]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - kernel/sched/core.c
mm: sched: numa: Control enabling and disabling of NUMA balancing
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
1a687c2e 195static int sched_feat_set(char *cmp)
f00b45c1 196{
f00b45c1 197 int i;
1a687c2e 198 int neg = 0;
f00b45c1 199
524429c3 200 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
201 neg = 1;
202 cmp += 3;
203 }
204
f8b6d1cc 205 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 206 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 207 if (neg) {
f00b45c1 208 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
209 sched_feat_disable(i);
210 } else {
f00b45c1 211 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
212 sched_feat_enable(i);
213 }
f00b45c1
PZ
214 break;
215 }
216 }
217
1a687c2e
MG
218 return i;
219}
220
221static ssize_t
222sched_feat_write(struct file *filp, const char __user *ubuf,
223 size_t cnt, loff_t *ppos)
224{
225 char buf[64];
226 char *cmp;
227 int i;
228
229 if (cnt > 63)
230 cnt = 63;
231
232 if (copy_from_user(&buf, ubuf, cnt))
233 return -EFAULT;
234
235 buf[cnt] = 0;
236 cmp = strstrip(buf);
237
238 i = sched_feat_set(cmp);
f8b6d1cc 239 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
240 return -EINVAL;
241
42994724 242 *ppos += cnt;
f00b45c1
PZ
243
244 return cnt;
245}
246
34f3a814
LZ
247static int sched_feat_open(struct inode *inode, struct file *filp)
248{
249 return single_open(filp, sched_feat_show, NULL);
250}
251
828c0950 252static const struct file_operations sched_feat_fops = {
34f3a814
LZ
253 .open = sched_feat_open,
254 .write = sched_feat_write,
255 .read = seq_read,
256 .llseek = seq_lseek,
257 .release = single_release,
f00b45c1
PZ
258};
259
260static __init int sched_init_debug(void)
261{
f00b45c1
PZ
262 debugfs_create_file("sched_features", 0644, NULL, NULL,
263 &sched_feat_fops);
264
265 return 0;
266}
267late_initcall(sched_init_debug);
f8b6d1cc 268#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 269
b82d9fdd
PZ
270/*
271 * Number of tasks to iterate in a single balance run.
272 * Limited because this is done with IRQs disabled.
273 */
274const_debug unsigned int sysctl_sched_nr_migrate = 32;
275
e9e9250b
PZ
276/*
277 * period over which we average the RT time consumption, measured
278 * in ms.
279 *
280 * default: 1s
281 */
282const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
283
fa85ae24 284/*
9f0c1e56 285 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
286 * default: 1s
287 */
9f0c1e56 288unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 289
029632fb 290__read_mostly int scheduler_running;
6892b75e 291
9f0c1e56
PZ
292/*
293 * part of the period that we allow rt tasks to run in us.
294 * default: 0.95s
295 */
296int sysctl_sched_rt_runtime = 950000;
fa85ae24 297
fa85ae24 298
1da177e4 299
0970d299 300/*
0122ec5b 301 * __task_rq_lock - lock the rq @p resides on.
b29739f9 302 */
70b97a7f 303static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
304 __acquires(rq->lock)
305{
0970d299
PZ
306 struct rq *rq;
307
0122ec5b
PZ
308 lockdep_assert_held(&p->pi_lock);
309
3a5c359a 310 for (;;) {
0970d299 311 rq = task_rq(p);
05fa785c 312 raw_spin_lock(&rq->lock);
65cc8e48 313 if (likely(rq == task_rq(p)))
3a5c359a 314 return rq;
05fa785c 315 raw_spin_unlock(&rq->lock);
b29739f9 316 }
b29739f9
IM
317}
318
1da177e4 319/*
0122ec5b 320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 321 */
70b97a7f 322static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 323 __acquires(p->pi_lock)
1da177e4
LT
324 __acquires(rq->lock)
325{
70b97a7f 326 struct rq *rq;
1da177e4 327
3a5c359a 328 for (;;) {
0122ec5b 329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 330 rq = task_rq(p);
05fa785c 331 raw_spin_lock(&rq->lock);
65cc8e48 332 if (likely(rq == task_rq(p)))
3a5c359a 333 return rq;
0122ec5b
PZ
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 336 }
1da177e4
LT
337}
338
a9957449 339static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
340 __releases(rq->lock)
341{
05fa785c 342 raw_spin_unlock(&rq->lock);
b29739f9
IM
343}
344
0122ec5b
PZ
345static inline void
346task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 347 __releases(rq->lock)
0122ec5b 348 __releases(p->pi_lock)
1da177e4 349{
0122ec5b
PZ
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
352}
353
1da177e4 354/*
cc2a73b5 355 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 356 */
a9957449 357static struct rq *this_rq_lock(void)
1da177e4
LT
358 __acquires(rq->lock)
359{
70b97a7f 360 struct rq *rq;
1da177e4
LT
361
362 local_irq_disable();
363 rq = this_rq();
05fa785c 364 raw_spin_lock(&rq->lock);
1da177e4
LT
365
366 return rq;
367}
368
8f4d37ec
PZ
369#ifdef CONFIG_SCHED_HRTICK
370/*
371 * Use HR-timers to deliver accurate preemption points.
372 *
373 * Its all a bit involved since we cannot program an hrt while holding the
374 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
375 * reschedule event.
376 *
377 * When we get rescheduled we reprogram the hrtick_timer outside of the
378 * rq->lock.
379 */
8f4d37ec 380
8f4d37ec
PZ
381static void hrtick_clear(struct rq *rq)
382{
383 if (hrtimer_active(&rq->hrtick_timer))
384 hrtimer_cancel(&rq->hrtick_timer);
385}
386
8f4d37ec
PZ
387/*
388 * High-resolution timer tick.
389 * Runs from hardirq context with interrupts disabled.
390 */
391static enum hrtimer_restart hrtick(struct hrtimer *timer)
392{
393 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
394
395 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
396
05fa785c 397 raw_spin_lock(&rq->lock);
3e51f33f 398 update_rq_clock(rq);
8f4d37ec 399 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 400 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
401
402 return HRTIMER_NORESTART;
403}
404
95e904c7 405#ifdef CONFIG_SMP
31656519
PZ
406/*
407 * called from hardirq (IPI) context
408 */
409static void __hrtick_start(void *arg)
b328ca18 410{
31656519 411 struct rq *rq = arg;
b328ca18 412
05fa785c 413 raw_spin_lock(&rq->lock);
31656519
PZ
414 hrtimer_restart(&rq->hrtick_timer);
415 rq->hrtick_csd_pending = 0;
05fa785c 416 raw_spin_unlock(&rq->lock);
b328ca18
PZ
417}
418
31656519
PZ
419/*
420 * Called to set the hrtick timer state.
421 *
422 * called with rq->lock held and irqs disabled
423 */
029632fb 424void hrtick_start(struct rq *rq, u64 delay)
b328ca18 425{
31656519
PZ
426 struct hrtimer *timer = &rq->hrtick_timer;
427 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 428
cc584b21 429 hrtimer_set_expires(timer, time);
31656519
PZ
430
431 if (rq == this_rq()) {
432 hrtimer_restart(timer);
433 } else if (!rq->hrtick_csd_pending) {
6e275637 434 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
435 rq->hrtick_csd_pending = 1;
436 }
b328ca18
PZ
437}
438
439static int
440hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
441{
442 int cpu = (int)(long)hcpu;
443
444 switch (action) {
445 case CPU_UP_CANCELED:
446 case CPU_UP_CANCELED_FROZEN:
447 case CPU_DOWN_PREPARE:
448 case CPU_DOWN_PREPARE_FROZEN:
449 case CPU_DEAD:
450 case CPU_DEAD_FROZEN:
31656519 451 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
452 return NOTIFY_OK;
453 }
454
455 return NOTIFY_DONE;
456}
457
fa748203 458static __init void init_hrtick(void)
b328ca18
PZ
459{
460 hotcpu_notifier(hotplug_hrtick, 0);
461}
31656519
PZ
462#else
463/*
464 * Called to set the hrtick timer state.
465 *
466 * called with rq->lock held and irqs disabled
467 */
029632fb 468void hrtick_start(struct rq *rq, u64 delay)
31656519 469{
7f1e2ca9 470 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 471 HRTIMER_MODE_REL_PINNED, 0);
31656519 472}
b328ca18 473
006c75f1 474static inline void init_hrtick(void)
8f4d37ec 475{
8f4d37ec 476}
31656519 477#endif /* CONFIG_SMP */
8f4d37ec 478
31656519 479static void init_rq_hrtick(struct rq *rq)
8f4d37ec 480{
31656519
PZ
481#ifdef CONFIG_SMP
482 rq->hrtick_csd_pending = 0;
8f4d37ec 483
31656519
PZ
484 rq->hrtick_csd.flags = 0;
485 rq->hrtick_csd.func = __hrtick_start;
486 rq->hrtick_csd.info = rq;
487#endif
8f4d37ec 488
31656519
PZ
489 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
490 rq->hrtick_timer.function = hrtick;
8f4d37ec 491}
006c75f1 492#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
493static inline void hrtick_clear(struct rq *rq)
494{
495}
496
8f4d37ec
PZ
497static inline void init_rq_hrtick(struct rq *rq)
498{
499}
500
b328ca18
PZ
501static inline void init_hrtick(void)
502{
503}
006c75f1 504#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 505
c24d20db
IM
506/*
507 * resched_task - mark a task 'to be rescheduled now'.
508 *
509 * On UP this means the setting of the need_resched flag, on SMP it
510 * might also involve a cross-CPU call to trigger the scheduler on
511 * the target CPU.
512 */
513#ifdef CONFIG_SMP
514
515#ifndef tsk_is_polling
16a80163 516#define tsk_is_polling(t) 0
c24d20db
IM
517#endif
518
029632fb 519void resched_task(struct task_struct *p)
c24d20db
IM
520{
521 int cpu;
522
05fa785c 523 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 524
5ed0cec0 525 if (test_tsk_need_resched(p))
c24d20db
IM
526 return;
527
5ed0cec0 528 set_tsk_need_resched(p);
c24d20db
IM
529
530 cpu = task_cpu(p);
531 if (cpu == smp_processor_id())
532 return;
533
534 /* NEED_RESCHED must be visible before we test polling */
535 smp_mb();
536 if (!tsk_is_polling(p))
537 smp_send_reschedule(cpu);
538}
539
029632fb 540void resched_cpu(int cpu)
c24d20db
IM
541{
542 struct rq *rq = cpu_rq(cpu);
543 unsigned long flags;
544
05fa785c 545 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
546 return;
547 resched_task(cpu_curr(cpu));
05fa785c 548 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 549}
06d8308c
TG
550
551#ifdef CONFIG_NO_HZ
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
589void wake_up_idle_cpu(int cpu)
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
ca38062e 619static inline bool got_nohz_idle_kick(void)
45bf76df 620{
1c792db7
SS
621 int cpu = smp_processor_id();
622 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
623}
624
ca38062e 625#else /* CONFIG_NO_HZ */
45bf76df 626
ca38062e 627static inline bool got_nohz_idle_kick(void)
2069dd75 628{
ca38062e 629 return false;
2069dd75
PZ
630}
631
6d6bc0ad 632#endif /* CONFIG_NO_HZ */
d842de87 633
029632fb 634void sched_avg_update(struct rq *rq)
18d95a28 635{
e9e9250b
PZ
636 s64 period = sched_avg_period();
637
638 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
639 /*
640 * Inline assembly required to prevent the compiler
641 * optimising this loop into a divmod call.
642 * See __iter_div_u64_rem() for another example of this.
643 */
644 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
645 rq->age_stamp += period;
646 rq->rt_avg /= 2;
647 }
18d95a28
PZ
648}
649
6d6bc0ad 650#else /* !CONFIG_SMP */
029632fb 651void resched_task(struct task_struct *p)
18d95a28 652{
05fa785c 653 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 654 set_tsk_need_resched(p);
18d95a28 655}
6d6bc0ad 656#endif /* CONFIG_SMP */
18d95a28 657
a790de99
PT
658#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
659 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 660/*
8277434e
PT
661 * Iterate task_group tree rooted at *from, calling @down when first entering a
662 * node and @up when leaving it for the final time.
663 *
664 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 665 */
029632fb 666int walk_tg_tree_from(struct task_group *from,
8277434e 667 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
668{
669 struct task_group *parent, *child;
eb755805 670 int ret;
c09595f6 671
8277434e
PT
672 parent = from;
673
c09595f6 674down:
eb755805
PZ
675 ret = (*down)(parent, data);
676 if (ret)
8277434e 677 goto out;
c09595f6
PZ
678 list_for_each_entry_rcu(child, &parent->children, siblings) {
679 parent = child;
680 goto down;
681
682up:
683 continue;
684 }
eb755805 685 ret = (*up)(parent, data);
8277434e
PT
686 if (ret || parent == from)
687 goto out;
c09595f6
PZ
688
689 child = parent;
690 parent = parent->parent;
691 if (parent)
692 goto up;
8277434e 693out:
eb755805 694 return ret;
c09595f6
PZ
695}
696
029632fb 697int tg_nop(struct task_group *tg, void *data)
eb755805 698{
e2b245f8 699 return 0;
eb755805 700}
18d95a28
PZ
701#endif
702
45bf76df
IM
703static void set_load_weight(struct task_struct *p)
704{
f05998d4
NR
705 int prio = p->static_prio - MAX_RT_PRIO;
706 struct load_weight *load = &p->se.load;
707
dd41f596
IM
708 /*
709 * SCHED_IDLE tasks get minimal weight:
710 */
711 if (p->policy == SCHED_IDLE) {
c8b28116 712 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 713 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
714 return;
715 }
71f8bd46 716
c8b28116 717 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 718 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
719}
720
371fd7e7 721static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 722{
a64692a3 723 update_rq_clock(rq);
dd41f596 724 sched_info_queued(p);
371fd7e7 725 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
726}
727
371fd7e7 728static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 729{
a64692a3 730 update_rq_clock(rq);
46ac22ba 731 sched_info_dequeued(p);
371fd7e7 732 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
733}
734
029632fb 735void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible--;
739
371fd7e7 740 enqueue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
029632fb 743void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
744{
745 if (task_contributes_to_load(p))
746 rq->nr_uninterruptible++;
747
371fd7e7 748 dequeue_task(rq, p, flags);
1e3c88bd
PZ
749}
750
fe44d621 751static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 752{
095c0aa8
GC
753/*
754 * In theory, the compile should just see 0 here, and optimize out the call
755 * to sched_rt_avg_update. But I don't trust it...
756 */
757#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
758 s64 steal = 0, irq_delta = 0;
759#endif
760#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 761 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
762
763 /*
764 * Since irq_time is only updated on {soft,}irq_exit, we might run into
765 * this case when a previous update_rq_clock() happened inside a
766 * {soft,}irq region.
767 *
768 * When this happens, we stop ->clock_task and only update the
769 * prev_irq_time stamp to account for the part that fit, so that a next
770 * update will consume the rest. This ensures ->clock_task is
771 * monotonic.
772 *
773 * It does however cause some slight miss-attribution of {soft,}irq
774 * time, a more accurate solution would be to update the irq_time using
775 * the current rq->clock timestamp, except that would require using
776 * atomic ops.
777 */
778 if (irq_delta > delta)
779 irq_delta = delta;
780
781 rq->prev_irq_time += irq_delta;
782 delta -= irq_delta;
095c0aa8
GC
783#endif
784#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 785 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
786 u64 st;
787
788 steal = paravirt_steal_clock(cpu_of(rq));
789 steal -= rq->prev_steal_time_rq;
790
791 if (unlikely(steal > delta))
792 steal = delta;
793
794 st = steal_ticks(steal);
795 steal = st * TICK_NSEC;
796
797 rq->prev_steal_time_rq += steal;
798
799 delta -= steal;
800 }
801#endif
802
fe44d621
PZ
803 rq->clock_task += delta;
804
095c0aa8
GC
805#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
806 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
807 sched_rt_avg_update(rq, irq_delta + steal);
808#endif
aa483808
VP
809}
810
34f971f6
PZ
811void sched_set_stop_task(int cpu, struct task_struct *stop)
812{
813 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
814 struct task_struct *old_stop = cpu_rq(cpu)->stop;
815
816 if (stop) {
817 /*
818 * Make it appear like a SCHED_FIFO task, its something
819 * userspace knows about and won't get confused about.
820 *
821 * Also, it will make PI more or less work without too
822 * much confusion -- but then, stop work should not
823 * rely on PI working anyway.
824 */
825 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
826
827 stop->sched_class = &stop_sched_class;
828 }
829
830 cpu_rq(cpu)->stop = stop;
831
832 if (old_stop) {
833 /*
834 * Reset it back to a normal scheduling class so that
835 * it can die in pieces.
836 */
837 old_stop->sched_class = &rt_sched_class;
838 }
839}
840
14531189 841/*
dd41f596 842 * __normal_prio - return the priority that is based on the static prio
14531189 843 */
14531189
IM
844static inline int __normal_prio(struct task_struct *p)
845{
dd41f596 846 return p->static_prio;
14531189
IM
847}
848
b29739f9
IM
849/*
850 * Calculate the expected normal priority: i.e. priority
851 * without taking RT-inheritance into account. Might be
852 * boosted by interactivity modifiers. Changes upon fork,
853 * setprio syscalls, and whenever the interactivity
854 * estimator recalculates.
855 */
36c8b586 856static inline int normal_prio(struct task_struct *p)
b29739f9
IM
857{
858 int prio;
859
e05606d3 860 if (task_has_rt_policy(p))
b29739f9
IM
861 prio = MAX_RT_PRIO-1 - p->rt_priority;
862 else
863 prio = __normal_prio(p);
864 return prio;
865}
866
867/*
868 * Calculate the current priority, i.e. the priority
869 * taken into account by the scheduler. This value might
870 * be boosted by RT tasks, or might be boosted by
871 * interactivity modifiers. Will be RT if the task got
872 * RT-boosted. If not then it returns p->normal_prio.
873 */
36c8b586 874static int effective_prio(struct task_struct *p)
b29739f9
IM
875{
876 p->normal_prio = normal_prio(p);
877 /*
878 * If we are RT tasks or we were boosted to RT priority,
879 * keep the priority unchanged. Otherwise, update priority
880 * to the normal priority:
881 */
882 if (!rt_prio(p->prio))
883 return p->normal_prio;
884 return p->prio;
885}
886
1da177e4
LT
887/**
888 * task_curr - is this task currently executing on a CPU?
889 * @p: the task in question.
890 */
36c8b586 891inline int task_curr(const struct task_struct *p)
1da177e4
LT
892{
893 return cpu_curr(task_cpu(p)) == p;
894}
895
cb469845
SR
896static inline void check_class_changed(struct rq *rq, struct task_struct *p,
897 const struct sched_class *prev_class,
da7a735e 898 int oldprio)
cb469845
SR
899{
900 if (prev_class != p->sched_class) {
901 if (prev_class->switched_from)
da7a735e
PZ
902 prev_class->switched_from(rq, p);
903 p->sched_class->switched_to(rq, p);
904 } else if (oldprio != p->prio)
905 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
906}
907
029632fb 908void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
909{
910 const struct sched_class *class;
911
912 if (p->sched_class == rq->curr->sched_class) {
913 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
914 } else {
915 for_each_class(class) {
916 if (class == rq->curr->sched_class)
917 break;
918 if (class == p->sched_class) {
919 resched_task(rq->curr);
920 break;
921 }
922 }
923 }
924
925 /*
926 * A queue event has occurred, and we're going to schedule. In
927 * this case, we can save a useless back to back clock update.
928 */
fd2f4419 929 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
930 rq->skip_clock_update = 1;
931}
932
1da177e4 933#ifdef CONFIG_SMP
dd41f596 934void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 935{
e2912009
PZ
936#ifdef CONFIG_SCHED_DEBUG
937 /*
938 * We should never call set_task_cpu() on a blocked task,
939 * ttwu() will sort out the placement.
940 */
077614ee
PZ
941 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
942 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
943
944#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
945 /*
946 * The caller should hold either p->pi_lock or rq->lock, when changing
947 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
948 *
949 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 950 * see task_group().
6c6c54e1
PZ
951 *
952 * Furthermore, all task_rq users should acquire both locks, see
953 * task_rq_lock().
954 */
0122ec5b
PZ
955 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
956 lockdep_is_held(&task_rq(p)->lock)));
957#endif
e2912009
PZ
958#endif
959
de1d7286 960 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 961
0c69774e
PZ
962 if (task_cpu(p) != new_cpu) {
963 p->se.nr_migrations++;
a8b0ca17 964 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 965 }
dd41f596
IM
966
967 __set_task_cpu(p, new_cpu);
c65cc870
IM
968}
969
969c7921 970struct migration_arg {
36c8b586 971 struct task_struct *task;
1da177e4 972 int dest_cpu;
70b97a7f 973};
1da177e4 974
969c7921
TH
975static int migration_cpu_stop(void *data);
976
1da177e4
LT
977/*
978 * wait_task_inactive - wait for a thread to unschedule.
979 *
85ba2d86
RM
980 * If @match_state is nonzero, it's the @p->state value just checked and
981 * not expected to change. If it changes, i.e. @p might have woken up,
982 * then return zero. When we succeed in waiting for @p to be off its CPU,
983 * we return a positive number (its total switch count). If a second call
984 * a short while later returns the same number, the caller can be sure that
985 * @p has remained unscheduled the whole time.
986 *
1da177e4
LT
987 * The caller must ensure that the task *will* unschedule sometime soon,
988 * else this function might spin for a *long* time. This function can't
989 * be called with interrupts off, or it may introduce deadlock with
990 * smp_call_function() if an IPI is sent by the same process we are
991 * waiting to become inactive.
992 */
85ba2d86 993unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
994{
995 unsigned long flags;
dd41f596 996 int running, on_rq;
85ba2d86 997 unsigned long ncsw;
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 /*
1002 * We do the initial early heuristics without holding
1003 * any task-queue locks at all. We'll only try to get
1004 * the runqueue lock when things look like they will
1005 * work out!
1006 */
1007 rq = task_rq(p);
fa490cfd 1008
3a5c359a
AK
1009 /*
1010 * If the task is actively running on another CPU
1011 * still, just relax and busy-wait without holding
1012 * any locks.
1013 *
1014 * NOTE! Since we don't hold any locks, it's not
1015 * even sure that "rq" stays as the right runqueue!
1016 * But we don't care, since "task_running()" will
1017 * return false if the runqueue has changed and p
1018 * is actually now running somewhere else!
1019 */
85ba2d86
RM
1020 while (task_running(rq, p)) {
1021 if (match_state && unlikely(p->state != match_state))
1022 return 0;
3a5c359a 1023 cpu_relax();
85ba2d86 1024 }
fa490cfd 1025
3a5c359a
AK
1026 /*
1027 * Ok, time to look more closely! We need the rq
1028 * lock now, to be *sure*. If we're wrong, we'll
1029 * just go back and repeat.
1030 */
1031 rq = task_rq_lock(p, &flags);
27a9da65 1032 trace_sched_wait_task(p);
3a5c359a 1033 running = task_running(rq, p);
fd2f4419 1034 on_rq = p->on_rq;
85ba2d86 1035 ncsw = 0;
f31e11d8 1036 if (!match_state || p->state == match_state)
93dcf55f 1037 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1038 task_rq_unlock(rq, p, &flags);
fa490cfd 1039
85ba2d86
RM
1040 /*
1041 * If it changed from the expected state, bail out now.
1042 */
1043 if (unlikely(!ncsw))
1044 break;
1045
3a5c359a
AK
1046 /*
1047 * Was it really running after all now that we
1048 * checked with the proper locks actually held?
1049 *
1050 * Oops. Go back and try again..
1051 */
1052 if (unlikely(running)) {
1053 cpu_relax();
1054 continue;
1055 }
fa490cfd 1056
3a5c359a
AK
1057 /*
1058 * It's not enough that it's not actively running,
1059 * it must be off the runqueue _entirely_, and not
1060 * preempted!
1061 *
80dd99b3 1062 * So if it was still runnable (but just not actively
3a5c359a
AK
1063 * running right now), it's preempted, and we should
1064 * yield - it could be a while.
1065 */
1066 if (unlikely(on_rq)) {
8eb90c30
TG
1067 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1068
1069 set_current_state(TASK_UNINTERRUPTIBLE);
1070 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1071 continue;
1072 }
fa490cfd 1073
3a5c359a
AK
1074 /*
1075 * Ahh, all good. It wasn't running, and it wasn't
1076 * runnable, which means that it will never become
1077 * running in the future either. We're all done!
1078 */
1079 break;
1080 }
85ba2d86
RM
1081
1082 return ncsw;
1da177e4
LT
1083}
1084
1085/***
1086 * kick_process - kick a running thread to enter/exit the kernel
1087 * @p: the to-be-kicked thread
1088 *
1089 * Cause a process which is running on another CPU to enter
1090 * kernel-mode, without any delay. (to get signals handled.)
1091 *
25985edc 1092 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1093 * because all it wants to ensure is that the remote task enters
1094 * the kernel. If the IPI races and the task has been migrated
1095 * to another CPU then no harm is done and the purpose has been
1096 * achieved as well.
1097 */
36c8b586 1098void kick_process(struct task_struct *p)
1da177e4
LT
1099{
1100 int cpu;
1101
1102 preempt_disable();
1103 cpu = task_cpu(p);
1104 if ((cpu != smp_processor_id()) && task_curr(p))
1105 smp_send_reschedule(cpu);
1106 preempt_enable();
1107}
b43e3521 1108EXPORT_SYMBOL_GPL(kick_process);
476d139c 1109#endif /* CONFIG_SMP */
1da177e4 1110
970b13ba 1111#ifdef CONFIG_SMP
30da688e 1112/*
013fdb80 1113 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1114 */
5da9a0fb
PZ
1115static int select_fallback_rq(int cpu, struct task_struct *p)
1116{
5da9a0fb 1117 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1118 enum { cpuset, possible, fail } state = cpuset;
1119 int dest_cpu;
5da9a0fb
PZ
1120
1121 /* Look for allowed, online CPU in same node. */
e3831edd 1122 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1123 if (!cpu_online(dest_cpu))
1124 continue;
1125 if (!cpu_active(dest_cpu))
1126 continue;
fa17b507 1127 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1128 return dest_cpu;
2baab4e9 1129 }
5da9a0fb 1130
2baab4e9
PZ
1131 for (;;) {
1132 /* Any allowed, online CPU? */
e3831edd 1133 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1134 if (!cpu_online(dest_cpu))
1135 continue;
1136 if (!cpu_active(dest_cpu))
1137 continue;
1138 goto out;
1139 }
5da9a0fb 1140
2baab4e9
PZ
1141 switch (state) {
1142 case cpuset:
1143 /* No more Mr. Nice Guy. */
1144 cpuset_cpus_allowed_fallback(p);
1145 state = possible;
1146 break;
1147
1148 case possible:
1149 do_set_cpus_allowed(p, cpu_possible_mask);
1150 state = fail;
1151 break;
1152
1153 case fail:
1154 BUG();
1155 break;
1156 }
1157 }
1158
1159out:
1160 if (state != cpuset) {
1161 /*
1162 * Don't tell them about moving exiting tasks or
1163 * kernel threads (both mm NULL), since they never
1164 * leave kernel.
1165 */
1166 if (p->mm && printk_ratelimit()) {
1167 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1168 task_pid_nr(p), p->comm, cpu);
1169 }
5da9a0fb
PZ
1170 }
1171
1172 return dest_cpu;
1173}
1174
e2912009 1175/*
013fdb80 1176 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1177 */
970b13ba 1178static inline
7608dec2 1179int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1180{
7608dec2 1181 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1182
1183 /*
1184 * In order not to call set_task_cpu() on a blocking task we need
1185 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1186 * cpu.
1187 *
1188 * Since this is common to all placement strategies, this lives here.
1189 *
1190 * [ this allows ->select_task() to simply return task_cpu(p) and
1191 * not worry about this generic constraint ]
1192 */
fa17b507 1193 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1194 !cpu_online(cpu)))
5da9a0fb 1195 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1196
1197 return cpu;
970b13ba 1198}
09a40af5
MG
1199
1200static void update_avg(u64 *avg, u64 sample)
1201{
1202 s64 diff = sample - *avg;
1203 *avg += diff >> 3;
1204}
970b13ba
PZ
1205#endif
1206
d7c01d27 1207static void
b84cb5df 1208ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1209{
d7c01d27 1210#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1211 struct rq *rq = this_rq();
1212
d7c01d27
PZ
1213#ifdef CONFIG_SMP
1214 int this_cpu = smp_processor_id();
1215
1216 if (cpu == this_cpu) {
1217 schedstat_inc(rq, ttwu_local);
1218 schedstat_inc(p, se.statistics.nr_wakeups_local);
1219 } else {
1220 struct sched_domain *sd;
1221
1222 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1223 rcu_read_lock();
d7c01d27
PZ
1224 for_each_domain(this_cpu, sd) {
1225 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1226 schedstat_inc(sd, ttwu_wake_remote);
1227 break;
1228 }
1229 }
057f3fad 1230 rcu_read_unlock();
d7c01d27 1231 }
f339b9dc
PZ
1232
1233 if (wake_flags & WF_MIGRATED)
1234 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1235
d7c01d27
PZ
1236#endif /* CONFIG_SMP */
1237
1238 schedstat_inc(rq, ttwu_count);
9ed3811a 1239 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1240
1241 if (wake_flags & WF_SYNC)
9ed3811a 1242 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1243
d7c01d27
PZ
1244#endif /* CONFIG_SCHEDSTATS */
1245}
1246
1247static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1248{
9ed3811a 1249 activate_task(rq, p, en_flags);
fd2f4419 1250 p->on_rq = 1;
c2f7115e
PZ
1251
1252 /* if a worker is waking up, notify workqueue */
1253 if (p->flags & PF_WQ_WORKER)
1254 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1255}
1256
23f41eeb
PZ
1257/*
1258 * Mark the task runnable and perform wakeup-preemption.
1259 */
89363381 1260static void
23f41eeb 1261ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1262{
89363381 1263 trace_sched_wakeup(p, true);
9ed3811a
TH
1264 check_preempt_curr(rq, p, wake_flags);
1265
1266 p->state = TASK_RUNNING;
1267#ifdef CONFIG_SMP
1268 if (p->sched_class->task_woken)
1269 p->sched_class->task_woken(rq, p);
1270
e69c6341 1271 if (rq->idle_stamp) {
9ed3811a
TH
1272 u64 delta = rq->clock - rq->idle_stamp;
1273 u64 max = 2*sysctl_sched_migration_cost;
1274
1275 if (delta > max)
1276 rq->avg_idle = max;
1277 else
1278 update_avg(&rq->avg_idle, delta);
1279 rq->idle_stamp = 0;
1280 }
1281#endif
1282}
1283
c05fbafb
PZ
1284static void
1285ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1286{
1287#ifdef CONFIG_SMP
1288 if (p->sched_contributes_to_load)
1289 rq->nr_uninterruptible--;
1290#endif
1291
1292 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1293 ttwu_do_wakeup(rq, p, wake_flags);
1294}
1295
1296/*
1297 * Called in case the task @p isn't fully descheduled from its runqueue,
1298 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1299 * since all we need to do is flip p->state to TASK_RUNNING, since
1300 * the task is still ->on_rq.
1301 */
1302static int ttwu_remote(struct task_struct *p, int wake_flags)
1303{
1304 struct rq *rq;
1305 int ret = 0;
1306
1307 rq = __task_rq_lock(p);
1308 if (p->on_rq) {
1309 ttwu_do_wakeup(rq, p, wake_flags);
1310 ret = 1;
1311 }
1312 __task_rq_unlock(rq);
1313
1314 return ret;
1315}
1316
317f3941 1317#ifdef CONFIG_SMP
fa14ff4a 1318static void sched_ttwu_pending(void)
317f3941
PZ
1319{
1320 struct rq *rq = this_rq();
fa14ff4a
PZ
1321 struct llist_node *llist = llist_del_all(&rq->wake_list);
1322 struct task_struct *p;
317f3941
PZ
1323
1324 raw_spin_lock(&rq->lock);
1325
fa14ff4a
PZ
1326 while (llist) {
1327 p = llist_entry(llist, struct task_struct, wake_entry);
1328 llist = llist_next(llist);
317f3941
PZ
1329 ttwu_do_activate(rq, p, 0);
1330 }
1331
1332 raw_spin_unlock(&rq->lock);
1333}
1334
1335void scheduler_ipi(void)
1336{
ca38062e 1337 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1338 return;
1339
1340 /*
1341 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1342 * traditionally all their work was done from the interrupt return
1343 * path. Now that we actually do some work, we need to make sure
1344 * we do call them.
1345 *
1346 * Some archs already do call them, luckily irq_enter/exit nest
1347 * properly.
1348 *
1349 * Arguably we should visit all archs and update all handlers,
1350 * however a fair share of IPIs are still resched only so this would
1351 * somewhat pessimize the simple resched case.
1352 */
1353 irq_enter();
fa14ff4a 1354 sched_ttwu_pending();
ca38062e
SS
1355
1356 /*
1357 * Check if someone kicked us for doing the nohz idle load balance.
1358 */
6eb57e0d
SS
1359 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1360 this_rq()->idle_balance = 1;
ca38062e 1361 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1362 }
c5d753a5 1363 irq_exit();
317f3941
PZ
1364}
1365
1366static void ttwu_queue_remote(struct task_struct *p, int cpu)
1367{
fa14ff4a 1368 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1369 smp_send_reschedule(cpu);
1370}
d6aa8f85 1371
39be3501 1372bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1373{
1374 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1375}
d6aa8f85 1376#endif /* CONFIG_SMP */
317f3941 1377
c05fbafb
PZ
1378static void ttwu_queue(struct task_struct *p, int cpu)
1379{
1380 struct rq *rq = cpu_rq(cpu);
1381
17d9f311 1382#if defined(CONFIG_SMP)
39be3501 1383 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1384 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1385 ttwu_queue_remote(p, cpu);
1386 return;
1387 }
1388#endif
1389
c05fbafb
PZ
1390 raw_spin_lock(&rq->lock);
1391 ttwu_do_activate(rq, p, 0);
1392 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1393}
1394
1395/**
1da177e4 1396 * try_to_wake_up - wake up a thread
9ed3811a 1397 * @p: the thread to be awakened
1da177e4 1398 * @state: the mask of task states that can be woken
9ed3811a 1399 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1400 *
1401 * Put it on the run-queue if it's not already there. The "current"
1402 * thread is always on the run-queue (except when the actual
1403 * re-schedule is in progress), and as such you're allowed to do
1404 * the simpler "current->state = TASK_RUNNING" to mark yourself
1405 * runnable without the overhead of this.
1406 *
9ed3811a
TH
1407 * Returns %true if @p was woken up, %false if it was already running
1408 * or @state didn't match @p's state.
1da177e4 1409 */
e4a52bcb
PZ
1410static int
1411try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1412{
1da177e4 1413 unsigned long flags;
c05fbafb 1414 int cpu, success = 0;
2398f2c6 1415
04e2f174 1416 smp_wmb();
013fdb80 1417 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1418 if (!(p->state & state))
1da177e4
LT
1419 goto out;
1420
c05fbafb 1421 success = 1; /* we're going to change ->state */
1da177e4 1422 cpu = task_cpu(p);
1da177e4 1423
c05fbafb
PZ
1424 if (p->on_rq && ttwu_remote(p, wake_flags))
1425 goto stat;
1da177e4 1426
1da177e4 1427#ifdef CONFIG_SMP
e9c84311 1428 /*
c05fbafb
PZ
1429 * If the owning (remote) cpu is still in the middle of schedule() with
1430 * this task as prev, wait until its done referencing the task.
e9c84311 1431 */
f3e94786 1432 while (p->on_cpu)
e4a52bcb 1433 cpu_relax();
0970d299 1434 /*
e4a52bcb 1435 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1436 */
e4a52bcb 1437 smp_rmb();
1da177e4 1438
a8e4f2ea 1439 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1440 p->state = TASK_WAKING;
e7693a36 1441
e4a52bcb 1442 if (p->sched_class->task_waking)
74f8e4b2 1443 p->sched_class->task_waking(p);
efbbd05a 1444
7608dec2 1445 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1446 if (task_cpu(p) != cpu) {
1447 wake_flags |= WF_MIGRATED;
e4a52bcb 1448 set_task_cpu(p, cpu);
f339b9dc 1449 }
1da177e4 1450#endif /* CONFIG_SMP */
1da177e4 1451
c05fbafb
PZ
1452 ttwu_queue(p, cpu);
1453stat:
b84cb5df 1454 ttwu_stat(p, cpu, wake_flags);
1da177e4 1455out:
013fdb80 1456 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1457
1458 return success;
1459}
1460
21aa9af0
TH
1461/**
1462 * try_to_wake_up_local - try to wake up a local task with rq lock held
1463 * @p: the thread to be awakened
1464 *
2acca55e 1465 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1466 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1467 * the current task.
21aa9af0
TH
1468 */
1469static void try_to_wake_up_local(struct task_struct *p)
1470{
1471 struct rq *rq = task_rq(p);
21aa9af0
TH
1472
1473 BUG_ON(rq != this_rq());
1474 BUG_ON(p == current);
1475 lockdep_assert_held(&rq->lock);
1476
2acca55e
PZ
1477 if (!raw_spin_trylock(&p->pi_lock)) {
1478 raw_spin_unlock(&rq->lock);
1479 raw_spin_lock(&p->pi_lock);
1480 raw_spin_lock(&rq->lock);
1481 }
1482
21aa9af0 1483 if (!(p->state & TASK_NORMAL))
2acca55e 1484 goto out;
21aa9af0 1485
fd2f4419 1486 if (!p->on_rq)
d7c01d27
PZ
1487 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1488
23f41eeb 1489 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1490 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1491out:
1492 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1493}
1494
50fa610a
DH
1495/**
1496 * wake_up_process - Wake up a specific process
1497 * @p: The process to be woken up.
1498 *
1499 * Attempt to wake up the nominated process and move it to the set of runnable
1500 * processes. Returns 1 if the process was woken up, 0 if it was already
1501 * running.
1502 *
1503 * It may be assumed that this function implies a write memory barrier before
1504 * changing the task state if and only if any tasks are woken up.
1505 */
7ad5b3a5 1506int wake_up_process(struct task_struct *p)
1da177e4 1507{
d9514f6c 1508 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1509}
1da177e4
LT
1510EXPORT_SYMBOL(wake_up_process);
1511
7ad5b3a5 1512int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1513{
1514 return try_to_wake_up(p, state, 0);
1515}
1516
1da177e4
LT
1517/*
1518 * Perform scheduler related setup for a newly forked process p.
1519 * p is forked by current.
dd41f596
IM
1520 *
1521 * __sched_fork() is basic setup used by init_idle() too:
1522 */
1523static void __sched_fork(struct task_struct *p)
1524{
fd2f4419
PZ
1525 p->on_rq = 0;
1526
1527 p->se.on_rq = 0;
dd41f596
IM
1528 p->se.exec_start = 0;
1529 p->se.sum_exec_runtime = 0;
f6cf891c 1530 p->se.prev_sum_exec_runtime = 0;
6c594c21 1531 p->se.nr_migrations = 0;
da7a735e 1532 p->se.vruntime = 0;
fd2f4419 1533 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1534
1535#ifdef CONFIG_SCHEDSTATS
41acab88 1536 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1537#endif
476d139c 1538
fa717060 1539 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1540
e107be36
AK
1541#ifdef CONFIG_PREEMPT_NOTIFIERS
1542 INIT_HLIST_HEAD(&p->preempt_notifiers);
1543#endif
cbee9f88
PZ
1544
1545#ifdef CONFIG_NUMA_BALANCING
1546 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1547 p->mm->numa_next_scan = jiffies;
b8593bfd 1548 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1549 p->mm->numa_scan_seq = 0;
1550 }
1551
1552 p->node_stamp = 0ULL;
1553 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1554 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1555 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1556 p->numa_work.next = &p->numa_work;
1557#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1558}
1559
1a687c2e
MG
1560#ifdef CONFIG_NUMA_BALANCING
1561void set_numabalancing_state(bool enabled)
1562{
1563 if (enabled)
1564 sched_feat_set("NUMA");
1565 else
1566 sched_feat_set("NO_NUMA");
1567}
1568#endif /* CONFIG_NUMA_BALANCING */
1569
dd41f596
IM
1570/*
1571 * fork()/clone()-time setup:
1572 */
3e51e3ed 1573void sched_fork(struct task_struct *p)
dd41f596 1574{
0122ec5b 1575 unsigned long flags;
dd41f596
IM
1576 int cpu = get_cpu();
1577
1578 __sched_fork(p);
06b83b5f 1579 /*
0017d735 1580 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1583 */
0017d735 1584 p->state = TASK_RUNNING;
dd41f596 1585
c350a04e
MG
1586 /*
1587 * Make sure we do not leak PI boosting priority to the child.
1588 */
1589 p->prio = current->normal_prio;
1590
b9dc29e7
MG
1591 /*
1592 * Revert to default priority/policy on fork if requested.
1593 */
1594 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1595 if (task_has_rt_policy(p)) {
b9dc29e7 1596 p->policy = SCHED_NORMAL;
6c697bdf 1597 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1598 p->rt_priority = 0;
1599 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1600 p->static_prio = NICE_TO_PRIO(0);
1601
1602 p->prio = p->normal_prio = __normal_prio(p);
1603 set_load_weight(p);
6c697bdf 1604
b9dc29e7
MG
1605 /*
1606 * We don't need the reset flag anymore after the fork. It has
1607 * fulfilled its duty:
1608 */
1609 p->sched_reset_on_fork = 0;
1610 }
ca94c442 1611
2ddbf952
HS
1612 if (!rt_prio(p->prio))
1613 p->sched_class = &fair_sched_class;
b29739f9 1614
cd29fe6f
PZ
1615 if (p->sched_class->task_fork)
1616 p->sched_class->task_fork(p);
1617
86951599
PZ
1618 /*
1619 * The child is not yet in the pid-hash so no cgroup attach races,
1620 * and the cgroup is pinned to this child due to cgroup_fork()
1621 * is ran before sched_fork().
1622 *
1623 * Silence PROVE_RCU.
1624 */
0122ec5b 1625 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1626 set_task_cpu(p, cpu);
0122ec5b 1627 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1628
52f17b6c 1629#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1630 if (likely(sched_info_on()))
52f17b6c 1631 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1632#endif
3ca7a440
PZ
1633#if defined(CONFIG_SMP)
1634 p->on_cpu = 0;
4866cde0 1635#endif
bdd4e85d 1636#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1637 /* Want to start with kernel preemption disabled. */
a1261f54 1638 task_thread_info(p)->preempt_count = 1;
1da177e4 1639#endif
806c09a7 1640#ifdef CONFIG_SMP
917b627d 1641 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1642#endif
917b627d 1643
476d139c 1644 put_cpu();
1da177e4
LT
1645}
1646
1647/*
1648 * wake_up_new_task - wake up a newly created task for the first time.
1649 *
1650 * This function will do some initial scheduler statistics housekeeping
1651 * that must be done for every newly created context, then puts the task
1652 * on the runqueue and wakes it.
1653 */
3e51e3ed 1654void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1655{
1656 unsigned long flags;
dd41f596 1657 struct rq *rq;
fabf318e 1658
ab2515c4 1659 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1660#ifdef CONFIG_SMP
1661 /*
1662 * Fork balancing, do it here and not earlier because:
1663 * - cpus_allowed can change in the fork path
1664 * - any previously selected cpu might disappear through hotplug
fabf318e 1665 */
ab2515c4 1666 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1667#endif
1668
ab2515c4 1669 rq = __task_rq_lock(p);
cd29fe6f 1670 activate_task(rq, p, 0);
fd2f4419 1671 p->on_rq = 1;
89363381 1672 trace_sched_wakeup_new(p, true);
a7558e01 1673 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1674#ifdef CONFIG_SMP
efbbd05a
PZ
1675 if (p->sched_class->task_woken)
1676 p->sched_class->task_woken(rq, p);
9a897c5a 1677#endif
0122ec5b 1678 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1679}
1680
e107be36
AK
1681#ifdef CONFIG_PREEMPT_NOTIFIERS
1682
1683/**
80dd99b3 1684 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1685 * @notifier: notifier struct to register
e107be36
AK
1686 */
1687void preempt_notifier_register(struct preempt_notifier *notifier)
1688{
1689 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1690}
1691EXPORT_SYMBOL_GPL(preempt_notifier_register);
1692
1693/**
1694 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1695 * @notifier: notifier struct to unregister
e107be36
AK
1696 *
1697 * This is safe to call from within a preemption notifier.
1698 */
1699void preempt_notifier_unregister(struct preempt_notifier *notifier)
1700{
1701 hlist_del(&notifier->link);
1702}
1703EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1704
1705static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1706{
1707 struct preempt_notifier *notifier;
1708 struct hlist_node *node;
1709
1710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1711 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1712}
1713
1714static void
1715fire_sched_out_preempt_notifiers(struct task_struct *curr,
1716 struct task_struct *next)
1717{
1718 struct preempt_notifier *notifier;
1719 struct hlist_node *node;
1720
1721 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1722 notifier->ops->sched_out(notifier, next);
1723}
1724
6d6bc0ad 1725#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1726
1727static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1728{
1729}
1730
1731static void
1732fire_sched_out_preempt_notifiers(struct task_struct *curr,
1733 struct task_struct *next)
1734{
1735}
1736
6d6bc0ad 1737#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1738
4866cde0
NP
1739/**
1740 * prepare_task_switch - prepare to switch tasks
1741 * @rq: the runqueue preparing to switch
421cee29 1742 * @prev: the current task that is being switched out
4866cde0
NP
1743 * @next: the task we are going to switch to.
1744 *
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1748 *
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1751 */
e107be36
AK
1752static inline void
1753prepare_task_switch(struct rq *rq, struct task_struct *prev,
1754 struct task_struct *next)
4866cde0 1755{
895dd92c 1756 trace_sched_switch(prev, next);
fe4b04fa
PZ
1757 sched_info_switch(prev, next);
1758 perf_event_task_sched_out(prev, next);
e107be36 1759 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1760 prepare_lock_switch(rq, next);
1761 prepare_arch_switch(next);
1762}
1763
1da177e4
LT
1764/**
1765 * finish_task_switch - clean up after a task-switch
344babaa 1766 * @rq: runqueue associated with task-switch
1da177e4
LT
1767 * @prev: the thread we just switched away from.
1768 *
4866cde0
NP
1769 * finish_task_switch must be called after the context switch, paired
1770 * with a prepare_task_switch call before the context switch.
1771 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1772 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1773 *
1774 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1775 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1776 * with the lock held can cause deadlocks; see schedule() for
1777 * details.)
1778 */
a9957449 1779static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1780 __releases(rq->lock)
1781{
1da177e4 1782 struct mm_struct *mm = rq->prev_mm;
55a101f8 1783 long prev_state;
1da177e4
LT
1784
1785 rq->prev_mm = NULL;
1786
1787 /*
1788 * A task struct has one reference for the use as "current".
c394cc9f 1789 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1790 * schedule one last time. The schedule call will never return, and
1791 * the scheduled task must drop that reference.
c394cc9f 1792 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1793 * still held, otherwise prev could be scheduled on another cpu, die
1794 * there before we look at prev->state, and then the reference would
1795 * be dropped twice.
1796 * Manfred Spraul <manfred@colorfullife.com>
1797 */
55a101f8 1798 prev_state = prev->state;
bf9fae9f 1799 vtime_task_switch(prev);
4866cde0 1800 finish_arch_switch(prev);
a8d757ef 1801 perf_event_task_sched_in(prev, current);
4866cde0 1802 finish_lock_switch(rq, prev);
01f23e16 1803 finish_arch_post_lock_switch();
e8fa1362 1804
e107be36 1805 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1806 if (mm)
1807 mmdrop(mm);
c394cc9f 1808 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1809 /*
1810 * Remove function-return probe instances associated with this
1811 * task and put them back on the free list.
9761eea8 1812 */
c6fd91f0 1813 kprobe_flush_task(prev);
1da177e4 1814 put_task_struct(prev);
c6fd91f0 1815 }
1da177e4
LT
1816}
1817
3f029d3c
GH
1818#ifdef CONFIG_SMP
1819
1820/* assumes rq->lock is held */
1821static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1822{
1823 if (prev->sched_class->pre_schedule)
1824 prev->sched_class->pre_schedule(rq, prev);
1825}
1826
1827/* rq->lock is NOT held, but preemption is disabled */
1828static inline void post_schedule(struct rq *rq)
1829{
1830 if (rq->post_schedule) {
1831 unsigned long flags;
1832
05fa785c 1833 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1834 if (rq->curr->sched_class->post_schedule)
1835 rq->curr->sched_class->post_schedule(rq);
05fa785c 1836 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1837
1838 rq->post_schedule = 0;
1839 }
1840}
1841
1842#else
da19ab51 1843
3f029d3c
GH
1844static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1845{
1846}
1847
1848static inline void post_schedule(struct rq *rq)
1849{
1da177e4
LT
1850}
1851
3f029d3c
GH
1852#endif
1853
1da177e4
LT
1854/**
1855 * schedule_tail - first thing a freshly forked thread must call.
1856 * @prev: the thread we just switched away from.
1857 */
36c8b586 1858asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1859 __releases(rq->lock)
1860{
70b97a7f
IM
1861 struct rq *rq = this_rq();
1862
4866cde0 1863 finish_task_switch(rq, prev);
da19ab51 1864
3f029d3c
GH
1865 /*
1866 * FIXME: do we need to worry about rq being invalidated by the
1867 * task_switch?
1868 */
1869 post_schedule(rq);
70b97a7f 1870
4866cde0
NP
1871#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1872 /* In this case, finish_task_switch does not reenable preemption */
1873 preempt_enable();
1874#endif
1da177e4 1875 if (current->set_child_tid)
b488893a 1876 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1877}
1878
1879/*
1880 * context_switch - switch to the new MM and the new
1881 * thread's register state.
1882 */
dd41f596 1883static inline void
70b97a7f 1884context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1885 struct task_struct *next)
1da177e4 1886{
dd41f596 1887 struct mm_struct *mm, *oldmm;
1da177e4 1888
e107be36 1889 prepare_task_switch(rq, prev, next);
fe4b04fa 1890
dd41f596
IM
1891 mm = next->mm;
1892 oldmm = prev->active_mm;
9226d125
ZA
1893 /*
1894 * For paravirt, this is coupled with an exit in switch_to to
1895 * combine the page table reload and the switch backend into
1896 * one hypercall.
1897 */
224101ed 1898 arch_start_context_switch(prev);
9226d125 1899
31915ab4 1900 if (!mm) {
1da177e4
LT
1901 next->active_mm = oldmm;
1902 atomic_inc(&oldmm->mm_count);
1903 enter_lazy_tlb(oldmm, next);
1904 } else
1905 switch_mm(oldmm, mm, next);
1906
31915ab4 1907 if (!prev->mm) {
1da177e4 1908 prev->active_mm = NULL;
1da177e4
LT
1909 rq->prev_mm = oldmm;
1910 }
3a5f5e48
IM
1911 /*
1912 * Since the runqueue lock will be released by the next
1913 * task (which is an invalid locking op but in the case
1914 * of the scheduler it's an obvious special-case), so we
1915 * do an early lockdep release here:
1916 */
1917#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1918 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1919#endif
1da177e4
LT
1920
1921 /* Here we just switch the register state and the stack. */
04e7e951 1922 rcu_switch(prev, next);
1da177e4
LT
1923 switch_to(prev, next, prev);
1924
dd41f596
IM
1925 barrier();
1926 /*
1927 * this_rq must be evaluated again because prev may have moved
1928 * CPUs since it called schedule(), thus the 'rq' on its stack
1929 * frame will be invalid.
1930 */
1931 finish_task_switch(this_rq(), prev);
1da177e4
LT
1932}
1933
1934/*
1935 * nr_running, nr_uninterruptible and nr_context_switches:
1936 *
1937 * externally visible scheduler statistics: current number of runnable
1938 * threads, current number of uninterruptible-sleeping threads, total
1939 * number of context switches performed since bootup.
1940 */
1941unsigned long nr_running(void)
1942{
1943 unsigned long i, sum = 0;
1944
1945 for_each_online_cpu(i)
1946 sum += cpu_rq(i)->nr_running;
1947
1948 return sum;
f711f609 1949}
1da177e4
LT
1950
1951unsigned long nr_uninterruptible(void)
f711f609 1952{
1da177e4 1953 unsigned long i, sum = 0;
f711f609 1954
0a945022 1955 for_each_possible_cpu(i)
1da177e4 1956 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
1957
1958 /*
1da177e4
LT
1959 * Since we read the counters lockless, it might be slightly
1960 * inaccurate. Do not allow it to go below zero though:
f711f609 1961 */
1da177e4
LT
1962 if (unlikely((long)sum < 0))
1963 sum = 0;
f711f609 1964
1da177e4 1965 return sum;
f711f609 1966}
f711f609 1967
1da177e4 1968unsigned long long nr_context_switches(void)
46cb4b7c 1969{
cc94abfc
SR
1970 int i;
1971 unsigned long long sum = 0;
46cb4b7c 1972
0a945022 1973 for_each_possible_cpu(i)
1da177e4 1974 sum += cpu_rq(i)->nr_switches;
46cb4b7c 1975
1da177e4
LT
1976 return sum;
1977}
483b4ee6 1978
1da177e4
LT
1979unsigned long nr_iowait(void)
1980{
1981 unsigned long i, sum = 0;
483b4ee6 1982
0a945022 1983 for_each_possible_cpu(i)
1da177e4 1984 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 1985
1da177e4
LT
1986 return sum;
1987}
483b4ee6 1988
8c215bd3 1989unsigned long nr_iowait_cpu(int cpu)
69d25870 1990{
8c215bd3 1991 struct rq *this = cpu_rq(cpu);
69d25870
AV
1992 return atomic_read(&this->nr_iowait);
1993}
46cb4b7c 1994
69d25870
AV
1995unsigned long this_cpu_load(void)
1996{
1997 struct rq *this = this_rq();
1998 return this->cpu_load[0];
1999}
e790fb0b 2000
46cb4b7c 2001
5167e8d5
PZ
2002/*
2003 * Global load-average calculations
2004 *
2005 * We take a distributed and async approach to calculating the global load-avg
2006 * in order to minimize overhead.
2007 *
2008 * The global load average is an exponentially decaying average of nr_running +
2009 * nr_uninterruptible.
2010 *
2011 * Once every LOAD_FREQ:
2012 *
2013 * nr_active = 0;
2014 * for_each_possible_cpu(cpu)
2015 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
2016 *
2017 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
2018 *
2019 * Due to a number of reasons the above turns in the mess below:
2020 *
2021 * - for_each_possible_cpu() is prohibitively expensive on machines with
2022 * serious number of cpus, therefore we need to take a distributed approach
2023 * to calculating nr_active.
2024 *
2025 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2026 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2027 *
2028 * So assuming nr_active := 0 when we start out -- true per definition, we
2029 * can simply take per-cpu deltas and fold those into a global accumulate
2030 * to obtain the same result. See calc_load_fold_active().
2031 *
2032 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2033 * across the machine, we assume 10 ticks is sufficient time for every
2034 * cpu to have completed this task.
2035 *
2036 * This places an upper-bound on the IRQ-off latency of the machine. Then
2037 * again, being late doesn't loose the delta, just wrecks the sample.
2038 *
2039 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2040 * this would add another cross-cpu cacheline miss and atomic operation
2041 * to the wakeup path. Instead we increment on whatever cpu the task ran
2042 * when it went into uninterruptible state and decrement on whatever cpu
2043 * did the wakeup. This means that only the sum of nr_uninterruptible over
2044 * all cpus yields the correct result.
2045 *
2046 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2047 */
2048
dce48a84
TG
2049/* Variables and functions for calc_load */
2050static atomic_long_t calc_load_tasks;
2051static unsigned long calc_load_update;
2052unsigned long avenrun[3];
5167e8d5
PZ
2053EXPORT_SYMBOL(avenrun); /* should be removed */
2054
2055/**
2056 * get_avenrun - get the load average array
2057 * @loads: pointer to dest load array
2058 * @offset: offset to add
2059 * @shift: shift count to shift the result left
2060 *
2061 * These values are estimates at best, so no need for locking.
2062 */
2063void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2064{
2065 loads[0] = (avenrun[0] + offset) << shift;
2066 loads[1] = (avenrun[1] + offset) << shift;
2067 loads[2] = (avenrun[2] + offset) << shift;
2068}
46cb4b7c 2069
74f5187a
PZ
2070static long calc_load_fold_active(struct rq *this_rq)
2071{
2072 long nr_active, delta = 0;
2073
2074 nr_active = this_rq->nr_running;
2075 nr_active += (long) this_rq->nr_uninterruptible;
2076
2077 if (nr_active != this_rq->calc_load_active) {
2078 delta = nr_active - this_rq->calc_load_active;
2079 this_rq->calc_load_active = nr_active;
2080 }
2081
2082 return delta;
2083}
2084
5167e8d5
PZ
2085/*
2086 * a1 = a0 * e + a * (1 - e)
2087 */
0f004f5a
PZ
2088static unsigned long
2089calc_load(unsigned long load, unsigned long exp, unsigned long active)
2090{
2091 load *= exp;
2092 load += active * (FIXED_1 - exp);
2093 load += 1UL << (FSHIFT - 1);
2094 return load >> FSHIFT;
2095}
2096
74f5187a
PZ
2097#ifdef CONFIG_NO_HZ
2098/*
5167e8d5
PZ
2099 * Handle NO_HZ for the global load-average.
2100 *
2101 * Since the above described distributed algorithm to compute the global
2102 * load-average relies on per-cpu sampling from the tick, it is affected by
2103 * NO_HZ.
2104 *
2105 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2106 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2107 * when we read the global state.
2108 *
2109 * Obviously reality has to ruin such a delightfully simple scheme:
2110 *
2111 * - When we go NO_HZ idle during the window, we can negate our sample
2112 * contribution, causing under-accounting.
2113 *
2114 * We avoid this by keeping two idle-delta counters and flipping them
2115 * when the window starts, thus separating old and new NO_HZ load.
2116 *
2117 * The only trick is the slight shift in index flip for read vs write.
2118 *
2119 * 0s 5s 10s 15s
2120 * +10 +10 +10 +10
2121 * |-|-----------|-|-----------|-|-----------|-|
2122 * r:0 0 1 1 0 0 1 1 0
2123 * w:0 1 1 0 0 1 1 0 0
2124 *
2125 * This ensures we'll fold the old idle contribution in this window while
2126 * accumlating the new one.
2127 *
2128 * - When we wake up from NO_HZ idle during the window, we push up our
2129 * contribution, since we effectively move our sample point to a known
2130 * busy state.
2131 *
2132 * This is solved by pushing the window forward, and thus skipping the
2133 * sample, for this cpu (effectively using the idle-delta for this cpu which
2134 * was in effect at the time the window opened). This also solves the issue
2135 * of having to deal with a cpu having been in NOHZ idle for multiple
2136 * LOAD_FREQ intervals.
74f5187a
PZ
2137 *
2138 * When making the ILB scale, we should try to pull this in as well.
2139 */
5167e8d5
PZ
2140static atomic_long_t calc_load_idle[2];
2141static int calc_load_idx;
74f5187a 2142
5167e8d5 2143static inline int calc_load_write_idx(void)
74f5187a 2144{
5167e8d5
PZ
2145 int idx = calc_load_idx;
2146
2147 /*
2148 * See calc_global_nohz(), if we observe the new index, we also
2149 * need to observe the new update time.
2150 */
2151 smp_rmb();
2152
2153 /*
2154 * If the folding window started, make sure we start writing in the
2155 * next idle-delta.
2156 */
2157 if (!time_before(jiffies, calc_load_update))
2158 idx++;
2159
2160 return idx & 1;
2161}
2162
2163static inline int calc_load_read_idx(void)
2164{
2165 return calc_load_idx & 1;
2166}
2167
2168void calc_load_enter_idle(void)
2169{
2170 struct rq *this_rq = this_rq();
74f5187a
PZ
2171 long delta;
2172
5167e8d5
PZ
2173 /*
2174 * We're going into NOHZ mode, if there's any pending delta, fold it
2175 * into the pending idle delta.
2176 */
74f5187a 2177 delta = calc_load_fold_active(this_rq);
5167e8d5
PZ
2178 if (delta) {
2179 int idx = calc_load_write_idx();
2180 atomic_long_add(delta, &calc_load_idle[idx]);
2181 }
74f5187a
PZ
2182}
2183
5167e8d5 2184void calc_load_exit_idle(void)
74f5187a 2185{
5167e8d5
PZ
2186 struct rq *this_rq = this_rq();
2187
2188 /*
2189 * If we're still before the sample window, we're done.
2190 */
2191 if (time_before(jiffies, this_rq->calc_load_update))
2192 return;
74f5187a
PZ
2193
2194 /*
5167e8d5
PZ
2195 * We woke inside or after the sample window, this means we're already
2196 * accounted through the nohz accounting, so skip the entire deal and
2197 * sync up for the next window.
74f5187a 2198 */
5167e8d5
PZ
2199 this_rq->calc_load_update = calc_load_update;
2200 if (time_before(jiffies, this_rq->calc_load_update + 10))
2201 this_rq->calc_load_update += LOAD_FREQ;
2202}
2203
2204static long calc_load_fold_idle(void)
2205{
2206 int idx = calc_load_read_idx();
2207 long delta = 0;
2208
2209 if (atomic_long_read(&calc_load_idle[idx]))
2210 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
74f5187a
PZ
2211
2212 return delta;
2213}
0f004f5a
PZ
2214
2215/**
2216 * fixed_power_int - compute: x^n, in O(log n) time
2217 *
2218 * @x: base of the power
2219 * @frac_bits: fractional bits of @x
2220 * @n: power to raise @x to.
2221 *
2222 * By exploiting the relation between the definition of the natural power
2223 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2224 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2225 * (where: n_i \elem {0, 1}, the binary vector representing n),
2226 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2227 * of course trivially computable in O(log_2 n), the length of our binary
2228 * vector.
2229 */
2230static unsigned long
2231fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2232{
2233 unsigned long result = 1UL << frac_bits;
2234
2235 if (n) for (;;) {
2236 if (n & 1) {
2237 result *= x;
2238 result += 1UL << (frac_bits - 1);
2239 result >>= frac_bits;
2240 }
2241 n >>= 1;
2242 if (!n)
2243 break;
2244 x *= x;
2245 x += 1UL << (frac_bits - 1);
2246 x >>= frac_bits;
2247 }
2248
2249 return result;
2250}
2251
2252/*
2253 * a1 = a0 * e + a * (1 - e)
2254 *
2255 * a2 = a1 * e + a * (1 - e)
2256 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2257 * = a0 * e^2 + a * (1 - e) * (1 + e)
2258 *
2259 * a3 = a2 * e + a * (1 - e)
2260 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2261 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2262 *
2263 * ...
2264 *
2265 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2266 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2267 * = a0 * e^n + a * (1 - e^n)
2268 *
2269 * [1] application of the geometric series:
2270 *
2271 * n 1 - x^(n+1)
2272 * S_n := \Sum x^i = -------------
2273 * i=0 1 - x
2274 */
2275static unsigned long
2276calc_load_n(unsigned long load, unsigned long exp,
2277 unsigned long active, unsigned int n)
2278{
2279
2280 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2281}
2282
2283/*
2284 * NO_HZ can leave us missing all per-cpu ticks calling
2285 * calc_load_account_active(), but since an idle CPU folds its delta into
2286 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2287 * in the pending idle delta if our idle period crossed a load cycle boundary.
2288 *
2289 * Once we've updated the global active value, we need to apply the exponential
2290 * weights adjusted to the number of cycles missed.
2291 */
c308b56b 2292static void calc_global_nohz(void)
0f004f5a
PZ
2293{
2294 long delta, active, n;
2295
5167e8d5
PZ
2296 if (!time_before(jiffies, calc_load_update + 10)) {
2297 /*
2298 * Catch-up, fold however many we are behind still
2299 */
2300 delta = jiffies - calc_load_update - 10;
2301 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2302
5167e8d5
PZ
2303 active = atomic_long_read(&calc_load_tasks);
2304 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2305
5167e8d5
PZ
2306 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2307 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2308 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2309
5167e8d5
PZ
2310 calc_load_update += n * LOAD_FREQ;
2311 }
74f5187a 2312
5167e8d5
PZ
2313 /*
2314 * Flip the idle index...
2315 *
2316 * Make sure we first write the new time then flip the index, so that
2317 * calc_load_write_idx() will see the new time when it reads the new
2318 * index, this avoids a double flip messing things up.
2319 */
2320 smp_wmb();
2321 calc_load_idx++;
74f5187a 2322}
5167e8d5 2323#else /* !CONFIG_NO_HZ */
0f004f5a 2324
5167e8d5
PZ
2325static inline long calc_load_fold_idle(void) { return 0; }
2326static inline void calc_global_nohz(void) { }
74f5187a 2327
5167e8d5 2328#endif /* CONFIG_NO_HZ */
46cb4b7c 2329
46cb4b7c 2330/*
dce48a84
TG
2331 * calc_load - update the avenrun load estimates 10 ticks after the
2332 * CPUs have updated calc_load_tasks.
7835b98b 2333 */
0f004f5a 2334void calc_global_load(unsigned long ticks)
7835b98b 2335{
5167e8d5 2336 long active, delta;
1da177e4 2337
0f004f5a 2338 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2339 return;
1da177e4 2340
5167e8d5
PZ
2341 /*
2342 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2343 */
2344 delta = calc_load_fold_idle();
2345 if (delta)
2346 atomic_long_add(delta, &calc_load_tasks);
2347
dce48a84
TG
2348 active = atomic_long_read(&calc_load_tasks);
2349 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2350
dce48a84
TG
2351 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2352 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2353 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2354
dce48a84 2355 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2356
2357 /*
5167e8d5 2358 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
c308b56b
PZ
2359 */
2360 calc_global_nohz();
dce48a84 2361}
1da177e4 2362
dce48a84 2363/*
74f5187a
PZ
2364 * Called from update_cpu_load() to periodically update this CPU's
2365 * active count.
dce48a84
TG
2366 */
2367static void calc_load_account_active(struct rq *this_rq)
2368{
74f5187a 2369 long delta;
08c183f3 2370
74f5187a
PZ
2371 if (time_before(jiffies, this_rq->calc_load_update))
2372 return;
783609c6 2373
74f5187a 2374 delta = calc_load_fold_active(this_rq);
74f5187a 2375 if (delta)
dce48a84 2376 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2377
2378 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2379}
2380
5167e8d5
PZ
2381/*
2382 * End of global load-average stuff
2383 */
2384
fdf3e95d
VP
2385/*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412#define DEGRADE_SHIFT 7
2413static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423/*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428static unsigned long
2429decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430{
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450}
2451
46cb4b7c 2452/*
dd41f596 2453 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
46cb4b7c 2456 */
556061b0
PZ
2457static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2458 unsigned long pending_updates)
46cb4b7c 2459{
dd41f596 2460 int i, scale;
46cb4b7c 2461
dd41f596 2462 this_rq->nr_load_updates++;
46cb4b7c 2463
dd41f596 2464 /* Update our load: */
fdf3e95d
VP
2465 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2466 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2467 unsigned long old_load, new_load;
7d1e6a9b 2468
dd41f596 2469 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2470
dd41f596 2471 old_load = this_rq->cpu_load[i];
fdf3e95d 2472 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2473 new_load = this_load;
a25707f3
IM
2474 /*
2475 * Round up the averaging division if load is increasing. This
2476 * prevents us from getting stuck on 9 if the load is 10, for
2477 * example.
2478 */
2479 if (new_load > old_load)
fdf3e95d
VP
2480 new_load += scale - 1;
2481
2482 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2483 }
da2b71ed
SS
2484
2485 sched_avg_update(this_rq);
fdf3e95d
VP
2486}
2487
5aaa0b7a
PZ
2488#ifdef CONFIG_NO_HZ
2489/*
2490 * There is no sane way to deal with nohz on smp when using jiffies because the
2491 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2492 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2493 *
2494 * Therefore we cannot use the delta approach from the regular tick since that
2495 * would seriously skew the load calculation. However we'll make do for those
2496 * updates happening while idle (nohz_idle_balance) or coming out of idle
2497 * (tick_nohz_idle_exit).
2498 *
2499 * This means we might still be one tick off for nohz periods.
2500 */
2501
556061b0
PZ
2502/*
2503 * Called from nohz_idle_balance() to update the load ratings before doing the
2504 * idle balance.
2505 */
2506void update_idle_cpu_load(struct rq *this_rq)
2507{
5aaa0b7a 2508 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2509 unsigned long load = this_rq->load.weight;
2510 unsigned long pending_updates;
2511
2512 /*
5aaa0b7a 2513 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2514 */
2515 if (load || curr_jiffies == this_rq->last_load_update_tick)
2516 return;
2517
2518 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2519 this_rq->last_load_update_tick = curr_jiffies;
2520
2521 __update_cpu_load(this_rq, load, pending_updates);
2522}
2523
5aaa0b7a
PZ
2524/*
2525 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2526 */
2527void update_cpu_load_nohz(void)
2528{
2529 struct rq *this_rq = this_rq();
2530 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2531 unsigned long pending_updates;
2532
2533 if (curr_jiffies == this_rq->last_load_update_tick)
2534 return;
2535
2536 raw_spin_lock(&this_rq->lock);
2537 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2538 if (pending_updates) {
2539 this_rq->last_load_update_tick = curr_jiffies;
2540 /*
2541 * We were idle, this means load 0, the current load might be
2542 * !0 due to remote wakeups and the sort.
2543 */
2544 __update_cpu_load(this_rq, 0, pending_updates);
2545 }
2546 raw_spin_unlock(&this_rq->lock);
2547}
2548#endif /* CONFIG_NO_HZ */
2549
556061b0
PZ
2550/*
2551 * Called from scheduler_tick()
2552 */
fdf3e95d
VP
2553static void update_cpu_load_active(struct rq *this_rq)
2554{
556061b0 2555 /*
5aaa0b7a 2556 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2557 */
2558 this_rq->last_load_update_tick = jiffies;
2559 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2560
74f5187a 2561 calc_load_account_active(this_rq);
46cb4b7c
SS
2562}
2563
dd41f596 2564#ifdef CONFIG_SMP
8a0be9ef 2565
46cb4b7c 2566/*
38022906
PZ
2567 * sched_exec - execve() is a valuable balancing opportunity, because at
2568 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2569 */
38022906 2570void sched_exec(void)
46cb4b7c 2571{
38022906 2572 struct task_struct *p = current;
1da177e4 2573 unsigned long flags;
0017d735 2574 int dest_cpu;
46cb4b7c 2575
8f42ced9 2576 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2577 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2578 if (dest_cpu == smp_processor_id())
2579 goto unlock;
38022906 2580
8f42ced9 2581 if (likely(cpu_active(dest_cpu))) {
969c7921 2582 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2583
8f42ced9
PZ
2584 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2585 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2586 return;
2587 }
0017d735 2588unlock:
8f42ced9 2589 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2590}
dd41f596 2591
1da177e4
LT
2592#endif
2593
1da177e4 2594DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2595DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2596
2597EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2598EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2599
2600/*
c5f8d995 2601 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2602 * @p in case that task is currently running.
c5f8d995
HS
2603 *
2604 * Called with task_rq_lock() held on @rq.
1da177e4 2605 */
c5f8d995
HS
2606static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2607{
2608 u64 ns = 0;
2609
2610 if (task_current(rq, p)) {
2611 update_rq_clock(rq);
305e6835 2612 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2613 if ((s64)ns < 0)
2614 ns = 0;
2615 }
2616
2617 return ns;
2618}
2619
bb34d92f 2620unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2621{
1da177e4 2622 unsigned long flags;
41b86e9c 2623 struct rq *rq;
bb34d92f 2624 u64 ns = 0;
48f24c4d 2625
41b86e9c 2626 rq = task_rq_lock(p, &flags);
c5f8d995 2627 ns = do_task_delta_exec(p, rq);
0122ec5b 2628 task_rq_unlock(rq, p, &flags);
1508487e 2629
c5f8d995
HS
2630 return ns;
2631}
f06febc9 2632
c5f8d995
HS
2633/*
2634 * Return accounted runtime for the task.
2635 * In case the task is currently running, return the runtime plus current's
2636 * pending runtime that have not been accounted yet.
2637 */
2638unsigned long long task_sched_runtime(struct task_struct *p)
2639{
2640 unsigned long flags;
2641 struct rq *rq;
2642 u64 ns = 0;
2643
2644 rq = task_rq_lock(p, &flags);
2645 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2646 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2647
2648 return ns;
2649}
48f24c4d 2650
7835b98b
CL
2651/*
2652 * This function gets called by the timer code, with HZ frequency.
2653 * We call it with interrupts disabled.
7835b98b
CL
2654 */
2655void scheduler_tick(void)
2656{
7835b98b
CL
2657 int cpu = smp_processor_id();
2658 struct rq *rq = cpu_rq(cpu);
dd41f596 2659 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2660
2661 sched_clock_tick();
dd41f596 2662
05fa785c 2663 raw_spin_lock(&rq->lock);
3e51f33f 2664 update_rq_clock(rq);
fdf3e95d 2665 update_cpu_load_active(rq);
fa85ae24 2666 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2667 raw_spin_unlock(&rq->lock);
7835b98b 2668
e9d2b064 2669 perf_event_task_tick();
e220d2dc 2670
e418e1c2 2671#ifdef CONFIG_SMP
6eb57e0d 2672 rq->idle_balance = idle_cpu(cpu);
dd41f596 2673 trigger_load_balance(rq, cpu);
e418e1c2 2674#endif
1da177e4
LT
2675}
2676
132380a0 2677notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2678{
2679 if (in_lock_functions(addr)) {
2680 addr = CALLER_ADDR2;
2681 if (in_lock_functions(addr))
2682 addr = CALLER_ADDR3;
2683 }
2684 return addr;
2685}
1da177e4 2686
7e49fcce
SR
2687#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2688 defined(CONFIG_PREEMPT_TRACER))
2689
43627582 2690void __kprobes add_preempt_count(int val)
1da177e4 2691{
6cd8a4bb 2692#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2693 /*
2694 * Underflow?
2695 */
9a11b49a
IM
2696 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2697 return;
6cd8a4bb 2698#endif
1da177e4 2699 preempt_count() += val;
6cd8a4bb 2700#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2701 /*
2702 * Spinlock count overflowing soon?
2703 */
33859f7f
MOS
2704 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2705 PREEMPT_MASK - 10);
6cd8a4bb
SR
2706#endif
2707 if (preempt_count() == val)
2708 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2709}
2710EXPORT_SYMBOL(add_preempt_count);
2711
43627582 2712void __kprobes sub_preempt_count(int val)
1da177e4 2713{
6cd8a4bb 2714#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2715 /*
2716 * Underflow?
2717 */
01e3eb82 2718 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2719 return;
1da177e4
LT
2720 /*
2721 * Is the spinlock portion underflowing?
2722 */
9a11b49a
IM
2723 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2724 !(preempt_count() & PREEMPT_MASK)))
2725 return;
6cd8a4bb 2726#endif
9a11b49a 2727
6cd8a4bb
SR
2728 if (preempt_count() == val)
2729 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2730 preempt_count() -= val;
2731}
2732EXPORT_SYMBOL(sub_preempt_count);
2733
2734#endif
2735
2736/*
dd41f596 2737 * Print scheduling while atomic bug:
1da177e4 2738 */
dd41f596 2739static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2740{
664dfa65
DJ
2741 if (oops_in_progress)
2742 return;
2743
3df0fc5b
PZ
2744 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2745 prev->comm, prev->pid, preempt_count());
838225b4 2746
dd41f596 2747 debug_show_held_locks(prev);
e21f5b15 2748 print_modules();
dd41f596
IM
2749 if (irqs_disabled())
2750 print_irqtrace_events(prev);
6135fc1e 2751 dump_stack();
1c2927f1 2752 add_taint(TAINT_WARN);
dd41f596 2753}
1da177e4 2754
dd41f596
IM
2755/*
2756 * Various schedule()-time debugging checks and statistics:
2757 */
2758static inline void schedule_debug(struct task_struct *prev)
2759{
1da177e4 2760 /*
41a2d6cf 2761 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2762 * schedule() atomically, we ignore that path for now.
2763 * Otherwise, whine if we are scheduling when we should not be.
2764 */
3f33a7ce 2765 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2766 __schedule_bug(prev);
b3fbab05 2767 rcu_sleep_check();
dd41f596 2768
1da177e4
LT
2769 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2770
2d72376b 2771 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2772}
2773
6cecd084 2774static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2775{
61eadef6 2776 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2777 update_rq_clock(rq);
6cecd084 2778 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2779}
2780
dd41f596
IM
2781/*
2782 * Pick up the highest-prio task:
2783 */
2784static inline struct task_struct *
b67802ea 2785pick_next_task(struct rq *rq)
dd41f596 2786{
5522d5d5 2787 const struct sched_class *class;
dd41f596 2788 struct task_struct *p;
1da177e4
LT
2789
2790 /*
dd41f596
IM
2791 * Optimization: we know that if all tasks are in
2792 * the fair class we can call that function directly:
1da177e4 2793 */
953bfcd1 2794 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2795 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2796 if (likely(p))
2797 return p;
1da177e4
LT
2798 }
2799
34f971f6 2800 for_each_class(class) {
fb8d4724 2801 p = class->pick_next_task(rq);
dd41f596
IM
2802 if (p)
2803 return p;
dd41f596 2804 }
34f971f6
PZ
2805
2806 BUG(); /* the idle class will always have a runnable task */
dd41f596 2807}
1da177e4 2808
dd41f596 2809/*
c259e01a 2810 * __schedule() is the main scheduler function.
edde96ea
PE
2811 *
2812 * The main means of driving the scheduler and thus entering this function are:
2813 *
2814 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2815 *
2816 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2817 * paths. For example, see arch/x86/entry_64.S.
2818 *
2819 * To drive preemption between tasks, the scheduler sets the flag in timer
2820 * interrupt handler scheduler_tick().
2821 *
2822 * 3. Wakeups don't really cause entry into schedule(). They add a
2823 * task to the run-queue and that's it.
2824 *
2825 * Now, if the new task added to the run-queue preempts the current
2826 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2827 * called on the nearest possible occasion:
2828 *
2829 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2830 *
2831 * - in syscall or exception context, at the next outmost
2832 * preempt_enable(). (this might be as soon as the wake_up()'s
2833 * spin_unlock()!)
2834 *
2835 * - in IRQ context, return from interrupt-handler to
2836 * preemptible context
2837 *
2838 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2839 * then at the next:
2840 *
2841 * - cond_resched() call
2842 * - explicit schedule() call
2843 * - return from syscall or exception to user-space
2844 * - return from interrupt-handler to user-space
dd41f596 2845 */
c259e01a 2846static void __sched __schedule(void)
dd41f596
IM
2847{
2848 struct task_struct *prev, *next;
67ca7bde 2849 unsigned long *switch_count;
dd41f596 2850 struct rq *rq;
31656519 2851 int cpu;
dd41f596 2852
ff743345
PZ
2853need_resched:
2854 preempt_disable();
dd41f596
IM
2855 cpu = smp_processor_id();
2856 rq = cpu_rq(cpu);
25502a6c 2857 rcu_note_context_switch(cpu);
dd41f596 2858 prev = rq->curr;
dd41f596 2859
dd41f596 2860 schedule_debug(prev);
1da177e4 2861
31656519 2862 if (sched_feat(HRTICK))
f333fdc9 2863 hrtick_clear(rq);
8f4d37ec 2864
05fa785c 2865 raw_spin_lock_irq(&rq->lock);
1da177e4 2866
246d86b5 2867 switch_count = &prev->nivcsw;
1da177e4 2868 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2869 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2870 prev->state = TASK_RUNNING;
21aa9af0 2871 } else {
2acca55e
PZ
2872 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2873 prev->on_rq = 0;
2874
21aa9af0 2875 /*
2acca55e
PZ
2876 * If a worker went to sleep, notify and ask workqueue
2877 * whether it wants to wake up a task to maintain
2878 * concurrency.
21aa9af0
TH
2879 */
2880 if (prev->flags & PF_WQ_WORKER) {
2881 struct task_struct *to_wakeup;
2882
2883 to_wakeup = wq_worker_sleeping(prev, cpu);
2884 if (to_wakeup)
2885 try_to_wake_up_local(to_wakeup);
2886 }
21aa9af0 2887 }
dd41f596 2888 switch_count = &prev->nvcsw;
1da177e4
LT
2889 }
2890
3f029d3c 2891 pre_schedule(rq, prev);
f65eda4f 2892
dd41f596 2893 if (unlikely(!rq->nr_running))
1da177e4 2894 idle_balance(cpu, rq);
1da177e4 2895
df1c99d4 2896 put_prev_task(rq, prev);
b67802ea 2897 next = pick_next_task(rq);
f26f9aff
MG
2898 clear_tsk_need_resched(prev);
2899 rq->skip_clock_update = 0;
1da177e4 2900
1da177e4 2901 if (likely(prev != next)) {
1da177e4
LT
2902 rq->nr_switches++;
2903 rq->curr = next;
2904 ++*switch_count;
2905
dd41f596 2906 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2907 /*
246d86b5
ON
2908 * The context switch have flipped the stack from under us
2909 * and restored the local variables which were saved when
2910 * this task called schedule() in the past. prev == current
2911 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2912 */
2913 cpu = smp_processor_id();
2914 rq = cpu_rq(cpu);
1da177e4 2915 } else
05fa785c 2916 raw_spin_unlock_irq(&rq->lock);
1da177e4 2917
3f029d3c 2918 post_schedule(rq);
1da177e4 2919
ba74c144 2920 sched_preempt_enable_no_resched();
ff743345 2921 if (need_resched())
1da177e4
LT
2922 goto need_resched;
2923}
c259e01a 2924
9c40cef2
TG
2925static inline void sched_submit_work(struct task_struct *tsk)
2926{
3c7d5184 2927 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2928 return;
2929 /*
2930 * If we are going to sleep and we have plugged IO queued,
2931 * make sure to submit it to avoid deadlocks.
2932 */
2933 if (blk_needs_flush_plug(tsk))
2934 blk_schedule_flush_plug(tsk);
2935}
2936
6ebbe7a0 2937asmlinkage void __sched schedule(void)
c259e01a 2938{
9c40cef2
TG
2939 struct task_struct *tsk = current;
2940
2941 sched_submit_work(tsk);
c259e01a
TG
2942 __schedule();
2943}
1da177e4
LT
2944EXPORT_SYMBOL(schedule);
2945
20ab65e3
FW
2946#ifdef CONFIG_RCU_USER_QS
2947asmlinkage void __sched schedule_user(void)
2948{
2949 /*
2950 * If we come here after a random call to set_need_resched(),
2951 * or we have been woken up remotely but the IPI has not yet arrived,
2952 * we haven't yet exited the RCU idle mode. Do it here manually until
2953 * we find a better solution.
2954 */
2955 rcu_user_exit();
2956 schedule();
2957 rcu_user_enter();
2958}
2959#endif
2960
c5491ea7
TG
2961/**
2962 * schedule_preempt_disabled - called with preemption disabled
2963 *
2964 * Returns with preemption disabled. Note: preempt_count must be 1
2965 */
2966void __sched schedule_preempt_disabled(void)
2967{
ba74c144 2968 sched_preempt_enable_no_resched();
c5491ea7
TG
2969 schedule();
2970 preempt_disable();
2971}
2972
c08f7829 2973#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 2974
c6eb3dda
PZ
2975static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2976{
c6eb3dda 2977 if (lock->owner != owner)
307bf980 2978 return false;
0d66bf6d
PZ
2979
2980 /*
c6eb3dda
PZ
2981 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2982 * lock->owner still matches owner, if that fails, owner might
2983 * point to free()d memory, if it still matches, the rcu_read_lock()
2984 * ensures the memory stays valid.
0d66bf6d 2985 */
c6eb3dda 2986 barrier();
0d66bf6d 2987
307bf980 2988 return owner->on_cpu;
c6eb3dda 2989}
0d66bf6d 2990
c6eb3dda
PZ
2991/*
2992 * Look out! "owner" is an entirely speculative pointer
2993 * access and not reliable.
2994 */
2995int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2996{
2997 if (!sched_feat(OWNER_SPIN))
2998 return 0;
0d66bf6d 2999
307bf980 3000 rcu_read_lock();
c6eb3dda
PZ
3001 while (owner_running(lock, owner)) {
3002 if (need_resched())
307bf980 3003 break;
0d66bf6d 3004
335d7afb 3005 arch_mutex_cpu_relax();
0d66bf6d 3006 }
307bf980 3007 rcu_read_unlock();
4b402210 3008
c6eb3dda 3009 /*
307bf980
TG
3010 * We break out the loop above on need_resched() and when the
3011 * owner changed, which is a sign for heavy contention. Return
3012 * success only when lock->owner is NULL.
c6eb3dda 3013 */
307bf980 3014 return lock->owner == NULL;
0d66bf6d
PZ
3015}
3016#endif
3017
1da177e4
LT
3018#ifdef CONFIG_PREEMPT
3019/*
2ed6e34f 3020 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3021 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3022 * occur there and call schedule directly.
3023 */
d1f74e20 3024asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3025{
3026 struct thread_info *ti = current_thread_info();
6478d880 3027
1da177e4
LT
3028 /*
3029 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3030 * we do not want to preempt the current task. Just return..
1da177e4 3031 */
beed33a8 3032 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3033 return;
3034
3a5c359a 3035 do {
d1f74e20 3036 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3037 __schedule();
d1f74e20 3038 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3039
3a5c359a
AK
3040 /*
3041 * Check again in case we missed a preemption opportunity
3042 * between schedule and now.
3043 */
3044 barrier();
5ed0cec0 3045 } while (need_resched());
1da177e4 3046}
1da177e4
LT
3047EXPORT_SYMBOL(preempt_schedule);
3048
3049/*
2ed6e34f 3050 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3051 * off of irq context.
3052 * Note, that this is called and return with irqs disabled. This will
3053 * protect us against recursive calling from irq.
3054 */
3055asmlinkage void __sched preempt_schedule_irq(void)
3056{
3057 struct thread_info *ti = current_thread_info();
6478d880 3058
2ed6e34f 3059 /* Catch callers which need to be fixed */
1da177e4
LT
3060 BUG_ON(ti->preempt_count || !irqs_disabled());
3061
90a340ed 3062 rcu_user_exit();
3a5c359a
AK
3063 do {
3064 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3065 local_irq_enable();
c259e01a 3066 __schedule();
3a5c359a 3067 local_irq_disable();
3a5c359a 3068 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3069
3a5c359a
AK
3070 /*
3071 * Check again in case we missed a preemption opportunity
3072 * between schedule and now.
3073 */
3074 barrier();
5ed0cec0 3075 } while (need_resched());
1da177e4
LT
3076}
3077
3078#endif /* CONFIG_PREEMPT */
3079
63859d4f 3080int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3081 void *key)
1da177e4 3082{
63859d4f 3083 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3084}
1da177e4
LT
3085EXPORT_SYMBOL(default_wake_function);
3086
3087/*
41a2d6cf
IM
3088 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3089 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3090 * number) then we wake all the non-exclusive tasks and one exclusive task.
3091 *
3092 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3093 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3094 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3095 */
78ddb08f 3096static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3097 int nr_exclusive, int wake_flags, void *key)
1da177e4 3098{
2e45874c 3099 wait_queue_t *curr, *next;
1da177e4 3100
2e45874c 3101 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3102 unsigned flags = curr->flags;
3103
63859d4f 3104 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3105 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3106 break;
3107 }
3108}
3109
3110/**
3111 * __wake_up - wake up threads blocked on a waitqueue.
3112 * @q: the waitqueue
3113 * @mode: which threads
3114 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3115 * @key: is directly passed to the wakeup function
50fa610a
DH
3116 *
3117 * It may be assumed that this function implies a write memory barrier before
3118 * changing the task state if and only if any tasks are woken up.
1da177e4 3119 */
7ad5b3a5 3120void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3121 int nr_exclusive, void *key)
1da177e4
LT
3122{
3123 unsigned long flags;
3124
3125 spin_lock_irqsave(&q->lock, flags);
3126 __wake_up_common(q, mode, nr_exclusive, 0, key);
3127 spin_unlock_irqrestore(&q->lock, flags);
3128}
1da177e4
LT
3129EXPORT_SYMBOL(__wake_up);
3130
3131/*
3132 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3133 */
63b20011 3134void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3135{
63b20011 3136 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3137}
22c43c81 3138EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3139
4ede816a
DL
3140void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3141{
3142 __wake_up_common(q, mode, 1, 0, key);
3143}
bf294b41 3144EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3145
1da177e4 3146/**
4ede816a 3147 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3148 * @q: the waitqueue
3149 * @mode: which threads
3150 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3151 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3152 *
3153 * The sync wakeup differs that the waker knows that it will schedule
3154 * away soon, so while the target thread will be woken up, it will not
3155 * be migrated to another CPU - ie. the two threads are 'synchronized'
3156 * with each other. This can prevent needless bouncing between CPUs.
3157 *
3158 * On UP it can prevent extra preemption.
50fa610a
DH
3159 *
3160 * It may be assumed that this function implies a write memory barrier before
3161 * changing the task state if and only if any tasks are woken up.
1da177e4 3162 */
4ede816a
DL
3163void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3164 int nr_exclusive, void *key)
1da177e4
LT
3165{
3166 unsigned long flags;
7d478721 3167 int wake_flags = WF_SYNC;
1da177e4
LT
3168
3169 if (unlikely(!q))
3170 return;
3171
3172 if (unlikely(!nr_exclusive))
7d478721 3173 wake_flags = 0;
1da177e4
LT
3174
3175 spin_lock_irqsave(&q->lock, flags);
7d478721 3176 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3177 spin_unlock_irqrestore(&q->lock, flags);
3178}
4ede816a
DL
3179EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3180
3181/*
3182 * __wake_up_sync - see __wake_up_sync_key()
3183 */
3184void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3185{
3186 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3187}
1da177e4
LT
3188EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3189
65eb3dc6
KD
3190/**
3191 * complete: - signals a single thread waiting on this completion
3192 * @x: holds the state of this particular completion
3193 *
3194 * This will wake up a single thread waiting on this completion. Threads will be
3195 * awakened in the same order in which they were queued.
3196 *
3197 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3198 *
3199 * It may be assumed that this function implies a write memory barrier before
3200 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3201 */
b15136e9 3202void complete(struct completion *x)
1da177e4
LT
3203{
3204 unsigned long flags;
3205
3206 spin_lock_irqsave(&x->wait.lock, flags);
3207 x->done++;
d9514f6c 3208 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3209 spin_unlock_irqrestore(&x->wait.lock, flags);
3210}
3211EXPORT_SYMBOL(complete);
3212
65eb3dc6
KD
3213/**
3214 * complete_all: - signals all threads waiting on this completion
3215 * @x: holds the state of this particular completion
3216 *
3217 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3218 *
3219 * It may be assumed that this function implies a write memory barrier before
3220 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3221 */
b15136e9 3222void complete_all(struct completion *x)
1da177e4
LT
3223{
3224 unsigned long flags;
3225
3226 spin_lock_irqsave(&x->wait.lock, flags);
3227 x->done += UINT_MAX/2;
d9514f6c 3228 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3229 spin_unlock_irqrestore(&x->wait.lock, flags);
3230}
3231EXPORT_SYMBOL(complete_all);
3232
8cbbe86d
AK
3233static inline long __sched
3234do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3235{
1da177e4
LT
3236 if (!x->done) {
3237 DECLARE_WAITQUEUE(wait, current);
3238
a93d2f17 3239 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3240 do {
94d3d824 3241 if (signal_pending_state(state, current)) {
ea71a546
ON
3242 timeout = -ERESTARTSYS;
3243 break;
8cbbe86d
AK
3244 }
3245 __set_current_state(state);
1da177e4
LT
3246 spin_unlock_irq(&x->wait.lock);
3247 timeout = schedule_timeout(timeout);
3248 spin_lock_irq(&x->wait.lock);
ea71a546 3249 } while (!x->done && timeout);
1da177e4 3250 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3251 if (!x->done)
3252 return timeout;
1da177e4
LT
3253 }
3254 x->done--;
ea71a546 3255 return timeout ?: 1;
1da177e4 3256}
1da177e4 3257
8cbbe86d
AK
3258static long __sched
3259wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3260{
1da177e4
LT
3261 might_sleep();
3262
3263 spin_lock_irq(&x->wait.lock);
8cbbe86d 3264 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3265 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3266 return timeout;
3267}
1da177e4 3268
65eb3dc6
KD
3269/**
3270 * wait_for_completion: - waits for completion of a task
3271 * @x: holds the state of this particular completion
3272 *
3273 * This waits to be signaled for completion of a specific task. It is NOT
3274 * interruptible and there is no timeout.
3275 *
3276 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3277 * and interrupt capability. Also see complete().
3278 */
b15136e9 3279void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3280{
3281 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3282}
8cbbe86d 3283EXPORT_SYMBOL(wait_for_completion);
1da177e4 3284
65eb3dc6
KD
3285/**
3286 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3287 * @x: holds the state of this particular completion
3288 * @timeout: timeout value in jiffies
3289 *
3290 * This waits for either a completion of a specific task to be signaled or for a
3291 * specified timeout to expire. The timeout is in jiffies. It is not
3292 * interruptible.
c6dc7f05
BF
3293 *
3294 * The return value is 0 if timed out, and positive (at least 1, or number of
3295 * jiffies left till timeout) if completed.
65eb3dc6 3296 */
b15136e9 3297unsigned long __sched
8cbbe86d 3298wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3299{
8cbbe86d 3300 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3301}
8cbbe86d 3302EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3303
65eb3dc6
KD
3304/**
3305 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3306 * @x: holds the state of this particular completion
3307 *
3308 * This waits for completion of a specific task to be signaled. It is
3309 * interruptible.
c6dc7f05
BF
3310 *
3311 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3312 */
8cbbe86d 3313int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3314{
51e97990
AK
3315 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3316 if (t == -ERESTARTSYS)
3317 return t;
3318 return 0;
0fec171c 3319}
8cbbe86d 3320EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3321
65eb3dc6
KD
3322/**
3323 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3324 * @x: holds the state of this particular completion
3325 * @timeout: timeout value in jiffies
3326 *
3327 * This waits for either a completion of a specific task to be signaled or for a
3328 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3329 *
3330 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3331 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3332 */
6bf41237 3333long __sched
8cbbe86d
AK
3334wait_for_completion_interruptible_timeout(struct completion *x,
3335 unsigned long timeout)
0fec171c 3336{
8cbbe86d 3337 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3338}
8cbbe86d 3339EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3340
65eb3dc6
KD
3341/**
3342 * wait_for_completion_killable: - waits for completion of a task (killable)
3343 * @x: holds the state of this particular completion
3344 *
3345 * This waits to be signaled for completion of a specific task. It can be
3346 * interrupted by a kill signal.
c6dc7f05
BF
3347 *
3348 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3349 */
009e577e
MW
3350int __sched wait_for_completion_killable(struct completion *x)
3351{
3352 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3353 if (t == -ERESTARTSYS)
3354 return t;
3355 return 0;
3356}
3357EXPORT_SYMBOL(wait_for_completion_killable);
3358
0aa12fb4
SW
3359/**
3360 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3361 * @x: holds the state of this particular completion
3362 * @timeout: timeout value in jiffies
3363 *
3364 * This waits for either a completion of a specific task to be
3365 * signaled or for a specified timeout to expire. It can be
3366 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3367 *
3368 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3369 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3370 */
6bf41237 3371long __sched
0aa12fb4
SW
3372wait_for_completion_killable_timeout(struct completion *x,
3373 unsigned long timeout)
3374{
3375 return wait_for_common(x, timeout, TASK_KILLABLE);
3376}
3377EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3378
be4de352
DC
3379/**
3380 * try_wait_for_completion - try to decrement a completion without blocking
3381 * @x: completion structure
3382 *
3383 * Returns: 0 if a decrement cannot be done without blocking
3384 * 1 if a decrement succeeded.
3385 *
3386 * If a completion is being used as a counting completion,
3387 * attempt to decrement the counter without blocking. This
3388 * enables us to avoid waiting if the resource the completion
3389 * is protecting is not available.
3390 */
3391bool try_wait_for_completion(struct completion *x)
3392{
7539a3b3 3393 unsigned long flags;
be4de352
DC
3394 int ret = 1;
3395
7539a3b3 3396 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3397 if (!x->done)
3398 ret = 0;
3399 else
3400 x->done--;
7539a3b3 3401 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3402 return ret;
3403}
3404EXPORT_SYMBOL(try_wait_for_completion);
3405
3406/**
3407 * completion_done - Test to see if a completion has any waiters
3408 * @x: completion structure
3409 *
3410 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3411 * 1 if there are no waiters.
3412 *
3413 */
3414bool completion_done(struct completion *x)
3415{
7539a3b3 3416 unsigned long flags;
be4de352
DC
3417 int ret = 1;
3418
7539a3b3 3419 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3420 if (!x->done)
3421 ret = 0;
7539a3b3 3422 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3423 return ret;
3424}
3425EXPORT_SYMBOL(completion_done);
3426
8cbbe86d
AK
3427static long __sched
3428sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3429{
0fec171c
IM
3430 unsigned long flags;
3431 wait_queue_t wait;
3432
3433 init_waitqueue_entry(&wait, current);
1da177e4 3434
8cbbe86d 3435 __set_current_state(state);
1da177e4 3436
8cbbe86d
AK
3437 spin_lock_irqsave(&q->lock, flags);
3438 __add_wait_queue(q, &wait);
3439 spin_unlock(&q->lock);
3440 timeout = schedule_timeout(timeout);
3441 spin_lock_irq(&q->lock);
3442 __remove_wait_queue(q, &wait);
3443 spin_unlock_irqrestore(&q->lock, flags);
3444
3445 return timeout;
3446}
3447
3448void __sched interruptible_sleep_on(wait_queue_head_t *q)
3449{
3450 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3451}
1da177e4
LT
3452EXPORT_SYMBOL(interruptible_sleep_on);
3453
0fec171c 3454long __sched
95cdf3b7 3455interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3456{
8cbbe86d 3457 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3458}
1da177e4
LT
3459EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3460
0fec171c 3461void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3462{
8cbbe86d 3463 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3464}
1da177e4
LT
3465EXPORT_SYMBOL(sleep_on);
3466
0fec171c 3467long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3468{
8cbbe86d 3469 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3470}
1da177e4
LT
3471EXPORT_SYMBOL(sleep_on_timeout);
3472
b29739f9
IM
3473#ifdef CONFIG_RT_MUTEXES
3474
3475/*
3476 * rt_mutex_setprio - set the current priority of a task
3477 * @p: task
3478 * @prio: prio value (kernel-internal form)
3479 *
3480 * This function changes the 'effective' priority of a task. It does
3481 * not touch ->normal_prio like __setscheduler().
3482 *
3483 * Used by the rt_mutex code to implement priority inheritance logic.
3484 */
36c8b586 3485void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3486{
83b699ed 3487 int oldprio, on_rq, running;
70b97a7f 3488 struct rq *rq;
83ab0aa0 3489 const struct sched_class *prev_class;
b29739f9
IM
3490
3491 BUG_ON(prio < 0 || prio > MAX_PRIO);
3492
0122ec5b 3493 rq = __task_rq_lock(p);
b29739f9 3494
1c4dd99b
TG
3495 /*
3496 * Idle task boosting is a nono in general. There is one
3497 * exception, when PREEMPT_RT and NOHZ is active:
3498 *
3499 * The idle task calls get_next_timer_interrupt() and holds
3500 * the timer wheel base->lock on the CPU and another CPU wants
3501 * to access the timer (probably to cancel it). We can safely
3502 * ignore the boosting request, as the idle CPU runs this code
3503 * with interrupts disabled and will complete the lock
3504 * protected section without being interrupted. So there is no
3505 * real need to boost.
3506 */
3507 if (unlikely(p == rq->idle)) {
3508 WARN_ON(p != rq->curr);
3509 WARN_ON(p->pi_blocked_on);
3510 goto out_unlock;
3511 }
3512
a8027073 3513 trace_sched_pi_setprio(p, prio);
d5f9f942 3514 oldprio = p->prio;
83ab0aa0 3515 prev_class = p->sched_class;
fd2f4419 3516 on_rq = p->on_rq;
051a1d1a 3517 running = task_current(rq, p);
0e1f3483 3518 if (on_rq)
69be72c1 3519 dequeue_task(rq, p, 0);
0e1f3483
HS
3520 if (running)
3521 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3522
3523 if (rt_prio(prio))
3524 p->sched_class = &rt_sched_class;
3525 else
3526 p->sched_class = &fair_sched_class;
3527
b29739f9
IM
3528 p->prio = prio;
3529
0e1f3483
HS
3530 if (running)
3531 p->sched_class->set_curr_task(rq);
da7a735e 3532 if (on_rq)
371fd7e7 3533 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3534
da7a735e 3535 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3536out_unlock:
0122ec5b 3537 __task_rq_unlock(rq);
b29739f9 3538}
b29739f9 3539#endif
36c8b586 3540void set_user_nice(struct task_struct *p, long nice)
1da177e4 3541{
dd41f596 3542 int old_prio, delta, on_rq;
1da177e4 3543 unsigned long flags;
70b97a7f 3544 struct rq *rq;
1da177e4
LT
3545
3546 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3547 return;
3548 /*
3549 * We have to be careful, if called from sys_setpriority(),
3550 * the task might be in the middle of scheduling on another CPU.
3551 */
3552 rq = task_rq_lock(p, &flags);
3553 /*
3554 * The RT priorities are set via sched_setscheduler(), but we still
3555 * allow the 'normal' nice value to be set - but as expected
3556 * it wont have any effect on scheduling until the task is
dd41f596 3557 * SCHED_FIFO/SCHED_RR:
1da177e4 3558 */
e05606d3 3559 if (task_has_rt_policy(p)) {
1da177e4
LT
3560 p->static_prio = NICE_TO_PRIO(nice);
3561 goto out_unlock;
3562 }
fd2f4419 3563 on_rq = p->on_rq;
c09595f6 3564 if (on_rq)
69be72c1 3565 dequeue_task(rq, p, 0);
1da177e4 3566
1da177e4 3567 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3568 set_load_weight(p);
b29739f9
IM
3569 old_prio = p->prio;
3570 p->prio = effective_prio(p);
3571 delta = p->prio - old_prio;
1da177e4 3572
dd41f596 3573 if (on_rq) {
371fd7e7 3574 enqueue_task(rq, p, 0);
1da177e4 3575 /*
d5f9f942
AM
3576 * If the task increased its priority or is running and
3577 * lowered its priority, then reschedule its CPU:
1da177e4 3578 */
d5f9f942 3579 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3580 resched_task(rq->curr);
3581 }
3582out_unlock:
0122ec5b 3583 task_rq_unlock(rq, p, &flags);
1da177e4 3584}
1da177e4
LT
3585EXPORT_SYMBOL(set_user_nice);
3586
e43379f1
MM
3587/*
3588 * can_nice - check if a task can reduce its nice value
3589 * @p: task
3590 * @nice: nice value
3591 */
36c8b586 3592int can_nice(const struct task_struct *p, const int nice)
e43379f1 3593{
024f4747
MM
3594 /* convert nice value [19,-20] to rlimit style value [1,40] */
3595 int nice_rlim = 20 - nice;
48f24c4d 3596
78d7d407 3597 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3598 capable(CAP_SYS_NICE));
3599}
3600
1da177e4
LT
3601#ifdef __ARCH_WANT_SYS_NICE
3602
3603/*
3604 * sys_nice - change the priority of the current process.
3605 * @increment: priority increment
3606 *
3607 * sys_setpriority is a more generic, but much slower function that
3608 * does similar things.
3609 */
5add95d4 3610SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3611{
48f24c4d 3612 long nice, retval;
1da177e4
LT
3613
3614 /*
3615 * Setpriority might change our priority at the same moment.
3616 * We don't have to worry. Conceptually one call occurs first
3617 * and we have a single winner.
3618 */
e43379f1
MM
3619 if (increment < -40)
3620 increment = -40;
1da177e4
LT
3621 if (increment > 40)
3622 increment = 40;
3623
2b8f836f 3624 nice = TASK_NICE(current) + increment;
1da177e4
LT
3625 if (nice < -20)
3626 nice = -20;
3627 if (nice > 19)
3628 nice = 19;
3629
e43379f1
MM
3630 if (increment < 0 && !can_nice(current, nice))
3631 return -EPERM;
3632
1da177e4
LT
3633 retval = security_task_setnice(current, nice);
3634 if (retval)
3635 return retval;
3636
3637 set_user_nice(current, nice);
3638 return 0;
3639}
3640
3641#endif
3642
3643/**
3644 * task_prio - return the priority value of a given task.
3645 * @p: the task in question.
3646 *
3647 * This is the priority value as seen by users in /proc.
3648 * RT tasks are offset by -200. Normal tasks are centered
3649 * around 0, value goes from -16 to +15.
3650 */
36c8b586 3651int task_prio(const struct task_struct *p)
1da177e4
LT
3652{
3653 return p->prio - MAX_RT_PRIO;
3654}
3655
3656/**
3657 * task_nice - return the nice value of a given task.
3658 * @p: the task in question.
3659 */
36c8b586 3660int task_nice(const struct task_struct *p)
1da177e4
LT
3661{
3662 return TASK_NICE(p);
3663}
150d8bed 3664EXPORT_SYMBOL(task_nice);
1da177e4
LT
3665
3666/**
3667 * idle_cpu - is a given cpu idle currently?
3668 * @cpu: the processor in question.
3669 */
3670int idle_cpu(int cpu)
3671{
908a3283
TG
3672 struct rq *rq = cpu_rq(cpu);
3673
3674 if (rq->curr != rq->idle)
3675 return 0;
3676
3677 if (rq->nr_running)
3678 return 0;
3679
3680#ifdef CONFIG_SMP
3681 if (!llist_empty(&rq->wake_list))
3682 return 0;
3683#endif
3684
3685 return 1;
1da177e4
LT
3686}
3687
1da177e4
LT
3688/**
3689 * idle_task - return the idle task for a given cpu.
3690 * @cpu: the processor in question.
3691 */
36c8b586 3692struct task_struct *idle_task(int cpu)
1da177e4
LT
3693{
3694 return cpu_rq(cpu)->idle;
3695}
3696
3697/**
3698 * find_process_by_pid - find a process with a matching PID value.
3699 * @pid: the pid in question.
3700 */
a9957449 3701static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3702{
228ebcbe 3703 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3704}
3705
3706/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3707static void
3708__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3709{
1da177e4
LT
3710 p->policy = policy;
3711 p->rt_priority = prio;
b29739f9
IM
3712 p->normal_prio = normal_prio(p);
3713 /* we are holding p->pi_lock already */
3714 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3715 if (rt_prio(p->prio))
3716 p->sched_class = &rt_sched_class;
3717 else
3718 p->sched_class = &fair_sched_class;
2dd73a4f 3719 set_load_weight(p);
1da177e4
LT
3720}
3721
c69e8d9c
DH
3722/*
3723 * check the target process has a UID that matches the current process's
3724 */
3725static bool check_same_owner(struct task_struct *p)
3726{
3727 const struct cred *cred = current_cred(), *pcred;
3728 bool match;
3729
3730 rcu_read_lock();
3731 pcred = __task_cred(p);
9c806aa0
EB
3732 match = (uid_eq(cred->euid, pcred->euid) ||
3733 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3734 rcu_read_unlock();
3735 return match;
3736}
3737
961ccddd 3738static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3739 const struct sched_param *param, bool user)
1da177e4 3740{
83b699ed 3741 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3742 unsigned long flags;
83ab0aa0 3743 const struct sched_class *prev_class;
70b97a7f 3744 struct rq *rq;
ca94c442 3745 int reset_on_fork;
1da177e4 3746
66e5393a
SR
3747 /* may grab non-irq protected spin_locks */
3748 BUG_ON(in_interrupt());
1da177e4
LT
3749recheck:
3750 /* double check policy once rq lock held */
ca94c442
LP
3751 if (policy < 0) {
3752 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3753 policy = oldpolicy = p->policy;
ca94c442
LP
3754 } else {
3755 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3756 policy &= ~SCHED_RESET_ON_FORK;
3757
3758 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3759 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3760 policy != SCHED_IDLE)
3761 return -EINVAL;
3762 }
3763
1da177e4
LT
3764 /*
3765 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3766 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3767 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3768 */
3769 if (param->sched_priority < 0 ||
95cdf3b7 3770 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3771 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3772 return -EINVAL;
e05606d3 3773 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3774 return -EINVAL;
3775
37e4ab3f
OC
3776 /*
3777 * Allow unprivileged RT tasks to decrease priority:
3778 */
961ccddd 3779 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3780 if (rt_policy(policy)) {
a44702e8
ON
3781 unsigned long rlim_rtprio =
3782 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3783
3784 /* can't set/change the rt policy */
3785 if (policy != p->policy && !rlim_rtprio)
3786 return -EPERM;
3787
3788 /* can't increase priority */
3789 if (param->sched_priority > p->rt_priority &&
3790 param->sched_priority > rlim_rtprio)
3791 return -EPERM;
3792 }
c02aa73b 3793
dd41f596 3794 /*
c02aa73b
DH
3795 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3796 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3797 */
c02aa73b
DH
3798 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3799 if (!can_nice(p, TASK_NICE(p)))
3800 return -EPERM;
3801 }
5fe1d75f 3802
37e4ab3f 3803 /* can't change other user's priorities */
c69e8d9c 3804 if (!check_same_owner(p))
37e4ab3f 3805 return -EPERM;
ca94c442
LP
3806
3807 /* Normal users shall not reset the sched_reset_on_fork flag */
3808 if (p->sched_reset_on_fork && !reset_on_fork)
3809 return -EPERM;
37e4ab3f 3810 }
1da177e4 3811
725aad24 3812 if (user) {
b0ae1981 3813 retval = security_task_setscheduler(p);
725aad24
JF
3814 if (retval)
3815 return retval;
3816 }
3817
b29739f9
IM
3818 /*
3819 * make sure no PI-waiters arrive (or leave) while we are
3820 * changing the priority of the task:
0122ec5b 3821 *
25985edc 3822 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3823 * runqueue lock must be held.
3824 */
0122ec5b 3825 rq = task_rq_lock(p, &flags);
dc61b1d6 3826
34f971f6
PZ
3827 /*
3828 * Changing the policy of the stop threads its a very bad idea
3829 */
3830 if (p == rq->stop) {
0122ec5b 3831 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3832 return -EINVAL;
3833 }
3834
a51e9198
DF
3835 /*
3836 * If not changing anything there's no need to proceed further:
3837 */
3838 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3839 param->sched_priority == p->rt_priority))) {
45afb173 3840 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3841 return 0;
3842 }
3843
dc61b1d6
PZ
3844#ifdef CONFIG_RT_GROUP_SCHED
3845 if (user) {
3846 /*
3847 * Do not allow realtime tasks into groups that have no runtime
3848 * assigned.
3849 */
3850 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3851 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3852 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3853 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3854 return -EPERM;
3855 }
3856 }
3857#endif
3858
1da177e4
LT
3859 /* recheck policy now with rq lock held */
3860 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3861 policy = oldpolicy = -1;
0122ec5b 3862 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3863 goto recheck;
3864 }
fd2f4419 3865 on_rq = p->on_rq;
051a1d1a 3866 running = task_current(rq, p);
0e1f3483 3867 if (on_rq)
4ca9b72b 3868 dequeue_task(rq, p, 0);
0e1f3483
HS
3869 if (running)
3870 p->sched_class->put_prev_task(rq, p);
f6b53205 3871
ca94c442
LP
3872 p->sched_reset_on_fork = reset_on_fork;
3873
1da177e4 3874 oldprio = p->prio;
83ab0aa0 3875 prev_class = p->sched_class;
dd41f596 3876 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3877
0e1f3483
HS
3878 if (running)
3879 p->sched_class->set_curr_task(rq);
da7a735e 3880 if (on_rq)
4ca9b72b 3881 enqueue_task(rq, p, 0);
cb469845 3882
da7a735e 3883 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3884 task_rq_unlock(rq, p, &flags);
b29739f9 3885
95e02ca9
TG
3886 rt_mutex_adjust_pi(p);
3887
1da177e4
LT
3888 return 0;
3889}
961ccddd
RR
3890
3891/**
3892 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3893 * @p: the task in question.
3894 * @policy: new policy.
3895 * @param: structure containing the new RT priority.
3896 *
3897 * NOTE that the task may be already dead.
3898 */
3899int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3900 const struct sched_param *param)
961ccddd
RR
3901{
3902 return __sched_setscheduler(p, policy, param, true);
3903}
1da177e4
LT
3904EXPORT_SYMBOL_GPL(sched_setscheduler);
3905
961ccddd
RR
3906/**
3907 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3908 * @p: the task in question.
3909 * @policy: new policy.
3910 * @param: structure containing the new RT priority.
3911 *
3912 * Just like sched_setscheduler, only don't bother checking if the
3913 * current context has permission. For example, this is needed in
3914 * stop_machine(): we create temporary high priority worker threads,
3915 * but our caller might not have that capability.
3916 */
3917int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3918 const struct sched_param *param)
961ccddd
RR
3919{
3920 return __sched_setscheduler(p, policy, param, false);
3921}
3922
95cdf3b7
IM
3923static int
3924do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3925{
1da177e4
LT
3926 struct sched_param lparam;
3927 struct task_struct *p;
36c8b586 3928 int retval;
1da177e4
LT
3929
3930 if (!param || pid < 0)
3931 return -EINVAL;
3932 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3933 return -EFAULT;
5fe1d75f
ON
3934
3935 rcu_read_lock();
3936 retval = -ESRCH;
1da177e4 3937 p = find_process_by_pid(pid);
5fe1d75f
ON
3938 if (p != NULL)
3939 retval = sched_setscheduler(p, policy, &lparam);
3940 rcu_read_unlock();
36c8b586 3941
1da177e4
LT
3942 return retval;
3943}
3944
3945/**
3946 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3947 * @pid: the pid in question.
3948 * @policy: new policy.
3949 * @param: structure containing the new RT priority.
3950 */
5add95d4
HC
3951SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3952 struct sched_param __user *, param)
1da177e4 3953{
c21761f1
JB
3954 /* negative values for policy are not valid */
3955 if (policy < 0)
3956 return -EINVAL;
3957
1da177e4
LT
3958 return do_sched_setscheduler(pid, policy, param);
3959}
3960
3961/**
3962 * sys_sched_setparam - set/change the RT priority of a thread
3963 * @pid: the pid in question.
3964 * @param: structure containing the new RT priority.
3965 */
5add95d4 3966SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3967{
3968 return do_sched_setscheduler(pid, -1, param);
3969}
3970
3971/**
3972 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3973 * @pid: the pid in question.
3974 */
5add95d4 3975SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3976{
36c8b586 3977 struct task_struct *p;
3a5c359a 3978 int retval;
1da177e4
LT
3979
3980 if (pid < 0)
3a5c359a 3981 return -EINVAL;
1da177e4
LT
3982
3983 retval = -ESRCH;
5fe85be0 3984 rcu_read_lock();
1da177e4
LT
3985 p = find_process_by_pid(pid);
3986 if (p) {
3987 retval = security_task_getscheduler(p);
3988 if (!retval)
ca94c442
LP
3989 retval = p->policy
3990 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3991 }
5fe85be0 3992 rcu_read_unlock();
1da177e4
LT
3993 return retval;
3994}
3995
3996/**
ca94c442 3997 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3998 * @pid: the pid in question.
3999 * @param: structure containing the RT priority.
4000 */
5add95d4 4001SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4002{
4003 struct sched_param lp;
36c8b586 4004 struct task_struct *p;
3a5c359a 4005 int retval;
1da177e4
LT
4006
4007 if (!param || pid < 0)
3a5c359a 4008 return -EINVAL;
1da177e4 4009
5fe85be0 4010 rcu_read_lock();
1da177e4
LT
4011 p = find_process_by_pid(pid);
4012 retval = -ESRCH;
4013 if (!p)
4014 goto out_unlock;
4015
4016 retval = security_task_getscheduler(p);
4017 if (retval)
4018 goto out_unlock;
4019
4020 lp.sched_priority = p->rt_priority;
5fe85be0 4021 rcu_read_unlock();
1da177e4
LT
4022
4023 /*
4024 * This one might sleep, we cannot do it with a spinlock held ...
4025 */
4026 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4027
1da177e4
LT
4028 return retval;
4029
4030out_unlock:
5fe85be0 4031 rcu_read_unlock();
1da177e4
LT
4032 return retval;
4033}
4034
96f874e2 4035long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4036{
5a16f3d3 4037 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4038 struct task_struct *p;
4039 int retval;
1da177e4 4040
95402b38 4041 get_online_cpus();
23f5d142 4042 rcu_read_lock();
1da177e4
LT
4043
4044 p = find_process_by_pid(pid);
4045 if (!p) {
23f5d142 4046 rcu_read_unlock();
95402b38 4047 put_online_cpus();
1da177e4
LT
4048 return -ESRCH;
4049 }
4050
23f5d142 4051 /* Prevent p going away */
1da177e4 4052 get_task_struct(p);
23f5d142 4053 rcu_read_unlock();
1da177e4 4054
5a16f3d3
RR
4055 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4056 retval = -ENOMEM;
4057 goto out_put_task;
4058 }
4059 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4060 retval = -ENOMEM;
4061 goto out_free_cpus_allowed;
4062 }
1da177e4 4063 retval = -EPERM;
f1c84dae 4064 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4065 goto out_unlock;
4066
b0ae1981 4067 retval = security_task_setscheduler(p);
e7834f8f
DQ
4068 if (retval)
4069 goto out_unlock;
4070
5a16f3d3
RR
4071 cpuset_cpus_allowed(p, cpus_allowed);
4072 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4073again:
5a16f3d3 4074 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4075
8707d8b8 4076 if (!retval) {
5a16f3d3
RR
4077 cpuset_cpus_allowed(p, cpus_allowed);
4078 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4079 /*
4080 * We must have raced with a concurrent cpuset
4081 * update. Just reset the cpus_allowed to the
4082 * cpuset's cpus_allowed
4083 */
5a16f3d3 4084 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4085 goto again;
4086 }
4087 }
1da177e4 4088out_unlock:
5a16f3d3
RR
4089 free_cpumask_var(new_mask);
4090out_free_cpus_allowed:
4091 free_cpumask_var(cpus_allowed);
4092out_put_task:
1da177e4 4093 put_task_struct(p);
95402b38 4094 put_online_cpus();
1da177e4
LT
4095 return retval;
4096}
4097
4098static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4099 struct cpumask *new_mask)
1da177e4 4100{
96f874e2
RR
4101 if (len < cpumask_size())
4102 cpumask_clear(new_mask);
4103 else if (len > cpumask_size())
4104 len = cpumask_size();
4105
1da177e4
LT
4106 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4107}
4108
4109/**
4110 * sys_sched_setaffinity - set the cpu affinity of a process
4111 * @pid: pid of the process
4112 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4113 * @user_mask_ptr: user-space pointer to the new cpu mask
4114 */
5add95d4
HC
4115SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4116 unsigned long __user *, user_mask_ptr)
1da177e4 4117{
5a16f3d3 4118 cpumask_var_t new_mask;
1da177e4
LT
4119 int retval;
4120
5a16f3d3
RR
4121 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4122 return -ENOMEM;
1da177e4 4123
5a16f3d3
RR
4124 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4125 if (retval == 0)
4126 retval = sched_setaffinity(pid, new_mask);
4127 free_cpumask_var(new_mask);
4128 return retval;
1da177e4
LT
4129}
4130
96f874e2 4131long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4132{
36c8b586 4133 struct task_struct *p;
31605683 4134 unsigned long flags;
1da177e4 4135 int retval;
1da177e4 4136
95402b38 4137 get_online_cpus();
23f5d142 4138 rcu_read_lock();
1da177e4
LT
4139
4140 retval = -ESRCH;
4141 p = find_process_by_pid(pid);
4142 if (!p)
4143 goto out_unlock;
4144
e7834f8f
DQ
4145 retval = security_task_getscheduler(p);
4146 if (retval)
4147 goto out_unlock;
4148
013fdb80 4149 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4150 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4151 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4152
4153out_unlock:
23f5d142 4154 rcu_read_unlock();
95402b38 4155 put_online_cpus();
1da177e4 4156
9531b62f 4157 return retval;
1da177e4
LT
4158}
4159
4160/**
4161 * sys_sched_getaffinity - get the cpu affinity of a process
4162 * @pid: pid of the process
4163 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4164 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4165 */
5add95d4
HC
4166SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4167 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4168{
4169 int ret;
f17c8607 4170 cpumask_var_t mask;
1da177e4 4171
84fba5ec 4172 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4173 return -EINVAL;
4174 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4175 return -EINVAL;
4176
f17c8607
RR
4177 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4178 return -ENOMEM;
1da177e4 4179
f17c8607
RR
4180 ret = sched_getaffinity(pid, mask);
4181 if (ret == 0) {
8bc037fb 4182 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4183
4184 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4185 ret = -EFAULT;
4186 else
cd3d8031 4187 ret = retlen;
f17c8607
RR
4188 }
4189 free_cpumask_var(mask);
1da177e4 4190
f17c8607 4191 return ret;
1da177e4
LT
4192}
4193
4194/**
4195 * sys_sched_yield - yield the current processor to other threads.
4196 *
dd41f596
IM
4197 * This function yields the current CPU to other tasks. If there are no
4198 * other threads running on this CPU then this function will return.
1da177e4 4199 */
5add95d4 4200SYSCALL_DEFINE0(sched_yield)
1da177e4 4201{
70b97a7f 4202 struct rq *rq = this_rq_lock();
1da177e4 4203
2d72376b 4204 schedstat_inc(rq, yld_count);
4530d7ab 4205 current->sched_class->yield_task(rq);
1da177e4
LT
4206
4207 /*
4208 * Since we are going to call schedule() anyway, there's
4209 * no need to preempt or enable interrupts:
4210 */
4211 __release(rq->lock);
8a25d5de 4212 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4213 do_raw_spin_unlock(&rq->lock);
ba74c144 4214 sched_preempt_enable_no_resched();
1da177e4
LT
4215
4216 schedule();
4217
4218 return 0;
4219}
4220
d86ee480
PZ
4221static inline int should_resched(void)
4222{
4223 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4224}
4225
e7b38404 4226static void __cond_resched(void)
1da177e4 4227{
e7aaaa69 4228 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4229 __schedule();
e7aaaa69 4230 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4231}
4232
02b67cc3 4233int __sched _cond_resched(void)
1da177e4 4234{
d86ee480 4235 if (should_resched()) {
1da177e4
LT
4236 __cond_resched();
4237 return 1;
4238 }
4239 return 0;
4240}
02b67cc3 4241EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4242
4243/*
613afbf8 4244 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4245 * call schedule, and on return reacquire the lock.
4246 *
41a2d6cf 4247 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4248 * operations here to prevent schedule() from being called twice (once via
4249 * spin_unlock(), once by hand).
4250 */
613afbf8 4251int __cond_resched_lock(spinlock_t *lock)
1da177e4 4252{
d86ee480 4253 int resched = should_resched();
6df3cecb
JK
4254 int ret = 0;
4255
f607c668
PZ
4256 lockdep_assert_held(lock);
4257
95c354fe 4258 if (spin_needbreak(lock) || resched) {
1da177e4 4259 spin_unlock(lock);
d86ee480 4260 if (resched)
95c354fe
NP
4261 __cond_resched();
4262 else
4263 cpu_relax();
6df3cecb 4264 ret = 1;
1da177e4 4265 spin_lock(lock);
1da177e4 4266 }
6df3cecb 4267 return ret;
1da177e4 4268}
613afbf8 4269EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4270
613afbf8 4271int __sched __cond_resched_softirq(void)
1da177e4
LT
4272{
4273 BUG_ON(!in_softirq());
4274
d86ee480 4275 if (should_resched()) {
98d82567 4276 local_bh_enable();
1da177e4
LT
4277 __cond_resched();
4278 local_bh_disable();
4279 return 1;
4280 }
4281 return 0;
4282}
613afbf8 4283EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4284
1da177e4
LT
4285/**
4286 * yield - yield the current processor to other threads.
4287 *
8e3fabfd
PZ
4288 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4289 *
4290 * The scheduler is at all times free to pick the calling task as the most
4291 * eligible task to run, if removing the yield() call from your code breaks
4292 * it, its already broken.
4293 *
4294 * Typical broken usage is:
4295 *
4296 * while (!event)
4297 * yield();
4298 *
4299 * where one assumes that yield() will let 'the other' process run that will
4300 * make event true. If the current task is a SCHED_FIFO task that will never
4301 * happen. Never use yield() as a progress guarantee!!
4302 *
4303 * If you want to use yield() to wait for something, use wait_event().
4304 * If you want to use yield() to be 'nice' for others, use cond_resched().
4305 * If you still want to use yield(), do not!
1da177e4
LT
4306 */
4307void __sched yield(void)
4308{
4309 set_current_state(TASK_RUNNING);
4310 sys_sched_yield();
4311}
1da177e4
LT
4312EXPORT_SYMBOL(yield);
4313
d95f4122
MG
4314/**
4315 * yield_to - yield the current processor to another thread in
4316 * your thread group, or accelerate that thread toward the
4317 * processor it's on.
16addf95
RD
4318 * @p: target task
4319 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4320 *
4321 * It's the caller's job to ensure that the target task struct
4322 * can't go away on us before we can do any checks.
4323 *
4324 * Returns true if we indeed boosted the target task.
4325 */
4326bool __sched yield_to(struct task_struct *p, bool preempt)
4327{
4328 struct task_struct *curr = current;
4329 struct rq *rq, *p_rq;
4330 unsigned long flags;
4331 bool yielded = 0;
4332
4333 local_irq_save(flags);
4334 rq = this_rq();
4335
4336again:
4337 p_rq = task_rq(p);
4338 double_rq_lock(rq, p_rq);
4339 while (task_rq(p) != p_rq) {
4340 double_rq_unlock(rq, p_rq);
4341 goto again;
4342 }
4343
4344 if (!curr->sched_class->yield_to_task)
4345 goto out;
4346
4347 if (curr->sched_class != p->sched_class)
4348 goto out;
4349
4350 if (task_running(p_rq, p) || p->state)
4351 goto out;
4352
4353 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4354 if (yielded) {
d95f4122 4355 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4356 /*
4357 * Make p's CPU reschedule; pick_next_entity takes care of
4358 * fairness.
4359 */
4360 if (preempt && rq != p_rq)
4361 resched_task(p_rq->curr);
4362 }
d95f4122
MG
4363
4364out:
4365 double_rq_unlock(rq, p_rq);
4366 local_irq_restore(flags);
4367
4368 if (yielded)
4369 schedule();
4370
4371 return yielded;
4372}
4373EXPORT_SYMBOL_GPL(yield_to);
4374
1da177e4 4375/*
41a2d6cf 4376 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4377 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4378 */
4379void __sched io_schedule(void)
4380{
54d35f29 4381 struct rq *rq = raw_rq();
1da177e4 4382
0ff92245 4383 delayacct_blkio_start();
1da177e4 4384 atomic_inc(&rq->nr_iowait);
73c10101 4385 blk_flush_plug(current);
8f0dfc34 4386 current->in_iowait = 1;
1da177e4 4387 schedule();
8f0dfc34 4388 current->in_iowait = 0;
1da177e4 4389 atomic_dec(&rq->nr_iowait);
0ff92245 4390 delayacct_blkio_end();
1da177e4 4391}
1da177e4
LT
4392EXPORT_SYMBOL(io_schedule);
4393
4394long __sched io_schedule_timeout(long timeout)
4395{
54d35f29 4396 struct rq *rq = raw_rq();
1da177e4
LT
4397 long ret;
4398
0ff92245 4399 delayacct_blkio_start();
1da177e4 4400 atomic_inc(&rq->nr_iowait);
73c10101 4401 blk_flush_plug(current);
8f0dfc34 4402 current->in_iowait = 1;
1da177e4 4403 ret = schedule_timeout(timeout);
8f0dfc34 4404 current->in_iowait = 0;
1da177e4 4405 atomic_dec(&rq->nr_iowait);
0ff92245 4406 delayacct_blkio_end();
1da177e4
LT
4407 return ret;
4408}
4409
4410/**
4411 * sys_sched_get_priority_max - return maximum RT priority.
4412 * @policy: scheduling class.
4413 *
4414 * this syscall returns the maximum rt_priority that can be used
4415 * by a given scheduling class.
4416 */
5add95d4 4417SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4418{
4419 int ret = -EINVAL;
4420
4421 switch (policy) {
4422 case SCHED_FIFO:
4423 case SCHED_RR:
4424 ret = MAX_USER_RT_PRIO-1;
4425 break;
4426 case SCHED_NORMAL:
b0a9499c 4427 case SCHED_BATCH:
dd41f596 4428 case SCHED_IDLE:
1da177e4
LT
4429 ret = 0;
4430 break;
4431 }
4432 return ret;
4433}
4434
4435/**
4436 * sys_sched_get_priority_min - return minimum RT priority.
4437 * @policy: scheduling class.
4438 *
4439 * this syscall returns the minimum rt_priority that can be used
4440 * by a given scheduling class.
4441 */
5add95d4 4442SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4443{
4444 int ret = -EINVAL;
4445
4446 switch (policy) {
4447 case SCHED_FIFO:
4448 case SCHED_RR:
4449 ret = 1;
4450 break;
4451 case SCHED_NORMAL:
b0a9499c 4452 case SCHED_BATCH:
dd41f596 4453 case SCHED_IDLE:
1da177e4
LT
4454 ret = 0;
4455 }
4456 return ret;
4457}
4458
4459/**
4460 * sys_sched_rr_get_interval - return the default timeslice of a process.
4461 * @pid: pid of the process.
4462 * @interval: userspace pointer to the timeslice value.
4463 *
4464 * this syscall writes the default timeslice value of a given process
4465 * into the user-space timespec buffer. A value of '0' means infinity.
4466 */
17da2bd9 4467SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4468 struct timespec __user *, interval)
1da177e4 4469{
36c8b586 4470 struct task_struct *p;
a4ec24b4 4471 unsigned int time_slice;
dba091b9
TG
4472 unsigned long flags;
4473 struct rq *rq;
3a5c359a 4474 int retval;
1da177e4 4475 struct timespec t;
1da177e4
LT
4476
4477 if (pid < 0)
3a5c359a 4478 return -EINVAL;
1da177e4
LT
4479
4480 retval = -ESRCH;
1a551ae7 4481 rcu_read_lock();
1da177e4
LT
4482 p = find_process_by_pid(pid);
4483 if (!p)
4484 goto out_unlock;
4485
4486 retval = security_task_getscheduler(p);
4487 if (retval)
4488 goto out_unlock;
4489
dba091b9
TG
4490 rq = task_rq_lock(p, &flags);
4491 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4492 task_rq_unlock(rq, p, &flags);
a4ec24b4 4493
1a551ae7 4494 rcu_read_unlock();
a4ec24b4 4495 jiffies_to_timespec(time_slice, &t);
1da177e4 4496 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4497 return retval;
3a5c359a 4498
1da177e4 4499out_unlock:
1a551ae7 4500 rcu_read_unlock();
1da177e4
LT
4501 return retval;
4502}
4503
7c731e0a 4504static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4505
82a1fcb9 4506void sched_show_task(struct task_struct *p)
1da177e4 4507{
1da177e4 4508 unsigned long free = 0;
36c8b586 4509 unsigned state;
1da177e4 4510
1da177e4 4511 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4512 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4513 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4514#if BITS_PER_LONG == 32
1da177e4 4515 if (state == TASK_RUNNING)
3df0fc5b 4516 printk(KERN_CONT " running ");
1da177e4 4517 else
3df0fc5b 4518 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4519#else
4520 if (state == TASK_RUNNING)
3df0fc5b 4521 printk(KERN_CONT " running task ");
1da177e4 4522 else
3df0fc5b 4523 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4524#endif
4525#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4526 free = stack_not_used(p);
1da177e4 4527#endif
3df0fc5b 4528 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4529 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4530 (unsigned long)task_thread_info(p)->flags);
1da177e4 4531
5fb5e6de 4532 show_stack(p, NULL);
1da177e4
LT
4533}
4534
e59e2ae2 4535void show_state_filter(unsigned long state_filter)
1da177e4 4536{
36c8b586 4537 struct task_struct *g, *p;
1da177e4 4538
4bd77321 4539#if BITS_PER_LONG == 32
3df0fc5b
PZ
4540 printk(KERN_INFO
4541 " task PC stack pid father\n");
1da177e4 4542#else
3df0fc5b
PZ
4543 printk(KERN_INFO
4544 " task PC stack pid father\n");
1da177e4 4545#endif
510f5acc 4546 rcu_read_lock();
1da177e4
LT
4547 do_each_thread(g, p) {
4548 /*
4549 * reset the NMI-timeout, listing all files on a slow
25985edc 4550 * console might take a lot of time:
1da177e4
LT
4551 */
4552 touch_nmi_watchdog();
39bc89fd 4553 if (!state_filter || (p->state & state_filter))
82a1fcb9 4554 sched_show_task(p);
1da177e4
LT
4555 } while_each_thread(g, p);
4556
04c9167f
JF
4557 touch_all_softlockup_watchdogs();
4558
dd41f596
IM
4559#ifdef CONFIG_SCHED_DEBUG
4560 sysrq_sched_debug_show();
4561#endif
510f5acc 4562 rcu_read_unlock();
e59e2ae2
IM
4563 /*
4564 * Only show locks if all tasks are dumped:
4565 */
93335a21 4566 if (!state_filter)
e59e2ae2 4567 debug_show_all_locks();
1da177e4
LT
4568}
4569
1df21055
IM
4570void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4571{
dd41f596 4572 idle->sched_class = &idle_sched_class;
1df21055
IM
4573}
4574
f340c0d1
IM
4575/**
4576 * init_idle - set up an idle thread for a given CPU
4577 * @idle: task in question
4578 * @cpu: cpu the idle task belongs to
4579 *
4580 * NOTE: this function does not set the idle thread's NEED_RESCHED
4581 * flag, to make booting more robust.
4582 */
5c1e1767 4583void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4584{
70b97a7f 4585 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4586 unsigned long flags;
4587
05fa785c 4588 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4589
dd41f596 4590 __sched_fork(idle);
06b83b5f 4591 idle->state = TASK_RUNNING;
dd41f596
IM
4592 idle->se.exec_start = sched_clock();
4593
1e1b6c51 4594 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4595 /*
4596 * We're having a chicken and egg problem, even though we are
4597 * holding rq->lock, the cpu isn't yet set to this cpu so the
4598 * lockdep check in task_group() will fail.
4599 *
4600 * Similar case to sched_fork(). / Alternatively we could
4601 * use task_rq_lock() here and obtain the other rq->lock.
4602 *
4603 * Silence PROVE_RCU
4604 */
4605 rcu_read_lock();
dd41f596 4606 __set_task_cpu(idle, cpu);
6506cf6c 4607 rcu_read_unlock();
1da177e4 4608
1da177e4 4609 rq->curr = rq->idle = idle;
3ca7a440
PZ
4610#if defined(CONFIG_SMP)
4611 idle->on_cpu = 1;
4866cde0 4612#endif
05fa785c 4613 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4614
4615 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4616 task_thread_info(idle)->preempt_count = 0;
55cd5340 4617
dd41f596
IM
4618 /*
4619 * The idle tasks have their own, simple scheduling class:
4620 */
4621 idle->sched_class = &idle_sched_class;
868baf07 4622 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
4623#if defined(CONFIG_SMP)
4624 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4625#endif
19978ca6
IM
4626}
4627
1da177e4 4628#ifdef CONFIG_SMP
1e1b6c51
KM
4629void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4630{
4631 if (p->sched_class && p->sched_class->set_cpus_allowed)
4632 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4633
4634 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4635 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4636}
4637
1da177e4
LT
4638/*
4639 * This is how migration works:
4640 *
969c7921
TH
4641 * 1) we invoke migration_cpu_stop() on the target CPU using
4642 * stop_one_cpu().
4643 * 2) stopper starts to run (implicitly forcing the migrated thread
4644 * off the CPU)
4645 * 3) it checks whether the migrated task is still in the wrong runqueue.
4646 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4647 * it and puts it into the right queue.
969c7921
TH
4648 * 5) stopper completes and stop_one_cpu() returns and the migration
4649 * is done.
1da177e4
LT
4650 */
4651
4652/*
4653 * Change a given task's CPU affinity. Migrate the thread to a
4654 * proper CPU and schedule it away if the CPU it's executing on
4655 * is removed from the allowed bitmask.
4656 *
4657 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4658 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4659 * call is not atomic; no spinlocks may be held.
4660 */
96f874e2 4661int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4662{
4663 unsigned long flags;
70b97a7f 4664 struct rq *rq;
969c7921 4665 unsigned int dest_cpu;
48f24c4d 4666 int ret = 0;
1da177e4
LT
4667
4668 rq = task_rq_lock(p, &flags);
e2912009 4669
db44fc01
YZ
4670 if (cpumask_equal(&p->cpus_allowed, new_mask))
4671 goto out;
4672
6ad4c188 4673 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4674 ret = -EINVAL;
4675 goto out;
4676 }
4677
db44fc01 4678 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
4679 ret = -EINVAL;
4680 goto out;
4681 }
4682
1e1b6c51 4683 do_set_cpus_allowed(p, new_mask);
73fe6aae 4684
1da177e4 4685 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4686 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4687 goto out;
4688
969c7921 4689 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4690 if (p->on_rq) {
969c7921 4691 struct migration_arg arg = { p, dest_cpu };
1da177e4 4692 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4693 task_rq_unlock(rq, p, &flags);
969c7921 4694 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4695 tlb_migrate_finish(p->mm);
4696 return 0;
4697 }
4698out:
0122ec5b 4699 task_rq_unlock(rq, p, &flags);
48f24c4d 4700
1da177e4
LT
4701 return ret;
4702}
cd8ba7cd 4703EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4704
4705/*
41a2d6cf 4706 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4707 * this because either it can't run here any more (set_cpus_allowed()
4708 * away from this CPU, or CPU going down), or because we're
4709 * attempting to rebalance this task on exec (sched_exec).
4710 *
4711 * So we race with normal scheduler movements, but that's OK, as long
4712 * as the task is no longer on this CPU.
efc30814
KK
4713 *
4714 * Returns non-zero if task was successfully migrated.
1da177e4 4715 */
efc30814 4716static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4717{
70b97a7f 4718 struct rq *rq_dest, *rq_src;
e2912009 4719 int ret = 0;
1da177e4 4720
e761b772 4721 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4722 return ret;
1da177e4
LT
4723
4724 rq_src = cpu_rq(src_cpu);
4725 rq_dest = cpu_rq(dest_cpu);
4726
0122ec5b 4727 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4728 double_rq_lock(rq_src, rq_dest);
4729 /* Already moved. */
4730 if (task_cpu(p) != src_cpu)
b1e38734 4731 goto done;
1da177e4 4732 /* Affinity changed (again). */
fa17b507 4733 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4734 goto fail;
1da177e4 4735
e2912009
PZ
4736 /*
4737 * If we're not on a rq, the next wake-up will ensure we're
4738 * placed properly.
4739 */
fd2f4419 4740 if (p->on_rq) {
4ca9b72b 4741 dequeue_task(rq_src, p, 0);
e2912009 4742 set_task_cpu(p, dest_cpu);
4ca9b72b 4743 enqueue_task(rq_dest, p, 0);
15afe09b 4744 check_preempt_curr(rq_dest, p, 0);
1da177e4 4745 }
b1e38734 4746done:
efc30814 4747 ret = 1;
b1e38734 4748fail:
1da177e4 4749 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4750 raw_spin_unlock(&p->pi_lock);
efc30814 4751 return ret;
1da177e4
LT
4752}
4753
4754/*
969c7921
TH
4755 * migration_cpu_stop - this will be executed by a highprio stopper thread
4756 * and performs thread migration by bumping thread off CPU then
4757 * 'pushing' onto another runqueue.
1da177e4 4758 */
969c7921 4759static int migration_cpu_stop(void *data)
1da177e4 4760{
969c7921 4761 struct migration_arg *arg = data;
f7b4cddc 4762
969c7921
TH
4763 /*
4764 * The original target cpu might have gone down and we might
4765 * be on another cpu but it doesn't matter.
4766 */
f7b4cddc 4767 local_irq_disable();
969c7921 4768 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4769 local_irq_enable();
1da177e4 4770 return 0;
f7b4cddc
ON
4771}
4772
1da177e4 4773#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4774
054b9108 4775/*
48c5ccae
PZ
4776 * Ensures that the idle task is using init_mm right before its cpu goes
4777 * offline.
054b9108 4778 */
48c5ccae 4779void idle_task_exit(void)
1da177e4 4780{
48c5ccae 4781 struct mm_struct *mm = current->active_mm;
e76bd8d9 4782
48c5ccae 4783 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4784
48c5ccae
PZ
4785 if (mm != &init_mm)
4786 switch_mm(mm, &init_mm, current);
4787 mmdrop(mm);
1da177e4
LT
4788}
4789
4790/*
5d180232
PZ
4791 * Since this CPU is going 'away' for a while, fold any nr_active delta
4792 * we might have. Assumes we're called after migrate_tasks() so that the
4793 * nr_active count is stable.
4794 *
4795 * Also see the comment "Global load-average calculations".
1da177e4 4796 */
5d180232 4797static void calc_load_migrate(struct rq *rq)
1da177e4 4798{
5d180232
PZ
4799 long delta = calc_load_fold_active(rq);
4800 if (delta)
4801 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4802}
4803
48f24c4d 4804/*
48c5ccae
PZ
4805 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4806 * try_to_wake_up()->select_task_rq().
4807 *
4808 * Called with rq->lock held even though we'er in stop_machine() and
4809 * there's no concurrency possible, we hold the required locks anyway
4810 * because of lock validation efforts.
1da177e4 4811 */
48c5ccae 4812static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4813{
70b97a7f 4814 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4815 struct task_struct *next, *stop = rq->stop;
4816 int dest_cpu;
1da177e4
LT
4817
4818 /*
48c5ccae
PZ
4819 * Fudge the rq selection such that the below task selection loop
4820 * doesn't get stuck on the currently eligible stop task.
4821 *
4822 * We're currently inside stop_machine() and the rq is either stuck
4823 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4824 * either way we should never end up calling schedule() until we're
4825 * done here.
1da177e4 4826 */
48c5ccae 4827 rq->stop = NULL;
48f24c4d 4828
dd41f596 4829 for ( ; ; ) {
48c5ccae
PZ
4830 /*
4831 * There's this thread running, bail when that's the only
4832 * remaining thread.
4833 */
4834 if (rq->nr_running == 1)
dd41f596 4835 break;
48c5ccae 4836
b67802ea 4837 next = pick_next_task(rq);
48c5ccae 4838 BUG_ON(!next);
79c53799 4839 next->sched_class->put_prev_task(rq, next);
e692ab53 4840
48c5ccae
PZ
4841 /* Find suitable destination for @next, with force if needed. */
4842 dest_cpu = select_fallback_rq(dead_cpu, next);
4843 raw_spin_unlock(&rq->lock);
4844
4845 __migrate_task(next, dead_cpu, dest_cpu);
4846
4847 raw_spin_lock(&rq->lock);
1da177e4 4848 }
dce48a84 4849
48c5ccae 4850 rq->stop = stop;
dce48a84 4851}
48c5ccae 4852
1da177e4
LT
4853#endif /* CONFIG_HOTPLUG_CPU */
4854
e692ab53
NP
4855#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4856
4857static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4858 {
4859 .procname = "sched_domain",
c57baf1e 4860 .mode = 0555,
e0361851 4861 },
56992309 4862 {}
e692ab53
NP
4863};
4864
4865static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4866 {
4867 .procname = "kernel",
c57baf1e 4868 .mode = 0555,
e0361851
AD
4869 .child = sd_ctl_dir,
4870 },
56992309 4871 {}
e692ab53
NP
4872};
4873
4874static struct ctl_table *sd_alloc_ctl_entry(int n)
4875{
4876 struct ctl_table *entry =
5cf9f062 4877 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4878
e692ab53
NP
4879 return entry;
4880}
4881
6382bc90
MM
4882static void sd_free_ctl_entry(struct ctl_table **tablep)
4883{
cd790076 4884 struct ctl_table *entry;
6382bc90 4885
cd790076
MM
4886 /*
4887 * In the intermediate directories, both the child directory and
4888 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4889 * will always be set. In the lowest directory the names are
cd790076
MM
4890 * static strings and all have proc handlers.
4891 */
4892 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4893 if (entry->child)
4894 sd_free_ctl_entry(&entry->child);
cd790076
MM
4895 if (entry->proc_handler == NULL)
4896 kfree(entry->procname);
4897 }
6382bc90
MM
4898
4899 kfree(*tablep);
4900 *tablep = NULL;
4901}
4902
201c373e
NK
4903static int min_load_idx = 0;
4904static int max_load_idx = CPU_LOAD_IDX_MAX;
4905
e692ab53 4906static void
e0361851 4907set_table_entry(struct ctl_table *entry,
e692ab53 4908 const char *procname, void *data, int maxlen,
201c373e
NK
4909 umode_t mode, proc_handler *proc_handler,
4910 bool load_idx)
e692ab53 4911{
e692ab53
NP
4912 entry->procname = procname;
4913 entry->data = data;
4914 entry->maxlen = maxlen;
4915 entry->mode = mode;
4916 entry->proc_handler = proc_handler;
201c373e
NK
4917
4918 if (load_idx) {
4919 entry->extra1 = &min_load_idx;
4920 entry->extra2 = &max_load_idx;
4921 }
e692ab53
NP
4922}
4923
4924static struct ctl_table *
4925sd_alloc_ctl_domain_table(struct sched_domain *sd)
4926{
a5d8c348 4927 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4928
ad1cdc1d
MM
4929 if (table == NULL)
4930 return NULL;
4931
e0361851 4932 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4933 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4934 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4935 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4936 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4937 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4938 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4939 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4940 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4941 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4942 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4943 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4944 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4945 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4946 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4947 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4948 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4949 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4950 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4951 &sd->cache_nice_tries,
201c373e 4952 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4953 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4954 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4955 set_table_entry(&table[11], "name", sd->name,
201c373e 4956 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4957 /* &table[12] is terminator */
e692ab53
NP
4958
4959 return table;
4960}
4961
9a4e7159 4962static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4963{
4964 struct ctl_table *entry, *table;
4965 struct sched_domain *sd;
4966 int domain_num = 0, i;
4967 char buf[32];
4968
4969 for_each_domain(cpu, sd)
4970 domain_num++;
4971 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4972 if (table == NULL)
4973 return NULL;
e692ab53
NP
4974
4975 i = 0;
4976 for_each_domain(cpu, sd) {
4977 snprintf(buf, 32, "domain%d", i);
e692ab53 4978 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4979 entry->mode = 0555;
e692ab53
NP
4980 entry->child = sd_alloc_ctl_domain_table(sd);
4981 entry++;
4982 i++;
4983 }
4984 return table;
4985}
4986
4987static struct ctl_table_header *sd_sysctl_header;
6382bc90 4988static void register_sched_domain_sysctl(void)
e692ab53 4989{
6ad4c188 4990 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4991 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4992 char buf[32];
4993
7378547f
MM
4994 WARN_ON(sd_ctl_dir[0].child);
4995 sd_ctl_dir[0].child = entry;
4996
ad1cdc1d
MM
4997 if (entry == NULL)
4998 return;
4999
6ad4c188 5000 for_each_possible_cpu(i) {
e692ab53 5001 snprintf(buf, 32, "cpu%d", i);
e692ab53 5002 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5003 entry->mode = 0555;
e692ab53 5004 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5005 entry++;
e692ab53 5006 }
7378547f
MM
5007
5008 WARN_ON(sd_sysctl_header);
e692ab53
NP
5009 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5010}
6382bc90 5011
7378547f 5012/* may be called multiple times per register */
6382bc90
MM
5013static void unregister_sched_domain_sysctl(void)
5014{
7378547f
MM
5015 if (sd_sysctl_header)
5016 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5017 sd_sysctl_header = NULL;
7378547f
MM
5018 if (sd_ctl_dir[0].child)
5019 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5020}
e692ab53 5021#else
6382bc90
MM
5022static void register_sched_domain_sysctl(void)
5023{
5024}
5025static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5026{
5027}
5028#endif
5029
1f11eb6a
GH
5030static void set_rq_online(struct rq *rq)
5031{
5032 if (!rq->online) {
5033 const struct sched_class *class;
5034
c6c4927b 5035 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5036 rq->online = 1;
5037
5038 for_each_class(class) {
5039 if (class->rq_online)
5040 class->rq_online(rq);
5041 }
5042 }
5043}
5044
5045static void set_rq_offline(struct rq *rq)
5046{
5047 if (rq->online) {
5048 const struct sched_class *class;
5049
5050 for_each_class(class) {
5051 if (class->rq_offline)
5052 class->rq_offline(rq);
5053 }
5054
c6c4927b 5055 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5056 rq->online = 0;
5057 }
5058}
5059
1da177e4
LT
5060/*
5061 * migration_call - callback that gets triggered when a CPU is added.
5062 * Here we can start up the necessary migration thread for the new CPU.
5063 */
48f24c4d
IM
5064static int __cpuinit
5065migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5066{
48f24c4d 5067 int cpu = (long)hcpu;
1da177e4 5068 unsigned long flags;
969c7921 5069 struct rq *rq = cpu_rq(cpu);
1da177e4 5070
48c5ccae 5071 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5072
1da177e4 5073 case CPU_UP_PREPARE:
a468d389 5074 rq->calc_load_update = calc_load_update;
1da177e4 5075 break;
48f24c4d 5076
1da177e4 5077 case CPU_ONLINE:
1f94ef59 5078 /* Update our root-domain */
05fa785c 5079 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5080 if (rq->rd) {
c6c4927b 5081 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5082
5083 set_rq_online(rq);
1f94ef59 5084 }
05fa785c 5085 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5086 break;
48f24c4d 5087
1da177e4 5088#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5089 case CPU_DYING:
317f3941 5090 sched_ttwu_pending();
57d885fe 5091 /* Update our root-domain */
05fa785c 5092 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5093 if (rq->rd) {
c6c4927b 5094 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5095 set_rq_offline(rq);
57d885fe 5096 }
48c5ccae
PZ
5097 migrate_tasks(cpu);
5098 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5099 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5100 break;
48c5ccae 5101
5d180232 5102 case CPU_DEAD:
f319da0c 5103 calc_load_migrate(rq);
57d885fe 5104 break;
1da177e4
LT
5105#endif
5106 }
49c022e6
PZ
5107
5108 update_max_interval();
5109
1da177e4
LT
5110 return NOTIFY_OK;
5111}
5112
f38b0820
PM
5113/*
5114 * Register at high priority so that task migration (migrate_all_tasks)
5115 * happens before everything else. This has to be lower priority than
cdd6c482 5116 * the notifier in the perf_event subsystem, though.
1da177e4 5117 */
26c2143b 5118static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5119 .notifier_call = migration_call,
50a323b7 5120 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5121};
5122
3a101d05
TH
5123static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5124 unsigned long action, void *hcpu)
5125{
5126 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5127 case CPU_STARTING:
3a101d05
TH
5128 case CPU_DOWN_FAILED:
5129 set_cpu_active((long)hcpu, true);
5130 return NOTIFY_OK;
5131 default:
5132 return NOTIFY_DONE;
5133 }
5134}
5135
5136static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5137 unsigned long action, void *hcpu)
5138{
5139 switch (action & ~CPU_TASKS_FROZEN) {
5140 case CPU_DOWN_PREPARE:
5141 set_cpu_active((long)hcpu, false);
5142 return NOTIFY_OK;
5143 default:
5144 return NOTIFY_DONE;
5145 }
5146}
5147
7babe8db 5148static int __init migration_init(void)
1da177e4
LT
5149{
5150 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5151 int err;
48f24c4d 5152
3a101d05 5153 /* Initialize migration for the boot CPU */
07dccf33
AM
5154 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5155 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5156 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5157 register_cpu_notifier(&migration_notifier);
7babe8db 5158
3a101d05
TH
5159 /* Register cpu active notifiers */
5160 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5161 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5162
a004cd42 5163 return 0;
1da177e4 5164}
7babe8db 5165early_initcall(migration_init);
1da177e4
LT
5166#endif
5167
5168#ifdef CONFIG_SMP
476f3534 5169
4cb98839
PZ
5170static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5171
3e9830dc 5172#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5173
d039ac60 5174static __read_mostly int sched_debug_enabled;
f6630114 5175
d039ac60 5176static int __init sched_debug_setup(char *str)
f6630114 5177{
d039ac60 5178 sched_debug_enabled = 1;
f6630114
MT
5179
5180 return 0;
5181}
d039ac60
PZ
5182early_param("sched_debug", sched_debug_setup);
5183
5184static inline bool sched_debug(void)
5185{
5186 return sched_debug_enabled;
5187}
f6630114 5188
7c16ec58 5189static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5190 struct cpumask *groupmask)
1da177e4 5191{
4dcf6aff 5192 struct sched_group *group = sd->groups;
434d53b0 5193 char str[256];
1da177e4 5194
968ea6d8 5195 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5196 cpumask_clear(groupmask);
4dcf6aff
IM
5197
5198 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5199
5200 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5201 printk("does not load-balance\n");
4dcf6aff 5202 if (sd->parent)
3df0fc5b
PZ
5203 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5204 " has parent");
4dcf6aff 5205 return -1;
41c7ce9a
NP
5206 }
5207
3df0fc5b 5208 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5209
758b2cdc 5210 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5211 printk(KERN_ERR "ERROR: domain->span does not contain "
5212 "CPU%d\n", cpu);
4dcf6aff 5213 }
758b2cdc 5214 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5215 printk(KERN_ERR "ERROR: domain->groups does not contain"
5216 " CPU%d\n", cpu);
4dcf6aff 5217 }
1da177e4 5218
4dcf6aff 5219 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5220 do {
4dcf6aff 5221 if (!group) {
3df0fc5b
PZ
5222 printk("\n");
5223 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5224 break;
5225 }
5226
c3decf0d
PZ
5227 /*
5228 * Even though we initialize ->power to something semi-sane,
5229 * we leave power_orig unset. This allows us to detect if
5230 * domain iteration is still funny without causing /0 traps.
5231 */
5232 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5233 printk(KERN_CONT "\n");
5234 printk(KERN_ERR "ERROR: domain->cpu_power not "
5235 "set\n");
4dcf6aff
IM
5236 break;
5237 }
1da177e4 5238
758b2cdc 5239 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5240 printk(KERN_CONT "\n");
5241 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5242 break;
5243 }
1da177e4 5244
cb83b629
PZ
5245 if (!(sd->flags & SD_OVERLAP) &&
5246 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5247 printk(KERN_CONT "\n");
5248 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5249 break;
5250 }
1da177e4 5251
758b2cdc 5252 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5253
968ea6d8 5254 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5255
3df0fc5b 5256 printk(KERN_CONT " %s", str);
9c3f75cb 5257 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5258 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5259 group->sgp->power);
381512cf 5260 }
1da177e4 5261
4dcf6aff
IM
5262 group = group->next;
5263 } while (group != sd->groups);
3df0fc5b 5264 printk(KERN_CONT "\n");
1da177e4 5265
758b2cdc 5266 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5267 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5268
758b2cdc
RR
5269 if (sd->parent &&
5270 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5271 printk(KERN_ERR "ERROR: parent span is not a superset "
5272 "of domain->span\n");
4dcf6aff
IM
5273 return 0;
5274}
1da177e4 5275
4dcf6aff
IM
5276static void sched_domain_debug(struct sched_domain *sd, int cpu)
5277{
5278 int level = 0;
1da177e4 5279
d039ac60 5280 if (!sched_debug_enabled)
f6630114
MT
5281 return;
5282
4dcf6aff
IM
5283 if (!sd) {
5284 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5285 return;
5286 }
1da177e4 5287
4dcf6aff
IM
5288 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5289
5290 for (;;) {
4cb98839 5291 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5292 break;
1da177e4
LT
5293 level++;
5294 sd = sd->parent;
33859f7f 5295 if (!sd)
4dcf6aff
IM
5296 break;
5297 }
1da177e4 5298}
6d6bc0ad 5299#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5300# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5301static inline bool sched_debug(void)
5302{
5303 return false;
5304}
6d6bc0ad 5305#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5306
1a20ff27 5307static int sd_degenerate(struct sched_domain *sd)
245af2c7 5308{
758b2cdc 5309 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5310 return 1;
5311
5312 /* Following flags need at least 2 groups */
5313 if (sd->flags & (SD_LOAD_BALANCE |
5314 SD_BALANCE_NEWIDLE |
5315 SD_BALANCE_FORK |
89c4710e
SS
5316 SD_BALANCE_EXEC |
5317 SD_SHARE_CPUPOWER |
5318 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5319 if (sd->groups != sd->groups->next)
5320 return 0;
5321 }
5322
5323 /* Following flags don't use groups */
c88d5910 5324 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5325 return 0;
5326
5327 return 1;
5328}
5329
48f24c4d
IM
5330static int
5331sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5332{
5333 unsigned long cflags = sd->flags, pflags = parent->flags;
5334
5335 if (sd_degenerate(parent))
5336 return 1;
5337
758b2cdc 5338 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5339 return 0;
5340
245af2c7
SS
5341 /* Flags needing groups don't count if only 1 group in parent */
5342 if (parent->groups == parent->groups->next) {
5343 pflags &= ~(SD_LOAD_BALANCE |
5344 SD_BALANCE_NEWIDLE |
5345 SD_BALANCE_FORK |
89c4710e
SS
5346 SD_BALANCE_EXEC |
5347 SD_SHARE_CPUPOWER |
5348 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5349 if (nr_node_ids == 1)
5350 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5351 }
5352 if (~cflags & pflags)
5353 return 0;
5354
5355 return 1;
5356}
5357
dce840a0 5358static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5359{
dce840a0 5360 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5361
68e74568 5362 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5363 free_cpumask_var(rd->rto_mask);
5364 free_cpumask_var(rd->online);
5365 free_cpumask_var(rd->span);
5366 kfree(rd);
5367}
5368
57d885fe
GH
5369static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5370{
a0490fa3 5371 struct root_domain *old_rd = NULL;
57d885fe 5372 unsigned long flags;
57d885fe 5373
05fa785c 5374 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5375
5376 if (rq->rd) {
a0490fa3 5377 old_rd = rq->rd;
57d885fe 5378
c6c4927b 5379 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5380 set_rq_offline(rq);
57d885fe 5381
c6c4927b 5382 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5383
a0490fa3
IM
5384 /*
5385 * If we dont want to free the old_rt yet then
5386 * set old_rd to NULL to skip the freeing later
5387 * in this function:
5388 */
5389 if (!atomic_dec_and_test(&old_rd->refcount))
5390 old_rd = NULL;
57d885fe
GH
5391 }
5392
5393 atomic_inc(&rd->refcount);
5394 rq->rd = rd;
5395
c6c4927b 5396 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5397 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5398 set_rq_online(rq);
57d885fe 5399
05fa785c 5400 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5401
5402 if (old_rd)
dce840a0 5403 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5404}
5405
68c38fc3 5406static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5407{
5408 memset(rd, 0, sizeof(*rd));
5409
68c38fc3 5410 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5411 goto out;
68c38fc3 5412 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5413 goto free_span;
68c38fc3 5414 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5415 goto free_online;
6e0534f2 5416
68c38fc3 5417 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5418 goto free_rto_mask;
c6c4927b 5419 return 0;
6e0534f2 5420
68e74568
RR
5421free_rto_mask:
5422 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5423free_online:
5424 free_cpumask_var(rd->online);
5425free_span:
5426 free_cpumask_var(rd->span);
0c910d28 5427out:
c6c4927b 5428 return -ENOMEM;
57d885fe
GH
5429}
5430
029632fb
PZ
5431/*
5432 * By default the system creates a single root-domain with all cpus as
5433 * members (mimicking the global state we have today).
5434 */
5435struct root_domain def_root_domain;
5436
57d885fe
GH
5437static void init_defrootdomain(void)
5438{
68c38fc3 5439 init_rootdomain(&def_root_domain);
c6c4927b 5440
57d885fe
GH
5441 atomic_set(&def_root_domain.refcount, 1);
5442}
5443
dc938520 5444static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5445{
5446 struct root_domain *rd;
5447
5448 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5449 if (!rd)
5450 return NULL;
5451
68c38fc3 5452 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5453 kfree(rd);
5454 return NULL;
5455 }
57d885fe
GH
5456
5457 return rd;
5458}
5459
e3589f6c
PZ
5460static void free_sched_groups(struct sched_group *sg, int free_sgp)
5461{
5462 struct sched_group *tmp, *first;
5463
5464 if (!sg)
5465 return;
5466
5467 first = sg;
5468 do {
5469 tmp = sg->next;
5470
5471 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5472 kfree(sg->sgp);
5473
5474 kfree(sg);
5475 sg = tmp;
5476 } while (sg != first);
5477}
5478
dce840a0
PZ
5479static void free_sched_domain(struct rcu_head *rcu)
5480{
5481 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5482
5483 /*
5484 * If its an overlapping domain it has private groups, iterate and
5485 * nuke them all.
5486 */
5487 if (sd->flags & SD_OVERLAP) {
5488 free_sched_groups(sd->groups, 1);
5489 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5490 kfree(sd->groups->sgp);
dce840a0 5491 kfree(sd->groups);
9c3f75cb 5492 }
dce840a0
PZ
5493 kfree(sd);
5494}
5495
5496static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5497{
5498 call_rcu(&sd->rcu, free_sched_domain);
5499}
5500
5501static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5502{
5503 for (; sd; sd = sd->parent)
5504 destroy_sched_domain(sd, cpu);
5505}
5506
518cd623
PZ
5507/*
5508 * Keep a special pointer to the highest sched_domain that has
5509 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5510 * allows us to avoid some pointer chasing select_idle_sibling().
5511 *
5512 * Also keep a unique ID per domain (we use the first cpu number in
5513 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5514 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5515 */
5516DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5517DEFINE_PER_CPU(int, sd_llc_id);
5518
5519static void update_top_cache_domain(int cpu)
5520{
5521 struct sched_domain *sd;
5522 int id = cpu;
5523
5524 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5525 if (sd)
518cd623
PZ
5526 id = cpumask_first(sched_domain_span(sd));
5527
5528 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5529 per_cpu(sd_llc_id, cpu) = id;
5530}
5531
1da177e4 5532/*
0eab9146 5533 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5534 * hold the hotplug lock.
5535 */
0eab9146
IM
5536static void
5537cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5538{
70b97a7f 5539 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5540 struct sched_domain *tmp;
5541
5542 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5543 for (tmp = sd; tmp; ) {
245af2c7
SS
5544 struct sched_domain *parent = tmp->parent;
5545 if (!parent)
5546 break;
f29c9b1c 5547
1a848870 5548 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5549 tmp->parent = parent->parent;
1a848870
SS
5550 if (parent->parent)
5551 parent->parent->child = tmp;
dce840a0 5552 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5553 } else
5554 tmp = tmp->parent;
245af2c7
SS
5555 }
5556
1a848870 5557 if (sd && sd_degenerate(sd)) {
dce840a0 5558 tmp = sd;
245af2c7 5559 sd = sd->parent;
dce840a0 5560 destroy_sched_domain(tmp, cpu);
1a848870
SS
5561 if (sd)
5562 sd->child = NULL;
5563 }
1da177e4 5564
4cb98839 5565 sched_domain_debug(sd, cpu);
1da177e4 5566
57d885fe 5567 rq_attach_root(rq, rd);
dce840a0 5568 tmp = rq->sd;
674311d5 5569 rcu_assign_pointer(rq->sd, sd);
dce840a0 5570 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5571
5572 update_top_cache_domain(cpu);
1da177e4
LT
5573}
5574
5575/* cpus with isolated domains */
dcc30a35 5576static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5577
5578/* Setup the mask of cpus configured for isolated domains */
5579static int __init isolated_cpu_setup(char *str)
5580{
bdddd296 5581 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5582 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5583 return 1;
5584}
5585
8927f494 5586__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5587
d3081f52
PZ
5588static const struct cpumask *cpu_cpu_mask(int cpu)
5589{
5590 return cpumask_of_node(cpu_to_node(cpu));
5591}
5592
dce840a0
PZ
5593struct sd_data {
5594 struct sched_domain **__percpu sd;
5595 struct sched_group **__percpu sg;
9c3f75cb 5596 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5597};
5598
49a02c51 5599struct s_data {
21d42ccf 5600 struct sched_domain ** __percpu sd;
49a02c51
AH
5601 struct root_domain *rd;
5602};
5603
2109b99e 5604enum s_alloc {
2109b99e 5605 sa_rootdomain,
21d42ccf 5606 sa_sd,
dce840a0 5607 sa_sd_storage,
2109b99e
AH
5608 sa_none,
5609};
5610
54ab4ff4
PZ
5611struct sched_domain_topology_level;
5612
5613typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5614typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5615
e3589f6c
PZ
5616#define SDTL_OVERLAP 0x01
5617
eb7a74e6 5618struct sched_domain_topology_level {
2c402dc3
PZ
5619 sched_domain_init_f init;
5620 sched_domain_mask_f mask;
e3589f6c 5621 int flags;
cb83b629 5622 int numa_level;
54ab4ff4 5623 struct sd_data data;
eb7a74e6
PZ
5624};
5625
c1174876
PZ
5626/*
5627 * Build an iteration mask that can exclude certain CPUs from the upwards
5628 * domain traversal.
5629 *
5630 * Asymmetric node setups can result in situations where the domain tree is of
5631 * unequal depth, make sure to skip domains that already cover the entire
5632 * range.
5633 *
5634 * In that case build_sched_domains() will have terminated the iteration early
5635 * and our sibling sd spans will be empty. Domains should always include the
5636 * cpu they're built on, so check that.
5637 *
5638 */
5639static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5640{
5641 const struct cpumask *span = sched_domain_span(sd);
5642 struct sd_data *sdd = sd->private;
5643 struct sched_domain *sibling;
5644 int i;
5645
5646 for_each_cpu(i, span) {
5647 sibling = *per_cpu_ptr(sdd->sd, i);
5648 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5649 continue;
5650
5651 cpumask_set_cpu(i, sched_group_mask(sg));
5652 }
5653}
5654
5655/*
5656 * Return the canonical balance cpu for this group, this is the first cpu
5657 * of this group that's also in the iteration mask.
5658 */
5659int group_balance_cpu(struct sched_group *sg)
5660{
5661 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5662}
5663
e3589f6c
PZ
5664static int
5665build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5666{
5667 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5668 const struct cpumask *span = sched_domain_span(sd);
5669 struct cpumask *covered = sched_domains_tmpmask;
5670 struct sd_data *sdd = sd->private;
5671 struct sched_domain *child;
5672 int i;
5673
5674 cpumask_clear(covered);
5675
5676 for_each_cpu(i, span) {
5677 struct cpumask *sg_span;
5678
5679 if (cpumask_test_cpu(i, covered))
5680 continue;
5681
c1174876
PZ
5682 child = *per_cpu_ptr(sdd->sd, i);
5683
5684 /* See the comment near build_group_mask(). */
5685 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5686 continue;
5687
e3589f6c 5688 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5689 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5690
5691 if (!sg)
5692 goto fail;
5693
5694 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5695 if (child->child) {
5696 child = child->child;
5697 cpumask_copy(sg_span, sched_domain_span(child));
5698 } else
5699 cpumask_set_cpu(i, sg_span);
5700
5701 cpumask_or(covered, covered, sg_span);
5702
74a5ce20 5703 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5704 if (atomic_inc_return(&sg->sgp->ref) == 1)
5705 build_group_mask(sd, sg);
5706
c3decf0d
PZ
5707 /*
5708 * Initialize sgp->power such that even if we mess up the
5709 * domains and no possible iteration will get us here, we won't
5710 * die on a /0 trap.
5711 */
5712 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5713
c1174876
PZ
5714 /*
5715 * Make sure the first group of this domain contains the
5716 * canonical balance cpu. Otherwise the sched_domain iteration
5717 * breaks. See update_sg_lb_stats().
5718 */
74a5ce20 5719 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5720 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5721 groups = sg;
5722
5723 if (!first)
5724 first = sg;
5725 if (last)
5726 last->next = sg;
5727 last = sg;
5728 last->next = first;
5729 }
5730 sd->groups = groups;
5731
5732 return 0;
5733
5734fail:
5735 free_sched_groups(first, 0);
5736
5737 return -ENOMEM;
5738}
5739
dce840a0 5740static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5741{
dce840a0
PZ
5742 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5743 struct sched_domain *child = sd->child;
1da177e4 5744
dce840a0
PZ
5745 if (child)
5746 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5747
9c3f75cb 5748 if (sg) {
dce840a0 5749 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5750 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5751 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5752 }
dce840a0
PZ
5753
5754 return cpu;
1e9f28fa 5755}
1e9f28fa 5756
01a08546 5757/*
dce840a0
PZ
5758 * build_sched_groups will build a circular linked list of the groups
5759 * covered by the given span, and will set each group's ->cpumask correctly,
5760 * and ->cpu_power to 0.
e3589f6c
PZ
5761 *
5762 * Assumes the sched_domain tree is fully constructed
01a08546 5763 */
e3589f6c
PZ
5764static int
5765build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5766{
dce840a0
PZ
5767 struct sched_group *first = NULL, *last = NULL;
5768 struct sd_data *sdd = sd->private;
5769 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5770 struct cpumask *covered;
dce840a0 5771 int i;
9c1cfda2 5772
e3589f6c
PZ
5773 get_group(cpu, sdd, &sd->groups);
5774 atomic_inc(&sd->groups->ref);
5775
5776 if (cpu != cpumask_first(sched_domain_span(sd)))
5777 return 0;
5778
f96225fd
PZ
5779 lockdep_assert_held(&sched_domains_mutex);
5780 covered = sched_domains_tmpmask;
5781
dce840a0 5782 cpumask_clear(covered);
6711cab4 5783
dce840a0
PZ
5784 for_each_cpu(i, span) {
5785 struct sched_group *sg;
5786 int group = get_group(i, sdd, &sg);
5787 int j;
6711cab4 5788
dce840a0
PZ
5789 if (cpumask_test_cpu(i, covered))
5790 continue;
6711cab4 5791
dce840a0 5792 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5793 sg->sgp->power = 0;
c1174876 5794 cpumask_setall(sched_group_mask(sg));
0601a88d 5795
dce840a0
PZ
5796 for_each_cpu(j, span) {
5797 if (get_group(j, sdd, NULL) != group)
5798 continue;
0601a88d 5799
dce840a0
PZ
5800 cpumask_set_cpu(j, covered);
5801 cpumask_set_cpu(j, sched_group_cpus(sg));
5802 }
0601a88d 5803
dce840a0
PZ
5804 if (!first)
5805 first = sg;
5806 if (last)
5807 last->next = sg;
5808 last = sg;
5809 }
5810 last->next = first;
e3589f6c
PZ
5811
5812 return 0;
0601a88d 5813}
51888ca2 5814
89c4710e
SS
5815/*
5816 * Initialize sched groups cpu_power.
5817 *
5818 * cpu_power indicates the capacity of sched group, which is used while
5819 * distributing the load between different sched groups in a sched domain.
5820 * Typically cpu_power for all the groups in a sched domain will be same unless
5821 * there are asymmetries in the topology. If there are asymmetries, group
5822 * having more cpu_power will pickup more load compared to the group having
5823 * less cpu_power.
89c4710e
SS
5824 */
5825static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5826{
e3589f6c 5827 struct sched_group *sg = sd->groups;
89c4710e 5828
e3589f6c
PZ
5829 WARN_ON(!sd || !sg);
5830
5831 do {
5832 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5833 sg = sg->next;
5834 } while (sg != sd->groups);
89c4710e 5835
c1174876 5836 if (cpu != group_balance_cpu(sg))
e3589f6c 5837 return;
aae6d3dd 5838
d274cb30 5839 update_group_power(sd, cpu);
69e1e811 5840 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5841}
5842
029632fb
PZ
5843int __weak arch_sd_sibling_asym_packing(void)
5844{
5845 return 0*SD_ASYM_PACKING;
89c4710e
SS
5846}
5847
7c16ec58
MT
5848/*
5849 * Initializers for schedule domains
5850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5851 */
5852
a5d8c348
IM
5853#ifdef CONFIG_SCHED_DEBUG
5854# define SD_INIT_NAME(sd, type) sd->name = #type
5855#else
5856# define SD_INIT_NAME(sd, type) do { } while (0)
5857#endif
5858
54ab4ff4
PZ
5859#define SD_INIT_FUNC(type) \
5860static noinline struct sched_domain * \
5861sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5862{ \
5863 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5864 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5865 SD_INIT_NAME(sd, type); \
5866 sd->private = &tl->data; \
5867 return sd; \
7c16ec58
MT
5868}
5869
5870SD_INIT_FUNC(CPU)
7c16ec58
MT
5871#ifdef CONFIG_SCHED_SMT
5872 SD_INIT_FUNC(SIBLING)
5873#endif
5874#ifdef CONFIG_SCHED_MC
5875 SD_INIT_FUNC(MC)
5876#endif
01a08546
HC
5877#ifdef CONFIG_SCHED_BOOK
5878 SD_INIT_FUNC(BOOK)
5879#endif
7c16ec58 5880
1d3504fc 5881static int default_relax_domain_level = -1;
60495e77 5882int sched_domain_level_max;
1d3504fc
HS
5883
5884static int __init setup_relax_domain_level(char *str)
5885{
a841f8ce
DS
5886 if (kstrtoint(str, 0, &default_relax_domain_level))
5887 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5888
1d3504fc
HS
5889 return 1;
5890}
5891__setup("relax_domain_level=", setup_relax_domain_level);
5892
5893static void set_domain_attribute(struct sched_domain *sd,
5894 struct sched_domain_attr *attr)
5895{
5896 int request;
5897
5898 if (!attr || attr->relax_domain_level < 0) {
5899 if (default_relax_domain_level < 0)
5900 return;
5901 else
5902 request = default_relax_domain_level;
5903 } else
5904 request = attr->relax_domain_level;
5905 if (request < sd->level) {
5906 /* turn off idle balance on this domain */
c88d5910 5907 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5908 } else {
5909 /* turn on idle balance on this domain */
c88d5910 5910 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5911 }
5912}
5913
54ab4ff4
PZ
5914static void __sdt_free(const struct cpumask *cpu_map);
5915static int __sdt_alloc(const struct cpumask *cpu_map);
5916
2109b99e
AH
5917static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5918 const struct cpumask *cpu_map)
5919{
5920 switch (what) {
2109b99e 5921 case sa_rootdomain:
822ff793
PZ
5922 if (!atomic_read(&d->rd->refcount))
5923 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5924 case sa_sd:
5925 free_percpu(d->sd); /* fall through */
dce840a0 5926 case sa_sd_storage:
54ab4ff4 5927 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5928 case sa_none:
5929 break;
5930 }
5931}
3404c8d9 5932
2109b99e
AH
5933static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5934 const struct cpumask *cpu_map)
5935{
dce840a0
PZ
5936 memset(d, 0, sizeof(*d));
5937
54ab4ff4
PZ
5938 if (__sdt_alloc(cpu_map))
5939 return sa_sd_storage;
dce840a0
PZ
5940 d->sd = alloc_percpu(struct sched_domain *);
5941 if (!d->sd)
5942 return sa_sd_storage;
2109b99e 5943 d->rd = alloc_rootdomain();
dce840a0 5944 if (!d->rd)
21d42ccf 5945 return sa_sd;
2109b99e
AH
5946 return sa_rootdomain;
5947}
57d885fe 5948
dce840a0
PZ
5949/*
5950 * NULL the sd_data elements we've used to build the sched_domain and
5951 * sched_group structure so that the subsequent __free_domain_allocs()
5952 * will not free the data we're using.
5953 */
5954static void claim_allocations(int cpu, struct sched_domain *sd)
5955{
5956 struct sd_data *sdd = sd->private;
dce840a0
PZ
5957
5958 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5959 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5960
e3589f6c 5961 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5962 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5963
5964 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5965 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5966}
5967
2c402dc3
PZ
5968#ifdef CONFIG_SCHED_SMT
5969static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5970{
2c402dc3 5971 return topology_thread_cpumask(cpu);
3bd65a80 5972}
2c402dc3 5973#endif
7f4588f3 5974
d069b916
PZ
5975/*
5976 * Topology list, bottom-up.
5977 */
2c402dc3 5978static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5979#ifdef CONFIG_SCHED_SMT
5980 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5981#endif
1e9f28fa 5982#ifdef CONFIG_SCHED_MC
2c402dc3 5983 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5984#endif
d069b916
PZ
5985#ifdef CONFIG_SCHED_BOOK
5986 { sd_init_BOOK, cpu_book_mask, },
5987#endif
5988 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5989 { NULL, },
5990};
5991
5992static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5993
cb83b629
PZ
5994#ifdef CONFIG_NUMA
5995
5996static int sched_domains_numa_levels;
cb83b629
PZ
5997static int *sched_domains_numa_distance;
5998static struct cpumask ***sched_domains_numa_masks;
5999static int sched_domains_curr_level;
6000
cb83b629
PZ
6001static inline int sd_local_flags(int level)
6002{
10717dcd 6003 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6004 return 0;
6005
6006 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6007}
6008
6009static struct sched_domain *
6010sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6011{
6012 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6013 int level = tl->numa_level;
6014 int sd_weight = cpumask_weight(
6015 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6016
6017 *sd = (struct sched_domain){
6018 .min_interval = sd_weight,
6019 .max_interval = 2*sd_weight,
6020 .busy_factor = 32,
870a0bb5 6021 .imbalance_pct = 125,
cb83b629
PZ
6022 .cache_nice_tries = 2,
6023 .busy_idx = 3,
6024 .idle_idx = 2,
6025 .newidle_idx = 0,
6026 .wake_idx = 0,
6027 .forkexec_idx = 0,
6028
6029 .flags = 1*SD_LOAD_BALANCE
6030 | 1*SD_BALANCE_NEWIDLE
6031 | 0*SD_BALANCE_EXEC
6032 | 0*SD_BALANCE_FORK
6033 | 0*SD_BALANCE_WAKE
6034 | 0*SD_WAKE_AFFINE
cb83b629 6035 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6036 | 0*SD_SHARE_PKG_RESOURCES
6037 | 1*SD_SERIALIZE
6038 | 0*SD_PREFER_SIBLING
6039 | sd_local_flags(level)
6040 ,
6041 .last_balance = jiffies,
6042 .balance_interval = sd_weight,
6043 };
6044 SD_INIT_NAME(sd, NUMA);
6045 sd->private = &tl->data;
6046
6047 /*
6048 * Ugly hack to pass state to sd_numa_mask()...
6049 */
6050 sched_domains_curr_level = tl->numa_level;
6051
6052 return sd;
6053}
6054
6055static const struct cpumask *sd_numa_mask(int cpu)
6056{
6057 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6058}
6059
d039ac60
PZ
6060static void sched_numa_warn(const char *str)
6061{
6062 static int done = false;
6063 int i,j;
6064
6065 if (done)
6066 return;
6067
6068 done = true;
6069
6070 printk(KERN_WARNING "ERROR: %s\n\n", str);
6071
6072 for (i = 0; i < nr_node_ids; i++) {
6073 printk(KERN_WARNING " ");
6074 for (j = 0; j < nr_node_ids; j++)
6075 printk(KERN_CONT "%02d ", node_distance(i,j));
6076 printk(KERN_CONT "\n");
6077 }
6078 printk(KERN_WARNING "\n");
6079}
6080
6081static bool find_numa_distance(int distance)
6082{
6083 int i;
6084
6085 if (distance == node_distance(0, 0))
6086 return true;
6087
6088 for (i = 0; i < sched_domains_numa_levels; i++) {
6089 if (sched_domains_numa_distance[i] == distance)
6090 return true;
6091 }
6092
6093 return false;
6094}
6095
cb83b629
PZ
6096static void sched_init_numa(void)
6097{
6098 int next_distance, curr_distance = node_distance(0, 0);
6099 struct sched_domain_topology_level *tl;
6100 int level = 0;
6101 int i, j, k;
6102
cb83b629
PZ
6103 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6104 if (!sched_domains_numa_distance)
6105 return;
6106
6107 /*
6108 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6109 * unique distances in the node_distance() table.
6110 *
6111 * Assumes node_distance(0,j) includes all distances in
6112 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6113 */
6114 next_distance = curr_distance;
6115 for (i = 0; i < nr_node_ids; i++) {
6116 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6117 for (k = 0; k < nr_node_ids; k++) {
6118 int distance = node_distance(i, k);
6119
6120 if (distance > curr_distance &&
6121 (distance < next_distance ||
6122 next_distance == curr_distance))
6123 next_distance = distance;
6124
6125 /*
6126 * While not a strong assumption it would be nice to know
6127 * about cases where if node A is connected to B, B is not
6128 * equally connected to A.
6129 */
6130 if (sched_debug() && node_distance(k, i) != distance)
6131 sched_numa_warn("Node-distance not symmetric");
6132
6133 if (sched_debug() && i && !find_numa_distance(distance))
6134 sched_numa_warn("Node-0 not representative");
6135 }
6136 if (next_distance != curr_distance) {
6137 sched_domains_numa_distance[level++] = next_distance;
6138 sched_domains_numa_levels = level;
6139 curr_distance = next_distance;
6140 } else break;
cb83b629 6141 }
d039ac60
PZ
6142
6143 /*
6144 * In case of sched_debug() we verify the above assumption.
6145 */
6146 if (!sched_debug())
6147 break;
cb83b629
PZ
6148 }
6149 /*
6150 * 'level' contains the number of unique distances, excluding the
6151 * identity distance node_distance(i,i).
6152 *
6153 * The sched_domains_nume_distance[] array includes the actual distance
6154 * numbers.
6155 */
6156
5f7865f3
TC
6157 /*
6158 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6159 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6160 * the array will contain less then 'level' members. This could be
6161 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6162 * in other functions.
6163 *
6164 * We reset it to 'level' at the end of this function.
6165 */
6166 sched_domains_numa_levels = 0;
6167
cb83b629
PZ
6168 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6169 if (!sched_domains_numa_masks)
6170 return;
6171
6172 /*
6173 * Now for each level, construct a mask per node which contains all
6174 * cpus of nodes that are that many hops away from us.
6175 */
6176 for (i = 0; i < level; i++) {
6177 sched_domains_numa_masks[i] =
6178 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6179 if (!sched_domains_numa_masks[i])
6180 return;
6181
6182 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6183 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6184 if (!mask)
6185 return;
6186
6187 sched_domains_numa_masks[i][j] = mask;
6188
6189 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6190 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6191 continue;
6192
6193 cpumask_or(mask, mask, cpumask_of_node(k));
6194 }
6195 }
6196 }
6197
6198 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6199 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6200 if (!tl)
6201 return;
6202
6203 /*
6204 * Copy the default topology bits..
6205 */
6206 for (i = 0; default_topology[i].init; i++)
6207 tl[i] = default_topology[i];
6208
6209 /*
6210 * .. and append 'j' levels of NUMA goodness.
6211 */
6212 for (j = 0; j < level; i++, j++) {
6213 tl[i] = (struct sched_domain_topology_level){
6214 .init = sd_numa_init,
6215 .mask = sd_numa_mask,
6216 .flags = SDTL_OVERLAP,
6217 .numa_level = j,
6218 };
6219 }
6220
6221 sched_domain_topology = tl;
5f7865f3
TC
6222
6223 sched_domains_numa_levels = level;
cb83b629 6224}
301a5cba
TC
6225
6226static void sched_domains_numa_masks_set(int cpu)
6227{
6228 int i, j;
6229 int node = cpu_to_node(cpu);
6230
6231 for (i = 0; i < sched_domains_numa_levels; i++) {
6232 for (j = 0; j < nr_node_ids; j++) {
6233 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6234 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6235 }
6236 }
6237}
6238
6239static void sched_domains_numa_masks_clear(int cpu)
6240{
6241 int i, j;
6242 for (i = 0; i < sched_domains_numa_levels; i++) {
6243 for (j = 0; j < nr_node_ids; j++)
6244 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6245 }
6246}
6247
6248/*
6249 * Update sched_domains_numa_masks[level][node] array when new cpus
6250 * are onlined.
6251 */
6252static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6253 unsigned long action,
6254 void *hcpu)
6255{
6256 int cpu = (long)hcpu;
6257
6258 switch (action & ~CPU_TASKS_FROZEN) {
6259 case CPU_ONLINE:
6260 sched_domains_numa_masks_set(cpu);
6261 break;
6262
6263 case CPU_DEAD:
6264 sched_domains_numa_masks_clear(cpu);
6265 break;
6266
6267 default:
6268 return NOTIFY_DONE;
6269 }
6270
6271 return NOTIFY_OK;
cb83b629
PZ
6272}
6273#else
6274static inline void sched_init_numa(void)
6275{
6276}
301a5cba
TC
6277
6278static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6279 unsigned long action,
6280 void *hcpu)
6281{
6282 return 0;
6283}
cb83b629
PZ
6284#endif /* CONFIG_NUMA */
6285
54ab4ff4
PZ
6286static int __sdt_alloc(const struct cpumask *cpu_map)
6287{
6288 struct sched_domain_topology_level *tl;
6289 int j;
6290
6291 for (tl = sched_domain_topology; tl->init; tl++) {
6292 struct sd_data *sdd = &tl->data;
6293
6294 sdd->sd = alloc_percpu(struct sched_domain *);
6295 if (!sdd->sd)
6296 return -ENOMEM;
6297
6298 sdd->sg = alloc_percpu(struct sched_group *);
6299 if (!sdd->sg)
6300 return -ENOMEM;
6301
9c3f75cb
PZ
6302 sdd->sgp = alloc_percpu(struct sched_group_power *);
6303 if (!sdd->sgp)
6304 return -ENOMEM;
6305
54ab4ff4
PZ
6306 for_each_cpu(j, cpu_map) {
6307 struct sched_domain *sd;
6308 struct sched_group *sg;
9c3f75cb 6309 struct sched_group_power *sgp;
54ab4ff4
PZ
6310
6311 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6312 GFP_KERNEL, cpu_to_node(j));
6313 if (!sd)
6314 return -ENOMEM;
6315
6316 *per_cpu_ptr(sdd->sd, j) = sd;
6317
6318 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6319 GFP_KERNEL, cpu_to_node(j));
6320 if (!sg)
6321 return -ENOMEM;
6322
30b4e9eb
IM
6323 sg->next = sg;
6324
54ab4ff4 6325 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6326
c1174876 6327 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6328 GFP_KERNEL, cpu_to_node(j));
6329 if (!sgp)
6330 return -ENOMEM;
6331
6332 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6333 }
6334 }
6335
6336 return 0;
6337}
6338
6339static void __sdt_free(const struct cpumask *cpu_map)
6340{
6341 struct sched_domain_topology_level *tl;
6342 int j;
6343
6344 for (tl = sched_domain_topology; tl->init; tl++) {
6345 struct sd_data *sdd = &tl->data;
6346
6347 for_each_cpu(j, cpu_map) {
fb2cf2c6 6348 struct sched_domain *sd;
6349
6350 if (sdd->sd) {
6351 sd = *per_cpu_ptr(sdd->sd, j);
6352 if (sd && (sd->flags & SD_OVERLAP))
6353 free_sched_groups(sd->groups, 0);
6354 kfree(*per_cpu_ptr(sdd->sd, j));
6355 }
6356
6357 if (sdd->sg)
6358 kfree(*per_cpu_ptr(sdd->sg, j));
6359 if (sdd->sgp)
6360 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6361 }
6362 free_percpu(sdd->sd);
fb2cf2c6 6363 sdd->sd = NULL;
54ab4ff4 6364 free_percpu(sdd->sg);
fb2cf2c6 6365 sdd->sg = NULL;
9c3f75cb 6366 free_percpu(sdd->sgp);
fb2cf2c6 6367 sdd->sgp = NULL;
54ab4ff4
PZ
6368 }
6369}
6370
2c402dc3
PZ
6371struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6372 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6373 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6374 int cpu)
6375{
54ab4ff4 6376 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6377 if (!sd)
d069b916 6378 return child;
2c402dc3 6379
2c402dc3 6380 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6381 if (child) {
6382 sd->level = child->level + 1;
6383 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6384 child->parent = sd;
60495e77 6385 }
d069b916 6386 sd->child = child;
a841f8ce 6387 set_domain_attribute(sd, attr);
2c402dc3
PZ
6388
6389 return sd;
6390}
6391
2109b99e
AH
6392/*
6393 * Build sched domains for a given set of cpus and attach the sched domains
6394 * to the individual cpus
6395 */
dce840a0
PZ
6396static int build_sched_domains(const struct cpumask *cpu_map,
6397 struct sched_domain_attr *attr)
2109b99e
AH
6398{
6399 enum s_alloc alloc_state = sa_none;
dce840a0 6400 struct sched_domain *sd;
2109b99e 6401 struct s_data d;
822ff793 6402 int i, ret = -ENOMEM;
9c1cfda2 6403
2109b99e
AH
6404 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6405 if (alloc_state != sa_rootdomain)
6406 goto error;
9c1cfda2 6407
dce840a0 6408 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6409 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6410 struct sched_domain_topology_level *tl;
6411
3bd65a80 6412 sd = NULL;
e3589f6c 6413 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6414 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6415 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6416 sd->flags |= SD_OVERLAP;
d110235d
PZ
6417 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6418 break;
e3589f6c 6419 }
d274cb30 6420
d069b916
PZ
6421 while (sd->child)
6422 sd = sd->child;
6423
21d42ccf 6424 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6425 }
6426
6427 /* Build the groups for the domains */
6428 for_each_cpu(i, cpu_map) {
6429 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6430 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6431 if (sd->flags & SD_OVERLAP) {
6432 if (build_overlap_sched_groups(sd, i))
6433 goto error;
6434 } else {
6435 if (build_sched_groups(sd, i))
6436 goto error;
6437 }
1cf51902 6438 }
a06dadbe 6439 }
9c1cfda2 6440
1da177e4 6441 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6442 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6443 if (!cpumask_test_cpu(i, cpu_map))
6444 continue;
9c1cfda2 6445
dce840a0
PZ
6446 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6447 claim_allocations(i, sd);
cd4ea6ae 6448 init_sched_groups_power(i, sd);
dce840a0 6449 }
f712c0c7 6450 }
9c1cfda2 6451
1da177e4 6452 /* Attach the domains */
dce840a0 6453 rcu_read_lock();
abcd083a 6454 for_each_cpu(i, cpu_map) {
21d42ccf 6455 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6456 cpu_attach_domain(sd, d.rd, i);
1da177e4 6457 }
dce840a0 6458 rcu_read_unlock();
51888ca2 6459
822ff793 6460 ret = 0;
51888ca2 6461error:
2109b99e 6462 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6463 return ret;
1da177e4 6464}
029190c5 6465
acc3f5d7 6466static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6467static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6468static struct sched_domain_attr *dattr_cur;
6469 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6470
6471/*
6472 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6473 * cpumask) fails, then fallback to a single sched domain,
6474 * as determined by the single cpumask fallback_doms.
029190c5 6475 */
4212823f 6476static cpumask_var_t fallback_doms;
029190c5 6477
ee79d1bd
HC
6478/*
6479 * arch_update_cpu_topology lets virtualized architectures update the
6480 * cpu core maps. It is supposed to return 1 if the topology changed
6481 * or 0 if it stayed the same.
6482 */
6483int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6484{
ee79d1bd 6485 return 0;
22e52b07
HC
6486}
6487
acc3f5d7
RR
6488cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6489{
6490 int i;
6491 cpumask_var_t *doms;
6492
6493 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6494 if (!doms)
6495 return NULL;
6496 for (i = 0; i < ndoms; i++) {
6497 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6498 free_sched_domains(doms, i);
6499 return NULL;
6500 }
6501 }
6502 return doms;
6503}
6504
6505void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6506{
6507 unsigned int i;
6508 for (i = 0; i < ndoms; i++)
6509 free_cpumask_var(doms[i]);
6510 kfree(doms);
6511}
6512
1a20ff27 6513/*
41a2d6cf 6514 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6515 * For now this just excludes isolated cpus, but could be used to
6516 * exclude other special cases in the future.
1a20ff27 6517 */
c4a8849a 6518static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6519{
7378547f
MM
6520 int err;
6521
22e52b07 6522 arch_update_cpu_topology();
029190c5 6523 ndoms_cur = 1;
acc3f5d7 6524 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6525 if (!doms_cur)
acc3f5d7
RR
6526 doms_cur = &fallback_doms;
6527 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6528 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6529 register_sched_domain_sysctl();
7378547f
MM
6530
6531 return err;
1a20ff27
DG
6532}
6533
1a20ff27
DG
6534/*
6535 * Detach sched domains from a group of cpus specified in cpu_map
6536 * These cpus will now be attached to the NULL domain
6537 */
96f874e2 6538static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6539{
6540 int i;
6541
dce840a0 6542 rcu_read_lock();
abcd083a 6543 for_each_cpu(i, cpu_map)
57d885fe 6544 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6545 rcu_read_unlock();
1a20ff27
DG
6546}
6547
1d3504fc
HS
6548/* handle null as "default" */
6549static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6550 struct sched_domain_attr *new, int idx_new)
6551{
6552 struct sched_domain_attr tmp;
6553
6554 /* fast path */
6555 if (!new && !cur)
6556 return 1;
6557
6558 tmp = SD_ATTR_INIT;
6559 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6560 new ? (new + idx_new) : &tmp,
6561 sizeof(struct sched_domain_attr));
6562}
6563
029190c5
PJ
6564/*
6565 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6566 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6567 * doms_new[] to the current sched domain partitioning, doms_cur[].
6568 * It destroys each deleted domain and builds each new domain.
6569 *
acc3f5d7 6570 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6571 * The masks don't intersect (don't overlap.) We should setup one
6572 * sched domain for each mask. CPUs not in any of the cpumasks will
6573 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6574 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6575 * it as it is.
6576 *
acc3f5d7
RR
6577 * The passed in 'doms_new' should be allocated using
6578 * alloc_sched_domains. This routine takes ownership of it and will
6579 * free_sched_domains it when done with it. If the caller failed the
6580 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6581 * and partition_sched_domains() will fallback to the single partition
6582 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6583 *
96f874e2 6584 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6585 * ndoms_new == 0 is a special case for destroying existing domains,
6586 * and it will not create the default domain.
dfb512ec 6587 *
029190c5
PJ
6588 * Call with hotplug lock held
6589 */
acc3f5d7 6590void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6591 struct sched_domain_attr *dattr_new)
029190c5 6592{
dfb512ec 6593 int i, j, n;
d65bd5ec 6594 int new_topology;
029190c5 6595
712555ee 6596 mutex_lock(&sched_domains_mutex);
a1835615 6597
7378547f
MM
6598 /* always unregister in case we don't destroy any domains */
6599 unregister_sched_domain_sysctl();
6600
d65bd5ec
HC
6601 /* Let architecture update cpu core mappings. */
6602 new_topology = arch_update_cpu_topology();
6603
dfb512ec 6604 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6605
6606 /* Destroy deleted domains */
6607 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6608 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6609 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6610 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6611 goto match1;
6612 }
6613 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6614 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6615match1:
6616 ;
6617 }
6618
e761b772
MK
6619 if (doms_new == NULL) {
6620 ndoms_cur = 0;
acc3f5d7 6621 doms_new = &fallback_doms;
6ad4c188 6622 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6623 WARN_ON_ONCE(dattr_new);
e761b772
MK
6624 }
6625
029190c5
PJ
6626 /* Build new domains */
6627 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6628 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6629 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6630 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6631 goto match2;
6632 }
6633 /* no match - add a new doms_new */
dce840a0 6634 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6635match2:
6636 ;
6637 }
6638
6639 /* Remember the new sched domains */
acc3f5d7
RR
6640 if (doms_cur != &fallback_doms)
6641 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6642 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6643 doms_cur = doms_new;
1d3504fc 6644 dattr_cur = dattr_new;
029190c5 6645 ndoms_cur = ndoms_new;
7378547f
MM
6646
6647 register_sched_domain_sysctl();
a1835615 6648
712555ee 6649 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6650}
6651
d35be8ba
SB
6652static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6653
1da177e4 6654/*
3a101d05
TH
6655 * Update cpusets according to cpu_active mask. If cpusets are
6656 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6657 * around partition_sched_domains().
d35be8ba
SB
6658 *
6659 * If we come here as part of a suspend/resume, don't touch cpusets because we
6660 * want to restore it back to its original state upon resume anyway.
1da177e4 6661 */
0b2e918a
TH
6662static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6663 void *hcpu)
e761b772 6664{
d35be8ba
SB
6665 switch (action) {
6666 case CPU_ONLINE_FROZEN:
6667 case CPU_DOWN_FAILED_FROZEN:
6668
6669 /*
6670 * num_cpus_frozen tracks how many CPUs are involved in suspend
6671 * resume sequence. As long as this is not the last online
6672 * operation in the resume sequence, just build a single sched
6673 * domain, ignoring cpusets.
6674 */
6675 num_cpus_frozen--;
6676 if (likely(num_cpus_frozen)) {
6677 partition_sched_domains(1, NULL, NULL);
6678 break;
6679 }
6680
6681 /*
6682 * This is the last CPU online operation. So fall through and
6683 * restore the original sched domains by considering the
6684 * cpuset configurations.
6685 */
6686
e761b772 6687 case CPU_ONLINE:
6ad4c188 6688 case CPU_DOWN_FAILED:
7ddf96b0 6689 cpuset_update_active_cpus(true);
d35be8ba 6690 break;
3a101d05
TH
6691 default:
6692 return NOTIFY_DONE;
6693 }
d35be8ba 6694 return NOTIFY_OK;
3a101d05 6695}
e761b772 6696
0b2e918a
TH
6697static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6698 void *hcpu)
3a101d05 6699{
d35be8ba 6700 switch (action) {
3a101d05 6701 case CPU_DOWN_PREPARE:
7ddf96b0 6702 cpuset_update_active_cpus(false);
d35be8ba
SB
6703 break;
6704 case CPU_DOWN_PREPARE_FROZEN:
6705 num_cpus_frozen++;
6706 partition_sched_domains(1, NULL, NULL);
6707 break;
e761b772
MK
6708 default:
6709 return NOTIFY_DONE;
6710 }
d35be8ba 6711 return NOTIFY_OK;
e761b772 6712}
e761b772 6713
1da177e4
LT
6714void __init sched_init_smp(void)
6715{
dcc30a35
RR
6716 cpumask_var_t non_isolated_cpus;
6717
6718 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6719 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6720
cb83b629
PZ
6721 sched_init_numa();
6722
95402b38 6723 get_online_cpus();
712555ee 6724 mutex_lock(&sched_domains_mutex);
c4a8849a 6725 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6726 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6727 if (cpumask_empty(non_isolated_cpus))
6728 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6729 mutex_unlock(&sched_domains_mutex);
95402b38 6730 put_online_cpus();
e761b772 6731
301a5cba 6732 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6733 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6734 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6735
6736 /* RT runtime code needs to handle some hotplug events */
6737 hotcpu_notifier(update_runtime, 0);
6738
b328ca18 6739 init_hrtick();
5c1e1767
NP
6740
6741 /* Move init over to a non-isolated CPU */
dcc30a35 6742 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6743 BUG();
19978ca6 6744 sched_init_granularity();
dcc30a35 6745 free_cpumask_var(non_isolated_cpus);
4212823f 6746
0e3900e6 6747 init_sched_rt_class();
1da177e4
LT
6748}
6749#else
6750void __init sched_init_smp(void)
6751{
19978ca6 6752 sched_init_granularity();
1da177e4
LT
6753}
6754#endif /* CONFIG_SMP */
6755
cd1bb94b
AB
6756const_debug unsigned int sysctl_timer_migration = 1;
6757
1da177e4
LT
6758int in_sched_functions(unsigned long addr)
6759{
1da177e4
LT
6760 return in_lock_functions(addr) ||
6761 (addr >= (unsigned long)__sched_text_start
6762 && addr < (unsigned long)__sched_text_end);
6763}
6764
029632fb
PZ
6765#ifdef CONFIG_CGROUP_SCHED
6766struct task_group root_task_group;
35cf4e50 6767LIST_HEAD(task_groups);
052f1dc7 6768#endif
6f505b16 6769
029632fb 6770DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6771
1da177e4
LT
6772void __init sched_init(void)
6773{
dd41f596 6774 int i, j;
434d53b0
MT
6775 unsigned long alloc_size = 0, ptr;
6776
6777#ifdef CONFIG_FAIR_GROUP_SCHED
6778 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6779#endif
6780#ifdef CONFIG_RT_GROUP_SCHED
6781 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6782#endif
df7c8e84 6783#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6784 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6785#endif
434d53b0 6786 if (alloc_size) {
36b7b6d4 6787 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6788
6789#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6790 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6791 ptr += nr_cpu_ids * sizeof(void **);
6792
07e06b01 6793 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6794 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6795
6d6bc0ad 6796#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6797#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6798 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6799 ptr += nr_cpu_ids * sizeof(void **);
6800
07e06b01 6801 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6802 ptr += nr_cpu_ids * sizeof(void **);
6803
6d6bc0ad 6804#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6805#ifdef CONFIG_CPUMASK_OFFSTACK
6806 for_each_possible_cpu(i) {
6807 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6808 ptr += cpumask_size();
6809 }
6810#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6811 }
dd41f596 6812
57d885fe
GH
6813#ifdef CONFIG_SMP
6814 init_defrootdomain();
6815#endif
6816
d0b27fa7
PZ
6817 init_rt_bandwidth(&def_rt_bandwidth,
6818 global_rt_period(), global_rt_runtime());
6819
6820#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6821 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6822 global_rt_period(), global_rt_runtime());
6d6bc0ad 6823#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6824
7c941438 6825#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6826 list_add(&root_task_group.list, &task_groups);
6827 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6828 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6829 autogroup_init(&init_task);
54c707e9 6830
7c941438 6831#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6832
54c707e9
GC
6833#ifdef CONFIG_CGROUP_CPUACCT
6834 root_cpuacct.cpustat = &kernel_cpustat;
6835 root_cpuacct.cpuusage = alloc_percpu(u64);
6836 /* Too early, not expected to fail */
6837 BUG_ON(!root_cpuacct.cpuusage);
6838#endif
0a945022 6839 for_each_possible_cpu(i) {
70b97a7f 6840 struct rq *rq;
1da177e4
LT
6841
6842 rq = cpu_rq(i);
05fa785c 6843 raw_spin_lock_init(&rq->lock);
7897986b 6844 rq->nr_running = 0;
dce48a84
TG
6845 rq->calc_load_active = 0;
6846 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6847 init_cfs_rq(&rq->cfs);
6f505b16 6848 init_rt_rq(&rq->rt, rq);
dd41f596 6849#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6850 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6851 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6852 /*
07e06b01 6853 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6854 *
6855 * In case of task-groups formed thr' the cgroup filesystem, it
6856 * gets 100% of the cpu resources in the system. This overall
6857 * system cpu resource is divided among the tasks of
07e06b01 6858 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6859 * based on each entity's (task or task-group's) weight
6860 * (se->load.weight).
6861 *
07e06b01 6862 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6863 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6864 * then A0's share of the cpu resource is:
6865 *
0d905bca 6866 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6867 *
07e06b01
YZ
6868 * We achieve this by letting root_task_group's tasks sit
6869 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6870 */
ab84d31e 6871 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6872 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6873#endif /* CONFIG_FAIR_GROUP_SCHED */
6874
6875 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6876#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6877 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6878 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6879#endif
1da177e4 6880
dd41f596
IM
6881 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6882 rq->cpu_load[j] = 0;
fdf3e95d
VP
6883
6884 rq->last_load_update_tick = jiffies;
6885
1da177e4 6886#ifdef CONFIG_SMP
41c7ce9a 6887 rq->sd = NULL;
57d885fe 6888 rq->rd = NULL;
1399fa78 6889 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6890 rq->post_schedule = 0;
1da177e4 6891 rq->active_balance = 0;
dd41f596 6892 rq->next_balance = jiffies;
1da177e4 6893 rq->push_cpu = 0;
0a2966b4 6894 rq->cpu = i;
1f11eb6a 6895 rq->online = 0;
eae0c9df
MG
6896 rq->idle_stamp = 0;
6897 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6898
6899 INIT_LIST_HEAD(&rq->cfs_tasks);
6900
dc938520 6901 rq_attach_root(rq, &def_root_domain);
83cd4fe2 6902#ifdef CONFIG_NO_HZ
1c792db7 6903 rq->nohz_flags = 0;
83cd4fe2 6904#endif
1da177e4 6905#endif
8f4d37ec 6906 init_rq_hrtick(rq);
1da177e4 6907 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6908 }
6909
2dd73a4f 6910 set_load_weight(&init_task);
b50f60ce 6911
e107be36
AK
6912#ifdef CONFIG_PREEMPT_NOTIFIERS
6913 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6914#endif
6915
b50f60ce 6916#ifdef CONFIG_RT_MUTEXES
732375c6 6917 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6918#endif
6919
1da177e4
LT
6920 /*
6921 * The boot idle thread does lazy MMU switching as well:
6922 */
6923 atomic_inc(&init_mm.mm_count);
6924 enter_lazy_tlb(&init_mm, current);
6925
6926 /*
6927 * Make us the idle thread. Technically, schedule() should not be
6928 * called from this thread, however somewhere below it might be,
6929 * but because we are the idle thread, we just pick up running again
6930 * when this runqueue becomes "idle".
6931 */
6932 init_idle(current, smp_processor_id());
dce48a84
TG
6933
6934 calc_load_update = jiffies + LOAD_FREQ;
6935
dd41f596
IM
6936 /*
6937 * During early bootup we pretend to be a normal task:
6938 */
6939 current->sched_class = &fair_sched_class;
6892b75e 6940
bf4d83f6 6941#ifdef CONFIG_SMP
4cb98839 6942 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6943 /* May be allocated at isolcpus cmdline parse time */
6944 if (cpu_isolated_map == NULL)
6945 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6946 idle_thread_set_boot_cpu();
029632fb
PZ
6947#endif
6948 init_sched_fair_class();
6a7b3dc3 6949
6892b75e 6950 scheduler_running = 1;
1da177e4
LT
6951}
6952
d902db1e 6953#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6954static inline int preempt_count_equals(int preempt_offset)
6955{
234da7bc 6956 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6957
4ba8216c 6958 return (nested == preempt_offset);
e4aafea2
FW
6959}
6960
d894837f 6961void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6962{
1da177e4
LT
6963 static unsigned long prev_jiffy; /* ratelimiting */
6964
b3fbab05 6965 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6966 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6967 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6968 return;
6969 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6970 return;
6971 prev_jiffy = jiffies;
6972
3df0fc5b
PZ
6973 printk(KERN_ERR
6974 "BUG: sleeping function called from invalid context at %s:%d\n",
6975 file, line);
6976 printk(KERN_ERR
6977 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6978 in_atomic(), irqs_disabled(),
6979 current->pid, current->comm);
aef745fc
IM
6980
6981 debug_show_held_locks(current);
6982 if (irqs_disabled())
6983 print_irqtrace_events(current);
6984 dump_stack();
1da177e4
LT
6985}
6986EXPORT_SYMBOL(__might_sleep);
6987#endif
6988
6989#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6990static void normalize_task(struct rq *rq, struct task_struct *p)
6991{
da7a735e
PZ
6992 const struct sched_class *prev_class = p->sched_class;
6993 int old_prio = p->prio;
3a5e4dc1 6994 int on_rq;
3e51f33f 6995
fd2f4419 6996 on_rq = p->on_rq;
3a5e4dc1 6997 if (on_rq)
4ca9b72b 6998 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6999 __setscheduler(rq, p, SCHED_NORMAL, 0);
7000 if (on_rq) {
4ca9b72b 7001 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7002 resched_task(rq->curr);
7003 }
da7a735e
PZ
7004
7005 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7006}
7007
1da177e4
LT
7008void normalize_rt_tasks(void)
7009{
a0f98a1c 7010 struct task_struct *g, *p;
1da177e4 7011 unsigned long flags;
70b97a7f 7012 struct rq *rq;
1da177e4 7013
4cf5d77a 7014 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7015 do_each_thread(g, p) {
178be793
IM
7016 /*
7017 * Only normalize user tasks:
7018 */
7019 if (!p->mm)
7020 continue;
7021
6cfb0d5d 7022 p->se.exec_start = 0;
6cfb0d5d 7023#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7024 p->se.statistics.wait_start = 0;
7025 p->se.statistics.sleep_start = 0;
7026 p->se.statistics.block_start = 0;
6cfb0d5d 7027#endif
dd41f596
IM
7028
7029 if (!rt_task(p)) {
7030 /*
7031 * Renice negative nice level userspace
7032 * tasks back to 0:
7033 */
7034 if (TASK_NICE(p) < 0 && p->mm)
7035 set_user_nice(p, 0);
1da177e4 7036 continue;
dd41f596 7037 }
1da177e4 7038
1d615482 7039 raw_spin_lock(&p->pi_lock);
b29739f9 7040 rq = __task_rq_lock(p);
1da177e4 7041
178be793 7042 normalize_task(rq, p);
3a5e4dc1 7043
b29739f9 7044 __task_rq_unlock(rq);
1d615482 7045 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7046 } while_each_thread(g, p);
7047
4cf5d77a 7048 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7049}
7050
7051#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7052
67fc4e0c 7053#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7054/*
67fc4e0c 7055 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7056 *
7057 * They can only be called when the whole system has been
7058 * stopped - every CPU needs to be quiescent, and no scheduling
7059 * activity can take place. Using them for anything else would
7060 * be a serious bug, and as a result, they aren't even visible
7061 * under any other configuration.
7062 */
7063
7064/**
7065 * curr_task - return the current task for a given cpu.
7066 * @cpu: the processor in question.
7067 *
7068 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7069 */
36c8b586 7070struct task_struct *curr_task(int cpu)
1df5c10a
LT
7071{
7072 return cpu_curr(cpu);
7073}
7074
67fc4e0c
JW
7075#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7076
7077#ifdef CONFIG_IA64
1df5c10a
LT
7078/**
7079 * set_curr_task - set the current task for a given cpu.
7080 * @cpu: the processor in question.
7081 * @p: the task pointer to set.
7082 *
7083 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7084 * are serviced on a separate stack. It allows the architecture to switch the
7085 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7086 * must be called with all CPU's synchronized, and interrupts disabled, the
7087 * and caller must save the original value of the current task (see
7088 * curr_task() above) and restore that value before reenabling interrupts and
7089 * re-starting the system.
7090 *
7091 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7092 */
36c8b586 7093void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7094{
7095 cpu_curr(cpu) = p;
7096}
7097
7098#endif
29f59db3 7099
7c941438 7100#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7101/* task_group_lock serializes the addition/removal of task groups */
7102static DEFINE_SPINLOCK(task_group_lock);
7103
bccbe08a
PZ
7104static void free_sched_group(struct task_group *tg)
7105{
7106 free_fair_sched_group(tg);
7107 free_rt_sched_group(tg);
e9aa1dd1 7108 autogroup_free(tg);
bccbe08a
PZ
7109 kfree(tg);
7110}
7111
7112/* allocate runqueue etc for a new task group */
ec7dc8ac 7113struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7114{
7115 struct task_group *tg;
7116 unsigned long flags;
bccbe08a
PZ
7117
7118 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7119 if (!tg)
7120 return ERR_PTR(-ENOMEM);
7121
ec7dc8ac 7122 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7123 goto err;
7124
ec7dc8ac 7125 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7126 goto err;
7127
8ed36996 7128 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7129 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7130
7131 WARN_ON(!parent); /* root should already exist */
7132
7133 tg->parent = parent;
f473aa5e 7134 INIT_LIST_HEAD(&tg->children);
09f2724a 7135 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7136 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7137
9b5b7751 7138 return tg;
29f59db3
SV
7139
7140err:
6f505b16 7141 free_sched_group(tg);
29f59db3
SV
7142 return ERR_PTR(-ENOMEM);
7143}
7144
9b5b7751 7145/* rcu callback to free various structures associated with a task group */
6f505b16 7146static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7147{
29f59db3 7148 /* now it should be safe to free those cfs_rqs */
6f505b16 7149 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7150}
7151
9b5b7751 7152/* Destroy runqueue etc associated with a task group */
4cf86d77 7153void sched_destroy_group(struct task_group *tg)
29f59db3 7154{
8ed36996 7155 unsigned long flags;
9b5b7751 7156 int i;
29f59db3 7157
3d4b47b4
PZ
7158 /* end participation in shares distribution */
7159 for_each_possible_cpu(i)
bccbe08a 7160 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7161
7162 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7163 list_del_rcu(&tg->list);
f473aa5e 7164 list_del_rcu(&tg->siblings);
8ed36996 7165 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7166
9b5b7751 7167 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7168 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7169}
7170
9b5b7751 7171/* change task's runqueue when it moves between groups.
3a252015
IM
7172 * The caller of this function should have put the task in its new group
7173 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7174 * reflect its new group.
9b5b7751
SV
7175 */
7176void sched_move_task(struct task_struct *tsk)
29f59db3 7177{
8323f26c 7178 struct task_group *tg;
29f59db3
SV
7179 int on_rq, running;
7180 unsigned long flags;
7181 struct rq *rq;
7182
7183 rq = task_rq_lock(tsk, &flags);
7184
051a1d1a 7185 running = task_current(rq, tsk);
fd2f4419 7186 on_rq = tsk->on_rq;
29f59db3 7187
0e1f3483 7188 if (on_rq)
29f59db3 7189 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7190 if (unlikely(running))
7191 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7192
8323f26c
PZ
7193 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7194 lockdep_is_held(&tsk->sighand->siglock)),
7195 struct task_group, css);
7196 tg = autogroup_task_group(tsk, tg);
7197 tsk->sched_task_group = tg;
7198
810b3817 7199#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7200 if (tsk->sched_class->task_move_group)
7201 tsk->sched_class->task_move_group(tsk, on_rq);
7202 else
810b3817 7203#endif
b2b5ce02 7204 set_task_rq(tsk, task_cpu(tsk));
810b3817 7205
0e1f3483
HS
7206 if (unlikely(running))
7207 tsk->sched_class->set_curr_task(rq);
7208 if (on_rq)
371fd7e7 7209 enqueue_task(rq, tsk, 0);
29f59db3 7210
0122ec5b 7211 task_rq_unlock(rq, tsk, &flags);
29f59db3 7212}
7c941438 7213#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7214
a790de99 7215#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7216static unsigned long to_ratio(u64 period, u64 runtime)
7217{
7218 if (runtime == RUNTIME_INF)
9a7e0b18 7219 return 1ULL << 20;
9f0c1e56 7220
9a7e0b18 7221 return div64_u64(runtime << 20, period);
9f0c1e56 7222}
a790de99
PT
7223#endif
7224
7225#ifdef CONFIG_RT_GROUP_SCHED
7226/*
7227 * Ensure that the real time constraints are schedulable.
7228 */
7229static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7230
9a7e0b18
PZ
7231/* Must be called with tasklist_lock held */
7232static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7233{
9a7e0b18 7234 struct task_struct *g, *p;
b40b2e8e 7235
9a7e0b18 7236 do_each_thread(g, p) {
029632fb 7237 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7238 return 1;
7239 } while_each_thread(g, p);
b40b2e8e 7240
9a7e0b18
PZ
7241 return 0;
7242}
b40b2e8e 7243
9a7e0b18
PZ
7244struct rt_schedulable_data {
7245 struct task_group *tg;
7246 u64 rt_period;
7247 u64 rt_runtime;
7248};
b40b2e8e 7249
a790de99 7250static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7251{
7252 struct rt_schedulable_data *d = data;
7253 struct task_group *child;
7254 unsigned long total, sum = 0;
7255 u64 period, runtime;
b40b2e8e 7256
9a7e0b18
PZ
7257 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7258 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7259
9a7e0b18
PZ
7260 if (tg == d->tg) {
7261 period = d->rt_period;
7262 runtime = d->rt_runtime;
b40b2e8e 7263 }
b40b2e8e 7264
4653f803
PZ
7265 /*
7266 * Cannot have more runtime than the period.
7267 */
7268 if (runtime > period && runtime != RUNTIME_INF)
7269 return -EINVAL;
6f505b16 7270
4653f803
PZ
7271 /*
7272 * Ensure we don't starve existing RT tasks.
7273 */
9a7e0b18
PZ
7274 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7275 return -EBUSY;
6f505b16 7276
9a7e0b18 7277 total = to_ratio(period, runtime);
6f505b16 7278
4653f803
PZ
7279 /*
7280 * Nobody can have more than the global setting allows.
7281 */
7282 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7283 return -EINVAL;
6f505b16 7284
4653f803
PZ
7285 /*
7286 * The sum of our children's runtime should not exceed our own.
7287 */
9a7e0b18
PZ
7288 list_for_each_entry_rcu(child, &tg->children, siblings) {
7289 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7290 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7291
9a7e0b18
PZ
7292 if (child == d->tg) {
7293 period = d->rt_period;
7294 runtime = d->rt_runtime;
7295 }
6f505b16 7296
9a7e0b18 7297 sum += to_ratio(period, runtime);
9f0c1e56 7298 }
6f505b16 7299
9a7e0b18
PZ
7300 if (sum > total)
7301 return -EINVAL;
7302
7303 return 0;
6f505b16
PZ
7304}
7305
9a7e0b18 7306static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7307{
8277434e
PT
7308 int ret;
7309
9a7e0b18
PZ
7310 struct rt_schedulable_data data = {
7311 .tg = tg,
7312 .rt_period = period,
7313 .rt_runtime = runtime,
7314 };
7315
8277434e
PT
7316 rcu_read_lock();
7317 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7318 rcu_read_unlock();
7319
7320 return ret;
521f1a24
DG
7321}
7322
ab84d31e 7323static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7324 u64 rt_period, u64 rt_runtime)
6f505b16 7325{
ac086bc2 7326 int i, err = 0;
9f0c1e56 7327
9f0c1e56 7328 mutex_lock(&rt_constraints_mutex);
521f1a24 7329 read_lock(&tasklist_lock);
9a7e0b18
PZ
7330 err = __rt_schedulable(tg, rt_period, rt_runtime);
7331 if (err)
9f0c1e56 7332 goto unlock;
ac086bc2 7333
0986b11b 7334 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7335 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7336 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7337
7338 for_each_possible_cpu(i) {
7339 struct rt_rq *rt_rq = tg->rt_rq[i];
7340
0986b11b 7341 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7342 rt_rq->rt_runtime = rt_runtime;
0986b11b 7343 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7344 }
0986b11b 7345 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7346unlock:
521f1a24 7347 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7348 mutex_unlock(&rt_constraints_mutex);
7349
7350 return err;
6f505b16
PZ
7351}
7352
d0b27fa7
PZ
7353int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7354{
7355 u64 rt_runtime, rt_period;
7356
7357 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7358 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7359 if (rt_runtime_us < 0)
7360 rt_runtime = RUNTIME_INF;
7361
ab84d31e 7362 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7363}
7364
9f0c1e56
PZ
7365long sched_group_rt_runtime(struct task_group *tg)
7366{
7367 u64 rt_runtime_us;
7368
d0b27fa7 7369 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7370 return -1;
7371
d0b27fa7 7372 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7373 do_div(rt_runtime_us, NSEC_PER_USEC);
7374 return rt_runtime_us;
7375}
d0b27fa7
PZ
7376
7377int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7378{
7379 u64 rt_runtime, rt_period;
7380
7381 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7382 rt_runtime = tg->rt_bandwidth.rt_runtime;
7383
619b0488
R
7384 if (rt_period == 0)
7385 return -EINVAL;
7386
ab84d31e 7387 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7388}
7389
7390long sched_group_rt_period(struct task_group *tg)
7391{
7392 u64 rt_period_us;
7393
7394 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7395 do_div(rt_period_us, NSEC_PER_USEC);
7396 return rt_period_us;
7397}
7398
7399static int sched_rt_global_constraints(void)
7400{
4653f803 7401 u64 runtime, period;
d0b27fa7
PZ
7402 int ret = 0;
7403
ec5d4989
HS
7404 if (sysctl_sched_rt_period <= 0)
7405 return -EINVAL;
7406
4653f803
PZ
7407 runtime = global_rt_runtime();
7408 period = global_rt_period();
7409
7410 /*
7411 * Sanity check on the sysctl variables.
7412 */
7413 if (runtime > period && runtime != RUNTIME_INF)
7414 return -EINVAL;
10b612f4 7415
d0b27fa7 7416 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7417 read_lock(&tasklist_lock);
4653f803 7418 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7419 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7420 mutex_unlock(&rt_constraints_mutex);
7421
7422 return ret;
7423}
54e99124
DG
7424
7425int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7426{
7427 /* Don't accept realtime tasks when there is no way for them to run */
7428 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7429 return 0;
7430
7431 return 1;
7432}
7433
6d6bc0ad 7434#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7435static int sched_rt_global_constraints(void)
7436{
ac086bc2
PZ
7437 unsigned long flags;
7438 int i;
7439
ec5d4989
HS
7440 if (sysctl_sched_rt_period <= 0)
7441 return -EINVAL;
7442
60aa605d
PZ
7443 /*
7444 * There's always some RT tasks in the root group
7445 * -- migration, kstopmachine etc..
7446 */
7447 if (sysctl_sched_rt_runtime == 0)
7448 return -EBUSY;
7449
0986b11b 7450 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7451 for_each_possible_cpu(i) {
7452 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7453
0986b11b 7454 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7455 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7456 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7457 }
0986b11b 7458 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7459
d0b27fa7
PZ
7460 return 0;
7461}
6d6bc0ad 7462#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7463
7464int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7465 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7466 loff_t *ppos)
7467{
7468 int ret;
7469 int old_period, old_runtime;
7470 static DEFINE_MUTEX(mutex);
7471
7472 mutex_lock(&mutex);
7473 old_period = sysctl_sched_rt_period;
7474 old_runtime = sysctl_sched_rt_runtime;
7475
8d65af78 7476 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7477
7478 if (!ret && write) {
7479 ret = sched_rt_global_constraints();
7480 if (ret) {
7481 sysctl_sched_rt_period = old_period;
7482 sysctl_sched_rt_runtime = old_runtime;
7483 } else {
7484 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7485 def_rt_bandwidth.rt_period =
7486 ns_to_ktime(global_rt_period());
7487 }
7488 }
7489 mutex_unlock(&mutex);
7490
7491 return ret;
7492}
68318b8e 7493
052f1dc7 7494#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7495
7496/* return corresponding task_group object of a cgroup */
2b01dfe3 7497static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7498{
2b01dfe3
PM
7499 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7500 struct task_group, css);
68318b8e
SV
7501}
7502
761b3ef5 7503static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7504{
ec7dc8ac 7505 struct task_group *tg, *parent;
68318b8e 7506
2b01dfe3 7507 if (!cgrp->parent) {
68318b8e 7508 /* This is early initialization for the top cgroup */
07e06b01 7509 return &root_task_group.css;
68318b8e
SV
7510 }
7511
ec7dc8ac
DG
7512 parent = cgroup_tg(cgrp->parent);
7513 tg = sched_create_group(parent);
68318b8e
SV
7514 if (IS_ERR(tg))
7515 return ERR_PTR(-ENOMEM);
7516
68318b8e
SV
7517 return &tg->css;
7518}
7519
761b3ef5 7520static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7521{
2b01dfe3 7522 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7523
7524 sched_destroy_group(tg);
7525}
7526
761b3ef5 7527static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7528 struct cgroup_taskset *tset)
68318b8e 7529{
bb9d97b6
TH
7530 struct task_struct *task;
7531
7532 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7533#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7534 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7535 return -EINVAL;
b68aa230 7536#else
bb9d97b6
TH
7537 /* We don't support RT-tasks being in separate groups */
7538 if (task->sched_class != &fair_sched_class)
7539 return -EINVAL;
b68aa230 7540#endif
bb9d97b6 7541 }
be367d09
BB
7542 return 0;
7543}
68318b8e 7544
761b3ef5 7545static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7546 struct cgroup_taskset *tset)
68318b8e 7547{
bb9d97b6
TH
7548 struct task_struct *task;
7549
7550 cgroup_taskset_for_each(task, cgrp, tset)
7551 sched_move_task(task);
68318b8e
SV
7552}
7553
068c5cc5 7554static void
761b3ef5
LZ
7555cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7556 struct task_struct *task)
068c5cc5
PZ
7557{
7558 /*
7559 * cgroup_exit() is called in the copy_process() failure path.
7560 * Ignore this case since the task hasn't ran yet, this avoids
7561 * trying to poke a half freed task state from generic code.
7562 */
7563 if (!(task->flags & PF_EXITING))
7564 return;
7565
7566 sched_move_task(task);
7567}
7568
052f1dc7 7569#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7570static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7571 u64 shareval)
68318b8e 7572{
c8b28116 7573 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7574}
7575
f4c753b7 7576static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7577{
2b01dfe3 7578 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7579
c8b28116 7580 return (u64) scale_load_down(tg->shares);
68318b8e 7581}
ab84d31e
PT
7582
7583#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7584static DEFINE_MUTEX(cfs_constraints_mutex);
7585
ab84d31e
PT
7586const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7587const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7588
a790de99
PT
7589static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7590
ab84d31e
PT
7591static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7592{
56f570e5 7593 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7594 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7595
7596 if (tg == &root_task_group)
7597 return -EINVAL;
7598
7599 /*
7600 * Ensure we have at some amount of bandwidth every period. This is
7601 * to prevent reaching a state of large arrears when throttled via
7602 * entity_tick() resulting in prolonged exit starvation.
7603 */
7604 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7605 return -EINVAL;
7606
7607 /*
7608 * Likewise, bound things on the otherside by preventing insane quota
7609 * periods. This also allows us to normalize in computing quota
7610 * feasibility.
7611 */
7612 if (period > max_cfs_quota_period)
7613 return -EINVAL;
7614
a790de99
PT
7615 mutex_lock(&cfs_constraints_mutex);
7616 ret = __cfs_schedulable(tg, period, quota);
7617 if (ret)
7618 goto out_unlock;
7619
58088ad0 7620 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7621 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7622 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7623 raw_spin_lock_irq(&cfs_b->lock);
7624 cfs_b->period = ns_to_ktime(period);
7625 cfs_b->quota = quota;
58088ad0 7626
a9cf55b2 7627 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7628 /* restart the period timer (if active) to handle new period expiry */
7629 if (runtime_enabled && cfs_b->timer_active) {
7630 /* force a reprogram */
7631 cfs_b->timer_active = 0;
7632 __start_cfs_bandwidth(cfs_b);
7633 }
ab84d31e
PT
7634 raw_spin_unlock_irq(&cfs_b->lock);
7635
7636 for_each_possible_cpu(i) {
7637 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7638 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7639
7640 raw_spin_lock_irq(&rq->lock);
58088ad0 7641 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7642 cfs_rq->runtime_remaining = 0;
671fd9da 7643
029632fb 7644 if (cfs_rq->throttled)
671fd9da 7645 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7646 raw_spin_unlock_irq(&rq->lock);
7647 }
a790de99
PT
7648out_unlock:
7649 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7650
a790de99 7651 return ret;
ab84d31e
PT
7652}
7653
7654int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7655{
7656 u64 quota, period;
7657
029632fb 7658 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7659 if (cfs_quota_us < 0)
7660 quota = RUNTIME_INF;
7661 else
7662 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7663
7664 return tg_set_cfs_bandwidth(tg, period, quota);
7665}
7666
7667long tg_get_cfs_quota(struct task_group *tg)
7668{
7669 u64 quota_us;
7670
029632fb 7671 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7672 return -1;
7673
029632fb 7674 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7675 do_div(quota_us, NSEC_PER_USEC);
7676
7677 return quota_us;
7678}
7679
7680int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7681{
7682 u64 quota, period;
7683
7684 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7685 quota = tg->cfs_bandwidth.quota;
ab84d31e 7686
ab84d31e
PT
7687 return tg_set_cfs_bandwidth(tg, period, quota);
7688}
7689
7690long tg_get_cfs_period(struct task_group *tg)
7691{
7692 u64 cfs_period_us;
7693
029632fb 7694 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7695 do_div(cfs_period_us, NSEC_PER_USEC);
7696
7697 return cfs_period_us;
7698}
7699
7700static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7701{
7702 return tg_get_cfs_quota(cgroup_tg(cgrp));
7703}
7704
7705static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7706 s64 cfs_quota_us)
7707{
7708 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7709}
7710
7711static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7712{
7713 return tg_get_cfs_period(cgroup_tg(cgrp));
7714}
7715
7716static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7717 u64 cfs_period_us)
7718{
7719 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7720}
7721
a790de99
PT
7722struct cfs_schedulable_data {
7723 struct task_group *tg;
7724 u64 period, quota;
7725};
7726
7727/*
7728 * normalize group quota/period to be quota/max_period
7729 * note: units are usecs
7730 */
7731static u64 normalize_cfs_quota(struct task_group *tg,
7732 struct cfs_schedulable_data *d)
7733{
7734 u64 quota, period;
7735
7736 if (tg == d->tg) {
7737 period = d->period;
7738 quota = d->quota;
7739 } else {
7740 period = tg_get_cfs_period(tg);
7741 quota = tg_get_cfs_quota(tg);
7742 }
7743
7744 /* note: these should typically be equivalent */
7745 if (quota == RUNTIME_INF || quota == -1)
7746 return RUNTIME_INF;
7747
7748 return to_ratio(period, quota);
7749}
7750
7751static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7752{
7753 struct cfs_schedulable_data *d = data;
029632fb 7754 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7755 s64 quota = 0, parent_quota = -1;
7756
7757 if (!tg->parent) {
7758 quota = RUNTIME_INF;
7759 } else {
029632fb 7760 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7761
7762 quota = normalize_cfs_quota(tg, d);
7763 parent_quota = parent_b->hierarchal_quota;
7764
7765 /*
7766 * ensure max(child_quota) <= parent_quota, inherit when no
7767 * limit is set
7768 */
7769 if (quota == RUNTIME_INF)
7770 quota = parent_quota;
7771 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7772 return -EINVAL;
7773 }
7774 cfs_b->hierarchal_quota = quota;
7775
7776 return 0;
7777}
7778
7779static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7780{
8277434e 7781 int ret;
a790de99
PT
7782 struct cfs_schedulable_data data = {
7783 .tg = tg,
7784 .period = period,
7785 .quota = quota,
7786 };
7787
7788 if (quota != RUNTIME_INF) {
7789 do_div(data.period, NSEC_PER_USEC);
7790 do_div(data.quota, NSEC_PER_USEC);
7791 }
7792
8277434e
PT
7793 rcu_read_lock();
7794 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7795 rcu_read_unlock();
7796
7797 return ret;
a790de99 7798}
e8da1b18
NR
7799
7800static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7801 struct cgroup_map_cb *cb)
7802{
7803 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7804 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7805
7806 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7807 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7808 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7809
7810 return 0;
7811}
ab84d31e 7812#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7813#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7814
052f1dc7 7815#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7816static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7817 s64 val)
6f505b16 7818{
06ecb27c 7819 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7820}
7821
06ecb27c 7822static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7823{
06ecb27c 7824 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7825}
d0b27fa7
PZ
7826
7827static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7828 u64 rt_period_us)
7829{
7830 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7831}
7832
7833static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7834{
7835 return sched_group_rt_period(cgroup_tg(cgrp));
7836}
6d6bc0ad 7837#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7838
fe5c7cc2 7839static struct cftype cpu_files[] = {
052f1dc7 7840#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7841 {
7842 .name = "shares",
f4c753b7
PM
7843 .read_u64 = cpu_shares_read_u64,
7844 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7845 },
052f1dc7 7846#endif
ab84d31e
PT
7847#ifdef CONFIG_CFS_BANDWIDTH
7848 {
7849 .name = "cfs_quota_us",
7850 .read_s64 = cpu_cfs_quota_read_s64,
7851 .write_s64 = cpu_cfs_quota_write_s64,
7852 },
7853 {
7854 .name = "cfs_period_us",
7855 .read_u64 = cpu_cfs_period_read_u64,
7856 .write_u64 = cpu_cfs_period_write_u64,
7857 },
e8da1b18
NR
7858 {
7859 .name = "stat",
7860 .read_map = cpu_stats_show,
7861 },
ab84d31e 7862#endif
052f1dc7 7863#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7864 {
9f0c1e56 7865 .name = "rt_runtime_us",
06ecb27c
PM
7866 .read_s64 = cpu_rt_runtime_read,
7867 .write_s64 = cpu_rt_runtime_write,
6f505b16 7868 },
d0b27fa7
PZ
7869 {
7870 .name = "rt_period_us",
f4c753b7
PM
7871 .read_u64 = cpu_rt_period_read_uint,
7872 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7873 },
052f1dc7 7874#endif
4baf6e33 7875 { } /* terminate */
68318b8e
SV
7876};
7877
68318b8e 7878struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
7879 .name = "cpu",
7880 .create = cpu_cgroup_create,
7881 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
7882 .can_attach = cpu_cgroup_can_attach,
7883 .attach = cpu_cgroup_attach,
068c5cc5 7884 .exit = cpu_cgroup_exit,
38605cae 7885 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7886 .base_cftypes = cpu_files,
68318b8e
SV
7887 .early_init = 1,
7888};
7889
052f1dc7 7890#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
7891
7892#ifdef CONFIG_CGROUP_CPUACCT
7893
7894/*
7895 * CPU accounting code for task groups.
7896 *
7897 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7898 * (balbir@in.ibm.com).
7899 */
7900
73fbec60
FW
7901struct cpuacct root_cpuacct;
7902
d842de87 7903/* create a new cpu accounting group */
761b3ef5 7904static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 7905{
54c707e9 7906 struct cpuacct *ca;
d842de87 7907
54c707e9
GC
7908 if (!cgrp->parent)
7909 return &root_cpuacct.css;
7910
7911 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 7912 if (!ca)
ef12fefa 7913 goto out;
d842de87
SV
7914
7915 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
7916 if (!ca->cpuusage)
7917 goto out_free_ca;
7918
54c707e9
GC
7919 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7920 if (!ca->cpustat)
7921 goto out_free_cpuusage;
934352f2 7922
d842de87 7923 return &ca->css;
ef12fefa 7924
54c707e9 7925out_free_cpuusage:
ef12fefa
BR
7926 free_percpu(ca->cpuusage);
7927out_free_ca:
7928 kfree(ca);
7929out:
7930 return ERR_PTR(-ENOMEM);
d842de87
SV
7931}
7932
7933/* destroy an existing cpu accounting group */
761b3ef5 7934static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 7935{
32cd756a 7936 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 7937
54c707e9 7938 free_percpu(ca->cpustat);
d842de87
SV
7939 free_percpu(ca->cpuusage);
7940 kfree(ca);
7941}
7942
720f5498
KC
7943static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7944{
b36128c8 7945 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7946 u64 data;
7947
7948#ifndef CONFIG_64BIT
7949 /*
7950 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7951 */
05fa785c 7952 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7953 data = *cpuusage;
05fa785c 7954 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7955#else
7956 data = *cpuusage;
7957#endif
7958
7959 return data;
7960}
7961
7962static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7963{
b36128c8 7964 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
7965
7966#ifndef CONFIG_64BIT
7967 /*
7968 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7969 */
05fa785c 7970 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 7971 *cpuusage = val;
05fa785c 7972 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
7973#else
7974 *cpuusage = val;
7975#endif
7976}
7977
d842de87 7978/* return total cpu usage (in nanoseconds) of a group */
32cd756a 7979static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 7980{
32cd756a 7981 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
7982 u64 totalcpuusage = 0;
7983 int i;
7984
720f5498
KC
7985 for_each_present_cpu(i)
7986 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
7987
7988 return totalcpuusage;
7989}
7990
0297b803
DG
7991static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7992 u64 reset)
7993{
7994 struct cpuacct *ca = cgroup_ca(cgrp);
7995 int err = 0;
7996 int i;
7997
7998 if (reset) {
7999 err = -EINVAL;
8000 goto out;
8001 }
8002
720f5498
KC
8003 for_each_present_cpu(i)
8004 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8005
0297b803
DG
8006out:
8007 return err;
8008}
8009
e9515c3c
KC
8010static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8011 struct seq_file *m)
8012{
8013 struct cpuacct *ca = cgroup_ca(cgroup);
8014 u64 percpu;
8015 int i;
8016
8017 for_each_present_cpu(i) {
8018 percpu = cpuacct_cpuusage_read(ca, i);
8019 seq_printf(m, "%llu ", (unsigned long long) percpu);
8020 }
8021 seq_printf(m, "\n");
8022 return 0;
8023}
8024
ef12fefa
BR
8025static const char *cpuacct_stat_desc[] = {
8026 [CPUACCT_STAT_USER] = "user",
8027 [CPUACCT_STAT_SYSTEM] = "system",
8028};
8029
8030static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8031 struct cgroup_map_cb *cb)
ef12fefa
BR
8032{
8033 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8034 int cpu;
8035 s64 val = 0;
ef12fefa 8036
54c707e9
GC
8037 for_each_online_cpu(cpu) {
8038 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8039 val += kcpustat->cpustat[CPUTIME_USER];
8040 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8041 }
54c707e9
GC
8042 val = cputime64_to_clock_t(val);
8043 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8044
54c707e9
GC
8045 val = 0;
8046 for_each_online_cpu(cpu) {
8047 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8048 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8049 val += kcpustat->cpustat[CPUTIME_IRQ];
8050 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8051 }
54c707e9
GC
8052
8053 val = cputime64_to_clock_t(val);
8054 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8055
ef12fefa
BR
8056 return 0;
8057}
8058
d842de87
SV
8059static struct cftype files[] = {
8060 {
8061 .name = "usage",
f4c753b7
PM
8062 .read_u64 = cpuusage_read,
8063 .write_u64 = cpuusage_write,
d842de87 8064 },
e9515c3c
KC
8065 {
8066 .name = "usage_percpu",
8067 .read_seq_string = cpuacct_percpu_seq_read,
8068 },
ef12fefa
BR
8069 {
8070 .name = "stat",
8071 .read_map = cpuacct_stats_show,
8072 },
4baf6e33 8073 { } /* terminate */
d842de87
SV
8074};
8075
d842de87
SV
8076/*
8077 * charge this task's execution time to its accounting group.
8078 *
8079 * called with rq->lock held.
8080 */
029632fb 8081void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8082{
8083 struct cpuacct *ca;
934352f2 8084 int cpu;
d842de87 8085
c40c6f85 8086 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8087 return;
8088
934352f2 8089 cpu = task_cpu(tsk);
a18b83b7
BR
8090
8091 rcu_read_lock();
8092
d842de87 8093 ca = task_ca(tsk);
d842de87 8094
44252e42 8095 for (; ca; ca = parent_ca(ca)) {
b36128c8 8096 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8097 *cpuusage += cputime;
8098 }
a18b83b7
BR
8099
8100 rcu_read_unlock();
d842de87
SV
8101}
8102
8103struct cgroup_subsys cpuacct_subsys = {
8104 .name = "cpuacct",
8105 .create = cpuacct_create,
8106 .destroy = cpuacct_destroy,
d842de87 8107 .subsys_id = cpuacct_subsys_id,
4baf6e33 8108 .base_cftypes = files,
d842de87
SV
8109};
8110#endif /* CONFIG_CGROUP_CPUACCT */