rq, p, wake_flags, cookie);
c05fbafb
PZ
1732}
1733
1734/*
1735 * Called in case the task @p isn't fully descheduled from its runqueue,
1736 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1737 * since all we need to do is flip p->state to TASK_RUNNING, since
1738 * the task is still ->on_rq.
1739 */
1740static int ttwu_remote(struct task_struct *p, int wake_flags)
1741{
eb580751 1742 struct rq_flags rf;
c05fbafb
PZ
1743 struct rq *rq;
1744 int ret = 0;
1745
eb580751 1746 rq = __task_rq_lock(p, &rf);
da0c1e65 1747 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1748 /* check_preempt_curr() may use rq clock */
1749 update_rq_clock(rq);
e7904a28 1750 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
c05fbafb
PZ
1751 ret = 1;
1752 }
eb580751 1753 __task_rq_unlock(rq, &rf);
c05fbafb
PZ
1754
1755 return ret;
1756}
1757
317f3941 1758#ifdef CONFIG_SMP
e3baac47 1759void sched_ttwu_pending(void)
317f3941
PZ
1760{
1761 struct rq *rq = this_rq();
fa14ff4a 1762 struct llist_node *llist = llist_del_all(&rq->wake_list);
e7904a28 1763 struct pin_cookie cookie;
fa14ff4a 1764 struct task_struct *p;
e3baac47 1765 unsigned long flags;
317f3941 1766
e3baac47
PZ
1767 if (!llist)
1768 return;
1769
1770 raw_spin_lock_irqsave(&rq->lock, flags);
e7904a28 1771 cookie = lockdep_pin_lock(&rq->lock);
317f3941 1772
fa14ff4a 1773 while (llist) {
b7e7ade3
PZ
1774 int wake_flags = 0;
1775
fa14ff4a
PZ
1776 p = llist_entry(llist, struct task_struct, wake_entry);
1777 llist = llist_next(llist);
b7e7ade3
PZ
1778
1779 if (p->sched_remote_wakeup)
1780 wake_flags = WF_MIGRATED;
1781
1782 ttwu_do_activate(rq, p, wake_flags, cookie);
317f3941
PZ
1783 }
1784
e7904a28 1785 lockdep_unpin_lock(&rq->lock, cookie);
e3baac47 1786 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1787}
1788
1789void scheduler_ipi(void)
1790{
f27dde8d
PZ
1791 /*
1792 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1793 * TIF_NEED_RESCHED remotely (for the first time) will also send
1794 * this IPI.
1795 */
8cb75e0c 1796 preempt_fold_need_resched();
f27dde8d 1797
fd2ac4f4 1798 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1799 return;
1800
1801 /*
1802 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1803 * traditionally all their work was done from the interrupt return
1804 * path. Now that we actually do some work, we need to make sure
1805 * we do call them.
1806 *
1807 * Some archs already do call them, luckily irq_enter/exit nest
1808 * properly.
1809 *
1810 * Arguably we should visit all archs and update all handlers,
1811 * however a fair share of IPIs are still resched only so this would
1812 * somewhat pessimize the simple resched case.
1813 */
1814 irq_enter();
fa14ff4a 1815 sched_ttwu_pending();
ca38062e
SS
1816
1817 /*
1818 * Check if someone kicked us for doing the nohz idle load balance.
1819 */
873b4c65 1820 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1821 this_rq()->idle_balance = 1;
ca38062e 1822 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1823 }
c5d753a5 1824 irq_exit();
317f3941
PZ
1825}
1826
b7e7ade3 1827static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
317f3941 1828{
e3baac47
PZ
1829 struct rq *rq = cpu_rq(cpu);
1830
b7e7ade3
PZ
1831 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1832
e3baac47
PZ
1833 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1834 if (!set_nr_if_polling(rq->idle))
1835 smp_send_reschedule(cpu);
1836 else
1837 trace_sched_wake_idle_without_ipi(cpu);
1838 }
317f3941 1839}
d6aa8f85 1840
f6be8af1
CL
1841void wake_up_if_idle(int cpu)
1842{
1843 struct rq *rq = cpu_rq(cpu);
1844 unsigned long flags;
1845
fd7de1e8
AL
1846 rcu_read_lock();
1847
1848 if (!is_idle_task(rcu_dereference(rq->curr)))
1849 goto out;
f6be8af1
CL
1850
1851 if (set_nr_if_polling(rq->idle)) {
1852 trace_sched_wake_idle_without_ipi(cpu);
1853 } else {
1854 raw_spin_lock_irqsave(&rq->lock, flags);
1855 if (is_idle_task(rq->curr))
1856 smp_send_reschedule(cpu);
1857 /* Else cpu is not in idle, do nothing here */
1858 raw_spin_unlock_irqrestore(&rq->lock, flags);
1859 }
fd7de1e8
AL
1860
1861out:
1862 rcu_read_unlock();
f6be8af1
CL
1863}
1864
39be3501 1865bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1866{
1867 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1868}
d6aa8f85 1869#endif /* CONFIG_SMP */
317f3941 1870
b5179ac7 1871static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
c05fbafb
PZ
1872{
1873 struct rq *rq = cpu_rq(cpu);
e7904a28 1874 struct pin_cookie cookie;
c05fbafb 1875
17d9f311 1876#if defined(CONFIG_SMP)
39be3501 1877 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1878 sched_clock_cpu(cpu); /* sync clocks x-cpu */
b7e7ade3 1879 ttwu_queue_remote(p, cpu, wake_flags);
317f3941
PZ
1880 return;
1881 }
1882#endif
1883
c05fbafb 1884 raw_spin_lock(&rq->lock);
e7904a28 1885 cookie = lockdep_pin_lock(&rq->lock);
b5179ac7 1886 ttwu_do_activate(rq, p, wake_flags, cookie);
e7904a28 1887 lockdep_unpin_lock(&rq->lock, cookie);
c05fbafb 1888 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1889}
1890
8643cda5
PZ
1891/*
1892 * Notes on Program-Order guarantees on SMP systems.
1893 *
1894 * MIGRATION
1895 *
1896 * The basic program-order guarantee on SMP systems is that when a task [t]
1897 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1898 * execution on its new cpu [c1].
1899 *
1900 * For migration (of runnable tasks) this is provided by the following means:
1901 *
1902 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1903 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1904 * rq(c1)->lock (if not at the same time, then in that order).
1905 * C) LOCK of the rq(c1)->lock scheduling in task
1906 *
1907 * Transitivity guarantees that B happens after A and C after B.
1908 * Note: we only require RCpc transitivity.
1909 * Note: the cpu doing B need not be c0 or c1
1910 *
1911 * Example:
1912 *
1913 * CPU0 CPU1 CPU2
1914 *
1915 * LOCK rq(0)->lock
1916 * sched-out X
1917 * sched-in Y
1918 * UNLOCK rq(0)->lock
1919 *
1920 * LOCK rq(0)->lock // orders against CPU0
1921 * dequeue X
1922 * UNLOCK rq(0)->lock
1923 *
1924 * LOCK rq(1)->lock
1925 * enqueue X
1926 * UNLOCK rq(1)->lock
1927 *
1928 * LOCK rq(1)->lock // orders against CPU2
1929 * sched-out Z
1930 * sched-in X
1931 * UNLOCK rq(1)->lock
1932 *
1933 *
1934 * BLOCKING -- aka. SLEEP + WAKEUP
1935 *
1936 * For blocking we (obviously) need to provide the same guarantee as for
1937 * migration. However the means are completely different as there is no lock
1938 * chain to provide order. Instead we do:
1939 *
1940 * 1) smp_store_release(X->on_cpu, 0)
1f03e8d2 1941 * 2) smp_cond_load_acquire(!X->on_cpu)
8643cda5
PZ
1942 *
1943 * Example:
1944 *
1945 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1946 *
1947 * LOCK rq(0)->lock LOCK X->pi_lock
1948 * dequeue X
1949 * sched-out X
1950 * smp_store_release(X->on_cpu, 0);
1951 *
1f03e8d2 1952 * smp_cond_load_acquire(&X->on_cpu, !VAL);
8643cda5
PZ
1953 * X->state = WAKING
1954 * set_task_cpu(X,2)
1955 *
1956 * LOCK rq(2)->lock
1957 * enqueue X
1958 * X->state = RUNNING
1959 * UNLOCK rq(2)->lock
1960 *
1961 * LOCK rq(2)->lock // orders against CPU1
1962 * sched-out Z
1963 * sched-in X
1964 * UNLOCK rq(2)->lock
1965 *
1966 * UNLOCK X->pi_lock
1967 * UNLOCK rq(0)->lock
1968 *
1969 *
1970 * However; for wakeups there is a second guarantee we must provide, namely we
1971 * must observe the state that lead to our wakeup. That is, not only must our
1972 * task observe its own prior state, it must also observe the stores prior to
1973 * its wakeup.
1974 *
1975 * This means that any means of doing remote wakeups must order the CPU doing
1976 * the wakeup against the CPU the task is going to end up running on. This,
1977 * however, is already required for the regular Program-Order guarantee above,
1f03e8d2 1978 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
8643cda5
PZ
1979 *
1980 */
1981
9ed3811a 1982/**
1da177e4 1983 * try_to_wake_up - wake up a thread
9ed3811a 1984 * @p: the thread to be awakened
1da177e4 1985 * @state: the mask of task states that can be woken
9ed3811a 1986 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1987 *
1988 * Put it on the run-queue if it's not already there. The "current"
1989 * thread is always on the run-queue (except when the actual
1990 * re-schedule is in progress), and as such you're allowed to do
1991 * the simpler "current->state = TASK_RUNNING" to mark yourself
1992 * runnable without the overhead of this.
1993 *
e69f6186 1994 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1995 * or @state didn't match @p's state.
1da177e4 1996 */
e4a52bcb
PZ
1997static int
1998try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1999{
1da177e4 2000 unsigned long flags;
c05fbafb 2001 int cpu, success = 0;
2398f2c6 2002
e0acd0a6
ON
2003 /*
2004 * If we are going to wake up a thread waiting for CONDITION we
2005 * need to ensure that CONDITION=1 done by the caller can not be
2006 * reordered with p->state check below. This pairs with mb() in
2007 * set_current_state() the waiting thread does.
2008 */
2009 smp_mb__before_spinlock();
013fdb80 2010 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 2011 if (!(p->state & state))
1da177e4
LT
2012 goto out;
2013
fbd705a0
PZ
2014 trace_sched_waking(p);
2015
c05fbafb 2016 success = 1; /* we're going to change ->state */
1da177e4 2017 cpu = task_cpu(p);
1da177e4 2018
135e8c92
BS
2019 /*
2020 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2021 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2022 * in smp_cond_load_acquire() below.
2023 *
2024 * sched_ttwu_pending() try_to_wake_up()
2025 * [S] p->on_rq = 1; [L] P->state
2026 * UNLOCK rq->lock -----.
2027 * \
2028 * +--- RMB
2029 * schedule() /
2030 * LOCK rq->lock -----'
2031 * UNLOCK rq->lock
2032 *
2033 * [task p]
2034 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2035 *
2036 * Pairs with the UNLOCK+LOCK on rq->lock from the
2037 * last wakeup of our task and the schedule that got our task
2038 * current.
2039 */
2040 smp_rmb();
c05fbafb
PZ
2041 if (p->on_rq && ttwu_remote(p, wake_flags))
2042 goto stat;
1da177e4 2043
1da177e4 2044#ifdef CONFIG_SMP
ecf7d01c
PZ
2045 /*
2046 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2047 * possible to, falsely, observe p->on_cpu == 0.
2048 *
2049 * One must be running (->on_cpu == 1) in order to remove oneself
2050 * from the runqueue.
2051 *
2052 * [S] ->on_cpu = 1; [L] ->on_rq
2053 * UNLOCK rq->lock
2054 * RMB
2055 * LOCK rq->lock
2056 * [S] ->on_rq = 0; [L] ->on_cpu
2057 *
2058 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2059 * from the consecutive calls to schedule(); the first switching to our
2060 * task, the second putting it to sleep.
2061 */
2062 smp_rmb();
2063
e9c84311 2064 /*
c05fbafb
PZ
2065 * If the owning (remote) cpu is still in the middle of schedule() with
2066 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
2067 *
2068 * Pairs with the smp_store_release() in finish_lock_switch().
2069 *
2070 * This ensures that tasks getting woken will be fully ordered against
2071 * their previous state and preserve Program Order.
0970d299 2072 */
1f03e8d2 2073 smp_cond_load_acquire(&p->on_cpu, !VAL);
1da177e4 2074
a8e4f2ea 2075 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 2076 p->state = TASK_WAKING;
e7693a36 2077
ac66f547 2078 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
2079 if (task_cpu(p) != cpu) {
2080 wake_flags |= WF_MIGRATED;
e4a52bcb 2081 set_task_cpu(p, cpu);
f339b9dc 2082 }
1da177e4 2083#endif /* CONFIG_SMP */
1da177e4 2084
b5179ac7 2085 ttwu_queue(p, cpu, wake_flags);
c05fbafb 2086stat:
cb251765
MG
2087 if (schedstat_enabled())
2088 ttwu_stat(p, cpu, wake_flags);
1da177e4 2089out:
013fdb80 2090 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
2091
2092 return success;
2093}
2094
21aa9af0
TH
2095/**
2096 * try_to_wake_up_local - try to wake up a local task with rq lock held
2097 * @p: the thread to be awakened
9279e0d2 2098 * @cookie: context's cookie for pinning
21aa9af0 2099 *
2acca55e 2100 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 2101 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 2102 * the current task.
21aa9af0 2103 */
e7904a28 2104static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
21aa9af0
TH
2105{
2106 struct rq *rq = task_rq(p);
21aa9af0 2107
383efcd0
TH
2108 if (WARN_ON_ONCE(rq != this_rq()) ||
2109 WARN_ON_ONCE(p == current))
2110 return;
2111
21aa9af0
TH
2112 lockdep_assert_held(&rq->lock);
2113
2acca55e 2114 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2115 /*
2116 * This is OK, because current is on_cpu, which avoids it being
2117 * picked for load-balance and preemption/IRQs are still
2118 * disabled avoiding further scheduler activity on it and we've
2119 * not yet picked a replacement task.
2120 */
e7904a28 2121 lockdep_unpin_lock(&rq->lock, cookie);
2acca55e
PZ
2122 raw_spin_unlock(&rq->lock);
2123 raw_spin_lock(&p->pi_lock);
2124 raw_spin_lock(&rq->lock);
e7904a28 2125 lockdep_repin_lock(&rq->lock, cookie);
2acca55e
PZ
2126 }
2127
21aa9af0 2128 if (!(p->state & TASK_NORMAL))
2acca55e 2129 goto out;
21aa9af0 2130
fbd705a0
PZ
2131 trace_sched_waking(p);
2132
da0c1e65 2133 if (!task_on_rq_queued(p))
d7c01d27
PZ
2134 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2135
e7904a28 2136 ttwu_do_wakeup(rq, p, 0, cookie);
cb251765
MG
2137 if (schedstat_enabled())
2138 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2139out:
2140 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2141}
2142
50fa610a
DH
2143/**
2144 * wake_up_process - Wake up a specific process
2145 * @p: The process to be woken up.
2146 *
2147 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2148 * processes.
2149 *
2150 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2151 *
2152 * It may be assumed that this function implies a write memory barrier before
2153 * changing the task state if and only if any tasks are woken up.
2154 */
7ad5b3a5 2155int wake_up_process(struct task_struct *p)
1da177e4 2156{
9067ac85 2157 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2158}
1da177e4
LT
2159EXPORT_SYMBOL(wake_up_process);
2160
7ad5b3a5 2161int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2162{
2163 return try_to_wake_up(p, state, 0);
2164}
2165
a5e7be3b
JL
2166/*
2167 * This function clears the sched_dl_entity static params.
2168 */
2169void __dl_clear_params(struct task_struct *p)
2170{
2171 struct sched_dl_entity *dl_se = &p->dl;
2172
2173 dl_se->dl_runtime = 0;
2174 dl_se->dl_deadline = 0;
2175 dl_se->dl_period = 0;
2176 dl_se->flags = 0;
2177 dl_se->dl_bw = 0;
40767b0d
PZ
2178
2179 dl_se->dl_throttled = 0;
40767b0d 2180 dl_se->dl_yielded = 0;
a5e7be3b
JL
2181}
2182
1da177e4
LT
2183/*
2184 * Perform scheduler related setup for a newly forked process p.
2185 * p is forked by current.
dd41f596
IM
2186 *
2187 * __sched_fork() is basic setup used by init_idle() too:
2188 */
5e1576ed 2189static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2190{
fd2f4419
PZ
2191 p->on_rq = 0;
2192
2193 p->se.on_rq = 0;
dd41f596
IM
2194 p->se.exec_start = 0;
2195 p->se.sum_exec_runtime = 0;
f6cf891c 2196 p->se.prev_sum_exec_runtime = 0;
6c594c21 2197 p->se.nr_migrations = 0;
da7a735e 2198 p->se.vruntime = 0;
fd2f4419 2199 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2200
ad936d86
BP
2201#ifdef CONFIG_FAIR_GROUP_SCHED
2202 p->se.cfs_rq = NULL;
2203#endif
2204
6cfb0d5d 2205#ifdef CONFIG_SCHEDSTATS
cb251765 2206 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2207 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2208#endif
476d139c 2209
aab03e05 2210 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2211 init_dl_task_timer(&p->dl);
a5e7be3b 2212 __dl_clear_params(p);
aab03e05 2213
fa717060 2214 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2215 p->rt.timeout = 0;
2216 p->rt.time_slice = sched_rr_timeslice;
2217 p->rt.on_rq = 0;
2218 p->rt.on_list = 0;
476d139c 2219
e107be36
AK
2220#ifdef CONFIG_PREEMPT_NOTIFIERS
2221 INIT_HLIST_HEAD(&p->preempt_notifiers);
2222#endif
cbee9f88
PZ
2223
2224#ifdef CONFIG_NUMA_BALANCING
2225 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2226 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2227 p->mm->numa_scan_seq = 0;
2228 }
2229
5e1576ed
RR
2230 if (clone_flags & CLONE_VM)
2231 p->numa_preferred_nid = current->numa_preferred_nid;
2232 else
2233 p->numa_preferred_nid = -1;
2234
cbee9f88
PZ
2235 p->node_stamp = 0ULL;
2236 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2237 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2238 p->numa_work.next = &p->numa_work;
44dba3d5 2239 p->numa_faults = NULL;
7e2703e6
RR
2240 p->last_task_numa_placement = 0;
2241 p->last_sum_exec_runtime = 0;
8c8a743c 2242
8c8a743c 2243 p->numa_group = NULL;
cbee9f88 2244#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2245}
2246
2a595721
SD
2247DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2248
1a687c2e 2249#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2250
1a687c2e
MG
2251void set_numabalancing_state(bool enabled)
2252{
2253 if (enabled)
2a595721 2254 static_branch_enable(&sched_numa_balancing);
1a687c2e 2255 else
2a595721 2256 static_branch_disable(&sched_numa_balancing);
1a687c2e 2257}
54a43d54
AK
2258
2259#ifdef CONFIG_PROC_SYSCTL
2260int sysctl_numa_balancing(struct ctl_table *table, int write,
2261 void __user *buffer, size_t *lenp, loff_t *ppos)
2262{
2263 struct ctl_table t;
2264 int err;
2a595721 2265 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2266
2267 if (write && !capable(CAP_SYS_ADMIN))
2268 return -EPERM;
2269
2270 t = *table;
2271 t.data = &state;
2272 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2273 if (err < 0)
2274 return err;
2275 if (write)
2276 set_numabalancing_state(state);
2277 return err;
2278}
2279#endif
2280#endif
dd41f596 2281
4698f88c
JP
2282#ifdef CONFIG_SCHEDSTATS
2283
cb251765 2284DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4698f88c 2285static bool __initdata __sched_schedstats = false;
cb251765 2286
cb251765
MG
2287static void set_schedstats(bool enabled)
2288{
2289 if (enabled)
2290 static_branch_enable(&sched_schedstats);
2291 else
2292 static_branch_disable(&sched_schedstats);
2293}
2294
2295void force_schedstat_enabled(void)
2296{
2297 if (!schedstat_enabled()) {
2298 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2299 static_branch_enable(&sched_schedstats);
2300 }
2301}
2302
2303static int __init setup_schedstats(char *str)
2304{
2305 int ret = 0;
2306 if (!str)
2307 goto out;
2308
4698f88c
JP
2309 /*
2310 * This code is called before jump labels have been set up, so we can't
2311 * change the static branch directly just yet. Instead set a temporary
2312 * variable so init_schedstats() can do it later.
2313 */
cb251765 2314 if (!strcmp(str, "enable")) {
4698f88c 2315 __sched_schedstats = true;
cb251765
MG
2316 ret = 1;
2317 } else if (!strcmp(str, "disable")) {
4698f88c 2318 __sched_schedstats = false;
cb251765
MG
2319 ret = 1;
2320 }
2321out:
2322 if (!ret)
2323 pr_warn("Unable to parse schedstats=\n");
2324
2325 return ret;
2326}
2327__setup("schedstats=", setup_schedstats);
2328
4698f88c
JP
2329static void __init init_schedstats(void)
2330{
2331 set_schedstats(__sched_schedstats);
2332}
2333
cb251765
MG
2334#ifdef CONFIG_PROC_SYSCTL
2335int sysctl_schedstats(struct ctl_table *table, int write,
2336 void __user *buffer, size_t *lenp, loff_t *ppos)
2337{
2338 struct ctl_table t;
2339 int err;
2340 int state = static_branch_likely(&sched_schedstats);
2341
2342 if (write && !capable(CAP_SYS_ADMIN))
2343 return -EPERM;
2344
2345 t = *table;
2346 t.data = &state;
2347 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2348 if (err < 0)
2349 return err;
2350 if (write)
2351 set_schedstats(state);
2352 return err;
2353}
4698f88c
JP
2354#endif /* CONFIG_PROC_SYSCTL */
2355#else /* !CONFIG_SCHEDSTATS */
2356static inline void init_schedstats(void) {}
2357#endif /* CONFIG_SCHEDSTATS */
dd41f596
IM
2358
2359/*
2360 * fork()/clone()-time setup:
2361 */
aab03e05 2362int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2363{
0122ec5b 2364 unsigned long flags;
dd41f596
IM
2365 int cpu = get_cpu();
2366
5e1576ed 2367 __sched_fork(clone_flags, p);
06b83b5f 2368 /*
7dc603c9 2369 * We mark the process as NEW here. This guarantees that
06b83b5f
PZ
2370 * nobody will actually run it, and a signal or other external
2371 * event cannot wake it up and insert it on the runqueue either.
2372 */
7dc603c9 2373 p->state = TASK_NEW;
dd41f596 2374
c350a04e
MG
2375 /*
2376 * Make sure we do not leak PI boosting priority to the child.
2377 */
2378 p->prio = current->normal_prio;
2379
b9dc29e7
MG
2380 /*
2381 * Revert to default priority/policy on fork if requested.
2382 */
2383 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2384 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2385 p->policy = SCHED_NORMAL;
6c697bdf 2386 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2387 p->rt_priority = 0;
2388 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2389 p->static_prio = NICE_TO_PRIO(0);
2390
2391 p->prio = p->normal_prio = __normal_prio(p);
2392 set_load_weight(p);
6c697bdf 2393
b9dc29e7
MG
2394 /*
2395 * We don't need the reset flag anymore after the fork. It has
2396 * fulfilled its duty:
2397 */
2398 p->sched_reset_on_fork = 0;
2399 }
ca94c442 2400
aab03e05
DF
2401 if (dl_prio(p->prio)) {
2402 put_cpu();
2403 return -EAGAIN;
2404 } else if (rt_prio(p->prio)) {
2405 p->sched_class = &rt_sched_class;
2406 } else {
2ddbf952 2407 p->sched_class = &fair_sched_class;
aab03e05 2408 }
b29739f9 2409
7dc603c9 2410 init_entity_runnable_average(&p->se);
cd29fe6f 2411
86951599
PZ
2412 /*
2413 * The child is not yet in the pid-hash so no cgroup attach races,
2414 * and the cgroup is pinned to this child due to cgroup_fork()
2415 * is ran before sched_fork().
2416 *
2417 * Silence PROVE_RCU.
2418 */
0122ec5b 2419 raw_spin_lock_irqsave(&p->pi_lock, flags);
e210bffd
PZ
2420 /*
2421 * We're setting the cpu for the first time, we don't migrate,
2422 * so use __set_task_cpu().
2423 */
2424 __set_task_cpu(p, cpu);
2425 if (p->sched_class->task_fork)
2426 p->sched_class->task_fork(p);
0122ec5b 2427 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2428
f6db8347 2429#ifdef CONFIG_SCHED_INFO
dd41f596 2430 if (likely(sched_info_on()))
52f17b6c 2431 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2432#endif
3ca7a440
PZ
2433#if defined(CONFIG_SMP)
2434 p->on_cpu = 0;
4866cde0 2435#endif
01028747 2436 init_task_preempt_count(p);
806c09a7 2437#ifdef CONFIG_SMP
917b627d 2438 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2439 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2440#endif
917b627d 2441
476d139c 2442 put_cpu();
aab03e05 2443 return 0;
1da177e4
LT
2444}
2445
332ac17e
DF
2446unsigned long to_ratio(u64 period, u64 runtime)
2447{
2448 if (runtime == RUNTIME_INF)
2449 return 1ULL << 20;
2450
2451 /*
2452 * Doing this here saves a lot of checks in all
2453 * the calling paths, and returning zero seems
2454 * safe for them anyway.
2455 */
2456 if (period == 0)
2457 return 0;
2458
2459 return div64_u64(runtime << 20, period);
2460}
2461
2462#ifdef CONFIG_SMP
2463inline struct dl_bw *dl_bw_of(int i)
2464{
f78f5b90
PM
2465 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2466 "sched RCU must be held");
332ac17e
DF
2467 return &cpu_rq(i)->rd->dl_bw;
2468}
2469
de212f18 2470static inline int dl_bw_cpus(int i)
332ac17e 2471{
de212f18
PZ
2472 struct root_domain *rd = cpu_rq(i)->rd;
2473 int cpus = 0;
2474
f78f5b90
PM
2475 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2476 "sched RCU must be held");
de212f18
PZ
2477 for_each_cpu_and(i, rd->span, cpu_active_mask)
2478 cpus++;
2479
2480 return cpus;
332ac17e
DF
2481}
2482#else
2483inline struct dl_bw *dl_bw_of(int i)
2484{
2485 return &cpu_rq(i)->dl.dl_bw;
2486}
2487
de212f18 2488static inline int dl_bw_cpus(int i)
332ac17e
DF
2489{
2490 return 1;
2491}
2492#endif
2493
332ac17e
DF
2494/*
2495 * We must be sure that accepting a new task (or allowing changing the
2496 * parameters of an existing one) is consistent with the bandwidth
2497 * constraints. If yes, this function also accordingly updates the currently
2498 * allocated bandwidth to reflect the new situation.
2499 *
2500 * This function is called while holding p's rq->lock.
40767b0d
PZ
2501 *
2502 * XXX we should delay bw change until the task's 0-lag point, see
2503 * __setparam_dl().
332ac17e
DF
2504 */
2505static int dl_overflow(struct task_struct *p, int policy,
2506 const struct sched_attr *attr)
2507{
2508
2509 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2510 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2511 u64 runtime = attr->sched_runtime;
2512 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2513 int cpus, err = -1;
332ac17e 2514
fec148c0
XP
2515 /* !deadline task may carry old deadline bandwidth */
2516 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
332ac17e
DF
2517 return 0;
2518
2519 /*
2520 * Either if a task, enters, leave, or stays -deadline but changes
2521 * its parameters, we may need to update accordingly the total
2522 * allocated bandwidth of the container.
2523 */
2524 raw_spin_lock(&dl_b->lock);
de212f18 2525 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2526 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2527 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2528 __dl_add(dl_b, new_bw);
2529 err = 0;
2530 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2531 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2532 __dl_clear(dl_b, p->dl.dl_bw);
2533 __dl_add(dl_b, new_bw);
2534 err = 0;
2535 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2536 __dl_clear(dl_b, p->dl.dl_bw);
2537 err = 0;
2538 }
2539 raw_spin_unlock(&dl_b->lock);
2540
2541 return err;
2542}
2543
2544extern void init_dl_bw(struct dl_bw *dl_b);
2545
1da177e4
LT
2546/*
2547 * wake_up_new_task - wake up a newly created task for the first time.
2548 *
2549 * This function will do some initial scheduler statistics housekeeping
2550 * that must be done for every newly created context, then puts the task
2551 * on the runqueue and wakes it.
2552 */
3e51e3ed 2553void wake_up_new_task(struct task_struct *p)
1da177e4 2554{
eb580751 2555 struct rq_flags rf;
dd41f596 2556 struct rq *rq;
fabf318e 2557
eb580751 2558 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
7dc603c9 2559 p->state = TASK_RUNNING;
fabf318e
PZ
2560#ifdef CONFIG_SMP
2561 /*
2562 * Fork balancing, do it here and not earlier because:
2563 * - cpus_allowed can change in the fork path
2564 * - any previously selected cpu might disappear through hotplug
e210bffd
PZ
2565 *
2566 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2567 * as we're not fully set-up yet.
fabf318e 2568 */
e210bffd 2569 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735 2570#endif
b7fa30c9 2571 rq = __task_rq_lock(p, &rf);
2b8c41da 2572 post_init_entity_util_avg(&p->se);
0017d735 2573
cd29fe6f 2574 activate_task(rq, p, 0);
da0c1e65 2575 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2576 trace_sched_wakeup_new(p);
a7558e01 2577 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2578#ifdef CONFIG_SMP
0aaafaab
PZ
2579 if (p->sched_class->task_woken) {
2580 /*
2581 * Nothing relies on rq->lock after this, so its fine to
2582 * drop it.
2583 */
e7904a28 2584 lockdep_unpin_lock(&rq->lock, rf.cookie);
efbbd05a 2585 p->sched_class->task_woken(rq, p);
e7904a28 2586 lockdep_repin_lock(&rq->lock, rf.cookie);
0aaafaab 2587 }
9a897c5a 2588#endif
eb580751 2589 task_rq_unlock(rq, p, &rf);
1da177e4
LT
2590}
2591
e107be36
AK
2592#ifdef CONFIG_PREEMPT_NOTIFIERS
2593
1cde2930
PZ
2594static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2595
2ecd9d29
PZ
2596void preempt_notifier_inc(void)
2597{
2598 static_key_slow_inc(&preempt_notifier_key);
2599}
2600EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2601
2602void preempt_notifier_dec(void)
2603{
2604 static_key_slow_dec(&preempt_notifier_key);
2605}
2606EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2607
e107be36 2608/**
80dd99b3 2609 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2610 * @notifier: notifier struct to register
e107be36
AK
2611 */
2612void preempt_notifier_register(struct preempt_notifier *notifier)
2613{
2ecd9d29
PZ
2614 if (!static_key_false(&preempt_notifier_key))
2615 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2616
e107be36
AK
2617 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2618}
2619EXPORT_SYMBOL_GPL(preempt_notifier_register);
2620
2621/**
2622 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2623 * @notifier: notifier struct to unregister
e107be36 2624 *
d84525a8 2625 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2626 */
2627void preempt_notifier_unregister(struct preempt_notifier *notifier)
2628{
2629 hlist_del(&notifier->link);
2630}
2631EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2632
1cde2930 2633static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2634{
2635 struct preempt_notifier *notifier;
e107be36 2636
b67bfe0d 2637 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2638 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2639}
2640
1cde2930
PZ
2641static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2642{
2643 if (static_key_false(&preempt_notifier_key))
2644 __fire_sched_in_preempt_notifiers(curr);
2645}
2646
e107be36 2647static void
1cde2930
PZ
2648__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 struct task_struct *next)
e107be36
AK
2650{
2651 struct preempt_notifier *notifier;
e107be36 2652
b67bfe0d 2653 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2654 notifier->ops->sched_out(notifier, next);
2655}
2656
1cde2930
PZ
2657static __always_inline void
2658fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2660{
2661 if (static_key_false(&preempt_notifier_key))
2662 __fire_sched_out_preempt_notifiers(curr, next);
2663}
2664
6d6bc0ad 2665#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2666
1cde2930 2667static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2668{
2669}
2670
1cde2930 2671static inline void
e107be36
AK
2672fire_sched_out_preempt_notifiers(struct task_struct *curr,
2673 struct task_struct *next)
2674{
2675}
2676
6d6bc0ad 2677#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2678
4866cde0
NP
2679/**
2680 * prepare_task_switch - prepare to switch tasks
2681 * @rq: the runqueue preparing to switch
421cee29 2682 * @prev: the current task that is being switched out
4866cde0
NP
2683 * @next: the task we are going to switch to.
2684 *
2685 * This is called with the rq lock held and interrupts off. It must
2686 * be paired with a subsequent finish_task_switch after the context
2687 * switch.
2688 *
2689 * prepare_task_switch sets up locking and calls architecture specific
2690 * hooks.
2691 */
e107be36
AK
2692static inline void
2693prepare_task_switch(struct rq *rq, struct task_struct *prev,
2694 struct task_struct *next)
4866cde0 2695{
43148951 2696 sched_info_switch(rq, prev, next);
fe4b04fa 2697 perf_event_task_sched_out(prev, next);
e107be36 2698 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2699 prepare_lock_switch(rq, next);
2700 prepare_arch_switch(next);
2701}
2702
1da177e4
LT
2703/**
2704 * finish_task_switch - clean up after a task-switch
2705 * @prev: the thread we just switched away from.
2706 *
4866cde0
NP
2707 * finish_task_switch must be called after the context switch, paired
2708 * with a prepare_task_switch call before the context switch.
2709 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2710 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2711 *
2712 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2713 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2714 * with the lock held can cause deadlocks; see schedule() for
2715 * details.)
dfa50b60
ON
2716 *
2717 * The context switch have flipped the stack from under us and restored the
2718 * local variables which were saved when this task called schedule() in the
2719 * past. prev == current is still correct but we need to recalculate this_rq
2720 * because prev may have moved to another CPU.
1da177e4 2721 */
dfa50b60 2722static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2723 __releases(rq->lock)
2724{
dfa50b60 2725 struct rq *rq = this_rq();
1da177e4 2726 struct mm_struct *mm = rq->prev_mm;
55a101f8 2727 long prev_state;
1da177e4 2728
609ca066
PZ
2729 /*
2730 * The previous task will have left us with a preempt_count of 2
2731 * because it left us after:
2732 *
2733 * schedule()
2734 * preempt_disable(); // 1
2735 * __schedule()
2736 * raw_spin_lock_irq(&rq->lock) // 2
2737 *
2738 * Also, see FORK_PREEMPT_COUNT.
2739 */
e2bf1c4b
PZ
2740 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2741 "corrupted preempt_count: %s/%d/0x%x\n",
2742 current->comm, current->pid, preempt_count()))
2743 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2744
1da177e4
LT
2745 rq->prev_mm = NULL;
2746
2747 /*
2748 * A task struct has one reference for the use as "current".
c394cc9f 2749 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2750 * schedule one last time. The schedule call will never return, and
2751 * the scheduled task must drop that reference.
95913d97
PZ
2752 *
2753 * We must observe prev->state before clearing prev->on_cpu (in
2754 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2755 * running on another CPU and we could rave with its RUNNING -> DEAD
2756 * transition, resulting in a double drop.
1da177e4 2757 */
55a101f8 2758 prev_state = prev->state;
bf9fae9f 2759 vtime_task_switch(prev);
a8d757ef 2760 perf_event_task_sched_in(prev, current);
4866cde0 2761 finish_lock_switch(rq, prev);
01f23e16 2762 finish_arch_post_lock_switch();
e8fa1362 2763
e107be36 2764 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2765 if (mm)
2766 mmdrop(mm);
c394cc9f 2767 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2768 if (prev->sched_class->task_dead)
2769 prev->sched_class->task_dead(prev);
2770
c6fd91f0 2771 /*
2772 * Remove function-return probe instances associated with this
2773 * task and put them back on the free list.
9761eea8 2774 */
c6fd91f0 2775 kprobe_flush_task(prev);
1da177e4 2776 put_task_struct(prev);
c6fd91f0 2777 }
99e5ada9 2778
de734f89 2779 tick_nohz_task_switch();
dfa50b60 2780 return rq;
1da177e4
LT
2781}
2782
3f029d3c
GH
2783#ifdef CONFIG_SMP
2784
3f029d3c 2785/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2786static void __balance_callback(struct rq *rq)
3f029d3c 2787{
e3fca9e7
PZ
2788 struct callback_head *head, *next;
2789 void (*func)(struct rq *rq);
2790 unsigned long flags;
3f029d3c 2791
e3fca9e7
PZ
2792 raw_spin_lock_irqsave(&rq->lock, flags);
2793 head = rq->balance_callback;
2794 rq->balance_callback = NULL;
2795 while (head) {
2796 func = (void (*)(struct rq *))head->func;
2797 next = head->next;
2798 head->next = NULL;
2799 head = next;
3f029d3c 2800
e3fca9e7 2801 func(rq);
3f029d3c 2802 }
e3fca9e7
PZ
2803 raw_spin_unlock_irqrestore(&rq->lock, flags);
2804}
2805
2806static inline void balance_callback(struct rq *rq)
2807{
2808 if (unlikely(rq->balance_callback))
2809 __balance_callback(rq);
3f029d3c
GH
2810}
2811
2812#else
da19ab51 2813
e3fca9e7 2814static inline void balance_callback(struct rq *rq)
3f029d3c 2815{
1da177e4
LT
2816}
2817
3f029d3c
GH
2818#endif
2819
1da177e4
LT
2820/**
2821 * schedule_tail - first thing a freshly forked thread must call.
2822 * @prev: the thread we just switched away from.
2823 */
722a9f92 2824asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2825 __releases(rq->lock)
2826{
1a43a14a 2827 struct rq *rq;
da19ab51 2828
609ca066
PZ
2829 /*
2830 * New tasks start with FORK_PREEMPT_COUNT, see there and
2831 * finish_task_switch() for details.
2832 *
2833 * finish_task_switch() will drop rq->lock() and lower preempt_count
2834 * and the preempt_enable() will end up enabling preemption (on
2835 * PREEMPT_COUNT kernels).
2836 */
2837
dfa50b60 2838 rq = finish_task_switch(prev);
e3fca9e7 2839 balance_callback(rq);
1a43a14a 2840 preempt_enable();
70b97a7f 2841
1da177e4 2842 if (current->set_child_tid)
b488893a 2843 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2844}
2845
2846/*
dfa50b60 2847 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2848 */
04936948 2849static __always_inline struct rq *
70b97a7f 2850context_switch(struct rq *rq, struct task_struct *prev,
e7904a28 2851 struct task_struct *next, struct pin_cookie cookie)
1da177e4 2852{
dd41f596 2853 struct mm_struct *mm, *oldmm;
1da177e4 2854
e107be36 2855 prepare_task_switch(rq, prev, next);
fe4b04fa 2856
dd41f596
IM
2857 mm = next->mm;
2858 oldmm = prev->active_mm;
9226d125
ZA
2859 /*
2860 * For paravirt, this is coupled with an exit in switch_to to
2861 * combine the page table reload and the switch backend into
2862 * one hypercall.
2863 */
224101ed 2864 arch_start_context_switch(prev);
9226d125 2865
31915ab4 2866 if (!mm) {
1da177e4
LT
2867 next->active_mm = oldmm;
2868 atomic_inc(&oldmm->mm_count);
2869 enter_lazy_tlb(oldmm, next);
2870 } else
f98db601 2871 switch_mm_irqs_off(oldmm, mm, next);
1da177e4 2872
31915ab4 2873 if (!prev->mm) {
1da177e4 2874 prev->active_mm = NULL;
1da177e4
LT
2875 rq->prev_mm = oldmm;
2876 }
3a5f5e48
IM
2877 /*
2878 * Since the runqueue lock will be released by the next
2879 * task (which is an invalid locking op but in the case
2880 * of the scheduler it's an obvious special-case), so we
2881 * do an early lockdep release here:
2882 */
e7904a28 2883 lockdep_unpin_lock(&rq->lock, cookie);
8a25d5de 2884 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2885
2886 /* Here we just switch the register state and the stack. */
2887 switch_to(prev, next, prev);
dd41f596 2888 barrier();
dfa50b60
ON
2889
2890 return finish_task_switch(prev);
1da177e4
LT
2891}
2892
2893/*
1c3e8264 2894 * nr_running and nr_context_switches:
1da177e4
LT
2895 *
2896 * externally visible scheduler statistics: current number of runnable
1c3e8264 2897 * threads, total number of context switches performed since bootup.
1da177e4
LT
2898 */
2899unsigned long nr_running(void)
2900{
2901 unsigned long i, sum = 0;
2902
2903 for_each_online_cpu(i)
2904 sum += cpu_rq(i)->nr_running;
2905
2906 return sum;
f711f609 2907}
1da177e4 2908
2ee507c4
TC
2909/*
2910 * Check if only the current task is running on the cpu.
00cc1633
DD
2911 *
2912 * Caution: this function does not check that the caller has disabled
2913 * preemption, thus the result might have a time-of-check-to-time-of-use
2914 * race. The caller is responsible to use it correctly, for example:
2915 *
2916 * - from a non-preemptable section (of course)
2917 *
2918 * - from a thread that is bound to a single CPU
2919 *
2920 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2921 */
2922bool single_task_running(void)
2923{
00cc1633 2924 return raw_rq()->nr_running == 1;
2ee507c4
TC
2925}
2926EXPORT_SYMBOL(single_task_running);
2927
1da177e4 2928unsigned long long nr_context_switches(void)
46cb4b7c 2929{
cc94abfc
SR
2930 int i;
2931 unsigned long long sum = 0;
46cb4b7c 2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4 2934 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2935
1da177e4
LT
2936 return sum;
2937}
483b4ee6 2938
1da177e4
LT
2939unsigned long nr_iowait(void)
2940{
2941 unsigned long i, sum = 0;
483b4ee6 2942
0a945022 2943 for_each_possible_cpu(i)
1da177e4 2944 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2945
1da177e4
LT
2946 return sum;
2947}
483b4ee6 2948
8c215bd3 2949unsigned long nr_iowait_cpu(int cpu)
69d25870 2950{
8c215bd3 2951 struct rq *this = cpu_rq(cpu);
69d25870
AV
2952 return atomic_read(&this->nr_iowait);
2953}
46cb4b7c 2954
372ba8cb
MG
2955void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2956{
3289bdb4
PZ
2957 struct rq *rq = this_rq();
2958 *nr_waiters = atomic_read(&rq->nr_iowait);
2959 *load = rq->load.weight;
372ba8cb
MG
2960}
2961
dd41f596 2962#ifdef CONFIG_SMP
8a0be9ef 2963
46cb4b7c 2964/*
38022906
PZ
2965 * sched_exec - execve() is a valuable balancing opportunity, because at
2966 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2967 */
38022906 2968void sched_exec(void)
46cb4b7c 2969{
38022906 2970 struct task_struct *p = current;
1da177e4 2971 unsigned long flags;
0017d735 2972 int dest_cpu;
46cb4b7c 2973
8f42ced9 2974 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2975 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2976 if (dest_cpu == smp_processor_id())
2977 goto unlock;
38022906 2978
8f42ced9 2979 if (likely(cpu_active(dest_cpu))) {
969c7921 2980 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2981
8f42ced9
PZ
2982 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2983 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2984 return;
2985 }
0017d735 2986unlock:
8f42ced9 2987 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2988}
dd41f596 2989
1da177e4
LT
2990#endif
2991
1da177e4 2992DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2993DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2994
2995EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2996EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2997
6075620b
GG
2998/*
2999 * The function fair_sched_class.update_curr accesses the struct curr
3000 * and its field curr->exec_start; when called from task_sched_runtime(),
3001 * we observe a high rate of cache misses in practice.
3002 * Prefetching this data results in improved performance.
3003 */
3004static inline void prefetch_curr_exec_start(struct task_struct *p)
3005{
3006#ifdef CONFIG_FAIR_GROUP_SCHED
3007 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3008#else
3009 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3010#endif
3011 prefetch(curr);
3012 prefetch(&curr->exec_start);
3013}
3014
c5f8d995
HS
3015/*
3016 * Return accounted runtime for the task.
3017 * In case the task is currently running, return the runtime plus current's
3018 * pending runtime that have not been accounted yet.
3019 */
3020unsigned long long task_sched_runtime(struct task_struct *p)
3021{
eb580751 3022 struct rq_flags rf;
c5f8d995 3023 struct rq *rq;
6e998916 3024 u64 ns;
c5f8d995 3025
911b2898
PZ
3026#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3027 /*
3028 * 64-bit doesn't need locks to atomically read a 64bit value.
3029 * So we have a optimization chance when the task's delta_exec is 0.
3030 * Reading ->on_cpu is racy, but this is ok.
3031 *
3032 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3033 * If we race with it entering cpu, unaccounted time is 0. This is
3034 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
3035 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3036 * been accounted, so we're correct here as well.
911b2898 3037 */
da0c1e65 3038 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
3039 return p->se.sum_exec_runtime;
3040#endif
3041
eb580751 3042 rq = task_rq_lock(p, &rf);
6e998916
SG
3043 /*
3044 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3045 * project cycles that may never be accounted to this
3046 * thread, breaking clock_gettime().
3047 */
3048 if (task_current(rq, p) && task_on_rq_queued(p)) {
6075620b 3049 prefetch_curr_exec_start(p);
6e998916
SG
3050 update_rq_clock(rq);
3051 p->sched_class->update_curr(rq);
3052 }
3053 ns = p->se.sum_exec_runtime;
eb580751 3054 task_rq_unlock(rq, p, &rf);
c5f8d995
HS
3055
3056 return ns;
3057}
48f24c4d 3058
7835b98b
CL
3059/*
3060 * This function gets called by the timer code, with HZ frequency.
3061 * We call it with interrupts disabled.
7835b98b
CL
3062 */
3063void scheduler_tick(void)
3064{
7835b98b
CL
3065 int cpu = smp_processor_id();
3066 struct rq *rq = cpu_rq(cpu);
dd41f596 3067 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3068
3069 sched_clock_tick();
dd41f596 3070
05fa785c 3071 raw_spin_lock(&rq->lock);
3e51f33f 3072 update_rq_clock(rq);
fa85ae24 3073 curr->sched_class->task_tick(rq, curr, 0);
cee1afce 3074 cpu_load_update_active(rq);
3289bdb4 3075 calc_global_load_tick(rq);
05fa785c 3076 raw_spin_unlock(&rq->lock);
7835b98b 3077
e9d2b064 3078 perf_event_task_tick();
e220d2dc 3079
e418e1c2 3080#ifdef CONFIG_SMP
6eb57e0d 3081 rq->idle_balance = idle_cpu(cpu);
7caff66f 3082 trigger_load_balance(rq);
e418e1c2 3083#endif
265f22a9 3084 rq_last_tick_reset(rq);
1da177e4
LT
3085}
3086
265f22a9
FW
3087#ifdef CONFIG_NO_HZ_FULL
3088/**
3089 * scheduler_tick_max_deferment
3090 *
3091 * Keep at least one tick per second when a single
3092 * active task is running because the scheduler doesn't
3093 * yet completely support full dynticks environment.
3094 *
3095 * This makes sure that uptime, CFS vruntime, load
3096 * balancing, etc... continue to move forward, even
3097 * with a very low granularity.
e69f6186
YB
3098 *
3099 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
3100 */
3101u64 scheduler_tick_max_deferment(void)
3102{
3103 struct rq *rq = this_rq();
316c1608 3104 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
3105
3106 next = rq->last_sched_tick + HZ;
3107
3108 if (time_before_eq(next, now))
3109 return 0;
3110
8fe8ff09 3111 return jiffies_to_nsecs(next - now);
1da177e4 3112}
265f22a9 3113#endif
1da177e4 3114
7e49fcce
SR
3115#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3116 defined(CONFIG_PREEMPT_TRACER))
47252cfb
SR
3117/*
3118 * If the value passed in is equal to the current preempt count
3119 * then we just disabled preemption. Start timing the latency.
3120 */
3121static inline void preempt_latency_start(int val)
3122{
3123 if (preempt_count() == val) {
3124 unsigned long ip = get_lock_parent_ip();
3125#ifdef CONFIG_DEBUG_PREEMPT
3126 current->preempt_disable_ip = ip;
3127#endif
3128 trace_preempt_off(CALLER_ADDR0, ip);
3129 }
3130}
7e49fcce 3131
edafe3a5 3132void preempt_count_add(int val)
1da177e4 3133{
6cd8a4bb 3134#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3135 /*
3136 * Underflow?
3137 */
9a11b49a
IM
3138 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3139 return;
6cd8a4bb 3140#endif
bdb43806 3141 __preempt_count_add(val);
6cd8a4bb 3142#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3143 /*
3144 * Spinlock count overflowing soon?
3145 */
33859f7f
MOS
3146 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3147 PREEMPT_MASK - 10);
6cd8a4bb 3148#endif
47252cfb 3149 preempt_latency_start(val);
1da177e4 3150}
bdb43806 3151EXPORT_SYMBOL(preempt_count_add);
edafe3a5 3152NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 3153
47252cfb
SR
3154/*
3155 * If the value passed in equals to the current preempt count
3156 * then we just enabled preemption. Stop timing the latency.
3157 */
3158static inline void preempt_latency_stop(int val)
3159{
3160 if (preempt_count() == val)
3161 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3162}
3163
edafe3a5 3164void preempt_count_sub(int val)
1da177e4 3165{
6cd8a4bb 3166#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3167 /*
3168 * Underflow?
3169 */
01e3eb82 3170 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3171 return;
1da177e4
LT
3172 /*
3173 * Is the spinlock portion underflowing?
3174 */
9a11b49a
IM
3175 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3176 !(preempt_count() & PREEMPT_MASK)))
3177 return;
6cd8a4bb 3178#endif
9a11b49a 3179
47252cfb 3180 preempt_latency_stop(val);
bdb43806 3181 __preempt_count_sub(val);
1da177e4 3182}
bdb43806 3183EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3184NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4 3185
47252cfb
SR
3186#else
3187static inline void preempt_latency_start(int val) { }
3188static inline void preempt_latency_stop(int val) { }
1da177e4
LT
3189#endif
3190
3191/*
dd41f596 3192 * Print scheduling while atomic bug:
1da177e4 3193 */
dd41f596 3194static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3195{
d1c6d149
VN
3196 /* Save this before calling printk(), since that will clobber it */
3197 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3198
664dfa65
DJ
3199 if (oops_in_progress)
3200 return;
3201
3df0fc5b
PZ
3202 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3203 prev->comm, prev->pid, preempt_count());
838225b4 3204
dd41f596 3205 debug_show_held_locks(prev);
e21f5b15 3206 print_modules();
dd41f596
IM
3207 if (irqs_disabled())
3208 print_irqtrace_events(prev);
d1c6d149
VN
3209 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3210 && in_atomic_preempt_off()) {
8f47b187 3211 pr_err("Preemption disabled at:");
d1c6d149 3212 print_ip_sym(preempt_disable_ip);
8f47b187
TG
3213 pr_cont("\n");
3214 }
748c7201
DBO
3215 if (panic_on_warn)
3216 panic("scheduling while atomic\n");
3217
6135fc1e 3218 dump_stack();
373d4d09 3219 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3220}
1da177e4 3221
dd41f596
IM
3222/*
3223 * Various schedule()-time debugging checks and statistics:
3224 */
3225static inline void schedule_debug(struct task_struct *prev)
3226{
0d9e2632 3227#ifdef CONFIG_SCHED_STACK_END_CHECK
29d64551
JH
3228 if (task_stack_end_corrupted(prev))
3229 panic("corrupted stack end detected inside scheduler\n");
0d9e2632 3230#endif
b99def8b 3231
1dc0fffc 3232 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3233 __schedule_bug(prev);
1dc0fffc
PZ
3234 preempt_count_set(PREEMPT_DISABLED);
3235 }
b3fbab05 3236 rcu_sleep_check();
dd41f596 3237
1da177e4
LT
3238 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3239
2d72376b 3240 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3241}
3242
3243/*
3244 * Pick up the highest-prio task:
3245 */
3246static inline struct task_struct *
e7904a28 3247pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
dd41f596 3248{
37e117c0 3249 const struct sched_class *class = &fair_sched_class;
dd41f596 3250 struct task_struct *p;
1da177e4
LT
3251
3252 /*
dd41f596
IM
3253 * Optimization: we know that if all tasks are in
3254 * the fair class we can call that function directly:
1da177e4 3255 */
37e117c0 3256 if (likely(prev->sched_class == class &&
38033c37 3257 rq->nr_running == rq->cfs.h_nr_running)) {
e7904a28 3258 p = fair_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3259 if (unlikely(p == RETRY_TASK))
3260 goto again;
3261
3262 /* assumes fair_sched_class->next == idle_sched_class */
3263 if (unlikely(!p))
e7904a28 3264 p = idle_sched_class.pick_next_task(rq, prev, cookie);
6ccdc84b
PZ
3265
3266 return p;
1da177e4
LT
3267 }
3268
37e117c0 3269again:
34f971f6 3270 for_each_class(class) {
e7904a28 3271 p = class->pick_next_task(rq, prev, cookie);
37e117c0
PZ
3272 if (p) {
3273 if (unlikely(p == RETRY_TASK))
3274 goto again;
dd41f596 3275 return p;
37e117c0 3276 }
dd41f596 3277 }
34f971f6
PZ
3278
3279 BUG(); /* the idle class will always have a runnable task */
dd41f596 3280}
1da177e4 3281
dd41f596 3282/*
c259e01a 3283 * __schedule() is the main scheduler function.
edde96ea
PE
3284 *
3285 * The main means of driving the scheduler and thus entering this function are:
3286 *
3287 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3288 *
3289 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3290 * paths. For example, see arch/x86/entry_64.S.
3291 *
3292 * To drive preemption between tasks, the scheduler sets the flag in timer
3293 * interrupt handler scheduler_tick().
3294 *
3295 * 3. Wakeups don't really cause entry into schedule(). They add a
3296 * task to the run-queue and that's it.
3297 *
3298 * Now, if the new task added to the run-queue preempts the current
3299 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3300 * called on the nearest possible occasion:
3301 *
3302 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3303 *
3304 * - in syscall or exception context, at the next outmost
3305 * preempt_enable(). (this might be as soon as the wake_up()'s
3306 * spin_unlock()!)
3307 *
3308 * - in IRQ context, return from interrupt-handler to
3309 * preemptible context
3310 *
3311 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3312 * then at the next:
3313 *
3314 * - cond_resched() call
3315 * - explicit schedule() call
3316 * - return from syscall or exception to user-space
3317 * - return from interrupt-handler to user-space
bfd9b2b5 3318 *
b30f0e3f 3319 * WARNING: must be called with preemption disabled!
dd41f596 3320 */
499d7955 3321static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3322{
3323 struct task_struct *prev, *next;
67ca7bde 3324 unsigned long *switch_count;
e7904a28 3325 struct pin_cookie cookie;
dd41f596 3326 struct rq *rq;
31656519 3327 int cpu;
dd41f596 3328
dd41f596
IM
3329 cpu = smp_processor_id();
3330 rq = cpu_rq(cpu);
dd41f596 3331 prev = rq->curr;
dd41f596 3332
b99def8b
PZ
3333 /*
3334 * do_exit() calls schedule() with preemption disabled as an exception;
3335 * however we must fix that up, otherwise the next task will see an
3336 * inconsistent (higher) preempt count.
3337 *
3338 * It also avoids the below schedule_debug() test from complaining
3339 * about this.
3340 */
3341 if (unlikely(prev->state == TASK_DEAD))
3342 preempt_enable_no_resched_notrace();
3343
dd41f596 3344 schedule_debug(prev);
1da177e4 3345
31656519 3346 if (sched_feat(HRTICK))
f333fdc9 3347 hrtick_clear(rq);
8f4d37ec 3348
46a5d164
PM
3349 local_irq_disable();
3350 rcu_note_context_switch();
3351
e0acd0a6
ON
3352 /*
3353 * Make sure that signal_pending_state()->signal_pending() below
3354 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3355 * done by the caller to avoid the race with signal_wake_up().
3356 */
3357 smp_mb__before_spinlock();
46a5d164 3358 raw_spin_lock(&rq->lock);
e7904a28 3359 cookie = lockdep_pin_lock(&rq->lock);
1da177e4 3360
9edfbfed
PZ
3361 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3362
246d86b5 3363 switch_count = &prev->nivcsw;
fc13aeba 3364 if (!preempt && prev->state) {
21aa9af0 3365 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3366 prev->state = TASK_RUNNING;
21aa9af0 3367 } else {
2acca55e
PZ
3368 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3369 prev->on_rq = 0;
3370
21aa9af0 3371 /*
2acca55e
PZ
3372 * If a worker went to sleep, notify and ask workqueue
3373 * whether it wants to wake up a task to maintain
3374 * concurrency.
21aa9af0
TH
3375 */
3376 if (prev->flags & PF_WQ_WORKER) {
3377 struct task_struct *to_wakeup;
3378
9b7f6597 3379 to_wakeup = wq_worker_sleeping(prev);
21aa9af0 3380 if (to_wakeup)
e7904a28 3381 try_to_wake_up_local(to_wakeup, cookie);
21aa9af0 3382 }
21aa9af0 3383 }
dd41f596 3384 switch_count = &prev->nvcsw;
1da177e4
LT
3385 }
3386
9edfbfed 3387 if (task_on_rq_queued(prev))
606dba2e
PZ
3388 update_rq_clock(rq);
3389
e7904a28 3390 next = pick_next_task(rq, prev, cookie);
f26f9aff 3391 clear_tsk_need_resched(prev);
f27dde8d 3392 clear_preempt_need_resched();
9edfbfed 3393 rq->clock_skip_update = 0;
1da177e4 3394
1da177e4 3395 if (likely(prev != next)) {
1da177e4
LT
3396 rq->nr_switches++;
3397 rq->curr = next;
3398 ++*switch_count;
3399
c73464b1 3400 trace_sched_switch(preempt, prev, next);
e7904a28 3401 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
cbce1a68 3402 } else {
e7904a28 3403 lockdep_unpin_lock(&rq->lock, cookie);
05fa785c 3404 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3405 }
1da177e4 3406
e3fca9e7 3407 balance_callback(rq);
1da177e4 3408}
8e05e96a 3409STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3410
9c40cef2
TG
3411static inline void sched_submit_work(struct task_struct *tsk)
3412{
3c7d5184 3413 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3414 return;
3415 /*
3416 * If we are going to sleep and we have plugged IO queued,
3417 * make sure to submit it to avoid deadlocks.
3418 */
3419 if (blk_needs_flush_plug(tsk))
3420 blk_schedule_flush_plug(tsk);
3421}
3422
722a9f92 3423asmlinkage __visible void __sched schedule(void)
c259e01a 3424{
9c40cef2
TG
3425 struct task_struct *tsk = current;
3426
3427 sched_submit_work(tsk);
bfd9b2b5 3428 do {
b30f0e3f 3429 preempt_disable();
fc13aeba 3430 __schedule(false);
b30f0e3f 3431 sched_preempt_enable_no_resched();
bfd9b2b5 3432 } while (need_resched());
c259e01a 3433}
1da177e4
LT
3434EXPORT_SYMBOL(schedule);
3435
91d1aa43 3436#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3437asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3438{
3439 /*
3440 * If we come here after a random call to set_need_resched(),
3441 * or we have been woken up remotely but the IPI has not yet arrived,
3442 * we haven't yet exited the RCU idle mode. Do it here manually until
3443 * we find a better solution.
7cc78f8f
AL
3444 *
3445 * NB: There are buggy callers of this function. Ideally we
c467ea76 3446 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3447 * too frequently to make sense yet.
20ab65e3 3448 */
7cc78f8f 3449 enum ctx_state prev_state = exception_enter();
20ab65e3 3450 schedule();
7cc78f8f 3451 exception_exit(prev_state);
20ab65e3
FW
3452}
3453#endif
3454
c5491ea7
TG
3455/**
3456 * schedule_preempt_disabled - called with preemption disabled
3457 *
3458 * Returns with preemption disabled. Note: preempt_count must be 1
3459 */
3460void __sched schedule_preempt_disabled(void)
3461{
ba74c144 3462 sched_preempt_enable_no_resched();
c5491ea7
TG
3463 schedule();
3464 preempt_disable();
3465}
3466
06b1f808 3467static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3468{
3469 do {
47252cfb
SR
3470 /*
3471 * Because the function tracer can trace preempt_count_sub()
3472 * and it also uses preempt_enable/disable_notrace(), if
3473 * NEED_RESCHED is set, the preempt_enable_notrace() called
3474 * by the function tracer will call this function again and
3475 * cause infinite recursion.
3476 *
3477 * Preemption must be disabled here before the function
3478 * tracer can trace. Break up preempt_disable() into two
3479 * calls. One to disable preemption without fear of being
3480 * traced. The other to still record the preemption latency,
3481 * which can also be traced by the function tracer.
3482 */
499d7955 3483 preempt_disable_notrace();
47252cfb 3484 preempt_latency_start(1);
fc13aeba 3485 __schedule(true);
47252cfb 3486 preempt_latency_stop(1);
499d7955 3487 preempt_enable_no_resched_notrace();
a18b5d01
FW
3488
3489 /*
3490 * Check again in case we missed a preemption opportunity
3491 * between schedule and now.
3492 */
a18b5d01
FW
3493 } while (need_resched());
3494}
3495
1da177e4
LT
3496#ifdef CONFIG_PREEMPT
3497/*
2ed6e34f 3498 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3499 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3500 * occur there and call schedule directly.
3501 */
722a9f92 3502asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3503{
1da177e4
LT
3504 /*
3505 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3506 * we do not want to preempt the current task. Just return..
1da177e4 3507 */
fbb00b56 3508 if (likely(!preemptible()))
1da177e4
LT
3509 return;
3510
a18b5d01 3511 preempt_schedule_common();
1da177e4 3512}
376e2424 3513NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3514EXPORT_SYMBOL(preempt_schedule);
009f60e2 3515
009f60e2 3516/**
4eaca0a8 3517 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3518 *
3519 * The tracing infrastructure uses preempt_enable_notrace to prevent
3520 * recursion and tracing preempt enabling caused by the tracing
3521 * infrastructure itself. But as tracing can happen in areas coming
3522 * from userspace or just about to enter userspace, a preempt enable
3523 * can occur before user_exit() is called. This will cause the scheduler
3524 * to be called when the system is still in usermode.
3525 *
3526 * To prevent this, the preempt_enable_notrace will use this function
3527 * instead of preempt_schedule() to exit user context if needed before
3528 * calling the scheduler.
3529 */
4eaca0a8 3530asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3531{
3532 enum ctx_state prev_ctx;
3533
3534 if (likely(!preemptible()))
3535 return;
3536
3537 do {
47252cfb
SR
3538 /*
3539 * Because the function tracer can trace preempt_count_sub()
3540 * and it also uses preempt_enable/disable_notrace(), if
3541 * NEED_RESCHED is set, the preempt_enable_notrace() called
3542 * by the function tracer will call this function again and
3543 * cause infinite recursion.
3544 *
3545 * Preemption must be disabled here before the function
3546 * tracer can trace. Break up preempt_disable() into two
3547 * calls. One to disable preemption without fear of being
3548 * traced. The other to still record the preemption latency,
3549 * which can also be traced by the function tracer.
3550 */
3d8f74dd 3551 preempt_disable_notrace();
47252cfb 3552 preempt_latency_start(1);
009f60e2
ON
3553 /*
3554 * Needs preempt disabled in case user_exit() is traced
3555 * and the tracer calls preempt_enable_notrace() causing
3556 * an infinite recursion.
3557 */
3558 prev_ctx = exception_enter();
fc13aeba 3559 __schedule(true);
009f60e2
ON
3560 exception_exit(prev_ctx);
3561
47252cfb 3562 preempt_latency_stop(1);
3d8f74dd 3563 preempt_enable_no_resched_notrace();
009f60e2
ON
3564 } while (need_resched());
3565}
4eaca0a8 3566EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3567
32e475d7 3568#endif /* CONFIG_PREEMPT */
1da177e4
LT
3569
3570/*
2ed6e34f 3571 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3572 * off of irq context.
3573 * Note, that this is called and return with irqs disabled. This will
3574 * protect us against recursive calling from irq.
3575 */
722a9f92 3576asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3577{
b22366cd 3578 enum ctx_state prev_state;
6478d880 3579
2ed6e34f 3580 /* Catch callers which need to be fixed */
f27dde8d 3581 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3582
b22366cd
FW
3583 prev_state = exception_enter();
3584
3a5c359a 3585 do {
3d8f74dd 3586 preempt_disable();
3a5c359a 3587 local_irq_enable();
fc13aeba 3588 __schedule(true);
3a5c359a 3589 local_irq_disable();
3d8f74dd 3590 sched_preempt_enable_no_resched();
5ed0cec0 3591 } while (need_resched());
b22366cd
FW
3592
3593 exception_exit(prev_state);
1da177e4
LT
3594}
3595
63859d4f 3596int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3597 void *key)
1da177e4 3598{
63859d4f 3599 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3600}
1da177e4
LT
3601EXPORT_SYMBOL(default_wake_function);
3602
b29739f9
IM
3603#ifdef CONFIG_RT_MUTEXES
3604
3605/*
3606 * rt_mutex_setprio - set the current priority of a task
3607 * @p: task
3608 * @prio: prio value (kernel-internal form)
3609 *
3610 * This function changes the 'effective' priority of a task. It does
3611 * not touch ->normal_prio like __setscheduler().
3612 *
c365c292
TG
3613 * Used by the rt_mutex code to implement priority inheritance
3614 * logic. Call site only calls if the priority of the task changed.
b29739f9 3615 */
36c8b586 3616void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3617{
ff77e468 3618 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
83ab0aa0 3619 const struct sched_class *prev_class;
eb580751
PZ
3620 struct rq_flags rf;
3621 struct rq *rq;
b29739f9 3622
aab03e05 3623 BUG_ON(prio > MAX_PRIO);
b29739f9 3624
eb580751 3625 rq = __task_rq_lock(p, &rf);
b29739f9 3626
1c4dd99b
TG
3627 /*
3628 * Idle task boosting is a nono in general. There is one
3629 * exception, when PREEMPT_RT and NOHZ is active:
3630 *
3631 * The idle task calls get_next_timer_interrupt() and holds
3632 * the timer wheel base->lock on the CPU and another CPU wants
3633 * to access the timer (probably to cancel it). We can safely
3634 * ignore the boosting request, as the idle CPU runs this code
3635 * with interrupts disabled and will complete the lock
3636 * protected section without being interrupted. So there is no
3637 * real need to boost.
3638 */
3639 if (unlikely(p == rq->idle)) {
3640 WARN_ON(p != rq->curr);
3641 WARN_ON(p->pi_blocked_on);
3642 goto out_unlock;
3643 }
3644
a8027073 3645 trace_sched_pi_setprio(p, prio);
d5f9f942 3646 oldprio = p->prio;
ff77e468
PZ
3647
3648 if (oldprio == prio)
3649 queue_flag &= ~DEQUEUE_MOVE;
3650
83ab0aa0 3651 prev_class = p->sched_class;
da0c1e65 3652 queued = task_on_rq_queued(p);
051a1d1a 3653 running = task_current(rq, p);
da0c1e65 3654 if (queued)
ff77e468 3655 dequeue_task(rq, p, queue_flag);
0e1f3483 3656 if (running)
f3cd1c4e 3657 put_prev_task(rq, p);
dd41f596 3658
2d3d891d
DF
3659 /*
3660 * Boosting condition are:
3661 * 1. -rt task is running and holds mutex A
3662 * --> -dl task blocks on mutex A
3663 *
3664 * 2. -dl task is running and holds mutex A
3665 * --> -dl task blocks on mutex A and could preempt the
3666 * running task
3667 */
3668 if (dl_prio(prio)) {
466af29b
ON
3669 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3670 if (!dl_prio(p->normal_prio) ||
3671 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3672 p->dl.dl_boosted = 1;
ff77e468 3673 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3674 } else
3675 p->dl.dl_boosted = 0;
aab03e05 3676 p->sched_class = &dl_sched_class;
2d3d891d
DF
3677 } else if (rt_prio(prio)) {
3678 if (dl_prio(oldprio))
3679 p->dl.dl_boosted = 0;
3680 if (oldprio < prio)
ff77e468 3681 queue_flag |= ENQUEUE_HEAD;
dd41f596 3682 p->sched_class = &rt_sched_class;
2d3d891d
DF
3683 } else {
3684 if (dl_prio(oldprio))
3685 p->dl.dl_boosted = 0;
746db944
BS
3686 if (rt_prio(oldprio))
3687 p->rt.timeout = 0;
dd41f596 3688 p->sched_class = &fair_sched_class;
2d3d891d 3689 }
dd41f596 3690
b29739f9
IM
3691 p->prio = prio;
3692
0e1f3483
HS
3693 if (running)
3694 p->sched_class->set_curr_task(rq);
da0c1e65 3695 if (queued)
ff77e468 3696 enqueue_task(rq, p, queue_flag);
cb469845 3697
da7a735e 3698 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3699out_unlock:
4c9a4bc8 3700 preempt_disable(); /* avoid rq from going away on us */
eb580751 3701 __task_rq_unlock(rq, &rf);
4c9a4bc8
PZ
3702
3703 balance_callback(rq);
3704 preempt_enable();
b29739f9 3705}
b29739f9 3706#endif
d50dde5a 3707
36c8b586 3708void set_user_nice(struct task_struct *p, long nice)
1da177e4 3709{
da0c1e65 3710 int old_prio, delta, queued;
eb580751 3711 struct rq_flags rf;
70b97a7f 3712 struct rq *rq;
1da177e4 3713
75e45d51 3714 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3715 return;
3716 /*
3717 * We have to be careful, if called from sys_setpriority(),
3718 * the task might be in the middle of scheduling on another CPU.
3719 */
eb580751 3720 rq = task_rq_lock(p, &rf);
1da177e4
LT
3721 /*
3722 * The RT priorities are set via sched_setscheduler(), but we still
3723 * allow the 'normal' nice value to be set - but as expected
3724 * it wont have any effect on scheduling until the task is
aab03e05 3725 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3726 */
aab03e05 3727 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3728 p->static_prio = NICE_TO_PRIO(nice);
3729 goto out_unlock;
3730 }
da0c1e65
KT
3731 queued = task_on_rq_queued(p);
3732 if (queued)
1de64443 3733 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3734
1da177e4 3735 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3736 set_load_weight(p);
b29739f9
IM
3737 old_prio = p->prio;
3738 p->prio = effective_prio(p);
3739 delta = p->prio - old_prio;
1da177e4 3740
da0c1e65 3741 if (queued) {
1de64443 3742 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3743 /*
d5f9f942
AM
3744 * If the task increased its priority or is running and
3745 * lowered its priority, then reschedule its CPU:
1da177e4 3746 */
d5f9f942 3747 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3748 resched_curr(rq);
1da177e4
LT
3749 }
3750out_unlock:
eb580751 3751 task_rq_unlock(rq, p, &rf);
1da177e4 3752}
1da177e4
LT
3753EXPORT_SYMBOL(set_user_nice);
3754
e43379f1
MM
3755/*
3756 * can_nice - check if a task can reduce its nice value
3757 * @p: task
3758 * @nice: nice value
3759 */
36c8b586 3760int can_nice(const struct task_struct *p, const int nice)
e43379f1 3761{
024f4747 3762 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3763 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3764
78d7d407 3765 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3766 capable(CAP_SYS_NICE));
3767}
3768
1da177e4
LT
3769#ifdef __ARCH_WANT_SYS_NICE
3770
3771/*
3772 * sys_nice - change the priority of the current process.
3773 * @increment: priority increment
3774 *
3775 * sys_setpriority is a more generic, but much slower function that
3776 * does similar things.
3777 */
5add95d4 3778SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3779{
48f24c4d 3780 long nice, retval;
1da177e4
LT
3781
3782 /*
3783 * Setpriority might change our priority at the same moment.
3784 * We don't have to worry. Conceptually one call occurs first
3785 * and we have a single winner.
3786 */
a9467fa3 3787 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3788 nice = task_nice(current) + increment;
1da177e4 3789
a9467fa3 3790 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3791 if (increment < 0 && !can_nice(current, nice))
3792 return -EPERM;
3793
1da177e4
LT
3794 retval = security_task_setnice(current, nice);
3795 if (retval)
3796 return retval;
3797
3798 set_user_nice(current, nice);
3799 return 0;
3800}
3801
3802#endif
3803
3804/**
3805 * task_prio - return the priority value of a given task.
3806 * @p: the task in question.
3807 *
e69f6186 3808 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3809 * RT tasks are offset by -200. Normal tasks are centered
3810 * around 0, value goes from -16 to +15.
3811 */
36c8b586 3812int task_prio(const struct task_struct *p)
1da177e4
LT
3813{
3814 return p->prio - MAX_RT_PRIO;
3815}
3816
1da177e4
LT
3817/**
3818 * idle_cpu - is a given cpu idle currently?
3819 * @cpu: the processor in question.
e69f6186
YB
3820 *
3821 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3822 */
3823int idle_cpu(int cpu)
3824{
908a3283
TG
3825 struct rq *rq = cpu_rq(cpu);
3826
3827 if (rq->curr != rq->idle)
3828 return 0;
3829
3830 if (rq->nr_running)
3831 return 0;
3832
3833#ifdef CONFIG_SMP
3834 if (!llist_empty(&rq->wake_list))
3835 return 0;
3836#endif
3837
3838 return 1;
1da177e4
LT
3839}
3840
1da177e4
LT
3841/**
3842 * idle_task - return the idle task for a given cpu.
3843 * @cpu: the processor in question.
e69f6186
YB
3844 *
3845 * Return: The idle task for the cpu @cpu.
1da177e4 3846 */
36c8b586 3847struct task_struct *idle_task(int cpu)
1da177e4
LT
3848{
3849 return cpu_rq(cpu)->idle;
3850}
3851
3852/**
3853 * find_process_by_pid - find a process with a matching PID value.
3854 * @pid: the pid in question.
e69f6186
YB
3855 *
3856 * The task of @pid, if found. %NULL otherwise.
1da177e4 3857 */
a9957449 3858static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3859{
228ebcbe 3860 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3861}
3862
aab03e05
DF
3863/*
3864 * This function initializes the sched_dl_entity of a newly becoming
3865 * SCHED_DEADLINE task.
3866 *
3867 * Only the static values are considered here, the actual runtime and the
3868 * absolute deadline will be properly calculated when the task is enqueued
3869 * for the first time with its new policy.
3870 */
3871static void
3872__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3873{
3874 struct sched_dl_entity *dl_se = &p->dl;
3875
aab03e05
DF
3876 dl_se->dl_runtime = attr->sched_runtime;
3877 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3878 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3879 dl_se->flags = attr->sched_flags;
332ac17e 3880 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3881
3882 /*
3883 * Changing the parameters of a task is 'tricky' and we're not doing
3884 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3885 *
3886 * What we SHOULD do is delay the bandwidth release until the 0-lag
3887 * point. This would include retaining the task_struct until that time
3888 * and change dl_overflow() to not immediately decrement the current
3889 * amount.
3890 *
3891 * Instead we retain the current runtime/deadline and let the new
3892 * parameters take effect after the current reservation period lapses.
3893 * This is safe (albeit pessimistic) because the 0-lag point is always
3894 * before the current scheduling deadline.
3895 *
3896 * We can still have temporary overloads because we do not delay the
3897 * change in bandwidth until that time; so admission control is
3898 * not on the safe side. It does however guarantee tasks will never
3899 * consume more than promised.
3900 */
aab03e05
DF
3901}
3902
c13db6b1
SR
3903/*
3904 * sched_setparam() passes in -1 for its policy, to let the functions
3905 * it calls know not to change it.
3906 */
3907#define SETPARAM_POLICY -1
3908
c365c292
TG
3909static void __setscheduler_params(struct task_struct *p,
3910 const struct sched_attr *attr)
1da177e4 3911{
d50dde5a
DF
3912 int policy = attr->sched_policy;
3913
c13db6b1 3914 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3915 policy = p->policy;
3916
1da177e4 3917 p->policy = policy;
d50dde5a 3918
aab03e05
DF
3919 if (dl_policy(policy))
3920 __setparam_dl(p, attr);
39fd8fd2 3921 else if (fair_policy(policy))
d50dde5a
DF
3922 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3923
39fd8fd2
PZ
3924 /*
3925 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3926 * !rt_policy. Always setting this ensures that things like
3927 * getparam()/getattr() don't report silly values for !rt tasks.
3928 */
3929 p->rt_priority = attr->sched_priority;
383afd09 3930 p->normal_prio = normal_prio(p);
c365c292
TG
3931 set_load_weight(p);
3932}
39fd8fd2 3933
c365c292
TG
3934/* Actually do priority change: must hold pi & rq lock. */
3935static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3936 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3937{
3938 __setscheduler_params(p, attr);
d50dde5a 3939
383afd09 3940 /*
0782e63b
TG
3941 * Keep a potential priority boosting if called from
3942 * sched_setscheduler().
383afd09 3943 */
0782e63b
TG
3944 if (keep_boost)
3945 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3946 else
3947 p->prio = normal_prio(p);
383afd09 3948
aab03e05
DF
3949 if (dl_prio(p->prio))
3950 p->sched_class = &dl_sched_class;
3951 else if (rt_prio(p->prio))
ffd44db5
PZ
3952 p->sched_class = &rt_sched_class;
3953 else
3954 p->sched_class = &fair_sched_class;
1da177e4 3955}
aab03e05
DF
3956
3957static void
3958__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3959{
3960 struct sched_dl_entity *dl_se = &p->dl;
3961
3962 attr->sched_priority = p->rt_priority;
3963 attr->sched_runtime = dl_se->dl_runtime;
3964 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3965 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3966 attr->sched_flags = dl_se->flags;
3967}
3968
3969/*
3970 * This function validates the new parameters of a -deadline task.
3971 * We ask for the deadline not being zero, and greater or equal
755378a4 3972 * than the runtime, as well as the period of being zero or
332ac17e 3973 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3974 * user parameters are above the internal resolution of 1us (we
3975 * check sched_runtime only since it is always the smaller one) and
3976 * below 2^63 ns (we have to check both sched_deadline and
3977 * sched_period, as the latter can be zero).
aab03e05
DF
3978 */
3979static bool
3980__checkparam_dl(const struct sched_attr *attr)
3981{
b0827819
JL
3982 /* deadline != 0 */
3983 if (attr->sched_deadline == 0)
3984 return false;
3985
3986 /*
3987 * Since we truncate DL_SCALE bits, make sure we're at least
3988 * that big.
3989 */
3990 if (attr->sched_runtime < (1ULL << DL_SCALE))
3991 return false;
3992
3993 /*
3994 * Since we use the MSB for wrap-around and sign issues, make
3995 * sure it's not set (mind that period can be equal to zero).
3996 */
3997 if (attr->sched_deadline & (1ULL << 63) ||
3998 attr->sched_period & (1ULL << 63))
3999 return false;
4000
4001 /* runtime <= deadline <= period (if period != 0) */
4002 if ((attr->sched_period != 0 &&
4003 attr->sched_period < attr->sched_deadline) ||
4004 attr->sched_deadline < attr->sched_runtime)
4005 return false;
4006
4007 return true;
aab03e05
DF
4008}
4009
c69e8d9c
DH
4010/*
4011 * check the target process has a UID that matches the current process's
4012 */
4013static bool check_same_owner(struct task_struct *p)
4014{
4015 const struct cred *cred = current_cred(), *pcred;
4016 bool match;
4017
4018 rcu_read_lock();
4019 pcred = __task_cred(p);
9c806aa0
EB
4020 match = (uid_eq(cred->euid, pcred->euid) ||
4021 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4022 rcu_read_unlock();
4023 return match;
4024}
4025
75381608
WL
4026static bool dl_param_changed(struct task_struct *p,
4027 const struct sched_attr *attr)
4028{
4029 struct sched_dl_entity *dl_se = &p->dl;
4030
4031 if (dl_se->dl_runtime != attr->sched_runtime ||
4032 dl_se->dl_deadline != attr->sched_deadline ||
4033 dl_se->dl_period != attr->sched_period ||
4034 dl_se->flags != attr->sched_flags)
4035 return true;
4036
4037 return false;
4038}
4039
d50dde5a
DF
4040static int __sched_setscheduler(struct task_struct *p,
4041 const struct sched_attr *attr,
dbc7f069 4042 bool user, bool pi)
1da177e4 4043{
383afd09
SR
4044 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4045 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 4046 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 4047 int new_effective_prio, policy = attr->sched_policy;
83ab0aa0 4048 const struct sched_class *prev_class;
eb580751 4049 struct rq_flags rf;
ca94c442 4050 int reset_on_fork;
ff77e468 4051 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
eb580751 4052 struct rq *rq;
1da177e4 4053
66e5393a
SR
4054 /* may grab non-irq protected spin_locks */
4055 BUG_ON(in_interrupt());
1da177e4
LT
4056recheck:
4057 /* double check policy once rq lock held */
ca94c442
LP
4058 if (policy < 0) {
4059 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4060 policy = oldpolicy = p->policy;
ca94c442 4061 } else {
7479f3c9 4062 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 4063
20f9cd2a 4064 if (!valid_policy(policy))
ca94c442
LP
4065 return -EINVAL;
4066 }
4067
7479f3c9
PZ
4068 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4069 return -EINVAL;
4070
1da177e4
LT
4071 /*
4072 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4073 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4074 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 4075 */
0bb040a4 4076 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 4077 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 4078 return -EINVAL;
aab03e05
DF
4079 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4080 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
4081 return -EINVAL;
4082
37e4ab3f
OC
4083 /*
4084 * Allow unprivileged RT tasks to decrease priority:
4085 */
961ccddd 4086 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 4087 if (fair_policy(policy)) {
d0ea0268 4088 if (attr->sched_nice < task_nice(p) &&
eaad4513 4089 !can_nice(p, attr->sched_nice))
d50dde5a
DF
4090 return -EPERM;
4091 }
4092
e05606d3 4093 if (rt_policy(policy)) {
a44702e8
ON
4094 unsigned long rlim_rtprio =
4095 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4096
4097 /* can't set/change the rt policy */
4098 if (policy != p->policy && !rlim_rtprio)
4099 return -EPERM;
4100
4101 /* can't increase priority */
d50dde5a
DF
4102 if (attr->sched_priority > p->rt_priority &&
4103 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
4104 return -EPERM;
4105 }
c02aa73b 4106
d44753b8
JL
4107 /*
4108 * Can't set/change SCHED_DEADLINE policy at all for now
4109 * (safest behavior); in the future we would like to allow
4110 * unprivileged DL tasks to increase their relative deadline
4111 * or reduce their runtime (both ways reducing utilization)
4112 */
4113 if (dl_policy(policy))
4114 return -EPERM;
4115
dd41f596 4116 /*
c02aa73b
DH
4117 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4118 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4119 */
20f9cd2a 4120 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 4121 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
4122 return -EPERM;
4123 }
5fe1d75f 4124
37e4ab3f 4125 /* can't change other user's priorities */
c69e8d9c 4126 if (!check_same_owner(p))
37e4ab3f 4127 return -EPERM;
ca94c442
LP
4128
4129 /* Normal users shall not reset the sched_reset_on_fork flag */
4130 if (p->sched_reset_on_fork && !reset_on_fork)
4131 return -EPERM;
37e4ab3f 4132 }
1da177e4 4133
725aad24 4134 if (user) {
b0ae1981 4135 retval = security_task_setscheduler(p);
725aad24
JF
4136 if (retval)
4137 return retval;
4138 }
4139
b29739f9
IM
4140 /*
4141 * make sure no PI-waiters arrive (or leave) while we are
4142 * changing the priority of the task:
0122ec5b 4143 *
25985edc 4144 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4145 * runqueue lock must be held.
4146 */
eb580751 4147 rq = task_rq_lock(p, &rf);
dc61b1d6 4148
34f971f6
PZ
4149 /*
4150 * Changing the policy of the stop threads its a very bad idea
4151 */
4152 if (p == rq->stop) {
eb580751 4153 task_rq_unlock(rq, p, &rf);
34f971f6
PZ
4154 return -EINVAL;
4155 }
4156
a51e9198 4157 /*
d6b1e911
TG
4158 * If not changing anything there's no need to proceed further,
4159 * but store a possible modification of reset_on_fork.
a51e9198 4160 */
d50dde5a 4161 if (unlikely(policy == p->policy)) {
d0ea0268 4162 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
4163 goto change;
4164 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4165 goto change;
75381608 4166 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 4167 goto change;
d50dde5a 4168
d6b1e911 4169 p->sched_reset_on_fork = reset_on_fork;
eb580751 4170 task_rq_unlock(rq, p, &rf);
a51e9198
DF
4171 return 0;
4172 }
d50dde5a 4173change:
a51e9198 4174
dc61b1d6 4175 if (user) {
332ac17e 4176#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
4177 /*
4178 * Do not allow realtime tasks into groups that have no runtime
4179 * assigned.
4180 */
4181 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4182 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4183 !task_group_is_autogroup(task_group(p))) {
eb580751 4184 task_rq_unlock(rq, p, &rf);
dc61b1d6
PZ
4185 return -EPERM;
4186 }
dc61b1d6 4187#endif
332ac17e
DF
4188#ifdef CONFIG_SMP
4189 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4190 cpumask_t *span = rq->rd->span;
332ac17e
DF
4191
4192 /*
4193 * Don't allow tasks with an affinity mask smaller than
4194 * the entire root_domain to become SCHED_DEADLINE. We
4195 * will also fail if there's no bandwidth available.
4196 */
e4099a5e
PZ
4197 if (!cpumask_subset(span, &p->cpus_allowed) ||
4198 rq->rd->dl_bw.bw == 0) {
eb580751 4199 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4200 return -EPERM;
4201 }
4202 }
4203#endif
4204 }
dc61b1d6 4205
1da177e4
LT
4206 /* recheck policy now with rq lock held */
4207 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4208 policy = oldpolicy = -1;
eb580751 4209 task_rq_unlock(rq, p, &rf);
1da177e4
LT
4210 goto recheck;
4211 }
332ac17e
DF
4212
4213 /*
4214 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4215 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4216 * is available.
4217 */
e4099a5e 4218 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
eb580751 4219 task_rq_unlock(rq, p, &rf);
332ac17e
DF
4220 return -EBUSY;
4221 }
4222
c365c292
TG
4223 p->sched_reset_on_fork = reset_on_fork;
4224 oldprio = p->prio;
4225
dbc7f069
PZ
4226 if (pi) {
4227 /*
4228 * Take priority boosted tasks into account. If the new
4229 * effective priority is unchanged, we just store the new
4230 * normal parameters and do not touch the scheduler class and
4231 * the runqueue. This will be done when the task deboost
4232 * itself.
4233 */
4234 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4235 if (new_effective_prio == oldprio)
4236 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4237 }
4238
da0c1e65 4239 queued = task_on_rq_queued(p);
051a1d1a 4240 running = task_current(rq, p);
da0c1e65 4241 if (queued)
ff77e468 4242 dequeue_task(rq, p, queue_flags);
0e1f3483 4243 if (running)
f3cd1c4e 4244 put_prev_task(rq, p);
f6b53205 4245
83ab0aa0 4246 prev_class = p->sched_class;
dbc7f069 4247 __setscheduler(rq, p, attr, pi);
f6b53205 4248
0e1f3483
HS
4249 if (running)
4250 p->sched_class->set_curr_task(rq);
da0c1e65 4251 if (queued) {
81a44c54
TG
4252 /*
4253 * We enqueue to tail when the priority of a task is
4254 * increased (user space view).
4255 */
ff77e468
PZ
4256 if (oldprio < p->prio)
4257 queue_flags |= ENQUEUE_HEAD;
1de64443 4258
ff77e468 4259 enqueue_task(rq, p, queue_flags);
81a44c54 4260 }
cb469845 4261
da7a735e 4262 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4263 preempt_disable(); /* avoid rq from going away on us */
eb580751 4264 task_rq_unlock(rq, p, &rf);
b29739f9 4265
dbc7f069
PZ
4266 if (pi)
4267 rt_mutex_adjust_pi(p);
95e02ca9 4268
4c9a4bc8
PZ
4269 /*
4270 * Run balance callbacks after we've adjusted the PI chain.
4271 */
4272 balance_callback(rq);
4273 preempt_enable();
95e02ca9 4274
1da177e4
LT
4275 return 0;
4276}
961ccddd 4277
7479f3c9
PZ
4278static int _sched_setscheduler(struct task_struct *p, int policy,
4279 const struct sched_param *param, bool check)
4280{
4281 struct sched_attr attr = {
4282 .sched_policy = policy,
4283 .sched_priority = param->sched_priority,
4284 .sched_nice = PRIO_TO_NICE(p->static_prio),
4285 };
4286
c13db6b1
SR
4287 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4288 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4289 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4290 policy &= ~SCHED_RESET_ON_FORK;
4291 attr.sched_policy = policy;
4292 }
4293
dbc7f069 4294 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4295}
961ccddd
RR
4296/**
4297 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4298 * @p: the task in question.
4299 * @policy: new policy.
4300 * @param: structure containing the new RT priority.
4301 *
e69f6186
YB
4302 * Return: 0 on success. An error code otherwise.
4303 *
961ccddd
RR
4304 * NOTE that the task may be already dead.
4305 */
4306int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4307 const struct sched_param *param)
961ccddd 4308{
7479f3c9 4309 return _sched_setscheduler(p, policy, param, true);
961ccddd 4310}
1da177e4
LT
4311EXPORT_SYMBOL_GPL(sched_setscheduler);
4312
d50dde5a
DF
4313int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4314{
dbc7f069 4315 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4316}
4317EXPORT_SYMBOL_GPL(sched_setattr);
4318
961ccddd
RR
4319/**
4320 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4321 * @p: the task in question.
4322 * @policy: new policy.
4323 * @param: structure containing the new RT priority.
4324 *
4325 * Just like sched_setscheduler, only don't bother checking if the
4326 * current context has permission. For example, this is needed in
4327 * stop_machine(): we create temporary high priority worker threads,
4328 * but our caller might not have that capability.
e69f6186
YB
4329 *
4330 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4331 */
4332int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4333 const struct sched_param *param)
961ccddd 4334{
7479f3c9 4335 return _sched_setscheduler(p, policy, param, false);
961ccddd 4336}
84778472 4337EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4338
95cdf3b7
IM
4339static int
4340do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4341{
1da177e4
LT
4342 struct sched_param lparam;
4343 struct task_struct *p;
36c8b586 4344 int retval;
1da177e4
LT
4345
4346 if (!param || pid < 0)
4347 return -EINVAL;
4348 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4349 return -EFAULT;
5fe1d75f
ON
4350
4351 rcu_read_lock();
4352 retval = -ESRCH;
1da177e4 4353 p = find_process_by_pid(pid);
5fe1d75f
ON
4354 if (p != NULL)
4355 retval = sched_setscheduler(p, policy, &lparam);
4356 rcu_read_unlock();
36c8b586 4357
1da177e4
LT
4358 return retval;
4359}
4360
d50dde5a
DF
4361/*
4362 * Mimics kernel/events/core.c perf_copy_attr().
4363 */
4364static int sched_copy_attr(struct sched_attr __user *uattr,
4365 struct sched_attr *attr)
4366{
4367 u32 size;
4368 int ret;
4369
4370 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4371 return -EFAULT;
4372
4373 /*
4374 * zero the full structure, so that a short copy will be nice.
4375 */
4376 memset(attr, 0, sizeof(*attr));
4377
4378 ret = get_user(size, &uattr->size);
4379 if (ret)
4380 return ret;
4381
4382 if (size > PAGE_SIZE) /* silly large */
4383 goto err_size;
4384
4385 if (!size) /* abi compat */
4386 size = SCHED_ATTR_SIZE_VER0;
4387
4388 if (size < SCHED_ATTR_SIZE_VER0)
4389 goto err_size;
4390
4391 /*
4392 * If we're handed a bigger struct than we know of,
4393 * ensure all the unknown bits are 0 - i.e. new
4394 * user-space does not rely on any kernel feature
4395 * extensions we dont know about yet.
4396 */
4397 if (size > sizeof(*attr)) {
4398 unsigned char __user *addr;
4399 unsigned char __user *end;
4400 unsigned char val;
4401
4402 addr = (void __user *)uattr + sizeof(*attr);
4403 end = (void __user *)uattr + size;
4404
4405 for (; addr < end; addr++) {
4406 ret = get_user(val, addr);
4407 if (ret)
4408 return ret;
4409 if (val)
4410 goto err_size;
4411 }
4412 size = sizeof(*attr);
4413 }
4414
4415 ret = copy_from_user(attr, uattr, size);
4416 if (ret)
4417 return -EFAULT;
4418
4419 /*
4420 * XXX: do we want to be lenient like existing syscalls; or do we want
4421 * to be strict and return an error on out-of-bounds values?
4422 */
75e45d51 4423 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4424
e78c7bca 4425 return 0;
d50dde5a
DF
4426
4427err_size:
4428 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4429 return -E2BIG;
d50dde5a
DF
4430}
4431
1da177e4
LT
4432/**
4433 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4434 * @pid: the pid in question.
4435 * @policy: new policy.
4436 * @param: structure containing the new RT priority.
e69f6186
YB
4437 *
4438 * Return: 0 on success. An error code otherwise.
1da177e4 4439 */
5add95d4
HC
4440SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4441 struct sched_param __user *, param)
1da177e4 4442{
c21761f1
JB
4443 /* negative values for policy are not valid */
4444 if (policy < 0)
4445 return -EINVAL;
4446
1da177e4
LT
4447 return do_sched_setscheduler(pid, policy, param);
4448}
4449
4450/**
4451 * sys_sched_setparam - set/change the RT priority of a thread
4452 * @pid: the pid in question.
4453 * @param: structure containing the new RT priority.
e69f6186
YB
4454 *
4455 * Return: 0 on success. An error code otherwise.
1da177e4 4456 */
5add95d4 4457SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4458{
c13db6b1 4459 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4460}
4461
d50dde5a
DF
4462/**
4463 * sys_sched_setattr - same as above, but with extended sched_attr
4464 * @pid: the pid in question.
5778fccf 4465 * @uattr: structure containing the extended parameters.
db66d756 4466 * @flags: for future extension.
d50dde5a 4467 */
6d35ab48
PZ
4468SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4469 unsigned int, flags)
d50dde5a
DF
4470{
4471 struct sched_attr attr;
4472 struct task_struct *p;
4473 int retval;
4474
6d35ab48 4475 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4476 return -EINVAL;
4477
143cf23d
MK
4478 retval = sched_copy_attr(uattr, &attr);
4479 if (retval)
4480 return retval;
d50dde5a 4481
b14ed2c2 4482 if ((int)attr.sched_policy < 0)
dbdb2275 4483 return -EINVAL;
d50dde5a
DF
4484
4485 rcu_read_lock();
4486 retval = -ESRCH;
4487 p = find_process_by_pid(pid);
4488 if (p != NULL)
4489 retval = sched_setattr(p, &attr);
4490 rcu_read_unlock();
4491
4492 return retval;
4493}
4494
1da177e4
LT
4495/**
4496 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4497 * @pid: the pid in question.
e69f6186
YB
4498 *
4499 * Return: On success, the policy of the thread. Otherwise, a negative error
4500 * code.
1da177e4 4501 */
5add95d4 4502SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4503{
36c8b586 4504 struct task_struct *p;
3a5c359a 4505 int retval;
1da177e4
LT
4506
4507 if (pid < 0)
3a5c359a 4508 return -EINVAL;
1da177e4
LT
4509
4510 retval = -ESRCH;
5fe85be0 4511 rcu_read_lock();
1da177e4
LT
4512 p = find_process_by_pid(pid);
4513 if (p) {
4514 retval = security_task_getscheduler(p);
4515 if (!retval)
ca94c442
LP
4516 retval = p->policy
4517 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4518 }
5fe85be0 4519 rcu_read_unlock();
1da177e4
LT
4520 return retval;
4521}
4522
4523/**
ca94c442 4524 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4525 * @pid: the pid in question.
4526 * @param: structure containing the RT priority.
e69f6186
YB
4527 *
4528 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4529 * code.
1da177e4 4530 */
5add95d4 4531SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4532{
ce5f7f82 4533 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4534 struct task_struct *p;
3a5c359a 4535 int retval;
1da177e4
LT
4536
4537 if (!param || pid < 0)
3a5c359a 4538 return -EINVAL;
1da177e4 4539
5fe85be0 4540 rcu_read_lock();
1da177e4
LT
4541 p = find_process_by_pid(pid);
4542 retval = -ESRCH;
4543 if (!p)
4544 goto out_unlock;
4545
4546 retval = security_task_getscheduler(p);
4547 if (retval)
4548 goto out_unlock;
4549
ce5f7f82
PZ
4550 if (task_has_rt_policy(p))
4551 lp.sched_priority = p->rt_priority;
5fe85be0 4552 rcu_read_unlock();
1da177e4
LT
4553
4554 /*
4555 * This one might sleep, we cannot do it with a spinlock held ...
4556 */
4557 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4558
1da177e4
LT
4559 return retval;
4560
4561out_unlock:
5fe85be0 4562 rcu_read_unlock();
1da177e4
LT
4563 return retval;
4564}
4565
d50dde5a
DF
4566static int sched_read_attr(struct sched_attr __user *uattr,
4567 struct sched_attr *attr,
4568 unsigned int usize)
4569{
4570 int ret;
4571
4572 if (!access_ok(VERIFY_WRITE, uattr, usize))
4573 return -EFAULT;
4574
4575 /*
4576 * If we're handed a smaller struct than we know of,
4577 * ensure all the unknown bits are 0 - i.e. old
4578 * user-space does not get uncomplete information.
4579 */
4580 if (usize < sizeof(*attr)) {
4581 unsigned char *addr;
4582 unsigned char *end;
4583
4584 addr = (void *)attr + usize;
4585 end = (void *)attr + sizeof(*attr);
4586
4587 for (; addr < end; addr++) {
4588 if (*addr)
22400674 4589 return -EFBIG;
d50dde5a
DF
4590 }
4591
4592 attr->size = usize;
4593 }
4594
4efbc454 4595 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4596 if (ret)
4597 return -EFAULT;
4598
22400674 4599 return 0;
d50dde5a
DF
4600}
4601
4602/**
aab03e05 4603 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4604 * @pid: the pid in question.
5778fccf 4605 * @uattr: structure containing the extended parameters.
d50dde5a 4606 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4607 * @flags: for future extension.
d50dde5a 4608 */
6d35ab48
PZ
4609SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4610 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4611{
4612 struct sched_attr attr = {
4613 .size = sizeof(struct sched_attr),
4614 };
4615 struct task_struct *p;
4616 int retval;
4617
4618 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4619 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4620 return -EINVAL;
4621
4622 rcu_read_lock();
4623 p = find_process_by_pid(pid);
4624 retval = -ESRCH;
4625 if (!p)
4626 goto out_unlock;
4627
4628 retval = security_task_getscheduler(p);
4629 if (retval)
4630 goto out_unlock;
4631
4632 attr.sched_policy = p->policy;
7479f3c9
PZ
4633 if (p->sched_reset_on_fork)
4634 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4635 if (task_has_dl_policy(p))
4636 __getparam_dl(p, &attr);
4637 else if (task_has_rt_policy(p))
d50dde5a
DF
4638 attr.sched_priority = p->rt_priority;
4639 else
d0ea0268 4640 attr.sched_nice = task_nice(p);
d50dde5a
DF
4641
4642 rcu_read_unlock();
4643
4644 retval = sched_read_attr(uattr, &attr, size);
4645 return retval;
4646
4647out_unlock:
4648 rcu_read_unlock();
4649 return retval;
4650}
4651
96f874e2 4652long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4653{
5a16f3d3 4654 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4655 struct task_struct *p;
4656 int retval;
1da177e4 4657
23f5d142 4658 rcu_read_lock();
1da177e4
LT
4659
4660 p = find_process_by_pid(pid);
4661 if (!p) {
23f5d142 4662 rcu_read_unlock();
1da177e4
LT
4663 return -ESRCH;
4664 }
4665
23f5d142 4666 /* Prevent p going away */
1da177e4 4667 get_task_struct(p);
23f5d142 4668 rcu_read_unlock();
1da177e4 4669
14a40ffc
TH
4670 if (p->flags & PF_NO_SETAFFINITY) {
4671 retval = -EINVAL;
4672 goto out_put_task;
4673 }
5a16f3d3
RR
4674 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4675 retval = -ENOMEM;
4676 goto out_put_task;
4677 }
4678 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4679 retval = -ENOMEM;
4680 goto out_free_cpus_allowed;
4681 }
1da177e4 4682 retval = -EPERM;
4c44aaaf
EB
4683 if (!check_same_owner(p)) {
4684 rcu_read_lock();
4685 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4686 rcu_read_unlock();
16303ab2 4687 goto out_free_new_mask;
4c44aaaf
EB
4688 }
4689 rcu_read_unlock();
4690 }
1da177e4 4691
b0ae1981 4692 retval = security_task_setscheduler(p);
e7834f8f 4693 if (retval)
16303ab2 4694 goto out_free_new_mask;
e7834f8f 4695
e4099a5e
PZ
4696
4697 cpuset_cpus_allowed(p, cpus_allowed);
4698 cpumask_and(new_mask, in_mask, cpus_allowed);
4699
332ac17e
DF
4700 /*
4701 * Since bandwidth control happens on root_domain basis,
4702 * if admission test is enabled, we only admit -deadline
4703 * tasks allowed to run on all the CPUs in the task's
4704 * root_domain.
4705 */
4706#ifdef CONFIG_SMP
f1e3a093
KT
4707 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4708 rcu_read_lock();
4709 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4710 retval = -EBUSY;
f1e3a093 4711 rcu_read_unlock();
16303ab2 4712 goto out_free_new_mask;
332ac17e 4713 }
f1e3a093 4714 rcu_read_unlock();
332ac17e
DF
4715 }
4716#endif
49246274 4717again:
25834c73 4718 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4719
8707d8b8 4720 if (!retval) {
5a16f3d3
RR
4721 cpuset_cpus_allowed(p, cpus_allowed);
4722 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4723 /*
4724 * We must have raced with a concurrent cpuset
4725 * update. Just reset the cpus_allowed to the
4726 * cpuset's cpus_allowed
4727 */
5a16f3d3 4728 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4729 goto again;
4730 }
4731 }
16303ab2 4732out_free_new_mask:
5a16f3d3
RR
4733 free_cpumask_var(new_mask);
4734out_free_cpus_allowed:
4735 free_cpumask_var(cpus_allowed);
4736out_put_task:
1da177e4 4737 put_task_struct(p);
1da177e4
LT
4738 return retval;
4739}
4740
4741static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4742 struct cpumask *new_mask)
1da177e4 4743{
96f874e2
RR
4744 if (len < cpumask_size())
4745 cpumask_clear(new_mask);
4746 else if (len > cpumask_size())
4747 len = cpumask_size();
4748
1da177e4
LT
4749 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4750}
4751
4752/**
4753 * sys_sched_setaffinity - set the cpu affinity of a process
4754 * @pid: pid of the process
4755 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4756 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4757 *
4758 * Return: 0 on success. An error code otherwise.
1da177e4 4759 */
5add95d4
HC
4760SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4761 unsigned long __user *, user_mask_ptr)
1da177e4 4762{
5a16f3d3 4763 cpumask_var_t new_mask;
1da177e4
LT
4764 int retval;
4765
5a16f3d3
RR
4766 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4767 return -ENOMEM;
1da177e4 4768
5a16f3d3
RR
4769 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4770 if (retval == 0)
4771 retval = sched_setaffinity(pid, new_mask);
4772 free_cpumask_var(new_mask);
4773 return retval;
1da177e4
LT
4774}
4775
96f874e2 4776long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4777{
36c8b586 4778 struct task_struct *p;
31605683 4779 unsigned long flags;
1da177e4 4780 int retval;
1da177e4 4781
23f5d142 4782 rcu_read_lock();
1da177e4
LT
4783
4784 retval = -ESRCH;
4785 p = find_process_by_pid(pid);
4786 if (!p)
4787 goto out_unlock;
4788
e7834f8f
DQ
4789 retval = security_task_getscheduler(p);
4790 if (retval)
4791 goto out_unlock;
4792
013fdb80 4793 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4794 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4796
4797out_unlock:
23f5d142 4798 rcu_read_unlock();
1da177e4 4799
9531b62f 4800 return retval;
1da177e4
LT
4801}
4802
4803/**
4804 * sys_sched_getaffinity - get the cpu affinity of a process
4805 * @pid: pid of the process
4806 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4807 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186 4808 *
599b4840
ZW
4809 * Return: size of CPU mask copied to user_mask_ptr on success. An
4810 * error code otherwise.
1da177e4 4811 */
5add95d4
HC
4812SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4813 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4814{
4815 int ret;
f17c8607 4816 cpumask_var_t mask;
1da177e4 4817
84fba5ec 4818 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4819 return -EINVAL;
4820 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4821 return -EINVAL;
4822
f17c8607
RR
4823 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4824 return -ENOMEM;
1da177e4 4825
f17c8607
RR
4826 ret = sched_getaffinity(pid, mask);
4827 if (ret == 0) {
8bc037fb 4828 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4829
4830 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4831 ret = -EFAULT;
4832 else
cd3d8031 4833 ret = retlen;
f17c8607
RR
4834 }
4835 free_cpumask_var(mask);
1da177e4 4836
f17c8607 4837 return ret;
1da177e4
LT
4838}
4839
4840/**
4841 * sys_sched_yield - yield the current processor to other threads.
4842 *
dd41f596
IM
4843 * This function yields the current CPU to other tasks. If there are no
4844 * other threads running on this CPU then this function will return.
e69f6186
YB
4845 *
4846 * Return: 0.
1da177e4 4847 */
5add95d4 4848SYSCALL_DEFINE0(sched_yield)
1da177e4 4849{
70b97a7f 4850 struct rq *rq = this_rq_lock();
1da177e4 4851
2d72376b 4852 schedstat_inc(rq, yld_count);
4530d7ab 4853 current->sched_class->yield_task(rq);
1da177e4
LT
4854
4855 /*
4856 * Since we are going to call schedule() anyway, there's
4857 * no need to preempt or enable interrupts:
4858 */
4859 __release(rq->lock);
8a25d5de 4860 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4861 do_raw_spin_unlock(&rq->lock);
ba74c144 4862 sched_preempt_enable_no_resched();
1da177e4
LT
4863
4864 schedule();
4865
4866 return 0;
4867}
4868
02b67cc3 4869int __sched _cond_resched(void)
1da177e4 4870{
fe32d3cd 4871 if (should_resched(0)) {
a18b5d01 4872 preempt_schedule_common();
1da177e4
LT
4873 return 1;
4874 }
4875 return 0;
4876}
02b67cc3 4877EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4878
4879/*
613afbf8 4880 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4881 * call schedule, and on return reacquire the lock.
4882 *
41a2d6cf 4883 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4884 * operations here to prevent schedule() from being called twice (once via
4885 * spin_unlock(), once by hand).
4886 */
613afbf8 4887int __cond_resched_lock(spinlock_t *lock)
1da177e4 4888{
fe32d3cd 4889 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4890 int ret = 0;
4891
f607c668
PZ
4892 lockdep_assert_held(lock);
4893
4a81e832 4894 if (spin_needbreak(lock) || resched) {
1da177e4 4895 spin_unlock(lock);
d86ee480 4896 if (resched)
a18b5d01 4897 preempt_schedule_common();
95c354fe
NP
4898 else
4899 cpu_relax();
6df3cecb 4900 ret = 1;
1da177e4 4901 spin_lock(lock);
1da177e4 4902 }
6df3cecb 4903 return ret;
1da177e4 4904}
613afbf8 4905EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4906
613afbf8 4907int __sched __cond_resched_softirq(void)
1da177e4
LT
4908{
4909 BUG_ON(!in_softirq());
4910
fe32d3cd 4911 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4912 local_bh_enable();
a18b5d01 4913 preempt_schedule_common();
1da177e4
LT
4914 local_bh_disable();
4915 return 1;
4916 }
4917 return 0;
4918}
613afbf8 4919EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4920
1da177e4
LT
4921/**
4922 * yield - yield the current processor to other threads.
4923 *
8e3fabfd
PZ
4924 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4925 *
4926 * The scheduler is at all times free to pick the calling task as the most
4927 * eligible task to run, if removing the yield() call from your code breaks
4928 * it, its already broken.
4929 *
4930 * Typical broken usage is:
4931 *
4932 * while (!event)
4933 * yield();
4934 *
4935 * where one assumes that yield() will let 'the other' process run that will
4936 * make event true. If the current task is a SCHED_FIFO task that will never
4937 * happen. Never use yield() as a progress guarantee!!
4938 *
4939 * If you want to use yield() to wait for something, use wait_event().
4940 * If you want to use yield() to be 'nice' for others, use cond_resched().
4941 * If you still want to use yield(), do not!
1da177e4
LT
4942 */
4943void __sched yield(void)
4944{
4945 set_current_state(TASK_RUNNING);
4946 sys_sched_yield();
4947}
1da177e4
LT
4948EXPORT_SYMBOL(yield);
4949
d95f4122
MG
4950/**
4951 * yield_to - yield the current processor to another thread in
4952 * your thread group, or accelerate that thread toward the
4953 * processor it's on.
16addf95
RD
4954 * @p: target task
4955 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4956 *
4957 * It's the caller's job to ensure that the target task struct
4958 * can't go away on us before we can do any checks.
4959 *
e69f6186 4960 * Return:
7b270f60
PZ
4961 * true (>0) if we indeed boosted the target task.
4962 * false (0) if we failed to boost the target.
4963 * -ESRCH if there's no task to yield to.
d95f4122 4964 */
fa93384f 4965int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4966{
4967 struct task_struct *curr = current;
4968 struct rq *rq, *p_rq;
4969 unsigned long flags;
c3c18640 4970 int yielded = 0;
d95f4122
MG
4971
4972 local_irq_save(flags);
4973 rq = this_rq();
4974
4975again:
4976 p_rq = task_rq(p);
7b270f60
PZ
4977 /*
4978 * If we're the only runnable task on the rq and target rq also
4979 * has only one task, there's absolutely no point in yielding.
4980 */
4981 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4982 yielded = -ESRCH;
4983 goto out_irq;
4984 }
4985
d95f4122 4986 double_rq_lock(rq, p_rq);
39e24d8f 4987 if (task_rq(p) != p_rq) {
d95f4122
MG
4988 double_rq_unlock(rq, p_rq);
4989 goto again;
4990 }
4991
4992 if (!curr->sched_class->yield_to_task)
7b270f60 4993 goto out_unlock;
d95f4122
MG
4994
4995 if (curr->sched_class != p->sched_class)
7b270f60 4996 goto out_unlock;
d95f4122
MG
4997
4998 if (task_running(p_rq, p) || p->state)
7b270f60 4999 goto out_unlock;
d95f4122
MG
5000
5001 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 5002 if (yielded) {
d95f4122 5003 schedstat_inc(rq, yld_count);
6d1cafd8
VP
5004 /*
5005 * Make p's CPU reschedule; pick_next_entity takes care of
5006 * fairness.
5007 */
5008 if (preempt && rq != p_rq)
8875125e 5009 resched_curr(p_rq);
6d1cafd8 5010 }
d95f4122 5011
7b270f60 5012out_unlock:
d95f4122 5013 double_rq_unlock(rq, p_rq);
7b270f60 5014out_irq:
d95f4122
MG
5015 local_irq_restore(flags);
5016
7b270f60 5017 if (yielded > 0)
d95f4122
MG
5018 schedule();
5019
5020 return yielded;
5021}
5022EXPORT_SYMBOL_GPL(yield_to);
5023
1da177e4 5024/*
41a2d6cf 5025 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 5026 * that process accounting knows that this is a task in IO wait state.
1da177e4 5027 */
1da177e4
LT
5028long __sched io_schedule_timeout(long timeout)
5029{
9cff8ade
N
5030 int old_iowait = current->in_iowait;
5031 struct rq *rq;
1da177e4
LT
5032 long ret;
5033
9cff8ade 5034 current->in_iowait = 1;
10d784ea 5035 blk_schedule_flush_plug(current);
9cff8ade 5036
0ff92245 5037 delayacct_blkio_start();
9cff8ade 5038 rq = raw_rq();
1da177e4
LT
5039 atomic_inc(&rq->nr_iowait);
5040 ret = schedule_timeout(timeout);
9cff8ade 5041 current->in_iowait = old_iowait;
1da177e4 5042 atomic_dec(&rq->nr_iowait);
0ff92245 5043 delayacct_blkio_end();
9cff8ade 5044
1da177e4
LT
5045 return ret;
5046}
9cff8ade 5047EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
5048
5049/**
5050 * sys_sched_get_priority_max - return maximum RT priority.
5051 * @policy: scheduling class.
5052 *
e69f6186
YB
5053 * Return: On success, this syscall returns the maximum
5054 * rt_priority that can be used by a given scheduling class.
5055 * On failure, a negative error code is returned.
1da177e4 5056 */
5add95d4 5057SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5058{
5059 int ret = -EINVAL;
5060
5061 switch (policy) {
5062 case SCHED_FIFO:
5063 case SCHED_RR:
5064 ret = MAX_USER_RT_PRIO-1;
5065 break;
aab03e05 5066 case SCHED_DEADLINE:
1da177e4 5067 case SCHED_NORMAL:
b0a9499c 5068 case SCHED_BATCH:
dd41f596 5069 case SCHED_IDLE:
1da177e4
LT
5070 ret = 0;
5071 break;
5072 }
5073 return ret;
5074}
5075
5076/**
5077 * sys_sched_get_priority_min - return minimum RT priority.
5078 * @policy: scheduling class.
5079 *
e69f6186
YB
5080 * Return: On success, this syscall returns the minimum
5081 * rt_priority that can be used by a given scheduling class.
5082 * On failure, a negative error code is returned.
1da177e4 5083 */
5add95d4 5084SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5085{
5086 int ret = -EINVAL;
5087
5088 switch (policy) {
5089 case SCHED_FIFO:
5090 case SCHED_RR:
5091 ret = 1;
5092 break;
aab03e05 5093 case SCHED_DEADLINE:
1da177e4 5094 case SCHED_NORMAL:
b0a9499c 5095 case SCHED_BATCH:
dd41f596 5096 case SCHED_IDLE:
1da177e4
LT
5097 ret = 0;
5098 }
5099 return ret;
5100}
5101
5102/**
5103 * sys_sched_rr_get_interval - return the default timeslice of a process.
5104 * @pid: pid of the process.
5105 * @interval: userspace pointer to the timeslice value.
5106 *
5107 * this syscall writes the default timeslice value of a given process
5108 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
5109 *
5110 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5111 * an error code.
1da177e4 5112 */
17da2bd9 5113SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5114 struct timespec __user *, interval)
1da177e4 5115{
36c8b586 5116 struct task_struct *p;
a4ec24b4 5117 unsigned int time_slice;
eb580751
PZ
5118 struct rq_flags rf;
5119 struct timespec t;
dba091b9 5120 struct rq *rq;
3a5c359a 5121 int retval;
1da177e4
LT
5122
5123 if (pid < 0)
3a5c359a 5124 return -EINVAL;
1da177e4
LT
5125
5126 retval = -ESRCH;
1a551ae7 5127 rcu_read_lock();
1da177e4
LT
5128 p = find_process_by_pid(pid);
5129 if (!p)
5130 goto out_unlock;
5131
5132 retval = security_task_getscheduler(p);
5133 if (retval)
5134 goto out_unlock;
5135
eb580751 5136 rq = task_rq_lock(p, &rf);
a57beec5
PZ
5137 time_slice = 0;
5138 if (p->sched_class->get_rr_interval)
5139 time_slice = p->sched_class->get_rr_interval(rq, p);
eb580751 5140 task_rq_unlock(rq, p, &rf);
a4ec24b4 5141
1a551ae7 5142 rcu_read_unlock();
a4ec24b4 5143 jiffies_to_timespec(time_slice, &t);
1da177e4 5144 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5145 return retval;
3a5c359a 5146
1da177e4 5147out_unlock:
1a551ae7 5148 rcu_read_unlock();
1da177e4
LT
5149 return retval;
5150}
5151
7c731e0a 5152static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5153
82a1fcb9 5154void sched_show_task(struct task_struct *p)
1da177e4 5155{
1da177e4 5156 unsigned long free = 0;
4e79752c 5157 int ppid;
1f8a7633 5158 unsigned long state = p->state;
1da177e4 5159
1f8a7633
TH
5160 if (state)
5161 state = __ffs(state) + 1;
28d0686c 5162 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 5163 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5164#if BITS_PER_LONG == 32
1da177e4 5165 if (state == TASK_RUNNING)
3df0fc5b 5166 printk(KERN_CONT " running ");
1da177e4 5167 else
3df0fc5b 5168 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5169#else
5170 if (state == TASK_RUNNING)
3df0fc5b 5171 printk(KERN_CONT " running task ");
1da177e4 5172 else
3df0fc5b 5173 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5174#endif
5175#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 5176 free = stack_not_used(p);
1da177e4 5177#endif
a90e984c 5178 ppid = 0;
4e79752c 5179 rcu_read_lock();
a90e984c
ON
5180 if (pid_alive(p))
5181 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 5182 rcu_read_unlock();
3df0fc5b 5183 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 5184 task_pid_nr(p), ppid,
aa47b7e0 5185 (unsigned long)task_thread_info(p)->flags);
1da177e4 5186
3d1cb205 5187 print_worker_info(KERN_INFO, p);
5fb5e6de 5188 show_stack(p, NULL);
1da177e4
LT
5189}
5190
e59e2ae2 5191void show_state_filter(unsigned long state_filter)
1da177e4 5192{
36c8b586 5193 struct task_struct *g, *p;
1da177e4 5194
4bd77321 5195#if BITS_PER_LONG == 32
3df0fc5b
PZ
5196 printk(KERN_INFO
5197 " task PC stack pid father\n");
1da177e4 5198#else
3df0fc5b
PZ
5199 printk(KERN_INFO
5200 " task PC stack pid father\n");
1da177e4 5201#endif
510f5acc 5202 rcu_read_lock();
5d07f420 5203 for_each_process_thread(g, p) {
1da177e4
LT
5204 /*
5205 * reset the NMI-timeout, listing all files on a slow
25985edc 5206 * console might take a lot of time:
57675cb9
AR
5207 * Also, reset softlockup watchdogs on all CPUs, because
5208 * another CPU might be blocked waiting for us to process
5209 * an IPI.
1da177e4
LT
5210 */
5211 touch_nmi_watchdog();
57675cb9 5212 touch_all_softlockup_watchdogs();
39bc89fd 5213 if (!state_filter || (p->state & state_filter))
82a1fcb9 5214 sched_show_task(p);
5d07f420 5215 }
1da177e4 5216
dd41f596 5217#ifdef CONFIG_SCHED_DEBUG
fb90a6e9
RV
5218 if (!state_filter)
5219 sysrq_sched_debug_show();
dd41f596 5220#endif
510f5acc 5221 rcu_read_unlock();
e59e2ae2
IM
5222 /*
5223 * Only show locks if all tasks are dumped:
5224 */
93335a21 5225 if (!state_filter)
e59e2ae2 5226 debug_show_all_locks();
1da177e4
LT
5227}
5228
0db0628d 5229void init_idle_bootup_task(struct task_struct *idle)
1df21055 5230{
dd41f596 5231 idle->sched_class = &idle_sched_class;
1df21055
IM
5232}
5233
f340c0d1
IM
5234/**
5235 * init_idle - set up an idle thread for a given CPU
5236 * @idle: task in question
5237 * @cpu: cpu the idle task belongs to
5238 *
5239 * NOTE: this function does not set the idle thread's NEED_RESCHED
5240 * flag, to make booting more robust.
5241 */
0db0628d 5242void init_idle(struct task_struct *idle, int cpu)
1da177e4 5243{
70b97a7f 5244 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5245 unsigned long flags;
5246
25834c73
PZ
5247 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5248 raw_spin_lock(&rq->lock);
5cbd54ef 5249
5e1576ed 5250 __sched_fork(0, idle);
06b83b5f 5251 idle->state = TASK_RUNNING;
dd41f596
IM
5252 idle->se.exec_start = sched_clock();
5253
e1b77c92
MR
5254 kasan_unpoison_task_stack(idle);
5255
de9b8f5d
PZ
5256#ifdef CONFIG_SMP
5257 /*
5258 * Its possible that init_idle() gets called multiple times on a task,
5259 * in that case do_set_cpus_allowed() will not do the right thing.
5260 *
5261 * And since this is boot we can forgo the serialization.
5262 */
5263 set_cpus_allowed_common(idle, cpumask_of(cpu));
5264#endif
6506cf6c
PZ
5265 /*
5266 * We're having a chicken and egg problem, even though we are
5267 * holding rq->lock, the cpu isn't yet set to this cpu so the
5268 * lockdep check in task_group() will fail.
5269 *
5270 * Similar case to sched_fork(). / Alternatively we could
5271 * use task_rq_lock() here and obtain the other rq->lock.
5272 *
5273 * Silence PROVE_RCU
5274 */
5275 rcu_read_lock();
dd41f596 5276 __set_task_cpu(idle, cpu);
6506cf6c 5277 rcu_read_unlock();
1da177e4 5278
1da177e4 5279 rq->curr = rq->idle = idle;
da0c1e65 5280 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5281#ifdef CONFIG_SMP
3ca7a440 5282 idle->on_cpu = 1;
4866cde0 5283#endif
25834c73
PZ
5284 raw_spin_unlock(&rq->lock);
5285 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5286
5287 /* Set the preempt count _outside_ the spinlocks! */
01028747 5288 init_idle_preempt_count(idle, cpu);
55cd5340 5289
dd41f596
IM
5290 /*
5291 * The idle tasks have their own, simple scheduling class:
5292 */
5293 idle->sched_class = &idle_sched_class;
868baf07 5294 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5295 vtime_init_idle(idle, cpu);
de9b8f5d 5296#ifdef CONFIG_SMP
f1c6f1a7
CE
5297 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5298#endif
19978ca6
IM
5299}
5300
f82f8042
JL
5301int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5302 const struct cpumask *trial)
5303{
5304 int ret = 1, trial_cpus;
5305 struct dl_bw *cur_dl_b;
5306 unsigned long flags;
5307
bb2bc55a
MG
5308 if (!cpumask_weight(cur))
5309 return ret;
5310
75e23e49 5311 rcu_read_lock_sched();
f82f8042
JL
5312 cur_dl_b = dl_bw_of(cpumask_any(cur));
5313 trial_cpus = cpumask_weight(trial);
5314
5315 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5316 if (cur_dl_b->bw != -1 &&
5317 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5318 ret = 0;
5319 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5320 rcu_read_unlock_sched();
f82f8042
JL
5321
5322 return ret;
5323}
5324
7f51412a
JL
5325int task_can_attach(struct task_struct *p,
5326 const struct cpumask *cs_cpus_allowed)
5327{
5328 int ret = 0;
5329
5330 /*
5331 * Kthreads which disallow setaffinity shouldn't be moved
5332 * to a new cpuset; we don't want to change their cpu
5333 * affinity and isolating such threads by their set of
5334 * allowed nodes is unnecessary. Thus, cpusets are not
5335 * applicable for such threads. This prevents checking for
5336 * success of set_cpus_allowed_ptr() on all attached tasks
5337 * before cpus_allowed may be changed.
5338 */
5339 if (p->flags & PF_NO_SETAFFINITY) {
5340 ret = -EINVAL;
5341 goto out;
5342 }
5343
5344#ifdef CONFIG_SMP
5345 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5346 cs_cpus_allowed)) {
5347 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5348 cs_cpus_allowed);
75e23e49 5349 struct dl_bw *dl_b;
7f51412a
JL
5350 bool overflow;
5351 int cpus;
5352 unsigned long flags;
5353
75e23e49
JL
5354 rcu_read_lock_sched();
5355 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5356 raw_spin_lock_irqsave(&dl_b->lock, flags);
5357 cpus = dl_bw_cpus(dest_cpu);
5358 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5359 if (overflow)
5360 ret = -EBUSY;
5361 else {
5362 /*
5363 * We reserve space for this task in the destination
5364 * root_domain, as we can't fail after this point.
5365 * We will free resources in the source root_domain
5366 * later on (see set_cpus_allowed_dl()).
5367 */
5368 __dl_add(dl_b, p->dl.dl_bw);
5369 }
5370 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5371 rcu_read_unlock_sched();
7f51412a
JL
5372
5373 }
5374#endif
5375out:
5376 return ret;
5377}
5378
1da177e4 5379#ifdef CONFIG_SMP
1da177e4 5380
e26fbffd
TG
5381static bool sched_smp_initialized __read_mostly;
5382
e6628d5b
MG
5383#ifdef CONFIG_NUMA_BALANCING
5384/* Migrate current task p to target_cpu */
5385int migrate_task_to(struct task_struct *p, int target_cpu)
5386{
5387 struct migration_arg arg = { p, target_cpu };
5388 int curr_cpu = task_cpu(p);
5389
5390 if (curr_cpu == target_cpu)
5391 return 0;
5392
5393 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5394 return -EINVAL;
5395
5396 /* TODO: This is not properly updating schedstats */
5397
286549dc 5398 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5399 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5400}
0ec8aa00
PZ
5401
5402/*
5403 * Requeue a task on a given node and accurately track the number of NUMA
5404 * tasks on the runqueues
5405 */
5406void sched_setnuma(struct task_struct *p, int nid)
5407{
da0c1e65 5408 bool queued, running;
eb580751
PZ
5409 struct rq_flags rf;
5410 struct rq *rq;
0ec8aa00 5411
eb580751 5412 rq = task_rq_lock(p, &rf);
da0c1e65 5413 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5414 running = task_current(rq, p);
5415
da0c1e65 5416 if (queued)
1de64443 5417 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5418 if (running)
f3cd1c4e 5419 put_prev_task(rq, p);
0ec8aa00
PZ
5420
5421 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5422
5423 if (running)
5424 p->sched_class->set_curr_task(rq);
da0c1e65 5425 if (queued)
1de64443 5426 enqueue_task(rq, p, ENQUEUE_RESTORE);
eb580751 5427 task_rq_unlock(rq, p, &rf);
0ec8aa00 5428}
5cc389bc 5429#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5430
1da177e4 5431#ifdef CONFIG_HOTPLUG_CPU
054b9108 5432/*
48c5ccae
PZ
5433 * Ensures that the idle task is using init_mm right before its cpu goes
5434 * offline.
054b9108 5435 */
48c5ccae 5436void idle_task_exit(void)
1da177e4 5437{
48c5ccae 5438 struct mm_struct *mm = current->active_mm;
e76bd8d9 5439
48c5ccae 5440 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5441
a53efe5f 5442 if (mm != &init_mm) {
f98db601 5443 switch_mm_irqs_off(mm, &init_mm, current);
a53efe5f
MS
5444 finish_arch_post_lock_switch();
5445 }
48c5ccae 5446 mmdrop(mm);
1da177e4
LT
5447}
5448
5449/*
5d180232
PZ
5450 * Since this CPU is going 'away' for a while, fold any nr_active delta
5451 * we might have. Assumes we're called after migrate_tasks() so that the
d60585c5
TG
5452 * nr_active count is stable. We need to take the teardown thread which
5453 * is calling this into account, so we hand in adjust = 1 to the load
5454 * calculation.
5d180232
PZ
5455 *
5456 * Also see the comment "Global load-average calculations".
1da177e4 5457 */
5d180232 5458static void calc_load_migrate(struct rq *rq)
1da177e4 5459{
d60585c5 5460 long delta = calc_load_fold_active(rq, 1);
5d180232
PZ
5461 if (delta)
5462 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5463}
5464
3f1d2a31
PZ
5465static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5466{
5467}
5468
5469static const struct sched_class fake_sched_class = {
5470 .put_prev_task = put_prev_task_fake,
5471};
5472
5473static struct task_struct fake_task = {
5474 /*
5475 * Avoid pull_{rt,dl}_task()
5476 */
5477 .prio = MAX_PRIO + 1,
5478 .sched_class = &fake_sched_class,
5479};
5480
48f24c4d 5481/*
48c5ccae
PZ
5482 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5483 * try_to_wake_up()->select_task_rq().
5484 *
5485 * Called with rq->lock held even though we'er in stop_machine() and
5486 * there's no concurrency possible, we hold the required locks anyway
5487 * because of lock validation efforts.
1da177e4 5488 */
5e16bbc2 5489static void migrate_tasks(struct rq *dead_rq)
1da177e4 5490{
5e16bbc2 5491 struct rq *rq = dead_rq;
48c5ccae 5492 struct task_struct *next, *stop = rq->stop;
e7904a28 5493 struct pin_cookie cookie;
48c5ccae 5494 int dest_cpu;
1da177e4
LT
5495
5496 /*
48c5ccae
PZ
5497 * Fudge the rq selection such that the below task selection loop
5498 * doesn't get stuck on the currently eligible stop task.
5499 *
5500 * We're currently inside stop_machine() and the rq is either stuck
5501 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5502 * either way we should never end up calling schedule() until we're
5503 * done here.
1da177e4 5504 */
48c5ccae 5505 rq->stop = NULL;
48f24c4d 5506
77bd3970
FW
5507 /*
5508 * put_prev_task() and pick_next_task() sched
5509 * class method both need to have an up-to-date
5510 * value of rq->clock[_task]
5511 */
5512 update_rq_clock(rq);
5513
5e16bbc2 5514 for (;;) {
48c5ccae
PZ
5515 /*
5516 * There's this thread running, bail when that's the only
5517 * remaining thread.
5518 */
5519 if (rq->nr_running == 1)
dd41f596 5520 break;
48c5ccae 5521
cbce1a68 5522 /*
5473e0cc 5523 * pick_next_task assumes pinned rq->lock.
cbce1a68 5524 */
e7904a28
PZ
5525 cookie = lockdep_pin_lock(&rq->lock);
5526 next = pick_next_task(rq, &fake_task, cookie);
48c5ccae 5527 BUG_ON(!next);
79c53799 5528 next->sched_class->put_prev_task(rq, next);
e692ab53 5529
5473e0cc
WL
5530 /*
5531 * Rules for changing task_struct::cpus_allowed are holding
5532 * both pi_lock and rq->lock, such that holding either
5533 * stabilizes the mask.
5534 *
5535 * Drop rq->lock is not quite as disastrous as it usually is
5536 * because !cpu_active at this point, which means load-balance
5537 * will not interfere. Also, stop-machine.
5538 */
e7904a28 5539 lockdep_unpin_lock(&rq->lock, cookie);
5473e0cc
WL
5540 raw_spin_unlock(&rq->lock);
5541 raw_spin_lock(&next->pi_lock);
5542 raw_spin_lock(&rq->lock);
5543
5544 /*
5545 * Since we're inside stop-machine, _nothing_ should have
5546 * changed the task, WARN if weird stuff happened, because in
5547 * that case the above rq->lock drop is a fail too.
5548 */
5549 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5550 raw_spin_unlock(&next->pi_lock);
5551 continue;
5552 }
5553
48c5ccae 5554 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5555 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5556
5e16bbc2
PZ
5557 rq = __migrate_task(rq, next, dest_cpu);
5558 if (rq != dead_rq) {
5559 raw_spin_unlock(&rq->lock);
5560 rq = dead_rq;
5561 raw_spin_lock(&rq->lock);
5562 }
5473e0cc 5563 raw_spin_unlock(&next->pi_lock);
1da177e4 5564 }
dce48a84 5565
48c5ccae 5566 rq->stop = stop;
dce48a84 5567}
1da177e4
LT
5568#endif /* CONFIG_HOTPLUG_CPU */
5569
1f11eb6a
GH
5570static void set_rq_online(struct rq *rq)
5571{
5572 if (!rq->online) {
5573 const struct sched_class *class;
5574
c6c4927b 5575 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5576 rq->online = 1;
5577
5578 for_each_class(class) {
5579 if (class->rq_online)
5580 class->rq_online(rq);
5581 }
5582 }
5583}
5584
5585static void set_rq_offline(struct rq *rq)
5586{
5587 if (rq->online) {
5588 const struct sched_class *class;
5589
5590 for_each_class(class) {
5591 if (class->rq_offline)
5592 class->rq_offline(rq);
5593 }
5594
c6c4927b 5595 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5596 rq->online = 0;
5597 }
5598}
5599
9cf7243d 5600static void set_cpu_rq_start_time(unsigned int cpu)
1da177e4 5601{
969c7921 5602 struct rq *rq = cpu_rq(cpu);
1da177e4 5603
a803f026
CM
5604 rq->age_stamp = sched_clock_cpu(cpu);
5605}
5606
4cb98839
PZ
5607static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5608
3e9830dc 5609#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5610
d039ac60 5611static __read_mostly int sched_debug_enabled;
f6630114 5612
d039ac60 5613static int __init sched_debug_setup(char *str)
f6630114 5614{
d039ac60 5615 sched_debug_enabled = 1;
f6630114
MT
5616
5617 return 0;
5618}
d039ac60
PZ
5619early_param("sched_debug", sched_debug_setup);
5620
5621static inline bool sched_debug(void)
5622{
5623 return sched_debug_enabled;
5624}
f6630114 5625
7c16ec58 5626static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5627 struct cpumask *groupmask)
1da177e4 5628{
4dcf6aff 5629 struct sched_group *group = sd->groups;
1da177e4 5630
96f874e2 5631 cpumask_clear(groupmask);
4dcf6aff
IM
5632
5633 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5634
5635 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5636 printk("does not load-balance\n");
4dcf6aff 5637 if (sd->parent)
3df0fc5b
PZ
5638 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5639 " has parent");
4dcf6aff 5640 return -1;
41c7ce9a
NP
5641 }
5642
333470ee
TH
5643 printk(KERN_CONT "span %*pbl level %s\n",
5644 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5645
758b2cdc 5646 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5647 printk(KERN_ERR "ERROR: domain->span does not contain "
5648 "CPU%d\n", cpu);
4dcf6aff 5649 }
758b2cdc 5650 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5651 printk(KERN_ERR "ERROR: domain->groups does not contain"
5652 " CPU%d\n", cpu);
4dcf6aff 5653 }
1da177e4 5654
4dcf6aff 5655 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5656 do {
4dcf6aff 5657 if (!group) {
3df0fc5b
PZ
5658 printk("\n");
5659 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5660 break;
5661 }
5662
758b2cdc 5663 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5664 printk(KERN_CONT "\n");
5665 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5666 break;
5667 }
1da177e4 5668
cb83b629
PZ
5669 if (!(sd->flags & SD_OVERLAP) &&
5670 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5671 printk(KERN_CONT "\n");
5672 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5673 break;
5674 }
1da177e4 5675
758b2cdc 5676 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5677
333470ee
TH
5678 printk(KERN_CONT " %*pbl",
5679 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5680 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5681 printk(KERN_CONT " (cpu_capacity = %d)",
5682 group->sgc->capacity);
381512cf 5683 }
1da177e4 5684
4dcf6aff
IM
5685 group = group->next;
5686 } while (group != sd->groups);
3df0fc5b 5687 printk(KERN_CONT "\n");
1da177e4 5688
758b2cdc 5689 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5690 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5691
758b2cdc
RR
5692 if (sd->parent &&
5693 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5694 printk(KERN_ERR "ERROR: parent span is not a superset "
5695 "of domain->span\n");
4dcf6aff
IM
5696 return 0;
5697}
1da177e4 5698
4dcf6aff
IM
5699static void sched_domain_debug(struct sched_domain *sd, int cpu)
5700{
5701 int level = 0;
1da177e4 5702
d039ac60 5703 if (!sched_debug_enabled)
f6630114
MT
5704 return;
5705
4dcf6aff
IM
5706 if (!sd) {
5707 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5708 return;
5709 }
1da177e4 5710
4dcf6aff
IM
5711 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5712
5713 for (;;) {
4cb98839 5714 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5715 break;
1da177e4
LT
5716 level++;
5717 sd = sd->parent;
33859f7f 5718 if (!sd)
4dcf6aff
IM
5719 break;
5720 }
1da177e4 5721}
6d6bc0ad 5722#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5723# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5724static inline bool sched_debug(void)
5725{
5726 return false;
5727}
6d6bc0ad 5728#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5729
1a20ff27 5730static int sd_degenerate(struct sched_domain *sd)
245af2c7 5731{
758b2cdc 5732 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5733 return 1;
5734
5735 /* Following flags need at least 2 groups */
5736 if (sd->flags & (SD_LOAD_BALANCE |
5737 SD_BALANCE_NEWIDLE |
5738 SD_BALANCE_FORK |
89c4710e 5739 SD_BALANCE_EXEC |
5d4dfddd 5740 SD_SHARE_CPUCAPACITY |
1f6e6c7c 5741 SD_ASYM_CPUCAPACITY |
d77b3ed5
VG
5742 SD_SHARE_PKG_RESOURCES |
5743 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5744 if (sd->groups != sd->groups->next)
5745 return 0;
5746 }
5747
5748 /* Following flags don't use groups */
c88d5910 5749 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5750 return 0;
5751
5752 return 1;
5753}
5754
48f24c4d
IM
5755static int
5756sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5757{
5758 unsigned long cflags = sd->flags, pflags = parent->flags;
5759
5760 if (sd_degenerate(parent))
5761 return 1;
5762
758b2cdc 5763 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5764 return 0;
5765
245af2c7
SS
5766 /* Flags needing groups don't count if only 1 group in parent */
5767 if (parent->groups == parent->groups->next) {
5768 pflags &= ~(SD_LOAD_BALANCE |
5769 SD_BALANCE_NEWIDLE |
5770 SD_BALANCE_FORK |
89c4710e 5771 SD_BALANCE_EXEC |
1f6e6c7c 5772 SD_ASYM_CPUCAPACITY |
5d4dfddd 5773 SD_SHARE_CPUCAPACITY |
10866e62 5774 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5775 SD_PREFER_SIBLING |
5776 SD_SHARE_POWERDOMAIN);
5436499e
KC
5777 if (nr_node_ids == 1)
5778 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5779 }
5780 if (~cflags & pflags)
5781 return 0;
5782
5783 return 1;
5784}
5785
dce840a0 5786static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5787{
dce840a0 5788 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5789
68e74568 5790 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5791 cpudl_cleanup(&rd->cpudl);
1baca4ce 5792 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5793 free_cpumask_var(rd->rto_mask);
5794 free_cpumask_var(rd->online);
5795 free_cpumask_var(rd->span);
5796 kfree(rd);
5797}
5798
57d885fe
GH
5799static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5800{
a0490fa3 5801 struct root_domain *old_rd = NULL;
57d885fe 5802 unsigned long flags;
57d885fe 5803
05fa785c 5804 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5805
5806 if (rq->rd) {
a0490fa3 5807 old_rd = rq->rd;
57d885fe 5808
c6c4927b 5809 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5810 set_rq_offline(rq);
57d885fe 5811
c6c4927b 5812 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5813
a0490fa3 5814 /*
0515973f 5815 * If we dont want to free the old_rd yet then
a0490fa3
IM
5816 * set old_rd to NULL to skip the freeing later
5817 * in this function:
5818 */
5819 if (!atomic_dec_and_test(&old_rd->refcount))
5820 old_rd = NULL;
57d885fe
GH
5821 }
5822
5823 atomic_inc(&rd->refcount);
5824 rq->rd = rd;
5825
c6c4927b 5826 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5827 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5828 set_rq_online(rq);
57d885fe 5829
05fa785c 5830 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5831
5832 if (old_rd)
dce840a0 5833 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5834}
5835
68c38fc3 5836static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5837{
5838 memset(rd, 0, sizeof(*rd));
5839
8295c699 5840 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5841 goto out;
8295c699 5842 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5843 goto free_span;
8295c699 5844 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5845 goto free_online;
8295c699 5846 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5847 goto free_dlo_mask;
6e0534f2 5848
332ac17e 5849 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5850 if (cpudl_init(&rd->cpudl) != 0)
5851 goto free_dlo_mask;
332ac17e 5852
68c38fc3 5853 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5854 goto free_rto_mask;
c6c4927b 5855 return 0;
6e0534f2 5856
68e74568
RR
5857free_rto_mask:
5858 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5859free_dlo_mask:
5860 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5861free_online:
5862 free_cpumask_var(rd->online);
5863free_span:
5864 free_cpumask_var(rd->span);
0c910d28 5865out:
c6c4927b 5866 return -ENOMEM;
57d885fe
GH
5867}
5868
029632fb
PZ
5869/*
5870 * By default the system creates a single root-domain with all cpus as
5871 * members (mimicking the global state we have today).
5872 */
5873struct root_domain def_root_domain;
5874
57d885fe
GH
5875static void init_defrootdomain(void)
5876{
68c38fc3 5877 init_rootdomain(&def_root_domain);
c6c4927b 5878
57d885fe
GH
5879 atomic_set(&def_root_domain.refcount, 1);
5880}
5881
dc938520 5882static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5883{
5884 struct root_domain *rd;
5885
5886 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5887 if (!rd)
5888 return NULL;
5889
68c38fc3 5890 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5891 kfree(rd);
5892 return NULL;
5893 }
57d885fe
GH
5894
5895 return rd;
5896}
5897
63b2ca30 5898static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5899{
5900 struct sched_group *tmp, *first;
5901
5902 if (!sg)
5903 return;
5904
5905 first = sg;
5906 do {
5907 tmp = sg->next;
5908
63b2ca30
NP
5909 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5910 kfree(sg->sgc);
e3589f6c
PZ
5911
5912 kfree(sg);
5913 sg = tmp;
5914 } while (sg != first);
5915}
5916
dce840a0
PZ
5917static void free_sched_domain(struct rcu_head *rcu)
5918{
5919 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5920
5921 /*
5922 * If its an overlapping domain it has private groups, iterate and
5923 * nuke them all.
5924 */
5925 if (sd->flags & SD_OVERLAP) {
5926 free_sched_groups(sd->groups, 1);
5927 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5928 kfree(sd->groups->sgc);
dce840a0 5929 kfree(sd->groups);
9c3f75cb 5930 }
dce840a0
PZ
5931 kfree(sd);
5932}
5933
5934static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5935{
5936 call_rcu(&sd->rcu, free_sched_domain);
5937}
5938
5939static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5940{
5941 for (; sd; sd = sd->parent)
5942 destroy_sched_domain(sd, cpu);
5943}
5944
518cd623
PZ
5945/*
5946 * Keep a special pointer to the highest sched_domain that has
5947 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5948 * allows us to avoid some pointer chasing select_idle_sibling().
5949 *
5950 * Also keep a unique ID per domain (we use the first cpu number in
5951 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5952 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5953 */
5954DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5955DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5956DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5957DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5958DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5959DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5960
5961static void update_top_cache_domain(int cpu)
5962{
5963 struct sched_domain *sd;
5d4cf996 5964 struct sched_domain *busy_sd = NULL;
518cd623 5965 int id = cpu;
7d9ffa89 5966 int size = 1;
518cd623
PZ
5967
5968 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5969 if (sd) {
518cd623 5970 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5971 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5972 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5973 }
5d4cf996 5974 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5975
5976 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5977 per_cpu(sd_llc_size, cpu) = size;
518cd623 5978 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5979
5980 sd = lowest_flag_domain(cpu, SD_NUMA);
5981 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5982
5983 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5984 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5985}
5986
1da177e4 5987/*
0eab9146 5988 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5989 * hold the hotplug lock.
5990 */
0eab9146
IM
5991static void
5992cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5993{
70b97a7f 5994 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5995 struct sched_domain *tmp;
5996
5997 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5998 for (tmp = sd; tmp; ) {
245af2c7
SS
5999 struct sched_domain *parent = tmp->parent;
6000 if (!parent)
6001 break;
f29c9b1c 6002
1a848870 6003 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6004 tmp->parent = parent->parent;
1a848870
SS
6005 if (parent->parent)
6006 parent->parent->child = tmp;
10866e62
PZ
6007 /*
6008 * Transfer SD_PREFER_SIBLING down in case of a
6009 * degenerate parent; the spans match for this
6010 * so the property transfers.
6011 */
6012 if (parent->flags & SD_PREFER_SIBLING)
6013 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 6014 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
6015 } else
6016 tmp = tmp->parent;
245af2c7
SS
6017 }
6018
1a848870 6019 if (sd && sd_degenerate(sd)) {
dce840a0 6020 tmp = sd;
245af2c7 6021 sd = sd->parent;
dce840a0 6022 destroy_sched_domain(tmp, cpu);
1a848870
SS
6023 if (sd)
6024 sd->child = NULL;
6025 }
1da177e4 6026
4cb98839 6027 sched_domain_debug(sd, cpu);
1da177e4 6028
57d885fe 6029 rq_attach_root(rq, rd);
dce840a0 6030 tmp = rq->sd;
674311d5 6031 rcu_assign_pointer(rq->sd, sd);
dce840a0 6032 destroy_sched_domains(tmp, cpu);
518cd623
PZ
6033
6034 update_top_cache_domain(cpu);
1da177e4
LT
6035}
6036
1da177e4
LT
6037/* Setup the mask of cpus configured for isolated domains */
6038static int __init isolated_cpu_setup(char *str)
6039{
a6e4491c
PB
6040 int ret;
6041
bdddd296 6042 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
6043 ret = cpulist_parse(str, cpu_isolated_map);
6044 if (ret) {
6045 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6046 return 0;
6047 }
1da177e4
LT
6048 return 1;
6049}
8927f494 6050__setup("isolcpus=", isolated_cpu_setup);
1da177e4 6051
49a02c51 6052struct s_data {
21d42ccf 6053 struct sched_domain ** __percpu sd;
49a02c51
AH
6054 struct root_domain *rd;
6055};
6056
2109b99e 6057enum s_alloc {
2109b99e 6058 sa_rootdomain,
21d42ccf 6059 sa_sd,
dce840a0 6060 sa_sd_storage,
2109b99e
AH
6061 sa_none,
6062};
6063
c1174876
PZ
6064/*
6065 * Build an iteration mask that can exclude certain CPUs from the upwards
6066 * domain traversal.
6067 *
6068 * Asymmetric node setups can result in situations where the domain tree is of
6069 * unequal depth, make sure to skip domains that already cover the entire
6070 * range.
6071 *
6072 * In that case build_sched_domains() will have terminated the iteration early
6073 * and our sibling sd spans will be empty. Domains should always include the
6074 * cpu they're built on, so check that.
6075 *
6076 */
6077static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6078{
6079 const struct cpumask *span = sched_domain_span(sd);
6080 struct sd_data *sdd = sd->private;
6081 struct sched_domain *sibling;
6082 int i;
6083
6084 for_each_cpu(i, span) {
6085 sibling = *per_cpu_ptr(sdd->sd, i);
6086 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6087 continue;
6088
6089 cpumask_set_cpu(i, sched_group_mask(sg));
6090 }
6091}
6092
6093/*
6094 * Return the canonical balance cpu for this group, this is the first cpu
6095 * of this group that's also in the iteration mask.
6096 */
6097int group_balance_cpu(struct sched_group *sg)
6098{
6099 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6100}
6101
e3589f6c
PZ
6102static int
6103build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6104{
6105 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6106 const struct cpumask *span = sched_domain_span(sd);
6107 struct cpumask *covered = sched_domains_tmpmask;
6108 struct sd_data *sdd = sd->private;
aaecac4a 6109 struct sched_domain *sibling;
e3589f6c
PZ
6110 int i;
6111
6112 cpumask_clear(covered);
6113
6114 for_each_cpu(i, span) {
6115 struct cpumask *sg_span;
6116
6117 if (cpumask_test_cpu(i, covered))
6118 continue;
6119
aaecac4a 6120 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6121
6122 /* See the comment near build_group_mask(). */
aaecac4a 6123 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6124 continue;
6125
e3589f6c 6126 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6127 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6128
6129 if (!sg)
6130 goto fail;
6131
6132 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6133 if (sibling->child)
6134 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6135 else
e3589f6c
PZ
6136 cpumask_set_cpu(i, sg_span);
6137
6138 cpumask_or(covered, covered, sg_span);
6139
63b2ca30
NP
6140 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6141 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6142 build_group_mask(sd, sg);
6143
c3decf0d 6144 /*
63b2ca30 6145 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6146 * domains and no possible iteration will get us here, we won't
6147 * die on a /0 trap.
6148 */
ca8ce3d0 6149 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6150
c1174876
PZ
6151 /*
6152 * Make sure the first group of this domain contains the
6153 * canonical balance cpu. Otherwise the sched_domain iteration
6154 * breaks. See update_sg_lb_stats().
6155 */
74a5ce20 6156 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6157 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6158 groups = sg;
6159
6160 if (!first)
6161 first = sg;
6162 if (last)
6163 last->next = sg;
6164 last = sg;
6165 last->next = first;
6166 }
6167 sd->groups = groups;
6168
6169 return 0;
6170
6171fail:
6172 free_sched_groups(first, 0);
6173
6174 return -ENOMEM;
6175}
6176
dce840a0 6177static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6178{
dce840a0
PZ
6179 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6180 struct sched_domain *child = sd->child;
1da177e4 6181
dce840a0
PZ
6182 if (child)
6183 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6184
9c3f75cb 6185 if (sg) {
dce840a0 6186 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6187 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6188 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6189 }
dce840a0
PZ
6190
6191 return cpu;
1e9f28fa 6192}
1e9f28fa 6193
01a08546 6194/*
dce840a0
PZ
6195 * build_sched_groups will build a circular linked list of the groups
6196 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6197 * and ->cpu_capacity to 0.
e3589f6c
PZ
6198 *
6199 * Assumes the sched_domain tree is fully constructed
01a08546 6200 */
e3589f6c
PZ
6201static int
6202build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6203{
dce840a0
PZ
6204 struct sched_group *first = NULL, *last = NULL;
6205 struct sd_data *sdd = sd->private;
6206 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6207 struct cpumask *covered;
dce840a0 6208 int i;
9c1cfda2 6209
e3589f6c
PZ
6210 get_group(cpu, sdd, &sd->groups);
6211 atomic_inc(&sd->groups->ref);
6212
0936629f 6213 if (cpu != cpumask_first(span))
e3589f6c
PZ
6214 return 0;
6215
f96225fd
PZ
6216 lockdep_assert_held(&sched_domains_mutex);
6217 covered = sched_domains_tmpmask;
6218
dce840a0 6219 cpumask_clear(covered);
6711cab4 6220
dce840a0
PZ
6221 for_each_cpu(i, span) {
6222 struct sched_group *sg;
cd08e923 6223 int group, j;
6711cab4 6224
dce840a0
PZ
6225 if (cpumask_test_cpu(i, covered))
6226 continue;
6711cab4 6227
cd08e923 6228 group = get_group(i, sdd, &sg);
c1174876 6229 cpumask_setall(sched_group_mask(sg));
0601a88d 6230
dce840a0
PZ
6231 for_each_cpu(j, span) {
6232 if (get_group(j, sdd, NULL) != group)
6233 continue;
0601a88d 6234
dce840a0
PZ
6235 cpumask_set_cpu(j, covered);
6236 cpumask_set_cpu(j, sched_group_cpus(sg));
6237 }
0601a88d 6238
dce840a0
PZ
6239 if (!first)
6240 first = sg;
6241 if (last)
6242 last->next = sg;
6243 last = sg;
6244 }
6245 last->next = first;
e3589f6c
PZ
6246
6247 return 0;
0601a88d 6248}
51888ca2 6249
89c4710e 6250/*
63b2ca30 6251 * Initialize sched groups cpu_capacity.
89c4710e 6252 *
63b2ca30 6253 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6254 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6255 * Typically cpu_capacity for all the groups in a sched domain will be same
6256 * unless there are asymmetries in the topology. If there are asymmetries,
6257 * group having more cpu_capacity will pickup more load compared to the
6258 * group having less cpu_capacity.
89c4710e 6259 */
63b2ca30 6260static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6261{
e3589f6c 6262 struct sched_group *sg = sd->groups;
89c4710e 6263
94c95ba6 6264 WARN_ON(!sg);
e3589f6c
PZ
6265
6266 do {
6267 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6268 sg = sg->next;
6269 } while (sg != sd->groups);
89c4710e 6270
c1174876 6271 if (cpu != group_balance_cpu(sg))
e3589f6c 6272 return;
aae6d3dd 6273
63b2ca30
NP
6274 update_group_capacity(sd, cpu);
6275 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6276}
6277
7c16ec58
MT
6278/*
6279 * Initializers for schedule domains
6280 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6281 */
6282
1d3504fc 6283static int default_relax_domain_level = -1;
60495e77 6284int sched_domain_level_max;
1d3504fc
HS
6285
6286static int __init setup_relax_domain_level(char *str)
6287{
a841f8ce
DS
6288 if (kstrtoint(str, 0, &default_relax_domain_level))
6289 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6290
1d3504fc
HS
6291 return 1;
6292}
6293__setup("relax_domain_level=", setup_relax_domain_level);
6294
6295static void set_domain_attribute(struct sched_domain *sd,
6296 struct sched_domain_attr *attr)
6297{
6298 int request;
6299
6300 if (!attr || attr->relax_domain_level < 0) {
6301 if (default_relax_domain_level < 0)
6302 return;
6303 else
6304 request = default_relax_domain_level;
6305 } else
6306 request = attr->relax_domain_level;
6307 if (request < sd->level) {
6308 /* turn off idle balance on this domain */
c88d5910 6309 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6310 } else {
6311 /* turn on idle balance on this domain */
c88d5910 6312 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6313 }
6314}
6315
54ab4ff4
PZ
6316static void __sdt_free(const struct cpumask *cpu_map);
6317static int __sdt_alloc(const struct cpumask *cpu_map);
6318
2109b99e
AH
6319static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6320 const struct cpumask *cpu_map)
6321{
6322 switch (what) {
2109b99e 6323 case sa_rootdomain:
822ff793
PZ
6324 if (!atomic_read(&d->rd->refcount))
6325 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6326 case sa_sd:
6327 free_percpu(d->sd); /* fall through */
dce840a0 6328 case sa_sd_storage:
54ab4ff4 6329 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6330 case sa_none:
6331 break;
6332 }
6333}
3404c8d9 6334
2109b99e
AH
6335static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6336 const struct cpumask *cpu_map)
6337{
dce840a0
PZ
6338 memset(d, 0, sizeof(*d));
6339
54ab4ff4
PZ
6340 if (__sdt_alloc(cpu_map))
6341 return sa_sd_storage;
dce840a0
PZ
6342 d->sd = alloc_percpu(struct sched_domain *);
6343 if (!d->sd)
6344 return sa_sd_storage;
2109b99e 6345 d->rd = alloc_rootdomain();
dce840a0 6346 if (!d->rd)
21d42ccf 6347 return sa_sd;
2109b99e
AH
6348 return sa_rootdomain;
6349}
57d885fe 6350
dce840a0
PZ
6351/*
6352 * NULL the sd_data elements we've used to build the sched_domain and
6353 * sched_group structure so that the subsequent __free_domain_allocs()
6354 * will not free the data we're using.
6355 */
6356static void claim_allocations(int cpu, struct sched_domain *sd)
6357{
6358 struct sd_data *sdd = sd->private;
dce840a0
PZ
6359
6360 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6361 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6362
e3589f6c 6363 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6364 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6365
63b2ca30
NP
6366 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6367 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6368}
6369
cb83b629 6370#ifdef CONFIG_NUMA
cb83b629 6371static int sched_domains_numa_levels;
e3fe70b1 6372enum numa_topology_type sched_numa_topology_type;
cb83b629 6373static int *sched_domains_numa_distance;
9942f79b 6374int sched_max_numa_distance;
cb83b629
PZ
6375static struct cpumask ***sched_domains_numa_masks;
6376static int sched_domains_curr_level;
143e1e28 6377#endif
cb83b629 6378
143e1e28
VG
6379/*
6380 * SD_flags allowed in topology descriptions.
6381 *
94f438c8
PZ
6382 * These flags are purely descriptive of the topology and do not prescribe
6383 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6384 * function:
143e1e28 6385 *
94f438c8
PZ
6386 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6387 * SD_SHARE_PKG_RESOURCES - describes shared caches
6388 * SD_NUMA - describes NUMA topologies
6389 * SD_SHARE_POWERDOMAIN - describes shared power domain
1f6e6c7c 6390 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
94f438c8
PZ
6391 *
6392 * Odd one out, which beside describing the topology has a quirk also
6393 * prescribes the desired behaviour that goes along with it:
6394 *
6395 * SD_ASYM_PACKING - describes SMT quirks
143e1e28
VG
6396 */
6397#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6398 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6399 SD_SHARE_PKG_RESOURCES | \
6400 SD_NUMA | \
d77b3ed5 6401 SD_ASYM_PACKING | \
1f6e6c7c 6402 SD_ASYM_CPUCAPACITY | \
d77b3ed5 6403 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6404
6405static struct sched_domain *
3676b13e
MR
6406sd_init(struct sched_domain_topology_level *tl,
6407 struct sched_domain *child, int cpu)
cb83b629
PZ
6408{
6409 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6410 int sd_weight, sd_flags = 0;
6411
6412#ifdef CONFIG_NUMA
6413 /*
6414 * Ugly hack to pass state to sd_numa_mask()...
6415 */
6416 sched_domains_curr_level = tl->numa_level;
6417#endif
6418
6419 sd_weight = cpumask_weight(tl->mask(cpu));
6420
6421 if (tl->sd_flags)
6422 sd_flags = (*tl->sd_flags)();
6423 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6424 "wrong sd_flags in topology description\n"))
6425 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6426
6427 *sd = (struct sched_domain){
6428 .min_interval = sd_weight,
6429 .max_interval = 2*sd_weight,
6430 .busy_factor = 32,
870a0bb5 6431 .imbalance_pct = 125,
143e1e28
VG
6432
6433 .cache_nice_tries = 0,
6434 .busy_idx = 0,
6435 .idle_idx = 0,
cb83b629
PZ
6436 .newidle_idx = 0,
6437 .wake_idx = 0,
6438 .forkexec_idx = 0,
6439
6440 .flags = 1*SD_LOAD_BALANCE
6441 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6442 | 1*SD_BALANCE_EXEC
6443 | 1*SD_BALANCE_FORK
cb83b629 6444 | 0*SD_BALANCE_WAKE
143e1e28 6445 | 1*SD_WAKE_AFFINE
5d4dfddd 6446 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6447 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6448 | 0*SD_SERIALIZE
cb83b629 6449 | 0*SD_PREFER_SIBLING
143e1e28
VG
6450 | 0*SD_NUMA
6451 | sd_flags
cb83b629 6452 ,
143e1e28 6453
cb83b629
PZ
6454 .last_balance = jiffies,
6455 .balance_interval = sd_weight,
143e1e28 6456 .smt_gain = 0,
2b4cfe64
JL
6457 .max_newidle_lb_cost = 0,
6458 .next_decay_max_lb_cost = jiffies,
3676b13e 6459 .child = child,
143e1e28
VG
6460#ifdef CONFIG_SCHED_DEBUG
6461 .name = tl->name,
6462#endif
cb83b629 6463 };
cb83b629
PZ
6464
6465 /*
143e1e28 6466 * Convert topological properties into behaviour.
cb83b629 6467 */
143e1e28 6468
9ee1cda5
MR
6469 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6470 struct sched_domain *t = sd;
6471
6472 for_each_lower_domain(t)
6473 t->flags |= SD_BALANCE_WAKE;
6474 }
6475
5d4dfddd 6476 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6477 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6478 sd->imbalance_pct = 110;
6479 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6480
6481 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6482 sd->imbalance_pct = 117;
6483 sd->cache_nice_tries = 1;
6484 sd->busy_idx = 2;
6485
6486#ifdef CONFIG_NUMA
6487 } else if (sd->flags & SD_NUMA) {
6488 sd->cache_nice_tries = 2;
6489 sd->busy_idx = 3;
6490 sd->idle_idx = 2;
6491
6492 sd->flags |= SD_SERIALIZE;
6493 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6494 sd->flags &= ~(SD_BALANCE_EXEC |
6495 SD_BALANCE_FORK |
6496 SD_WAKE_AFFINE);
6497 }
6498
6499#endif
6500 } else {
6501 sd->flags |= SD_PREFER_SIBLING;
6502 sd->cache_nice_tries = 1;
6503 sd->busy_idx = 2;
6504 sd->idle_idx = 1;
6505 }
6506
6507 sd->private = &tl->data;
cb83b629
PZ
6508
6509 return sd;
6510}
6511
143e1e28
VG
6512/*
6513 * Topology list, bottom-up.
6514 */
6515static struct sched_domain_topology_level default_topology[] = {
6516#ifdef CONFIG_SCHED_SMT
6517 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6518#endif
6519#ifdef CONFIG_SCHED_MC
6520 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6521#endif
6522 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6523 { NULL, },
6524};
6525
c6e1e7b5
JG
6526static struct sched_domain_topology_level *sched_domain_topology =
6527 default_topology;
143e1e28
VG
6528
6529#define for_each_sd_topology(tl) \
6530 for (tl = sched_domain_topology; tl->mask; tl++)
6531
6532void set_sched_topology(struct sched_domain_topology_level *tl)
6533{
6534 sched_domain_topology = tl;
6535}
6536
6537#ifdef CONFIG_NUMA
6538
cb83b629
PZ
6539static const struct cpumask *sd_numa_mask(int cpu)
6540{
6541 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6542}
6543
d039ac60
PZ
6544static void sched_numa_warn(const char *str)
6545{
6546 static int done = false;
6547 int i,j;
6548
6549 if (done)
6550 return;
6551
6552 done = true;
6553
6554 printk(KERN_WARNING "ERROR: %s\n\n", str);
6555
6556 for (i = 0; i < nr_node_ids; i++) {
6557 printk(KERN_WARNING " ");
6558 for (j = 0; j < nr_node_ids; j++)
6559 printk(KERN_CONT "%02d ", node_distance(i,j));
6560 printk(KERN_CONT "\n");
6561 }
6562 printk(KERN_WARNING "\n");
6563}
6564
9942f79b 6565bool find_numa_distance(int distance)
d039ac60
PZ
6566{
6567 int i;
6568
6569 if (distance == node_distance(0, 0))
6570 return true;
6571
6572 for (i = 0; i < sched_domains_numa_levels; i++) {
6573 if (sched_domains_numa_distance[i] == distance)
6574 return true;
6575 }
6576
6577 return false;
6578}
6579
e3fe70b1
RR
6580/*
6581 * A system can have three types of NUMA topology:
6582 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6583 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6584 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6585 *
6586 * The difference between a glueless mesh topology and a backplane
6587 * topology lies in whether communication between not directly
6588 * connected nodes goes through intermediary nodes (where programs
6589 * could run), or through backplane controllers. This affects
6590 * placement of programs.
6591 *
6592 * The type of topology can be discerned with the following tests:
6593 * - If the maximum distance between any nodes is 1 hop, the system
6594 * is directly connected.
6595 * - If for two nodes A and B, located N > 1 hops away from each other,
6596 * there is an intermediary node C, which is < N hops away from both
6597 * nodes A and B, the system is a glueless mesh.
6598 */
6599static void init_numa_topology_type(void)
6600{
6601 int a, b, c, n;
6602
6603 n = sched_max_numa_distance;
6604
e237882b 6605 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6606 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6607 return;
6608 }
e3fe70b1
RR
6609
6610 for_each_online_node(a) {
6611 for_each_online_node(b) {
6612 /* Find two nodes furthest removed from each other. */
6613 if (node_distance(a, b) < n)
6614 continue;
6615
6616 /* Is there an intermediary node between a and b? */
6617 for_each_online_node(c) {
6618 if (node_distance(a, c) < n &&
6619 node_distance(b, c) < n) {
6620 sched_numa_topology_type =
6621 NUMA_GLUELESS_MESH;
6622 return;
6623 }
6624 }
6625
6626 sched_numa_topology_type = NUMA_BACKPLANE;
6627 return;
6628 }
6629 }
6630}
6631
cb83b629
PZ
6632static void sched_init_numa(void)
6633{
6634 int next_distance, curr_distance = node_distance(0, 0);
6635 struct sched_domain_topology_level *tl;
6636 int level = 0;
6637 int i, j, k;
6638
cb83b629
PZ
6639 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6640 if (!sched_domains_numa_distance)
6641 return;
6642
6643 /*
6644 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6645 * unique distances in the node_distance() table.
6646 *
6647 * Assumes node_distance(0,j) includes all distances in
6648 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6649 */
6650 next_distance = curr_distance;
6651 for (i = 0; i < nr_node_ids; i++) {
6652 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6653 for (k = 0; k < nr_node_ids; k++) {
6654 int distance = node_distance(i, k);
6655
6656 if (distance > curr_distance &&
6657 (distance < next_distance ||
6658 next_distance == curr_distance))
6659 next_distance = distance;
6660
6661 /*
6662 * While not a strong assumption it would be nice to know
6663 * about cases where if node A is connected to B, B is not
6664 * equally connected to A.
6665 */
6666 if (sched_debug() && node_distance(k, i) != distance)
6667 sched_numa_warn("Node-distance not symmetric");
6668
6669 if (sched_debug() && i && !find_numa_distance(distance))
6670 sched_numa_warn("Node-0 not representative");
6671 }
6672 if (next_distance != curr_distance) {
6673 sched_domains_numa_distance[level++] = next_distance;
6674 sched_domains_numa_levels = level;
6675 curr_distance = next_distance;
6676 } else break;
cb83b629 6677 }
d039ac60
PZ
6678
6679 /*
6680 * In case of sched_debug() we verify the above assumption.
6681 */
6682 if (!sched_debug())
6683 break;
cb83b629 6684 }
c123588b
AR
6685
6686 if (!level)
6687 return;
6688
cb83b629
PZ
6689 /*
6690 * 'level' contains the number of unique distances, excluding the
6691 * identity distance node_distance(i,i).
6692 *
28b4a521 6693 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6694 * numbers.
6695 */
6696
5f7865f3
TC
6697 /*
6698 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6699 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6700 * the array will contain less then 'level' members. This could be
6701 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6702 * in other functions.
6703 *
6704 * We reset it to 'level' at the end of this function.
6705 */
6706 sched_domains_numa_levels = 0;
6707
cb83b629
PZ
6708 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6709 if (!sched_domains_numa_masks)
6710 return;
6711
6712 /*
6713 * Now for each level, construct a mask per node which contains all
6714 * cpus of nodes that are that many hops away from us.
6715 */
6716 for (i = 0; i < level; i++) {
6717 sched_domains_numa_masks[i] =
6718 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6719 if (!sched_domains_numa_masks[i])
6720 return;
6721
6722 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6723 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6724 if (!mask)
6725 return;
6726
6727 sched_domains_numa_masks[i][j] = mask;
6728
9c03ee14 6729 for_each_node(k) {
dd7d8634 6730 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6731 continue;
6732
6733 cpumask_or(mask, mask, cpumask_of_node(k));
6734 }
6735 }
6736 }
6737
143e1e28
VG
6738 /* Compute default topology size */
6739 for (i = 0; sched_domain_topology[i].mask; i++);
6740
c515db8c 6741 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6742 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6743 if (!tl)
6744 return;
6745
6746 /*
6747 * Copy the default topology bits..
6748 */
143e1e28
VG
6749 for (i = 0; sched_domain_topology[i].mask; i++)
6750 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6751
6752 /*
6753 * .. and append 'j' levels of NUMA goodness.
6754 */
6755 for (j = 0; j < level; i++, j++) {
6756 tl[i] = (struct sched_domain_topology_level){
cb83b629 6757 .mask = sd_numa_mask,
143e1e28 6758 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6759 .flags = SDTL_OVERLAP,
6760 .numa_level = j,
143e1e28 6761 SD_INIT_NAME(NUMA)
cb83b629
PZ
6762 };
6763 }
6764
6765 sched_domain_topology = tl;
5f7865f3
TC
6766
6767 sched_domains_numa_levels = level;
9942f79b 6768 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6769
6770 init_numa_topology_type();
cb83b629 6771}
301a5cba 6772
135fb3e1 6773static void sched_domains_numa_masks_set(unsigned int cpu)
301a5cba 6774{
301a5cba 6775 int node = cpu_to_node(cpu);
135fb3e1 6776 int i, j;
301a5cba
TC
6777
6778 for (i = 0; i < sched_domains_numa_levels; i++) {
6779 for (j = 0; j < nr_node_ids; j++) {
6780 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6781 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6782 }
6783 }
6784}
6785
135fb3e1 6786static void sched_domains_numa_masks_clear(unsigned int cpu)
301a5cba
TC
6787{
6788 int i, j;
135fb3e1 6789
301a5cba
TC
6790 for (i = 0; i < sched_domains_numa_levels; i++) {
6791 for (j = 0; j < nr_node_ids; j++)
6792 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6793 }
6794}
6795
cb83b629 6796#else
135fb3e1
TG
6797static inline void sched_init_numa(void) { }
6798static void sched_domains_numa_masks_set(unsigned int cpu) { }
6799static void sched_domains_numa_masks_clear(unsigned int cpu) { }
cb83b629
PZ
6800#endif /* CONFIG_NUMA */
6801
54ab4ff4
PZ
6802static int __sdt_alloc(const struct cpumask *cpu_map)
6803{
6804 struct sched_domain_topology_level *tl;
6805 int j;
6806
27723a68 6807 for_each_sd_topology(tl) {
54ab4ff4
PZ
6808 struct sd_data *sdd = &tl->data;
6809
6810 sdd->sd = alloc_percpu(struct sched_domain *);
6811 if (!sdd->sd)
6812 return -ENOMEM;
6813
6814 sdd->sg = alloc_percpu(struct sched_group *);
6815 if (!sdd->sg)
6816 return -ENOMEM;
6817
63b2ca30
NP
6818 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6819 if (!sdd->sgc)
9c3f75cb
PZ
6820 return -ENOMEM;
6821
54ab4ff4
PZ
6822 for_each_cpu(j, cpu_map) {
6823 struct sched_domain *sd;
6824 struct sched_group *sg;
63b2ca30 6825 struct sched_group_capacity *sgc;
54ab4ff4 6826
5cc389bc 6827 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6828 GFP_KERNEL, cpu_to_node(j));
6829 if (!sd)
6830 return -ENOMEM;
6831
6832 *per_cpu_ptr(sdd->sd, j) = sd;
6833
6834 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6835 GFP_KERNEL, cpu_to_node(j));
6836 if (!sg)
6837 return -ENOMEM;
6838
30b4e9eb
IM
6839 sg->next = sg;
6840
54ab4ff4 6841 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6842
63b2ca30 6843 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6844 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6845 if (!sgc)
9c3f75cb
PZ
6846 return -ENOMEM;
6847
63b2ca30 6848 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6849 }
6850 }
6851
6852 return 0;
6853}
6854
6855static void __sdt_free(const struct cpumask *cpu_map)
6856{
6857 struct sched_domain_topology_level *tl;
6858 int j;
6859
27723a68 6860 for_each_sd_topology(tl) {
54ab4ff4
PZ
6861 struct sd_data *sdd = &tl->data;
6862
6863 for_each_cpu(j, cpu_map) {
fb2cf2c6 6864 struct sched_domain *sd;
6865
6866 if (sdd->sd) {
6867 sd = *per_cpu_ptr(sdd->sd, j);
6868 if (sd && (sd->flags & SD_OVERLAP))
6869 free_sched_groups(sd->groups, 0);
6870 kfree(*per_cpu_ptr(sdd->sd, j));
6871 }
6872
6873 if (sdd->sg)
6874 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6875 if (sdd->sgc)
6876 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6877 }
6878 free_percpu(sdd->sd);
fb2cf2c6 6879 sdd->sd = NULL;
54ab4ff4 6880 free_percpu(sdd->sg);
fb2cf2c6 6881 sdd->sg = NULL;
63b2ca30
NP
6882 free_percpu(sdd->sgc);
6883 sdd->sgc = NULL;
54ab4ff4
PZ
6884 }
6885}
6886
2c402dc3 6887struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6888 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6889 struct sched_domain *child, int cpu)
2c402dc3 6890{
3676b13e 6891 struct sched_domain *sd = sd_init(tl, child, cpu);
2c402dc3 6892
2c402dc3 6893 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6894 if (child) {
6895 sd->level = child->level + 1;
6896 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6897 child->parent = sd;
6ae72dff
PZ
6898
6899 if (!cpumask_subset(sched_domain_span(child),
6900 sched_domain_span(sd))) {
6901 pr_err("BUG: arch topology borken\n");
6902#ifdef CONFIG_SCHED_DEBUG
6903 pr_err(" the %s domain not a subset of the %s domain\n",
6904 child->name, sd->name);
6905#endif
6906 /* Fixup, ensure @sd has at least @child cpus. */
6907 cpumask_or(sched_domain_span(sd),
6908 sched_domain_span(sd),
6909 sched_domain_span(child));
6910 }
6911
60495e77 6912 }
a841f8ce 6913 set_domain_attribute(sd, attr);
2c402dc3
PZ
6914
6915 return sd;
6916}
6917
2109b99e
AH
6918/*
6919 * Build sched domains for a given set of cpus and attach the sched domains
6920 * to the individual cpus
6921 */
dce840a0
PZ
6922static int build_sched_domains(const struct cpumask *cpu_map,
6923 struct sched_domain_attr *attr)
2109b99e 6924{
1c632169 6925 enum s_alloc alloc_state;
dce840a0 6926 struct sched_domain *sd;
2109b99e 6927 struct s_data d;
cd92bfd3 6928 struct rq *rq = NULL;
822ff793 6929 int i, ret = -ENOMEM;
9c1cfda2 6930
2109b99e
AH
6931 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6932 if (alloc_state != sa_rootdomain)
6933 goto error;
9c1cfda2 6934
dce840a0 6935 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6936 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6937 struct sched_domain_topology_level *tl;
6938
3bd65a80 6939 sd = NULL;
27723a68 6940 for_each_sd_topology(tl) {
4a850cbe 6941 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6942 if (tl == sched_domain_topology)
6943 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6944 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6945 sd->flags |= SD_OVERLAP;
d110235d
PZ
6946 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6947 break;
e3589f6c 6948 }
dce840a0
PZ
6949 }
6950
6951 /* Build the groups for the domains */
6952 for_each_cpu(i, cpu_map) {
6953 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6954 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6955 if (sd->flags & SD_OVERLAP) {
6956 if (build_overlap_sched_groups(sd, i))
6957 goto error;
6958 } else {
6959 if (build_sched_groups(sd, i))
6960 goto error;
6961 }
1cf51902 6962 }
a06dadbe 6963 }
9c1cfda2 6964
ced549fa 6965 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6966 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6967 if (!cpumask_test_cpu(i, cpu_map))
6968 continue;
9c1cfda2 6969
dce840a0
PZ
6970 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6971 claim_allocations(i, sd);
63b2ca30 6972 init_sched_groups_capacity(i, sd);
dce840a0 6973 }
f712c0c7 6974 }
9c1cfda2 6975
1da177e4 6976 /* Attach the domains */
dce840a0 6977 rcu_read_lock();
abcd083a 6978 for_each_cpu(i, cpu_map) {
cd92bfd3 6979 rq = cpu_rq(i);
21d42ccf 6980 sd = *per_cpu_ptr(d.sd, i);
cd92bfd3
DE
6981
6982 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
6983 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
6984 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
6985
49a02c51 6986 cpu_attach_domain(sd, d.rd, i);
1da177e4 6987 }
dce840a0 6988 rcu_read_unlock();
51888ca2 6989
cd92bfd3
DE
6990 if (rq) {
6991 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
6992 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
6993 }
6994
822ff793 6995 ret = 0;
51888ca2 6996error:
2109b99e 6997 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6998 return ret;
1da177e4 6999}
029190c5 7000
acc3f5d7 7001static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 7002static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7003static struct sched_domain_attr *dattr_cur;
7004 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7005
7006/*
7007 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7008 * cpumask) fails, then fallback to a single sched domain,
7009 * as determined by the single cpumask fallback_doms.
029190c5 7010 */
4212823f 7011static cpumask_var_t fallback_doms;
029190c5 7012
ee79d1bd
HC
7013/*
7014 * arch_update_cpu_topology lets virtualized architectures update the
7015 * cpu core maps. It is supposed to return 1 if the topology changed
7016 * or 0 if it stayed the same.
7017 */
52f5684c 7018int __weak arch_update_cpu_topology(void)
22e52b07 7019{
ee79d1bd 7020 return 0;
22e52b07
HC
7021}
7022
acc3f5d7
RR
7023cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7024{
7025 int i;
7026 cpumask_var_t *doms;
7027
7028 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7029 if (!doms)
7030 return NULL;
7031 for (i = 0; i < ndoms; i++) {
7032 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7033 free_sched_domains(doms, i);
7034 return NULL;
7035 }
7036 }
7037 return doms;
7038}
7039
7040void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7041{
7042 unsigned int i;
7043 for (i = 0; i < ndoms; i++)
7044 free_cpumask_var(doms[i]);
7045 kfree(doms);
7046}
7047
1a20ff27 7048/*
41a2d6cf 7049 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7050 * For now this just excludes isolated cpus, but could be used to
7051 * exclude other special cases in the future.
1a20ff27 7052 */
c4a8849a 7053static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7054{
7378547f
MM
7055 int err;
7056
22e52b07 7057 arch_update_cpu_topology();
029190c5 7058 ndoms_cur = 1;
acc3f5d7 7059 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 7060 if (!doms_cur)
acc3f5d7
RR
7061 doms_cur = &fallback_doms;
7062 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 7063 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 7064 register_sched_domain_sysctl();
7378547f
MM
7065
7066 return err;
1a20ff27
DG
7067}
7068
1a20ff27
DG
7069/*
7070 * Detach sched domains from a group of cpus specified in cpu_map
7071 * These cpus will now be attached to the NULL domain
7072 */
96f874e2 7073static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
7074{
7075 int i;
7076
dce840a0 7077 rcu_read_lock();
abcd083a 7078 for_each_cpu(i, cpu_map)
57d885fe 7079 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 7080 rcu_read_unlock();
1a20ff27
DG
7081}
7082
1d3504fc
HS
7083/* handle null as "default" */
7084static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7085 struct sched_domain_attr *new, int idx_new)
7086{
7087 struct sched_domain_attr tmp;
7088
7089 /* fast path */
7090 if (!new && !cur)
7091 return 1;
7092
7093 tmp = SD_ATTR_INIT;
7094 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7095 new ? (new + idx_new) : &tmp,
7096 sizeof(struct sched_domain_attr));
7097}
7098
029190c5
PJ
7099/*
7100 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7101 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7102 * doms_new[] to the current sched domain partitioning, doms_cur[].
7103 * It destroys each deleted domain and builds each new domain.
7104 *
acc3f5d7 7105 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7106 * The masks don't intersect (don't overlap.) We should setup one
7107 * sched domain for each mask. CPUs not in any of the cpumasks will
7108 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7109 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7110 * it as it is.
7111 *
acc3f5d7
RR
7112 * The passed in 'doms_new' should be allocated using
7113 * alloc_sched_domains. This routine takes ownership of it and will
7114 * free_sched_domains it when done with it. If the caller failed the
7115 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7116 * and partition_sched_domains() will fallback to the single partition
7117 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7118 *
96f874e2 7119 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7120 * ndoms_new == 0 is a special case for destroying existing domains,
7121 * and it will not create the default domain.
dfb512ec 7122 *
029190c5
PJ
7123 * Call with hotplug lock held
7124 */
acc3f5d7 7125void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7126 struct sched_domain_attr *dattr_new)
029190c5 7127{
dfb512ec 7128 int i, j, n;
d65bd5ec 7129 int new_topology;
029190c5 7130
712555ee 7131 mutex_lock(&sched_domains_mutex);
a1835615 7132
7378547f
MM
7133 /* always unregister in case we don't destroy any domains */
7134 unregister_sched_domain_sysctl();
7135
d65bd5ec
HC
7136 /* Let architecture update cpu core mappings. */
7137 new_topology = arch_update_cpu_topology();
7138
dfb512ec 7139 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7140
7141 /* Destroy deleted domains */
7142 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7143 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7144 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7145 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7146 goto match1;
7147 }
7148 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7149 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7150match1:
7151 ;
7152 }
7153
c8d2d47a 7154 n = ndoms_cur;
e761b772 7155 if (doms_new == NULL) {
c8d2d47a 7156 n = 0;
acc3f5d7 7157 doms_new = &fallback_doms;
6ad4c188 7158 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7159 WARN_ON_ONCE(dattr_new);
e761b772
MK
7160 }
7161
029190c5
PJ
7162 /* Build new domains */
7163 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7164 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7165 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7166 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7167 goto match2;
7168 }
7169 /* no match - add a new doms_new */
dce840a0 7170 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7171match2:
7172 ;
7173 }
7174
7175 /* Remember the new sched domains */
acc3f5d7
RR
7176 if (doms_cur != &fallback_doms)
7177 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7178 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7179 doms_cur = doms_new;
1d3504fc 7180 dattr_cur = dattr_new;
029190c5 7181 ndoms_cur = ndoms_new;
7378547f
MM
7182
7183 register_sched_domain_sysctl();
a1835615 7184
712555ee 7185 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7186}
7187
d35be8ba
SB
7188static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7189
1da177e4 7190/*
3a101d05
TH
7191 * Update cpusets according to cpu_active mask. If cpusets are
7192 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7193 * around partition_sched_domains().
d35be8ba
SB
7194 *
7195 * If we come here as part of a suspend/resume, don't touch cpusets because we
7196 * want to restore it back to its original state upon resume anyway.
1da177e4 7197 */
40190a78 7198static void cpuset_cpu_active(void)
e761b772 7199{
40190a78 7200 if (cpuhp_tasks_frozen) {
d35be8ba
SB
7201 /*
7202 * num_cpus_frozen tracks how many CPUs are involved in suspend
7203 * resume sequence. As long as this is not the last online
7204 * operation in the resume sequence, just build a single sched
7205 * domain, ignoring cpusets.
7206 */
7207 num_cpus_frozen--;
7208 if (likely(num_cpus_frozen)) {
7209 partition_sched_domains(1, NULL, NULL);
135fb3e1 7210 return;
d35be8ba 7211 }
d35be8ba
SB
7212 /*
7213 * This is the last CPU online operation. So fall through and
7214 * restore the original sched domains by considering the
7215 * cpuset configurations.
7216 */
3a101d05 7217 }
135fb3e1 7218 cpuset_update_active_cpus(true);
3a101d05 7219}
e761b772 7220
40190a78 7221static int cpuset_cpu_inactive(unsigned int cpu)
3a101d05 7222{
3c18d447 7223 unsigned long flags;
3c18d447 7224 struct dl_bw *dl_b;
533445c6
OS
7225 bool overflow;
7226 int cpus;
3c18d447 7227
40190a78 7228 if (!cpuhp_tasks_frozen) {
533445c6
OS
7229 rcu_read_lock_sched();
7230 dl_b = dl_bw_of(cpu);
3c18d447 7231
533445c6
OS
7232 raw_spin_lock_irqsave(&dl_b->lock, flags);
7233 cpus = dl_bw_cpus(cpu);
7234 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7235 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7236
533445c6 7237 rcu_read_unlock_sched();
3c18d447 7238
533445c6 7239 if (overflow)
135fb3e1 7240 return -EBUSY;
7ddf96b0 7241 cpuset_update_active_cpus(false);
135fb3e1 7242 } else {
d35be8ba
SB
7243 num_cpus_frozen++;
7244 partition_sched_domains(1, NULL, NULL);
e761b772 7245 }
135fb3e1 7246 return 0;
e761b772 7247}
e761b772 7248
40190a78 7249int sched_cpu_activate(unsigned int cpu)
135fb3e1 7250{
7d976699
TG
7251 struct rq *rq = cpu_rq(cpu);
7252 unsigned long flags;
7253
40190a78 7254 set_cpu_active(cpu, true);
135fb3e1 7255
40190a78 7256 if (sched_smp_initialized) {
135fb3e1 7257 sched_domains_numa_masks_set(cpu);
40190a78 7258 cpuset_cpu_active();
e761b772 7259 }
7d976699
TG
7260
7261 /*
7262 * Put the rq online, if not already. This happens:
7263 *
7264 * 1) In the early boot process, because we build the real domains
7265 * after all cpus have been brought up.
7266 *
7267 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7268 * domains.
7269 */
7270 raw_spin_lock_irqsave(&rq->lock, flags);
7271 if (rq->rd) {
7272 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7273 set_rq_online(rq);
7274 }
7275 raw_spin_unlock_irqrestore(&rq->lock, flags);
7276
7277 update_max_interval();
7278
40190a78 7279 return 0;
135fb3e1
TG
7280}
7281
40190a78 7282int sched_cpu_deactivate(unsigned int cpu)
135fb3e1 7283{
135fb3e1
TG
7284 int ret;
7285
40190a78 7286 set_cpu_active(cpu, false);
b2454caa
PZ
7287 /*
7288 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7289 * users of this state to go away such that all new such users will
7290 * observe it.
7291 *
7292 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7293 * not imply sync_sched(), so wait for both.
7294 *
7295 * Do sync before park smpboot threads to take care the rcu boost case.
7296 */
7297 if (IS_ENABLED(CONFIG_PREEMPT))
7298 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7299 else
7300 synchronize_rcu();
40190a78
TG
7301
7302 if (!sched_smp_initialized)
7303 return 0;
7304
7305 ret = cpuset_cpu_inactive(cpu);
7306 if (ret) {
7307 set_cpu_active(cpu, true);
7308 return ret;
135fb3e1 7309 }
40190a78
TG
7310 sched_domains_numa_masks_clear(cpu);
7311 return 0;
135fb3e1
TG
7312}
7313
94baf7a5
TG
7314static void sched_rq_cpu_starting(unsigned int cpu)
7315{
7316 struct rq *rq = cpu_rq(cpu);
7317
7318 rq->calc_load_update = calc_load_update;
94baf7a5
TG
7319 update_max_interval();
7320}
7321
135fb3e1
TG
7322int sched_cpu_starting(unsigned int cpu)
7323{
7324 set_cpu_rq_start_time(cpu);
94baf7a5 7325 sched_rq_cpu_starting(cpu);
135fb3e1 7326 return 0;
e761b772 7327}
e761b772 7328
f2785ddb
TG
7329#ifdef CONFIG_HOTPLUG_CPU
7330int sched_cpu_dying(unsigned int cpu)
7331{
7332 struct rq *rq = cpu_rq(cpu);
7333 unsigned long flags;
7334
7335 /* Handle pending wakeups and then migrate everything off */
7336 sched_ttwu_pending();
7337 raw_spin_lock_irqsave(&rq->lock, flags);
7338 if (rq->rd) {
7339 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7340 set_rq_offline(rq);
7341 }
7342 migrate_tasks(rq);
7343 BUG_ON(rq->nr_running != 1);
7344 raw_spin_unlock_irqrestore(&rq->lock, flags);
7345 calc_load_migrate(rq);
7346 update_max_interval();
20a5c8cc 7347 nohz_balance_exit_idle(cpu);
e5ef27d0 7348 hrtick_clear(rq);
f2785ddb
TG
7349 return 0;
7350}
7351#endif
7352
1da177e4
LT
7353void __init sched_init_smp(void)
7354{
dcc30a35
RR
7355 cpumask_var_t non_isolated_cpus;
7356
7357 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7358 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7359
cb83b629
PZ
7360 sched_init_numa();
7361
6acce3ef
PZ
7362 /*
7363 * There's no userspace yet to cause hotplug operations; hence all the
7364 * cpu masks are stable and all blatant races in the below code cannot
7365 * happen.
7366 */
712555ee 7367 mutex_lock(&sched_domains_mutex);
c4a8849a 7368 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7369 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7370 if (cpumask_empty(non_isolated_cpus))
7371 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7372 mutex_unlock(&sched_domains_mutex);
e761b772 7373
5c1e1767 7374 /* Move init over to a non-isolated CPU */
dcc30a35 7375 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7376 BUG();
19978ca6 7377 sched_init_granularity();
dcc30a35 7378 free_cpumask_var(non_isolated_cpus);
4212823f 7379
0e3900e6 7380 init_sched_rt_class();
1baca4ce 7381 init_sched_dl_class();
e26fbffd 7382 sched_smp_initialized = true;
1da177e4 7383}
e26fbffd
TG
7384
7385static int __init migration_init(void)
7386{
94baf7a5 7387 sched_rq_cpu_starting(smp_processor_id());
e26fbffd 7388 return 0;
1da177e4 7389}
e26fbffd
TG
7390early_initcall(migration_init);
7391
1da177e4
LT
7392#else
7393void __init sched_init_smp(void)
7394{
19978ca6 7395 sched_init_granularity();
1da177e4
LT
7396}
7397#endif /* CONFIG_SMP */
7398
7399int in_sched_functions(unsigned long addr)
7400{
1da177e4
LT
7401 return in_lock_functions(addr) ||
7402 (addr >= (unsigned long)__sched_text_start
7403 && addr < (unsigned long)__sched_text_end);
7404}
7405
029632fb 7406#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7407/*
7408 * Default task group.
7409 * Every task in system belongs to this group at bootup.
7410 */
029632fb 7411struct task_group root_task_group;
35cf4e50 7412LIST_HEAD(task_groups);
b0367629
WL
7413
7414/* Cacheline aligned slab cache for task_group */
7415static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7416#endif
6f505b16 7417
e6252c3e 7418DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7419
1da177e4
LT
7420void __init sched_init(void)
7421{
dd41f596 7422 int i, j;
434d53b0
MT
7423 unsigned long alloc_size = 0, ptr;
7424
7425#ifdef CONFIG_FAIR_GROUP_SCHED
7426 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7427#endif
7428#ifdef CONFIG_RT_GROUP_SCHED
7429 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7430#endif
434d53b0 7431 if (alloc_size) {
36b7b6d4 7432 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7433
7434#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7435 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7436 ptr += nr_cpu_ids * sizeof(void **);
7437
07e06b01 7438 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7439 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7440
6d6bc0ad 7441#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7442#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7443 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7444 ptr += nr_cpu_ids * sizeof(void **);
7445
07e06b01 7446 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7447 ptr += nr_cpu_ids * sizeof(void **);
7448
6d6bc0ad 7449#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7450 }
df7c8e84 7451#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7452 for_each_possible_cpu(i) {
7453 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7454 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7455 }
b74e6278 7456#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7457
332ac17e
DF
7458 init_rt_bandwidth(&def_rt_bandwidth,
7459 global_rt_period(), global_rt_runtime());
7460 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7461 global_rt_period(), global_rt_runtime());
332ac17e 7462
57d885fe
GH
7463#ifdef CONFIG_SMP
7464 init_defrootdomain();
7465#endif
7466
d0b27fa7 7467#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7468 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7469 global_rt_period(), global_rt_runtime());
6d6bc0ad 7470#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7471
7c941438 7472#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7473 task_group_cache = KMEM_CACHE(task_group, 0);
7474
07e06b01
YZ
7475 list_add(&root_task_group.list, &task_groups);
7476 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7477 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7478 autogroup_init(&init_task);
7c941438 7479#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7480
0a945022 7481 for_each_possible_cpu(i) {
70b97a7f 7482 struct rq *rq;
1da177e4
LT
7483
7484 rq = cpu_rq(i);
05fa785c 7485 raw_spin_lock_init(&rq->lock);
7897986b 7486 rq->nr_running = 0;
dce48a84
TG
7487 rq->calc_load_active = 0;
7488 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7489 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7490 init_rt_rq(&rq->rt);
7491 init_dl_rq(&rq->dl);
dd41f596 7492#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7493 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7494 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7495 /*
07e06b01 7496 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7497 *
7498 * In case of task-groups formed thr' the cgroup filesystem, it
7499 * gets 100% of the cpu resources in the system. This overall
7500 * system cpu resource is divided among the tasks of
07e06b01 7501 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7502 * based on each entity's (task or task-group's) weight
7503 * (se->load.weight).
7504 *
07e06b01 7505 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7506 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7507 * then A0's share of the cpu resource is:
7508 *
0d905bca 7509 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7510 *
07e06b01
YZ
7511 * We achieve this by letting root_task_group's tasks sit
7512 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7513 */
ab84d31e 7514 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7515 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7516#endif /* CONFIG_FAIR_GROUP_SCHED */
7517
7518 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7519#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7520 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7521#endif
1da177e4 7522
dd41f596
IM
7523 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7524 rq->cpu_load[j] = 0;
fdf3e95d 7525
1da177e4 7526#ifdef CONFIG_SMP
41c7ce9a 7527 rq->sd = NULL;
57d885fe 7528 rq->rd = NULL;
ca6d75e6 7529 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7530 rq->balance_callback = NULL;
1da177e4 7531 rq->active_balance = 0;
dd41f596 7532 rq->next_balance = jiffies;
1da177e4 7533 rq->push_cpu = 0;
0a2966b4 7534 rq->cpu = i;
1f11eb6a 7535 rq->online = 0;
eae0c9df
MG
7536 rq->idle_stamp = 0;
7537 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7538 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7539
7540 INIT_LIST_HEAD(&rq->cfs_tasks);
7541
dc938520 7542 rq_attach_root(rq, &def_root_domain);
3451d024 7543#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 7544 rq->last_load_update_tick = jiffies;
1c792db7 7545 rq->nohz_flags = 0;
83cd4fe2 7546#endif
265f22a9
FW
7547#ifdef CONFIG_NO_HZ_FULL
7548 rq->last_sched_tick = 0;
7549#endif
9fd81dd5 7550#endif /* CONFIG_SMP */
8f4d37ec 7551 init_rq_hrtick(rq);
1da177e4 7552 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7553 }
7554
2dd73a4f 7555 set_load_weight(&init_task);
b50f60ce 7556
1da177e4
LT
7557 /*
7558 * The boot idle thread does lazy MMU switching as well:
7559 */
7560 atomic_inc(&init_mm.mm_count);
7561 enter_lazy_tlb(&init_mm, current);
7562
1b537c7d
YD
7563 /*
7564 * During early bootup we pretend to be a normal task:
7565 */
7566 current->sched_class = &fair_sched_class;
7567
1da177e4
LT
7568 /*
7569 * Make us the idle thread. Technically, schedule() should not be
7570 * called from this thread, however somewhere below it might be,
7571 * but because we are the idle thread, we just pick up running again
7572 * when this runqueue becomes "idle".
7573 */
7574 init_idle(current, smp_processor_id());
dce48a84
TG
7575
7576 calc_load_update = jiffies + LOAD_FREQ;
7577
bf4d83f6 7578#ifdef CONFIG_SMP
4cb98839 7579 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7580 /* May be allocated at isolcpus cmdline parse time */
7581 if (cpu_isolated_map == NULL)
7582 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7583 idle_thread_set_boot_cpu();
9cf7243d 7584 set_cpu_rq_start_time(smp_processor_id());
029632fb
PZ
7585#endif
7586 init_sched_fair_class();
6a7b3dc3 7587
4698f88c
JP
7588 init_schedstats();
7589
6892b75e 7590 scheduler_running = 1;
1da177e4
LT
7591}
7592
d902db1e 7593#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7594static inline int preempt_count_equals(int preempt_offset)
7595{
da7142e2 7596 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7597
4ba8216c 7598 return (nested == preempt_offset);
e4aafea2
FW
7599}
7600
d894837f 7601void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7602{
8eb23b9f
PZ
7603 /*
7604 * Blocking primitives will set (and therefore destroy) current->state,
7605 * since we will exit with TASK_RUNNING make sure we enter with it,
7606 * otherwise we will destroy state.
7607 */
00845eb9 7608 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7609 "do not call blocking ops when !TASK_RUNNING; "
7610 "state=%lx set at [<%p>] %pS\n",
7611 current->state,
7612 (void *)current->task_state_change,
00845eb9 7613 (void *)current->task_state_change);
8eb23b9f 7614
3427445a
PZ
7615 ___might_sleep(file, line, preempt_offset);
7616}
7617EXPORT_SYMBOL(__might_sleep);
7618
7619void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7620{
1da177e4 7621 static unsigned long prev_jiffy; /* ratelimiting */
d1c6d149 7622 unsigned long preempt_disable_ip;
1da177e4 7623
b3fbab05 7624 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7625 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7626 !is_idle_task(current)) ||
e4aafea2 7627 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7628 return;
7629 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7630 return;
7631 prev_jiffy = jiffies;
7632
d1c6d149
VN
7633 /* Save this before calling printk(), since that will clobber it */
7634 preempt_disable_ip = get_preempt_disable_ip(current);
7635
3df0fc5b
PZ
7636 printk(KERN_ERR
7637 "BUG: sleeping function called from invalid context at %s:%d\n",
7638 file, line);
7639 printk(KERN_ERR
7640 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7641 in_atomic(), irqs_disabled(),
7642 current->pid, current->comm);
aef745fc 7643
a8b686b3
ES
7644 if (task_stack_end_corrupted(current))
7645 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7646
aef745fc
IM
7647 debug_show_held_locks(current);
7648 if (irqs_disabled())
7649 print_irqtrace_events(current);
d1c6d149
VN
7650 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7651 && !preempt_count_equals(preempt_offset)) {
8f47b187 7652 pr_err("Preemption disabled at:");
d1c6d149 7653 print_ip_sym(preempt_disable_ip);
8f47b187
TG
7654 pr_cont("\n");
7655 }
aef745fc 7656 dump_stack();
f0b22e39 7657 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
1da177e4 7658}
3427445a 7659EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7660#endif
7661
7662#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7663void normalize_rt_tasks(void)
3a5e4dc1 7664{
dbc7f069 7665 struct task_struct *g, *p;
d50dde5a
DF
7666 struct sched_attr attr = {
7667 .sched_policy = SCHED_NORMAL,
7668 };
1da177e4 7669
3472eaa1 7670 read_lock(&tasklist_lock);
5d07f420 7671 for_each_process_thread(g, p) {
178be793
IM
7672 /*
7673 * Only normalize user tasks:
7674 */
3472eaa1 7675 if (p->flags & PF_KTHREAD)
178be793
IM
7676 continue;
7677
6cfb0d5d 7678 p->se.exec_start = 0;
6cfb0d5d 7679#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7680 p->se.statistics.wait_start = 0;
7681 p->se.statistics.sleep_start = 0;
7682 p->se.statistics.block_start = 0;
6cfb0d5d 7683#endif
dd41f596 7684
aab03e05 7685 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7686 /*
7687 * Renice negative nice level userspace
7688 * tasks back to 0:
7689 */
3472eaa1 7690 if (task_nice(p) < 0)
dd41f596 7691 set_user_nice(p, 0);
1da177e4 7692 continue;
dd41f596 7693 }
1da177e4 7694
dbc7f069 7695 __sched_setscheduler(p, &attr, false, false);
5d07f420 7696 }
3472eaa1 7697 read_unlock(&tasklist_lock);
1da177e4
LT
7698}
7699
7700#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7701
67fc4e0c 7702#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7703/*
67fc4e0c 7704 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7705 *
7706 * They can only be called when the whole system has been
7707 * stopped - every CPU needs to be quiescent, and no scheduling
7708 * activity can take place. Using them for anything else would
7709 * be a serious bug, and as a result, they aren't even visible
7710 * under any other configuration.
7711 */
7712
7713/**
7714 * curr_task - return the current task for a given cpu.
7715 * @cpu: the processor in question.
7716 *
7717 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7718 *
7719 * Return: The current task for @cpu.
1df5c10a 7720 */
36c8b586 7721struct task_struct *curr_task(int cpu)
1df5c10a
LT
7722{
7723 return cpu_curr(cpu);
7724}
7725
67fc4e0c
JW
7726#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7727
7728#ifdef CONFIG_IA64
1df5c10a
LT
7729/**
7730 * set_curr_task - set the current task for a given cpu.
7731 * @cpu: the processor in question.
7732 * @p: the task pointer to set.
7733 *
7734 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7735 * are serviced on a separate stack. It allows the architecture to switch the
7736 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7737 * must be called with all CPU's synchronized, and interrupts disabled, the
7738 * and caller must save the original value of the current task (see
7739 * curr_task() above) and restore that value before reenabling interrupts and
7740 * re-starting the system.
7741 *
7742 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7743 */
36c8b586 7744void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7745{
7746 cpu_curr(cpu) = p;
7747}
7748
7749#endif
29f59db3 7750
7c941438 7751#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7752/* task_group_lock serializes the addition/removal of task groups */
7753static DEFINE_SPINLOCK(task_group_lock);
7754
2f5177f0 7755static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7756{
7757 free_fair_sched_group(tg);
7758 free_rt_sched_group(tg);
e9aa1dd1 7759 autogroup_free(tg);
b0367629 7760 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7761}
7762
7763/* allocate runqueue etc for a new task group */
ec7dc8ac 7764struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7765{
7766 struct task_group *tg;
bccbe08a 7767
b0367629 7768 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7769 if (!tg)
7770 return ERR_PTR(-ENOMEM);
7771
ec7dc8ac 7772 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7773 goto err;
7774
ec7dc8ac 7775 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7776 goto err;
7777
ace783b9
LZ
7778 return tg;
7779
7780err:
2f5177f0 7781 sched_free_group(tg);
ace783b9
LZ
7782 return ERR_PTR(-ENOMEM);
7783}
7784
7785void sched_online_group(struct task_group *tg, struct task_group *parent)
7786{
7787 unsigned long flags;
7788
8ed36996 7789 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7790 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7791
7792 WARN_ON(!parent); /* root should already exist */
7793
7794 tg->parent = parent;
f473aa5e 7795 INIT_LIST_HEAD(&tg->children);
09f2724a 7796 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7797 spin_unlock_irqrestore(&task_group_lock, flags);
8663e24d
PZ
7798
7799 online_fair_sched_group(tg);
29f59db3
SV
7800}
7801
9b5b7751 7802/* rcu callback to free various structures associated with a task group */
2f5177f0 7803static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7804{
29f59db3 7805 /* now it should be safe to free those cfs_rqs */
2f5177f0 7806 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7807}
7808
4cf86d77 7809void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7810{
7811 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7812 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7813}
7814
7815void sched_offline_group(struct task_group *tg)
29f59db3 7816{
8ed36996 7817 unsigned long flags;
29f59db3 7818
3d4b47b4 7819 /* end participation in shares distribution */
6fe1f348 7820 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7821
7822 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7823 list_del_rcu(&tg->list);
f473aa5e 7824 list_del_rcu(&tg->siblings);
8ed36996 7825 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7826}
7827
ea86cb4b 7828static void sched_change_group(struct task_struct *tsk, int type)
29f59db3 7829{
8323f26c 7830 struct task_group *tg;
29f59db3 7831
f7b8a47d
KT
7832 /*
7833 * All callers are synchronized by task_rq_lock(); we do not use RCU
7834 * which is pointless here. Thus, we pass "true" to task_css_check()
7835 * to prevent lockdep warnings.
7836 */
7837 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7838 struct task_group, css);
7839 tg = autogroup_task_group(tsk, tg);
7840 tsk->sched_task_group = tg;
7841
810b3817 7842#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
7843 if (tsk->sched_class->task_change_group)
7844 tsk->sched_class->task_change_group(tsk, type);
b2b5ce02 7845 else
810b3817 7846#endif
b2b5ce02 7847 set_task_rq(tsk, task_cpu(tsk));
ea86cb4b
VG
7848}
7849
7850/*
7851 * Change task's runqueue when it moves between groups.
7852 *
7853 * The caller of this function should have put the task in its new group by
7854 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7855 * its new group.
7856 */
7857void sched_move_task(struct task_struct *tsk)
7858{
7859 int queued, running;
7860 struct rq_flags rf;
7861 struct rq *rq;
7862
7863 rq = task_rq_lock(tsk, &rf);
7864
7865 running = task_current(rq, tsk);
7866 queued = task_on_rq_queued(tsk);
7867
7868 if (queued)
7869 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7870 if (unlikely(running))
7871 put_prev_task(rq, tsk);
7872
7873 sched_change_group(tsk, TASK_MOVE_GROUP);
810b3817 7874
0e1f3483
HS
7875 if (unlikely(running))
7876 tsk->sched_class->set_curr_task(rq);
da0c1e65 7877 if (queued)
ff77e468 7878 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7879
eb580751 7880 task_rq_unlock(rq, tsk, &rf);
29f59db3 7881}
7c941438 7882#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7883
a790de99
PT
7884#ifdef CONFIG_RT_GROUP_SCHED
7885/*
7886 * Ensure that the real time constraints are schedulable.
7887 */
7888static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7889
9a7e0b18
PZ
7890/* Must be called with tasklist_lock held */
7891static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7892{
9a7e0b18 7893 struct task_struct *g, *p;
b40b2e8e 7894
1fe89e1b
PZ
7895 /*
7896 * Autogroups do not have RT tasks; see autogroup_create().
7897 */
7898 if (task_group_is_autogroup(tg))
7899 return 0;
7900
5d07f420 7901 for_each_process_thread(g, p) {
8651c658 7902 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7903 return 1;
5d07f420 7904 }
b40b2e8e 7905
9a7e0b18
PZ
7906 return 0;
7907}
b40b2e8e 7908
9a7e0b18
PZ
7909struct rt_schedulable_data {
7910 struct task_group *tg;
7911 u64 rt_period;
7912 u64 rt_runtime;
7913};
b40b2e8e 7914
a790de99 7915static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7916{
7917 struct rt_schedulable_data *d = data;
7918 struct task_group *child;
7919 unsigned long total, sum = 0;
7920 u64 period, runtime;
b40b2e8e 7921
9a7e0b18
PZ
7922 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7923 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7924
9a7e0b18
PZ
7925 if (tg == d->tg) {
7926 period = d->rt_period;
7927 runtime = d->rt_runtime;
b40b2e8e 7928 }
b40b2e8e 7929
4653f803
PZ
7930 /*
7931 * Cannot have more runtime than the period.
7932 */
7933 if (runtime > period && runtime != RUNTIME_INF)
7934 return -EINVAL;
6f505b16 7935
4653f803
PZ
7936 /*
7937 * Ensure we don't starve existing RT tasks.
7938 */
9a7e0b18
PZ
7939 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7940 return -EBUSY;
6f505b16 7941
9a7e0b18 7942 total = to_ratio(period, runtime);
6f505b16 7943
4653f803
PZ
7944 /*
7945 * Nobody can have more than the global setting allows.
7946 */
7947 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7948 return -EINVAL;
6f505b16 7949
4653f803
PZ
7950 /*
7951 * The sum of our children's runtime should not exceed our own.
7952 */
9a7e0b18
PZ
7953 list_for_each_entry_rcu(child, &tg->children, siblings) {
7954 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7955 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7956
9a7e0b18
PZ
7957 if (child == d->tg) {
7958 period = d->rt_period;
7959 runtime = d->rt_runtime;
7960 }
6f505b16 7961
9a7e0b18 7962 sum += to_ratio(period, runtime);
9f0c1e56 7963 }
6f505b16 7964
9a7e0b18
PZ
7965 if (sum > total)
7966 return -EINVAL;
7967
7968 return 0;
6f505b16
PZ
7969}
7970
9a7e0b18 7971static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7972{
8277434e
PT
7973 int ret;
7974
9a7e0b18
PZ
7975 struct rt_schedulable_data data = {
7976 .tg = tg,
7977 .rt_period = period,
7978 .rt_runtime = runtime,
7979 };
7980
8277434e
PT
7981 rcu_read_lock();
7982 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7983 rcu_read_unlock();
7984
7985 return ret;
521f1a24
DG
7986}
7987
ab84d31e 7988static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7989 u64 rt_period, u64 rt_runtime)
6f505b16 7990{
ac086bc2 7991 int i, err = 0;
9f0c1e56 7992
2636ed5f
PZ
7993 /*
7994 * Disallowing the root group RT runtime is BAD, it would disallow the
7995 * kernel creating (and or operating) RT threads.
7996 */
7997 if (tg == &root_task_group && rt_runtime == 0)
7998 return -EINVAL;
7999
8000 /* No period doesn't make any sense. */
8001 if (rt_period == 0)
8002 return -EINVAL;
8003
9f0c1e56 8004 mutex_lock(&rt_constraints_mutex);
521f1a24 8005 read_lock(&tasklist_lock);
9a7e0b18
PZ
8006 err = __rt_schedulable(tg, rt_period, rt_runtime);
8007 if (err)
9f0c1e56 8008 goto unlock;
ac086bc2 8009
0986b11b 8010 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8011 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8012 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8013
8014 for_each_possible_cpu(i) {
8015 struct rt_rq *rt_rq = tg->rt_rq[i];
8016
0986b11b 8017 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8018 rt_rq->rt_runtime = rt_runtime;
0986b11b 8019 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8020 }
0986b11b 8021 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 8022unlock:
521f1a24 8023 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8024 mutex_unlock(&rt_constraints_mutex);
8025
8026 return err;
6f505b16
PZ
8027}
8028
25cc7da7 8029static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
8030{
8031 u64 rt_runtime, rt_period;
8032
8033 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8034 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8035 if (rt_runtime_us < 0)
8036 rt_runtime = RUNTIME_INF;
8037
ab84d31e 8038 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8039}
8040
25cc7da7 8041static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
8042{
8043 u64 rt_runtime_us;
8044
d0b27fa7 8045 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8046 return -1;
8047
d0b27fa7 8048 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8049 do_div(rt_runtime_us, NSEC_PER_USEC);
8050 return rt_runtime_us;
8051}
d0b27fa7 8052
ce2f5fe4 8053static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
8054{
8055 u64 rt_runtime, rt_period;
8056
ce2f5fe4 8057 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
8058 rt_runtime = tg->rt_bandwidth.rt_runtime;
8059
ab84d31e 8060 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
8061}
8062
25cc7da7 8063static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
8064{
8065 u64 rt_period_us;
8066
8067 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8068 do_div(rt_period_us, NSEC_PER_USEC);
8069 return rt_period_us;
8070}
332ac17e 8071#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8072
332ac17e 8073#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
8074static int sched_rt_global_constraints(void)
8075{
8076 int ret = 0;
8077
8078 mutex_lock(&rt_constraints_mutex);
9a7e0b18 8079 read_lock(&tasklist_lock);
4653f803 8080 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 8081 read_unlock(&tasklist_lock);
d0b27fa7
PZ
8082 mutex_unlock(&rt_constraints_mutex);
8083
8084 return ret;
8085}
54e99124 8086
25cc7da7 8087static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
8088{
8089 /* Don't accept realtime tasks when there is no way for them to run */
8090 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8091 return 0;
8092
8093 return 1;
8094}
8095
6d6bc0ad 8096#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8097static int sched_rt_global_constraints(void)
8098{
ac086bc2 8099 unsigned long flags;
8c5e9554 8100 int i;
ec5d4989 8101
0986b11b 8102 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
8103 for_each_possible_cpu(i) {
8104 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8105
0986b11b 8106 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 8107 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 8108 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 8109 }
0986b11b 8110 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 8111
8c5e9554 8112 return 0;
d0b27fa7 8113}
6d6bc0ad 8114#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8115
a1963b81 8116static int sched_dl_global_validate(void)
332ac17e 8117{
1724813d
PZ
8118 u64 runtime = global_rt_runtime();
8119 u64 period = global_rt_period();
332ac17e 8120 u64 new_bw = to_ratio(period, runtime);
f10e00f4 8121 struct dl_bw *dl_b;
1724813d 8122 int cpu, ret = 0;
49516342 8123 unsigned long flags;
332ac17e
DF
8124
8125 /*
8126 * Here we want to check the bandwidth not being set to some
8127 * value smaller than the currently allocated bandwidth in
8128 * any of the root_domains.
8129 *
8130 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8131 * cycling on root_domains... Discussion on different/better
8132 * solutions is welcome!
8133 */
1724813d 8134 for_each_possible_cpu(cpu) {
f10e00f4
KT
8135 rcu_read_lock_sched();
8136 dl_b = dl_bw_of(cpu);
332ac17e 8137
49516342 8138 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
8139 if (new_bw < dl_b->total_bw)
8140 ret = -EBUSY;
49516342 8141 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 8142
f10e00f4
KT
8143 rcu_read_unlock_sched();
8144
1724813d
PZ
8145 if (ret)
8146 break;
332ac17e
DF
8147 }
8148
1724813d 8149 return ret;
332ac17e
DF
8150}
8151
1724813d 8152static void sched_dl_do_global(void)
ce0dbbbb 8153{
1724813d 8154 u64 new_bw = -1;
f10e00f4 8155 struct dl_bw *dl_b;
1724813d 8156 int cpu;
49516342 8157 unsigned long flags;
ce0dbbbb 8158
1724813d
PZ
8159 def_dl_bandwidth.dl_period = global_rt_period();
8160 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8161
8162 if (global_rt_runtime() != RUNTIME_INF)
8163 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8164
8165 /*
8166 * FIXME: As above...
8167 */
8168 for_each_possible_cpu(cpu) {
f10e00f4
KT
8169 rcu_read_lock_sched();
8170 dl_b = dl_bw_of(cpu);
1724813d 8171
49516342 8172 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 8173 dl_b->bw = new_bw;
49516342 8174 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
8175
8176 rcu_read_unlock_sched();
ce0dbbbb 8177 }
1724813d
PZ
8178}
8179
8180static int sched_rt_global_validate(void)
8181{
8182 if (sysctl_sched_rt_period <= 0)
8183 return -EINVAL;
8184
e9e7cb38
JL
8185 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8186 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
8187 return -EINVAL;
8188
8189 return 0;
8190}
8191
8192static void sched_rt_do_global(void)
8193{
8194 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8195 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8196}
8197
d0b27fa7 8198int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8199 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8200 loff_t *ppos)
8201{
d0b27fa7
PZ
8202 int old_period, old_runtime;
8203 static DEFINE_MUTEX(mutex);
1724813d 8204 int ret;
d0b27fa7
PZ
8205
8206 mutex_lock(&mutex);
8207 old_period = sysctl_sched_rt_period;
8208 old_runtime = sysctl_sched_rt_runtime;
8209
8d65af78 8210 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8211
8212 if (!ret && write) {
1724813d
PZ
8213 ret = sched_rt_global_validate();
8214 if (ret)
8215 goto undo;
8216
a1963b81 8217 ret = sched_dl_global_validate();
1724813d
PZ
8218 if (ret)
8219 goto undo;
8220
a1963b81 8221 ret = sched_rt_global_constraints();
1724813d
PZ
8222 if (ret)
8223 goto undo;
8224
8225 sched_rt_do_global();
8226 sched_dl_do_global();
8227 }
8228 if (0) {
8229undo:
8230 sysctl_sched_rt_period = old_period;
8231 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8232 }
8233 mutex_unlock(&mutex);
8234
8235 return ret;
8236}
68318b8e 8237
1724813d 8238int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8239 void __user *buffer, size_t *lenp,
8240 loff_t *ppos)
8241{
8242 int ret;
332ac17e 8243 static DEFINE_MUTEX(mutex);
332ac17e
DF
8244
8245 mutex_lock(&mutex);
332ac17e 8246 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8247 /* make sure that internally we keep jiffies */
8248 /* also, writing zero resets timeslice to default */
332ac17e 8249 if (!ret && write) {
1724813d
PZ
8250 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8251 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8252 }
8253 mutex_unlock(&mutex);
332ac17e
DF
8254 return ret;
8255}
8256
052f1dc7 8257#ifdef CONFIG_CGROUP_SCHED
68318b8e 8258
a7c6d554 8259static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8260{
a7c6d554 8261 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8262}
8263
eb95419b
TH
8264static struct cgroup_subsys_state *
8265cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8266{
eb95419b
TH
8267 struct task_group *parent = css_tg(parent_css);
8268 struct task_group *tg;
68318b8e 8269
eb95419b 8270 if (!parent) {
68318b8e 8271 /* This is early initialization for the top cgroup */
07e06b01 8272 return &root_task_group.css;
68318b8e
SV
8273 }
8274
ec7dc8ac 8275 tg = sched_create_group(parent);
68318b8e
SV
8276 if (IS_ERR(tg))
8277 return ERR_PTR(-ENOMEM);
8278
2f5177f0
PZ
8279 sched_online_group(tg, parent);
8280
68318b8e
SV
8281 return &tg->css;
8282}
8283
2f5177f0 8284static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8285{
eb95419b 8286 struct task_group *tg = css_tg(css);
ace783b9 8287
2f5177f0 8288 sched_offline_group(tg);
ace783b9
LZ
8289}
8290
eb95419b 8291static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8292{
eb95419b 8293 struct task_group *tg = css_tg(css);
68318b8e 8294
2f5177f0
PZ
8295 /*
8296 * Relies on the RCU grace period between css_released() and this.
8297 */
8298 sched_free_group(tg);
ace783b9
LZ
8299}
8300
ea86cb4b
VG
8301/*
8302 * This is called before wake_up_new_task(), therefore we really only
8303 * have to set its group bits, all the other stuff does not apply.
8304 */
b53202e6 8305static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53 8306{
ea86cb4b
VG
8307 struct rq_flags rf;
8308 struct rq *rq;
8309
8310 rq = task_rq_lock(task, &rf);
8311
8312 sched_change_group(task, TASK_SET_GROUP);
8313
8314 task_rq_unlock(rq, task, &rf);
eeb61e53
KT
8315}
8316
1f7dd3e5 8317static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8318{
bb9d97b6 8319 struct task_struct *task;
1f7dd3e5 8320 struct cgroup_subsys_state *css;
7dc603c9 8321 int ret = 0;
bb9d97b6 8322
1f7dd3e5 8323 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8324#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8325 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8326 return -EINVAL;
b68aa230 8327#else
bb9d97b6
TH
8328 /* We don't support RT-tasks being in separate groups */
8329 if (task->sched_class != &fair_sched_class)
8330 return -EINVAL;
b68aa230 8331#endif
7dc603c9
PZ
8332 /*
8333 * Serialize against wake_up_new_task() such that if its
8334 * running, we're sure to observe its full state.
8335 */
8336 raw_spin_lock_irq(&task->pi_lock);
8337 /*
8338 * Avoid calling sched_move_task() before wake_up_new_task()
8339 * has happened. This would lead to problems with PELT, due to
8340 * move wanting to detach+attach while we're not attached yet.
8341 */
8342 if (task->state == TASK_NEW)
8343 ret = -EINVAL;
8344 raw_spin_unlock_irq(&task->pi_lock);
8345
8346 if (ret)
8347 break;
bb9d97b6 8348 }
7dc603c9 8349 return ret;
be367d09 8350}
68318b8e 8351
1f7dd3e5 8352static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8353{
bb9d97b6 8354 struct task_struct *task;
1f7dd3e5 8355 struct cgroup_subsys_state *css;
bb9d97b6 8356
1f7dd3e5 8357 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8358 sched_move_task(task);
68318b8e
SV
8359}
8360
052f1dc7 8361#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8362static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8363 struct cftype *cftype, u64 shareval)
68318b8e 8364{
182446d0 8365 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8366}
8367
182446d0
TH
8368static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8369 struct cftype *cft)
68318b8e 8370{
182446d0 8371 struct task_group *tg = css_tg(css);
68318b8e 8372
c8b28116 8373 return (u64) scale_load_down(tg->shares);
68318b8e 8374}
ab84d31e
PT
8375
8376#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8377static DEFINE_MUTEX(cfs_constraints_mutex);
8378
ab84d31e
PT
8379const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8380const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8381
a790de99
PT
8382static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8383
ab84d31e
PT
8384static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8385{
56f570e5 8386 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8387 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8388
8389 if (tg == &root_task_group)
8390 return -EINVAL;
8391
8392 /*
8393 * Ensure we have at some amount of bandwidth every period. This is
8394 * to prevent reaching a state of large arrears when throttled via
8395 * entity_tick() resulting in prolonged exit starvation.
8396 */
8397 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8398 return -EINVAL;
8399
8400 /*
8401 * Likewise, bound things on the otherside by preventing insane quota
8402 * periods. This also allows us to normalize in computing quota
8403 * feasibility.
8404 */
8405 if (period > max_cfs_quota_period)
8406 return -EINVAL;
8407
0e59bdae
KT
8408 /*
8409 * Prevent race between setting of cfs_rq->runtime_enabled and
8410 * unthrottle_offline_cfs_rqs().
8411 */
8412 get_online_cpus();
a790de99
PT
8413 mutex_lock(&cfs_constraints_mutex);
8414 ret = __cfs_schedulable(tg, period, quota);
8415 if (ret)
8416 goto out_unlock;
8417
58088ad0 8418 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8419 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8420 /*
8421 * If we need to toggle cfs_bandwidth_used, off->on must occur
8422 * before making related changes, and on->off must occur afterwards
8423 */
8424 if (runtime_enabled && !runtime_was_enabled)
8425 cfs_bandwidth_usage_inc();
ab84d31e
PT
8426 raw_spin_lock_irq(&cfs_b->lock);
8427 cfs_b->period = ns_to_ktime(period);
8428 cfs_b->quota = quota;
58088ad0 8429
a9cf55b2 8430 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8431 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8432 if (runtime_enabled)
8433 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8434 raw_spin_unlock_irq(&cfs_b->lock);
8435
0e59bdae 8436 for_each_online_cpu(i) {
ab84d31e 8437 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8438 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8439
8440 raw_spin_lock_irq(&rq->lock);
58088ad0 8441 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8442 cfs_rq->runtime_remaining = 0;
671fd9da 8443
029632fb 8444 if (cfs_rq->throttled)
671fd9da 8445 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8446 raw_spin_unlock_irq(&rq->lock);
8447 }
1ee14e6c
BS
8448 if (runtime_was_enabled && !runtime_enabled)
8449 cfs_bandwidth_usage_dec();
a790de99
PT
8450out_unlock:
8451 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8452 put_online_cpus();
ab84d31e 8453
a790de99 8454 return ret;
ab84d31e
PT
8455}
8456
8457int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8458{
8459 u64 quota, period;
8460
029632fb 8461 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8462 if (cfs_quota_us < 0)
8463 quota = RUNTIME_INF;
8464 else
8465 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8466
8467 return tg_set_cfs_bandwidth(tg, period, quota);
8468}
8469
8470long tg_get_cfs_quota(struct task_group *tg)
8471{
8472 u64 quota_us;
8473
029632fb 8474 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8475 return -1;
8476
029632fb 8477 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8478 do_div(quota_us, NSEC_PER_USEC);
8479
8480 return quota_us;
8481}
8482
8483int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8484{
8485 u64 quota, period;
8486
8487 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8488 quota = tg->cfs_bandwidth.quota;
ab84d31e 8489
ab84d31e
PT
8490 return tg_set_cfs_bandwidth(tg, period, quota);
8491}
8492
8493long tg_get_cfs_period(struct task_group *tg)
8494{
8495 u64 cfs_period_us;
8496
029632fb 8497 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8498 do_div(cfs_period_us, NSEC_PER_USEC);
8499
8500 return cfs_period_us;
8501}
8502
182446d0
TH
8503static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8504 struct cftype *cft)
ab84d31e 8505{
182446d0 8506 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8507}
8508
182446d0
TH
8509static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8510 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8511{
182446d0 8512 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8513}
8514
182446d0
TH
8515static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8516 struct cftype *cft)
ab84d31e 8517{
182446d0 8518 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8519}
8520
182446d0
TH
8521static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8522 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8523{
182446d0 8524 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8525}
8526
a790de99
PT
8527struct cfs_schedulable_data {
8528 struct task_group *tg;
8529 u64 period, quota;
8530};
8531
8532/*
8533 * normalize group quota/period to be quota/max_period
8534 * note: units are usecs
8535 */
8536static u64 normalize_cfs_quota(struct task_group *tg,
8537 struct cfs_schedulable_data *d)
8538{
8539 u64 quota, period;
8540
8541 if (tg == d->tg) {
8542 period = d->period;
8543 quota = d->quota;
8544 } else {
8545 period = tg_get_cfs_period(tg);
8546 quota = tg_get_cfs_quota(tg);
8547 }
8548
8549 /* note: these should typically be equivalent */
8550 if (quota == RUNTIME_INF || quota == -1)
8551 return RUNTIME_INF;
8552
8553 return to_ratio(period, quota);
8554}
8555
8556static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8557{
8558 struct cfs_schedulable_data *d = data;
029632fb 8559 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8560 s64 quota = 0, parent_quota = -1;
8561
8562 if (!tg->parent) {
8563 quota = RUNTIME_INF;
8564 } else {
029632fb 8565 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8566
8567 quota = normalize_cfs_quota(tg, d);
9c58c79a 8568 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8569
8570 /*
8571 * ensure max(child_quota) <= parent_quota, inherit when no
8572 * limit is set
8573 */
8574 if (quota == RUNTIME_INF)
8575 quota = parent_quota;
8576 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8577 return -EINVAL;
8578 }
9c58c79a 8579 cfs_b->hierarchical_quota = quota;
a790de99
PT
8580
8581 return 0;
8582}
8583
8584static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8585{
8277434e 8586 int ret;
a790de99
PT
8587 struct cfs_schedulable_data data = {
8588 .tg = tg,
8589 .period = period,
8590 .quota = quota,
8591 };
8592
8593 if (quota != RUNTIME_INF) {
8594 do_div(data.period, NSEC_PER_USEC);
8595 do_div(data.quota, NSEC_PER_USEC);
8596 }
8597
8277434e
PT
8598 rcu_read_lock();
8599 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8600 rcu_read_unlock();
8601
8602 return ret;
a790de99 8603}
e8da1b18 8604
2da8ca82 8605static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8606{
2da8ca82 8607 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8608 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8609
44ffc75b
TH
8610 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8611 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8612 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8613
8614 return 0;
8615}
ab84d31e 8616#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8617#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8618
052f1dc7 8619#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8620static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8621 struct cftype *cft, s64 val)
6f505b16 8622{
182446d0 8623 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8624}
8625
182446d0
TH
8626static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8627 struct cftype *cft)
6f505b16 8628{
182446d0 8629 return sched_group_rt_runtime(css_tg(css));
6f505b16 8630}
d0b27fa7 8631
182446d0
TH
8632static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8633 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8634{
182446d0 8635 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8636}
8637
182446d0
TH
8638static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8639 struct cftype *cft)
d0b27fa7 8640{
182446d0 8641 return sched_group_rt_period(css_tg(css));
d0b27fa7 8642}
6d6bc0ad 8643#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8644
fe5c7cc2 8645static struct cftype cpu_files[] = {
052f1dc7 8646#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8647 {
8648 .name = "shares",
f4c753b7
PM
8649 .read_u64 = cpu_shares_read_u64,
8650 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8651 },
052f1dc7 8652#endif
ab84d31e
PT
8653#ifdef CONFIG_CFS_BANDWIDTH
8654 {
8655 .name = "cfs_quota_us",
8656 .read_s64 = cpu_cfs_quota_read_s64,
8657 .write_s64 = cpu_cfs_quota_write_s64,
8658 },
8659 {
8660 .name = "cfs_period_us",
8661 .read_u64 = cpu_cfs_period_read_u64,
8662 .write_u64 = cpu_cfs_period_write_u64,
8663 },
e8da1b18
NR
8664 {
8665 .name = "stat",
2da8ca82 8666 .seq_show = cpu_stats_show,
e8da1b18 8667 },
ab84d31e 8668#endif
052f1dc7 8669#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8670 {
9f0c1e56 8671 .name = "rt_runtime_us",
06ecb27c
PM
8672 .read_s64 = cpu_rt_runtime_read,
8673 .write_s64 = cpu_rt_runtime_write,
6f505b16 8674 },
d0b27fa7
PZ
8675 {
8676 .name = "rt_period_us",
f4c753b7
PM
8677 .read_u64 = cpu_rt_period_read_uint,
8678 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8679 },
052f1dc7 8680#endif
4baf6e33 8681 { } /* terminate */
68318b8e
SV
8682};
8683
073219e9 8684struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8685 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8686 .css_released = cpu_cgroup_css_released,
92fb9748 8687 .css_free = cpu_cgroup_css_free,
eeb61e53 8688 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8689 .can_attach = cpu_cgroup_can_attach,
8690 .attach = cpu_cgroup_attach,
5577964e 8691 .legacy_cftypes = cpu_files,
b38e42e9 8692 .early_init = true,
68318b8e
SV
8693};
8694
052f1dc7 8695#endif /* CONFIG_CGROUP_SCHED */
d842de87 8696
b637a328
PM
8697void dump_cpu_task(int cpu)
8698{
8699 pr_info("Task dump for CPU %d:\n", cpu);
8700 sched_show_task(cpu_curr(cpu));
8701}
ed82b8a1
AK
8702
8703/*
8704 * Nice levels are multiplicative, with a gentle 10% change for every
8705 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8706 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8707 * that remained on nice 0.
8708 *
8709 * The "10% effect" is relative and cumulative: from _any_ nice level,
8710 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8711 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8712 * If a task goes up by ~10% and another task goes down by ~10% then
8713 * the relative distance between them is ~25%.)
8714 */
8715const int sched_prio_to_weight[40] = {
8716 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8717 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8718 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8719 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8720 /* 0 */ 1024, 820, 655, 526, 423,
8721 /* 5 */ 335, 272, 215, 172, 137,
8722 /* 10 */ 110, 87, 70, 56, 45,
8723 /* 15 */ 36, 29, 23, 18, 15,
8724};
8725
8726/*
8727 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8728 *
8729 * In cases where the weight does not change often, we can use the
8730 * precalculated inverse to speed up arithmetics by turning divisions
8731 * into multiplications:
8732 */
8733const u32 sched_prio_to_wmult[40] = {
8734 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8735 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8736 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8737 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8738 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8739 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8740 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8741 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8742};